WO2016151949A1 - Method for producing copper and apparatus for producing copper - Google Patents

Method for producing copper and apparatus for producing copper Download PDF

Info

Publication number
WO2016151949A1
WO2016151949A1 PCT/JP2015/083838 JP2015083838W WO2016151949A1 WO 2016151949 A1 WO2016151949 A1 WO 2016151949A1 JP 2015083838 W JP2015083838 W JP 2015083838W WO 2016151949 A1 WO2016151949 A1 WO 2016151949A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
solution
oxidizing agent
side electrode
oxidant
Prior art date
Application number
PCT/JP2015/083838
Other languages
French (fr)
Japanese (ja)
Inventor
光靖 小川
知之 粟津
真嶋 正利
真博 加藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/557,892 priority Critical patent/US20180073156A1/en
Priority to CN201580078129.7A priority patent/CN107429413A/en
Priority to KR1020177026195A priority patent/KR20170130408A/en
Publication of WO2016151949A1 publication Critical patent/WO2016151949A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/04Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing copper by electrolytic refining and a copper production apparatus.
  • copper and copper alloys are metals in great demand like iron and aluminum. Therefore, it is important from the viewpoint of protecting resources to collect discarded electric wires and printed circuit boards of household electrical appliances, and to recover and reuse copper from such copper-containing copper scrap.
  • the copper wire is crushed while being covered with the resin, and then the specific gravity difference is selected.
  • fine resin still remains on the copper surface, and it is necessary to further remove the resin by burning.
  • the recovery of copper by the dry method as described above is simple, but the burden on the environment is large because carbon dioxide is generated by the combustion of the resin, and reduction processing is performed because copper is recovered as copper oxide. Is required. Furthermore, depending on the purity of the copper scrap recovered from the market as a raw material, the purity of the recovered metal copper is lowered.
  • a recovery method by a wet method is known in addition to a dry method.
  • copper is leached with sulfuric acid, hydrochloric acid or the like, and copper is recovered by electrolytic refining.
  • oxygen is generated at the anode electrode, which inevitably increases power consumption during electrolysis.
  • Patent Document 1 discloses a cathode electrode for depositing metallic copper in a solution containing monovalent copper ions, an anode electrode in an ammonia alkaline solution containing monovalent copper ions, and a gap between the cathode electrode and the anode electrode.
  • a method is described in which a diaphragm is provided, current is passed through the electrode, and electrolysis is performed while the solution is moved from the cathode electrode side to the anode electrode side to recover metallic copper.
  • metallic copper is deposited on the cathode electrode portion, and at the same time, the monovalent copper ions can be converted into divalent copper ions at the anode electrode portion, and the divalent copper ion solution is taken out.
  • the solution containing monovalent copper ions obtained by treating the copper metal waste and the complex layer in which the copper metal waste and the complex compound exist and treating the copper metal waste is used as the solution containing the electrolytic monovalent copper ions. Therefore, it is said that power consumption can be made smaller than before.
  • the treatment target solution for recovering copper contains ions of metals such as manganese, nickel, zinc, and lead, it is necessary to remove the metal ions in order to perform the electrolysis operation.
  • ammonia is used in the method described in Patent Document 1, if the copper metal waste contains a resin, the resin and ammonia may react. If the resin and ammonia react, the ammonia will be consumed excessively. Further, there is a problem that impurities in the resin are easily dissolved in the ammonia alkaline solution.
  • JP 2003-253484 A Japanese Patent Laid-Open No. 2014-040639
  • Patent Document 2 includes a solution in which an electrolytic layer is partitioned into a cathode chamber and an anode chamber by a cation exchange membrane and a metal is dissolved using an oxidizing agent, and a solution containing an oxidized oxidizing agent in a reduced state.
  • a metal production method in which electrolysis is performed to deposit metal on the surface of the cathode. According to this method, it is possible to regenerate the oxidizing agent in the anode chamber using the diamond electrode while recovering the metal in the cathode chamber. Therefore, although an initial cost is required in terms of using a diamond electrode, the main running cost is only the electricity cost required for electrolysis.
  • Patent Document 2 uses a strong oxidizing agent such as ammonium persulfate or hydrogen peroxide, and thus reacts with water and self-discharges. Has been found to occur. This phenomenon is remarkable when the solution is left standing, and the solution that has not been used for a certain period of time may be deteriorated.
  • oxidizing agents that cannot be used effectively for dissolving metals, and there is room for improvement in terms of smelting metals at a lower cost.
  • the present invention provides a method for producing copper that can obtain high-purity copper efficiently and at low cost by a wet method without increasing the burden on the environment, without producing waste liquid. Objective.
  • the method for producing copper includes: (1) a first step of dissolving copper by adding a copper-containing material to a solution containing an oxidizing agent;
  • the solution (A) containing the oxidant in a reduced state and the solution (B) in which the copper is dissolved are brought into contact with each other through a diaphragm, and an anode-side electrode is provided on the solution (A).
  • a method for producing copper that can obtain high-purity copper efficiently and at low cost by a wet method without increasing the burden on the environment, without producing waste liquid. Can do.
  • a method for producing copper according to one aspect of the present invention includes: A first step of dissolving copper by adding a copper-containing material in a solution containing an oxidizing agent; The solution (A) containing the oxidant in a reduced state and the solution (B) in which the copper is dissolved are brought into contact with each other through a diaphragm, and an anode-side electrode is provided on the solution (A).
  • the oxidizing agent is preferably one or more selected from the group consisting of iron ions, manganese ions, vanadium ions, and chromium ions. According to the invention described in (2) above, since the solution containing the oxidizing agent does not cause self-discharge, copper can be efficiently dissolved.
  • the concentration of copper in the solution (B) in which the copper is dissolved is preferably 12 g / L or more. According to the invention described in (6) above, when the copper production method is continuously performed, it can be performed while maintaining a good state in which copper can be stably electrodeposited.
  • An apparatus for producing copper according to one aspect of the present invention includes: A copper manufacturing apparatus for carrying out the copper manufacturing method according to any one of (1) to (6) above, A management tank of a solution containing an oxidizing agent, a dissolution tank, a management tank of a solution in which copper is dissolved, an electrolytic tank, and a management tank of a solution containing an oxidizing agent in a reduced state,
  • the electrolytic cell is an apparatus for producing copper, which is partitioned by an ion exchange membrane into an oxidant regeneration chamber having an anode side electrode and a plating chamber having a cathode side electrode.
  • the copper manufacturing apparatus preferably includes a plurality of the dissolution tanks. According to the invention described in (8) above, it is possible to perform copper dissolution in parallel in a plurality of dissolution tanks, which takes time compared to the second step of depositing copper. For this reason, while performing the 2nd process of depositing copper, copper can be dissolved and an oxidizing agent can be completely reacted and an efficient operation can be performed.
  • the first step of dissolving copper is a step of dissolving copper by adding a copper-containing material to the solution using a solution containing an oxidizing agent.
  • copper (Cu) is dissolved in the solution to become copper ions (Cu 2+ ), and the oxidizing agent in the solution is in a reduced state.
  • the oxidant is iron ion (Fe 3+ )
  • Fe 3+ iron ion
  • it is preferable that all the oxidizing agent in the solution is consumed in order to dissolve copper. That is, in the first step of dissolving copper, it is preferable to add an excessive amount of copper-containing material so that the oxidizing agent is completely reduced.
  • the copper-containing material may be anything as long as it contains copper. If you use products collected from the market such as waste, you can contribute to resource conservation. For example, copper wires, printed boards for personal computers and home appliances, semiconductors, electronic devices, motors, automobile shredder dust, harness connectors, and the like can be used. From the viewpoint of adding and dissolving a copper-containing material in a solution containing an oxidizing agent, it is preferable to pulverize as finely as possible to increase the surface area because the dissolution time can be shortened. Although it is preferable to use powder, other shapes may be used. Specifically, it is preferably one that has been pulverized to a state of about 3 mm or less.
  • the pulverized copper-containing material is a filter or filter cloth (bag-like material made of resin, fibers, etc.) It is preferable to use them packed in the same manner. Moreover, after dissolving copper in a solution, you may remove the insoluble matter which was not melt
  • a tray or the like may be placed on the bottom of a tank such as a dissolution tank, and the sedimented material may be taken out and collected.
  • the copper-containing material is preferably a mixed powder of copper and a material that does not substantially dissolve in a solution containing an oxidizing agent.
  • the copper-containing material is a mixed powder of copper and resin
  • the resin does not dissolve in a solution containing an oxidizing agent, and therefore can be removed from the solution by filtration or the like.
  • the copper-containing material contains a component that is soluble in a solution containing an oxidizing agent, the component accumulates in the solution as an impurity, and as an impurity in the second step of depositing copper, which will be described later. May be mixed with copper.
  • copper is a metal having a high oxidation-reduction potential, it can be recovered in a state in which almost no impurities are contained in the second step of depositing copper described later. That is, it is possible to recover only the copper by dissolving the impurities in a state where a potential at which copper is deposited is loaded.
  • the solution containing Fe 3+ dissolves most of the metals other than noble metals. Therefore, for example, in the case of using a mixed powder of copper and noble metal, the noble metal that does not dissolve in the solution containing Fe 3+ can be recovered by filtration or the like, and the copper can be recovered in the second step of depositing copper described later.
  • Specific examples of the mixture with copper include resin, gold, platinum, silver, tungsten, molybdenum, titanium, and ceramics.
  • copper-containing materials include plating sludge and polishing sludge. Resin, gold, platinum, silver, tungsten, molybdenum, titanium, and ceramics are essentially unnecessary components that are either completely insoluble in a solution containing an oxidizer or that only a very small amount slowly dissolves.
  • the oxidizing agent may be any one capable of dissolving copper and having a standard potential of 1.6 V or less.
  • the standard potential of the oxidant is 1.6 V or less, it is possible to suppress the deterioration of the solution due to self-discharge.
  • the standard potential of the oxidizing agent is preferably 1.5 V or less, and more preferably 1.4 V or less.
  • the oxidizing agent include iron ions, manganese ions, vanadium ions, and chromium ions.
  • One type of these oxidizing agents may be used alone, or a plurality of types may be mixed and used.
  • iron ions are used from the viewpoints of resource, reusability, safety, copper solubility, low electrolysis voltage, ease of valence control, distinguishability of color change, etc. It is optimal to use.
  • the solution containing the oxidizing agent may be any solution containing the oxidizing agent.
  • the oxidizing agent is iron ion, for example, a ferric sulfate solution, a ferric chloride solution, or the like can be preferably used.
  • the oxidizing agent is manganese ions, for example, manganese sulfate can be preferably used.
  • the oxidizing agent is vanadium ion, for example, vanadium sulfate can be preferably used.
  • the oxidizing agent is chromium ion, for example, chromium sulfate can be preferably used.
  • concentration of an oxidizing agent according to the kind of oxidizing agent in the solution containing the said oxidizing agent.
  • the iron ion concentration is preferably 10 g / L or more and 130 g / L or less, and 15 g / L or more and 110 g / L or less. More preferably, it is more preferably 20 g / L or more and 90 g / L or less.
  • the iron ion concentration of the ferric sulfate solution By setting the iron ion concentration of the ferric sulfate solution to 10 g / L or more, a certain amount of copper can be dissolved in the solution from the copper-containing material, and a sufficient amount of copper can be produced at one time. It becomes like this. Moreover, the risk that iron or copper salt precipitates can be reduced by setting it as 130 g / L or less.
  • the pH of the ferric sulfate solution is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3 or less.
  • FIG. 1 is a schematic diagram showing how the solution changes before and after the second step of depositing copper.
  • the solution (A) 6 containing the reduced oxidizing agent and the solution (B) 5 in which copper is dissolved are brought into contact with each other through the diaphragm 4.
  • a diaphragm is provided in a normal electrolytic cell and partitioned into two chambers, one containing a reduced solution (A) 6 containing an oxidizing agent and the other containing a solution of copper (B) 5 Just put in.
  • the anode-side electrode 2 is provided in the solution (A) 6 containing the oxidant in the reduced state, and the cathode-side electrode 1 is provided in the solution (B) 5 in which the copper is dissolved. Then, both electrodes are connected to the rectifier 3, a voltage is applied, and a current is passed to perform electrolytic smelting.
  • the 2nd process which precipitates copper is demonstrated taking the case of using an iron ion as an oxidizing agent as an example, However, When other oxidizing agents are used, it can be performed on the same principle.
  • the solution (A) on the side where the anode side electrode is provided is recovered after the second step of depositing the copper, and the solution It is preferable to reuse (A) as a solution containing an oxidizing agent in the first step.
  • the solution on the side where the anode side electrode 2 is provided is the solution 8 regenerated by the oxidant, and this solution contains a large amount of Fe 3+. Exists. For this reason, when performing the manufacturing method of copper which concerns on embodiment of this invention repeatedly and continuously, it can be reused as a solution containing the said oxidizing agent.
  • the solution (B) on the side where the cathode side electrode is provided is collected, It is preferable to reuse the solution (B) as the solution (A) in the second step.
  • the solution on the side where the cathode electrode 1 is provided is the solution 7 from which the copper is deposited and removed, and this solution contains a large amount of Fe 2+. Exists. For this reason, when performing the manufacturing method of the copper which concerns on embodiment of this invention repeatedly and continuously, it can recycle as the solution (A) 6 containing the oxidizing agent of the said reduced state.
  • dissolved The concentration is preferably 12 g / L or more. This makes it possible to continuously and repeatedly produce copper while maintaining a good state in which copper can be stably deposited.
  • the copper concentration is 12 g / L or more.
  • the copper concentration is less than 12 g / L, it is preferable to stop applying the voltage.
  • the copper concentration is more preferably 15 g / L or more, and further preferably 18 g / L or more.
  • the electrolytic cell can be made movable and the anode side electrode and the cathode side electrode can be reversed. That is, after the second step of precipitating copper is completed, a copper-containing material is added to the solution regenerated by the oxidizing agent to dissolve the copper, and the anode-side electrode and the cathode-side electrode are exchanged for electrolysis. Moreover, it is possible to repeat a 1st process and a 2nd process also by replacing solutions with a pump.
  • stirring the solution may make the copper precipitation state cleaner.
  • Stirring may be performed by a general method such as circulating the solution with a pump or performing air bubbling. Or you may circulate each solution through an electrolytic cell like a redox flow battery. Further, a plurality of electrolytic cells may be connected in series or in parallel.
  • copper can also be deposited in a powder form without dare stirring the solution.
  • an additive or the like may be added to the solution (B) in which the copper is dissolved.
  • additives those commonly used in copper plating and copper electrolytic refining techniques can be used.
  • suitable additives such as substances that form a complex with the impurities may be added.
  • a substance that precipitates impurities or a substance that adsorbs impurities may be added to the solution (B) to prevent eutectoid.
  • Impurities may accumulate in the solution.
  • impurities may be removed by precipitation by adjusting pH or the like, or so-called “discard plating” may be performed in which impurities are electrodeposited by electrolysis under conditions more severe than normal conditions.
  • the copper concentration is excessively increased, it can be adjusted by the same method.
  • a solution containing no iron such as simple sulfuric acid may be used on the counter electrode side.
  • the solution (B) in which the copper is dissolved and the solution (A) containing the reduced state oxidizing agent contain a large amount of chlorine, chlorine gas may be generated during electrolysis. It is preferable that it does not contain chlorine. In addition, even if chlorine is contained in the solution, there is no problem as long as the amount is small.
  • the solution (A) and the solution (B) are preferably based on sulfuric acid because they are easy to handle.
  • the solution (A) and the solution (B) may be at room temperature, but may be at a high temperature such as 60 ° C. If the liquid temperature is too low, salt is likely to precipitate, and if the liquid temperature is too high, the electrodeposition state may become unstable or water may evaporate, making management difficult.
  • the liquid temperature of the solution (A) and the solution (B) during electrolysis is preferably 10 ° C. or more and 70 ° C. or less, more preferably 15 ° C. or more and 65 ° C. or less, and 20 More preferably, it is not lower than 60 ° C. and not higher than 60 ° C.
  • cathode side electrode Any cathode side electrode can be used as long as it can deposit copper on the electrode surface.
  • copper, platinum, gold, titanium, stainless steel, etc. can be used. From the viewpoint of depositing copper, it is preferable to use a copper foil as a seed material.
  • the electrodeposited copper may be peeled off and recovered using a stainless steel plate, a titanium plate or the like for the blank.
  • -Anode side electrode What is necessary is just to use what can maintain a stable state at the time of electrolysis as said anode side electrode.
  • carbon, lead, noble metal, titanium, tungsten, or the like can be used.
  • a titanium lath plate or the like may be coated with a noble metal.
  • the membrane is preferably a membrane that allows only hydrogen ions to pass therethrough, since it provides the best electrolysis efficiency, but it can also be used for membranes that transmit other ions.
  • an ion exchange membrane it may be a cation exchange membrane or an anion exchange membrane. It is also possible to use an unglazed plate or a filter cloth.
  • the copper manufacturing apparatus according to the embodiment of the present invention is an apparatus capable of performing the copper manufacturing method according to the embodiment of the present invention.
  • a management tank 23 of a solution in which copper is dissolved an electrolytic tank 24, and a management tank 25 of a solution containing an oxidant in a reduced state.
  • the electrolytic cell 24 is partitioned by a diaphragm 244 into a plating chamber having a cathode electrode and an oxidant regeneration chamber having an anode electrode.
  • the arrows in FIG. 2 indicate the flow through which each solution circulates. Each solution may be circulated using a pump or the like.
  • a solution containing an oxidizing agent is prepared and supplied to the dissolution tank 22.
  • Copper content 221 is added here and copper is dissolved by stirring or the like.
  • the dissolution tank 22 is preferably a circular tank in plan view. An insoluble matter is removed from the solution in which copper obtained by this is dissolved as needed, and it sends to the management tank 23 of the solution in which copper was dissolved.
  • dissolution of copper and filtration of a solution may take time.
  • the solution in which the copper is dissolved is sent to the plating chamber of the electrolytic cell 24. Further, the solution containing the reduced state oxidant prepared in the management tank of the solution containing the reduced state oxidant is supplied to the oxidant regeneration chamber of the electrolytic cell 24. Then, a voltage is applied to both solutions to conduct electricity, and electrolysis is performed. Thereby, it deposits on the surface of the cathode side electrode 241 and can obtain metallic copper with high purity.
  • the solution in the plating chamber is a solution containing the oxidant in a reduced state after copper is deposited and removed, and the solution containing the oxidant in the reduced state is taken out with a pump. To the management tank 25. Further, since the solution in the oxidant regeneration chamber is in a state of being regenerated by oxidizing the oxidant, it is sent to the management tank 21 for the solution containing the oxidant.
  • the copper manufacturing method according to the embodiment of the present invention can be repeated and continuously performed by operating the copper manufacturing apparatus according to the embodiment of the present invention.
  • each structure, such as a cathode side electrode can use the same thing as what was demonstrated in the copper manufacturing method concerning the said embodiment of this invention.
  • Example 1 (First step to dissolve copper)
  • 3000 g of electric wire pulverized waste containing about 50% by mass of copper and resin was prepared.
  • the electric wire crushed waste was a powdery material of about 1 mm.
  • 80 L of a ferric sulfate solution having an iron ion concentration of 30 g / L was prepared. Copper sulfate was added to this ferric sulfate solution to adjust the copper ion concentration to 20 g / L.
  • the ferric sulfate solution and electric wire pulverized waste were placed in a dissolution tank, stirred for 6 hours to dissolve copper, and a solution in which copper was dissolved was obtained.
  • the copper ion concentration in the solution in which copper was dissolved was 40 g / L.
  • the remaining resin was removed by filtering the liquid.
  • the electrolytic cell was partitioned using Nafion 117, which is a cation exchange membrane, as a diaphragm. And the solution in which the copper obtained above was dissolved was put on one side. On the other side, 80 L of ferrous sulfate in a state where iron ions were reduced to Fe 2+ as a solution (A) containing a reduced state oxidant was added. The iron ion concentration of ferrous sulfate was 30 g / L.
  • a copper foil was provided as a cathode side electrode in a plating chamber containing a solution in which copper was dissolved.
  • a titanium lath plate coated with platinum was provided as an anode side electrode in the oxidant regeneration chamber containing the solution (A) containing the oxidant in a reduced state.
  • a rectifier was connected to both electrodes, the voltage was applied, and it electrolyzed. The voltage at this time was 3.8V.
  • the liquid temperature was 28 ° C.
  • the above process was carried out 10 cycles, and a total of 15 kg of copper could be obtained.
  • the solution (A) on the side where the anode side electrode was provided was reused as a solution containing an oxidizing agent, and the cathode side electrode was provided.
  • the side solution (B) was reused as a solution (A) containing an oxidant in a reduced state.
  • voltage application was stopped in a state where the concentration of copper in the solution in which the copper was dissolved was 18 g / L.
  • the apparatus one having the configuration shown in FIG. 2 was used.
  • Example 2 As a solution containing an oxidizing agent, a solution having a concentration of V 4.5+ of 30 g / L and a copper ion concentration of 20 g / L was used, and as a solution (A) containing an oxidizing agent in a reduced state, V 3.5+
  • a solution (A) containing an oxidizing agent in a reduced state V 3.5+
  • copper was produced in the same manner as in Example 1 except that the voltage was 4.7 V.
  • the liquid temperature was 28 ° C.
  • electrolysis was performed for 15 hours, whereby 1300 g of copper was deposited on the cathode side electrode.
  • the purity of this copper was 99.9% or more.
  • the electrodeposition efficiency was 91%.
  • the solution containing the oxidant and the solution (A) containing the oxidant in the reduced state are prepared by dissolving vanadium oxide sulfate (VOSO 4 ) in sulfuric acid to produce a vanadium sulfate solution containing V 4+ and performing ion exchange. It was produced by electrolyzing the vanadium sulfate solution using a membrane.
  • the copper ion concentration was adjusted by adding copper sulfate.
  • the V 4.5+ means that V 5+ and V 4+ are included in half.
  • V 3.5+ means that V 4+ and V 3+ are included in half.

