WO2016155563A1 - 一种非授权载波上传输资源的抢占方法及设备 - Google Patents

一种非授权载波上传输资源的抢占方法及设备 Download PDF

Info

Publication number
WO2016155563A1
WO2016155563A1 PCT/CN2016/077248 CN2016077248W WO2016155563A1 WO 2016155563 A1 WO2016155563 A1 WO 2016155563A1 CN 2016077248 W CN2016077248 W CN 2016077248W WO 2016155563 A1 WO2016155563 A1 WO 2016155563A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca detection
cca
channel
time point
user equipment
Prior art date
Application number
PCT/CN2016/077248
Other languages
English (en)
French (fr)
Inventor
徐伟杰
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP16771318.9A priority Critical patent/EP3277045B1/en
Priority to US15/562,364 priority patent/US20180288802A1/en
Publication of WO2016155563A1 publication Critical patent/WO2016155563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a device for preempting transmission resources on an unlicensed carrier.
  • LTE Long Term Evolution
  • U-LTE or LTE-U unlicensed LTE
  • LBT Listening Before Talk
  • the unlicensed spectrum does not have a specific application system, and can be shared by various wireless communication systems such as Bluetooth, WIFI, etc., and the shared unlicensed spectrum resources are used by multiple systems by preempting resources. Therefore, the coexistence of LTE-U deployed by different operators and wireless communication systems such as LTE-U and WIFI is a key point and difficulty in research.
  • the 3GPP requires guaranteeing the fair coexistence of wireless communication systems such as LTE-U and WIFI, and the unlicensed frequency band is used as a secondary carrier to be assisted by the primary carrier of the licensed frequency band.
  • LBT has been approved by almost all companies.
  • the WIFI system preempts resources on the unlicensed spectrum, including: first, the channel is monitored, and when the channel idle time reaches the inter-frame distribution distance (Distributed Inter-Frame Space, DIFS), it is judged that the current channel is an idle channel, and then the stations of each channel waiting for access enter a random back-off phase, so as to avoid collision of multiple sites in the same resource.
  • DIFS distributed Inter-Frame Space
  • each site cannot occupy spectrum resources for a long time. When a certain time or data transmission limit is reached, resources need to be released for other WIFI or LTE systems to seize resources.
  • the LTE base station and the terminal also need to use the LBT mechanism to compete for resources in order to ensure fair sharing of spectrum resources with other devices or systems.
  • the European ETSI standardizes two modes of LBT for 5 GHz unlicensed bands: Frame based Equipment and Load based Equipment.
  • the frame-based device mode has a fixed frame occupation time, which includes signal transmission duration and idle time.
  • the time period wherein the idle time period is not less than 5% of the signal transmission time.
  • the fixed frame After the fixed frame, it includes a Clear Channel Assessment (CCA) detection period (at least 20 us) for detecting whether the channel is idle.
  • CCA Clear Channel Assessment
  • the unlicensed device uses the energy detection method in the CCA detection period to judge that the channel is idle to use the channel, for example, the power of the received signal on the channel is measured during the CCA period, and if the measured signal power on the channel is greater than the first A power threshold determines that the channel is busy, otherwise the channel is determined to be idle.
  • the duration of signal transmission is variable. Before the device transmits signals on the unlicensed channel, the device needs to perform a CCA detection by using energy detection on the channel. If it is determined that the channel is idle, the device may transmit a signal on the channel. Otherwise, if the channel is determined to be busy, the unlicensed device needs to use the extended CCA mode to detect the channel, and the extended CCA detection device needs to detect that the N channels are idle for the CCA period. Only when the channel is in an idle state is determined, the device can occupy the channel.
  • the value N is a value randomly generated between 1 and q, and q belongs to the range [4, 32].
  • the frame-based device mode has limited channel access capability on unlicensed bands.
  • the CCA detection position of each device is independently determined, and the required channel is an idle CCA period value N is independently generated randomly.
  • a significant advantage of the LTE system is that the multi-cell networking frequency reuse factor is 1, that is, multiple neighboring cells can simultaneously transmit signals on the same frequency band.
  • the prior art does not provide a reasonable solution for LTE to compete for channel resources when operating on an unlicensed carrier.
  • the embodiments of the present invention provide a method and a device for preempting transmission resources on an unlicensed carrier, and a technical solution for competing for channel resources when a better unlicensed carrier is implemented, so that spectrum utilization is higher.
  • the device determines whether the preset idle channel evaluates whether the CCA detection time point is reached, where the CCA detection time point It is periodically arrived, and the arrival period is less than the preset maximum time allowed by the device to transmit signals after preempting the channel;
  • the device When the CCA detection time point arrives, the device performs CCA detection.
  • the device can periodically perform CCA detection, and the detection period is smaller than a preset maximum time occupied by the device for each transmission signal allowed by the device on the channel, and therefore, compared with the frame-based method proposed in the prior art.
  • the device mode shortens the CCA detection period and provides more channel access opportunities.
  • multiple devices that maintain the frame-based device mode can simultaneously achieve the frequency reuse factor of 1 through CCA detection.
  • the spectrum utilization efficiency on the unlicensed frequency band is improved.
  • since the window time for performing CCA detection is periodically fixed, it is advantageous for multiple LTE base stations to simultaneously obtain channel detection success and achieve frequency reuse.
  • the device when the CCA detection time point arrives, the device performs CCA detection, which specifically includes:
  • the device determines whether the signal transmission is currently in progress, and if so, discards the current CCA detection and continues to wait for the arrival of the next CCA detection time point; otherwise, the device performs this time. CCA testing.
  • the duration of each CCA detection is a preset duration, or is a duration corresponding to any positive integer number of CCA detection slots in the preset range.
  • the CCA detection time point is a start time or a stop time of the CCA detection.
  • the method further includes:
  • the channel is successfully transmitted on the CCA detection channel, wherein the duration of the transmission signal does not exceed the maximum duration, or the end time of the transmission signal does not exceed the current CCA detection time.
  • the point is added to the first CCA detection time point that occurs after the maximum duration.
  • the device performs CCA detection, including:
  • the device When the device detects that N time slots are idle, it determines that the CCA detection is successful, where N is a positive integer, and multiple devices share the N.
  • the value of the N is notified by the master device to the multiple devices.
  • a first unit configured to determine whether a preset CCA detection time point of the device is reached, where the CCA detection time point is periodically arrived, and the arrival period is less than a preset time after the device preempts the channel.
  • the second unit is configured to perform CCA detection when the CCA detection time point arrives.
  • the second unit is specifically configured to:
  • the duration of each CCA detection is a preset duration, or is a duration corresponding to any positive integer number of CCA detection slots in the preset range.
  • the CCA detection time point is a start time or a stop time of the CCA detection.
  • the second unit after the second unit performs CCA detection, it is further used to:
  • the channel is successfully transmitted on the CCA detection channel, wherein the duration of the transmission signal does not exceed the maximum duration, or the end time of the transmission signal does not exceed the current CCA detection time.
  • the point is added to the first CCA detection time point that occurs after the maximum duration.
  • N is a positive integer, and multiple devices share the N.
  • the value of the N is notified by the master device to the multiple devices.
  • a processor for reading a program in the memory performing the following process:
  • the processor determines whether the signal transmission is currently being performed, and if yes, discards the current CCA detection and continues to wait for the arrival of the next CCA detection time point; otherwise, Secondary CCA testing.
  • the duration of each CCA detection is a preset duration, or is a duration corresponding to any positive integer number of CCA detection slots in the preset range.
  • the CCA detection time point is a start time or a stop time of the CCA detection.
  • the processor after the processor performs CCA detection, it is also used to:
  • the channel control transceiver that successfully detects the CCA performs signal transmission, wherein the duration of the transmission signal is not longer than the maximum duration, or the end time of the transmission signal is not exceeded at this time.
  • the processor when the processor performs CCA detection, it is specifically used to:
  • N is a positive integer, and multiple devices share the N.
