WO2016152559A1 - Rotation drive device or centrifugal pump device provided with rotation drive device - Google Patents

Rotation drive device or centrifugal pump device provided with rotation drive device Download PDF

Info

Publication number
WO2016152559A1
WO2016152559A1 PCT/JP2016/057616 JP2016057616W WO2016152559A1 WO 2016152559 A1 WO2016152559 A1 WO 2016152559A1 JP 2016057616 W JP2016057616 W JP 2016057616W WO 2016152559 A1 WO2016152559 A1 WO 2016152559A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
magnetic
impeller
partition wall
Prior art date
Application number
PCT/JP2016/057616
Other languages
French (fr)
Japanese (ja)
Inventor
山田 裕之
顕 杉浦
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016152559A1 publication Critical patent/WO2016152559A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a canned motor having a partition wall between a stator and a rotor, and in particular, a magnetic material is effectively disposed in a magnet space to increase the magnetic force and increase torque, increase efficiency, and improve heat resistance.
  • the present invention relates to a canned motor or a clean pump using a canned motor structure.
  • a canned motor used for a submersible pump, a chemical (chemical) lean pump, etc. has a can (partition) between a stator and a rotor of a housing motor.
  • the canned motor having such a structure or the centrifugal pump apparatus using the canned motor structure can isolate and seal the stator side of the motor from the pump portion (rotor side) by the partition wall.
  • the centrifugal pump device is advantageous in terms of hygiene because the motor stator does not contact the fluid.
  • the motor gap becomes wide. The enlargement of the motor gap leads to a decrease in magnetic flux density that effectively acts between the stator and the rotor, which may lead to a decrease in motor efficiency and motor output.
  • Patent Document 1 discloses a rotor magnet arrangement configured to enhance the magnetic force by differentiating the polar orientations of adjacent magnets and suppress the reduction in motor efficiency and output. Has been.
  • Patent Document 2 Japanese Patent No. 4474547
  • Patent Document 3 International Publication No. 2011/013483
  • Patent Document 3 discloses a structure in which a magnetic material is disposed on the side opposite to the partition wall in a part of the magnet space. With this magnetic material, the magnetic flux leaking into the air is reduced, thereby enhancing the magnetic force by amplifying the attractive force of the permanent magnet.
  • Patent Document 5 discloses a structure in which a magnetic material is arranged in a part of a rotor magnet to increase the focusing property of magnetic force in an axial gap type motor.
  • JP 2002-354721 A Japanese Patent No. 4474547 International Publication No. 2011/013483 Specification Japanese Patent No. 4482708 Japanese Patent No. 5046051
  • a canned motor having a partition wall between the stator and the rotor, as a means for achieving this purpose, for example, a structure in which the rotor magnets are arranged in a Halbach type as described above, or a magnetic material is arranged in a part thereof. Therefore, a structure with improved magnetic force focusing is adopted.
  • a canned motor since the motor gap generated by the partition wall is wide, it is desirable to dispose a permanent magnet in the rotor that effectively reaches the magnetic force up to the coil located on the opposite side of the partition wall.
  • the permeance coefficient is a coefficient indicating the resistance against thermal demagnetization of the permanent magnet. The larger the value, the higher the resistance.
  • the permeance coefficient is lowered, the ratio of permanent magnets that cause thermal demagnetization increases as the temperature rises. Therefore, when the temperature rises, the effect of strengthening the magnetic force may be reduced.
  • the shape of the magnet often becomes a shape close to a flat shape due to restrictions on the size of the entire device.
  • permanent magnets tend to have a lower permeance coefficient as the magnet thickness becomes thinner in the direction of magnetization (hereinafter also referred to as magnetization). Therefore, when the Halbach array in the canned motor is used, a sufficient permeance coefficient may not be achieved.
  • the main object of the present invention is to reduce the influence of magnetic force interference between a plurality of permanent magnets, and to achieve high torque and high efficiency, and a rotation drive device and a rotation A centrifugal pump device including a driving device is provided.
  • a rotary drive device includes a housing including a first chamber and a second chamber partitioned by a partition, a rotor provided to be rotatable along the partition in the first chamber, and a rotor via the partition.
  • the rotor includes a plurality of first permanent magnets arranged in the rotation direction and a plurality of second permanent magnets arranged with a gap in the rotation direction.
  • Each first permanent magnet is magnetized in a direction orthogonal to the rotation direction of the rotor, and the magnetic poles of two adjacent first permanent magnets are different from each other.
  • Each second permanent magnet is magnetized in the rotation direction of the rotor, and other adjacent second permanent magnets are arranged so that the same magnetic poles face each other.
  • Each first permanent magnet is disposed so that the partition wall side of the first permanent magnet faces the gap.
  • the magnetic pole on the partition wall side of each first permanent magnet is the same as the magnetic pole of the second permanent magnet facing the corresponding gap, and the first magnetic body is provided in each gap.
  • the rotor further includes a second magnetic body disposed on the side opposite to the partition wall side of the first permanent magnet.
  • the partition wall is formed in a planar shape orthogonal to the rotation axis direction of the rotor. More preferably, the partition wall is formed in a cylindrical shape having an axial direction in the rotation axis direction of the rotor.
  • the circumferential length of the first permanent magnet is set larger than the circumferential length of the second permanent magnet.
  • the dimension between both magnetic poles of the first permanent magnet is set smaller than the dimension from the partition wall side to the opposite side of the second permanent magnet.
  • the rotor of the centrifugal pump device is an impeller that sends liquid by centrifugal force during rotation.
  • the magnetic pole on the partition wall side of the first permanent magnet is in contact with the second permanent magnet in the gap between the magnetic poles of the second permanent magnet.
  • the first magnetic body is disposed in the gap while facing the same magnetic pole. Due to this gap, in the first permanent magnet and the second permanent magnet, the number of locations where the magnetic fields interfere with each other at the portion in direct contact as in the conventional Halbach arrangement structure can be reduced, so that the attenuation of the magnetic force can be suppressed. Further, by providing the first magnetic body in the gap between the first permanent magnet and the second permanent magnet, the magnetic force is strengthened and the permeance coefficient is prevented from being lowered as compared with the case where the first magnetic body is not provided. Is done.
  • FIG. 2 is a cross-sectional view taken along line AA-AA in FIG.
  • FIG. 2 is an enlarged cross-sectional view of a main part along the line BB-BB in FIG. 1.
  • FIG. 3 is a sectional view taken along line CC-CC in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a state where an impeller is removed from a cross-sectional view taken along the line DD-DD in FIG.
  • FIG. 3 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along the line EE-EE of FIG.
  • FIG. 3 is a sectional view taken along line FF-FF in FIG. 2. It is a figure showing the magnetic force which generate
  • FIG. 4 is a diagram for explaining a floating position of an impeller of a pump unit according to the first embodiment. It is a figure explaining the 1st modification of the rotor structure in Embodiment 1.
  • FIG. 10 is a diagram showing a first modification of the driving unit in the first embodiment.
  • FIG. 10 is a diagram showing a second modification of the driving unit in the first embodiment.
  • It is a figure which shows the rotor structure in Embodiment 2 which has a cylindrical partition.
  • It is a figure which shows the 1st modification of the rotor structure in Embodiment 2.
  • FIG. 10 is a diagram showing a second example of a dynamic pressure groove in the third embodiment.
  • FIG. 10 is a diagram showing a third example of a dynamic pressure groove in the third embodiment.
  • FIG. 10 is a diagram showing a fourth example of a dynamic pressure groove in the third embodiment.
  • FIG. 10 is a diagram showing a fifth example of a dynamic pressure groove in the third embodiment. It is a figure which shows the modification in Embodiment 3 which reduced the permanent magnet of the impeller.
  • FIG. 10 is a diagram showing a modification of the pump unit in the third embodiment.
  • FIG. 1 is a two-sided view showing the external appearance of a centrifugal pump device provided with a rotary drive device according to the present embodiment.
  • a pump portion (hereinafter also referred to as a rotational drive device) 1 of a centrifugal pump device includes a housing 2 made of a nonmagnetic material, and an impeller 10 rotatably housed in the housing 2.
  • the coil 20 is provided.
  • the housing 2 of the pump unit 1 is provided on a columnar main body 3, a cylindrical inflow port 4 provided substantially perpendicularly from the center of one end surface of the main body 3, and an outer peripheral surface of the main body 3. And a cylindrical outflow port 5.
  • the outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
  • FIG. 2 is a cross-sectional view taken along the line AA-AA in FIG.
  • a partition wall 6 is provided in the housing 2.
  • the partition wall 6 divides the housing 2 into a pump chamber (also referred to as “first chamber”) 7 and a motor chamber (also referred to as “second chamber”) 8.
  • the impeller 10 is rotatably provided in the pump chamber 7.
  • the motor chamber 8 is provided with a core 18 and a coil 20.
  • the impeller 10 has a rotor 100, shrouds 11, 12 and a vane 13.
  • the two shrouds 11 and 12 are formed in a disc shape in which a through hole 10a is formed in the center of each.
  • the shroud 11 is disposed on the inflow port 4 side, and the shroud 12 is disposed on the partition wall 6 side.
  • the shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
  • a plurality (six in this case) liquid passages 14 partitioned by a plurality (six in this case) vanes 13 are formed.
  • the liquid passage 14 communicates with a through hole 10a in the center of the impeller 10, and extends so that the width gradually increases from the through hole 10a of the impeller 10 to the outer peripheral edge.
  • the plurality of vanes 13 are formed in the same shape and provided at equal angular intervals, so that the plurality of liquid passages 14 are formed at equal angular intervals and in the same shape.
  • a permanent magnet 15 is embedded in the shroud 11
  • a permanent magnet 16 that attracts the permanent magnet 15 is embedded in the inner wall of the pump chamber 7 facing the shroud 11.
  • the permanent magnets 15 and 16 attract (bias) the impeller 10 to the side opposite to the motor chamber 8, in other words, to the inflow port 4 side, and maintain the axial position of the impeller 10 at a desired position.
  • a permanent magnet may be provided on one of the inner walls of the shroud 11 and the pump chamber 7, and a magnetic material may be provided on the other.
  • a magnetic material may be provided on the other.
  • the magnetic material either a soft magnetic material or a hard magnetic material may be used.
  • the permanent magnet 16 may be one or plural.
  • the permanent magnet 16 is formed in a ring shape.
  • the plurality of permanent magnets 16 are arranged along the same circle at equal angular intervals.
  • the permanent magnet 15 is the same as the permanent magnet 16, and may be one or plural.
  • the rotor 100 is provided on the shroud 12 side of the impeller 10.
  • a plurality of first permanent magnets 110 and a second permanent magnet 120 are arranged circumferentially.
  • FIG. 3 is an enlarged cross-sectional view of the main part on the partition wall 6 side of the impeller 10 along the line BB-BB in FIG.
  • the rotor 100 includes a plurality of first permanent magnets 110 arranged in the rotation direction, and a plurality of second permanent magnets arranged in the rotation direction on the partition wall side 111 of the row of the first permanent magnets 110. 120.
  • Each first permanent magnet 110 is magnetized in a direction perpendicular to the rotation direction of the rotor 100, and the magnetic poles of two adjacent first permanent magnets 110 are different from each other.
  • each second permanent magnet 120 is magnetized in the rotation direction of the rotor 100, and each second permanent magnet 120 is the same magnetic pole as the other adjacent second permanent magnets 120, that is, N pole and N pole. It arrange
  • a gap 130 with a predetermined interval is formed between the opposing magnetic poles (N pole and N pole or S pole and S pole) of the two second permanent magnets 120. This gap 130 faces the partition wall side 111 of the first permanent magnet 110. In the gap 130 where the N poles of the second permanent magnet 120 face each other, the N pole of the first permanent magnet 110 faces, and in the gap 130 where the S poles of the second permanent magnet 120 face each other. The south pole of the first permanent magnet 110 faces.
  • Each gap 130 is formed in a concave shape in which one side surface facing the partition wall 6 is opened.
  • the number of first permanent magnets 110 and the number of second permanent magnets 120 are the same.
  • the circumferential dimension L2 of the second permanent magnet 120 is shorter than the circumferential dimension L1 of the first permanent magnet 110.
  • the center part 120c (L2 / 2) of the circumferential direction of the 2nd permanent magnet 120 is made to correspond with the boundary of the magnets adjacent to the circumferential direction of the 1st permanent magnet 110, the 2nd permanent magnet 120, A plurality of gaps 130 are formed between 120 at regular intervals in the circumferential direction.
  • each gap 130 is a predetermined dimension W1
  • the first magnetic body 140 is provided in this gap.
  • the first magnetic body 140 is formed of a material having high magnetic permeability (soft magnetic body) such as iron, for example.
  • the side surface 141 facing the partition wall 6 of the first magnetic body 140 is disposed so as to be flush with the side surface 121 of the second permanent magnet 120 disposed adjacent to both sides. Has been.
  • FIG. 4 is a cross-sectional view taken along line CC-CC in FIG. With reference to FIG. 4, an impeller 10 is rotatably provided on the main body 3 constituting the housing 2 of the pump device on the pump chamber 7 side.
  • FIG. 5 is a plan view of the inside of the pump chamber 7 at the DD-DD line position in FIG. 2 with the impeller 10 removed from the main body 3 in FIG.
  • FIG. 6 is a plan view of the inside of the pump chamber 7 at the position of the line EE-EE in FIG. 2 in a state where the impeller 10 is removed from the main body 3.
  • dynamic pressure grooves 21 and 22 are provided on the inner wall of the pump chamber 7 at positions facing the shrouds 11 and 12 of the impeller 10, respectively.
  • the dynamic pressure grooves 21 and 22 formed on the inner surface of the main body 3 facing the impeller 10 are arranged at an equal angle with respect to the central axis of the impeller 10.
  • the dynamic pressure grooves 21 and 22 have a so-called inward spiral groove shape. For this reason, when the impeller 10 rotates in a certain direction, the pressure of the liquid increases from the outer diameter portion of the dynamic pressure grooves 21 and 22 toward the inner diameter portion. As a result, a dynamic pressure is generated between the impeller 10 and the inner surface located on both sides of the pump chamber 7, and when the rotation of the impeller 10 exceeds a predetermined number of rotations, the dynamic pressure rising between the impeller 10 and the impeller 10 is increased.
  • FIG. 7 is a cross-sectional view taken along the line FF-FF in FIG.
  • a plurality of (for example, nine) cores 18 are provided in the motor chamber 8.
  • Each core 18 is formed in, for example, a triangular prism shape made of a magnetic material, and is disposed along the same circle at equal angular intervals so as to face the plurality of permanent magnets of the impeller 10.
  • the base ends 18 a of the plurality of cores 18 are joined to one disk-shaped magnetic body 19.
  • a coil 20 is wound around each core 18.
  • a space for winding the coil 20 is evenly secured around the plurality of cores 18, and the surfaces of the two adjacent cores 18 facing each other are substantially parallel.
  • a driving means is formed by the core 18, the magnetic body 19, and the coil 20.
  • the shape of the magnetic flux generated by the coil 20 wound around the core 18 can be adapted to the arrangement of the first permanent magnet 110 and the second permanent magnet 120 of the rotor 100. It becomes. As a result, a large torque can be generated, and the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • the plurality of cores 18 may be laminated steel plates, or may be a compact magnetic core or other magnetic material. Further, the shape may not be the triangular prism shape of the embodiment, but may be, for example, a cylindrical shape.
  • the coil 20 can form a field magnetic field when a voltage is applied by energization, and the attraction force between the plurality of cores 18 and the plurality of first permanent magnets 110 and the second permanent magnets 120 of the impeller 10.
  • the impeller 10 can be rotated by the repulsive force.
  • the motor between the coil 20 and the rotor 100 is compared to a motor without the partition wall 6.
  • the gap becomes wider.
  • the enlargement of the motor gap leads to a decrease in the density of magnetic flux that effectively acts between the coil 20 and the permanent magnet of the rotor 100, and may cause a decrease in motor efficiency and motor output.
  • a permanent magnet having an arrangement capable of generating a desired magnetic force from a plurality of arranged permanent magnets is used.
  • a rotor structure in which the arrangement of permanent magnets as shown in FIG. 8 is a Halbach type arrangement is known.
  • the rotor 150 having the Halbach-type array structure has a plurality of first permanent magnets 9a and second permanent magnets 9b arranged alternately at equal angular intervals along the same circle.
  • the polarities of the N and S poles of the first permanent magnet 9a and the second permanent magnet 9b arranged adjacent to each other are changed by 90 degrees. Are arranged.
  • the magnetic fluxes c1 and c2 from the north pole of the first permanent magnet 9a and the second permanent magnet 9b to the core 18 and the coil 20 and back to the south pole, and the partition 6 A magnetic flux c3 returning from the N pole on the opposite side surface to the S pole is generated.
  • a rotor having an array structure in which the polar orientations of adjacent magnets are different for example, refer to Patent Document 1
  • comparison is made with the same magnet volume.
  • the magnetic force can be increased.
  • FIG. 9 is an enlarged cross-sectional view of the GG portion of FIG. 8, and the direction of the magnetic lines of force indicating the magnetization directions in the first permanent magnet 9a and the second permanent magnet 9b is indicated by arrows b1 and b2. The directions of local magnetic lines of force inside the magnet are indicated by arrows b3 to b6. Further, in FIG. 9, magnetic fluxes c1 and c2 that exit from the N pole of the first permanent magnet 9a and the second permanent magnet 9b and return to the S pole are indicated by arrows. Referring to FIG.
  • the arrow b3 in the direction of the magnetic field lines of the first permanent magnet 9a is opposite to the arrow b4 in the direction of the magnetic field lines of the adjacent second permanent magnet 9b.
  • the region P1 to be present exists over a wide range of about half of the dimension from the south pole to the north pole of the second permanent magnet 9b.
  • the first permanent magnet 9b Even if the magnetization direction a2 of the second permanent magnet 9b is oriented so as to be orthogonal to the side surface of the first permanent magnet 9a, as shown by the arrow b4 in the direction of the magnetic field lines in this region P1, the first permanent magnet 9b The direction of the magnetic field in the magnet 9a is opposite to the direction of the arrow b3, and they cancel each other out due to the interference of the demagnetizing field.
  • the magnetic flux from the second permanent magnet 9b wraps around the first permanent magnet 9a adjacent to the area P1, avoiding the area P1.
  • a strong demagnetizing field interferes at the joint portion between the first permanent magnet 9a and the second permanent magnet 9b arranged adjacent to each other, and acts to weaken each other's magnetic field. To do.
  • the magnetic flux density of the entire rotor 150 also decreases, so that a magnet volume of a certain level or more is required to obtain a desired magnetic force.
  • the magnet shape tends to be a flat shape configured as a part of the annular shape of the rotor 150 by design.
  • the permeance coefficient indicating the resistance to thermal demagnetization of the magnet is determined by the shape of the magnet (magnetic material).
  • the shape of the magnet magnet (magnetic material).
  • the smaller the cross-sectional area perpendicular to the magnetization direction and the smaller the thickness in the magnetization direction the smaller. For this reason, in a canned motor that tends to have a flat magnet shape, the permeance coefficient tends to be low.
  • the opposing magnetic poles (N pole and N pole or S pole and S and S) of the two second permanent magnets 120 A gap 130 of a predetermined interval is formed between the first poles), and the partition wall side 111 of the first permanent magnet 110 faces the gap 130 with the same magnetic pole (N pole or S pole).
  • a permanent magnet 110 is disposed. Further, the first magnetic body 140 is provided in the gap 130.
  • FIG. 10 is a diagram for explaining the magnetic flux generated in the structure of the rotor 100 of the first embodiment, and is an enlarged cross-sectional view corresponding to the main part along the line BB-BB in FIG. is there.
  • the magnetic fluxes c4 and c5 reach the positions of the core 18 and the coil 20, pass through another adjacent first magnetic body 140, and the S pole of the first permanent magnet 110 and the second permanent magnet 120. To a pair of S poles.
  • magnetic forces from the magnetic poles of the three first permanent magnets 110 and the second permanent magnets 120 and 120 are collected.
  • a magnetic flux c6 from the north pole of the first permanent magnet 110 to the south pole of another adjacent first permanent magnet 110 is indicated by an arrow. ing.
  • the magnetic flux c6 directed to the opposite side of the partition wall 6 becomes a magnetic force from the magnetic pole of one first permanent magnet 110, and the magnetic force is weaker than the magnetic fluxes c4 and c5 obtained by focusing the three magnetic poles.
  • FIG. 11 is an enlarged view of the HH portion of FIG.
  • the internal magnetization directions in a state where the first magnetic body 140 is magnetized by the external magnetic field are indicated as e1 and e2.
  • directions of the first permanent magnet 110 and the second permanent magnet 120 (hereinafter also referred to as magnetization directions) a ⁇ b> 1 and a ⁇ b> 2 and the direction of the magnetic flux toward the first magnetic body 140. Is indicated by arrows b1 and b2.
  • the direction of the line of magnetic force that enters the first magnetic body 140 from the magnetic pole of the first permanent magnet 110 is indicated by an arrow b1
  • the magnetic pole of the second permanent magnet 110 enters the first magnetic body 140 from the magnetic pole.
  • the direction of the incoming magnetic field lines is indicated by arrow b2.
  • the magnetic field formed in the first magnetic body 140 is affected by the first permanent magnet 110 and the second permanent magnet 120.
  • the magnetization directions e1 and e2 are affected by the magnetic lines of force of the other first permanent magnets 110 and the second permanent magnets 120 depending on the arrangement, and when the directions of the arrows become the same direction, the magnetic flux density increases and the magnetic force is increased.
  • a gap 130 is formed in the rotor 100 of the first embodiment. For this reason, since it is possible to reduce the cancellation of the magnetic field at the joint portion of the permanent magnets arranged adjacent to each other as described with reference to FIG. 9, the attenuation of the magnetic force can be suppressed. Furthermore, since the first magnetic body 140 is magnetized by the magnetic fields from the first permanent magnet 110 and the second permanent magnet 120 by providing the first magnetic body 140 in the gap 130, the first magnetic body 140. Becomes a magnet with strong magnetic force. In other words, the magnetic fields of the first permanent magnet 110 and the second permanent magnet 120 can be effectively added to generate a strong magnetic field. As described above, since the magnetic force is effectively enhanced, for example, the same magnetic force can be obtained with a smaller magnet volume than in FIG.
  • the permeance coefficient is also improved.
  • the side surface 141 on the partition wall 6 side and the side surface 121 of the second permanent magnet 120 are arranged on the same plane, there is no unevenness on the partition wall 6 side of the rotor 100, and the surface can be made smooth. For this reason, when using the pump part 1 of this Embodiment 1 as a centrifugal pump apparatus which sends out a liquid, the location where the liquid in the pump part 1 stays can be reduced, for example.
  • FIG. 12 is a view showing the flying position of the impeller having the Halbach rotor 150 shown in FIG.
  • the horizontal axis of FIG. 12 shows the position of the impeller 10 (the left side in FIG. 12 is the partition wall 6 side), and the vertical axis shows the acting force on the impeller.
  • the acting force along the axial direction of the pump unit 1 on the impeller is based on the attractive force F ⁇ b> 1 due to the magnetic force of the rotor and the magnetic force of the permanent magnets 15 and 16 on the opposite side of the partition wall 6 across the impeller.
  • the resultant force F5 is a combination of the suction force F2, the dynamic pressure F3 generated by the rotation of the impeller, and the dynamic pressure F4.
  • the impeller ascends and stays at a position where the resultant force F5, which is the net force, becomes zero.
  • the floating position K 0 at which the resultant force F 5 becomes zero in order to prevent the impeller from coming into contact with the inner side surfaces located on both sides in the axial direction of the impeller is generally the impeller position in the pump chamber 7. Set near the center of the ascent range.
  • the holding force acting on the impeller in the axial direction and holding the impeller also becomes small.
  • the position variation width D1 of the impeller is larger than the position variation width D2 due to the sufficiently large suction forces F1 and F2, and the possibility of contact with the inner surface increases.
  • the weight and volume of the pump part increase with an increase in the weight of the rotor, which is not preferable.
  • the magnetic force of the rotor 100 can be enhanced while maintaining the magnet volume as shown in FIG. If the magnetic forces of the permanent magnets 15 and 16 are adjusted according to the magnetic force of the rotor 100, the holding force of the impeller 10 can be improved. Then, the impeller 10 can reduce the position fluctuation range D3 ( ⁇ D2) due to the disturbance force.
  • FIG. 14 to FIG. 18 are diagrams for explaining a rotation drive device according to a modification of the first embodiment.
  • the same parts as those of the rotary drive device of the first embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
  • FIG. 14 is a diagram illustrating a first modification of the rotor structure according to the first embodiment.
  • the rotor 170 of the first modification further includes an end face 112 on the opposite side to the partition wall side 111 of the first permanent magnet 110.
  • Two magnetic bodies 114 are arranged.
  • the second magnetic body 114 is configured using a soft magnetic material having a high magnetic permeability such as iron as a material.
  • the second magnetic body 114 of the first modification is a single flat body that covers all the end surfaces 112 of the first permanent magnet, and is formed in a ring shape in plan view.
  • FIG. 15 and FIG. 16 are diagrams showing a rotary drive device of a second modification of the first embodiment.
  • the canned motor of the second modified example includes a rotor 200 on the opposite side of the coil 20 with the partition wall 6 interposed therebetween.
  • the rotor 200 includes a first permanent magnet 210 magnetized in the rotation axis direction and a second permanent magnet 220 magnetized in the circumferential direction, one by one along the same circle at equal angular intervals.
  • the axial dimension h1 between the magnetic poles of the first permanent magnet 210 is smaller than the axial direction of the second permanent magnet 220 in comparison with the Halbach type arrangement structure shown in FIG. It is set to be smaller than the dimension h2.
  • a gap 230 is provided between the two second permanent magnets 220, 220, and a third magnetic body 240 is provided in the gap 230.
  • FIG. 16 shows an enlarged cross-sectional view of the portion II in FIG. 15 of the second modification.
  • the third magnetic body 240 causes the region P ⁇ b> 1 of FIG. The portion where the magnetic forces cancel each other is reduced.
  • the third magnetic body 240 is more strongly magnetized than the normal Halbach array of FIG.
  • the size can be reduced and the permeance coefficient can be improved as compared with the Halbach array of FIG.
  • the second magnetic body 214 is formed on the end surface 212 opposite to the partition wall-side end surface 213 in the same manner as the rotor 170 of the first modified example shown in FIG. May be arranged to further strengthen the magnetic force.
  • FIG. 17 and FIG. 18 are diagrams showing a rotary drive device of a third modification of the first embodiment.
  • the rotor 250 of the third modification example has a configuration in which the axial dimension of the third magnetic body 240 in the configuration of the rotor 200 of the second modification example shown in FIG. .
  • FIG. 18 is an enlarged cross-sectional view of the JJ portion of FIG.
  • the rotor 250 of the third modified example has a dimension h ⁇ b> 5 and an end face 261 of the third magnetic body 260 protruding toward the partition wall 6. Magnetic fluxes c21 to c23 from the end face 261 of the third magnetic body 260 are directed from the end face 261 toward the partition wall 6 and reach the end face 261 of the magnetic body 261 disposed adjacent thereto.
  • the rotor 250 has a portion corresponding to the N pole of the magnetic body 260 corresponding to the dimension h5 from which the end surface 261 protrudes. It is far from the center of N pole.
  • the magnetic lines of force that wrap around like the direction of magnetic lines b12 and b13 of the rotor 200 shown in FIG. 16 are reduced, and the third magnetic body 260 shown by the arrow in FIG. Since the lines of magnetic force in the directions b12 and b13 that directly reach are increased, the magnetic force can be strengthened.
  • the magnetic wall can be further strengthened on the partition wall 6 side of the first permanent magnet 210.
  • the end face of the third magnetic body 260 is similar to the rotor 250 of the third modification. It can be set as the structure which protruded 261.
  • 19 and 20 show first and second modifications of the driving means of the first embodiment.
  • 19 and 20 are cross-sectional views of the centrifugal pump device according to the first embodiment at a position corresponding to the cross section along line AA-AA in FIG.
  • the same parts as those of the rotary drive device of the first embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
  • a tooth 109 is integrally provided at the tip of the core 18 provided in the coil 20 of the pump unit 101.
  • the area of the side surface of the core 18 facing the rotor 100 is expanded by the teeth 109 integrally provided at the tip of the core 18. .
  • the opposing area between the 1st permanent magnet 110 of the rotor 100 and the 2nd permanent magnet 120 can be ensured widely, even if the electric current sent through the coil 20 is the same, a stronger magnetic force is generated. Can do.
  • FIG. 20 is a diagram illustrating a second modification of the driving unit according to the first embodiment.
  • pump unit 102 employs a structure (coreless structure) in which core 18 inside the coil in the stator of main body unit 3 is eliminated.
  • the driving means has a coreless structure, so that the cogging torque can be made zero, and smooth start-up and rotation are possible.
  • FIGS. 21 to 24 show cross-sectional views of the motors of the embodiments as viewed from the axial direction.
  • the first permanent magnet 110, the second permanent magnet 120, and the first magnetic body 140 are laminated in the radial direction and arranged in an annular shape.
  • FIG. 21 shows a rotor structure corresponding to the first embodiment shown in FIG.
  • Rotor 300 has a plurality of first permanent magnets 310 and second permanent magnets 320 arranged in the circumferential direction.
  • the second permanent magnets 320 are arranged with a gap 330 on the side of the partition wall 6 in the row of the first permanent magnets 310, and are magnetized in the radial direction orthogonal to the arrangement direction.
  • the magnetic poles of the second permanent magnets 320 and 320 facing each other in the circumferential direction are configured to have the same pole (N pole or S pole) as the first permanent magnet 310 facing the gap 330.
  • Each gap 330 is provided with a first magnetic body 340.
  • FIG. 22 is a diagram showing a first modification of the rotor structure in the second embodiment, and is a rotor structure corresponding to the modification of the first embodiment shown in FIG. That is, in the rotor 400, the second magnetic body 450 is disposed on the inner surface of the first permanent magnet 310 in the configuration of the rotor 300 in FIG. By adopting such a configuration, magnetic flux can be passed through the second magnetic body 450. Therefore, compared with the rotor 300 of FIG. 21, the magnetic force enhancement on the partition wall 6 side of the first permanent magnet 410 is enhanced. Can be done.
  • FIG. 23 shows a second modification of the rotor structure in the second embodiment, and rotor 500 corresponds to rotor 200 in the second modification of the first embodiment shown in FIG. .
  • rotor 500 has a plurality of first permanent magnets 510 magnetized in the rotation axis direction and second permanent magnets 520 magnetized in the circumferential direction alternately arranged in a circumferential manner. is doing. Further, a third magnetic body 540 is provided in the gap 530 between the two second permanent magnets 520 and 520 disposed adjacent to the rotor 500.
  • FIG. 24 is a diagram showing a third modification of the rotor structure in the second embodiment.
  • the second magnetic body 214 as a back yoke is shown. It corresponds to the rotor 250 provided with. Therefore, by passing the magnetic flux through the second magnetic body 650, the magnetic flux density is increased as compared with the rotor 500 of FIG. 23, and the magnetic force is strengthened on the partition wall 6 side of the first permanent magnet 610. Can do.
  • the third embodiment shown in FIGS. 25 to 31 describes a variation of the structure in which a dynamic pressure groove for generating a dynamic pressure in the radial direction is provided in the axial gap type motor structure of the first embodiment.
  • FIG. 25 is a diagram showing a first example of a pump structure provided with a dynamic pressure groove for generating radial dynamic pressure according to the third embodiment.
  • the pump unit 900 according to the third embodiment is the same as the pump unit 101 shown in FIG.
  • the dynamic pressure groove 23 is formed in an annular shape in the portion to be performed.
  • radial dynamic pressure is applied to the impeller 10 by the dynamic pressure groove 23 in addition to axial dynamic pressures F 3 and F 4 generated by the dynamic pressure grooves 21 and 22 when the impeller 10 rotates.
  • FIG. 26 is a diagram for explaining a second example of the dynamic pressure groove according to the third embodiment.
  • dynamic pressure grooves 1211 and 1212 are formed on the outer peripheral surface of the impeller 1210.
  • the dynamic pressure grooves 1211 and 1212 are V-shaped in a plan view and formed in a concave groove shape in a portion of the outer peripheral surface of the impeller 1210 facing the cylindrical inner peripheral surface of the pump chamber 7.
  • the dynamic pressure grooves 1211 and 1212 are formed at a predetermined pitch in the rotation direction of the impeller 1210.
  • the tips (acute angle portions) 1211a and 1212a of the V-shaped dynamic pressure grooves 1211 and 1212 are directed in the direction opposite to the rotation direction R of the impeller 1210.
  • FIG. 27 is a diagram for explaining a third example of the dynamic pressure groove according to the third embodiment.
  • the pump unit 1200 of the third modified example has a plurality of dynamic pressure grooves 1323 and 1324 that are V-shaped in plan view.
  • the dynamic pressure grooves 1323 and 1324 are provided in regions of the inner peripheral surface of the pump chamber 7 facing the outer peripheral surfaces 1321 and 1322 of the impeller 1310, and are V-shaped in plan view at a predetermined pitch in the rotation direction of the impeller 1310. It is formed to become.
  • the tips (acute angle portions) 1323a and 1324a of the V-shaped dynamic pressure grooves 1323 and 1324 are oriented in the rotation direction of the impeller 1310.
  • FIG. 28 is a diagram illustrating a fourth example of the dynamic pressure groove according to the third embodiment.
  • the impeller 1410 provided in the pump unit 1400 is provided with shrouds 11 and 12.
  • Dynamic pressure grooves 1431 and 1432 are formed on the outer peripheral surfaces of the shrouds 11 and 12.
  • the dynamic pressure grooves 1431 and 1432 of the fourth example extend in the direction of rotation of the impeller 1410 in a band shape, and are formed in a concave shape with a predetermined interval (for example, 90 to 120 degrees).
  • the depth of each of the dynamic pressure grooves 1431 and 1432 gradually decreases from the front front end portions 1431a and 1432a in the rotation direction R of the impeller 1410 toward the rear rear end portions 1431b and 1432b.
  • FIG. 29 is a diagram for explaining a fifth example of the dynamic pressure grooves according to the third embodiment.
  • the dynamic pressure grooves 1541 and 1542 are formed on the inner peripheral surface side of the pump chamber 7 facing the outer peripheral surfaces of the shrouds 11 and 12. Yes.
  • the depth of each of the dynamic pressure grooves 1541 and 1542 gradually increases from the front front end portions 1541a and 1542a in the rotational direction R of the impeller 1510 toward the rear rear end portions 1541b and 1541b.
  • FIG. 30 is a diagram showing a modification of the impeller of the third embodiment.
  • the permanent magnet 15 is not provided in the shroud 11 as compared with the pump unit 900 of FIG.
  • the ring-shaped permanent magnet 16 for attracting the ring-shaped permanent magnet 15 is not provided on the inner wall of the pump chamber 7 facing the same.
  • the permanent magnets 15 and 16 can be omitted to reduce the number of parts when contact with any side surface from the axially levitated floating position does not occur.
  • the pump unit 1000 can be reduced in size, weight, and cost.
  • FIG. 31 shows a further modification of pump unit 1600 according to the third embodiment.
  • the motor stator has a rotation center axis S0 of impeller 10 sandwiching impeller 10 in the direction of rotation center axis S0 of impeller 10.
  • a double stator structure is provided.
  • the pump unit 1600 can further increase the motor output by increasing the rotational torque.
  • the rotor used in the pump unit of the present embodiment has a magnetic pole on the partition wall side of the first permanent magnet in the gap where the magnetic poles of the two second permanent magnets face each other. And the first magnetic body is provided in the gap. For this reason, since the interference of the magnetic force of adjacent permanent magnets like the conventional Halbach type
  • the centrifugal pump including the rotary drive device or the rotary drive device described in the first to third embodiments of the present invention, it is possible to increase the torque and increase the efficiency while suppressing the increase in the magnet volume.
  • centrifugal pump has been described and described.
  • the present invention is not limited to this, and any submersible pump may be used as long as a partition is provided between the stator and the rotor of the motor. It may also be applied to those used in chemical pumps, clean pumps and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This rotation drive device (1) is provided with a housing (2), a rotor (100), and a drive means. The rotor (100) has first permanent magnets (110) which are arranged in the rotational direction, second permanent magnets (120) which are arranged in the rotational direction at intervals, and first magnetic bodies (140). Spaces (130) with predetermined intervals are formed between the magnetic poles (N-pole and N-pole, or S-pole and S-pole) of respective two of the second permanent magnets (120) that face each other such that the spaces face the partition wall sides (111) having the same magnetic poles (N-poles or S-poles) of the first permanent magnets (110). Further, the first magnetic bodies (140) are provided in the spaces (130).