Abstract

A method for producing a copper which comprises: a first step wherein a copper-containing material is added into a solution containing an oxidant so as to dissolve copper therein; and a second step wherein a solution (A) that contains an oxidant in a reduced state and the solution (B), in which copper is dissolved, are brought into contact with each other with a diaphragm being interposed therebetween, and a voltage is applied between electrodes by providing the solution (A) with an anode-side electrode and providing the solution (B) with a cathode-side electrode so that copper is precipitated on the surface of the cathode-side electrode, while regenerating the oxidant contained in the solution (A). In this connection, the standard potential of the oxidant is 1.6 V or less.

Description

銅の製造方法及び銅の製造装置Copper manufacturing method and copper manufacturing apparatus
  本発明は電解精錬によって銅を製造する方法及び銅の製造装置に関する。 The present invention relates to a method for producing copper by electrolytic refining and a copper production apparatus.
  一般に、銅や銅合金は、鉄やアルミニウムなどと同様に需要の大きい金属である。そのため、廃棄された電線や家電製品のプリント基板などを回収し、このような銅を含有する銅スクラップから銅を回収して再利用することは、資源を保護する観点から重要なことである。 銅 In general, copper and copper alloys are metals in great demand like iron and aluminum. Therefore, it is important from the viewpoint of protecting resources to collect discarded electric wires and printed circuit boards of household electrical appliances, and to recover and reuse copper from such copper-containing copper scrap.
  しかしながら現状では、経済的な理由から銅の純度が低いものは再利用されずに廃棄されてしまうことが多く、また、電線からの銅の再利用においては、回収しきれない銅があった。大規模な製錬所では銅の再利用を行われる場合もあるが、リサイクルにはある程度の量の廃棄物が必要であり、輸送費もかさんでしまっている。 However, at present, for economical reasons, copper having a low purity is often discarded without being reused, and in the reuse of copper from electric wires, there is copper that cannot be recovered. Large-scale smelters sometimes recycle copper, but recycling requires a certain amount of waste and transportation costs.
  例えば、市場から回収した銅スクラップから銅を回収する場合、電力ケーブル線の場合には、銅線を被覆している樹脂を剥がして樹脂と銅線とを分離して回収することが行われている。通信線についても、太いものの場合には同様に被覆している樹脂を剥がして銅を分離・回収することが可能であるが、細いものの場合には作業上の負荷が大き過ぎ、このような回収方法を行うことができない。 For example, when recovering copper from copper scrap recovered from the market, in the case of power cable wires, the resin covering the copper wires is peeled off and the resin and the copper wires are separated and recovered Yes. For thick communication lines, it is possible to separate and recover copper by stripping the resin that is coated in the same way, but for thin cables, the work load is too great, and such recovery is possible. Can't do the way.
  このため細い通信線の場合には、銅線が樹脂で被覆されたまま粉砕し、続けて比重差選別を行う。しかし、このようにしても銅の表面にはまだ細かい樹脂が残っているため、更に、焼成により樹脂を燃焼除去する必要がある。
  上記のような乾式法による銅の回収は、工程はシンプルであるが、樹脂の燃焼により二酸化炭素が発生するため環境負荷が大きく、また、銅は酸化銅として回収されるため還元処理を行うことが必要となる。更に、原料となる市場から回収した銅スクラップの純度によっては回収される金属銅の純度が低くなってしまう。
For this reason, in the case of a thin communication line, the copper wire is crushed while being covered with the resin, and then the specific gravity difference is selected. However, even in this way, fine resin still remains on the copper surface, and it is necessary to further remove the resin by burning.
The recovery of copper by the dry method as described above is simple, but the burden on the environment is large because carbon dioxide is generated by the combustion of the resin, and reduction processing is performed because copper is recovered as copper oxide. Is required. Furthermore, depending on the purity of the copper scrap recovered from the market as a raw material, the purity of the recovered metal copper is lowered.
  また、パソコンや家電製品などに使用されているプリント基板から銅を回収する場合には、乾式法の他に湿式法による回収方法が知られている。この湿式法は、硫酸や塩酸等によって銅を浸出させ、電解精錬により銅を回収するというものである。
  しかしながら湿式法ではアノード電極では酸素が発生するため、電解時の消費電力が必然的に大きくなるという問題がある。
Moreover, when recovering copper from a printed circuit board used for a personal computer or a home appliance, a recovery method by a wet method is known in addition to a dry method. In this wet method, copper is leached with sulfuric acid, hydrochloric acid or the like, and copper is recovered by electrolytic refining.
However, in the wet method, oxygen is generated at the anode electrode, which inevitably increases power consumption during electrolysis.
  また、エッチング液を用いてセメンテーション法により銅を回収する方法もある。この場合のエッチング液には、一般に塩化鉄あるいは塩化銅が使用されており、電解ではなく塩素ガスによって再生が行われているが、塩素ガスを利用するには高度な管理技術が必要となる。 あ る There is also a method of recovering copper by a cementation method using an etching solution. In this case, iron chloride or copper chloride is generally used as the etchant and is regenerated by chlorine gas instead of electrolysis. However, in order to use chlorine gas, a high level of management technology is required.
  例えば、特許文献1には、1価銅イオンを含む溶液中に金属銅を析出させるためのカソード電極、1価銅イオンを含むアンモニアアルカリ性溶液中にアノード電極、及びカソード電極とアノード電極の間に隔膜を設け、前記電極に電流を流して、カソード電極側からアノード電極側へ溶液を移動させながら電気分解して金属銅を回収する方法が記載されている。特許文献1に記載の方法によれば、カソード電極部に金属銅が析出し、同時にアノード電極部において1価銅イオンを2価銅イオンとすることができ、更に、2価銅イオン溶液を取り出して、銅金属廃棄物と錯化合物の存在する溶解層に導き、銅金属廃棄物を処理して得られた1価銅イオンを含む溶液を、前記電気分解の1価銅イオンを含む溶液として用いることで、従来よりも消費電力を小さくすることができるとされている。
  しかしながら、銅を回収する処理対象溶液にはマンガン、ニッケル、亜鉛、鉛などの金属の各イオンが含まれているため、電解操作を行うには金属イオンを除去することが必要である。また、特許文献1に記載の方法においてはアンモニアを使用するため、銅金属廃棄物に樹脂が含まれていると、樹脂とアンモニアが反応してしまう可能性がある。樹脂とアンモニアが反応してしまうと、アンモニアが余分に消費されてしまうことになる。また、樹脂中の不純物がアンモニアアルカリ性溶液中に溶け出してしまいやすくなるという問題がある。
For example, Patent Document 1 discloses a cathode electrode for depositing metallic copper in a solution containing monovalent copper ions, an anode electrode in an ammonia alkaline solution containing monovalent copper ions, and a gap between the cathode electrode and the anode electrode. A method is described in which a diaphragm is provided, current is passed through the electrode, and electrolysis is performed while the solution is moved from the cathode electrode side to the anode electrode side to recover metallic copper. According to the method described in Patent Document 1, metallic copper is deposited on the cathode electrode portion, and at the same time, the monovalent copper ions can be converted into divalent copper ions at the anode electrode portion, and the divalent copper ion solution is taken out. Then, the solution containing monovalent copper ions obtained by treating the copper metal waste and the complex layer in which the copper metal waste and the complex compound exist and treating the copper metal waste is used as the solution containing the electrolytic monovalent copper ions. Therefore, it is said that power consumption can be made smaller than before.
However, since the treatment target solution for recovering copper contains ions of metals such as manganese, nickel, zinc, and lead, it is necessary to remove the metal ions in order to perform the electrolysis operation. In addition, since ammonia is used in the method described in Patent Document 1, if the copper metal waste contains a resin, the resin and ammonia may react. If the resin and ammonia react, the ammonia will be consumed excessively. Further, there is a problem that impurities in the resin are easily dissolved in the ammonia alkaline solution.
  このような状況下において、本発明者等は以前に、電解精錬によって銅をはじめとする金属を製造する方法を開発した(特許文献2参照)。 Under such circumstances, the present inventors have previously developed a method for producing metals such as copper by electrolytic refining (see Patent Document 2).
特開2003-253484号公報JP 2003-253484 A 特開2014-040639号公報Japanese Patent Laid-Open No. 2014-040639
  特許文献2に記載の方法は、陽イオン交換膜によって電解層を陰極室と陽極室とに仕切り、酸化剤を用いて金属を溶解させた溶液と、還元された状態の酸化剤を含む溶液とを用いて電解を行ない、陰極の表面に金属を析出させるという金属の製造方法である。この方法によれば、陰極室において金属を回収しつつ、ダイヤモンド電極を用いた陽極室において酸化剤を再生させることが可能であるため原理的には薬品を消耗させずに済む。したがって、ダイヤモンド電極を用いるという点で初期費用がかかるものの、主なランニングコストは電解時に必要となる電気代のみである。 The method described in Patent Document 2 includes a solution in which an electrolytic layer is partitioned into a cathode chamber and an anode chamber by a cation exchange membrane and a metal is dissolved using an oxidizing agent, and a solution containing an oxidized oxidizing agent in a reduced state. Is a metal production method in which electrolysis is performed to deposit metal on the surface of the cathode. According to this method, it is possible to regenerate the oxidizing agent in the anode chamber using the diamond electrode while recovering the metal in the cathode chamber. Therefore, although an initial cost is required in terms of using a diamond electrode, the main running cost is only the electricity cost required for electrolysis.
  しかしながら本発明者等が更なる検討を重ねたところ、特許文献2に記載の方法においては、過硫酸アンモニウムや過酸化水素などの酸化力の強い酸化剤を用いるため、水とも反応してしまい自己放電が生じてしまうことが見出された。この現象は、溶液を放置した場合に顕著であり、ある程度期間使用しないでいた溶液は劣化してしまう場合があった。
また、金属の溶解に有効に利用しきれない酸化剤があり、より低コストで金属を製錬するという点で改善の余地があった。
However, as a result of further studies by the present inventors, the method described in Patent Document 2 uses a strong oxidizing agent such as ammonium persulfate or hydrogen peroxide, and thus reacts with water and self-discharges. Has been found to occur. This phenomenon is remarkable when the solution is left standing, and the solution that has not been used for a certain period of time may be deteriorated.
In addition, there are oxidizing agents that cannot be used effectively for dissolving metals, and there is room for improvement in terms of smelting metals at a lower cost.
  そこで本発明は、環境への負荷を大きくすることなく、廃液を出さずに、かつ、湿式法によって純度の高い銅を効率よく低コストで得ることが可能な銅の製造方法を提供することを目的とする。 Therefore, the present invention provides a method for producing copper that can obtain high-purity copper efficiently and at low cost by a wet method without increasing the burden on the environment, without producing waste liquid. Objective.
  本発明の一態様に係る銅の製造方法は、
(1)酸化剤を含む溶液中に銅含有物を添加して銅を溶解させる第一工程と、
  還元された状態の酸化剤を含む溶液(A)と、前記銅を溶解させた溶液(B)とを、隔膜を介して接触させ、前記溶液(A)にアノード側電極を設け、前記溶液(B)にカソード側電極を設けて、両電極間に電圧を印加し、前記溶液(A)に含まれる酸化剤を再生しつつ前記カソード側電極の表面に銅を析出させる第二工程と、
を有し、
  前記酸化剤の標準電位が1.6V以下である、銅の製造方法、である。
The method for producing copper according to one aspect of the present invention includes:
(1) a first step of dissolving copper by adding a copper-containing material to a solution containing an oxidizing agent;
The solution (A) containing the oxidant in a reduced state and the solution (B) in which the copper is dissolved are brought into contact with each other through a diaphragm, and an anode-side electrode is provided on the solution (A). A second step of providing a cathode side electrode in B), applying a voltage between both electrodes, and depositing copper on the surface of the cathode side electrode while regenerating the oxidizing agent contained in the solution (A);
Have
It is a manufacturing method of copper whose standard potential of the said oxidizing agent is 1.6V or less.