  • the value of the N is notified by the master device to the multiple devices.
  • a transceiver for receiving and transmitting signals under the control of a processor.
  • the base station determines an extended idle channel assessment CCA parameter N;
  • the base station notifies the user equipment of the extended CCA parameter N to indicate that the user equipment may occupy a channel for signal transmission when the following conditions are met: the N CCA detection periods of the user equipment in any CCA detection window Both channels are detected to be idle.
  • the base station notifies the user equipment of the extended CCA parameter by using a physical downlink control channel PDCCH.
  • the base station notifies the extended CCA parameter N to multiple user equipments.
  • the user equipment receives the CCA parameter N sent by the base station;
  • the user equipment determines that the channel can be occupied for signal transmission when the following conditions are met: the user equipment detects that the channel is idle in N CCA detection periods in any CCA detection window.
  • the user equipment receives the extended CCA parameter N sent by the base station by using a physical downlink control channel PDCCH.
  • a determining unit configured to determine an extended idle channel assessment CCA parameter N;
  • a notification unit configured to notify the user equipment of the extended CCA parameter N, to indicate that the user equipment can occupy a channel for signal transmission when the following conditions are met: the N CCAs of the user equipment in any CCA detection window The detection period detects that the channel is idle.
  • the notification unit notifies the user equipment of the extended CCA parameter by using a physical downlink control channel PDCCH.
  • the notification unit notifies the extended CCA parameter N to a plurality of user equipments.
  • a receiving unit configured to receive a CCA parameter N sent by the base station
  • the preemption unit is configured to determine that the channel can be occupied for signal transmission when the following conditions are met: the N CCA detection period in any CCA detection window detects that the channel is idle.
  • the receiving unit receives the extended CCA parameter N sent by the base station by using a physical downlink control channel PDCCH.
  • a processor for reading a program in the memory performing the following process:
  • the extended CCA parameter N is notified to the user equipment by the transceiver, to indicate that the user equipment can occupy the channel for signal transmission when the following conditions are met: the N CCA detection period of the user equipment in any CCA detection window Both channels are detected to be idle.
  • the processor instructs the transceiver to pass the extended CCA parameter through the physical downlink control channel PDCCH. Know to the user equipment.
  • the processor notifies the extended CCA parameter N to the plurality of user equipments through the transceiver.
  • a processor for reading a program in the memory performing the following process:
  • the channel can be occupied for signal transmission when the following conditions are met: the channel is detected to be idle in N CCA detection periods within any of the CCA detection windows.
  • the processor instructs the transceiver to receive the extended CCA parameter N sent by the base station by using a physical downlink control channel PDCCH.
  • FIG. 1 is a schematic diagram of an LBT scheme of a conventional frame-based device mode
  • FIG. 2 is a schematic diagram of an LBT solution of an existing load-based device mode
  • FIG. 3 is a schematic flowchart of a method for preempting transmission resources on an unlicensed carrier according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of time occupation of CCA detection and signal transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of time occupancy of another CCA detection and signal transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a preemption control method for a transmission resource on an unlicensed carrier according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for preempting transmission resources on an unlicensed carrier according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a preemption device for transmitting resources on an unlicensed carrier according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of another preemptive device for transmitting resources on an unlicensed carrier according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • the embodiments of the present invention provide a method and a device for preempting transmission resources on an unlicensed carrier, and a technical solution for competing for channel resources when a better unlicensed carrier is implemented, so that spectrum utilization is higher.
  • a method for preempting transmission resources on an unlicensed carrier includes the following steps:
  • S101 The device determines whether a preset CCA detection time point is reached, where the CCA detection time point is periodically arrived, and the arrival period is less than a preset maximum time allowed by the device to transmit a signal after preempting the channel. .
  • the CCA detection time point is periodically arrived, that is, the interval between the start time point or the end time point of each adjacent two CCA detections is the same.
  • the unlicensed device performs CCA detection on the channel by using the time period M.
  • the preset maximum time occupied by the device for each transmission signal allowed by the device on the channel is P, then M ⁇ P.
  • the device in the embodiment of the present invention may be a base station device on the network side or a user equipment (UE) on the terminal side.
  • UE user equipment
  • the device can periodically perform CCA detection, and the detection period is smaller than a preset maximum time occupied by the device for each transmission signal allowed by the device on the channel, and therefore, compared with the frame-based method proposed in the prior art.
  • the device mode shortens the CCA detection period and provides more channel access opportunities.
  • multiple devices that maintain the frame-based device mode can simultaneously achieve the frequency reuse factor of 1 through CCA detection.
  • the spectrum utilization efficiency on the unlicensed frequency band is improved.
  • since the window time for performing CCA detection is periodically fixed, it is advantageous for multiple LTE base stations to simultaneously obtain channel detection success and achieve frequency reuse.
  • the device when the CCA detection time point arrives, the device performs CCA detection, which specifically includes:
  • the device determines whether the signal transmission is currently in progress, and if so, discards the current CCA detection and continues to wait for the arrival of the next CCA detection time point; otherwise, the device performs this time. CCA testing.
  • the device when it performs signal transmission, if it catches up with the CCA detection time point, it skips, does not perform CCA detection, but continues to wait for the next CCA detection time point to arrive until the next CCA detection time point arrives. The CCA test is continued without signal transmission.
  • the duration occupied by each CCA detection is a preset duration, or is a duration corresponding to any positive integer number of CCA detection slots within a preset range.
  • the CCA detection can be a fixed-time CCA detection, and the CCA detection can also be extended.
  • the CCA detection time point is a start time or a stop time of the CCA detection.
  • the method further includes:
  • the channel is successfully transmitted on the CCA detection channel, wherein the duration of the transmission signal does not exceed the maximum duration, or the end time of the transmission signal does not exceed the current CCA detection time.
  • the point is added to the first CCA detection time point that occurs after the maximum duration.
  • the current CCA detection time point is time 0. If the current CCA detection is successful, the signal transmission starts, and the longest duration of the signal transmission cannot exceed P, or the end time of the transmission signal is not the latest.
  • the CCA detection is successful, for example, the channel is detected in N time slots in the CCA detection window. idle.
  • the device performs CCA detection, including:
  • the device When the device detects that N time slots are idle, it determines that the CCA detection is successful, where N is a positive integer, and multiple devices share the N.
  • N is a positive integer
  • the LTE base stations belonging to the same carrier adopt the same extended CCA parameters, that is, the values of N are the same.
  • the value of the N is notified by the master device to the plurality of devices.
  • the master device may be a master LTE base station of a plurality of base stations, or may be a centralized control node of a layer above the base station.
  • the master control device is a base station
  • the multiple devices are controlled devices, which may be base stations. It can also be a UE.
  • Embodiment 1 Application to a frame-based device mode.
  • the LTE device performs CCA detection for a fixed duration (eg, 20 us) periodically (eg, with a period of 1 ms or 2 ms).
  • the LTE base station (BS) 1 and the LTE BS3 have signals to transmit, so the CCA detection is performed, but due to the signal transmission of the WIFI node (node) 1, in the Kth CCA detection window, the LTE BS1 and LTE BS3 detects that the channel is busy, that is, the CCA detection fails.
  • the WIFI node1 signal is transmitted.
  • both the LTE BS1 and the LTE BS3 detect that the channel is idle, that is, the CCA detection is successful, and the two devices are LTE BS1.
  • the transmission of signals is started with LTE BS3 according to the requirements of the non-authorized device specification (the maximum transmission duration P can be 10 ms (current European specification) or 4 ms (current Japanese specification)).
  • the maximum transmission duration P can be 10 ms (current European specification) or 4 ms (current Japanese specification)).
  • the allowed maximum transmission duration P there is no need to perform CCA detection, for example, LTE BS1 and LTE BS3 do not need to perform CCA detection in the CCA detection window K+2.
