WO2016155448A1 - Procédé de placage incomplet de surface de fibre dotée de nanométaux et produit associé - Google Patents

Procédé de placage incomplet de surface de fibre dotée de nanométaux et produit associé Download PDF

Info

Publication number
WO2016155448A1
WO2016155448A1 PCT/CN2016/074995 CN2016074995W WO2016155448A1 WO 2016155448 A1 WO2016155448 A1 WO 2016155448A1 CN 2016074995 W CN2016074995 W CN 2016074995W WO 2016155448 A1 WO2016155448 A1 WO 2016155448A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nano
metal
fiber
nanoparticles
Prior art date
Application number
PCT/CN2016/074995
Other languages
English (en)
Chinese (zh)
Inventor
朱家骏
Original Assignee
嘉兴中科奥度新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴中科奥度新材料有限公司 filed Critical 嘉兴中科奥度新材料有限公司
Publication of WO2016155448A1 publication Critical patent/WO2016155448A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles

Definitions

  • the invention belongs to the field of functional textile materials, and particularly relates to a process for incompletely coating nano-metals on a fiber surface and a product thereof.
  • Nanometals are nanomaterialized by advanced nanotechnology, the average size of the metal nanoparticles being individual particles or aggregates of particles less than 100 nm. Nano-metals can produce a variety of excellent properties (such as conductivity, electromagnetic shielding, anti-static, thermal insulation, bactericidal and antibacterial properties, etc.), nano-silver has a strong and long-lasting bactericidal effect, can kill 650 in a few minutes A variety of bacteria, broad-spectrum sterilization and no drug resistance and toxic side effects. There are some core technical problems in ion-plated nano-metals on fiber materials.
  • the number of nano-metal particles is insufficient and the adhesion of the coating is not strong, so that the various excellent functions of the materials are not durable and sufficient; the other is nano-metal plating.
  • the particle distribution range is difficult to control, and the nanoparticle distribution is uneven, so that the nano-scale metal plating layer becomes a sub-micron or even micro-scale metal plating layer, and the surface properties of the micro-scale metal layer and the performance of the nano-scale metal layer (such as specific surface area)
  • the key is that the surface of the fiber is completely covered with a metal coating to form a "wire", so that the fiber loses its proper properties. In the vacuum ion plating nano metal process, if the fiber matrix contains a high gas content rate, it will directly affect the quality of the nano metal plating layer.
  • the object of the present invention is to provide a process for incompletely coating nano-metals on a fiber surface and a product thereof, so that the nano-particles of the plating layer are narrowly distributed and evenly distributed, and the coating has strong adhesion, and the nano-metal is ion-plated only on the half side of the fiber. .
  • the present invention provides a fiber surface non-full cladding nano metal plating process, characterized in that the substrate is a chemical fiber nonwoven fabric, a pure cotton non-woven fabric or a polylactic acid fiber non-woven fabric, and the process comprises the following steps. :
  • the substrate is in a vacuum chamber, the degree of vacuum is 10 Pa to 1.0 ⁇ 10 -4 Pa, the heating temperature is 60 ° C to 120 ° C, and the heating time is 20 to 60 minutes, and the substrate is subjected to vacuum degassing treatment;
  • the degree of vacuum is 1.0 ⁇ 10-1Pa ⁇ 1.0 ⁇ 10-4Pa
  • the temperature is -10°C ⁇ -30°C
  • the substrate running speed is 0.5 ⁇ 10.0m. /min
  • the plasma surface cleaning treatment of the substrate, using metal as a target to produce metal ions and nanoparticles, the density of metal ions and nanoparticles is 0.1-2.0 g/m2, and ion-plating nano-metals on the surface of the substrate, nano-metal
  • the coated nanoparticles have a particle size of less than 100 nm;
  • the article prepared by the above process is characterized in that it comprises a substrate, the substrate is a chemical fiber non-woven fabric, a pure cotton non-woven fabric or a polylactic acid fiber non-woven fabric, and the substrate is coated with a nano metal plating layer and a nano metal plating layer nano particle.
  • the particle size is less than 100 nm.
  • the chemical fiber nonwoven fabric, the pure cotton non-woven fabric or the polylactic acid fiber non-woven fabric of the invention is used as a base body, and the substrate is subjected to vacuum water removal and degassing treatment, and then the nano metal is coated by the ion plating method, and the nano metal plating layer is nanometer.
  • Narrow particle distribution, uniformity of nano-metal plating, nanometer The metal surface has high surface activity and no impurity, and the metal ion and the nanoparticle density are controlled in the range of 0.1-2.0 g/m2 by the coating conditions, so that only the nano-metal is plated on the half surface of the base fiber, and the product maintains the fiber. It has strong bactericidal and bacteriostatic effects on the skin's affinity, breathability and water absorption.
  • the nanoparticles of the nano metal plating layer have a particle size of 10 to 30 nm.
  • the nanoparticle distribution range is narrow, the nanoparticle distribution is uniform, the coating adhesion is stronger, and the measurement is better.
  • the surface of the fiber of the invention is non-fully coated with nano metal, and the substrate is a chemical fiber non-woven fabric, a pure cotton non-woven fabric or a polylactic acid fiber non-woven fabric, and the density is 18-180 g/m2, the width is 1360 mm, and the thickness is 0.04-0.50 mm.