  上記発明によれば、環境への負荷を大きくすることなく、廃液を出さずに、かつ、湿式法によって純度の高い銅を効率よく低コストで得ることが可能な銅の製造方法を提供することができる。 According to the invention, there is provided a method for producing copper that can obtain high-purity copper efficiently and at low cost by a wet method without increasing the burden on the environment, without producing waste liquid. Can do.
本発明の実施形態に係る銅の製造方法の一例の概略を表す図である。It is a figure showing the outline of an example of the manufacturing method of copper concerning the embodiment of the present invention. 本発明の実施形態に係る銅の製造装置の一例の概略を表す図である。It is a figure showing the outline of an example of the copper manufacturing apparatus which concerns on embodiment of this invention.
[本発明の実施形態の説明]
  最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る銅の製造方法は、
  酸化剤を含む溶液中に銅含有物を添加して銅を溶解させる第一工程と、
  還元された状態の酸化剤を含む溶液(A)と、前記銅を溶解させた溶液(B)とを、隔膜を介して接触させ、前記溶液(A)にアノード側電極を設け、前記溶液(B)にカソード側電極を設けて、両電極間に電圧を印加し、前記溶液(A)に含まれる酸化剤を再生しつつ前記カソード側電極の表面に銅を析出させる第二工程と、
を有し、
  前記酸化剤の標準電位が1.6V以下である、銅の製造方法、である。
  上記(1)に記載の発明によれば、環境への負荷を大きくすることなく、廃液を出さずに、かつ、湿式法によって純度の高い銅を効率よく低コストで得ることが可能な銅の製造方法を提供することができる。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) A method for producing copper according to one aspect of the present invention includes:
A first step of dissolving copper by adding a copper-containing material in a solution containing an oxidizing agent;
The solution (A) containing the oxidant in a reduced state and the solution (B) in which the copper is dissolved are brought into contact with each other through a diaphragm, and an anode-side electrode is provided on the solution (A). A second step of providing a cathode side electrode in B), applying a voltage between both electrodes, and depositing copper on the surface of the cathode side electrode while regenerating the oxidizing agent contained in the solution (A);
Have
It is a manufacturing method of copper whose standard potential of the said oxidizing agent is 1.6V or less.
According to the invention described in the above (1), copper that can obtain high purity copper efficiently and at low cost by a wet method without increasing the burden on the environment, without producing waste liquid, and A manufacturing method can be provided.
(2)上記(1)に記載の銅の製造方法は、前記酸化剤が、鉄イオン、マンガンイオン、バナジウムイオン及びクロムイオンからなる群より選択されるいずれか一種以上であることが好ましい。
  上記(2)に記載の発明によれば、酸化剤を含む溶液が自己放電を起こすことがないため、効率よく銅の溶解を行うことができる。
(2) In the method for producing copper according to (1), the oxidizing agent is preferably one or more selected from the group consisting of iron ions, manganese ions, vanadium ions, and chromium ions.
According to the invention described in (2) above, since the solution containing the oxidizing agent does not cause self-discharge, copper can be efficiently dissolved.
(3)上記(1)又は上記(2)に記載の銅の製造方法は、
  前記銅を析出させる第二工程の後に、前記アノード側電極が設けられていた側の溶液(A)を回収し、当該溶液(A)を前記第一工程における酸化剤を含む溶液として再利用することが好ましい。
  上記(3)に記載の発明は、第一工程および第二工程を繰り返す場合に、酸化剤が再生した溶液(A)を「酸化剤を含む溶液」として再利用するため、銅の製造に必要なコストを低減することができる。
(3) The method for producing copper according to (1) or (2) above,
After the second step of depositing copper, the solution (A) on the side where the anode side electrode is provided is collected, and the solution (A) is reused as a solution containing an oxidizing agent in the first step. It is preferable.
The invention described in (3) above is necessary for copper production because the solution (A) regenerated by the oxidizing agent is reused as a “solution containing an oxidizing agent” when the first step and the second step are repeated. Cost can be reduced.
(4)上記(1)から上記(3)のいずれか一項に記載の銅の製造方法は、
  前記銅を析出させる第二工程の後に、前記カソード側電極が設けられていた側の溶液(B)を回収し、当該溶液(B)を前記第二工程における溶液(A)として再利用することが好ましい。
  上記(4)に記載の発明は、第一工程および第二工程を繰り返す場合に、銅が析出除去された溶液(B)をアノード側電極が設けられる側の溶液(A)として再利用するため、銅の製造に必要なコストを低減することができる。
(4) The method for producing copper according to any one of (1) to (3) above,
After the second step of depositing the copper, the solution (B) on the side where the cathode side electrode is provided is recovered, and the solution (B) is reused as the solution (A) in the second step. Is preferred.
In the invention described in the above (4), when the first step and the second step are repeated, the solution (B) from which copper is deposited and removed is reused as the solution (A) on the side where the anode side electrode is provided. The cost required for copper production can be reduced.
(5)上記(1)から上記(4)のいずれか一項に記載の銅の製造方法は、
  前記銅を溶解させる第一工程において、前記酸化剤が全て還元された状態となるように銅含有物を過剰に添加することが好ましい。
  上記(5)に記載の発明によれば、余計な電力の消費を抑制して、より低コストで銅の製造を行うことができる。
(5) The method for producing copper according to any one of (1) to (4) above,
In the first step of dissolving copper, it is preferable to add an excessive amount of copper-containing material so that the oxidant is completely reduced.
According to the invention described in (5) above, it is possible to manufacture copper at a lower cost while suppressing excessive power consumption.
(6)上記(1)から上記(5)のいずれか一項に記載の銅の製造方法は、
  前記銅を析出させる第二工程において、前記銅を溶解させた溶液(B)中の銅の濃度は12g/L以上であることが好ましい。
  上記(6)に記載の発明によれば、銅の製造方法を連続的に行う場合に、安定して銅の電析を行える良好な状態を保って行うことができる。
(6) The method for producing copper according to any one of (1) to (5) above,
In the second step of depositing copper, the concentration of copper in the solution (B) in which the copper is dissolved is preferably 12 g / L or more.
According to the invention described in (6) above, when the copper production method is continuously performed, it can be performed while maintaining a good state in which copper can be stably electrodeposited.
(7)本発明の一態様に係る銅の製造装置は、
  上記(1)から上記(6)のいずれか一項に記載の銅の製造方法を実施するための銅の製造装置であって、
  酸化剤を含む溶液の管理槽と、溶解槽と、銅を溶解させた溶液の管理槽と、電解槽と、還元された状態の酸化剤を含む溶液の管理槽と、を有し、
  前記電解槽は、イオン交換膜によって、アノード側電極を備えた酸化剤再生室と、カソード側電極を備えためっき室とに仕切られている、銅の製造装置、である。
  上記(7)に記載の発明によれば、上記(1)から上記(7)のいずれか一項に記載の銅の製造方法を効率よく、連続的に行うことが可能な銅の製造装置を提供することができる。
(7) An apparatus for producing copper according to one aspect of the present invention includes:
A copper manufacturing apparatus for carrying out the copper manufacturing method according to any one of (1) to (6) above,
A management tank of a solution containing an oxidizing agent, a dissolution tank, a management tank of a solution in which copper is dissolved, an electrolytic tank, and a management tank of a solution containing an oxidizing agent in a reduced state,
The electrolytic cell is an apparatus for producing copper, which is partitioned by an ion exchange membrane into an oxidant regeneration chamber having an anode side electrode and a plating chamber having a cathode side electrode.
According to the invention described in (7) above, there is provided a copper manufacturing apparatus capable of performing the copper manufacturing method according to any one of (1) to (7) efficiently and continuously. Can be provided.
(8)上記(7)に記載の銅の製造装置は、前記溶解槽を複数有することが好ましい。
  上記(8)に記載の発明によれば、銅を析出させる第二工程に比べて時間がかかる銅の溶解を複数の溶解槽において並列的に行うことができる。このため、銅を析出させる第二工程を行っている間に、銅を溶解させて酸化剤を完全に反応さることができ、効率的な操業を行うことができる。
(8) The copper manufacturing apparatus according to (7) preferably includes a plurality of the dissolution tanks.
According to the invention described in (8) above, it is possible to perform copper dissolution in parallel in a plurality of dissolution tanks, which takes time compared to the second step of depositing copper. For this reason, while performing the 2nd process of depositing copper, copper can be dissolved and an oxidizing agent can be completely reacted and an efficient operation can be performed.
[本発明の実施形態の詳細]
  本発明の実施形態に係る銅の製造方法及び銅の製造装置の具体例を、以下に、より詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the copper manufacturing method and the copper manufacturing apparatus according to the embodiment of the present invention will be described below in more detail. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
[銅の製造方法]
(銅を溶解させる第一工程)
  銅を溶解させる第一工程は、酸化剤を含む溶液を用い、当該溶液中に銅含有物を添加して銅を溶解させる工程である。
  この工程においては、銅(Cu)が溶液中に溶解して銅イオン(Cu2+)となり、溶液中の酸化剤は還元された状態となる。例えば、酸化剤が鉄イオン(Fe3+)の場合には還元されてFe2+へと変化する。このとき、溶液中の酸化剤は、銅を溶解するために全て消費されることが好ましい。すなわち、銅を溶解させる第一工程においては、前記酸化剤が全て還元された状態となるように銅含有物を過剰に添加することが好ましい。このようにすることで、続いて行う銅を析出させる第二工程において残っていた酸化剤が還元されて電力が消費されるということを抑制できる。このため100%に近い電析効率を得ることができ、より低コストで銅を製造することが可能となる。
[Copper production method]
(First step to dissolve copper)
The first step of dissolving copper is a step of dissolving copper by adding a copper-containing material to the solution using a solution containing an oxidizing agent.
In this step, copper (Cu) is dissolved in the solution to become copper ions (Cu 2+ ), and the oxidizing agent in the solution is in a reduced state. For example, when the oxidant is iron ion (Fe 3+ ), it is reduced to Fe 2+ . At this time, it is preferable that all the oxidizing agent in the solution is consumed in order to dissolve copper. That is, in the first step of dissolving copper, it is preferable to add an excessive amount of copper-containing material so that the oxidizing agent is completely reduced. By doing in this way, it can suppress that the oxidizing agent which remained in the 2nd process of depositing copper performed subsequently is reduce | restored and electric power is consumed. For this reason, electrodeposition efficiency close to 100% can be obtained, and copper can be produced at a lower cost.
-銅含有物-
  前記銅含有物は、銅を含有するものであればどのようなものでもよい。廃棄物など、市場からの回収品を利用すれば資源保護に資することができる。例えば、銅線、パソコンや家電製品のプリント基板、半導体、電子機器、モーター、自動車のシュレッダーダスト、ハーネスコネクタ等を利用することができる。
  銅含有物は、酸化剤を含む溶液に添加して溶解させる観点から、可能な限り細かく粉砕して表面積を大きくした方が溶解時間を短くすることができて好ましい。粉末状にすることが好ましいが、その他の形状でも構わない。具体的には、3mm以下程度の状態に粉砕したものであることが好ましい。
  また、溶液中に溶けない粉砕物が溶液中に拡散して槽を汚染することを防止する観点からは、銅含有物の粉砕物はフィルターやろ布(樹脂、繊維等からなる袋状のもの)等に詰めて用いることが好ましい。また、銅を溶液中に溶解させた後に、溶液をろ過することで溶解されなかった不溶解物を取り除いてもよい。
  溶液中に溶けない粉砕物が重いものである場合には、溶解槽などのタンクの底面にトレイなどを置いておき、沈降してきたものを取り出して回収してもよい。
-Copper content-
The copper-containing material may be anything as long as it contains copper. If you use products collected from the market such as waste, you can contribute to resource conservation. For example, copper wires, printed boards for personal computers and home appliances, semiconductors, electronic devices, motors, automobile shredder dust, harness connectors, and the like can be used.
From the viewpoint of adding and dissolving a copper-containing material in a solution containing an oxidizing agent, it is preferable to pulverize as finely as possible to increase the surface area because the dissolution time can be shortened. Although it is preferable to use powder, other shapes may be used. Specifically, it is preferably one that has been pulverized to a state of about 3 mm or less.
In addition, from the viewpoint of preventing the pulverized material that does not dissolve in the solution from diffusing into the solution and contaminating the tank, the pulverized copper-containing material is a filter or filter cloth (bag-like material made of resin, fibers, etc.) It is preferable to use them packed in the same manner. Moreover, after dissolving copper in a solution, you may remove the insoluble matter which was not melt | dissolved by filtering a solution.