Description

回転駆動装置または回転駆動装置を備える遠心式ポンプ装置Rotation drive device or centrifugal pump device provided with rotation drive device
 本発明は、固定子と回転子の間に隔壁を備えたキャンドモータに関し、特に、磁石スペースに磁性体を有効に配置することにより磁力を強め、高トルク化や高効率化、耐熱性の向上を図るキャンドモータまたはキャンドモータ構造を用いたクリーンポンプに関する。 The present invention relates to a canned motor having a partition wall between a stator and a rotor, and in particular, a magnetic material is effectively disposed in a magnet space to increase the magnetic force and increase torque, increase efficiency, and improve heat resistance. The present invention relates to a canned motor or a clean pump using a canned motor structure.
 水中ポンプやケミカル(化学薬品)リーンポンプ等に用いられるキャンドモータは、ハウジングのモータの固定子と回転子の間にキャン(隔壁)を備えている。このような構造のキャンドモータまたはキャンドモータ構造を用いた遠心式ポンプ装置は、隔壁によってモータの固定子側をポンプ部(回転子側)から隔離密閉することができる。 A canned motor used for a submersible pump, a chemical (chemical) lean pump, etc. has a can (partition) between a stator and a rotor of a housing motor. The canned motor having such a structure or the centrifugal pump apparatus using the canned motor structure can isolate and seal the stator side of the motor from the pump portion (rotor side) by the partition wall.
 このような構成とすることにより、遠心式ポンプ装置は、流体にモータの固定子が接触せず、衛生の面で有利である。しかしながら、モータの固定子と回転子の間に隔壁を備えると、モータギャップが広くなる。モータギャップの拡大は、固定子と回転子との間で有効に作用する磁束密度の低下につながり、モータ効率、モータ出力の低下を招いてしまう可能性がある。 By adopting such a configuration, the centrifugal pump device is advantageous in terms of hygiene because the motor stator does not contact the fluid. However, if a partition is provided between the stator and the rotor of the motor, the motor gap becomes wide. The enlargement of the motor gap leads to a decrease in magnetic flux density that effectively acts between the stator and the rotor, which may lead to a decrease in motor efficiency and motor output.
 特開2002-354721号公報(特許文献1)には、隣接する磁石の極性の配向を異ならせることによって磁力強化を図り、モータ効率や出力の低下を抑えるように構成されたロータ磁石配列が開示されている。 Japanese Patent Laid-Open No. 2002-354721 (Patent Document 1) discloses a rotor magnet arrangement configured to enhance the magnetic force by differentiating the polar orientations of adjacent magnets and suppress the reduction in motor efficiency and output. Has been.
 キャンドモータに限らず、一般的に磁力強化の方法として、たとえば、特許第4474547号(特許文献2)、国際公開第2011/013483号明細書(特許文献3)に見られるようにロータ磁石配列をハルバッハ型配列とする方法が知られている。ハルバッハ型配列を採用することにより磁力がより遠方まで届き、さらに磁極の切替わり方が正弦波状となることで、高トルク化や高効率化、低コギングトルク化を図ることができる。このうち、特に特許文献3には、磁石スペースの一部で隔壁と反対側に磁性体を配置した構造が開示されている。この磁性体により、空気中への漏れ磁束が減少し、それによって永久磁石が持つ吸着力を増幅して磁力強化を行なうことができる。 As a method of magnetic force reinforcement, not limited to a canned motor, a rotor magnet array is generally used as shown in, for example, Japanese Patent No. 4474547 (Patent Document 2) and International Publication No. 2011/013483 (Patent Document 3). A method of making a Halbach array is known. By adopting the Halbach type arrangement, the magnetic force reaches farther, and the way of switching the magnetic poles is sinusoidal, so that high torque, high efficiency, and low cogging torque can be achieved. Among these, in particular, Patent Document 3 discloses a structure in which a magnetic material is disposed on the side opposite to the partition wall in a part of the magnet space. With this magnetic material, the magnetic flux leaking into the air is reduced, thereby enhancing the magnetic force by amplifying the attractive force of the permanent magnet.
 特許第4482708号(特許文献4),特許第5046051号(特許文献5)には、固定子を二重構造とした特徴を有しているモータが記載されている。このうち、特に特許文献5には、アキシアルギャップ型モータにおいて、ロータ磁石の一部に磁性体を配置して磁力の集束性を高める構造が開示されている。 Japanese Patent No. 4482708 (Patent Document 4) and Japanese Patent No. 5046051 (Patent Document 5) describe a motor having a feature that a stator has a double structure. Among these, in particular, Patent Document 5 discloses a structure in which a magnetic material is arranged in a part of a rotor magnet to increase the focusing property of magnetic force in an axial gap type motor.
特開2002-354721号公報JP 2002-354721 A 特許第4474547号公報Japanese Patent No. 4474547 国際公開第2011/013483号明細書International Publication No. 2011/013483 Specification 特許第4482708号公報Japanese Patent No. 4482708 特許第5046051号公報Japanese Patent No. 5046051
 固定子と回転子の間に隔壁を備えたキャンドモータでは、この目的を達成する手段としてたとえば、上述のようにロータ磁石をハルバッハ型配列とする構造や、さらにその一部に磁性体を配置して磁力の集束性を高めた構造が採用される。キャンドモータにおいては、隔壁により生じるモータギャップが広いため、隔壁の反対側に位置するコイルまで、有効に磁力が到達する永久磁石をロータに配設することが望まれる。 In a canned motor having a partition wall between the stator and the rotor, as a means for achieving this purpose, for example, a structure in which the rotor magnets are arranged in a Halbach type as described above, or a magnetic material is arranged in a part thereof. Therefore, a structure with improved magnetic force focusing is adopted. In a canned motor, since the motor gap generated by the partition wall is wide, it is desirable to dispose a permanent magnet in the rotor that effectively reaches the magnetic force up to the coil located on the opposite side of the partition wall.
 しかしながら、キャンドモータの場合は、ロータの永久磁石(回転子側)をポンプ部の羽根車等に埋め込む構造が採用される場合が多く、寸法や重量等の制約により磁石体積をさらに増加させて磁力強化を図ることが困難となる場合がある。 However, in the case of a canned motor, a structure in which the permanent magnet (rotor side) of the rotor is embedded in the impeller of the pump unit is often adopted, and the magnet volume is further increased due to restrictions on dimensions, weight, etc. It may be difficult to strengthen.
 また、ハルバッハ型配列を採用する場合は、磁力強化の効果がある一方で、隣接配置される永久磁石同士の接合部分では、常に強い反磁界が干渉し合い、お互いの磁場を弱める方向へ作用する。このため、パーミアンス係数が低下する傾向がある。パーミアンス係数とは、永久磁石の熱減磁に対する耐性を示す係数であり、値が大きくなる程、耐性が高くなる。パーミアンス係数が低下すると永久磁石は温度の上昇とともに熱減磁が生じる比率が増大するため、温度上昇を伴う場合には、磁力強化の効果が低減される場合がある。 In addition, when the Halbach type arrangement is adopted, there is an effect of strengthening the magnetic force, but at the joint portion between the adjacent permanent magnets, a strong demagnetizing field always interferes and acts to weaken each other's magnetic field. . For this reason, the permeance coefficient tends to decrease. The permeance coefficient is a coefficient indicating the resistance against thermal demagnetization of the permanent magnet. The larger the value, the higher the resistance. When the permeance coefficient is lowered, the ratio of permanent magnets that cause thermal demagnetization increases as the temperature rises. Therefore, when the temperature rises, the effect of strengthening the magnetic force may be reduced.
 さらに、キャンドモータにおいては、機器全体のサイズの制約により、設計上、磁石形状は扁平型に近い形状となってしまう場合が多い。永久磁石は一般的に着磁(以下、磁化とも称する。)方向に対し磁石厚が薄くなるほど、パーミアンス係数が低くなる傾向にある。そのため、キャンドモータでのハルバッハ配列を用いた場合、十分なパーミアンス係数が達成できない場合がある。 Furthermore, in a canned motor, the shape of the magnet often becomes a shape close to a flat shape due to restrictions on the size of the entire device. In general, permanent magnets tend to have a lower permeance coefficient as the magnet thickness becomes thinner in the direction of magnetization (hereinafter also referred to as magnetization). Therefore, when the Halbach array in the canned motor is used, a sufficient permeance coefficient may not be achieved.
 そこで、本願発明の主たる目的は、上記課題に鑑み、複数の永久磁石間の磁力の干渉による影響を減少させて、高トルク化、高効率化を実現することが可能な、回転駆動装置および回転駆動装置を備える遠心式ポンプ装置を提供することである。 Accordingly, in view of the above-mentioned problems, the main object of the present invention is to reduce the influence of magnetic force interference between a plurality of permanent magnets, and to achieve high torque and high efficiency, and a rotation drive device and a rotation A centrifugal pump device including a driving device is provided.
 本発明による回転駆動装置は、隔壁で仕切られた第1の室および第2の室を含むハウジングと、第1の室において隔壁に沿って回転可能に設けられたロータと、隔壁を介してロータを駆動させる駆動手段とを備える。ロータは、回転方向に配列された複数の第1の永久磁石と、回転方向に隙間を開けて配列される複数の第2の永久磁石とを含む。各第1の永久磁石は、ロータの回転方向と直交する方向に着磁され、隣接する2つの第1の永久磁石の磁極は互いに異なる。各第2の永久磁石は、ロータの回転方向に着磁されるとともに、隣接する他の第2の永久磁石は、同じ磁極が対向するように配置される。各第1の永久磁石は、隙間に当該第1の永久磁石の隔壁側が面するように配置される。各第1の永久磁石の隔壁側の磁極は、対応する隙間に面する第2の永久磁石の磁極と同じとされ、隙間には、それぞれ第1の磁性体が設けられる。 A rotary drive device according to the present invention includes a housing including a first chamber and a second chamber partitioned by a partition, a rotor provided to be rotatable along the partition in the first chamber, and a rotor via the partition. Driving means for driving the. The rotor includes a plurality of first permanent magnets arranged in the rotation direction and a plurality of second permanent magnets arranged with a gap in the rotation direction. Each first permanent magnet is magnetized in a direction orthogonal to the rotation direction of the rotor, and the magnetic poles of two adjacent first permanent magnets are different from each other. Each second permanent magnet is magnetized in the rotation direction of the rotor, and other adjacent second permanent magnets are arranged so that the same magnetic poles face each other. Each first permanent magnet is disposed so that the partition wall side of the first permanent magnet faces the gap. The magnetic pole on the partition wall side of each first permanent magnet is the same as the magnetic pole of the second permanent magnet facing the corresponding gap, and the first magnetic body is provided in each gap.
 好ましくは、ロータは、第1の永久磁石の隔壁側と反対側に配置される第2の磁性体をさらに備える。 Preferably, the rotor further includes a second magnetic body disposed on the side opposite to the partition wall side of the first permanent magnet.
 さらに好ましくは、隔壁は、ロータの回転軸方向と直交する平面状に形成される。
 さらに好ましくは、隔壁は、ロータの回転軸方向に軸方向を有する円筒状に形成されている。
More preferably, the partition wall is formed in a planar shape orthogonal to the rotation axis direction of the rotor.
More preferably, the partition wall is formed in a cylindrical shape having an axial direction in the rotation axis direction of the rotor.
 さらに好ましくは、第1の永久磁石の周方向の長さ寸法が、第2の永久磁石の周方向の長さ寸法に比して大きく設定される。 More preferably, the circumferential length of the first permanent magnet is set larger than the circumferential length of the second permanent magnet.
 さらに好ましくは、第1の永久磁石の両磁極間の寸法は、第2の永久磁石の隔壁側から反対側までの寸法に比して、小さく設定される。 More preferably, the dimension between both magnetic poles of the first permanent magnet is set smaller than the dimension from the partition wall side to the opposite side of the second permanent magnet.
 この発明は、他の局面では、遠心式ポンプ装置のロータは、回転時の遠心力によって液体を送るインペラである。 In another aspect of the present invention, the rotor of the centrifugal pump device is an impeller that sends liquid by centrifugal force during rotation.
 本発明の回転駆動装置または回転駆動装置を備える遠心式ポンプ装置によれば、第2の永久磁石の磁極が対向する隙間に、第1の永久磁石の隔壁側の磁極が第2の永久磁石と同じ磁極で面するとともに、この隙間に第1の磁性体が配置される。この隙間により、第1の永久磁石および第2の永久磁石において、従来のハルバッハ配列構造のように直接接触する部分で磁界同士が干渉しあう箇所が減少するため、磁力の減衰が抑制できる。さらに、第1の永久磁石および第2の永久磁石の隙間に第1の磁性体を設けることによって、第1の磁性体を設けない場合と比較して磁力強化を図るとともにパーミアンス係数の低下が防止される。 According to the rotary drive device or the centrifugal pump device including the rotary drive device of the present invention, the magnetic pole on the partition wall side of the first permanent magnet is in contact with the second permanent magnet in the gap between the magnetic poles of the second permanent magnet. The first magnetic body is disposed in the gap while facing the same magnetic pole. Due to this gap, in the first permanent magnet and the second permanent magnet, the number of locations where the magnetic fields interfere with each other at the portion in direct contact as in the conventional Halbach arrangement structure can be reduced, so that the attenuation of the magnetic force can be suppressed. Further, by providing the first magnetic body in the gap between the first permanent magnet and the second permanent magnet, the magnetic force is strengthened and the permeance coefficient is prevented from being lowered as compared with the case where the first magnetic body is not provided. Is done.
この発明の実施の形態1による遠心式ポンプ装置のポンプ部の外観を示す正面図および側面図である。It is the front view and side view which show the external appearance of the pump part of the centrifugal pump apparatus by Embodiment 1 of this invention. 図1のAA-AA線断面図である。FIG. 2 is a cross-sectional view taken along line AA-AA in FIG. 図1のBB-BB線に沿った要部を拡大した断面図である。FIG. 2 is an enlarged cross-sectional view of a main part along the line BB-BB in FIG. 1. 図2のCC-CC線断面図である。FIG. 3 is a sectional view taken along line CC-CC in FIG. 2. 図2のDD-DD線断面図からインペラを取り外した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where an impeller is removed from a cross-sectional view taken along the line DD-DD in FIG. 図2のEE-EE線断面図からインペラを取り外した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along the line EE-EE of FIG. 図2のFF-FF線断面図である。FIG. 3 is a sectional view taken along line FF-FF in FIG. 2. 比較例としてのハルバッハ型配列された永久磁石によって構成されるロータ構造において、発生する磁力を表す図である。It is a figure showing the magnetic force which generate | occur | produces in the rotor structure comprised by the Halbach type | mold arranged permanent magnet as a comparative example. 図8のGG部の拡大図である。It is an enlarged view of the GG part of FIG. 図3のロータ構造における磁力を示す図である。It is a figure which shows the magnetic force in the rotor structure of FIG. 図10のHH部の拡大図である。It is an enlarged view of the HH part of FIG. 比較例としてのハルバッハ型配列された永久磁石によって構成されるインペラの浮上位置を示す図である。It is a figure which shows the floating position of the impeller comprised by the permanent magnet by the Halbach type arrangement | sequence as a comparative example. 実施の形態1のポンプ部のインペラの浮上位置を説明するための図である。FIG. 4 is a diagram for explaining a floating position of an impeller of a pump unit according to the first embodiment. 実施の形態1における、ロータ構造の第1の変形例を説明する図である。It is a figure explaining the 1st modification of the rotor structure in Embodiment 1. FIG. 実施の形態1における、ロータ構造の第2の変形例を示す図である。It is a figure which shows the 2nd modification of the rotor structure in Embodiment 1. FIG. 図15のII部の拡大断面図である。It is an expanded sectional view of the II section of FIG. 実施の形態1における、ロータ構造の第3の変形例を示す図である。It is a figure which shows the 3rd modification of the rotor structure in Embodiment 1. FIG. 図17のJJ部の拡大断面図である。It is an expanded sectional view of the JJ part of FIG. 実施の形態1における、駆動手段の第1の変形例を示す図である。FIG. 10 is a diagram showing a first modification of the driving unit in the first embodiment. 実施の形態1における、駆動手段の第2の変形例を示す図である。FIG. 10 is a diagram showing a second modification of the driving unit in the first embodiment. 円筒状の隔壁を有する実施の形態2における、ロータ構造を示す図である。It is a figure which shows the rotor structure in Embodiment 2 which has a cylindrical partition. 実施の形態2における、ロータ構造の第1の変形例を示す図である。It is a figure which shows the 1st modification of the rotor structure in Embodiment 2. FIG. 実施の形態2における、ロータ構造の第2の変形例を示す図である。It is a figure which shows the 2nd modification of the rotor structure in Embodiment 2. FIG. 実施の形態2における、ロータ構造の第3の変形例を示す図である。It is a figure which shows the 3rd modification of the rotor structure in Embodiment 2. FIG. 実施の形態3における、ラジアル方向の動圧力を発生する動圧溝が設けられたポンプ部の構造の第1の例を説明する図である。It is a figure explaining the 1st example of the structure of the pump part in which the dynamic pressure groove which generates the dynamic pressure of radial direction in Embodiment 3 was provided. 実施の形態3における、動圧溝の第2の例を示す図である。FIG. 10 is a diagram showing a second example of a dynamic pressure groove in the third embodiment. 実施の形態3における、動圧溝の第3の例を示す図である。FIG. 10 is a diagram showing a third example of a dynamic pressure groove in the third embodiment. 実施の形態3における、動圧溝の第4の例を示す図である。FIG. 10 is a diagram showing a fourth example of a dynamic pressure groove in the third embodiment. 実施の形態3における、動圧溝の第5の例を示す図である。FIG. 10 is a diagram showing a fifth example of a dynamic pressure groove in the third embodiment. 実施の形態3における、インペラの永久磁石を減らした変形例を示す図である。It is a figure which shows the modification in Embodiment 3 which reduced the permanent magnet of the impeller. 実施の形態3における、ポンプ部の変形例を示す図である。FIG. 10 is a diagram showing a modification of the pump unit in the third embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、本実施の形態に従う回転駆動装置を備える遠心式ポンプ装置の外観を示す二面図である。