  • the fiber monofilament has a diameter of 0.010 to 0.018 mm and a fineness of 1.58 to 1.86 dtex.
  • the substrate is a pure cotton non-woven fabric having a density of 40 g/m 2 , a width of 1360 mm, a thickness of 0.28 mm, a fiber monofilament diameter of 0.015 mm, and a fineness of 1.67 dtex.
  • Process steps include:
  • the substrate is placed in a vacuum chamber at a vacuum of 1.0 ⁇ 10-1 Pa, a heating temperature of 60 to 100 ° C, and a heating time of 30 to 50 minutes, and the substrate is subjected to vacuum degassing.
  • the treated substrate is placed on a unwinding device of the coating equipment with a vacuum of 2.8 ⁇ 10-1 Pa, a temperature of -10 ° C, and a substrate running speed of 4.0 m. /min, with 99.9% argon as shielding gas, flow rate of 1000ml/min, base plasma surface cleaning treatment, 99.99% high purity silver
  • the magnetron voltage is 460-880V
  • the current is 12-20A
  • silver ions and nanoparticles are generated.
  • the ion-plated nano-silver is realized on the surface of the substrate, and the density of silver ions and nanoparticles is 0.1-1.0 g/m2.
  • the coated nanoparticles have a particle size of 10 to 30 nm.
  • the obtained product is plated with a nano metal plating layer on the substrate, and the nano metal plating layer has a particle size of 10 to 30 nm.
  • the thickness of the plating layer can be adjusted by controlling the power of the plasma power source and the unwinding speed.
  • the obtained product is made of a pure cotton non-woven fabric, and a nano metal plating layer is plated on the substrate, and the nano metal plating layer has a particle size of 10 to 30 nm.
  • the substrate is a polylactic acid fiber nonwoven fabric having a density of 30 g/m 2 , a thickness of 0.22 mm, a width of 1380 mm, a fiber monofilament diameter of 0.016 mm, and a fineness of 1.68 dtex.
  • Process steps include:
  • the substrate is placed in a vacuum chamber at a vacuum of 1.0 ⁇ 10-1 Pa, a heating temperature of 60 to 80 ° C, and a heating time of 30 to 50 minutes, and the substrate is subjected to vacuum degassing.
  • the treated substrate is placed on the unwinding device of the coating equipment with a vacuum of 2.6 ⁇ 10-1 Pa, a temperature of -15 ° C, and a substrate running speed of 6.0 m.
  • the flow rate is 1200ml/min, the base plasma surface cleaning treatment, 99.99% high purity silver as the target, the magnetic control voltage 460 ⁇ 880V, the current 12 ⁇ 20A, produced Silver ions and nanoparticles realize ion-plated nano-silver on the surface of the substrate, and the density of silver ions and nanoparticles is 0.1-1.0 g/m2, and the particle size of the nanoparticles of the nano-metal plating layer is 10-30 nm.
  • the obtained product is coated with a nano metal plating layer on the substrate, and the nano metal plating layer is nanometer.
  • the particle size of the particles is 10 to 30 nm.
  • the thickness of the plating layer can be adjusted by controlling the power of the plasma power source and the unwinding speed.
  • the obtained product is based on a polylactic acid fiber nonwoven fabric, and a nano metal plating layer is plated on the substrate, and the nano metal plating layer has a particle size of 10 to 30 nm.
  • the degree of vacuum may be selected from the range of 10 Pa to 1.0 x 10 -4 Pa, and the heating temperature may be selected from the range of 60 ° C to 160 ° C, and the heating time is controlled to be 10 to 60 minutes.
  • the step (1) can effectively remove moisture, bubbles and impurities on the substrate, and prepare for the subsequent coating, so that the coating has strong adhesion and is not easy to fall off.
  • the shielding gas may be argon or nitrogen
  • the degree of vacuum is 1.0 ⁇ 10-1Pa to 1.0 ⁇ 10-4Pa
  • the temperature is ⁇ 10° C. to -30° C.
  • the substrate operating speed is 0.5 to 10.0 m/min.
  • the metal ions and nanoparticles have a density of 0.1 to 2.0 g/m 2 .
  • the nano-metal plated nanoparticles have a particle size of less than 100 nm, and accordingly, the nano-metal plated nanoparticles of the obtained article have a particle size of less than 100 nm.
  • the nano-metallized nanoparticles have a particle size of 10 to 30 nm, a narrow distribution of nanoparticles, a uniform distribution of nanoparticles, and a stronger adhesion and better measurement.
  • the metals are gold, silver, aluminum, copper, zinc, iron, nickel, titanium, platinum, palladium, cobalt, rhodium, rare earth metals and mixtures and alloys thereof, and mixtures and alloys thereof, and the metals listed above are or relationship. The most preferred are precious metals, and other metals will be apparent to those skilled in the art.
  • the invention has the advantages of narrow distribution of nanoparticles of nano metal plating layer, good uniformity of nano metal plating layer, high surface activity of nano metal and no impurity, and can be continuously produced and yielded. High, good quality, non-polluting and excellent performance.
  • the present invention controls the density of metal ions and nanoparticles to be in the range of 0.1 to 2.0 g/m 2 by coating conditions, thereby realizing the plating of nano metal only on the half surface of the matrix fiber.
  • the surface of the synthetic fiber, pure cotton fiber or polylactic acid fiber is not completely coated with nano-metal, which can fully express the advantages of the fiber itself (such as affinity for human skin, gas permeability and water absorption), and can also make The various functions of nano metal are fully utilized.
  • Non-all-coated nano-metal synthetic fiber nonwoven fabric, pure cotton fiber non-woven fabric or polylactic acid fiber non-woven fabric can be widely used in medical dressings, sanitary products and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