When the pulverized material that does not dissolve in the solution is heavy, a tray or the like may be placed on the bottom of a tank such as a dissolution tank, and the sedimented material may be taken out and collected.
  前記銅含有物は、銅と、酸化剤を含む溶液に実質的に溶けないものとの混合粉末であることが好ましい。
  例えば、前記銅含有物が、銅と樹脂との混合粉末である場合には、樹脂は酸化剤を含む溶液に溶けないため、ろ過等により溶液から取り除くことができる。一方、前記銅含有物に、酸化剤を含む溶液に可溶な成分が含まれていると、当該成分は不純物として溶液中に蓄積してしまい、後述する銅を析出する第二工程において不純物として銅に混ざってしまう可能性がある。しかしながら、銅は酸化還元電位が高い金属であるため、後述する銅を析出させる第二工程において不純物をほとんど含まない状態で回収することができる。すなわち、銅が析出する電位を負荷した状態において前記不純物を溶解させたままの状態にし、銅のみを回収することが可能である。
The copper-containing material is preferably a mixed powder of copper and a material that does not substantially dissolve in a solution containing an oxidizing agent.
For example, when the copper-containing material is a mixed powder of copper and resin, the resin does not dissolve in a solution containing an oxidizing agent, and therefore can be removed from the solution by filtration or the like. On the other hand, if the copper-containing material contains a component that is soluble in a solution containing an oxidizing agent, the component accumulates in the solution as an impurity, and as an impurity in the second step of depositing copper, which will be described later. May be mixed with copper. However, since copper is a metal having a high oxidation-reduction potential, it can be recovered in a state in which almost no impurities are contained in the second step of depositing copper described later. That is, it is possible to recover only the copper by dissolving the impurities in a state where a potential at which copper is deposited is loaded.
  また、前記酸化剤が鉄イオンである場合には、Fe3+を含む溶液は貴金属以外の大部分の金属を溶解させる。このため例えば、銅と貴金属の混合粉末を用いる場合には、Fe3+を含む溶液に溶解しない貴金属等をろ過等で回収し、銅を後述する銅を析出させる第二工程において回収することができる。
  銅との混合物として具体的には、樹脂、金、白金、銀、タングステン、モリブデン、チタン、セラミックス、などが挙げられる。このような銅含有物としてはめっきスラッジや研磨スラッジなどが挙げられる。樹脂、金、白金、銀、タングステン、モリブデン、チタン及びセラミックスは酸化剤を含む溶液に全く不溶であるか、あるいはごくわずかな量がゆっくりと溶解する程度の実質的に不要な成分である。
When the oxidizing agent is iron ions, the solution containing Fe 3+ dissolves most of the metals other than noble metals. Therefore, for example, in the case of using a mixed powder of copper and noble metal, the noble metal that does not dissolve in the solution containing Fe 3+ can be recovered by filtration or the like, and the copper can be recovered in the second step of depositing copper described later. .
Specific examples of the mixture with copper include resin, gold, platinum, silver, tungsten, molybdenum, titanium, and ceramics. Examples of such copper-containing materials include plating sludge and polishing sludge. Resin, gold, platinum, silver, tungsten, molybdenum, titanium, and ceramics are essentially unnecessary components that are either completely insoluble in a solution containing an oxidizer or that only a very small amount slowly dissolves.
-酸化剤-
  前記酸化剤は、銅を溶解させることが可能であり、かつ、標準電位が1.6V以下のものであればよい。酸化剤の標準電位が1.6V以下であることにより、溶液が自己放電によって劣化することを抑制することができる。前記酸化剤の標準電位は、1.5V以下であることが好ましく、1.4V以下であることがより好ましい。
  前記酸化剤としては、例えば、鉄イオン、マンガンイオン、バナジウムイオン及びクロムイオンなどを挙げることができる。これらの酸化剤は一種類を単独で用いてもよいし、複数種類を混合して用いても構わない。酸化剤の種類によっては、一種類単独で用いることで、銅が充分に溶解したかどうかを溶液の色の変化によって容易に判断することができる。
  前記の酸化剤のなかでも、資源性、繰り返し利用性、安全性、銅の溶解性、電解電圧の低さ、価数管理のし易さ、色の変化の識別性などの観点から鉄イオンを用いることが最適である。
-Oxidant-
The oxidizing agent may be any one capable of dissolving copper and having a standard potential of 1.6 V or less. When the standard potential of the oxidant is 1.6 V or less, it is possible to suppress the deterioration of the solution due to self-discharge. The standard potential of the oxidizing agent is preferably 1.5 V or less, and more preferably 1.4 V or less.
Examples of the oxidizing agent include iron ions, manganese ions, vanadium ions, and chromium ions. One type of these oxidizing agents may be used alone, or a plurality of types may be mixed and used. Depending on the type of the oxidizing agent, it is possible to easily determine whether or not copper is sufficiently dissolved by changing the color of the solution by using one type alone.
Among the above oxidizing agents, iron ions are used from the viewpoints of resource, reusability, safety, copper solubility, low electrolysis voltage, ease of valence control, distinguishability of color change, etc. It is optimal to use.
-酸化剤を含む溶液-
  酸化剤を含む溶液は、前記酸化剤を含むものであればよい。前記酸化剤が鉄イオンの場合には、例えば、硫酸第二鉄溶液、塩化第二鉄溶液などを好ましく用いることができる。
また、前記酸化剤がマンガンイオンの場合には、例えば、硫酸マンガンなどを好ましく用いることができる。また、前記酸化剤がバナジウムイオンの場合には、例えば、硫酸バナジウムを好ましく用いることができる。また、前記酸化剤がクロムイオンの場合には、例えば、硫酸クロムなどを好ましく用いることができる。
  前記酸化剤を含む溶液において、酸化剤の濃度は酸化剤の種類に応じて適宜変更すればよい。例えば、前記酸化剤を含む溶液として硫酸第二鉄溶液を用いる場合には、鉄イオン濃度は10g/L以上、130g/L以下とすることが好ましく、15g/L以上、110g/L以下とすることがより好ましく、20g/L以上、90g/L以下とすることが更に好ましい。硫酸第二鉄溶液の鉄イオン濃度を10g/L以上とすることで、銅含有物からある程度の量の銅を溶液中に溶解させることができ、一度に充分量の銅を製造することができるようになる。また、130g/L以下とすることで、鉄や銅の塩が析出してしまうリスクを低減することができる。
  前記酸化剤を含む溶液として硫酸第二鉄溶液を用いる場合には、pHが高いと水酸化鉄の沈殿が生じ易くなり、また、溶液の安定性が劣り、銅濃度の上昇を招くこととなってしまう場合がある。この観点から硫酸第二鉄溶液のpHは4以下であることが好ましく、3.5以下であることがより好ましく、3以下であることが更に好ましい。
-Solution containing oxidizing agent-
The solution containing the oxidizing agent may be any solution containing the oxidizing agent. When the oxidizing agent is iron ion, for example, a ferric sulfate solution, a ferric chloride solution, or the like can be preferably used.
When the oxidizing agent is manganese ions, for example, manganese sulfate can be preferably used. Moreover, when the oxidizing agent is vanadium ion, for example, vanadium sulfate can be preferably used. When the oxidizing agent is chromium ion, for example, chromium sulfate can be preferably used.
What is necessary is just to change suitably the density | concentration of an oxidizing agent according to the kind of oxidizing agent in the solution containing the said oxidizing agent. For example, when a ferric sulfate solution is used as the solution containing the oxidizing agent, the iron ion concentration is preferably 10 g / L or more and 130 g / L or less, and 15 g / L or more and 110 g / L or less. More preferably, it is more preferably 20 g / L or more and 90 g / L or less. By setting the iron ion concentration of the ferric sulfate solution to 10 g / L or more, a certain amount of copper can be dissolved in the solution from the copper-containing material, and a sufficient amount of copper can be produced at one time. It becomes like this. Moreover, the risk that iron or copper salt precipitates can be reduced by setting it as 130 g / L or less.
When a ferric sulfate solution is used as the solution containing the oxidizing agent, if the pH is high, precipitation of iron hydroxide tends to occur, and the stability of the solution is inferior, leading to an increase in copper concentration. May end up. From this viewpoint, the pH of the ferric sulfate solution is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3 or less.
(銅を析出させる第二工程)
  図1を用いて銅を析出させる第二工程を詳述する。図1は銅を析出させる第二工程の前後において、溶液がどのように変化するのかを表す概略図である。
  銅を析出させる第二工程においては、まず、隔膜4を介して、還元された状態の酸化剤を含む溶液(A)6と、銅を溶解させた溶液(B)5とが接触するようにする。例えば、通常の電解槽に隔膜を設けて2つの室に仕切り、一方に、還元された状態の酸化剤を含む溶液(A)6を、もう一方に、銅を溶解させた溶液(B)5を入れればよい。
  前記還元された状態の酸化剤を含む溶液(A)6にはアノード側電極2を設け、前記銅を溶解させた溶液(B)5にはカソード側電極1を設ける。そして、両電極を整流器3に接続して電圧を印加し、電流を流して電解製錬を行なう。
  以下では、酸化剤として鉄イオンを用いる場合を例にして銅を析出させる第二工程を説明するが、他の酸化剤を用いた場合にも同様の原理によって行うことが可能である。
(Second step of depositing copper)
The 2nd process which deposits copper is explained in full detail using FIG. FIG. 1 is a schematic diagram showing how the solution changes before and after the second step of depositing copper.
In the second step of depositing copper, first, the solution (A) 6 containing the reduced oxidizing agent and the solution (B) 5 in which copper is dissolved are brought into contact with each other through the diaphragm 4. To do. For example, a diaphragm is provided in a normal electrolytic cell and partitioned into two chambers, one containing a reduced solution (A) 6 containing an oxidizing agent and the other containing a solution of copper (B) 5 Just put in.
The anode-side electrode 2 is provided in the solution (A) 6 containing the oxidant in the reduced state, and the cathode-side electrode 1 is provided in the solution (B) 5 in which the copper is dissolved. Then, both electrodes are connected to the rectifier 3, a voltage is applied, and a current is passed to perform electrolytic smelting.
Below, the 2nd process which precipitates copper is demonstrated taking the case of using an iron ion as an oxidizing agent as an example, However, When other oxidizing agents are used, it can be performed on the same principle.
  酸化剤として鉄イオンを用いていた場合には、前記銅を溶解させた溶液(B)5にはCu2+とFe2+とが存在しており、電解を行なうことで、カソード側電極1の表面に金属銅が析出する。また、前記還元された状態の酸化剤を含む溶液(A)6にはFe2+が存在しているが、電解を行なうことで、Fe2+が酸化されてFe3+となる。
  すなわち、銅を析出させる第二工程を行うことで、前記銅を溶解させた溶液(B)5は、銅が析出除去された溶液7となり、また、前記還元された状態の酸化剤を含む溶液(A)6は、酸化剤が再生した溶液8となる。
When iron ions are used as the oxidizing agent, Cu 2+ and Fe 2+ exist in the solution (B) 5 in which the copper is dissolved, and the surface of the cathode-side electrode 1 is obtained by performing electrolysis. Metal copper is deposited on the surface. Further, Fe 2+ is present in the solution (A) 6 containing the reduced state oxidant, but by performing electrolysis, Fe 2+ is oxidized to Fe 3+ .
That is, by performing the second step of precipitating copper, the solution (B) 5 in which the copper is dissolved becomes the solution 7 from which copper is deposited and removed, and the solution contains the reduced state oxidizing agent. (A) 6 becomes the solution 8 regenerated by the oxidizing agent.
  本発明の実施形態に係る銅の製造方法を繰り返し行う場合には、前記銅を析出させる第二工程の後に、前記アノード側電極が設けられていた側の溶液(A)を回収し、当該溶液(A)を前記第一工程における酸化剤を含む溶液として再利用することが好ましい。
  上記の酸化剤として鉄イオンを用いた場合の例では、前記アノード側電極2が設けられていた側の溶液は、前記酸化剤が再生した溶液8であり、この溶液にはFe3+が多量に存在する。このため本発明の実施形態に係る銅の製造方法を繰り返して連続的に行う場合には、前記酸化剤を含む溶液として再利用することができる。
When the copper production method according to an embodiment of the present invention is repeatedly performed, the solution (A) on the side where the anode side electrode is provided is recovered after the second step of depositing the copper, and the solution It is preferable to reuse (A) as a solution containing an oxidizing agent in the first step.
In the example in which iron ions are used as the oxidant, the solution on the side where the anode side electrode 2 is provided is the solution 8 regenerated by the oxidant, and this solution contains a large amount of Fe 3+. Exists. For this reason, when performing the manufacturing method of copper which concerns on embodiment of this invention repeatedly and continuously, it can be reused as a solution containing the said oxidizing agent.
  また、本発明の実施形態に係る銅の製造方法を繰り返し行う場合には、前記銅を析出させる第二工程の後に、前記カソード側電極が設けられていた側の溶液(B)を回収し、当該溶液(B)を前記第二工程における溶液(A)として再利用することが好ましい。