[Embodiment 1]
FIG. 1 is a two-sided view showing the external appearance of a centrifugal pump device provided with a rotary drive device according to the present embodiment.
 図1を参照して、遠心式ポンプ装置のポンプ部(以下、回転駆動装置とも称する)1は、非磁性材料で形成されたハウジング2と、ハウジング2内に回転可能に収納されたインペラ10と、コイル20とを備えている。 Referring to FIG. 1, a pump portion (hereinafter also referred to as a rotational drive device) 1 of a centrifugal pump device includes a housing 2 made of a nonmagnetic material, and an impeller 10 rotatably housed in the housing 2. The coil 20 is provided.
 ポンプ部1のハウジング2は、円柱状の本体部3と、本体部3の一方の端面の中央部からほぼ垂直に設けられた円筒状の流入ポート4と、本体部3の外周面に設けられた円筒状の流出ポート5とを含む。流出ポート5は、本体部3の外周面の接線方向に延在している。 The housing 2 of the pump unit 1 is provided on a columnar main body 3, a cylindrical inflow port 4 provided substantially perpendicularly from the center of one end surface of the main body 3, and an outer peripheral surface of the main body 3. And a cylindrical outflow port 5. The outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
 図2は、ハウジング2内の構成を説明する図1のAA-AA線に沿う断面図である。ハウジング2内には、隔壁6が設けられている。この隔壁6によりハウジング2は、主にポンプ室(「第1の室」、とも称する。)7およびモータ室(「第2の室」、とも称する。)8に仕切られている。このうち、ポンプ室7内には、インペラ10が回転可能に設けられている。また、モータ室8には、コア18およびコイル20が設けられている。 FIG. 2 is a cross-sectional view taken along the line AA-AA in FIG. A partition wall 6 is provided in the housing 2. The partition wall 6 divides the housing 2 into a pump chamber (also referred to as “first chamber”) 7 and a motor chamber (also referred to as “second chamber”) 8. Among these, the impeller 10 is rotatably provided in the pump chamber 7. The motor chamber 8 is provided with a core 18 and a coil 20.
 インペラ10は、ロータ100,シュラウド11,12およびベーン13を有している。2枚のシュラウド11,12は、それぞれの中央に貫通孔10aが形成された円板状に形成されている。シュラウド11は、流入ポート4側に配置され、シュラウド12は隔壁6側に配置される。シュラウド11,12およびベーン13は、非磁性材料で形成されている。 The impeller 10 has a rotor 100, shrouds 11, 12 and a vane 13. The two shrouds 11 and 12 are formed in a disc shape in which a through hole 10a is formed in the center of each. The shroud 11 is disposed on the inflow port 4 side, and the shroud 12 is disposed on the partition wall 6 side. The shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
 2枚のシュラウド11,12の間には、複数(この場合は6枚)のベーン13で仕切られた複数(この場合は6つ)の液体通路14が形成されている。液体通路14は、後述する図4に示すように、インペラ10の中央部の貫通孔10aと連通しており、インペラ10の貫通孔10aを始端とし、外周縁まで徐々に幅が広がるように延びている。そして、複数のベーン13が同一形状に形成されて等角度間隔で設けられることにより、複数の液体通路14は等角度間隔で、かつ同じ形状に形成されている。 Between the two shrouds 11 and 12, a plurality (six in this case) liquid passages 14 partitioned by a plurality (six in this case) vanes 13 are formed. As shown in FIG. 4 to be described later, the liquid passage 14 communicates with a through hole 10a in the center of the impeller 10, and extends so that the width gradually increases from the through hole 10a of the impeller 10 to the outer peripheral edge. ing. The plurality of vanes 13 are formed in the same shape and provided at equal angular intervals, so that the plurality of liquid passages 14 are formed at equal angular intervals and in the same shape.
 インペラ10が回転中心軸S0を中心として回転駆動されると、流入ポート4から流入した液体は、遠心力によって貫通孔10aから液体通路14を介してインペラ10の外周部に送られ、流出ポート5から流出する。 When the impeller 10 is driven to rotate about the rotation center axis S0, the liquid flowing in from the inflow port 4 is sent to the outer periphery of the impeller 10 through the liquid passage 14 from the through hole 10a by centrifugal force, and the outflow port 5 Spill from.
 また、シュラウド11には永久磁石15が埋め込まれており、シュラウド11に対向するポンプ室7の内壁には、永久磁石15を吸引する永久磁石16が埋め込まれている。永久磁石15,16は、インペラ10をモータ室8と反対側、換言すれば流入ポート4側に吸引(付勢)して、インペラ10の軸方向位置を所望の位置に保持している。 Further, a permanent magnet 15 is embedded in the shroud 11, and a permanent magnet 16 that attracts the permanent magnet 15 is embedded in the inner wall of the pump chamber 7 facing the shroud 11. The permanent magnets 15 and 16 attract (bias) the impeller 10 to the side opposite to the motor chamber 8, in other words, to the inflow port 4 side, and maintain the axial position of the impeller 10 at a desired position.
 なお、シュラウド11およびポンプ室7の内壁にそれぞれ永久磁石15,16を設ける代わりに、シュラウド11およびポンプ室7の内壁の一方に永久磁石を設け、他方に磁性体を設けてもよい。また、シュラウド11自体を永久磁石15または磁性体で形成してもよい。また、磁性体としては軟質磁性体と硬質磁性体のいずれを使用してもよい。 Instead of providing the permanent magnets 15 and 16 on the inner walls of the shroud 11 and the pump chamber 7, a permanent magnet may be provided on one of the inner walls of the shroud 11 and the pump chamber 7, and a magnetic material may be provided on the other. Moreover, you may form shroud 11 itself with the permanent magnet 15 or a magnetic body. Further, as the magnetic material, either a soft magnetic material or a hard magnetic material may be used.
 また、永久磁石16は、1つでもよいし、複数でもよい。永久磁石16が1つの場合は、永久磁石16はリング状に形成される。また、永久磁石16が複数の場合は、複数の永久磁石16は等角度間隔で同一の円に沿って配置される。永久磁石15も、永久磁石16と同様であり、1つでもよいし、複数でもよい。 Moreover, the permanent magnet 16 may be one or plural. When there is one permanent magnet 16, the permanent magnet 16 is formed in a ring shape. When there are a plurality of permanent magnets 16, the plurality of permanent magnets 16 are arranged along the same circle at equal angular intervals. The permanent magnet 15 is the same as the permanent magnet 16, and may be one or plural.
 このインペラ10のシュラウド12側には、ロータ100が設けられている。ロータ100には、複数の第1の永久磁石110と、第2の永久磁石120とが周状に配列されている。 The rotor 100 is provided on the shroud 12 side of the impeller 10. In the rotor 100, a plurality of first permanent magnets 110 and a second permanent magnet 120 are arranged circumferentially.
 図3は、図1のBB-BB線に沿ったインペラ10の隔壁6側の要部を拡大した断面図である。 FIG. 3 is an enlarged cross-sectional view of the main part on the partition wall 6 side of the impeller 10 along the line BB-BB in FIG.
 ロータ100は、回転方向に配列された複数の第1の永久磁石110と、第1の永久磁石110の列の隔壁側111に回転方向に隙間を設けて配列される複数の第2の永久磁石120とを備える。各第1の永久磁石110は、ロータ100の回転方向と直交する方向に着磁され、隣接する2つの第1の永久磁石110の磁極は互いに異なる。 The rotor 100 includes a plurality of first permanent magnets 110 arranged in the rotation direction, and a plurality of second permanent magnets arranged in the rotation direction on the partition wall side 111 of the row of the first permanent magnets 110. 120. Each first permanent magnet 110 is magnetized in a direction perpendicular to the rotation direction of the rotor 100, and the magnetic poles of two adjacent first permanent magnets 110 are different from each other.
 また、各第2の永久磁石120は、ロータ100の回転方向に着磁され、各第2の永久磁石120は、隣接する他の第2の永久磁石120と同じ磁極、すなわち、N極とN極または、S極とS極同士が対向するように配設される。2つの第2の永久磁石120の対向する磁極(N極とN極またはS極とS極)の間には、所定間隔の隙間130が形成される。この隙間130には、第1の永久磁石110の隔壁側111が面している。第2の永久磁石120のN極同士が対向する隙間130には、第1の永久磁石110のN極が面し、また、第2の永久磁石120のS極同士が対向する隙間130には、第1の永久磁石110のS極が面している。そして、各隙間130は、隔壁6側に対向する一つの側面が開放された凹状に形成されている。 In addition, each second permanent magnet 120 is magnetized in the rotation direction of the rotor 100, and each second permanent magnet 120 is the same magnetic pole as the other adjacent second permanent magnets 120, that is, N pole and N pole. It arrange | positions so that a pole or S pole and S pole may oppose. A gap 130 with a predetermined interval is formed between the opposing magnetic poles (N pole and N pole or S pole and S pole) of the two second permanent magnets 120. This gap 130 faces the partition wall side 111 of the first permanent magnet 110. In the gap 130 where the N poles of the second permanent magnet 120 face each other, the N pole of the first permanent magnet 110 faces, and in the gap 130 where the S poles of the second permanent magnet 120 face each other. The south pole of the first permanent magnet 110 faces. Each gap 130 is formed in a concave shape in which one side surface facing the partition wall 6 is opened.
 実施の形態1では、第1の永久磁石110の数と第2の永久磁石120の数とは同じである。第2の永久磁石120の周方向の寸法L2は、第1の永久磁石110の周方向の寸法L1より短い。そして、第2の永久磁石120の周方向の中央部120c(L2/2)を、第1の永久磁石110の周方向に隣り合う磁石同士の境界と一致させると、第2の永久磁石120,120間には、周方向に一定間隔を置いて複数の隙間130が形成される。 In the first embodiment, the number of first permanent magnets 110 and the number of second permanent magnets 120 are the same. The circumferential dimension L2 of the second permanent magnet 120 is shorter than the circumferential dimension L1 of the first permanent magnet 110. And if the center part 120c (L2 / 2) of the circumferential direction of the 2nd permanent magnet 120 is made to correspond with the boundary of the magnets adjacent to the circumferential direction of the 1st permanent magnet 110, the 2nd permanent magnet 120, A plurality of gaps 130 are formed between 120 at regular intervals in the circumferential direction.
 各隙間130の周方向の長さは、所定寸法W1であり、この隙間には第1の磁性体140が設けられる。実施の形態1では、第1の磁性体140は、たとえば、鉄などの透磁率の高い材料(軟磁性体)で形成される。 The circumferential length of each gap 130 is a predetermined dimension W1, and the first magnetic body 140 is provided in this gap. In the first embodiment, the first magnetic body 140 is formed of a material having high magnetic permeability (soft magnetic body) such as iron, for example.
 図3の構成の例では、第1の磁性体140の隔壁6に対向する側面141は、両側に隣接配置される第2の永久磁石120の側面121に対して、同一平面となるように配置されている。 In the example of the configuration of FIG. 3, the side surface 141 facing the partition wall 6 of the first magnetic body 140 is disposed so as to be flush with the side surface 121 of the second permanent magnet 120 disposed adjacent to both sides. Has been.
 図4は、図2のCC-CC線断面図である。図4を参照して、ポンプ装置のハウジング2を構成する本体部3には、ポンプ室7側にインペラ10が回転可能に設けられている。 FIG. 4 is a cross-sectional view taken along line CC-CC in FIG. With reference to FIG. 4, an impeller 10 is rotatably provided on the main body 3 constituting the housing 2 of the pump device on the pump chamber 7 side.
 図5は、図4において本体部3からインペラ10を取り除いた状態における図2のDD-DD線位置でのポンプ室7内部の平面図である。また、図6は、本体部3からインペラ10を取り除いた状態における図2のEE-EE線位置でのポンプ室7内部の平面図である。図5,図6を参照して、ポンプ室7の内壁には、インペラ10のシュラウド11,12と対向する位置に、それぞれ動圧溝21,22が設けられている。 FIG. 5 is a plan view of the inside of the pump chamber 7 at the DD-DD line position in FIG. 2 with the impeller 10 removed from the main body 3 in FIG. FIG. 6 is a plan view of the inside of the pump chamber 7 at the position of the line EE-EE in FIG. 2 in a state where the impeller 10 is removed from the main body 3. 5 and 6, dynamic pressure grooves 21 and 22 are provided on the inner wall of the pump chamber 7 at positions facing the shrouds 11 and 12 of the impeller 10, respectively.
 本体部3のインペラ10に対向する内側面に複数本(ここでは10本)形成された動圧溝21,22は、インペラ10の中心軸に対して等角度で配置される。動圧溝21,22は、いわゆる内向スパイラル溝形状となっている。このため、インペラ10が一定方向に回転すると、動圧溝21,22の外径部から内径部に向けて液体の圧力が高くなる。これによって、インペラ10とポンプ室7の両側に位置する内側面との間に動圧力が発生し、インペラ10の回転が所定の回転数を超えると、インペラ10との間で上昇する動圧力がインペラ10の軸方向両側から加えられて、動圧軸受効果を発生させる。動圧軸受効果が生じると、インペラ10は、支持用の軸受け部などを必要とせずに、ポンプ室7内において浮上しながら非接触状態で回転することが可能となる。 The dynamic pressure grooves 21 and 22 formed on the inner surface of the main body 3 facing the impeller 10 (in this case, ten) are arranged at an equal angle with respect to the central axis of the impeller 10. The dynamic pressure grooves 21 and 22 have a so-called inward spiral groove shape. For this reason, when the impeller 10 rotates in a certain direction, the pressure of the liquid increases from the outer diameter portion of the dynamic pressure grooves 21 and 22 toward the inner diameter portion. As a result, a dynamic pressure is generated between the impeller 10 and the inner surface located on both sides of the pump chamber 7, and when the rotation of the impeller 10 exceeds a predetermined number of rotations, the dynamic pressure rising between the impeller 10 and the impeller 10 is increased. Applied from both sides of the impeller 10 in the axial direction, a hydrodynamic bearing effect is generated. When the hydrodynamic bearing effect occurs, the impeller 10 can rotate in a non-contact state while floating in the pump chamber 7 without requiring a support bearing portion or the like.
 図7は、図2のFF-FF線断面図である。図7を参照して、モータ室8内には、複数(たとえば9個)のコア18が設けられている。各コア18は、たとえば磁性体により構成される三角柱形状に形成され、インペラ10の複数の永久磁石に対向して、等角度間隔で同一の円に沿って配置される。ここで、図2を再び参照して、複数のコア18の基端18aは、円板状の1つの磁性体19に接合されている。各コア18には、コイル20が巻回されている。複数のコア18の周囲には、コイル20を巻回するためのスペースが均等に確保され、各隣接する2つのコア18の互いに対向する面は略平行である。コア18、磁性体19、コイル20により駆動手段が形成される。 FIG. 7 is a cross-sectional view taken along the line FF-FF in FIG. With reference to FIG. 7, a plurality of (for example, nine) cores 18 are provided in the motor chamber 8. Each core 18 is formed in, for example, a triangular prism shape made of a magnetic material, and is disposed along the same circle at equal angular intervals so as to face the plurality of permanent magnets of the impeller 10. Here, referring again to FIG. 2, the base ends 18 a of the plurality of cores 18 are joined to one disk-shaped magnetic body 19. A coil 20 is wound around each core 18. A space for winding the coil 20 is evenly secured around the plurality of cores 18, and the surfaces of the two adjacent cores 18 facing each other are substantially parallel. A driving means is formed by the core 18, the magnetic body 19, and the coil 20.
 このような構成とすることにより、コア18に巻回されたコイル20によって発生する磁束の形状を、ロータ100の第1の永久磁石110,第2の永久磁石120の配列に適合させることが可能となる。これによって大きなトルクを発生させることができ、インペラ10の回転駆動におけるエネルギ効率を高めることができる。なお、複数のコア18は、積層鋼板であってもよいし、圧紛磁心やその他の磁性体であってもよい。また、形状も実施の形態の三角柱形状でなくても、たとえば円柱形状でもよい。コイル20は、通電により電圧が印加されることにより界磁磁界を形成することができ、複数のコア18とインペラ10の複数の第1の永久磁石110および第2の永久磁石120との吸引力および反発力により、インペラ10を回転させることができる。 With such a configuration, the shape of the magnetic flux generated by the coil 20 wound around the core 18 can be adapted to the arrangement of the first permanent magnet 110 and the second permanent magnet 120 of the rotor 100. It becomes. As a result, a large torque can be generated, and the energy efficiency in the rotational drive of the impeller 10 can be increased. The plurality of cores 18 may be laminated steel plates, or may be a compact magnetic core or other magnetic material. Further, the shape may not be the triangular prism shape of the embodiment, but may be, for example, a cylindrical shape. The coil 20 can form a field magnetic field when a voltage is applied by energization, and the attraction force between the plurality of cores 18 and the plurality of first permanent magnets 110 and the second permanent magnets 120 of the impeller 10. The impeller 10 can be rotated by the repulsive force.
 上述のような一般的なキャンドモータ構造では、ポンプ室7とモータ室8との間に隔壁6が備えられているため、隔壁6がないモータに比べてコイル20とロータ100との間のモータギャップが広くなる。モータギャップの拡大は、コイル20とロータ100の永久磁石との間で有効に作用する磁束の密度の低下につながり、モータ効率、モータ出力の低下を招いてしまう可能性がある。このため、限られた設置スペースに設けられても、配列された複数の永久磁石から所望の磁力を発生させることができる配列を有する永久磁石が用いられる。 In the general canned motor structure as described above, since the partition wall 6 is provided between the pump chamber 7 and the motor chamber 8, the motor between the coil 20 and the rotor 100 is compared to a motor without the partition wall 6. The gap becomes wider. The enlargement of the motor gap leads to a decrease in the density of magnetic flux that effectively acts between the coil 20 and the permanent magnet of the rotor 100, and may cause a decrease in motor efficiency and motor output. For this reason, even if it is provided in a limited installation space, a permanent magnet having an arrangement capable of generating a desired magnetic force from a plurality of arranged permanent magnets is used.
 このような磁束密度の低下を抑制するための構造として、図8に示すような永久磁石の配列をハルバッハ型配列としたロータ構造が知られている。このハルバッハ型配列構造のロータ150は、同一の円に沿って等角度間隔で交互に並べられた複数の第1の永久磁石9a,第2の永久磁石9bを有している。これらの複数の第1の永久磁石9a,第2の永久磁石9bは、隣接配置される第1の永久磁石9a,第2の永久磁石9bのN極,S極の極性が90度ずつ入れ替えられて配置されている。 As a structure for suppressing such a decrease in magnetic flux density, a rotor structure in which the arrangement of permanent magnets as shown in FIG. 8 is a Halbach type arrangement is known. The rotor 150 having the Halbach-type array structure has a plurality of first permanent magnets 9a and second permanent magnets 9b arranged alternately at equal angular intervals along the same circle. In the plurality of first permanent magnets 9a and second permanent magnets 9b, the polarities of the N and S poles of the first permanent magnet 9a and the second permanent magnet 9b arranged adjacent to each other are changed by 90 degrees. Are arranged.
 そして、このハルバッハ型配列構造のロータ150においては、第1の永久磁石9a,第2の永久磁石9bのN極からコア18およびコイル20に向かいS極に戻る磁束c1,c2、および、隔壁6とは反対側の側面のN極からS極に戻る磁束c3が生じる。ハルバッハ型配列構造のロータ150を用いることで、隣接する磁石の極性の配向を異ならせた配列構造のロータ(たとえば、上記特許文献1参照。)を用いる場合と比べて、同じ磁石体積で比較して、磁力を増大させることができる。 In the Halbach rotor 150, the magnetic fluxes c1 and c2 from the north pole of the first permanent magnet 9a and the second permanent magnet 9b to the core 18 and the coil 20 and back to the south pole, and the partition 6 A magnetic flux c3 returning from the N pole on the opposite side surface to the S pole is generated. Compared to the case of using a rotor having an array structure in which the polar orientations of adjacent magnets are different (for example, refer to Patent Document 1) by using the rotor 150 of the Halbach type array structure, comparison is made with the same magnet volume. Thus, the magnetic force can be increased.
 しかしながら、ハルバッハ型配列構造のロータ150にも、以下のような課題があり、さらなる改善の余地がある。図9は、図8のGG部の拡大断面図であり、第1の永久磁石9a,第2の永久磁石9b内の着磁方向を示す全体としての磁力線の方向を矢印b1,b2で、また、磁石内部の局所的な磁力線の方向を矢印b3~b6で示している。また、図9では、第1の永久磁石9a,第2の永久磁石9bのN極から出て、S極に戻る磁束c1,c2が矢印を用いて示されている。図9を参照して、ハルバッハ型配列のロータ150では、第1の永久磁石9aの磁力線の方向の矢印b3と、隣接配置される第2の永久磁石9bの磁力線の方向の矢印b4とが反対となる領域P1が、第2の永久磁石9bのS極からN極までの寸法のほぼ半分の広い範囲にわたり存在する。第2の永久磁石9bの着磁方向a2が第1の永久磁石9aの側面に直交するように向けられていても、この領域P1の磁力線の方向の矢印b4に示すように、第1の永久磁石9a内の磁力線の方向の矢印b3と反対方向となり、反磁場の干渉により打消し合ってしまう。 However, the Halbach-type rotor structure 150 has the following problems, and there is room for further improvement. FIG. 9 is an enlarged cross-sectional view of the GG portion of FIG. 8, and the direction of the magnetic lines of force indicating the magnetization directions in the first permanent magnet 9a and the second permanent magnet 9b is indicated by arrows b1 and b2. The directions of local magnetic lines of force inside the magnet are indicated by arrows b3 to b6. Further, in FIG. 9, magnetic fluxes c1 and c2 that exit from the N pole of the first permanent magnet 9a and the second permanent magnet 9b and return to the S pole are indicated by arrows. Referring to FIG. 9, in the Halbach rotor 150, the arrow b3 in the direction of the magnetic field lines of the first permanent magnet 9a is opposite to the arrow b4 in the direction of the magnetic field lines of the adjacent second permanent magnet 9b. The region P1 to be present exists over a wide range of about half of the dimension from the south pole to the north pole of the second permanent magnet 9b. Even if the magnetization direction a2 of the second permanent magnet 9b is oriented so as to be orthogonal to the side surface of the first permanent magnet 9a, as shown by the arrow b4 in the direction of the magnetic field lines in this region P1, the first permanent magnet 9b The direction of the magnetic field in the magnet 9a is opposite to the direction of the arrow b3, and they cancel each other out due to the interference of the demagnetizing field.
 そして、第2の永久磁石9bからの磁束は、磁力線の方向の矢印b5,b6に示すように、領域P1の上方から、領域P1を避けて隣接する第1の永久磁石9aに廻り込む。 Then, as indicated by arrows b5 and b6 in the direction of the lines of magnetic force, the magnetic flux from the second permanent magnet 9b wraps around the first permanent magnet 9a adjacent to the area P1, avoiding the area P1.
 このように、ハルバッハ型配列構造のロータ150においては、隣接配置される第1の永久磁石9a,第2の永久磁石9bの接合部分で強い反磁界が干渉しあい、お互いの磁場を弱める方向へ作用する。磁石の境界における磁力の打消し合いが生じると、ロータ150の全体の磁束密度も低下してしまうため、所望の磁力を得るためには、一定以上の磁石体積が必要となる。 As described above, in the rotor 150 having the Halbach array structure, a strong demagnetizing field interferes at the joint portion between the first permanent magnet 9a and the second permanent magnet 9b arranged adjacent to each other, and acts to weaken each other's magnetic field. To do. When the canceling of the magnetic force at the boundary of the magnets occurs, the magnetic flux density of the entire rotor 150 also decreases, so that a magnet volume of a certain level or more is required to obtain a desired magnetic force.
 キャンドモータの場合は、ロータ150の永久磁石(回転子側)9a,9bをポンプ部1の羽根車等に埋め込む構造が採用される場合が多く、寸法や重量等の制約により磁石体積をさらに増加させて磁力強化を図ることが困難となる場合が生じやすい。さらに、設計上、磁石形状はロータ150の環状形状の一部として構成されるような扁平型の形状となりやすい。 In the case of a canned motor, a structure in which the permanent magnets (rotor side) 9a, 9b of the rotor 150 are embedded in the impeller of the pump unit 1 is often adopted, and the volume of the magnet is further increased due to restrictions on dimensions and weight. Therefore, it may be difficult to enhance the magnetic force. Furthermore, the magnet shape tends to be a flat shape configured as a part of the annular shape of the rotor 150 by design.
 ここで磁石の熱減磁に対する耐性を示すパーミアンス係数は、磁石(磁性体)の形状によって決まり、一般的には、磁化方向と垂直な断面積が小さいほど、また磁化方向の厚みが厚いほど大きくなり、磁化方向と垂直な断面積が大きいほど、また、磁化方向の厚みが薄いほど小さくなることが知られている。このため、扁平型の磁石形状となりやすいキャンドモータにおいては、パーミアンス係数が低くなる傾向にある。 Here, the permeance coefficient indicating the resistance to thermal demagnetization of the magnet is determined by the shape of the magnet (magnetic material). Generally, the smaller the cross-sectional area perpendicular to the magnetization direction and the greater the thickness in the magnetization direction, the larger the permeance coefficient. Thus, it is known that the smaller the cross-sectional area perpendicular to the magnetization direction and the smaller the thickness in the magnetization direction, the smaller. For this reason, in a canned motor that tends to have a flat magnet shape, the permeance coefficient tends to be low.
 そこで、本実施の形態1のポンプ部1を備える遠心式ポンプ装置においては、図3に示すように、2つの第2の永久磁石120の対向する磁極(N極とN極またはS極とS極)の間に、所定間隔の隙間130を形成して、この隙間130に、第1の永久磁石110の隔壁側111が同じ磁極(N極またはS極)にて面するように第1の永久磁石110を配置する。さらに、この隙間130に第1の磁性体140を設ける。 Therefore, in the centrifugal pump device including the pump unit 1 according to the first embodiment, as shown in FIG. 3, the opposing magnetic poles (N pole and N pole or S pole and S and S) of the two second permanent magnets 120. A gap 130 of a predetermined interval is formed between the first poles), and the partition wall side 111 of the first permanent magnet 110 faces the gap 130 with the same magnetic pole (N pole or S pole). A permanent magnet 110 is disposed. Further, the first magnetic body 140 is provided in the gap 130.
 このような構成とすることによって、隣接配置された磁石の接触部分の近傍での磁力線の干渉による打消しあいを減少させることができるとともに、磁性体によって、各磁石からの磁束を効果的に集めることができる。このため、磁力を増加させるとともに、パーミアンス係数の低下による熱減磁を抑制することができる。 By adopting such a configuration, it is possible to reduce the cancellation due to the interference of the magnetic field lines in the vicinity of the contact portion of the magnets arranged adjacent to each other and to effectively collect the magnetic flux from each magnet by the magnetic body. Can do. For this reason, it is possible to increase the magnetic force and to suppress thermal demagnetization due to a decrease in the permeance coefficient.
 図10は、実施の形態1のロータ100の構造において生じる磁束を説明する図であり、図3と同様に図1のBB-BB線に沿った要部に相当する位置を拡大した断面図である。 FIG. 10 is a diagram for explaining the magnetic flux generated in the structure of the rotor 100 of the first embodiment, and is an enlarged cross-sectional view corresponding to the main part along the line BB-BB in FIG. is there.
 図10を参照して、第1の永久磁石110のN極と第2の永久磁石120の一対のN極とから、第1の磁性体140を介して隔壁6に向けて磁力線(磁束)c4,c5が矢印で示す方向に向かう。磁束c4,c5は、コア18およびコイル20位置まで到達して、隣接配置された他の第1の磁性体140を通過して、第1の永久磁石110のS極と第2の永久磁石120の一対のS極とへと至る。磁束c4,c5は、上記3つの第1の永久磁石110、第2の永久磁石120,120の磁極からの磁力が集められている。 Referring to FIG. 10, lines of magnetic force (magnetic flux) c <b> 4 from the north pole of first permanent magnet 110 and the pair of north poles of second permanent magnet 120 toward partition wall 6 via first magnetic body 140. , C5 go in the direction indicated by the arrow. The magnetic fluxes c4 and c5 reach the positions of the core 18 and the coil 20, pass through another adjacent first magnetic body 140, and the S pole of the first permanent magnet 110 and the second permanent magnet 120. To a pair of S poles. As the magnetic fluxes c4 and c5, magnetic forces from the magnetic poles of the three first permanent magnets 110 and the second permanent magnets 120 and 120 are collected.
 一方、ロータ100における隔壁6とは反対側の側面では、第1の永久磁石110のN極から、隣接する他の第1の永久磁石110のS極へと至る磁束c6が矢印にて示されている。隔壁6と反対側へ向かう磁束c6は、1つの第1の永久磁石110の磁極からの磁力となり、上記3つの磁極を集束させた磁束c4,c5と比較して磁力が弱い。 On the other hand, on the side surface of the rotor 100 opposite to the partition wall 6, a magnetic flux c6 from the north pole of the first permanent magnet 110 to the south pole of another adjacent first permanent magnet 110 is indicated by an arrow. ing. The magnetic flux c6 directed to the opposite side of the partition wall 6 becomes a magnetic force from the magnetic pole of one first permanent magnet 110, and the magnetic force is weaker than the magnetic fluxes c4 and c5 obtained by focusing the three magnetic poles.
 図10のHH部の拡大図である図11を用いて、実施の形態1のロータ100の磁力についてさらに詳細に説明する。図11では、磁束c4~c6に加えてさらに、第1の磁性体140が外部磁場により磁化されている状態における内部の磁化方向をe1,e2として示す。さらに、図11では、第1の永久磁石110,第2の永久磁石120が着磁されている方向(以下、着磁方向とも称する)a1,a2および第1の磁性体140に向かう磁束の方向が矢印b1,b2により示されている。 The magnetic force of the rotor 100 of the first embodiment will be described in more detail with reference to FIG. 11 which is an enlarged view of the HH portion of FIG. In FIG. 11, in addition to the magnetic fluxes c4 to c6, the internal magnetization directions in a state where the first magnetic body 140 is magnetized by the external magnetic field are indicated as e1 and e2. Further, in FIG. 11, directions of the first permanent magnet 110 and the second permanent magnet 120 (hereinafter also referred to as magnetization directions) a <b> 1 and a <b> 2 and the direction of the magnetic flux toward the first magnetic body 140. Is indicated by arrows b1 and b2.
 ここで、第1の永久磁石110の磁極から第1の磁性体140の内部に入る磁力線の方向が矢印b1で示され、第2の永久磁石110の磁極から第1の磁性体140の内部に入る磁力線の方向が矢印b2で示される。 Here, the direction of the line of magnetic force that enters the first magnetic body 140 from the magnetic pole of the first permanent magnet 110 is indicated by an arrow b1, and the magnetic pole of the second permanent magnet 110 enters the first magnetic body 140 from the magnetic pole. The direction of the incoming magnetic field lines is indicated by arrow b2.
 第1の永久磁石110および第2の永久磁石120によって、第1の磁性体140の内部に形成される磁場は影響を受ける。磁化方向e1,e2は、配列により他の第1の永久磁石110,第2の永久磁石120の磁力線の影響を受けて矢印の方向が同方向となると、磁束密度が増大して磁力を強める。 The magnetic field formed in the first magnetic body 140 is affected by the first permanent magnet 110 and the second permanent magnet 120. The magnetization directions e1 and e2 are affected by the magnetic lines of force of the other first permanent magnets 110 and the second permanent magnets 120 depending on the arrangement, and when the directions of the arrows become the same direction, the magnetic flux density increases and the magnetic force is increased.
 本実施の形態1のロータ100には、隙間130が形成されている。このため、図9で説明したような、隣設配置された永久磁石の接合部分における磁場の打消し合いを少なくすることができるので、磁力の減衰を抑制できる。さらに隙間130に第1の磁性体140を設けることにより、第1の永久磁石110および第2の永久磁石120からの磁場により第1の磁性体140が磁化されるため、第1の磁性体140は、磁力の強い磁石となる。すなわち、第1の永久磁石110および第2の永久磁石120の磁場が効果的に足し合わされて、強力な磁場を生じさせることができる。このように、効果的に磁力強化されるので、たとえば、図9よりも少ない磁石体積で同等の磁力を得ることができる。 A gap 130 is formed in the rotor 100 of the first embodiment. For this reason, since it is possible to reduce the cancellation of the magnetic field at the joint portion of the permanent magnets arranged adjacent to each other as described with reference to FIG. 9, the attenuation of the magnetic force can be suppressed. Furthermore, since the first magnetic body 140 is magnetized by the magnetic fields from the first permanent magnet 110 and the second permanent magnet 120 by providing the first magnetic body 140 in the gap 130, the first magnetic body 140. Becomes a magnet with strong magnetic force. In other words, the magnetic fields of the first permanent magnet 110 and the second permanent magnet 120 can be effectively added to generate a strong magnetic field. As described above, since the magnetic force is effectively enhanced, for example, the same magnetic force can be obtained with a smaller magnet volume than in FIG.
 また、第1の永久磁石110および第2の永久磁石120における反磁界同士の打消し合いが減少するため、パーミアンス係数も改善する。 Also, since the cancellation of demagnetizing fields in the first permanent magnet 110 and the second permanent magnet 120 is reduced, the permeance coefficient is also improved.
 さらに、隔壁6側の側面141と第2の永久磁石120の側面121とが同一平面に配置されるため、ロータ100の隔壁6側に凹凸が存在せず、平滑面とすることができる。このため、たとえば、液体を送り出す遠心式ポンプ装置として、この実施の形態1のポンプ部1を用いる際には、ポンプ部1内の液体が滞留する箇所を減少させることができる。 Furthermore, since the side surface 141 on the partition wall 6 side and the side surface 121 of the second permanent magnet 120 are arranged on the same plane, there is no unevenness on the partition wall 6 side of the rotor 100, and the surface can be made smooth. For this reason, when using the pump part 1 of this Embodiment 1 as a centrifugal pump apparatus which sends out a liquid, the location where the liquid in the pump part 1 stays can be reduced, for example.
 次に、図12,図13を用いて、ロータにより生じる磁力の違いによるインペラに作用する力とインペラの浮上位置との関係について説明する。図12は、図8に示したハルバッハ配列のロータ150を有するインペラの浮上位置を示す図である。図12の横軸は、インペラ10の位置(図12中左側が隔壁6側)を示し、縦軸は、インペラに対する作用力を示している。 Next, the relationship between the force acting on the impeller due to the difference in magnetic force generated by the rotor and the floating position of the impeller will be described with reference to FIGS. FIG. 12 is a view showing the flying position of the impeller having the Halbach rotor 150 shown in FIG. The horizontal axis of FIG. 12 shows the position of the impeller 10 (the left side in FIG. 12 is the partition wall 6 side), and the vertical axis shows the acting force on the impeller.
 図12を参照して、ポンプ部1のインペラへの軸方向に沿った作用力は、ロータの磁力による吸引力F1と、インペラを挟んで隔壁6と反対側の永久磁石15,16の磁力による吸引力F2と、インペラの回転により発生する動圧力F3と、動圧力F4とを合わせた合力F5となる。インペラは、正味の力である合力F5がゼロとなる位置に浮上して留まる。ポンプ部1では、インペラの軸方向の両側に位置する内側面に対してインペラが接触することを防止するために合力F5がゼロとなる浮上位置K0は、一般的にポンプ室7内のインペラの浮上範囲の中央付近に設定される。 Referring to FIG. 12, the acting force along the axial direction of the pump unit 1 on the impeller is based on the attractive force F <b> 1 due to the magnetic force of the rotor and the magnetic force of the permanent magnets 15 and 16 on the opposite side of the partition wall 6 across the impeller. The resultant force F5 is a combination of the suction force F2, the dynamic pressure F3 generated by the rotation of the impeller, and the dynamic pressure F4. The impeller ascends and stays at a position where the resultant force F5, which is the net force, becomes zero. In the pump unit 1, the floating position K 0 at which the resultant force F 5 becomes zero in order to prevent the impeller from coming into contact with the inner side surfaces located on both sides in the axial direction of the impeller is generally the impeller position in the pump chamber 7. Set near the center of the ascent range.