  • the base station LTE BS2 has signal transmission, but the CCA result in the CCA detection window K+2 is busy, because the nearby base station equipments LTE BS1 and LTE BS3 are transmitting signals, but to the CCA detection window.
  • K+3 LTE BS1 and LTE BS3 arrive at the maximum transmission time of the previous transmission opportunity, so CCA detection needs to be performed again.
  • the three base stations LTE BS1, LTE BS2 and LTE BS3 successfully pass the CCA detection to judge that the channel is idle. , open the next transmission opportunity.
  • Embodiment 2 Application to extended CCA-based contention access.
  • the method provided by the embodiment of the present invention may also be used according to the extended CCA access mode.
  • the difference from Embodiment 1 is that in the periodic CCA detection in Embodiment 1, each CCA detection is occupied.
  • the duration of the detection is a fixed detection duration, for example, 20 us.
  • the LTE base station starts CCA detection at the CCA detection time point of the cycle arrival.
  • the CCA detection window starts at the time point of arrival
  • the unauthorized device needs to detect the CCA detection window. It is determined that the channel is idle after detecting that the channel is idle in the N CCA detection periods, and the device can occupy the channel.
  • N is a value randomly generated between 1 and q, and q belongs to the range [4, 32].
  • this embodiment defines the starting point of each CCA detection, that is, the starting time of each CCA detection is a period, and the time end of each CCA detection depends on the specific channel condition and the random device.
  • the generated CCA detects the number N of idle slots, so this embodiment does not define the end point of each CCA detection, but the endpoints are all within the CCA detection window.
  • the maximum transmission duration P required by the specification ((the maximum transmission duration can be 10ms (current European specification) or 4ms (current Japanese specification)), another way is : At the beginning of the first CCA detection window that appears at the beginning of this CCA detection window plus the maximum transmission duration P.
  • an optimized manner is adopted by multiple LTE base stations.
  • the same extended CCA parameters for example, the embodiment of the present invention has defined the starting time point of the CCA detection window. If multiple base stations can use the same number of idle time slots detected by the CCA, then in most cases, multiple neighbors The base station can obtain the same CCA detection result, that is, the CCA detection is successful at the same time, so that multiple base stations simultaneously initiate signal transmission to avoid mutual signal interference.
  • the same parameter N adopted by a plurality of base stations can be randomly generated by a master control base station and distributed to a plurality of base stations through a network interface.
  • the window time of the CCA detection by the base station is periodically fixed, which is advantageous for the multiple LTE base stations to obtain the channel detection success at the same time and achieve the frequency reuse factor of 1, thereby improving the spectrum utilization efficiency.
  • the foregoing first embodiment and the second embodiment both use the base station as the CCA detecting device as an example to illustrate the technical solution provided by the embodiment of the present invention.
  • the technical solution provided by the embodiment of the present invention may also be applied to the unlicensed carrier. Terminal equipment working on.
  • multiple terminal devices may also adopt the same extended CCA parameter N.
  • the extended CCA parameter may be generated by the base station and notified to multiple terminal devices, for example, The uplink scheduling is notified to the terminal device through a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • a method for preempting transmission resource transmission on an unlicensed carrier includes the following steps:
  • the base station determines an extended idle channel assessment CCA parameter N;
  • the base station notifies the user equipment of the extended CCA parameter N, to indicate that the user equipment may occupy a channel for signal transmission when the following conditions are met: the N CCAs of the user equipment in any CCA detection window The detection period detects that the channel is idle.
  • the base station notifies the user equipment of the extended CCA parameter N, which is used to indicate that the user equipment can occupy the channel for signal transmission when the following conditions are met: the N CCA detection period of the user equipment in any CCA detection window. Both channels are detected to be idle.
  • Shorter CCA detection period provides more channel access opportunities, thus improving spectrum utilization efficiency on unlicensed bands.
  • the base station notifies the user equipment of the extended CCA parameter by using a physical downlink control channel PDCCH.
  • the base station notifies the extended CCA parameter N to a plurality of user equipments. Therefore, multiple user equipments can share the same extended CCA parameter N, so that multiple user equipments belonging to the same operator can synchronously transmit signals, and avoid only some user equipments transmitting signals because of mutual signal interference. Therefore, the spectrum utilization efficiency on the unlicensed frequency band is further improved.
  • a method for preempting transmission resources on an unlicensed carrier includes:
  • the user equipment receives the CCA parameter N sent by the base station.
  • the user equipment determines that the channel can be occupied for signal transmission when the following conditions are met: the user equipment detects that the channel is idle in N CCA detection periods in any CCA detection window.
  • the user equipment receives the extended CCA parameter N sent by the base station by using a physical downlink control channel PDCCH.
  • PDCCH physical downlink control channel
  • a preemption device for transmitting resources on an unlicensed carrier includes:
  • the first unit 801 is configured to determine whether a preset CCA detection time point of the device arrives, where the CCA detection time point is periodically arrived, and the arrival period is less than a preset time, and the device transmits a signal after preempting the channel.
  • the second unit 802 is configured to perform CCA detection when the CCA detection time point arrives.
  • the second unit is specifically configured to:
  • the duration occupied by each CCA detection is a preset duration, or is a duration corresponding to any positive integer number of CCA detection slots within a preset range.
  • the CCA detection time point is a start time or a stop time of the CCA detection.
  • the second unit is further configured to:
  • the channel is successfully transmitted on the CCA detection channel, wherein the duration of the transmission signal does not exceed the maximum duration, or the end time of the transmission signal does not exceed the current CCA detection time.
  • the point is added to the first CCA detection time point that occurs after the maximum duration.
  • the second unit when the second unit performs CCA detection, it is specifically used to:
  • N is a positive integer, and multiple devices share The N.
  • the value of the N is notified by the master device to the plurality of devices.
  • another preemption device for transmitting resources on an unlicensed carrier includes:
  • the processor 901 is configured to read a program in the memory 902 and perform the following process:
  • the processor 901 determines whether the signal transmission is currently being performed when the CCA detection time point arrives, and if yes, abandons the current CCA detection and continues to wait for the arrival of the next CCA detection time point; otherwise, this time CCA testing.
  • the duration occupied by each CCA detection is a preset duration, or is a duration corresponding to any positive integer number of CCA detection slots within a preset range.
  • the CCA detection time point is a start time or a stop time of the CCA detection.
  • the processor 901 is further configured to:
  • the channel control transceiver 903 that successfully detects the CCA performs signal transmission, wherein the duration of the transmission signal is not longer than the maximum duration, or the end time of the transmission signal is not exceeded at the latest.
  • the second CCA detection time point plus the first CCA detection time point that occurs after the maximum duration is not exceeded at the latest.
  • processor 901 when the processor 901 performs CCA detection, it is specifically used to:
  • N is a positive integer, and multiple devices share the N.
  • the value of the N is notified by the master device to the plurality of devices.
  • the transceiver 903 is configured to receive and transmit signals under the control of the processor 901.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 901 and various circuits of memory represented by memory 902.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 903 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 can store signals used by the processor 901 in performing operations.
  • a base station provided by an embodiment of the present application includes:
  • a determining unit 1001 configured to determine an extended idle channel assessment CCA parameter N;
  • the notification unit 1002 is configured to notify the user equipment of the extended CCA parameter N, to indicate that the user equipment can occupy a channel for signal transmission when the following conditions are met: the user equipment is in any CCA detection window.
  • the N CCA detection periods all detect that the channel is idle.
  • the notification unit notifies the user equipment of the extended CCA parameter by using a physical downlink control channel PDCCH.
  • the notification unit notifies the extended CCA parameter N to a plurality of user equipments.
  • a user equipment provided by an embodiment of the present application includes:
  • the receiving unit 1101 is configured to receive a CCA parameter N sent by the base station;
  • the preemption unit 1102 is configured to determine that the channel can be occupied for signal transmission when the following conditions are met: the N CCA detection periods in any CCA detection window detect that the channel is idle.