L'invention concerne un procédé de placage incomplet d'une surface de fibre dotée de nanométaux et un produit associé. Un substrat est un tissu non-tissé de fibres chimiques, un tissu non-tissé de coton ou un tissu non-tissé de fibres d'acide polylactique. Le procédé consistant à : (1) mettre en œuvre un traitement de dégazage de déshydratation sous vide sur le substrat sous un degré de vide allant de 10 Pa à 1,0 × 10-4 Pa à une température de chauffage allant de 60 °C à 120 °C ; et (2) mettre en œuvre un traitement de nettoyage de surface par plasma sur le substrat par un dispositif de placage de film ionique cathodique avec un gaz de protection d'argon ou d'azote sous un degré de vide allant de 1,0 × 10-1 Pa à 1,0 × 10-4 Pa à une température allant de -10 °C à -30 °C à une vitesse de course de substrat allant de 0,5 à 10,0 m/min, générer des ions métalliques et des nanoparticules d'une densité allant de 0,1 à 2,0 g/m2 avec un métal en tant que matériau cible, et mettre en œuvre le placage ionique sur la surface du substrat avec des nanométaux pour obtenir une couche de placage nanométalique avec une taille de particule de nanoparticule inférieure à 100 nm. La présente invention présente les avantages d'une distribution étroite des nanoparticules de la couche de placage nanométallique, d'une bonne uniformité de la couche de placage nanométallique, d'une activité de surface élevée des nanométaux, sans impuretés, et réalise un placage sur la moitié de la surface sur la fibre de substrat dotée des nanométaux.
PCT/CN2016/074995 2015-03-31 2016-03-01 Procédé de placage incomplet de surface de fibre dotée de nanométaux et produit associé WO2016155448A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510149263.3 2015-03-31
CN201510149263.3A CN104831544A (zh) 2015-03-31 2015-03-31 纤维表面非全包覆镀纳米金属工艺及其制品

Publications (1)

Publication Number Publication Date
WO2016155448A1 true WO2016155448A1 (fr) 2016-10-06

Family

ID=53809721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074995 WO2016155448A1 (fr) 2015-03-31 2016-03-01 Procédé de placage incomplet de surface de fibre dotée de nanométaux et produit associé

Country Status (2)

Country Link
CN (1) CN104831544A (fr)
WO (1) WO2016155448A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677551C1 (ru) * 2017-12-27 2019-01-17 Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК") Способ напыления электропроводящего металл-углеродного многослойного покрытия на ленточную подложку из нетканого волокнистого материала
RU2763357C1 (ru) * 2021-04-13 2021-12-28 Александр Васильевич Вахрушев Способ получения высококачественных пленок методом механической вибрации подложки

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831544A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 纤维表面非全包覆镀纳米金属工艺及其制品
CN104894514A (zh) * 2015-03-31 2015-09-09 嘉兴中科奥度新材料有限公司 具有金属纳米粒子镀层的多孔金属箔制品及其制备方法
CN106113827A (zh) * 2016-08-15 2016-11-16 常熟市心无纺制品有限公司 一种防辐射复合无纺布
CN106943627B (zh) * 2017-02-15 2020-10-27 北京华钽生物科技开发有限公司 高生物相容性纤维

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152269A (ja) * 1989-11-10 1991-06-28 Hayashi Kagaku Kogyo Kk 繊維製品のスパッタリング加工法
CN101037765A (zh) * 2006-12-30 2007-09-19 苏州大学 织物表面金属化处理的方法
CN101275361A (zh) * 2008-04-17 2008-10-01 苏州工业园区鸿锦纳米有限公司 纳米银无纺布及其在杀菌滤芯上的应用
CN102958337A (zh) * 2011-08-19 2013-03-06 鸿富锦精密工业(深圳)有限公司 电磁屏蔽方法及制品
CN104831544A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 纤维表面非全包覆镀纳米金属工艺及其制品
CN104831528A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 高效空气粒子过滤无纺布复合离子镀纳米金属工艺及其制品
CN104831527A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 芳纶纤维或无纬织物表面全包覆复合离子镀纳米金属工艺及其制品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349007A (zh) * 2008-09-05 2009-01-21 山东天诺光电材料有限公司 一种导电纤维及其制备方法
CN102505463A (zh) * 2011-11-09 2012-06-20 天诺光电材料股份有限公司 镀银纤维织物的制备方法
CN102418262A (zh) * 2011-11-15 2012-04-18 天诺光电材料股份有限公司 镀银纤维的生产制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152269A (ja) * 1989-11-10 1991-06-28 Hayashi Kagaku Kogyo Kk 繊維製品のスパッタリング加工法
CN101037765A (zh) * 2006-12-30 2007-09-19 苏州大学 织物表面金属化处理的方法
CN101275361A (zh) * 2008-04-17 2008-10-01 苏州工业园区鸿锦纳米有限公司 纳米银无纺布及其在杀菌滤芯上的应用
CN102958337A (zh) * 2011-08-19 2013-03-06 鸿富锦精密工业(深圳)有限公司 电磁屏蔽方法及制品
CN104831544A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 纤维表面非全包覆镀纳米金属工艺及其制品
CN104831528A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 高效空气粒子过滤无纺布复合离子镀纳米金属工艺及其制品
CN104831527A (zh) * 2015-03-31 2015-08-12 嘉兴中科奥度新材料有限公司 芳纶纤维或无纬织物表面全包覆复合离子镀纳米金属工艺及其制品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG, BINGYAO ET AL.: "Preparation and conductivity of the nonwovens deposited with nanostructured aluminum thin films", JOURNAL OF TEXTILE RESEARCH, vol. 27, no. 11, 15 November 2006 (2006-11-15), ISSN: 0253-9721 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677551C1 (ru) * 2017-12-27 2019-01-17 Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК") Способ напыления электропроводящего металл-углеродного многослойного покрытия на ленточную подложку из нетканого волокнистого материала
RU2763357C1 (ru) * 2021-04-13 2021-12-28 Александр Васильевич Вахрушев Способ получения высококачественных пленок методом механической вибрации подложки

Also Published As

Publication number Publication date
CN104831544A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016155448A1 (fr) Procédé de placage incomplet de surface de fibre dotée de nanométaux et produit associé
Ravindra et al. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”
CN104831528B (zh) 高效空气粒子过滤无纺布复合离子镀纳米金属工艺及其制品
Jiang et al. Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering
Radetić et al. Antibacterial effect of silver nanoparticles deposited on corona‐treated polyester and polyamide fabrics
de Santa Maria et al. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose
Jin et al. A study on the preparation of poly (vinyl alcohol) nanofibers containing silver nanoparticles
Singaravelan et al. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles
Hong et al. Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles
CN104831527B (zh) 芳纶纤维或无纬织物表面全包覆复合离子镀纳米金属工艺及其制品
Zhou et al. Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract
Zhou et al. Synthesis of silver nanoparticles and their antiproliferation against human lung cancer cells in vitro
Chook et al. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method
Song et al. Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups
Lee et al. One-step preparation of ultrafine poly (acrylonitrile) fibers containing silver nanoparticles
Wu et al. The synthesis of nano-silver/polypropylene plastics for antibacterial application
Nguyen et al. Nano Ag loaded PVA nano‐fibrous mats for skin applications
US9315937B2 (en) Sonochemical coating of textiles with metal oxide nanoparticles for antimicrobial fabrics
Zhu et al. Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials
Spilarewicz-Stanek et al. Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles
WO2016155451A1 (fr) Procédé de placage ionique composite de film de polyuréthane imperméable respirant avec des nanométaux et produit ainsi obtenu
CN100999815A (zh) 抗菌纺织材料的负压溅镀制造方法及其产品
US20190084049A1 (en) Preparation and Use of Silver Alloy Composite Nanomaterial
Hwang et al. Electrospun nano composites of poly (vinyl pyrrolidone)/nano-silver for antibacterial materials
CN104831238B (zh) 复合材料离子镀纳米金属工艺及其制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771203

Country of ref document: EP

Kind code of ref document: A1