 ここで、磁力による吸引力F1,吸引力F2が小さいと、インペラの軸方向に作用してインペラを留まらせている保持力も小さくなる。そうすると、インペラの位置変動幅D1は、十分な大きさの吸引力F1,F2による位置変動幅D2と比べて大きくなり、内側面に接触する可能性が高くなる。このため、インペラの保持力を向上させるためにロータの磁力および永久磁石15,16の磁力による吸引力F1,F2を強化させる必要がある。 Here, if the attraction force F1 and the attraction force F2 by the magnetic force are small, the holding force acting on the impeller in the axial direction and holding the impeller also becomes small. Then, the position variation width D1 of the impeller is larger than the position variation width D2 due to the sufficiently large suction forces F1 and F2, and the possibility of contact with the inner surface increases. For this reason, in order to improve the holding force of the impeller, it is necessary to strengthen the attractive forces F1 and F2 due to the magnetic force of the rotor and the magnetic force of the permanent magnets 15 and 16.
 しかしながら、ロータの磁力を向上させるため、磁石体積を増大させると、ロータの重量の増加に伴って、ポンプ部の重量および容積も増大してしまうため、好ましくない。 However, if the magnet volume is increased in order to improve the magnetic force of the rotor, the weight and volume of the pump part increase with an increase in the weight of the rotor, which is not preferable.
 実施の形態1のロータ100を用いると、図13のように磁石体積を維持したまま、ロータ100の磁力を強化することができる。永久磁石15,16の磁力をこのロータ100の磁力に合わせて調整すれば、インペラ10の保持力を向上させることができる。そうすると、インペラ10は、外乱力による位置変動幅D3(<D2)を減少させることができる。 When the rotor 100 of the first embodiment is used, the magnetic force of the rotor 100 can be enhanced while maintaining the magnet volume as shown in FIG. If the magnetic forces of the permanent magnets 15 and 16 are adjusted according to the magnetic force of the rotor 100, the holding force of the impeller 10 can be improved. Then, the impeller 10 can reduce the position fluctuation range D3 (<D2) due to the disturbance force.
 <変形例>
 図14~図18は、実施の形態1の変形例の回転駆動装置を説明するものである。なお、実施の形態1の回転駆動装置と同一部分には、同一符号を付して、説明を繰り返さない。
<Modification>
FIG. 14 to FIG. 18 are diagrams for explaining a rotation drive device according to a modification of the first embodiment. The same parts as those of the rotary drive device of the first embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
 (変形例1)
 図14は、実施の形態1のロータ構造の第1の変形例を説明する図である。
(Modification 1)
FIG. 14 is a diagram illustrating a first modification of the rotor structure according to the first embodiment.
 図14を参照して、この第1の変形例のロータ170には、実施の形態1のロータ100に加えてさらに、第1の永久磁石110の隔壁側111と反対側の端面112に、第2の磁性体114が配置されている。第2の磁性体114は、鉄などの透磁率の高い軟磁性体を材料として用いて構成されている。この第1の変形例の第2の磁性体114は、第1の永久磁石の全ての端面112を覆う一枚の平板体であり、かつ平面視リング状に形成されている。そして、鎖交磁界を生成している第1の永久磁石110,第2の永久磁石120の背部に、この第2の磁性体114が配置されることにより、漏れ磁束がなくなり、磁束c7は、第2の磁性体114の内部を通過する。このため、磁束密度の増加により、第1の永久磁石110を磁力強化することができる。結果として第1の磁性体1140も磁力強化することができる。 Referring to FIG. 14, in addition to the rotor 100 of the first embodiment, the rotor 170 of the first modification further includes an end face 112 on the opposite side to the partition wall side 111 of the first permanent magnet 110. Two magnetic bodies 114 are arranged. The second magnetic body 114 is configured using a soft magnetic material having a high magnetic permeability such as iron as a material. The second magnetic body 114 of the first modification is a single flat body that covers all the end surfaces 112 of the first permanent magnet, and is formed in a ring shape in plan view. And by arrange | positioning this 2nd magnetic body 114 in the back part of the 1st permanent magnet 110 and the 2nd permanent magnet 120 which are producing | generating a linkage magnetic field, a leakage magnetic flux is lose | eliminated and magnetic flux c7 is It passes through the inside of the second magnetic body 114. For this reason, the magnetic force reinforcement of the 1st permanent magnet 110 can be performed by the increase in magnetic flux density. As a result, the first magnetic body 1140 can also strengthen the magnetic force.
 この実施の形態1の第1の変形例のロータ170では、実施の形態1の作用効果に加えて、第2の磁性体114の内部に磁束c7を通過させて、磁束密度の増加を図り、さらに磁力強化することができる。このため、ロータ170の安定性を向上させて、トルクアップを図りながら小型化することができる。(変形例2)
 図15,図16は、実施の形態1の第2の変形例の回転駆動装置を示す図である。
In the rotor 170 according to the first modification of the first embodiment, in addition to the function and effect of the first embodiment, the magnetic flux c7 is passed through the second magnetic body 114 to increase the magnetic flux density. Further, the magnetic force can be strengthened. For this reason, it is possible to improve the stability of the rotor 170 and reduce the size while increasing the torque. (Modification 2)
FIG. 15 and FIG. 16 are diagrams showing a rotary drive device of a second modification of the first embodiment.
 図15を参照して、この第2の変形例のキャンドモータは、隔壁6を挟んでコイル20の反対側にロータ200を備えている。ロータ200は、回転軸方向に着磁された第1の永久磁石210と、周方向に着磁された第2の永久磁石220とを、1つずつ交互に等角度間隔で同一の円に沿って配列したハルバッハ型配列構造を有している。 Referring to FIG. 15, the canned motor of the second modified example includes a rotor 200 on the opposite side of the coil 20 with the partition wall 6 interposed therebetween. The rotor 200 includes a first permanent magnet 210 magnetized in the rotation axis direction and a second permanent magnet 220 magnetized in the circumferential direction, one by one along the same circle at equal angular intervals. Have a Halbach array structure.
 ただし、ロータ200の配列においては、図8に示したハルバッハ型配列構造と比較すると、第1の永久磁石210の両磁極の間の軸方向の寸法h1が、第2の永久磁石220の軸方向の寸法h2に比べて、小さくなるように設定されている。そして、2つの第2の永久磁石220,220の間に隙間230が設けられ、その隙間230に第3の磁性体240がそれぞれ設けられている。 However, in the arrangement of the rotors 200, the axial dimension h1 between the magnetic poles of the first permanent magnet 210 is smaller than the axial direction of the second permanent magnet 220 in comparison with the Halbach type arrangement structure shown in FIG. It is set to be smaller than the dimension h2. A gap 230 is provided between the two second permanent magnets 220, 220, and a third magnetic body 240 is provided in the gap 230.
 図16には、この第2の変形例の図15における、II部を拡大した断面図が示されている。図16を参照して、この第2の変形例のロータ200において、図8および図9に示したハルバッハ型配列構造のロータ150と比較すると、第3の磁性体240によって図9の領域P1の磁力の打消し合い部分が減少している。その結果として、第3の磁性体240が図9の通常のハルバッハ配列と比べて、より強力に磁化される。それにより、図9のハルバッハ配列に比較して、小型化できるとともに、パーミアンス係数の改善が可能となる。 FIG. 16 shows an enlarged cross-sectional view of the portion II in FIG. 15 of the second modification. Referring to FIG. 16, in the rotor 200 of the second modification, as compared with the rotor 150 having the Halbach type arrangement structure shown in FIGS. 8 and 9, the third magnetic body 240 causes the region P <b> 1 of FIG. The portion where the magnetic forces cancel each other is reduced. As a result, the third magnetic body 240 is more strongly magnetized than the normal Halbach array of FIG. As a result, the size can be reduced and the permeance coefficient can be improved as compared with the Halbach array of FIG.
 なお、図15に示す第2の変形例のロータ200において、図14に示す第1の変形例のロータ170と同様に、隔壁側端面213の反対側の端面212に、第2の磁性体214を配置し、さらに磁力強化を行なってもよい。 In the rotor 200 of the second modified example shown in FIG. 15, the second magnetic body 214 is formed on the end surface 212 opposite to the partition wall-side end surface 213 in the same manner as the rotor 170 of the first modified example shown in FIG. May be arranged to further strengthen the magnetic force.
 (変形例3)
 図17,図18は、本実施の形態1の第3の変形例の回転駆動装置を示す図である。第3の変形例のロータ250は、図15に示す第2の変形例のロータ200の構成における第3の磁性体240の軸方向寸法が大きく設定され、端面213から突出した態様となっている。
(Modification 3)
FIG. 17 and FIG. 18 are diagrams showing a rotary drive device of a third modification of the first embodiment. The rotor 250 of the third modification example has a configuration in which the axial dimension of the third magnetic body 240 in the configuration of the rotor 200 of the second modification example shown in FIG. .
 図18は、図17のJJ部の拡大断面図である。第3の変形例のロータ250は、隔壁6に向けて寸法h5、第3の磁性体260の端面261が突き出されている。そして、第3の磁性体260の端面261からの磁束c21~c23は、端面261から隔壁6へ向かい、隣接配置された磁性体261の端面261に至る。ロータ250は、図15に示す第2の変形例のキャンドモータのロータ200と比較して、端面261が突き出された寸法h5分、磁性体260のN極相当部分が第2の永久磁石220のN極の中心から離れている。このため、第3の変形例のロータ250では、図16に示すロータ200の磁力線の方向b12,b13のような廻り込む磁力線が減少して、図18の矢印に示す、第3の磁性体260に直接至る方向b12,b13の磁力線が増大するため、磁力強化を行なうことができる。 FIG. 18 is an enlarged cross-sectional view of the JJ portion of FIG. The rotor 250 of the third modified example has a dimension h <b> 5 and an end face 261 of the third magnetic body 260 protruding toward the partition wall 6. Magnetic fluxes c21 to c23 from the end face 261 of the third magnetic body 260 are directed from the end face 261 toward the partition wall 6 and reach the end face 261 of the magnetic body 261 disposed adjacent thereto. Compared with the rotor 200 of the canned motor of the second modified example shown in FIG. 15, the rotor 250 has a portion corresponding to the N pole of the magnetic body 260 corresponding to the dimension h5 from which the end surface 261 protrudes. It is far from the center of N pole. For this reason, in the rotor 250 of the third modified example, the magnetic lines of force that wrap around like the direction of magnetic lines b12 and b13 of the rotor 200 shown in FIG. 16 are reduced, and the third magnetic body 260 shown by the arrow in FIG. Since the lines of magnetic force in the directions b12 and b13 that directly reach are increased, the magnetic force can be strengthened.
 また、ロータ250に第2の磁性体214のバックヨークを設けることによって、第1の永久磁石210の隔壁6側をさらに磁力強化することができる。 Also, by providing the rotor 250 with the back yoke of the second magnetic body 214, the magnetic wall can be further strengthened on the partition wall 6 side of the first permanent magnet 210.
 さらに、第3の磁性体260端面261が所定の寸法h5、突き出されているため、図16の領域P3では、第2の永久磁石220の隔壁6側の反磁界による打消し合いが減少して、パーミアンス係数の改善が可能となる。 Further, since the end face 261 of the third magnetic body 260 protrudes by a predetermined dimension h5, in the region P3 of FIG. 16, cancellation due to the demagnetizing field on the partition wall 6 side of the second permanent magnet 220 is reduced. The permeance coefficient can be improved.
 なお、上記図15および図16に示す第2の変形例のロータ200では、遠心式ポンプ装置のように、液体の滞留を防止するために、隔壁6側の側面を同一平面とすることが必要とされるが、液体の滞留についての制約がなく、強い磁力を優先して必要とする用途のポンプ部においては、第3の変形例のロータ250のように、第3の磁性体260の端面261を突出させた構成とすることができる。 In addition, in the rotor 200 of the second modification shown in FIGS. 15 and 16, it is necessary to make the side surface on the partition wall 6 side the same plane in order to prevent stagnation of liquid as in the centrifugal pump device. However, in a pump part for applications where there is no restriction on liquid retention and a strong magnetic force is required, the end face of the third magnetic body 260 is similar to the rotor 250 of the third modification. It can be set as the structure which protruded 261. FIG.
 図19および図20は、実施の形態1の駆動手段の第1,第2の変形例を示す。図19,図20は、実施の形態1に従う遠心式ポンプ装置の図1中のAA-AA線断面に相当する位置での断面図である。なお、実施の形態1の回転駆動装置と同一部分には、同一符号を付して、説明を繰り返さない。 19 and 20 show first and second modifications of the driving means of the first embodiment. 19 and 20 are cross-sectional views of the centrifugal pump device according to the first embodiment at a position corresponding to the cross section along line AA-AA in FIG. The same parts as those of the rotary drive device of the first embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
 図19を参照して、ポンプ部101のコイル20に設けられたコア18の先端部には、ティース109が一体となるように設けられている。このように構成された駆動手段の第1の変形例のポンプ部101は、コア18の先端部に一体に設けられているティース109によって、コア18のロータ100と対向する側面の面積が拡大する。このため、ロータ100の第1の永久磁石110,第2の永久磁石120との間の対向面積を広く確保できるので、コイル20に流す電流が同じであっても、より強い磁力を発生させることができる。 Referring to FIG. 19, a tooth 109 is integrally provided at the tip of the core 18 provided in the coil 20 of the pump unit 101. In the pump unit 101 of the first modified example of the driving means configured as described above, the area of the side surface of the core 18 facing the rotor 100 is expanded by the teeth 109 integrally provided at the tip of the core 18. . For this reason, since the opposing area between the 1st permanent magnet 110 of the rotor 100 and the 2nd permanent magnet 120 can be ensured widely, even if the electric current sent through the coil 20 is the same, a stronger magnetic force is generated. Can do.
 図20は、実施の形態1の駆動手段の第2の変形例を示す図である。図20を参照して、この第2の変形例においては、ポンプ部102は、本体部3の固定子におけるコイル内部のコア18を無くした構造(コアレス構造)を採用する。第2の変形例では、駆動手段をコアレス構造とすることにより、コギングトルクをゼロにすることができ、スムーズな起動、回転が可能となる。 FIG. 20 is a diagram illustrating a second modification of the driving unit according to the first embodiment. Referring to FIG. 20, in the second modification, pump unit 102 employs a structure (coreless structure) in which core 18 inside the coil in the stator of main body unit 3 is eliminated. In the second modification, the driving means has a coreless structure, so that the cogging torque can be made zero, and smooth start-up and rotation are possible.
 [実施の形態2]
 実施の形態1では、アキシアルギャップ型のモータの場合について説明した。本発明は、ラジアルギャップ型のモータにも適用可能であり、図21~図24においては、各実施例のモータの軸方向から見た断面図が示されている。
[Embodiment 2]
In the first embodiment, the case of an axial gap type motor has been described. The present invention can also be applied to a radial gap type motor, and FIGS. 21 to 24 show cross-sectional views of the motors of the embodiments as viewed from the axial direction.
 図21~図24に示すモータ構造では、第1の永久磁石110,第2の永久磁石120,第1の磁性体140を径方向に積層させて円環状に配列した構造としている。 In the motor structure shown in FIGS. 21 to 24, the first permanent magnet 110, the second permanent magnet 120, and the first magnetic body 140 are laminated in the radial direction and arranged in an annular shape.
 図21は、図10に示す実施の形態1に対応するロータ構造である。ロータ300は、周方向に配列された複数の第1の永久磁石310と、第2の永久磁石320とを有する。第2の永久磁石320は、第1の永久磁石310の列の隔壁6側に隙間330を設けて配列されるとともに、配列方向と直交する径方向に着磁されている。そして、周方向に対向された各第2の永久磁石320,320の磁極は、隙間330に面する第1の永久磁石310と同じ極(N極またはS極)となるように構成されている。そして、各隙間330には、第1の磁性体340が設けられる。 FIG. 21 shows a rotor structure corresponding to the first embodiment shown in FIG. Rotor 300 has a plurality of first permanent magnets 310 and second permanent magnets 320 arranged in the circumferential direction. The second permanent magnets 320 are arranged with a gap 330 on the side of the partition wall 6 in the row of the first permanent magnets 310, and are magnetized in the radial direction orthogonal to the arrangement direction. The magnetic poles of the second permanent magnets 320 and 320 facing each other in the circumferential direction are configured to have the same pole (N pole or S pole) as the first permanent magnet 310 facing the gap 330. . Each gap 330 is provided with a first magnetic body 340.
 図22は、実施の形態2における、ロータ構造の第1の変形例を示す図であり、図14に示す実施の形態1の変形例に対応するロータ構造である。すなわち、ロータ400は、図21のロータ300の構成における第1の永久磁石310の内面に第2の磁性体450を配置したものである。このような構成とすることによって、第2の磁性体450の内部に磁束を通過させることができるので、図21のロータ300に比べて、第1の永久磁石410の隔壁6側における磁力強化を行なうことができる。 FIG. 22 is a diagram showing a first modification of the rotor structure in the second embodiment, and is a rotor structure corresponding to the modification of the first embodiment shown in FIG. That is, in the rotor 400, the second magnetic body 450 is disposed on the inner surface of the first permanent magnet 310 in the configuration of the rotor 300 in FIG. By adopting such a configuration, magnetic flux can be passed through the second magnetic body 450. Therefore, compared with the rotor 300 of FIG. 21, the magnetic force enhancement on the partition wall 6 side of the first permanent magnet 410 is enhanced. Can be done.
 図23は、実施の形態2における、ロータ構造の第2の変形例を示す図であり、ロータ500は、図15に示す実施の形態1の第2の変形例におけるロータ200に対応している。 FIG. 23 shows a second modification of the rotor structure in the second embodiment, and rotor 500 corresponds to rotor 200 in the second modification of the first embodiment shown in FIG. .
 図23を参照して、ロータ500は、回転軸方向に着磁された第1の永久磁石510と、周方向に着磁された第2の永久磁石520とを交互に複数、周状に配列している。さらにロータ500の隣接配置される2つの第2の永久磁石520,520の隙間530には、第3の磁性体540が設けられている。 Referring to FIG. 23, rotor 500 has a plurality of first permanent magnets 510 magnetized in the rotation axis direction and second permanent magnets 520 magnetized in the circumferential direction alternately arranged in a circumferential manner. is doing. Further, a third magnetic body 540 is provided in the gap 530 between the two second permanent magnets 520 and 520 disposed adjacent to the rotor 500.
 図24は、実施の形態2において、ロータ構造の第3の変形例を示す図であり、図15に示す実施の形態1の第3の変形例において、バックヨークとしての第2の磁性体214を設けたロータ250に対応している。このため、第2の磁性体650の内部に磁束を通過させることにより、図23のロータ500に比べて、磁束密度を増大させて第1の永久磁石610の隔壁6側における磁力強化を行なうことができる。 FIG. 24 is a diagram showing a third modification of the rotor structure in the second embodiment. In the third modification of the first embodiment shown in FIG. 15, the second magnetic body 214 as a back yoke is shown. It corresponds to the rotor 250 provided with. Therefore, by passing the magnetic flux through the second magnetic body 650, the magnetic flux density is increased as compared with the rotor 500 of FIG. 23, and the magnetic force is strengthened on the partition wall 6 side of the first permanent magnet 610. Can do.
 [実施の形態3]
 図25~図31に示す実施の形態3は、実施の形態1のアキシアルギャップ型のモータ構造において、ラジアル方向の動圧力を発生する動圧溝が設けられる構造のバリエーションについて説明する。
[Embodiment 3]
The third embodiment shown in FIGS. 25 to 31 describes a variation of the structure in which a dynamic pressure groove for generating a dynamic pressure in the radial direction is provided in the axial gap type motor structure of the first embodiment.
 図25は、実施の形態3に従うラジアル方向の動圧を発生させる動圧溝が設けられたポンプ構造の第1の例を示す図である。 FIG. 25 is a diagram showing a first example of a pump structure provided with a dynamic pressure groove for generating radial dynamic pressure according to the third embodiment.
 図25を参照して、この実施の形態3のポンプ部900は、図19に示したポンプ部101において、インペラ10が収納されるポンプ室7の内側面のうち、インペラ10の外周面が対向する部分に動圧溝23が環状に形成されている。 Referring to FIG. 25, the pump unit 900 according to the third embodiment is the same as the pump unit 101 shown in FIG. The dynamic pressure groove 23 is formed in an annular shape in the portion to be performed.
 ポンプ部900は、インペラ10の回転の際に動圧溝21,22により生じる軸方向の動圧力F3,F4に加えて動圧溝23によりラジアル方向の動圧力がインペラ10に加えられる。これにより、インペラ10の軸中心位置の安定性が向上し、インペラ10の対外乱性を向上させることが可能となる。 In the pump unit 900, radial dynamic pressure is applied to the impeller 10 by the dynamic pressure groove 23 in addition to axial dynamic pressures F 3 and F 4 generated by the dynamic pressure grooves 21 and 22 when the impeller 10 rotates. Thereby, the stability of the axial center position of the impeller 10 is improved, and the disturbance characteristics of the impeller 10 can be improved.
 図26は、実施の形態3に従う動圧溝の第2の例を説明する図である。図26を参照して、この第2の変形例による遠心式ポンプ装置のポンプ部1200は、インペラ1210の外周面に、動圧溝1211,1212が形成されている。動圧溝1211,1212は、インペラ1210の外周面のうち、ポンプ室7の円筒内周面と対向する部分に、平面視V字型でかつ、凹溝状に形成されている。また、動圧溝1211,1212は、インペラ1210の回転方向に所定のピッチで形成されている。V字型の動圧溝1211,1212の先端(鋭角部)1211a,1212aはインペラ1210の回転方向Rとは反対方向に向けられている。 FIG. 26 is a diagram for explaining a second example of the dynamic pressure groove according to the third embodiment. Referring to FIG. 26, in the pump unit 1200 of the centrifugal pump device according to the second modification, dynamic pressure grooves 1211 and 1212 are formed on the outer peripheral surface of the impeller 1210. The dynamic pressure grooves 1211 and 1212 are V-shaped in a plan view and formed in a concave groove shape in a portion of the outer peripheral surface of the impeller 1210 facing the cylindrical inner peripheral surface of the pump chamber 7. The dynamic pressure grooves 1211 and 1212 are formed at a predetermined pitch in the rotation direction of the impeller 1210. The tips (acute angle portions) 1211a and 1212a of the V-shaped dynamic pressure grooves 1211 and 1212 are directed in the direction opposite to the rotation direction R of the impeller 1210.
 そして、インペラ1210が図26中の回転方向Rに回転すると、動圧溝1211,1212の先端部1211a,1212aに向けて液体の圧力が高くなる。このため、インペラ1210とポンプ室7の内周面との間に反発力が発生して動圧力となり動圧軸受効果を生じさせてインペラ1210の回転を安定させる。 Then, when the impeller 1210 rotates in the rotation direction R in FIG. 26, the liquid pressure increases toward the tip portions 1211a and 1212a of the dynamic pressure grooves 1211 and 1212. For this reason, a repulsive force is generated between the impeller 1210 and the inner peripheral surface of the pump chamber 7, resulting in a dynamic pressure, and a dynamic pressure bearing effect is generated to stabilize the rotation of the impeller 1210.
 図27は、実施の形態3に従う動圧溝の第3の例を説明する図である。図27を参照して、この第3の変形例のポンプ部1200は、平面視V字型の複数の動圧溝1323,1324を有している。動圧溝1323,1324は、ポンプ室7の内周面のうちのインペラ1310の外周面1321,1322に対向する領域に設けられて、インペラ1310の回転方向に所定のピッチで平面視V字型となるように形成されている。V字型の動圧溝1323,1324の先端(鋭角部)1323a,1324aは、インペラ1310の回転方向に向けられている。そして、インペラ1310の回転により、動圧溝1323,1324は、先端部1323a,1324aに向けて液体の圧力が高くなる。このため、ポンプ室7の内周面とインペラ1310の外周面1321,1322との間に反発力が発生して動圧力となり動圧軸受効果を生じさせてインペラ1310の回転を安定させる。 FIG. 27 is a diagram for explaining a third example of the dynamic pressure groove according to the third embodiment. Referring to FIG. 27, the pump unit 1200 of the third modified example has a plurality of dynamic pressure grooves 1323 and 1324 that are V-shaped in plan view. The dynamic pressure grooves 1323 and 1324 are provided in regions of the inner peripheral surface of the pump chamber 7 facing the outer peripheral surfaces 1321 and 1322 of the impeller 1310, and are V-shaped in plan view at a predetermined pitch in the rotation direction of the impeller 1310. It is formed to become. The tips (acute angle portions) 1323a and 1324a of the V-shaped dynamic pressure grooves 1323 and 1324 are oriented in the rotation direction of the impeller 1310. Then, due to the rotation of the impeller 1310, the fluid pressure grooves 1323 and 1324 increase the liquid pressure toward the tip portions 1323a and 1324a. For this reason, a repulsive force is generated between the inner peripheral surface of the pump chamber 7 and the outer peripheral surfaces 1321 and 1322 of the impeller 1310 to generate dynamic pressure, thereby generating a dynamic pressure bearing effect and stabilizing the rotation of the impeller 1310.
 図28は、実施の形態3に従う動圧溝の第4の例を説明する図である。図28を参照して、第4の例のロータ構造では、ポンプ部1400に備えられるインペラ1410には、シュラウド11,12が設けられている。シュラウド11,12の外周面には、動圧溝1431,1432が形成されている。第4の例の動圧溝1431,1432は、帯状にインペラ1410の回転方向に延在して、一定間隔(たとえば、90度~120度など)を開けて凹状に形成されている。動圧溝1431,1432の各々の深さは、インペラ1410の回転方向Rの前方の前端部1431a,1432aから後方の後端部1431b,1432bに向かって徐々に浅くなっている。 FIG. 28 is a diagram illustrating a fourth example of the dynamic pressure groove according to the third embodiment. Referring to FIG. 28, in the rotor structure of the fourth example, the impeller 1410 provided in the pump unit 1400 is provided with shrouds 11 and 12. Dynamic pressure grooves 1431 and 1432 are formed on the outer peripheral surfaces of the shrouds 11 and 12. The dynamic pressure grooves 1431 and 1432 of the fourth example extend in the direction of rotation of the impeller 1410 in a band shape, and are formed in a concave shape with a predetermined interval (for example, 90 to 120 degrees). The depth of each of the dynamic pressure grooves 1431 and 1432 gradually decreases from the front front end portions 1431a and 1432a in the rotation direction R of the impeller 1410 toward the rear rear end portions 1431b and 1432b.
 図28に示す第4の例のポンプ部1400は、インペラ1410が回転すると、動圧溝1431,1432の前方の前端部1431a,1432aから、後方の後端部1431b,1432bに向けて液体の圧力が高くなる。このため、インペラ1410とポンプ室7の内周面との間に反発力が発生し、この反発力がラジアル方向への動圧力となる。 In the fourth example pump unit 1400 shown in FIG. 28, when the impeller 1410 rotates, the pressure of the liquid from the front front ends 1431a and 1432a of the dynamic pressure grooves 1431 and 1432 toward the rear rear ends 1431b and 1432b is increased. Becomes higher. For this reason, a repulsive force is generated between the impeller 1410 and the inner peripheral surface of the pump chamber 7, and this repulsive force becomes a dynamic pressure in the radial direction.
 図29は、実施の形態3に従う動圧溝の第5の例を説明する図である。図29を参照して、第5の例のロータ構造のポンプ部1500では、動圧溝1541,1542が、シュラウド11,12の外周面に対向するポンプ室7の内周面側に形成されている。動圧溝1541,1542の各々の深さは、インペラ1510の回転方向Rの前方の前端部1541a,1542aから後方の後端部1541b,1541bに向かって徐々に深くなっている。 FIG. 29 is a diagram for explaining a fifth example of the dynamic pressure grooves according to the third embodiment. Referring to FIG. 29, in the pump unit 1500 of the rotor structure of the fifth example, the dynamic pressure grooves 1541 and 1542 are formed on the inner peripheral surface side of the pump chamber 7 facing the outer peripheral surfaces of the shrouds 11 and 12. Yes. The depth of each of the dynamic pressure grooves 1541 and 1542 gradually increases from the front front end portions 1541a and 1542a in the rotational direction R of the impeller 1510 toward the rear rear end portions 1541b and 1541b.
 図29に示す第5の例のポンプ部1500は、インペラ1510が回転すると、回転方向Rに対して動圧溝1541,1542の前方に位置する前端部1541a,1542aでは、後方に位置する後端部1541b,1542bと比較して浅く形成されているため、液体の圧力が高くなる。このため、インペラ1510とポンプ室7の内周面との間に反発力が発生し、この反発力がラジアル方向への動圧力となる。 29, when the impeller 1510 rotates, the front ends 1541a and 1542a positioned in front of the dynamic pressure grooves 1541 and 1542 with respect to the rotation direction R have rear ends positioned rearward. Since it is formed shallower than the portions 1541b and 1542b, the pressure of the liquid is increased. For this reason, a repulsive force is generated between the impeller 1510 and the inner peripheral surface of the pump chamber 7, and this repulsive force becomes a dynamic pressure in the radial direction.
 図30は、実施の形態3のインペラの変形例を示す図である。図30を参照して、この実施の形態3のインペラの変形例のポンプ部1000は、上記図25のポンプ部900と比較して、シュラウド11に永久磁石15が設けられておらず、シュラウド11に対向するポンプ室7の内壁にも、リング状の永久磁石15を吸引するリング状の永久磁石16が設けられていない。 FIG. 30 is a diagram showing a modification of the impeller of the third embodiment. Referring to FIG. 30, in the pump unit 1000 of the modified example of the impeller of the third embodiment, the permanent magnet 15 is not provided in the shroud 11 as compared with the pump unit 900 of FIG. Also, the ring-shaped permanent magnet 16 for attracting the ring-shaped permanent magnet 15 is not provided on the inner wall of the pump chamber 7 facing the same.
 永久磁石15,16を設けなくても、軸方向の偏った浮上位置からいずれかの側面への接触が生じないような場合には、永久磁石15,16を省略して部品点数を削減することにより、ポンプ部1000の小型化、軽量化、低コスト化を図ることができる。 Even if the permanent magnets 15 and 16 are not provided, the permanent magnets 15 and 16 can be omitted to reduce the number of parts when contact with any side surface from the axially levitated floating position does not occur. Thus, the pump unit 1000 can be reduced in size, weight, and cost.
 図31は、実施の形態3に従うポンプ部1600のさらなる変形例を示す図である。図31を参照して、この実施の形態3の変形例のポンプ部1600は、インペラ10の回転中心軸S0には、インペラ10の回転中心軸S0方向でインペラ10を挟むようにモータ固定子が設けられたダブルステータ構造を有する。このような構成では、ポンプ部1600は、回転トルクを増大させて、モータ出力をさらに増加させることができる。 FIG. 31 shows a further modification of pump unit 1600 according to the third embodiment. Referring to FIG. 31, in pump unit 1600 of the modified example of the third embodiment, the motor stator has a rotation center axis S0 of impeller 10 sandwiching impeller 10 in the direction of rotation center axis S0 of impeller 10. A double stator structure is provided. In such a configuration, the pump unit 1600 can further increase the motor output by increasing the rotational torque.
 上述してきたように、本実施の形態のポンプ部に用いられるロータは、2つの第2の永久磁石の磁極が対向する隙間に、第1の永久磁石の隔壁側の磁極が第2の永久磁石と同じ磁極により面するように設けられるとともに、この隙間に第1の磁性体が設けられた構成を有している。このため、従来のハルバッハ型配列構造のような隣り合う永久磁石同士の磁力の干渉を減少させることができるので、磁力の減衰が抑制されて、ロータを効率的に駆動させることができる。 As described above, the rotor used in the pump unit of the present embodiment has a magnetic pole on the partition wall side of the first permanent magnet in the gap where the magnetic poles of the two second permanent magnets face each other. And the first magnetic body is provided in the gap. For this reason, since the interference of the magnetic force of adjacent permanent magnets like the conventional Halbach type | mold arrangement structure can be reduced, attenuation | damping of magnetic force is suppressed and a rotor can be driven efficiently.
 また、第1の永久磁石,第2の永久磁石の間の反磁力同士の干渉が減少するためにパーミアンス係数の低下が抑制され、熱減磁特性が改善される。 Also, since the interference between the demagnetizing forces between the first permanent magnet and the second permanent magnet is reduced, the decrease in the permeance coefficient is suppressed, and the thermal demagnetization characteristics are improved.
 したがって、本願発明の実施の形態1~3に記載された回転駆動装置または回転駆動装置を備える遠心式ポンプでは、磁石体積の増加を抑制しつつ、高トルク化、高効率化することができる。 Therefore, in the centrifugal pump including the rotary drive device or the rotary drive device described in the first to third embodiments of the present invention, it is possible to increase the torque and increase the efficiency while suppressing the increase in the magnet volume.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本実施の形態では、遠心式ポンプに用いられたものを示して説明してきたが、特にこれに限らず、モータの固定子と回転子の間に隔壁を備えているものであれば、水中ポンプやケミカル(化学薬品)ポンプ、クリーンポンプ等に用いられるものに適用してもよい。 In the present embodiment, the centrifugal pump has been described and described. However, the present invention is not limited to this, and any submersible pump may be used as long as a partition is provided between the stator and the rotor of the motor. It may also be applied to those used in chemical pumps, clean pumps and the like.
 1,101,102,900,1000,1100,1200,1300,1400,1500,1600 ポンプ部、3 本体部、4 流入ポート、5 流出ポート、6 隔壁、7 ポンプ室、8 モータ室、9a,9b,15,16,110,120,210,220,310,320,410,420,510,520,610,620 永久磁石、10,1210,1310,1410,1510 インペラ、100,150,170,200,250,300,400,500,600 ロータ、10a 貫通孔、12 シュラウド、13 ベーン、14 液体通路、18 コア、19,114,140,214,240,260,340,430,540,630 磁性体、20 コイル、21~23,1211~1224,1322~1324,1431,1432,1541,1542 動圧溝、109 ティース、111 隔壁側、112,212,213,261,262 端面、121,141,211,223,241 側面、230,330,530 隙間、1321,1322 外周面。 1, 101, 102, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600 Pump part, 3 main body part, 4 inflow port, 5 outflow port, 6 partition, 7 pump room, 8 motor room, 9a, 9b , 15, 16, 110, 120, 210, 220, 310, 320, 410, 420, 510, 520, 610, 620 permanent magnet, 10, 1210, 1310, 1410, 1510 impeller, 100, 150, 170, 200, 250, 300, 400, 500, 600 rotor, 10a through hole, 12 shroud, 13 vane, 14 liquid passage, 18 core, 19, 114, 140, 214, 240, 260, 340, 430, 540, 630 magnetic material, 20 coils, 21-23, 1211-1224 322 to 1324, 1431, 1432, 1541, 1542 Dynamic pressure groove, 109 teeth, 111 partition wall side, 112, 212, 213, 261, 262 end face, 121, 141, 211, 223, 241 side face, 230, 330, 530 gap 1321, 1322 outer peripheral surface.