  • the receiving unit receives the extended CCA parameter N sent by the base station by using a physical downlink control channel PDCCH.
  • PDCCH physical downlink control channel
  • another base station provided by the embodiment of the present application includes:
  • the processor 1201 is configured to read a program in the memory 1202 and perform the following process:
  • the extended CCA parameter N is notified to the user equipment by the transceiver 1203, to indicate that the user equipment can occupy a channel for signal transmission when the following conditions are met: N CCA detections of the user equipment in any CCA detection window The time period detects that the channel is idle.
  • the transceiver 1203 is configured to receive and transmit data under the control of the processor 1201.
  • the processor 1201 notifies the extended CCA parameter to the user equipment through the physical downlink control channel PDCCH through the transceiver 1203.
  • the processor 1201 notifies the extended CCA parameter N to the plurality of user equipments through the transceiver 1203.
  • the processor, memory and transceiver are connected by a bus, which may include any number of interconnected buses and bridges, which will include one or more processors represented by processor 1201 and memory represented by memory 1202. Various circuits are linked together.
  • the bus can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • Bus interface 1204 provides an interface between the bus and the transceiver.
  • the transceiver can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the processor 1201 is responsible for managing the bus and normal processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory can be used to store data used by the processor when performing operations.
  • the processor processed data is transmitted over the antenna 1205 in a wireless medium. Further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for bus management and general processing, as well as various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory can be used to store data used by the processor when performing operations.
  • the processor may be a central buried device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device (Complex). Programmable Logic Device, CPLD).
  • CPU central buried device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Complex complex programmable logic device
  • CPLD Programmable Logic Device
  • another user equipment provided by the embodiment of the present application includes:
  • the processor 1301 is configured to read a program in the memory 1302 and perform the following process:
  • the channel can be occupied for signal transmission when the following conditions are met: the channel is detected to be idle in N CCA detection periods within any of the CCA detection windows.
  • the processor 1301 receives the extended CCA parameter N sent by the base station by using the physical downlink control channel PDCCH by the transceiver 1303.
  • the transceiver 1303 is configured to receive and transmit data under the control of the processor 1301.
  • bus interface 1304 provides an interface between the bus and the transceiver.
  • the transceiver can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. For example, the transceiver receives external data from other devices.
  • the transceiver is used to send the processed data of the processor to other devices.
  • a user interface 1305 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor is responsible for managing the bus and normal processing, as well as providing various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory can be used to store data used by the processor when performing operations.
  • the processor can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the LTE device adopts the LBT mode competition resource scheme when the LTE works in the unlicensed frequency band.
  • the cycle of CCA detection is shortened, more channel access opportunities are provided compared to the existing frame-based device mode, while the frame-based transmission is maintained.
  • the device-based multi-device can simultaneously achieve the frequency reuse factor of 1 through CCA detection, so the method can improve the spectrum utilization efficiency in the unlicensed frequency band.
  • the window time of the CCA detection by the base station is periodically fixed, which is advantageous for the multiple LTE base stations to obtain the channel detection success at the same time and achieve the frequency reuse factor of 1, thereby improving the spectrum utilization efficiency and finally improving the system work. effectiveness.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention may employ one or more computers having computer usable program code embodied therein. The form of a computer program product embodied on a storage medium, including but not limited to disk storage and optical storage.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种非授权载波上传输资源的抢占方法及设备,用以实现更优的非授权载波时竞争信道资源的技术方案,使得频谱利用率更高。本申请提供的一种非授权载波上传输资源的抢占方法,包括:设备判断预设的空闲信道评估CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;当CCA检测时间点到达时,所述设备进行CCA检测。

Description

一种非授权载波上传输资源的抢占方法及设备