  上記の酸化剤として鉄イオンを用いた場合の例では、前記カソード側電極1が設けられていた側の溶液は、前記銅が析出除去された溶液7であり、この溶液にはFe2+が多量に存在する。このため本発明の実施形態に係る銅の製造方法を繰り返して連続的に行う場合には、前記還元された状態の酸化剤を含む溶液(A)6として再利用することができる。
In addition, when the copper production method according to the embodiment of the present invention is repeatedly performed, after the second step of depositing the copper, the solution (B) on the side where the cathode side electrode is provided is collected, It is preferable to reuse the solution (B) as the solution (A) in the second step.
In the case where iron ions are used as the oxidant, the solution on the side where the cathode electrode 1 is provided is the solution 7 from which the copper is deposited and removed, and this solution contains a large amount of Fe 2+. Exists. For this reason, when performing the manufacturing method of the copper which concerns on embodiment of this invention repeatedly and continuously, it can recycle as the solution (A) 6 containing the oxidizing agent of the said reduced state.
  更に、本発明の実施形態に係る銅の製造方法を繰り返し行う場合には、前記カソード側電極の表面に銅を析出させる第二工程において、前記銅を溶解させた溶液(B)中の銅の濃度は12g/L以上であることが好ましい。これにより、安定して銅の電析を行える良好な状態を保って、銅の製造を連続的に繰り返し行うことができるようになる。前記第二工程においては銅の濃度を12g/L以上の状態を常に確保することが好ましく、銅の濃度が12g/L未満となった場合には電圧の印加を止めることが好ましい。また、前記第二工程においては、銅の濃度は、15g/L以上であることがより好ましく、18g/L以上であることが更に好ましい。 Furthermore, when performing the manufacturing method of the copper which concerns on embodiment of this invention repeatedly, in the 2nd process of depositing copper on the surface of the said cathode side electrode, the copper of the solution (B) in which the said copper was melt | dissolved The concentration is preferably 12 g / L or more. This makes it possible to continuously and repeatedly produce copper while maintaining a good state in which copper can be stably deposited. In the second step, it is preferable to always ensure that the copper concentration is 12 g / L or more. When the copper concentration is less than 12 g / L, it is preferable to stop applying the voltage. In the second step, the copper concentration is more preferably 15 g / L or more, and further preferably 18 g / L or more.
  本発明の実施形態に係る銅の製造方法を繰り返し行う場合には、例えば、電解槽を可動式にしておき、アノード側電極とカソード側電極とを反転させることで行なうことができる。すなわち、銅を析出させる第二工程が終了した後に、酸化剤が再生した溶液に銅含有物を添加して銅を溶解させ、アノード側電極とカソード側電極とを入れ替えて電解を行なえばよい。また、ポンプ等で溶液を入れ替えることによっても第一工程および第二工程を繰り返すことが可能である。更に、前述の銅を溶解させる第一工程において使用する溶解槽を複数使用することで、時間がかかる銅の溶解や不溶解物をろ過するという工程を進めながら同時に電解を行なうという効率的な方法も可能となる。この場合には、各溶液を管理する槽を設け、ポンプ等で各槽に溶液を送液して循環できるようにしておくことが好ましい。 繰 り 返 し When repeatedly performing the method for producing copper according to the embodiment of the present invention, for example, the electrolytic cell can be made movable and the anode side electrode and the cathode side electrode can be reversed. That is, after the second step of precipitating copper is completed, a copper-containing material is added to the solution regenerated by the oxidizing agent to dissolve the copper, and the anode-side electrode and the cathode-side electrode are exchanged for electrolysis. Moreover, it is possible to repeat a 1st process and a 2nd process also by replacing solutions with a pump. Furthermore, by using a plurality of dissolution tanks used in the first step of dissolving the above-mentioned copper, an efficient method of performing electrolysis at the same time while proceeding with a step of filtering the time-consuming copper dissolution or insoluble matter Is also possible. In this case, it is preferable to provide a tank for managing each solution so that the solution can be circulated by sending the solution to each tank using a pump or the like.
  銅を析出させる第二工程においては、溶液を攪拌した方が銅の析出状態がきれいになるなどして良い。攪拌は、溶液をポンプ等で循環させたり、エアバブリングを行うなど、一般的な方法で良い。
  あるいはレドックスフロー電池のように、電解槽に各溶液を通液循環させても良い。また、複数の電解槽を直列あるいは並列に接続していても良い。
  なお、あえて溶液を撹拌しないことで、銅を粉末状に析出させることもできる。
In the second step of precipitating copper, stirring the solution may make the copper precipitation state cleaner. Stirring may be performed by a general method such as circulating the solution with a pump or performing air bubbling.
Or you may circulate each solution through an electrolytic cell like a redox flow battery. Further, a plurality of electrolytic cells may be connected in series or in parallel.
In addition, copper can also be deposited in a powder form without dare stirring the solution.
  銅の電析状態を安定化させるために前記銅を溶解させた溶液(B)に添加剤などを加えても良い。添加剤としては銅めっきや銅の電解精錬技術で一般に使用されるものなどを使うことができる。また、不純物が共析しないように、不純物と錯体を形成する物質など、それぞれに適した添加剤を加えても良い。不純物を沈殿させる物質や吸着する物質を溶液(B)に加えて共析を防止しても良い。 In order to stabilize the electrodeposition state of copper, an additive or the like may be added to the solution (B) in which the copper is dissolved. As additives, those commonly used in copper plating and copper electrolytic refining techniques can be used. In order to prevent the impurities from co-depositing, suitable additives such as substances that form a complex with the impurities may be added. A substance that precipitates impurities or a substance that adsorbs impurities may be added to the solution (B) to prevent eutectoid.
  本発明の実施形態に係る銅の製造方法を繰り返し行い、前記還元された状態の酸化剤を含む溶液(A)及び前記銅を溶解させた溶液(B)の再利用を続けていると、各溶液に不純物が蓄積する場合がある。この場合には、pH調整等によって不純物を沈殿させて除いても良いし、通常の条件よりも激しい条件で電解を行なうことで不純物を電析させるいわゆる「捨てめっき」を行っても良い。また、銅濃度が上がり過ぎた場合にも同様の手法で調整することができる。この場合には、単なる硫酸など、鉄を含まない溶液を対極側に使用しても良い。 When the copper manufacturing method according to the embodiment of the present invention is repeatedly performed, and the solution (A) containing the reduced state oxidizing agent and the solution (B) in which the copper is dissolved are continuously reused, Impurities may accumulate in the solution. In this case, impurities may be removed by precipitation by adjusting pH or the like, or so-called “discard plating” may be performed in which impurities are electrodeposited by electrolysis under conditions more severe than normal conditions. Further, when the copper concentration is excessively increased, it can be adjusted by the same method. In this case, a solution containing no iron such as simple sulfuric acid may be used on the counter electrode side.
  また、前記銅を溶解させた溶液(B)及び前記還元された状態の酸化剤を含む溶液(A)は、塩素を多量に含んでいると電解時に塩素ガスが発生する可能性があるため、塩素を含まないものであることが好ましい。なお、溶液中に塩素が含まれたとしても微量であれば問題はない。前記溶液(A)及び溶液(B)は硫酸ベースのものであると取り扱いが容易であり好ましい。 Moreover, since the solution (B) in which the copper is dissolved and the solution (A) containing the reduced state oxidizing agent contain a large amount of chlorine, chlorine gas may be generated during electrolysis. It is preferable that it does not contain chlorine. In addition, even if chlorine is contained in the solution, there is no problem as long as the amount is small. The solution (A) and the solution (B) are preferably based on sulfuric acid because they are easy to handle.
  電解時において、前記溶液(A)及び溶液(B)の液温は室温でも良いが、60℃などの高温にしても良い。液温が低すぎると塩が析出しやすくなり、また、液温が高すぎると電析状態が不安定になったり、水の蒸発が起こって管理が難しくなる場合がある。この観点から、電解時における前記溶液(A)及び溶液(B)の液温は、10℃以上、70℃以下であることが好ましく、15℃以上、65℃以下であることがより好ましく、20℃以上、60℃以下であることが更に好ましい。 During the electrolysis, the solution (A) and the solution (B) may be at room temperature, but may be at a high temperature such as 60 ° C. If the liquid temperature is too low, salt is likely to precipitate, and if the liquid temperature is too high, the electrodeposition state may become unstable or water may evaporate, making management difficult. From this viewpoint, the liquid temperature of the solution (A) and the solution (B) during electrolysis is preferably 10 ° C. or more and 70 ° C. or less, more preferably 15 ° C. or more and 65 ° C. or less, and 20 More preferably, it is not lower than 60 ° C. and not higher than 60 ° C.
-カソード側電極-
  前記カソード側電極としては、電極表面に銅を析出させることが可能なものであればどのようなものでも使用することができる。例えば、銅、白金、金、チタン、ステンレスなどを用いることができる。銅を析出させるという観点からは銅箔を種材として用いることが好ましい。また、ブランクにステンレス板やチタン板等を用いて、電析した銅を剥がして回収してもよい。
-Cathode side electrode-
Any cathode side electrode can be used as long as it can deposit copper on the electrode surface. For example, copper, platinum, gold, titanium, stainless steel, etc. can be used. From the viewpoint of depositing copper, it is preferable to use a copper foil as a seed material. Alternatively, the electrodeposited copper may be peeled off and recovered using a stainless steel plate, a titanium plate or the like for the blank.
-アノード側電極-
  前記アノード側電極としては電解時に安定な状態を維持できるものを用いればよい。例えば、カーボン、鉛、貴金属、チタン、タングステンなどを用いることができる。また、チタンラス板等を貴金属で被覆して用いてもよい。
-Anode side electrode-
What is necessary is just to use what can maintain a stable state at the time of electrolysis as said anode side electrode. For example, carbon, lead, noble metal, titanium, tungsten, or the like can be used. Further, a titanium lath plate or the like may be coated with a noble metal.
-隔膜-
  前記隔膜は水素イオンのみを透過させることが可能な膜であると、電解効率が最も良くなり好ましいが、他のイオンを透過する膜でも利用することは可能である。イオン交換膜の場合には、陽イオン交換膜であっても陰イオン交換膜であってもよい。また、素焼きの板やろ布などを用いることも可能である。
-diaphragm-
The membrane is preferably a membrane that allows only hydrogen ions to pass therethrough, since it provides the best electrolysis efficiency, but it can also be used for membranes that transmit other ions. In the case of an ion exchange membrane, it may be a cation exchange membrane or an anion exchange membrane. It is also possible to use an unglazed plate or a filter cloth.
[銅の製造装置]
  図2を用いて本発明の実施形態に係る銅の製造装置の一例を詳述する。
  本発明の実施形態に係る銅の製造装置は、前記本発明の実施形態に係る銅の製造方法を実施することが可能な装置であり、酸化剤を含む溶液の管理槽21と、溶解槽22と、銅を溶解させた溶液の管理槽23と、電解槽24と、還元された状態の酸化剤を含む溶液の管理槽25と、を有する。そして、前記電解槽24は隔膜244によってカソード側電極を備えためっき室とアノード側電極を備えた酸化剤再生室とに仕切られている。
  図2の矢印は各溶液が循環する流れを示すものである。各溶液の循環はポンプ等を用いて行えばよい。
[Copper production equipment]
An example of the copper manufacturing apparatus according to the embodiment of the present invention will be described in detail with reference to FIG.
The copper manufacturing apparatus according to the embodiment of the present invention is an apparatus capable of performing the copper manufacturing method according to the embodiment of the present invention. And a management tank 23 of a solution in which copper is dissolved, an electrolytic tank 24, and a management tank 25 of a solution containing an oxidant in a reduced state. The electrolytic cell 24 is partitioned by a diaphragm 244 into a plating chamber having a cathode electrode and an oxidant regeneration chamber having an anode electrode.
The arrows in FIG. 2 indicate the flow through which each solution circulates. Each solution may be circulated using a pump or the like.
  本発明の実施形態に係る銅の製造装置を用いて前記本発明の実施形態に係る銅の製造方法を実施するためには、例えば、以下のようにすればよい。
  まず、酸化剤を含む溶液を用意しこれを溶解槽22に供給する。ここに銅含有物221を添加し、攪拌等により銅を溶解させる。例えばプロペラを用いて溶液を攪拌する場合には溶解槽22は平面視で円形のタンクであることが好ましい。これにより得られる銅を溶解させた溶液から不溶解物を必要に応じて除去し、銅を溶解させた溶液の管理槽23へと送る。なお、銅の電解製錬に比べて銅の溶解や溶液のろ過の方が時間がかかる場合もあり得る。また、酸化剤を全て還元された状態にするためには充分に時間を確保した方がよい。このため、溶解槽22を複数設けておくことが好ましい。これにより、銅を析出させる第二工程を行っている間に、銅を溶解させて酸化剤を完全に反応させることができ、時間のロスをなくして効率よく銅の製造を行うことができる。すなわち、銅を溶解する工程と、銅を析出させる工程とを同時に行う場合に、銅を析出させる工程の方が先に終了してしまって、溶液を電解槽24に待機させておくというような状態が生じないようにすることができる。