Claims (7)

  1.  隔壁で仕切られた第1の室および第2の室を含むハウジングと、
     前記第1の室において前記隔壁に沿って回転可能に設けられたロータと、
     前記隔壁を介して前記ロータを駆動させる駆動手段とを備え、
     前記ロータは、回転方向に配列された複数の第1の永久磁石と、
     前記回転方向に隙間を開けて配列される複数の第2の永久磁石とを含み、
     各第1の永久磁石は、ロータの回転方向と直交する方向に着磁され、隣接する2つの第1の永久磁石の磁極は互いに異なり、
     各第2の永久磁石は、前記ロータの回転方向に着磁されるとともに、隣接する他の第2の永久磁石と、同じ磁極が対向するように配置され、
     各第1の永久磁石は、前記隙間に当該第1の永久磁石の隔壁側が面するように配置され、各第1の永久磁石の隔壁側の磁極は、対応する隙間に面する前記第2の永久磁石の磁極と同じとされ、
     前記隙間には、それぞれ第1の磁性体が設けられる、回転駆動装置。
    A housing including a first chamber and a second chamber partitioned by a partition;
    A rotor rotatably provided along the partition wall in the first chamber;
    Drive means for driving the rotor through the partition,
    The rotor includes a plurality of first permanent magnets arranged in a rotation direction,
    A plurality of second permanent magnets arranged with a gap in the rotational direction,
    Each first permanent magnet is magnetized in a direction perpendicular to the rotational direction of the rotor, and the magnetic poles of two adjacent first permanent magnets are different from each other,
    Each second permanent magnet is magnetized in the rotational direction of the rotor, and is arranged so that the same magnetic pole faces another adjacent second permanent magnet,
    Each first permanent magnet is arranged so that the partition wall side of the first permanent magnet faces the gap, and the magnetic pole on the partition wall side of each first permanent magnet faces the corresponding gap. It is the same as the magnetic pole of a permanent magnet,
    A rotary drive device in which a first magnetic body is provided in each gap.
  2.  前記ロータは、前記第1の永久磁石の隔壁側と反対側に配置される第2の磁性体をさらに備える、請求項1に記載の回転駆動装置。 The rotary drive device according to claim 1, wherein the rotor further includes a second magnetic body disposed on a side opposite to the partition wall side of the first permanent magnet.
  3.  前記隔壁は、前記ロータの回転軸方向と直交する平面状に形成される、請求項1または2に記載の回転駆動装置。 The rotary drive device according to claim 1 or 2, wherein the partition wall is formed in a planar shape orthogonal to the rotation axis direction of the rotor.
  4.  前記隔壁は、前記ロータの回転軸方向に軸方向を有する円筒状に形成されている、請求項1または請求項2に記載の回転駆動装置。 The rotary drive device according to claim 1 or 2, wherein the partition wall is formed in a cylindrical shape having an axial direction in a rotation axis direction of the rotor.
  5.  前記第1の永久磁石の周方向の長さ寸法が、前記第2の永久磁石の周方向の長さ寸法に比して大きく設定される、請求項1~4のいずれか1項に記載の回転駆動装置。 The circumferential length of the first permanent magnet is set to be larger than the circumferential length of the second permanent magnet. Rotation drive device.
  6.  前記第1の永久磁石の両磁極間の寸法は、前記第2の永久磁石の前記隔壁側から反対側までの寸法に比して、小さく設定される、請求項1~4のいずれか1項に記載の回転駆動装置。 The dimension between the magnetic poles of the first permanent magnet is set smaller than the dimension of the second permanent magnet from the partition side to the opposite side. The rotational drive apparatus as described in.
  7.  請求項1~6のいずれか1項に記載の回転駆動装置を備え、
     前記ロータは、回転時の遠心力によって液体を送るインペラである、遠心式ポンプ装置。
    A rotation drive device according to any one of claims 1 to 6,
    The rotor is a centrifugal pump device that is an impeller that sends liquid by centrifugal force during rotation.
PCT/JP2016/057616 2015-03-20 2016-03-10 Rotation drive device or centrifugal pump device provided with rotation drive device WO2016152559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015057890A JP6506579B2 (en) 2015-03-20 2015-03-20 Centrifugal pump device with rotary drive or rotary drive
JP2015-057890 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152559A1 true WO2016152559A1 (en) 2016-09-29

Family

ID=56978712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057616 WO2016152559A1 (en) 2015-03-20 2016-03-10 Rotation drive device or centrifugal pump device provided with rotation drive device

Country Status (2)

Country Link
JP (1) JP6506579B2 (en)
WO (1) WO2016152559A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075848A (en) * 2017-10-12 2019-05-16 株式会社神戸製鋼所 Electric motor
WO2020217868A1 (en) * 2019-04-23 2020-10-29 株式会社デンソー Axial gap-type rotor and motor pump
CN111946628A (en) * 2020-07-01 2020-11-17 苏州苏礼能源科技有限公司 High-efficient permanent magnetism water pump
EP3977595A4 (en) * 2019-05-24 2022-11-02 Magic Leap, Inc. Annular axial flux motors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024379A (en) * 2009-07-17 2011-02-03 Yaskawa Electric Corp Periodic magnetic field generation device, and linear motor and rotary motor using the same
JP2011078298A (en) * 2009-09-07 2011-04-14 Yaskawa Electric Corp Rotating electric machine and manufacturing method thereof
JP2013147969A (en) * 2012-01-18 2013-08-01 Ntn Corp Centrifugal pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024379A (en) * 2009-07-17 2011-02-03 Yaskawa Electric Corp Periodic magnetic field generation device, and linear motor and rotary motor using the same
JP2011078298A (en) * 2009-09-07 2011-04-14 Yaskawa Electric Corp Rotating electric machine and manufacturing method thereof
JP2013147969A (en) * 2012-01-18 2013-08-01 Ntn Corp Centrifugal pump device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075848A (en) * 2017-10-12 2019-05-16 株式会社神戸製鋼所 Electric motor
WO2020217868A1 (en) * 2019-04-23 2020-10-29 株式会社デンソー Axial gap-type rotor and motor pump
JP2020182269A (en) * 2019-04-23 2020-11-05 株式会社デンソー Axial gap type rotor and electric pump
JP7207134B2 (en) 2019-04-23 2023-01-18 株式会社デンソー Axial gap type rotor and electric pump
EP3977595A4 (en) * 2019-05-24 2022-11-02 Magic Leap, Inc. Annular axial flux motors
US11973375B2 (en) 2019-05-24 2024-04-30 Magic Leap, Inc. Annular axial flux motors
CN111946628A (en) * 2020-07-01 2020-11-17 苏州苏礼能源科技有限公司 High-efficient permanent magnetism water pump

Also Published As

Publication number Publication date
JP2016178813A (en) 2016-10-06
JP6506579B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP5577506B2 (en) Centrifugal pump device
TWI420783B (en) Axial motor
WO2016152559A1 (en) Rotation drive device or centrifugal pump device provided with rotation drive device
JP6185967B2 (en) Vacuum pump
JP5570884B2 (en) motor
KR101331654B1 (en) Rotor Assembly
JP2005253146A (en) Motor
US9837867B2 (en) Electric machine, rotor and associated method
JP2010263763A (en) Brushless motor
JP6559516B2 (en) Electric pump
JP6748852B2 (en) Brushless motor
JP2007043864A (en) Axial air gap synchronous machine
JP6390647B2 (en) Permanent magnet rotating electric machine
JP2011109778A (en) Fuel pump
WO2016158173A1 (en) Centrifugal pump device
WO2017212575A1 (en) Permanent magnet motor
US10020696B2 (en) Direct current (DC) motor for fuel pump for vehicle
JP2019041551A (en) Axial gap motor
JP6436114B2 (en) Permanent magnet rotating electric machine
JP2013201810A (en) Motor
KR102390035B1 (en) Flux Concentrate Type Motor
JP2013208047A (en) Stator core assembly and spindle motor including the same
JP6452518B2 (en) Centrifugal pump device
JP2012060709A (en) Permanent magnet motor
WO2021014486A1 (en) Field element and electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768462

Country of ref document: EP

Kind code of ref document: A1