本申请要求在2015年03月27日提交中国专利局、申请号为201510142831.7、发明名称为“一种非授权载波上传输资源的抢占方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种非授权载波上传输资源的抢占方法及设备。
背景技术
随着移动数据业务量的不断增长,频谱资源越来越紧张,仅使用授权频谱资源进行网络部署和业务传输可能已经不能满足业务量需求,因此长期演进(Long Term Evolution,LTE)***可以考虑在非授权频谱资源上部署传输,可以称这种LTE***为非授权LTE(Unlicensed LTE,简称为U-LTE或者LTE-U)***,以提高用户体验和扩展覆盖。但是,目前LTE***如何在非授权频谱资源上工作还没有明确的方案。
非授权频谱上的先听后说(listen Before Talk,LBT,也称通话前监听)原理介绍如下:
非授权频谱没有规划具体的应用***,可以为多种无线通信***如蓝牙、WIFI等共享,多种***间通过抢占资源的方式使用共享的非授权频谱资源。故不同运营商部署的LTE-U之间及LTE-U与WIFI等无线通信***的共存性是研究的一个重点与难点。3GPP要求保证LTE-U与WIFI等无线通信***的公平共存,非授权频段作为辅载波由授权频段的主载波辅助实现。LBT作为LTE-U竞争接入的基本手段,得到几乎所有公司的赞同。
LBT技术的本质仍然是802.11***采用载波监听/冲突避免(CSMA/CA)机制,WIFI***在非授权频谱上的抢占资源方式包括:首先,对信道进行监听,当信道空闲时间达到帧间分布距离(Distributed Inter-Frame Space,DIFS),便判断当前信道为空闲信道,然后各个等待接入的信道的站点,便进入一个随机回退阶段,用于避免多个站点在相同的资源发生碰撞。此外,为了保证公平性,还规定每个站点不能长期占用频谱资源,到达一定时间或数据传输量上限时,需要释放资源,以供其他WIFI或LTE***抢占资源。
LTE***在非授权频段的载波上工作时,为了保证与其他设备或***公平共享频谱资源,LTE基站与终端也需要采用LBT机制竞争资源。
欧洲标准中关于在非授权频谱上的LBT的两种方法介绍如下:
欧洲的ETSI规范了5GHz的非授权频段的LBT的两种方式:基于帧的设备(Frame based Equipment)方式与基于负载的设备(Load based Equipment)方式。
参见图1,基于帧的设备方式中有固定的帧占用时长,其中包含信号传输时长与空闲 时段,其中空闲时段不小于信号传输时长的5%。在固定的帧后,包含一个检测信道是否为空闲的空闲信道评估(Clear Channel Assessment,CCA)检测时段(至少为20us)。非授权设备在CCA检测时段中采用能量检测的方式判断信道为空闲才可以使用信道,例如在CCA时段上对该信道上接收到信号的功率进行测量,若测量到信道上的接收信号功率大于第一功率门限,则确定信道为忙,否则确定信道为空闲。
参见图2,对于基于负载的设备方式,信号传输的时长是可变的。设备在非授权信道上进行信号传输之前,设备需要对信道采用能量检测的方式执行一次CCA检测。若确定信道为闲,设备可以在信道上传输信号,否则,若确定信道为忙,非授权设备需采用扩展的CCA方式检测信道,扩展的CCA检测中设备需要检测N个信道为空闲的CCA时段才确定信道为空闲状态,设备才可以占用信道。数值N是在1~q之间随机产生的数值,q属于范围[4,32]。
目前,LTE***如何在非授权频谱上工作还没有明确方案,对于非授权载波,归属同一运营商的LTE基站或终端设备如何竞争资源还没有明确方案。一种可能的方法是应用以上基于帧的设备方式或基于负载的设备方式。但这两种方式均有明显的缺点,例如基于帧的设备方式,预设的该设备在信道上的每次传输信号所允许占用的最大时长前仅有一次信道检测的CCA窗口机会(20us),其中,所述最大时长,例如:根据欧洲现有规范,设备在非授权载波上的每一次抢占信道后最大传输时长为10ms;另外,根据日本现有规范,每一次最大传输时长为4ms。
若恰巧在CCA窗口机会中有其他非授权载波的设备在发射信号,会导致当前设备无法竞争得到信道,进而只能等到下一次CCA窗口才可以再次参与信道竞争。因此,基于帧的设备方式在非授权频段上信道接入能力受限。对于基于负荷的设备方式,由于每一个设备的CCA检测位置是独立确定,且所需的信道为空闲的CCA时段数值N均为独立随机产生。
因此,即便是多个设备归属于同一个运营商,也可能会因为设备间的相互竞争导致仅有部分的设备可以接入信道。而LTE***的一个明显优势是可以做到多小区组网时频率复用因子为1,即多个相邻小区可以同时在相同频段上传输信号。
综上所述,现有技术中没有给出LTE工作于非授权载波时竞争信道资源的合理方案。
发明内容
本发明实施例提供了一种非授权载波上传输资源的抢占方法及设备,用以实现更优的非授权载波时竞争信道资源的技术方案,使得频谱利用率更高。
本发明实施例提供的一种非授权载波上传输资源的抢占方法,包括:
设备判断预设的空闲信道评估CCA检测时间点是否到达,其中所述CCA检测时间点 是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
当CCA检测时间点到达时,所述设备进行CCA检测。
通过该方法,设备可以周期性地进行CCA检测,并且检测周期小于预设的该设备在信道上规范允许的每次传输信号所占用的最大时长,因此,与现有技术中提出的基于帧的设备方式,由于缩短了CCA检测的周期,提供了更多的信道接入机会,同时保持了基于帧的设备方式的多设备可以同时通过CCA检测进而达到频率复用因子为1的目的,因此可以提升非授权频段上的频谱利用效率;与现有技术中提出的采用扩展CCA的方式,由于进行CCA检测的窗口时间周期性固定,有利于多个LTE基站同时取得信道检测成功进而达到频率复用因子为1的目的,进而也提升了频谱利用效率。
可能的实施方式中,当CCA检测时间点到达时,所述设备进行CCA检测,具体包括:
当CCA检测时间点到达时,所述设备判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,所述设备进行本次的CCA检测。
可能的实施方式中,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
可能的实施方式中,所述CCA检测时间点是CCA检测的起始时刻或终止时刻。
可能的实施方式中,所述设备进行CCA检测后,该方法还包括:
当CCA检测成功时,在CCA检测成功的信道进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
可能的实施方式中,所述设备进行CCA检测,包括:
所述设备检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。
可能的实施方式中,所述N的取值是由主控设备通知给所述多个设备的。
本发明实施例提供的一种非授权载波上传输资源的抢占设备,包括:
第一单元,用于判断该设备预设的空闲信道评估CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
第二单元,用于当CCA检测时间点到达时,进行CCA检测。
可能的实施方式中,第二单元,具体用于:
当CCA检测时间点到达时,判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,进行本次的CCA检测。
可能的实施方式中,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
可能的实施方式中,所述CCA检测时间点是CCA检测的起始时刻或终止时刻。
可能的实施方式中,所述第二单元进行CCA检测后,还用于:
当CCA检测成功时,在CCA检测成功的信道进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
可能的实施方式中,所述第二单元进行CCA检测时,具体用于:
检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。
可能的实施方式中,所述N的取值是由主控设备通知给所述多个设备的。
本发明实施例提供的一种非授权载波上传输资源的抢占设备,包括:
处理器,用于读取存储器中的程序,执行下列过程:
判断该设备预设的CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
当CCA检测时间点到达时,进行CCA检测。
可能的实施方式中,处理器当CCA检测时间点到达时,判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,进行本次的CCA检测。
可能的实施方式中,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
可能的实施方式中,所述CCA检测时间点是CCA检测的起始时刻或终止时刻。
可能的实施方式中,处理器进行CCA检测后,还用于:
当CCA检测成功时,在CCA检测成功的信道控制收发机进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
可能的实施方式中,处理器进行CCA检测时,具体用于:
检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。
可能的实施方式中,所述N的取值是由主控设备通知给所述多个设备的。
收发机,用于在处理器的控制下接收和发送信号。
本发明实施例提供的一种非授权载波上传输资源的抢占控制方法,包括:
基站确定扩展空闲信道评估CCA参数N;
所述基站将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
可能的实施方式中,所述基站通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
可能的实施方式中,所述基站将所述扩展CCA参数N通知给多个用户设备。
本发明实施例提供的一种非授权载波上传输资源的抢占方法,包括:
用户设备接收基站发送的CCA参数N;
所述用户设备在满足如下条件时确定可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
可能的实施方式中,所述用户设备通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
本发明实施例提供的一种基站,包括:
确定单元,用于确定扩展空闲信道评估CCA参数N;
通知单元,用于将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
可能的实施方式中,所述通知单元通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
可能的实施方式中,所述通知单元将所述扩展CCA参数N通知给多个用户设备。
本发明实施例提供的一种用户设备,包括:
接收单元,用于接收基站发送的CCA参数N;
抢占单元,用于在满足如下条件时确定可以占用信道进行信号传输:在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
可能的实施方式中,所述接收单元通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
本发明实施例提供的一种基站,包括:
处理器,用于读取存储器中的程序,执行下列过程:
确定扩展空闲信道评估CCA参数N;
通过收发机将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
较佳地,处理器指示收发机通过物理下行控制信道PDCCH,将所述扩展CCA参数通 知给用户设备。
较佳地,处理器通过收发机将所述扩展CCA参数N通知给多个用户设备。
本发明实施例提供的一种用户设备,包括:
处理器,用于读取存储器中的程序,执行下列过程:
通过收发机接收基站发送的CCA参数N;
在满足如下条件时确定可以占用信道进行信号传输:在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
较佳地,处理器指示收发机通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
附图说明
图1为现有基于帧的设备方式的LBT方案示意图;