In order to implement the copper manufacturing method according to the embodiment of the present invention using the copper manufacturing apparatus according to the embodiment of the present invention, for example, the following may be performed.
First, a solution containing an oxidizing agent is prepared and supplied to the dissolution tank 22. Copper content 221 is added here and copper is dissolved by stirring or the like. For example, when the solution is stirred using a propeller, the dissolution tank 22 is preferably a circular tank in plan view. An insoluble matter is removed from the solution in which copper obtained by this is dissolved as needed, and it sends to the management tank 23 of the solution in which copper was dissolved. In addition, compared with the electrolytic refining of copper, dissolution of copper and filtration of a solution may take time. In addition, it is better to secure a sufficient time in order to make the oxidant all reduced. For this reason, it is preferable to provide a plurality of dissolution tanks 22. Thereby, while performing the 2nd process of depositing copper, copper can be dissolved and an oxidizing agent can be made to react completely, loss of time can be lost, and copper can be manufactured efficiently. That is, when performing the step of dissolving copper and the step of precipitating copper simultaneously, the step of precipitating copper is completed first, and the solution is kept in the electrolytic cell 24. A state can be prevented from occurring.
  前記銅を溶解させた溶液を電解槽24のめっき室へと送る。また、電解槽24の酸化剤再生室には、還元された状態の酸化剤を含む溶液の管理槽に準備されていた還元された状態の酸化剤を含む溶液を供給する。そして、両溶液に電圧を印加して通電し、電解を行なう。これによりカソード側電極241の表面に析出し、純度の高い金属銅を得ることができる。
  電解終了後には、めっき室中の溶液は銅が析出除去されて、還元された状態の酸化剤を含む溶液となっているため、これをポンプで取り出し、還元された状態の酸化剤を含む溶液の管理槽25に送る。また、酸化剤再生室中の溶液は、酸化剤が酸化されて再生した状態となっているため、これを酸化剤を含む溶液の管理槽21へと送る。
The solution in which the copper is dissolved is sent to the plating chamber of the electrolytic cell 24. Further, the solution containing the reduced state oxidant prepared in the management tank of the solution containing the reduced state oxidant is supplied to the oxidant regeneration chamber of the electrolytic cell 24. Then, a voltage is applied to both solutions to conduct electricity, and electrolysis is performed. Thereby, it deposits on the surface of the cathode side electrode 241 and can obtain metallic copper with high purity.
After the completion of electrolysis, the solution in the plating chamber is a solution containing the oxidant in a reduced state after copper is deposited and removed, and the solution containing the oxidant in the reduced state is taken out with a pump. To the management tank 25. Further, since the solution in the oxidant regeneration chamber is in a state of being regenerated by oxidizing the oxidant, it is sent to the management tank 21 for the solution containing the oxidant.
  以上のようにすることで、本発明の実施形態に係る銅の製造装置を稼動させることで、前記本発明の実施形態に係る銅の製造方法を繰り返し、連続的に行うことができる。
  なお、本発明の実施形態に係る銅の製造装置においては、カソード側電極などの各構成は、前記本発明の実施形態にかかる銅の製造方法において説明したものと同じものを用いることができる。
By doing as mentioned above, the copper manufacturing method according to the embodiment of the present invention can be repeated and continuously performed by operating the copper manufacturing apparatus according to the embodiment of the present invention.
In addition, in the copper manufacturing apparatus which concerns on embodiment of this invention, each structure, such as a cathode side electrode, can use the same thing as what was demonstrated in the copper manufacturing method concerning the said embodiment of this invention.
  以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の銅の製造方法及び銅の製造装置はこれらに限定されるものではない。本発明の範囲は請求の範囲の範囲によって示され、請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 Hereinafter, the present invention will be described in more detail based on examples. However, these examples are merely examples, and the copper manufacturing method and the copper manufacturing apparatus of the present invention are not limited to these examples. The scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.
[実施例1]
(銅を溶解させる第一工程)
  銅含有物として、銅と樹脂がおよそ50質量%ずつ含まれる電線粉砕屑3000gを用意した。電線粉砕屑は1mm程度の粉状物とした。
  酸化剤を含む溶液として、鉄イオン濃度30g/Lの硫酸第二鉄溶液80Lを用意した。この硫酸第二鉄溶液に硫酸銅を添加し、銅イオン濃度が20g/Lになるように調整した。
  溶解槽に前記硫酸第二鉄溶液と電線粉砕屑を入れ、6h撹拌して銅を溶解し、銅を溶解させた溶液を得た。これにより、銅を溶解させた溶液中の銅イオン濃度は40g/Lとなった。残った樹脂は液をろ過して取り除いた。
(銅を析出させる第二工程)
  隔膜として陽イオン交換膜であるナフィオン117を用い電解槽を仕切った。そして、片側に上記で得た銅を溶解させた溶液を入れた。もう片側には、還元された状態の酸化剤を含む溶液(A)として、鉄イオンが還元されてFe2+となった状態の硫酸第一鉄80Lをいれた。硫酸第一鉄の鉄イオン濃度は30g/Lとした。また、溶液(A)に硫酸銅を添加して、銅イオン濃度が20g/Lとなるように調整した。
  銅を溶解させた溶液をいれためっき室にはカソード側電極として銅箔を設けた。また、還元された状態の酸化剤を含む溶液(A)を入れた酸化剤再生室にはアノード側電極として白金で被覆したチタンラス板を設けた。
  そして、両電極に整流器を接続して電圧を印加し、電解を行なった。このときの電圧は3.8Vとした。液温は28℃であった。
  電解を15時間行うことで、カソード側電極に1500gの銅が析出した。この銅の純度は99.9%以上であった。電析効率は99%であった。
[Example 1]
(First step to dissolve copper)
As the copper-containing material, 3000 g of electric wire pulverized waste containing about 50% by mass of copper and resin was prepared. The electric wire crushed waste was a powdery material of about 1 mm.
As a solution containing an oxidizing agent, 80 L of a ferric sulfate solution having an iron ion concentration of 30 g / L was prepared. Copper sulfate was added to this ferric sulfate solution to adjust the copper ion concentration to 20 g / L.
The ferric sulfate solution and electric wire pulverized waste were placed in a dissolution tank, stirred for 6 hours to dissolve copper, and a solution in which copper was dissolved was obtained. Thereby, the copper ion concentration in the solution in which copper was dissolved was 40 g / L. The remaining resin was removed by filtering the liquid.
(Second step of depositing copper)
The electrolytic cell was partitioned using Nafion 117, which is a cation exchange membrane, as a diaphragm. And the solution in which the copper obtained above was dissolved was put on one side. On the other side, 80 L of ferrous sulfate in a state where iron ions were reduced to Fe 2+ as a solution (A) containing a reduced state oxidant was added. The iron ion concentration of ferrous sulfate was 30 g / L. Further, copper sulfate was added to the solution (A) to adjust the copper ion concentration to 20 g / L.
A copper foil was provided as a cathode side electrode in a plating chamber containing a solution in which copper was dissolved. In addition, a titanium lath plate coated with platinum was provided as an anode side electrode in the oxidant regeneration chamber containing the solution (A) containing the oxidant in a reduced state.
And a rectifier was connected to both electrodes, the voltage was applied, and it electrolyzed. The voltage at this time was 3.8V. The liquid temperature was 28 ° C.
By performing electrolysis for 15 hours, 1500 g of copper was deposited on the cathode side electrode. The purity of this copper was 99.9% or more. The electrodeposition efficiency was 99%.
  以上の工程を10サイクル実施し、計15kgの銅を得ることができた。
  なお、各工程を繰り返すにあたり、銅を析出させる第二工程後に、アノード側電極が設けられていた側の溶液(A)は酸化剤を含む溶液として再利用し、カソード側電極が設けられていた側の溶液(B)は還元された状態の酸化剤を含む溶液(A)として再利用した。また、銅を析出させる第二工程においては、前記銅を溶解させた溶液中の銅の濃度が18g/Lとなった状態で電圧の印加をとめた。装置としては、図2に示す構成のものを用いた。
The above process was carried out 10 cycles, and a total of 15 kg of copper could be obtained.
In repeating each step, after the second step of depositing copper, the solution (A) on the side where the anode side electrode was provided was reused as a solution containing an oxidizing agent, and the cathode side electrode was provided. The side solution (B) was reused as a solution (A) containing an oxidant in a reduced state. In the second step of depositing copper, voltage application was stopped in a state where the concentration of copper in the solution in which the copper was dissolved was 18 g / L. As the apparatus, one having the configuration shown in FIG. 2 was used.
[実施例2]
  酸化剤を含む溶液として、V4.5+の濃度が30g/L、銅イオン濃度が20g/Lの溶液を用い、還元された状態の酸化剤を含む溶液(A)として、V3.5+の濃度が30g/L、銅イオン濃度が20g/Lの溶液を用い、銅を析出させる第二工程において、電圧は4.7Vとした以外は実施例1と同様にして銅の製造を行なった。液温は28℃であった。
  銅を析出させる第二工程において電解を15時間行うことで、カソード側電極に1300gの銅が析出した。この銅の純度は99.9%以上であった。電析効率は91%であった。
  なお、酸化剤を含む溶液、及び還元された状態の酸化剤を含む溶液(A)は、酸化硫酸バナジウム(VOSO)を硫酸に溶解させてV4+を含む硫酸バナジウム溶液を作製し、イオン交換膜を用いて前記硫酸バナジウム溶液を電気分解することにより作製した。また、銅イオン濃度は、硫酸銅を添加することにより調整した。
  また、前記V4.5+とは、V5+とV4+が半分ずつ含まれていることを意味する。
同様に、前記V3.5+とはV4+とV3+が半分ずつ含まれていることを意味する。
[Example 2]
As a solution containing an oxidizing agent, a solution having a concentration of V 4.5+ of 30 g / L and a copper ion concentration of 20 g / L was used, and as a solution (A) containing an oxidizing agent in a reduced state, V 3.5+ In the second step of depositing copper using a solution having a concentration of 30 g / L and a copper ion concentration of 20 g / L, copper was produced in the same manner as in Example 1 except that the voltage was 4.7 V. The liquid temperature was 28 ° C.
In the second step of depositing copper, electrolysis was performed for 15 hours, whereby 1300 g of copper was deposited on the cathode side electrode. The purity of this copper was 99.9% or more. The electrodeposition efficiency was 91%.
The solution containing the oxidant and the solution (A) containing the oxidant in the reduced state are prepared by dissolving vanadium oxide sulfate (VOSO 4 ) in sulfuric acid to produce a vanadium sulfate solution containing V 4+ and performing ion exchange. It was produced by electrolyzing the vanadium sulfate solution using a membrane. Moreover, the copper ion concentration was adjusted by adding copper sulfate.
The V 4.5+ means that V 5+ and V 4+ are included in half.
Similarly, V 3.5+ means that V 4+ and V 3+ are included in half.
    1      カソード側電極
    2      アノード側電極
    3      整流器
    4      隔膜
    5      銅を溶解させた溶液
    6      還元された状態の酸化剤を含む溶液
    7      銅が析出除去された溶液
    8      酸化剤が再生した溶液
    21    酸化剤を含む溶液の管理槽
    22    溶解槽
    221  銅含有物
    23    銅を溶解させた溶液の管理槽
    24    電解槽
    241  カソード側電極
    242  アノード側電極
    243  整流器
    244  隔膜
    245  めっき室
    246  酸化剤再生槽
    25    還元された状態の酸化剤を含む溶液の管理槽
DESCRIPTION OF SYMBOLS 1 Cathode side electrode 2 Anode side electrode 3 Rectifier 4 Diaphragm 5 Solution in which copper is dissolved 6 Solution containing oxidant in reduced state 7 Solution in which copper is deposited and removed 8 Solution regenerated by oxidant 21 Including oxidant Solution management tank 22 Dissolution tank 221 Copper-containing material 23 Management tank of solution in which copper is dissolved 24 Electrolysis tank 241 Cathode side electrode 242 Anode side electrode 243 Rectifier 244 Separator 245 Plating chamber 246 Oxidant regeneration tank 25 Reduced state Control tank for solutions containing oxidizing agents

Claims (8)

  1.   酸化剤を含む溶液中に銅含有物を添加して銅を溶解させる第一工程と、
      還元された状態の酸化剤を含む溶液(A)と、前記銅を溶解させた溶液(B)とを、隔膜を介して接触させ、前記溶液(A)にアノード側電極を設け、前記溶液(B)にカソード側電極を設けて、両電極間に電圧を印加し、前記溶液(A)に含まれる酸化剤を再生しつつ前記カソード側電極の表面に銅を析出させる第二工程と、
    を有し、
      前記酸化剤の標準電位が1.6V以下である、銅の製造方法。
    A first step of dissolving copper by adding a copper-containing material in a solution containing an oxidizing agent;
    The solution (A) containing the oxidant in a reduced state and the solution (B) in which the copper is dissolved are brought into contact with each other through a diaphragm, and an anode-side electrode is provided on the solution (A). A second step of providing a cathode side electrode in B), applying a voltage between both electrodes, and depositing copper on the surface of the cathode side electrode while regenerating the oxidizing agent contained in the solution (A);
    Have
    The manufacturing method of copper whose standard potential of the said oxidizing agent is 1.6V or less.
  2.   前記酸化剤が、鉄イオン、マンガンイオン、バナジウムイオン及びクロムイオンからなる群より選択されるいずれか一種以上である請求項1に記載の銅の製造方法。 The method for producing copper according to claim 1, wherein the oxidizing agent is one or more selected from the group consisting of iron ions, manganese ions, vanadium ions, and chromium ions.
  3.   前記銅を析出させる第二工程の後に、
      前記アノード側電極が設けられていた側の溶液(A)を回収し、当該溶液(A)を前記第一工程における酸化剤を含む溶液として再利用する請求項1又は請求項2に記載の銅の製造方法。
    After the second step of depositing copper,
    The copper (1) according to claim 1 or 2, wherein the solution (A) on the side where the anode side electrode has been provided is recovered, and the solution (A) is reused as a solution containing an oxidizing agent in the first step. Manufacturing method.
  4.   前記銅を析出させる第二工程の後に、
      前記カソード側電極が設けられていた側の溶液(B)を回収し、当該溶液(B)を前記第二工程における溶液(A)として再利用する請求項1から請求項3のいずれか一項に記載の銅の製造方法。
    After the second step of depositing copper,
    The solution (B) on the side where the cathode side electrode is provided is collected, and the solution (B) is reused as the solution (A) in the second step. The manufacturing method of copper as described in 2.
  5.   前記銅を溶解させる第一工程において、
      前記酸化剤が全て還元された状態となるように銅含有物を過剰に添加する、請求項1から請求項4のいずれか一項に記載の銅の製造方法。
    In the first step of dissolving the copper,
    The method for producing copper according to any one of claims 1 to 4, wherein a copper-containing material is excessively added so that the oxidant is completely reduced.
  6.   前記銅を析出させる第二工程において、
      前記銅を溶解させた溶液(B)中の銅の濃度は12g/L以上である、請求項1から請求項5のいずれか一項に記載の銅の製造方法。
    In the second step of depositing copper,
    The copper manufacturing method according to any one of claims 1 to 5, wherein a concentration of copper in the solution (B) in which the copper is dissolved is 12 g / L or more.
  7.   請求項1に記載の銅の製造方法を実施するための銅の製造装置であって、
      酸化剤を含む溶液の管理槽と、溶解槽と、銅を溶解させた溶液の管理槽と、電解槽と、還元された状態の酸化剤を含む溶液の管理槽と、を有し、
      前記電解槽は、隔膜によって、アノード側電極を備えた酸化剤再生室と、カソード側電極を備えためっき室とに仕切られている、銅の製造装置。
    A copper manufacturing apparatus for carrying out the copper manufacturing method according to claim 1,
    A management tank of a solution containing an oxidizing agent, a dissolution tank, a management tank of a solution in which copper is dissolved, an electrolytic tank, and a management tank of a solution containing an oxidizing agent in a reduced state,
    The electrolytic cell is an apparatus for producing copper, which is partitioned by a diaphragm into an oxidant regeneration chamber having an anode side electrode and a plating chamber having a cathode side electrode.
  8.   前記溶解槽を複数有する請求項7に記載の銅の製造装置。 The copper manufacturing apparatus according to claim 7, comprising a plurality of melting tanks.
PCT/JP2015/083838 2015-03-25 2015-12-02 Method for producing copper and apparatus for producing copper WO2016151949A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/557,892 US20180073156A1 (en) 2015-03-25 2015-12-02 Method for producing copper and apparatus for producing copper
CN201580078129.7A CN107429413A (en) 2015-03-25 2015-12-02 The manufacture method of copper and the manufacture device of copper
KR1020177026195A KR20170130408A (en) 2015-03-25 2015-12-02 Method for producing copper and apparatus for producing copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015062127A JP6604466B2 (en) 2015-03-25 2015-03-25 Copper manufacturing method and copper manufacturing apparatus
JP2015-062127 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016151949A1 true WO2016151949A1 (en) 2016-09-29