图2为现有基于负载的设备方式的LBT方案示意图;
图3为本发明实施例提供的一种非授权载波上传输资源的抢占方法的流程示意图;
图4为本发明实施例提供的一种CCA检测及信号传输的时间占用示意图;
图5为本发明实施例提供的另一种CCA检测及信号传输的时间占用示意图;
图6为本发明实施例提供的一种非授权载波上传输资源的抢占控制方法的流程示意图;
图7为本发明实施例提供的一种非授权载波上传输资源的抢占方法的流程示意图;
图8为本发明实施例提供的一种非授权载波上传输资源的抢占设备的结构示意图;
图9为本发明实施例提供的另一种非授权载波上传输资源的抢占设备的结构示意图;
图10为本发明实施例提供的一种基站的结构示意图;
图11为本发明实施例提供的一种用户设备的结构示意图;
图12为本发明实施例提供的另一种基站的结构示意图;
图13为本发明实施例提供的另一种用户设备的结构示意图。
具体实施方式
本发明实施例提供了一种非授权载波上传输资源的抢占方法及设备,用以实现更优的非授权载波时竞争信道资源的技术方案,使得频谱利用率更高。
参见图3,本发明实施例提供的一种非授权载波上传输资源的抢占方法,包括步骤:
S101、设备判断预设的CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长。
其中,所述CCA检测时间点是周期性到达的,即每相邻两次CCA检测的起始时间点或者终止时间点之间间隔的时长相同。
例如,非授权设备以时间周期M对信道进行CCA检测,预设的该设备在信道上规范允许的每次传输信号所占用的最大时长为P,则M<P。
S102、当CCA检测时间点到达时,所述设备进行CCA检测。
需要说明的是,本发明实施例中所述设备,可以是网络侧的基站设备,也可以是终端侧的用户设备(User Equipment,UE)。
通过该方法,设备可以周期性地进行CCA检测,并且检测周期小于预设的该设备在信道上规范允许的每次传输信号所占用的最大时长,因此,与现有技术中提出的基于帧的设备方式,由于缩短了CCA检测的周期,提供了更多的信道接入机会,同时保持了基于帧的设备方式的多设备可以同时通过CCA检测进而达到频率复用因子为1的目的,因此可以提升非授权频段上的频谱利用效率;与现有技术中提出的采用扩展CCA的方式,由于进行CCA检测的窗口时间周期性固定,有利于多个LTE基站同时取得信道检测成功进而达到频率复用因子为1的目的,进而也提升了频谱利用效率。
较佳地,当CCA检测时间点到达时,所述设备进行CCA检测,具体包括:
当CCA检测时间点到达时,所述设备判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,所述设备进行本次的CCA检测。
也就是说,当设备进行信号传输的时候,若赶上CCA检测时间点到达,则跳过,不进行CCA检测,而是继续等待下一CCA检测时间点到达,直到下一CCA检测时间点到达时没有进行信号传输才继续进行CCA检测。
较佳地,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
也就是说,CCA检测可以是固定时长的CCA检测,也可以扩展CCA检测。
较佳地,所述CCA检测时间点是CCA检测的起始时刻或终止时刻。
较佳地,所述设备进行CCA检测后,该方法还包括:
当CCA检测成功时,在CCA检测成功的信道进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
例如,当前CCA检测时间点为时刻0,若本次CCA检测成功,则开始进行信号传输,该次信号传输最长持续占用的时间不能超过P,或者,该次传输信号的结束时刻最晚不超过时刻0加上P后出现的第一个CCA检测时间点。
其中,所述CCA检测成功,例如可以是在CCA检测窗口内在N个时隙检测到信道空 闲。
较佳地,所述设备进行CCA检测,包括:
所述设备检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。例如,归属于同一运营商的LTE基站采用相同的扩展CCA参数,即N的取值相同。
较佳地,所述N的取值是由主控设备通知给所述多个设备的。
所述主控设备可以是多个基站中的主控LTE基站,也可以是基站上一层的集中控制节点,当主控设备是基站时,所述多个设备即受控设备,可以是基站,也可以是UE。
下面给出两个具体实施例的举例说明。
实施例1:应用于基于帧的设备方式。
如图4所示,LTE设备周期性(例如周期为1ms或2ms)地进行固定时长(例如20us)的CCA检测。在第K个CCA检测窗口,LTE基站(BS)1与LTE BS3有信号要传输,因此进行CCA检测,但由于WIFI节点(node)1的信号传输,在第K个CCA检测窗口,LTE BS1与LTE BS3均检测到信道为忙,即CCA检测失败。到第K+1个CCA检测窗口时,WIFI node1信号传输完毕,因此在第K+1个CCA检测窗口,LTE BS1与LTE BS3均检测到信道为空闲,即CCA检测成功,两个设备LTE BS1与LTE BS3依据非授权设备规范要求(一次最大传输时长P可以是10ms(目前欧洲规范)或4ms(目前日本规范))开始传输信号。在允许的最大传输时长P期间,不需要执行CCA检测,例如LTE BS1与LTE BS3在CCA检测窗口K+2内不需要执行CCA检测。在CCA检测窗口K+2,基站LTE BS2有信号传输,但在CCA检测窗口K+2的CCA结果为忙,这是因为附近的基站设备LTE BS1与LTE BS3在发送信号,但到了CCA检测窗口K+3时,LTE BS1与LTE BS3到达前一次传输机会的最大传输时长,因此需要重新进行CCA检测,这时,三个基站LTE BS1、LTE BS2与LTE BS3均成功通过CCA检测判断信道为空闲,开启下一次传输机会。
由上述过程可以看出,由于缩短了CCA检测的周期(M<P),因此相比现有的基于帧的设备方式提供了更多的信道接入机会,同时保持了基于帧的设备方式的多设备可以同时通过CCA检测进而达到频率复用因子为1的目的,因此该方法可以提升非授权频段上的频谱利用效率。
实施例2:应用于基于扩展CCA的竞争接入。
基于扩展CCA接入方式的也可以采用本发明实施例提供的方法,如图5所示,与实施例1的区别在于,实施例1中的周期性的CCA检测中,每一次CCA检测所占用的时长为固定检测时长,例如20us,而本实施例结合扩展CCA方式后,LTE基站在周期到达的CCA检测时间点开始CCA检测,例如,参见图2,当CCA检测窗口的起始时间点到达时,非授权设备需采用扩展的CCA方式检测信道时,非授权设备需要检测该CCA检测窗口内 在N个CCA检测时段都检测到信道为空闲才确定信道为空闲状态,设备才可以占用该信道。N是在1~q之间随机产生的数值,q属于范围[4,32]。
对于扩展CCA检测而言,本实施例界定了每次CCA检测的起点,即每次CCA检测的起始时刻是周期出现的,而每次CCA检测的时间终点取决于具体的信道情况以及设备随机产生的CCA检测空闲时隙数N,因此本实施例并不界定每次CCA检测的终点,但该终点均处于CCA检测窗口内。设备每一次CCA检测成功后,一种方式是依据规范要求的最大传输时长P进行传输((一次最大传输时长可以是10ms(目前欧洲规范)或4ms(目前日本规范)),另一种方式是:至多传输至本次CCA检测窗口的起点加上最大传输时长P后出现的第一个CCA检测窗口的起点。
进一步地,为了使归属于同一个运营商的多个LTE基站可以同步传输信号,而不因为相互之间的信号干扰而导致仅有部分基站传输信号,一种优化方式是,多个LTE基站采用相同的扩展CCA参数,例如,本发明实施例已经限定了CCA检测窗口的起始时间点,若多个基站可以采用相同的CCA检测的空闲时隙数目N,则多数情况下,多个相邻基站可以得到相同的CCA检测结果,即同时取得CCA检测成功,这样,多个基站会同时发起信号传输从而避免相互之间的信号干扰。多个基站采用的相同参数N,例如可以由一个主控基站随机产生后通过网络接口分发给多个基站。
采用本实施例的方法后,基站进行CCA检测的窗口时间周期性固定,有利于多个LTE基站同时取得信道检测成功进而达到频率复用因子为1的目的,进而提升频谱利用效率。
另外,需要说明是,前述实施例一和实施例二均以基站作为CCA检测设备举例阐述本发明实施例提供的技术方案,实质上本发明实施例提供的技术方案也可以应用于在非授权载波上工作的终端设备。特别是,本发明实施例提供的技术方案结合扩展CCA方式时,多个终端设备也可以采用相同的扩展CCA参数N,例如该扩展CCA参数可以由基站产生后通知给多个终端设备,例如在上行调度时通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)通知给终端设备。
因此,参见图6,在基站侧,本发明实施例提供的一种非授权载波上传输资源的抢占控制方法,包括步骤:
S601、基站确定扩展空闲信道评估CCA参数N;
S602、所述基站将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
通过该方法,基站将扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。与现有技术中提出的基于帧的设备方式,由于缩 短了CCA检测的周期,提供了更多的信道接入机会,因此可以提升非授权频段上的频谱利用效率。
较佳地,所述基站通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
较佳地,所述基站将所述扩展CCA参数N通知给多个用户设备。从而可以使得多个用户设备共用同一扩展CCA参数N,使归属于同一个运营商的多个用户设备可以同步传输信号,而避免因为相互之间的信号干扰而导致仅有部分用户设备传输信号,因此进一步提高了非授权频段上的频谱利用效率。
相应地,在用户设备侧,参见图7,本申请实施例提供的一种非授权载波上传输资源的抢占方法,包括:
S701、用户设备接收基站发送的CCA参数N;
S702、所述用户设备在满足如下条件时确定可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
较佳地,所述用户设备通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
与上述方法相对应地,参见图8,本发明实施例提供的一种非授权载波上传输资源的抢占设备,包括:
第一单元801,用于判断该设备预设的CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
第二单元802,用于当CCA检测时间点到达时,进行CCA检测。
较佳地,第二单元,具体用于:
当CCA检测时间点到达时,判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,进行本次的CCA检测。
较佳地,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
较佳地,所述CCA检测时间点是CCA检测的起始时刻或终止时刻。
较佳地,所述第二单元进行CCA检测后,还用于:
当CCA检测成功时,在CCA检测成功的信道进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
较佳地,所述第二单元进行CCA检测时,具体用于:
检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享 所述N。
较佳地,所述N的取值是由主控设备通知给所述多个设备的。
参见图9,本发明实施例提供的另一种非授权载波上传输资源的抢占设备,包括:
处理器901,用于读取存储器902中的程序,执行下列过程:
判断该设备预设的CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
当CCA检测时间点到达时,进行CCA检测。
较佳地,处理器901当CCA检测时间点到达时,判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,进行本次的CCA检测。
较佳地,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
较佳地,所述CCA检测时间点是CCA检测的起始时刻或终止时刻。
较佳地,处理器901进行CCA检测后,还用于:
当CCA检测成功时,在CCA检测成功的信道控制收发机903进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
较佳地,处理器901进行CCA检测时,具体用于:
检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。
较佳地,所述N的取值是由主控设备通知给所述多个设备的。
收发机903,用于在处理器901的控制下接收和发送信号。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器902代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机903可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的信号。
参见图10,本申请实施例提供的一种基站,包括:
确定单元1001,用于确定扩展空闲信道评估CCA参数N;
通知单元1002,用于将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内 的N个CCA检测时段都检测到所述信道为空闲。
较佳地,所述通知单元通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
较佳地,所述通知单元将所述扩展CCA参数N通知给多个用户设备。
参见图11,本申请实施例提供的一种用户设备,包括:
接收单元1101,用于接收基站发送的CCA参数N;
抢占单元1102,用于在满足如下条件时确定可以占用信道进行信号传输:在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
较佳地,所述接收单元通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
参见图12,本申请实施例提供的另一种基站,包括:
处理器1201,用于读取存储器1202中的程序,执行下列过程:
确定扩展空闲信道评估CCA参数N;
通过收发机1203将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
收发机1203,用于在处理器1201的控制下接收和发送数据。
较佳地,处理器1201通过收发机1203通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
较佳地,处理器1201通过收发机1203将所述扩展CCA参数N通知给多个用户设备。
在图12中,处理器、存储器和收发机通过总线连接,总线可以包括任意数量的互联的总线和桥,总线将包括由处理器1201代表的一个或多个处理器和存储器1202代表的存储器的各种电路链接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1204在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。处理器1201负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。经处理器处理的数据通过天线1205在无线介质中传输,进一步地,天线还接收数据并将数据传送给处理器。
处理器负责总线的管理和通常的处理,还可以提供各种功能,包括定时、***接口、电压调节、电源管理以及其它控制功能。存储器可以被用于存储处理器在执行操作时所使用的数据。
可选的,处理器可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
参见图13,本申请实施例提供的另一种用户设备,包括:
处理器1301,用于读取存储器1302中的程序,执行下列过程:
通过收发机1303接收基站发送的CCA参数N;
在满足如下条件时确定可以占用信道进行信号传输:在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
较佳地,处理器1301通过收发机1303通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
收发机1303,用于在处理器1301的控制下接收和发送数据。
在图13中,处理器、存储器和收发机通过总线连接,总线可以包括任意数量的互联的总线和桥,总线将包括由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1304在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机从其他设备接收外部数据。收发机用于将处理器处理后的数据发送给其他设备。取决于计算***的性质,还可以提供用户接口1305,例如小键盘、显示器、扬声器、麦克风、操纵杆。处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
可选的,处理器可以是CPU、ASIC、FPGA或CPLD。
综上所述,本发明实施例提出了一种LTE在非授权频段工作时,LTE设备采用LBT方式竞争资源方案。采用本发明实施例的技术方案,对于基于帧的设备方式,由于缩短了CCA检测的周期,因此相比现有的基于帧的设备方式提供了更多的信道接入机会,同时保持了基于帧的设备方式的多设备可以同时通过CCA检测进而达到频率复用因子为1的目的,因此该方法可以提升非授权频段上的频谱利用效率。对于采用扩展CCA的方式,基站进行CCA检测的窗口时间周期性固定,有利于多个LTE基站同时取得信道检测成功进而达到频率复用因子为1的目的,进而提升频谱利用效率,最终提升***工作效率。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种非授权载波上传输资源的抢占方法,其特征在于,该方法包括:
    设备判断预设的空闲信道评估CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
    当CCA检测时间点到达时,所述设备进行CCA检测。
  2. 根据权利要求1所述的方法,其特征在于,当CCA检测时间点到达时,所述设备进行CCA检测,具体包括:
    当CCA检测时间点到达时,所述设备判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,所述设备进行本次的CCA检测。
  3. 根据权利要求1所述的方法,其特征在于,每次CCA检测所占用的时长为预设时长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
  4. 根据权利要求1所述的方法,其特征在于,所述设备进行CCA检测后,该方法还包括:
    当CCA检测成功时,在CCA检测成功的信道进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
  5. 根据权利要求1所述的方法,其特征在于,所述设备进行CCA检测,包括:
    所述设备检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。
  6. 根据权利要求5所述的方法,其特征在于,所述N的取值是由主控设备通知给所述多个设备的。
  7. 一种非授权载波上传输资源的抢占设备,其特征在于,包括:
    第一单元,用于判断该设备预设的空闲信道评估CCA检测时间点是否到达,其中所述CCA检测时间点是周期性到达的,且到达周期小于预设的该设备在抢占信道后每次传输信号所允许占用的最大时长;
    第二单元,用于当CCA检测时间点到达时,进行CCA检测。
  8. 根据权利要求7所述的设备,其特征在于,所述第二单元具体用于:
    当CCA检测时间点到达时,判断当前是否正在进行信号传输,如果是,则放弃本次的CCA检测,继续等待下一CCA检测时间点的到达;否则,进行本次的CCA检测。
  9. 根据权利要求7所述的设备,其特征在于,每次CCA检测所占用的时长为预设时 长,或者为预设范围内的任意正整数个CCA检测时隙所对应的时长。
  10. 根据权利要求8所述的设备,其特征在于,所述第二单元还用于:
    当CCA检测成功时,在CCA检测成功的信道进行信号传输,其中,传输信号所占用的时长最长不超过所述最大时长,或者,传输信号的结束时刻最晚不超过在本次CCA检测时间点加上所述最大时长后出现的第一个CCA检测时间点。
  11. 根据权利要求8所述的设备,其特征在于,所述第二单元具体用于:
    检测到N个时隙空闲,则确定CCA检测成功,其中N为正整数,并且多个设备共享所述N。
  12. 根据权利要求11所述的设备,其特征在于,所述N的取值是由主控设备通知给所述多个设备的。
  13. 一种非授权载波上传输资源的抢占控制方法,其特征在于,包括:
    基站确定扩展空闲信道评估CCA参数N;
    所述基站将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
  14. 根据权利要求13所述的方法,其特征在于,所述基站通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
  15. 根据权利要求13或14所述的方法,其特征在于,所述基站将所述扩展CCA参数N通知给多个用户设备。
  16. 一种非授权载波上传输资源的抢占方法,其特征在于,包括:
    用户设备接收基站发送的CCA参数N;
    所述用户设备在满足如下条件时确定可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
  17. 根据权利要求16所述的方法,其特征在于,所述用户设备通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
  18. 一种基站,其特征在于,包括:
    确定单元,用于确定扩展空闲信道评估CCA参数N;
    通知单元,用于将所述扩展CCA参数N通知给用户设备,用以指示所述用户设备在满足如下条件时可以占用信道进行信号传输:所述用户设备在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
  19. 根据权利要求18所述的基站,其特征在于,所述通知单元通过物理下行控制信道PDCCH,将所述扩展CCA参数通知给用户设备。
  20. 根据权利要求18或19所述的基站,其特征在于,所述通知单元将所述扩展CCA 参数N通知给多个用户设备。
  21. 一种用户设备,其特征在于,包括:
    接收单元,用于接收基站发送的CCA参数N;
    抢占单元,用于在满足如下条件时确定可以占用信道进行信号传输:在任一CCA检测窗口内的N个CCA检测时段都检测到所述信道为空闲。
  22. 根据权利要求21所述的用户设备,其特征在于,所述接收单元通过物理下行控制信道PDCCH,接收所述基站发送的所述扩展CCA参数N。
PCT/CN2016/077248 2015-03-27 2016-03-24 一种非授权载波上传输资源的抢占方法及设备 WO2016155563A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16771318.9A EP3277045B1 (en) 2015-03-27 2016-03-24 Method and device for preempting transmission resources on unlicensed carriers
US15/562,364 US20180288802A1 (en) 2015-03-27 2016-03-24 Method and device for preempting transmission resources on unlicensed carriers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510142831.7A CN106162917B (zh) 2015-03-27 2015-03-27 一种非授权载波上传输资源的抢占方法及设备