Family

ID=56978773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083838 WO2016151949A1 (en) 2015-03-25 2015-12-02 Method for producing copper and apparatus for producing copper

Country Status (5)

Country Link
US (1) US20180073156A1 (en)
JP (1) JP6604466B2 (en)
KR (1) KR20170130408A (en)
CN (1) CN107429413A (en)
WO (1) WO2016151949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018115580A1 (en) * 2016-12-20 2018-06-28 Aalto University Foundation Sr A method of recovering copper from a dilute metal containing solution

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263513B1 (en) * 2017-04-03 2021-06-11 닛토덴코 가부시키가이샤 Method for manufacturing a polarizer
JP6857236B2 (en) * 2017-04-03 2021-04-14 日東電工株式会社 Polarizer and polarizing plate
CN107841630B (en) * 2017-11-08 2019-05-10 东江环保股份有限公司 Wiring board is high and low metal separation method
BR112023019059A2 (en) 2021-03-24 2023-10-17 Electrasteel Inc IMPURITIES REMOVAL IN AN IRON CONVERSION SYSTEM
WO2022236283A1 (en) * 2021-05-05 2022-11-10 Battelle Energy Alliance, Llc Electrochemical membrane apparatus including an electrochemical membrane reactor, and related methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893526A (en) * 1972-02-18 1973-12-04
JPS5013217A (en) * 1973-06-11 1975-02-12
US3958983A (en) * 1975-06-19 1976-05-25 The United States Of America As Represented By The Secretary Of The Interior Decomposition of chalcopyrite
JPS5187416A (en) * 1975-01-30 1976-07-31 Nippon Mining Co
JPS5260296A (en) * 1975-11-13 1977-05-18 Nippon Mining Co Ltd Method for electrolytic oxidation of ferrous iron
JPS5328519A (en) * 1976-08-26 1978-03-16 Inspiration Cons Copper Method of recovering metals from anode slime formed in copper refining process
WO2003062498A1 (en) * 2002-01-23 2003-07-31 Peter Kenneth Everett Anodic energy storage in electrolysis of a single halide solution
JP2004524443A (en) * 2001-03-12 2004-08-12 アイレンブルガー エレクトロリューゼ−ウント ウムヴェルトテヒニク ゲーエムベーハー Method and apparatus for recovering metals by pulsed cathodic current combined with anodic co-production process
JP2014040639A (en) * 2012-08-23 2014-03-06 Sumitomo Electric Ind Ltd Method for manufacturing a metal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521993B1 (en) * 1966-04-04 1970-02-19 Siemens Ag Process for regenerating a chromic acid solution for etching copper
US3915818A (en) * 1972-10-13 1975-10-28 Corporacion De Fomento De La P Electrowinning process for the improved recovery of metal
US5569370A (en) * 1992-04-01 1996-10-29 Rmg Services Pty. Ltd. Electrochemical system for recovery of metals from their compounds
CH686626A5 (en) * 1992-06-03 1996-05-15 Ecochem Ag Process for the direct electrochemical refining of copper scrap.
US6309531B1 (en) * 1998-05-08 2001-10-30 Usf Filtration And Separations Group, Inc. Process for extracting copper or iron
CN1236082C (en) * 2002-10-31 2006-01-11 云南铜业科技发展股份有限公司 Wet method copper-extracting process
FI120438B (en) * 2006-08-11 2009-10-30 Outotec Oyj A method for forming a metal powder
US20100089763A1 (en) * 2006-09-26 2010-04-15 Brackenbury Darron Devices and methods of copper recovery
CN101818250B (en) * 2009-02-27 2012-10-24 浙江华友钴业股份有限公司 Method for processing cobalt-copper-iron alloy
KR20130069419A (en) * 2011-12-15 2013-06-26 미쓰비시 마테리알 가부시키가이샤 Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
US20170321336A1 (en) * 2014-12-11 2017-11-09 Optimizacion De Procesos Mineros S.A. Electrowinning circuit and method for gathering of metal of interest by an ionic exchange interface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893526A (en) * 1972-02-18 1973-12-04
JPS5013217A (en) * 1973-06-11 1975-02-12
JPS5187416A (en) * 1975-01-30 1976-07-31 Nippon Mining Co
US3958983A (en) * 1975-06-19 1976-05-25 The United States Of America As Represented By The Secretary Of The Interior Decomposition of chalcopyrite
JPS5260296A (en) * 1975-11-13 1977-05-18 Nippon Mining Co Ltd Method for electrolytic oxidation of ferrous iron
JPS5328519A (en) * 1976-08-26 1978-03-16 Inspiration Cons Copper Method of recovering metals from anode slime formed in copper refining process
JP2004524443A (en) * 2001-03-12 2004-08-12 アイレンブルガー エレクトロリューゼ−ウント ウムヴェルトテヒニク ゲーエムベーハー Method and apparatus for recovering metals by pulsed cathodic current combined with anodic co-production process
WO2003062498A1 (en) * 2002-01-23 2003-07-31 Peter Kenneth Everett Anodic energy storage in electrolysis of a single halide solution
JP2014040639A (en) * 2012-08-23 2014-03-06 Sumitomo Electric Ind Ltd Method for manufacturing a metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018115580A1 (en) * 2016-12-20 2018-06-28 Aalto University Foundation Sr A method of recovering copper from a dilute metal containing solution
US10934192B2 (en) 2016-12-20 2021-03-02 Aalto University Foundation Sr Method of recovering copper from a dilute metal containing solution

Also Published As

Publication number Publication date
JP6604466B2 (en) 2019-11-13
KR20170130408A (en) 2017-11-28
JP2016180164A (en) 2016-10-13
CN107429413A (en) 2017-12-01
US20180073156A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6604466B2 (en) Copper manufacturing method and copper manufacturing apparatus
Leal et al. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications
JPH01294368A (en) Preparation of electrolyte for redox flow battery
JP5971521B2 (en) Metal manufacturing method
US20230080556A1 (en) A process for recovering metals from recycled rechargeable batteries
EP3715484B1 (en) Method for treating lithium ion battery waste
JP2012126945A (en) Method for separating cathode active material and method for recovering valuable metal from lithium ion battery
CN110373548A (en) A kind of useless circuit board wet process detin technique
US20210317547A1 (en) Process for recovering metals from recycled rechargeable batteries
CN102367577B (en) Method for preparing Na2[Pb(OH)4] solution and method for recycling lead from lead-containing waste
Keskitalo et al. Analysis of key patents of the regeneration of acidic cupric chloride etchant waste and tin stripping waste
KR102460255B1 (en) Purification method of cobalt chloride aqueous solution
WO1990015171A1 (en) Process for electroplating metals
WO2014192581A1 (en) METHOD AND DEVICE FOR TREATING IODINE-CONTAINING ETCHING SOLUTION WHICH CONTAINS Au
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
CN115367776B (en) Recovery method of lithium iron phosphate battery
CN110499521B (en) Method for cooperatively purifying and treating copper electrolyte and copper and tin slag
JP3882074B2 (en) Method and apparatus for recovering metallic copper from copper metal waste
JP4966460B2 (en) Collection method of valuable metals
CN113667980B (en) Method and system for closed-loop regeneration of acidic etching solution
CN205710923U (en) HDI plate etching liquid electrolytic regeneration device
CN112210790B (en) Treatment method of copper anode slime copper separating liquid
CN108642519B (en) Environment-friendly zinc electrolysis process
JP2012092447A (en) Electrolytic extracting method of cobalt
JP2007308326A (en) Method for producing nickel oxyhydroxide for battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557892

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177026195

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886501

Country of ref document: EP

Kind code of ref document: A1