CN201510142831.7 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016155563A1 true WO2016155563A1 (zh) 2016-10-06

Family

ID=57003909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077248 WO2016155563A1 (zh) 2015-03-27 2016-03-24 一种非授权载波上传输资源的抢占方法及设备

Country Status (4)

Country Link
US (1) US20180288802A1 (zh)
EP (1) EP3277045B1 (zh)
CN (2) CN106162917B (zh)
WO (1) WO2016155563A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455117B (zh) * 2015-08-07 2021-07-23 中兴通讯股份有限公司 一种竞争接入方法和装置
WO2017193341A1 (zh) * 2016-05-12 2017-11-16 华为技术有限公司 一种随机接入方法及装置
US10687358B2 (en) * 2016-11-11 2020-06-16 Qualcomm Incorporated Opportunistic asynchronous operation for coordinated NR-SS
US10327261B2 (en) * 2017-01-26 2019-06-18 Qualcomm Incorporated Directional listen before talk scheme
CN108495367B (zh) * 2018-03-05 2022-03-08 重庆邮电大学 一种基于Lyapunov的多运营商LTE-U双频段资源配置方法
US20200367263A1 (en) * 2019-08-01 2020-11-19 Intel Corporation Medium access control layer transmission opportunity preemption for wi-fi
WO2021088046A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 数据处理方法及相关设备
US11464023B2 (en) 2020-02-21 2022-10-04 Semiconductor Components Industries, Llc Termination of wireless transmission of a data frame
US12048006B2 (en) * 2020-07-15 2024-07-23 Qualcomm Incorporated Frame based listen before talk for radar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595821A (zh) * 2003-06-24 2005-03-16 因芬尼昂技术股份公司 检测设备和方法
CN101873710A (zh) * 2009-04-23 2010-10-27 厦门星网锐捷软件有限公司 基于ieee802.15.4标准的非槽道方式csma-ca算法的优化方法
CN104038950A (zh) * 2013-03-06 2014-09-10 美国博通公司 无线通信中的空闲信道评估水平
WO2014209919A1 (en) * 2013-06-24 2014-12-31 Mediatek Singapore Pte. Ltd. Increased network throughput with cca level enhancement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861452B2 (en) * 2010-08-16 2014-10-14 Qualcomm Incorporated Method and apparatus for use of licensed spectrum for control channels in cognitive radio communications
US9693264B2 (en) * 2011-04-18 2017-06-27 Lg Electronics Inc. Signal transmission method and device in a wireless communication system
KR101984599B1 (ko) * 2012-02-10 2019-05-31 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 방법 및 장치
US9386584B2 (en) * 2012-06-11 2016-07-05 Qualcomm Incorporated Inter-frame spacing duration for sub-1 gigahertz wireless networks
CN102883461B (zh) * 2012-09-21 2016-06-08 华为技术有限公司 信道接入的方法和节点
US9473981B2 (en) * 2013-05-20 2016-10-18 Qualcomm Incorporated Concurrent wireless communications over licensed and unlicensed spectrum
US9674825B2 (en) * 2013-07-17 2017-06-06 Qualcomm Incorporated LTE channel access over unlicensed bands
US20150023342A1 (en) * 2013-07-17 2015-01-22 Electronics And Telecommunications Research Institute Method for operating of peer aware communication network
CN105162562B (zh) * 2014-08-25 2019-11-15 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法和装置
CN106664585B (zh) * 2014-11-07 2020-09-11 华为技术有限公司 数据传输的方法和设备
WO2016111264A1 (ja) * 2015-01-06 2016-07-14 シャープ株式会社 端末装置および基地局装置
KR20170098891A (ko) * 2015-01-16 2017-08-30 후아웨이 테크놀러지 컴퍼니 리미티드 메시지 전송 방법 및 장치
CN105898770B (zh) * 2015-01-26 2020-12-11 中兴通讯股份有限公司 一种空频道检测方法及节点设备
CN105992373B (zh) * 2015-01-30 2020-09-15 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
KR101972941B1 (ko) * 2015-03-16 2019-04-26 후아웨이 테크놀러지 컴퍼니 리미티드 백오프 윈도 조정 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595821A (zh) * 2003-06-24 2005-03-16 因芬尼昂技术股份公司 检测设备和方法
CN101873710A (zh) * 2009-04-23 2010-10-27 厦门星网锐捷软件有限公司 基于ieee802.15.4标准的非槽道方式csma-ca算法的优化方法
CN104038950A (zh) * 2013-03-06 2014-09-10 美国博通公司 无线通信中的空闲信道评估水平
WO2014209919A1 (en) * 2013-06-24 2014-12-31 Mediatek Singapore Pte. Ltd. Increased network throughput with cca level enhancement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT.: "Review of Regulatory Requirements for Unlicensed Spectrum", 3GPP TSG-RAN #63 RP-140054, 25 February 2014 (2014-02-25), XP050780229 *
See also references of EP3277045A4 *

Also Published As

Publication number Publication date
CN106162917B (zh) 2021-06-04
US20180288802A1 (en) 2018-10-04
CN106028465A (zh) 2016-10-12
EP3277045B1 (en) 2019-07-31
CN106162917A (zh) 2016-11-23
EP3277045A4 (en) 2018-03-28
EP3277045A1 (en) 2018-01-31
CN106028465B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2016155563A1 (zh) 一种非授权载波上传输资源的抢占方法及设备
CN105636231B (zh) 一种信道监听方法及设备
CN104486013B (zh) 信道检测方法、信道检测***、终端和基站
WO2016161710A1 (zh) 信道占用概率的调整方法、调整***和设备
EP2978273B1 (en) Ofdma contention method and access point
WO2017004901A1 (zh) 信道占用概率的调整方法、调整***和基站
WO2017024629A1 (zh) 一种非授权频谱信道检测方法和装置
JP6438109B2 (ja) リソースプリエンプション方法、サイト及びコンピュータ記憶媒体
CN105103584A (zh) 免授权频段的信道竞争方法、装置及***
CN114208319A (zh) 信息传输方法、装置、设备及存储介质
EP3331309B1 (en) Data transmission method and device
CN107006015B (zh) 使用频谱资源进行通信的方法和通信设备
WO2013006988A1 (en) Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
WO2016070772A1 (zh) 一种进行载波调度的方法和设备
WO2017024915A1 (zh) 一种先听后说方法及装置
US20080181192A1 (en) Radio communication apparatus and radio communication method
WO2017005129A1 (zh) 一种无线网络中的接入方法及设备
WO2017020384A1 (zh) 基于负载的lbt信道检测方法及***、基站和终端
CN109565698B (zh) 基于非授权载波的上行调度方法和装置
WO2016070614A1 (zh) 一种信号发送方法、装置及计算机存储介质
WO2016119142A1 (zh) 基于移动通信***实现lbt的基站、用户设备及方法
CN107079300B (zh) 使用频谱资源进行通信的方法和通信设备
WO2016191967A1 (zh) 一种信道接入方法及站点
KR101342391B1 (ko) 이기종 네트워크의 공존 방법 및 이를 위한 신호 전송기
WO2016169400A1 (zh) 一种信道接入方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE