WO2016151696A1 - Vehicle power control device - Google Patents

Vehicle power control device Download PDF

Info

Publication number
WO2016151696A1
WO2016151696A1 PCT/JP2015/058560 JP2015058560W WO2016151696A1 WO 2016151696 A1 WO2016151696 A1 WO 2016151696A1 JP 2015058560 W JP2015058560 W JP 2015058560W WO 2016151696 A1 WO2016151696 A1 WO 2016151696A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
charging rate
power
vehicle
battery
Prior art date
Application number
PCT/JP2015/058560
Other languages
French (fr)
Japanese (ja)
Inventor
亮二 加藤
市川 耕司
晶士 ▲高▼橋
一芳 中根
川島 一仁
渡邊 哲也
田代 圭介
Original Assignee
三菱自動車工業株式会社
三菱自動車エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社, 三菱自動車エンジニアリング株式会社 filed Critical 三菱自動車工業株式会社
Priority to PCT/JP2015/058560 priority Critical patent/WO2016151696A1/en
Priority to JP2017507162A priority patent/JP6270010B2/en
Publication of WO2016151696A1 publication Critical patent/WO2016151696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to power generation control technology of a power generation unit mounted on a vehicle driven by an electric motor.
  • a vehicle equipped with a range extender which is a power generation unit, has been developed.
  • the range extender is composed of, for example, a small-sized generator-only engine and a generator, and increases the cruising distance of the electric vehicle by supplying the generated electric power to the electric motor or using it to charge the on-vehicle battery. be able to.
  • development of a fuel cell advances in recent years, and the vehicle carrying a fuel cell is proposed.
  • vehicles using fuel cells instead of engines have been proposed as range extenders for electric vehicles.
  • Patent Document 1 in a vehicle equipped with a fuel cell, the fuel cell and the battery are supplied to the electric motor as a power supply source, and driving wheels can be driven to travel. Furthermore, Patent Document 1 discloses a technology for controlling the output of a fuel cell so that the battery charging rate (SOC) is maintained at a target charging rate set near the lower limit value after the battery power is used. It is done.
  • SOC battery charging rate
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a power control system of a vehicle capable of suppressing fuel consumption of a power generation unit such as a fuel cell. .
  • a power control device for a vehicle is a power generation device for consuming fuel and generating power, and a power control device for a vehicle for supplying power from a battery to a driving motor. Switching to a second mode in which the power generation unit is forcibly activated and travels from a first mode in which the power generation unit is stopped and the electric motor is driven to travel by electric power supplied from the battery for traveling.
  • a power generation control unit for controlling the power generation output of the power generation unit, wherein the power generation control unit selects the first mode at the start of traveling of the vehicle, and the mode selection unit Control the power generation output of the power generation unit to a predetermined value until the charging rate of the battery falls below a predetermined target charging rate after the second mode is selected. And wherein the Rukoto.
  • the power generation control unit continues the power generation unit until the charge ratio of the power generation unit becomes less than the target charge ratio after the start of traveling of the vehicle. It is preferable to stop and drive the electric motor by the power supplied from the battery.
  • an ultimate target charging rate setting unit for setting the ultimate target charging rate may be provided.
  • the battery pack further includes a charging rate detection unit that detects a current charging rate of the battery, and the power generation control unit detects the current charging rate of the power generation unit when the charging rate of the power generation unit is less than the target charging rate. The power generation output may be controlled based on the difference between the target charging rate and the current charging rate.
  • the fuel cell system further includes a fuel remaining amount detection unit that detects a fuel remaining amount of the power generation unit, and a power generation start determination unit that determines a power generation start of the power generation unit based on power consumption of the vehicle.
  • the control unit sets a target charging rate of the battery so as to decrease as the remaining amount of fuel decreases when the power generation start is determined, and controls the power generation output based on the target charging rate. It is good to do.
  • the power generation start determination unit calculates the vehicle speed equivalent value based on the power consumption of the vehicle, and determines the power generation start when the vehicle speed equivalent value exceeds a predetermined threshold.
  • the battery pack further includes a charging rate detection unit that detects a current charging rate of the battery, and the power generation control unit determines whether the target charging rate and the current charging rate are determined when the power generation start is determined.
  • the power generation output may be controlled based on the difference.
  • the power generation unit is a fuel cell.
  • the first mode in which the electric motor is driven by the electric power supplied from the battery is selected when the vehicle starts traveling, and the second mode is selected. Since the power generation output of the power generation unit is controlled to a constant predetermined value until the charging rate of the battery falls below the predetermined reaching target charging rate, the battery charging rate falls below the predetermined reaching target charging rate.
  • the power generation output of the power generation unit is controlled to a constant predetermined value until the charging rate of the battery falls below the predetermined reaching target charging rate, the battery charging rate falls below the predetermined reaching target charging rate.
  • FIG. 1 is a schematic configuration diagram of a drive system of a vehicle 1 according to an embodiment of the present invention.
  • a vehicle 1 adopting a power control device 2 according to an embodiment of the present invention is an electric vehicle that drives left and right traveling drive wheels 5 with an electric motor 3 via a differential 4.
  • a battery 6 and a fuel cell 8 are mounted on the vehicle 1 as a power supply device for supplying electric power to the electric motor 3 for driving.
  • the fuel cell 8 generates electric power using hydrogen stored in a fuel tank 9 mounted on a vehicle.
  • the electric power generated by the fuel cell 8 is supplied to the primary side of the DC-DC converter 10 and boosted, and can be supplied from the secondary side of the DC-DC converter 10 to the electric motor 3 through the inverter 11.
  • the battery 6 can supply power to the electric motor 3 via the inverter 11.
  • the fuel cell 8 and the battery 6 via the DC-DC converter 10 are connected in parallel, and the surplus power of the power output from the fuel cell 8 is supplied to the battery 6 to charge the battery 6.
  • the power output from the power generation unit 7 is insufficient for the power required to drive the electric motor 3, the power is supplied from the battery 6.
  • a charger 12 is mounted on the vehicle 1.
  • the charger 12 is an AC-DC converter, which converts an AC voltage supplied from an external power supply through an outlet 13 into a direct current, and supplies it to the battery 6 to enable charging of the battery 6.
  • the fuel tank 9 is provided with a fuel remaining amount detector 20 (fuel remaining amount detecting unit) for detecting a fuel remaining amount (hydrogen remaining amount).
  • the battery 6 is provided with a battery monitoring unit 21 (charging rate detection unit) that monitors the charging rate of the battery 6.
  • the vehicle 1 is provided with a mode switching device 23 (mode selection unit) which can be operated by the driver, a goal target charge ratio setting device 24 (target goal charge ratio setting unit), and a travelable distance display device 25.
  • Mode switching device 23 can be switched between EV priority mode (first mode) and TOTAL fuel consumption priority mode (second mode), and it is compulsorily forced at the start of traveling or at the time of READY ON (when vehicle power is on). It is selected to the EV priority mode, and the TOTAL fuel consumption priority mode can be selected by the driver's operation.
  • the EV priority mode is a mode in which the power of the battery 6 is used with priority
  • the TOTAL fuel consumption priority mode is a mode in which the power of both the battery 6 and the fuel cell 8 is used to reduce the fuel consumption.
  • the reaching target charging rate setting device 24 is a device that sets the reaching target charging rate SOCb, which is the charging rate of the battery 6 to be secured at the minimum when traveling of the vehicle 1 ends, and can be set by the driver.
  • the travelable distance display device 25 is disposed at a position visible to the driver, and has a function of displaying the travelable distance using only the power of the battery 6 described later.
  • the control unit 22 (power generation start determination unit, power generation control unit) includes a CPU (central processing unit), a storage device (ROM, RAM), an input / output interface, and the like. Fuel remaining amount, charge rate of the battery 6 from the battery monitoring unit 21, mode selected from the mode switching device 23, target charge rate SOCb from the target charge rate setting device 24 and accelerator operation amount of the other vehicle 1, air conditioners, etc. It inputs vehicle operation information such as operation information of in-vehicle devices, performs operation control of the electric motor 3 through the inverter 11, and performs output control of the fuel cell 8 through the DC-DC converter 10, and switches the mode switching device 23 The travelable distance is displayed by the travelable distance display device 25 as a reference for the operation.
  • the control unit 22 inputs the charging rate of the battery 6 from the battery monitoring unit 21 when the vehicle 1 is READY ON, that is, when the vehicle starts traveling, and the traveling distance with only the power of the battery 6 during normal traveling on a flat ground Calculate and display. If the driver intends to drive at a distance equal to or less than the travelable distance, the driver should set the EV priority mode without operating the mode switching device 23, and if driving at a distance longer than the travelable distance, The mode switching device 23 may be switched to the TOTAL fuel consumption priority mode.
  • FIG. 2 is a graph showing an example of the transition of the charging rate of the battery 6, the remaining amount of fuel, and the power generation output when the vehicle travels in the EV priority mode and the TOTAL fuel consumption priority mode of this embodiment.
  • FIG. 2 From the state where the charging rate SOC of the battery 6 is 100% and the remaining amount of fuel is a value Qfa close to 100%, until the vehicle 1 starts traveling and maximum possible traveling ends A) The transition of the charging rate SOC of the battery 6, (B) the remaining amount of fuel Qf, and (C) the power generation output Pf of the fuel cell 8 is shown.
  • the solid line indicates the TOTAL fuel consumption priority mode
  • the broken line indicates the EV priority mode.
  • the control unit 22 performs output control of the fuel cell 8 in the EV priority mode from when the vehicle travel starts until the operation to the TOTAL fuel consumption priority mode is input in the mode switching device 23.
  • the control unit 22 sequentially inputs the charging rate SOC of the battery 6 from the battery monitoring unit 21, and as shown by the broken line in FIG. Power generation by the fuel cell 8 is not performed until it becomes less than the arrival target charge ratio SOCb input in the arrival target charge ratio setting device 24. Therefore, all the vehicle power consumption is not covered by the output from battery 6, and the charging rate SOC of battery 6 is lowered accordingly. Then, after the charging rate SOC of the battery 6 reaches the reaching target charging rate SOCb, the deviation between the current charging rate SOC and the reaching target charging rate SOCb is maintained so that the charging rate SOC maintains the reaching target charging rate SOCb. Power is supplied from the fuel cell 8 on the basis of this.
  • the power generation output is set to a predetermined value Pf1.
  • the fuel cell 8 generally has low output and high output efficiency. Then, after the charging rate SOC of the battery 6 reaches the reaching target charging rate SOCb, the current charging rate SOC and the reaching target are maintained so that the charging rate SOC maintains the reaching target charging rate SOCb as in the EV priority mode.
  • Electric power is supplied from the fuel cell 8 based on the deviation from the charging rate SOCb.
  • the EV priority mode is set as it is after the start of traveling, only the electric power of the battery 6 is used until it reaches the ultimate target charging rate SOCb. Therefore, when the traveling distance is short and the traveling is ended only by the electric power of the battery 6, the fuel is not consumed.
  • the fuel cell 8 when the mode is switched to the TOTAL fuel consumption priority mode, the fuel cell 8 generates electric power with a low output, so that the decrease in the charging rate SOC is suppressed. As a result, the timing at which the charging rate SOC decreases until reaching the target charging rate SOCb can be delayed after the EV priority mode.
  • the fuel cell 8 In the TOTAL fuel consumption priority mode, the fuel cell 8 generates power at a low output with high output efficiency (predetermined value Pf1) until the state of charge SOC reaches the target state of charge SOCb after power generation starts, so fuel consumption is suppressed.
  • the TOTAL fuel consumption priority mode fuel is not consumed until the charging rate reaches the target charging rate SOCb, but after reaching the target charging rate SOCb, the output according to the vehicle power consumption is increased and fuel consumption is significantly increased. The fuel level will soon decrease.
  • the TOTAL fuel consumption priority mode a long power generation time with reduced fuel consumption is ensured, and the vehicle travels longer than the distance that can be traveled only by the power of the battery 6, for example, up to the time of (a) in FIG. In this case, the remaining amount of fuel can be suppressed more than in the EV priority mode.
  • the TOTAL fuel consumption priority mode the travelable time can be extended and the cruising distance can be increased.
  • the control unit 22 performs the power generation start determination to determine the high output and high speed traveling state of the vehicle 1 when the vehicle is traveling (power generation start determination unit).
  • the control unit 22 sequentially calculates the vehicle power consumption obtained by adding the power consumption of the electric motor 3 and the power consumption of other in-vehicle devices, smoothes the vehicle power consumption using a filter or the like, and obtains the vehicle speed change equivalent value. .
  • the predetermined threshold value Va and the predetermined time Ta may be appropriately set to values capable of determining that the vehicle is in a high output / high speed traveling state in which the output efficiency from the fuel cell 8 is reduced.
  • the power generation start determination is also performed at that time.
  • the control unit 22 further calculates and controls the power generation output Pf of the fuel cell 8 every predetermined calculation cycle (for example, several msec) after the power generation start determination.
  • the power generation output Pf is calculated by the following equation (1).
  • Pf ⁇ ⁇ (SOCt ⁇ SOC) (1)
  • SOC is the current charging rate of the battery 6 input from the battery monitoring unit 21.
  • the SOCt is a target charging rate, and is calculated at each predetermined operation cycle together with the equation (1) according to the following equation (2).
  • is an output gain, for example, 0 when the charging rate SOC is higher than the target charging rate SOCt, and when the charging rate SOC is lower than the target charging rate SOCt, the difference between the target charging rate SOCt and the charging rate SOC increases Accordingly, the output gain ⁇ may be set to increase.
  • SOCt SOCb + (SOCa-SOCb) ⁇ ⁇ (Qf-Qfb) / (Qfa-Qfb) ⁇ (2)
  • SOCa is a start charging rate, and is used by storing the charging rate of the battery 6 when it is determined that the power generation has been started.
  • Qf is the present fuel remaining amount input from the fuel remaining amount detector 20, and Qfa is the start fuel remaining amount.
  • the start time fuel remaining amount Qfa is used by storing the fuel remaining amount when it is determined that the power generation is started.
  • Qfb is the attainment target fuel remaining amount, which is at least the remaining amount of fuel required when traveling of the vehicle is completed.
  • the reaching target fuel remaining amount Qfb may be settable by the driver, or may be set in advance to a positive value close to zero, for example.
  • FIG. 3 shows an example of the transition of the charge ratio of the battery 6, the remaining amount of fuel, and the power generation output when the vehicle travels in the EV priority mode in the low output / low speed traveling state and the high power / high speed traveling state of this embodiment.
  • C Change of the power generation output Pf of the fuel cell 8 is shown.
  • FIG. 3 shows an example of the transition of the charge ratio of the battery 6, the remaining amount of fuel, and the power generation output when the vehicle travels in the EV priority mode in the low output / low speed traveling state and the high power / high speed traveling state of this embodiment.
  • the solid line is the transition in the high power / high speed running state where the power generation output Pf is set using the above equations (1) and (2), and the broken line is the EV priority mode in the low power / low speed running state. Shows the transition in Moreover, the dashed-two dotted line in FIG. 2 (A) has shown transition of the target charging rate SOCt set in the high output and high-speed driving state.
  • the charging rate SOC of the battery 6 reaches even in the EV priority mode. Even if it does not decrease to the target charging rate SOCb, it is determined that the power generation is started, and the power generation of the fuel cell 8 is started. Therefore, as shown in FIG. 3, power generation is started earlier in the high power / high speed traveling state than in the EV priority mode in the low power / low speed traveling state. Thus, by starting power generation early, the output of the fuel cell 8 can be suppressed, and the shortage for the vehicle power consumption is compensated by the output from the battery 6.
  • the target charging rate SOCt is set to decrease as the fuel remaining amount Qf decreases, and the fuel remaining amount Qf reaches the target fuel remaining amount Qfb and the target charging rate SOCt
  • the target charging rate SOCt is set so as to simultaneously reach the reaching target charging rate SOCb. Then, since the power generation output Pf is calculated based on the difference between the target charging rate SOCt and the current charging rate SOC, feedback control is accurately performed so that the charging rate SOC matches the target charging rate SOCt.
  • the target charging rate SOCt gradually decreases with the decrease of the remaining fuel amount Qf, and is controlled so as to reach the reaching target charging rate SOCb at the same time as the remaining fuel amount Qf reaches the target fuel remaining amount Qfb.
  • the actual charging rate SOC of the battery 6 also reaches the target charging rate SOCb substantially simultaneously with the target charging rate SOCt. Therefore, from the state where the charge rate of battery 6 is 100% and the remaining fuel amount at the time of start fuel remaining amount Qfa, the distance traveled by the vehicle can be maximized until reaching the target charging rate SOCb and remaining fuel amount Qfb It becomes a distance.
  • the fuel cell 8 outputs the fuel until the remaining fuel amount Qf reaches the attainment target fuel remaining amount Qfb, and the target charging rate SOCt is gradually decreased with the decrease of the remaining fuel amount Qf.
  • the fuel cell 8 outputs the fuel until the remaining fuel amount Qf reaches the attainment target fuel remaining amount Qfb, and the target charging rate SOCt is gradually decreased with the decrease of the remaining fuel amount Qf.
  • the charging rate SOC of the battery 6 has already reached the target charging rate SOCb after the start of power generation, it is difficult to increase the output from the battery 6,
  • the output from the fuel cell 8 must be largely increased in accordance with the fluctuation.
  • the charging rate SOC exceeds the target charging rate SOCb in the period from the start of power generation to the end of the run, so even if the vehicle power consumption temporarily increases
  • the output from 6 can be increased to suppress the fluctuation of the output of the fuel cell 8.
  • the charge start timing is advanced and the remaining fuel amount Qf decreases until the remaining fuel amount Qf reaches the target fuel remaining amount Qfb.
  • the target charging rate SOCt it is possible to secure the power generation time and keep the output of the fuel cell 8 constant. Since the fuel cell 8 generally decreases in efficiency as the output increases, the output of the fuel cell 8 is suppressed, and the efficiency of the fuel cell 8 is improved. Further, since the fluctuation of the output of the fuel cell 8 can be suppressed also against the fluctuation of the vehicle power consumption, the efficiency of the fuel cell 8 can be improved also in this respect.
  • the fuel cell 8 can be efficiently generated, fuel consumption can be suppressed, and the cruising distance can be increased.
  • the low power / low speed traveling state in the EV priority mode although the power generation start determination is not performed early, since the power consumption of the electric motor 3 is small, the fuel cell 8 does not need to have a high output. The decline is suppressed.
  • the power generation start determination is performed based on the vehicle speed equivalent value calculated by smoothing the vehicle power consumption, and the vehicle has high output and high speed when the vehicle speed equivalent value exceeds the threshold value Va for a predetermined time or more. It is determined to start power generation, assuming that the vehicle is in a traveling state. Therefore, by judging the power generation start determination based on the vehicle speed equivalent value obtained by smoothing the vehicle power consumption, the vehicle is not easily affected by the uphill or the downhill, and the influence of the output fluctuation due to acceleration and deceleration is also suppressed. It is possible to stably and accurately determine the high power / high speed running condition of the vehicle.
  • the mode of the invention is not limited to this embodiment.
  • the present embodiment has the function of setting the target state of charge SOCt and extending the cruising distance in the high power / high speed traveling state, this function may be deleted.
  • the present invention can suppress fuel consumption when traveling longer than the distance that can be traveled solely by the power from the battery 6.
  • the fuel cell 8 is used as a power generation unit, but instead of the fuel cell 8, a unit in which an engine and a generator are combined may be used.
  • the vehicle is a hybrid vehicle capable of series mode, but even in such a vehicle, the generator and the engine are drive-controlled to control the output from the generator in the same manner as the output control of the fuel cell. By doing this, the engine can be operated efficiently and the cruising distance can be increased.
  • Fuel cell 1 vehicle 3 electric motor 6 battery 8 fuel cell (power generation unit) 20 Fuel level detector (fuel level detector) 21 Battery monitoring unit (charging rate detection unit) 22 Control unit (generation start determination unit, generation control unit) 23 Mode Switching Device (Mode Selection Unit) 24 Target goal charging rate setting device (target goal charging rate setting unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

A power control device 2 for a vehicle 1, that supplies power to an electric motor 3 for travel drive, supplying said power from a battery 6 and a fuel cell 8 that are mounted in the vehicle 1. A control unit 22: selects an EV travel mode when the vehicle 1 starts to travel; drives the electric motor 3 using power from the battery 6 and causes the vehicle to travel; and, if a TOTAL fuel consumption priority mode is selected by a mode switching device 23, controls power generation output Pf for the fuel cell 8 constantly at a prescribed low output value Pf1, until the state of charge SOC of the battery 6 falls below a prescribed target arrival state of charge SOCb.

Description

車両の電力制御装置Power control device for vehicle
 本発明は、電気モータで走行駆動する車両に搭載した発電ユニットの発電制御技術に関する。 The present invention relates to power generation control technology of a power generation unit mounted on a vehicle driven by an electric motor.
 車載バッテリから供給された電力により電気モータを駆動して走行する電気自動車において、発電ユニットであるレンジエクステンダーを搭載した車両が開発されている。レンジエクステンダーは、例えば小型の発電専用エンジンと発電機とから構成されており、発電した電力を電気モータに供給したり車載バッテリの充電に使用したりすることで、電気自動車の航続距離を増加させることができる。
 ところで、近年では燃料電池の開発が進み、燃料電池を搭載した車両が提案されている。更に、電気自動車のレンジエクステンダーとして、エンジンの代わりに燃料電池を用いる車両が提案されている。
 例えば、特許文献1では、燃料電池を搭載した車両において、燃料電池とバッテリを電力供給源として電気モータに供給して駆動輪を駆動し走行可能になっている。更に特許文献1では、バッテリの電力が使用された後に、当該バッテリの充電率(SOC)が下限値に近く設定された目標充電率に維持されるように燃料電池の出力を制御する技術が開示されている。
In an electric vehicle that travels by driving an electric motor with power supplied from an on-board battery, a vehicle equipped with a range extender, which is a power generation unit, has been developed. The range extender is composed of, for example, a small-sized generator-only engine and a generator, and increases the cruising distance of the electric vehicle by supplying the generated electric power to the electric motor or using it to charge the on-vehicle battery. be able to.
By the way, development of a fuel cell advances in recent years, and the vehicle carrying a fuel cell is proposed. Furthermore, vehicles using fuel cells instead of engines have been proposed as range extenders for electric vehicles.
For example, in Patent Document 1, in a vehicle equipped with a fuel cell, the fuel cell and the battery are supplied to the electric motor as a power supply source, and driving wheels can be driven to travel. Furthermore, Patent Document 1 discloses a technology for controlling the output of a fuel cell so that the battery charging rate (SOC) is maintained at a target charging rate set near the lower limit value after the battery power is used. It is done.
特許第5101583号公報Patent No. 5101583
 上記特許文献1に開示された車両では、バッテリの充電率が目標充電率に到達するまではバッテリから電気モータへ電力が供給され、バッテリの充電率が目標充電率より低下した場合には、電気モータ等で使用する車両の消費電力をまかなうとともに目標充電率を維持するように、バッテリの現在の充電率と目標充電率との差に基づいて燃料電池からの出力を制御する。 In the vehicle disclosed in the above-mentioned Patent Document 1, power is supplied from the battery to the electric motor until the charging rate of the battery reaches the target charging rate, and when the charging rate of the battery falls below the target charging rate, electricity is supplied. The output from the fuel cell is controlled based on the difference between the current charging rate of the battery and the target charging rate so as to cover the power consumption of the vehicle used by a motor or the like and to maintain the target charging rate.
 しかしながら、燃料電池は一般的に出力が増加したり、出力が変動したりすると効率が低下する。また、燃料電池の代わりにエンジン駆動の発電機を使用したとしてもエンジンの効率のよい回転速度範囲が限られている。したがって、特許文献1のように目標充電率に達してから充電率と目標充電率とに基づいて発電ユニットの発電出力を設定すると、車両消費電力に足りるように発電ユニットから出力させなければならず、特に高速走行時のように車両消費電力が高い場合、あるいは車両消費電力が変動する場合には、発電ユニットの効率が低下してしまう可能性がある。したがって、バッテリの電力を消費してからの走行時に燃料を多く消費してしまうといった問題点がある。 However, fuel cells generally decrease in efficiency if their output increases or fluctuates. Further, even if an engine-driven generator is used instead of the fuel cell, the efficient rotational speed range of the engine is limited. Therefore, if the power generation output of the power generation unit is set based on the charge ratio and the target charge ratio after reaching the target charge ratio as in Patent Document 1, the power generation unit must output the power generation unit so as to be sufficient for the vehicle power consumption. In particular, when the vehicle power consumption is high as when traveling at high speed, or when the vehicle power consumption fluctuates, the efficiency of the power generation unit may be reduced. Therefore, there is a problem that a large amount of fuel is consumed when traveling after the battery power is consumed.
 本発明は、この様な問題を解決するためになされたもので、その目的とするところは、燃料電池等の発電ユニットの燃料消費を抑えることのできる車両の電力制御装置を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a power control system of a vehicle capable of suppressing fuel consumption of a power generation unit such as a fuel cell. .
 上記の目的を達成するために、本願発明の車両の電力制御装置は、燃料を消費して発電する発電ユニット及びバッテリから走行駆動用の電気モータに電力を供給する車両の電力制御装置であって、前記発電ユニットを停止させて前記バッテリから供給される電力により前記電気モータを駆動して走行する第1のモードから前記発電ユニットを強制的に起動させて走行する第2のモードへ切り替え選択をするモード選択部と、前記発電ユニットの発電出力を制御する発電制御部と、を備え、前記発電制御部は、前記車両の走行開始の際に前記第1のモードを選択し、前記モード選択部により前記第2のモードが選択されてから前記バッテリの充電率が所定の到達目標充電率未満となるまで、前記発電ユニットの発電出力を一定の所定値に制御することを特徴とする。 In order to achieve the above object, a power control device for a vehicle according to the present invention is a power generation device for consuming fuel and generating power, and a power control device for a vehicle for supplying power from a battery to a driving motor. Switching to a second mode in which the power generation unit is forcibly activated and travels from a first mode in which the power generation unit is stopped and the electric motor is driven to travel by electric power supplied from the battery for traveling. And a power generation control unit for controlling the power generation output of the power generation unit, wherein the power generation control unit selects the first mode at the start of traveling of the vehicle, and the mode selection unit Control the power generation output of the power generation unit to a predetermined value until the charging rate of the battery falls below a predetermined target charging rate after the second mode is selected. And wherein the Rukoto.
 また、好ましくは、前記発電制御部は、前記第1のモードが選択されているときには、前記車両の走行開始から前記発電ユニットの充電率が前記到達目標充電率未満となるまで、前記発電ユニットを停止させて前記バッテリから供給される電力により前記電気モータを駆動させるとよい。
 また、好ましくは、前記到達目標充電率を設定する到達目標充電率設定部を備えるとよい。
 また、好ましくは、前記前記バッテリの現在の充電率を検出する充電率検出部を備え、前記発電制御部は、前記発電ユニットの充電率が前記到達目標充電率未満となった際には、前記到達目標充電率と前記現在の充電率との差に基づいて前記発電出力を制御するとよい。
In addition, preferably, when the first mode is selected, the power generation control unit continues the power generation unit until the charge ratio of the power generation unit becomes less than the target charge ratio after the start of traveling of the vehicle. It is preferable to stop and drive the electric motor by the power supplied from the battery.
In addition, preferably, an ultimate target charging rate setting unit for setting the ultimate target charging rate may be provided.
Preferably, the battery pack further includes a charging rate detection unit that detects a current charging rate of the battery, and the power generation control unit detects the current charging rate of the power generation unit when the charging rate of the power generation unit is less than the target charging rate. The power generation output may be controlled based on the difference between the target charging rate and the current charging rate.
 また、好ましくは、前記発電ユニットの燃料残量を検出する燃料残量検出部と、前記車両の消費電力に基づいて前記発電ユニットの発電開始判定をする発電開始判定部と、を備え、前記発電制御部は、前記発電開始判定された際には、前記燃料残量が減少するに伴って減少するように前記バッテリの目標充電率を設定し、前記目標充電率に基づいて前記発電出力を制御するとよい。
 また、好ましくは、前記発電開始判定部は、前記車両の消費電力に基づいて車速相当値を演算し、当該車速相当値が所定の閾値を超えた際に前記発電開始判定するとよい。
 また、好ましくは、前記バッテリの現在の充電率を検出する充電率検出部を備え、前記発電制御部は、前記発電開始判定された際には、前記目標充電率と前記現在の充電率との差に基づいて前記発電出力を制御するとよい。
 また、好ましくは、前記発電ユニットは、燃料電池であるとよい。
Preferably, the fuel cell system further includes a fuel remaining amount detection unit that detects a fuel remaining amount of the power generation unit, and a power generation start determination unit that determines a power generation start of the power generation unit based on power consumption of the vehicle. The control unit sets a target charging rate of the battery so as to decrease as the remaining amount of fuel decreases when the power generation start is determined, and controls the power generation output based on the target charging rate. It is good to do.
Preferably, the power generation start determination unit calculates the vehicle speed equivalent value based on the power consumption of the vehicle, and determines the power generation start when the vehicle speed equivalent value exceeds a predetermined threshold.
Preferably, the battery pack further includes a charging rate detection unit that detects a current charging rate of the battery, and the power generation control unit determines whether the target charging rate and the current charging rate are determined when the power generation start is determined. The power generation output may be controlled based on the difference.
Also preferably, the power generation unit is a fuel cell.
 本願発明の車両の電力制御装置によれば、車両の走行開始の際にバッテリから供給される電力により電気モータを駆動して走行する第1のモードを選択し、第2のモードが選択されてからはバッテリの充電率が所定の到達目標充電率未満となるまで、発電ユニットの発電出力が一定の所定値に制御されるので、バッテリの充電率が所定の到達目標充電率未満となる前に発電ユニットにより発電を開始することでバッテリの充電率低下を遅らせることができる。充電率が所定の到達目標充電率未満となるまでは、発電により燃料を消費するが効率の高い一定の発電出力で発電できるので、燃料消費を抑えられる。そして、バッテリの充電率低下を遅らせることで、充電率が到達目標充電率未満となった以降の燃料消費効率が悪化する運転を遅延させて、車両走行開始から終了までの全体での燃料消費を抑制することができる。 According to the power control device for a vehicle of the present invention, the first mode in which the electric motor is driven by the electric power supplied from the battery is selected when the vehicle starts traveling, and the second mode is selected. Since the power generation output of the power generation unit is controlled to a constant predetermined value until the charging rate of the battery falls below the predetermined reaching target charging rate, the battery charging rate falls below the predetermined reaching target charging rate. By starting power generation by the power generation unit, it is possible to delay the decrease in the charging rate of the battery. Since fuel can be consumed by power generation but can be generated with a constant high power generation output until the charging rate becomes less than the predetermined target charging rate, fuel consumption can be suppressed. Then, by delaying the decrease in the battery charge rate, the fuel consumption efficiency after the charge rate becomes less than the target charge rate is delayed, thereby delaying the operation of the fuel consumption from the start to the end of vehicle travel. It can be suppressed.
本発明の一実施形態に係る電気自動車の駆動系の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the drive system of the electric vehicle which concerns on one Embodiment of this invention. 本実施形態のEV優先モード及びTOTAL燃費優先モードでの車両走行時における充電率、燃料残量、発電出力の推移の一例を示すグラフである。It is a graph which shows an example of transition of the charge rate at the time of vehicle travel in EV priority mode of this embodiment, and TOTAL fuel consumption priority mode, fuel residual amount, and power generation output. 本実施形態の低出力・低速走行状態でのEV優先モードと、高出力・高速走行状態とでの車両走行時における充電率、燃料残量、発電出力の推移の一例を示すグラフである。It is a graph which shows an example of transition of the charge rate, fuel residual amount, and power generation output at the time of vehicle travel in EV priority mode in the low output and low speed traveling state of this embodiment, and high output and high speed traveling state.
 以下、本発明の実施形態を図面に基づき説明する。
 図1は、本発明の一実施形態に係る車両1の駆動系の概略構成図である。
 本発明の一実施形態に係る電力制御装置2を採用した車両1は、電気モータ3によりデフ4を介して左右の走行駆動輪5を駆動する電気自動車である。
 車両1には、走行駆動用の電気モータ3に電力を供給する電源装置として、バッテリ6と燃料電池8を搭載している。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a schematic configuration diagram of a drive system of a vehicle 1 according to an embodiment of the present invention.
A vehicle 1 adopting a power control device 2 according to an embodiment of the present invention is an electric vehicle that drives left and right traveling drive wheels 5 with an electric motor 3 via a differential 4.
A battery 6 and a fuel cell 8 are mounted on the vehicle 1 as a power supply device for supplying electric power to the electric motor 3 for driving.
 燃料電池8は、車両に搭載した燃料タンク9に貯蔵された水素を燃料として発電する。燃料電池8によって発電された電力は、DC-DCコンバータ10の1次側に供給されて昇圧され、DC-DCコンバータ10の2次側からインバータ11を介して電気モータ3に供給可能となっている。また、バッテリ6はインバータ11を介して電気モータ3に電力を供給可能となっている。
 DC-DCコンバータ10を介した燃料電池8とバッテリ6とは並列に接続されており、燃料電池8から出力された電力の余剰電力は、バッテリ6に供給されてバッテリ6を充電する。また、電気モータ3の駆動に必要な電力に対して発電ユニット7から出力された電力が不足する場合には、バッテリ6から電力が供給される。
The fuel cell 8 generates electric power using hydrogen stored in a fuel tank 9 mounted on a vehicle. The electric power generated by the fuel cell 8 is supplied to the primary side of the DC-DC converter 10 and boosted, and can be supplied from the secondary side of the DC-DC converter 10 to the electric motor 3 through the inverter 11. There is. Further, the battery 6 can supply power to the electric motor 3 via the inverter 11.
The fuel cell 8 and the battery 6 via the DC-DC converter 10 are connected in parallel, and the surplus power of the power output from the fuel cell 8 is supplied to the battery 6 to charge the battery 6. When the power output from the power generation unit 7 is insufficient for the power required to drive the electric motor 3, the power is supplied from the battery 6.
 また、車両1には、充電機12が搭載されている。充電機12はAC-DCコンバータであり、コンセント13を介して外部電源から供給された交流電圧を直流に変換し、バッテリ6に供給してバッテリ6の充電を可能としている。
 燃料タンク9には、燃料残量(水素残量)を検出する燃料残量検出器20(燃料残量検出部)が備えられている。また、バッテリ6には、バッテリ6の充電率を監視するバッテリモニタリングユニット21(充電率検出部)が備えられている。
Further, a charger 12 is mounted on the vehicle 1. The charger 12 is an AC-DC converter, which converts an AC voltage supplied from an external power supply through an outlet 13 into a direct current, and supplies it to the battery 6 to enable charging of the battery 6.
The fuel tank 9 is provided with a fuel remaining amount detector 20 (fuel remaining amount detecting unit) for detecting a fuel remaining amount (hydrogen remaining amount). In addition, the battery 6 is provided with a battery monitoring unit 21 (charging rate detection unit) that monitors the charging rate of the battery 6.
 また、車両1には、運転者が操作可能なモード切換装置23(モード選択部)及び到達目標充電率設定装置24(到達目標充電率設定部)と、走行可能距離表示装置25を備えている。モード切換装置23は、EV優先モード(第1のモード)とTOTAL燃費優先モード(第2のモード)に切換可能であり、走行開始時あるいはREADYON時(車両電源オン時)には、強制的にEV優先モードに選択され、運転者の操作によりTOTAL燃費優先モードを選択可能である。EV優先モードは、バッテリ6の電力を優先して使用するモードであり、TOTAL燃費優先モードは、バッテリ6及び燃料電池8の両方の電力を使用して、燃料の消費を抑えるモードである。到達目標充電率設定装置24は、車両1を走行終了した際に、最低限確保すべきバッテリ6の充電率である到達目標充電率SOCbを設定する装置であり、運転者が設定可能である。走行可能距離表示装置25は、運転者に視認可能な位置に配置されており、後述するバッテリ6の電力のみでの走行可能距離を表示する機能を有する。 In addition, the vehicle 1 is provided with a mode switching device 23 (mode selection unit) which can be operated by the driver, a goal target charge ratio setting device 24 (target goal charge ratio setting unit), and a travelable distance display device 25. . Mode switching device 23 can be switched between EV priority mode (first mode) and TOTAL fuel consumption priority mode (second mode), and it is compulsorily forced at the start of traveling or at the time of READY ON (when vehicle power is on). It is selected to the EV priority mode, and the TOTAL fuel consumption priority mode can be selected by the driver's operation. The EV priority mode is a mode in which the power of the battery 6 is used with priority, and the TOTAL fuel consumption priority mode is a mode in which the power of both the battery 6 and the fuel cell 8 is used to reduce the fuel consumption. The reaching target charging rate setting device 24 is a device that sets the reaching target charging rate SOCb, which is the charging rate of the battery 6 to be secured at the minimum when traveling of the vehicle 1 ends, and can be set by the driver. The travelable distance display device 25 is disposed at a position visible to the driver, and has a function of displaying the travelable distance using only the power of the battery 6 described later.
 コントロールユニット22(発電開始判定部、発電制御部)は、CPU(中央演算装置)、記憶装置(ROM、RAM)及び入出力インターフェース等を備えており、燃料残量検出器20から燃料タンク9の燃料残量、バッテリモニタリングユニット21からバッテリ6の充電率、モード切換装置23から選択したモード、到達目標充電率設定装置24から到達目標充電率SOCb、及びその他車両1のアクセル操作量、エアコン等の車載機器の作動情報等の車両運転情報を入力し、インバータ11を介した電気モータ3の作動制御、DC-DCコンバータ10を介した燃料電池8の出力制御を行うとともに、モード切換装置23の切換操作の参考として走行可能距離表示装置25により走行可能距離を表示させる。 The control unit 22 (power generation start determination unit, power generation control unit) includes a CPU (central processing unit), a storage device (ROM, RAM), an input / output interface, and the like. Fuel remaining amount, charge rate of the battery 6 from the battery monitoring unit 21, mode selected from the mode switching device 23, target charge rate SOCb from the target charge rate setting device 24 and accelerator operation amount of the other vehicle 1, air conditioners, etc. It inputs vehicle operation information such as operation information of in-vehicle devices, performs operation control of the electric motor 3 through the inverter 11, and performs output control of the fuel cell 8 through the DC-DC converter 10, and switches the mode switching device 23 The travelable distance is displayed by the travelable distance display device 25 as a reference for the operation.
 コントロールユニット22は、車両1のREADYON時、即ち走行開始する際に、バッテリモニタリングユニット21からバッテリ6の充電率を入力し、平坦地での通常走行でバッテリ6の電力のみでの走行可能距離を演算して表示する。運転者は、この走行可能距離以下の距離の運転をする予定であれば、モード切換装置23を操作せずにEV優先モードとし、走行可能距離よりも長い距離の運転をする予定であれば、モード切換装置23をTOTAL燃費優先モードに切換えればよい。
 図2は、本実施形態のEV優先モード及びTOTAL燃費優先モードでの車両走行時におけるバッテリ6の充電率、燃料残量、発電出力の推移の一例を示すグラフである。
The control unit 22 inputs the charging rate of the battery 6 from the battery monitoring unit 21 when the vehicle 1 is READY ON, that is, when the vehicle starts traveling, and the traveling distance with only the power of the battery 6 during normal traveling on a flat ground Calculate and display. If the driver intends to drive at a distance equal to or less than the travelable distance, the driver should set the EV priority mode without operating the mode switching device 23, and if driving at a distance longer than the travelable distance, The mode switching device 23 may be switched to the TOTAL fuel consumption priority mode.
FIG. 2 is a graph showing an example of the transition of the charging rate of the battery 6, the remaining amount of fuel, and the power generation output when the vehicle travels in the EV priority mode and the TOTAL fuel consumption priority mode of this embodiment.
 図2では、バッテリ6の充電率SOCが100%でありかつ燃料残量が100%に近い値Qfaである状態から車両1を走行開始して最大限可能な走行が終了するまでの、A)バッテリ6の充電率SOC、(B)燃料残量Qf、(C)燃料電池8の発電出力Pfの推移を示している。図2中において、実線がTOTAL燃費優先モード、破線がEV優先モードを示している。
 コントロールユニット22は、車両走行開始時から、モード切換装置23においてTOTAL燃費優先モードへの操作が入力するまでは、EV優先モードによる燃料電池8の出力制御を行う。
In FIG. 2, from the state where the charging rate SOC of the battery 6 is 100% and the remaining amount of fuel is a value Qfa close to 100%, until the vehicle 1 starts traveling and maximum possible traveling ends A) The transition of the charging rate SOC of the battery 6, (B) the remaining amount of fuel Qf, and (C) the power generation output Pf of the fuel cell 8 is shown. In FIG. 2, the solid line indicates the TOTAL fuel consumption priority mode, and the broken line indicates the EV priority mode.
The control unit 22 performs output control of the fuel cell 8 in the EV priority mode from when the vehicle travel starts until the operation to the TOTAL fuel consumption priority mode is input in the mode switching device 23.
 コントロールユニット22は、TOTAL燃費優先モードの非選択時であるEV優先モードでは、バッテリモニタリングユニット21からバッテリ6の充電率SOCを逐次入力し、図2中破線で示すように、バッテリ充電率SOCが到達目標充電率設定装置24において入力した到達目標充電率SOCb未満となるまで、燃料電池8による発電を行わない。したがって、車両消費電力の全てをバッテリ6からの出力によってまかない、これに伴ってバッテリ6の充電率SOCは低下する。そして、バッテリ6の充電率SOCが到達目標充電率SOCbに達してからは、充電率SOCが到達目標充電率SOCbを維持するように、現在の充電率SOCと到達目標充電率SOCbとの偏差に基づいて、燃料電池8から電力を供給する。 In the EV priority mode when the TOTAL fuel consumption priority mode is not selected, the control unit 22 sequentially inputs the charging rate SOC of the battery 6 from the battery monitoring unit 21, and as shown by the broken line in FIG. Power generation by the fuel cell 8 is not performed until it becomes less than the arrival target charge ratio SOCb input in the arrival target charge ratio setting device 24. Therefore, all the vehicle power consumption is not covered by the output from battery 6, and the charging rate SOC of battery 6 is lowered accordingly. Then, after the charging rate SOC of the battery 6 reaches the reaching target charging rate SOCb, the deviation between the current charging rate SOC and the reaching target charging rate SOCb is maintained so that the charging rate SOC maintains the reaching target charging rate SOCb. Power is supplied from the fuel cell 8 on the basis of this.
 車両を走行開始してから現在の充電率SOCが到達目標充電率SOCbに達する前にモード切換装置23がTOTAL燃費優先モードに切換えられたときに、その時点から燃料電池8の発電が開始され、その発電出力は所定値Pf1に設定される。所定値Pf1は、燃料電池8の出力効率(=発電量/燃料消費量)の最も高い値に設定すればよい。燃料電池8は、一般的に低出力で出力効率が高い。そして、バッテリ6の充電率SOCが到達目標充電率SOCbに達してからは、EV優先モードと同様に、充電率SOCが到達目標充電率SOCbを維持するように、現在の充電率SOCと到達目標充電率SOCbとの偏差に基づいて、燃料電池8から電力を供給する。
 これにより、本実施形態では、走行開始してから、EV優先モードのままに設定されていると、到達目標充電率SOCbに達するまでバッテリ6の電力のみ使用される。したがって、走行距離が短くバッテリ6の電力のみで走行を終了する場合には燃料消費しない。
When the mode switching device 23 is switched to the TOTAL fuel consumption priority mode after the vehicle starts traveling and before the current charging rate SOC reaches the target charging rate SOCb, power generation of the fuel cell 8 is started from that point, The power generation output is set to a predetermined value Pf1. The predetermined value Pf1 may be set to the highest value of the output efficiency of the fuel cell 8 (= generated amount / fuel consumption amount). The fuel cell 8 generally has low output and high output efficiency. Then, after the charging rate SOC of the battery 6 reaches the reaching target charging rate SOCb, the current charging rate SOC and the reaching target are maintained so that the charging rate SOC maintains the reaching target charging rate SOCb as in the EV priority mode. Electric power is supplied from the fuel cell 8 based on the deviation from the charging rate SOCb.
As a result, in the present embodiment, when the EV priority mode is set as it is after the start of traveling, only the electric power of the battery 6 is used until it reaches the ultimate target charging rate SOCb. Therefore, when the traveling distance is short and the traveling is ended only by the electric power of the battery 6, the fuel is not consumed.
 一方、TOTAL燃費優先モードに切換えると、燃料電池8が低出力で発電するので、充電率SOCの低下が抑制される。これにより、充電率SOCが到達目標充電率SOCbに達するまで低下する時期をEV優先モードよりも後に延ばすことができる。TOTAL燃費優先モードでは、発電開始してから充電率SOCが到達目標充電率SOCbに達するまでは、出力効率のよい低出力(所定値Pf1)で燃料電池8が発電するので、燃料の消費が抑えられる。EV優先モードでは、充電率が到達目標充電率SOCbに達するまでは燃料を消費しないものの、到達目標充電率SOCb未満となった後は車両消費電力に応じた出力となり燃料消費が大幅に増加して、すぐに燃料残量が低下してしまう。しかし、TOTAL燃費優先モードでは、燃料消費を抑えた発電時間を長く確保して、例えば図2中の(a)の時点までのように、バッテリ6の電力のみで走行可能な距離よりも長く走行する場合に、EV優先モードよりも燃料残量を抑えることができる。これにより、TOTAL燃費優先モードでは、走行可能な時間を延長し航続距離を増加させることができる。 On the other hand, when the mode is switched to the TOTAL fuel consumption priority mode, the fuel cell 8 generates electric power with a low output, so that the decrease in the charging rate SOC is suppressed. As a result, the timing at which the charging rate SOC decreases until reaching the target charging rate SOCb can be delayed after the EV priority mode. In the TOTAL fuel consumption priority mode, the fuel cell 8 generates power at a low output with high output efficiency (predetermined value Pf1) until the state of charge SOC reaches the target state of charge SOCb after power generation starts, so fuel consumption is suppressed. Be In the EV priority mode, fuel is not consumed until the charging rate reaches the target charging rate SOCb, but after reaching the target charging rate SOCb, the output according to the vehicle power consumption is increased and fuel consumption is significantly increased. The fuel level will soon decrease. However, in the TOTAL fuel consumption priority mode, a long power generation time with reduced fuel consumption is ensured, and the vehicle travels longer than the distance that can be traveled only by the power of the battery 6, for example, up to the time of (a) in FIG. In this case, the remaining amount of fuel can be suppressed more than in the EV priority mode. Thus, in the TOTAL fuel consumption priority mode, the travelable time can be extended and the cruising distance can be increased.
 更に、本実施形態では、モード切換装置23の切換えに拘わらず、高出力・高速走行状態では、航続距離を延長する機能を備えている。
 コントロールユニット22は、車両走行時において、車両1の高出力・高速走行状態を判定する発電開始判定を行う(発電開始判定部)。コントロールユニット22は、電気モータ3の消費電力及びその他の車載機器の消費電力を合計した車両消費電力を逐次演算し、当該車両消費電力をフィルタ等を用いて平滑化して、車速変化相当値を求める。そして、この車速変化相当値が所定時間Ta以上継続してあらかじめ設定された所定の閾値Vaを超えた場合に、車両1が高出力・高速走行状態であるとして発電を開始する判定(発電開始判定)をする。なお、所定の閾値Va及び所定時間Taは、燃料電池8からの出力効率が低下するような高出力・高速走行状態であることを判定できる値に適宜設定すればよい。また、車両消費電力が所定時間Ta以上継続して閾値Vaを超えなくとも、バッテリ6の充電率が到達目標充電率SOCbに達した場合には、その時点においても発電開始判定をする。
Furthermore, in the present embodiment, regardless of the switching of the mode switching device 23, in the high-power and high-speed traveling state, the cruising distance is extended.
The control unit 22 performs the power generation start determination to determine the high output and high speed traveling state of the vehicle 1 when the vehicle is traveling (power generation start determination unit). The control unit 22 sequentially calculates the vehicle power consumption obtained by adding the power consumption of the electric motor 3 and the power consumption of other in-vehicle devices, smoothes the vehicle power consumption using a filter or the like, and obtains the vehicle speed change equivalent value. . Then, when the vehicle speed change equivalent value continues for a predetermined time Ta or more and exceeds a predetermined threshold Va set in advance, it is determined that the power generation is started as the vehicle 1 is in the high output / high speed traveling state (generation start determination )do. The predetermined threshold value Va and the predetermined time Ta may be appropriately set to values capable of determining that the vehicle is in a high output / high speed traveling state in which the output efficiency from the fuel cell 8 is reduced. In addition, even if the vehicle power consumption continues for the predetermined time Ta or more and does not exceed the threshold value Va, when the charging rate of the battery 6 reaches the target charging rate SOCb, the power generation start determination is also performed at that time.
 コントロールユニット22は、更に、発電開始判定された以降では、燃料電池8の発電出力Pfを所定の演算周期(例えば数msec)毎に演算して制御する。発電出力Pfは、以下の式(1)により演算される。
 Pf=α×(SOCt-SOC)・・・(1)
 式(1)において、SOCは、バッテリモニタリングユニット21から入力したバッテリ6の現在の充電率である。SOCtは目標充電率であり、下記の式(2)により式(1)とともに所定の演算周期毎に演算される。αは出力ゲインであり、例えば充電率SOCが目標充電率SOCtより高い場合には0、充電率SOCが目標充電率SOCtより低い場合に目標充電率SOCtと充電率SOCとの差が増加するに伴って出力ゲインαが増加するように設定すればよい。
 SOCt=SOCb+(SOCa-SOCb)×{(Qf-Qfb)/(Qfa-Qfb)}・・・(2)
The control unit 22 further calculates and controls the power generation output Pf of the fuel cell 8 every predetermined calculation cycle (for example, several msec) after the power generation start determination. The power generation output Pf is calculated by the following equation (1).
Pf = α × (SOCt−SOC) (1)
In Equation (1), SOC is the current charging rate of the battery 6 input from the battery monitoring unit 21. The SOCt is a target charging rate, and is calculated at each predetermined operation cycle together with the equation (1) according to the following equation (2). α is an output gain, for example, 0 when the charging rate SOC is higher than the target charging rate SOCt, and when the charging rate SOC is lower than the target charging rate SOCt, the difference between the target charging rate SOCt and the charging rate SOC increases Accordingly, the output gain α may be set to increase.
SOCt = SOCb + (SOCa-SOCb) × {(Qf-Qfb) / (Qfa-Qfb)} (2)
 式(2)において、SOCaは開始時充電率であり、上記発電開始判定されたときのバッテリ6の充電率を記憶して用いられる。Qfは燃料残量検出器20から入力した現在の燃料残量であり、Qfaは開始時燃料残量である。開始時燃料残量Qfaは、上記発電開始判定されたときの燃料残量を記憶して用いられる。Qfbは、到達目標燃料残量であり、車両を走行終了したときに少なくとも必要とする燃料の残量である。到達目標燃料残量Qfbは運転者が設定可能としてもよいし、例えば0に近い正の値にあらかじめ設定されていてもよい。 In the equation (2), SOCa is a start charging rate, and is used by storing the charging rate of the battery 6 when it is determined that the power generation has been started. Qf is the present fuel remaining amount input from the fuel remaining amount detector 20, and Qfa is the start fuel remaining amount. The start time fuel remaining amount Qfa is used by storing the fuel remaining amount when it is determined that the power generation is started. Qfb is the attainment target fuel remaining amount, which is at least the remaining amount of fuel required when traveling of the vehicle is completed. The reaching target fuel remaining amount Qfb may be settable by the driver, or may be set in advance to a positive value close to zero, for example.
 図3は、本実施形態の低出力・低速走行状態でのEV優先モードと、高出力・高速走行状態とでの車両走行時におけるバッテリ6の充電率、燃料残量、発電出力の推移の一例を示すグラフである。
 図3では、図2と同様に、バッテリ6の充電率SOCが100%でありかつ燃料残量が100%に近い値Qfaである状態から車両1を走行開始して可能な限り走行するまでの、(A)バッテリ6の充電率SOC、(B)燃料残量Qf、(C)燃料電池8の発電出力Pfの推移を示している。図3中において、実線が上記式(1)及び(2)を用いて発電出力Pfを設定する高出力・高速走行状態での推移であり、破線は低出力・低速走行状態でのEV優先モードでの推移を示している。また、図2(A)における二点鎖線は、高出力・高速走行状態において設定される目標充電率SOCtの推移を示している。
FIG. 3 shows an example of the transition of the charge ratio of the battery 6, the remaining amount of fuel, and the power generation output when the vehicle travels in the EV priority mode in the low output / low speed traveling state and the high power / high speed traveling state of this embodiment. Is a graph showing
In FIG. 3, as in FIG. 2, the state of charge of the battery 6 is 100% and the remaining amount of fuel is close to 100%. (A) State of charge SOC of the battery 6, (B) Remaining amount of fuel Qf, (C) Change of the power generation output Pf of the fuel cell 8 is shown. In FIG. 3, the solid line is the transition in the high power / high speed running state where the power generation output Pf is set using the above equations (1) and (2), and the broken line is the EV priority mode in the low power / low speed running state. Shows the transition in Moreover, the dashed-two dotted line in FIG. 2 (A) has shown transition of the target charging rate SOCt set in the high output and high-speed driving state.
 上記のように、車両1が高出力・高速走行状態となって車両消費電力が所定時間Ta以上継続して閾値Vaを超えた場合には、例えEV優先モードでバッテリ6の充電率SOCが到達目標充電率SOCbまで低下しなくとも、発電開始判定され燃料電池8の発電が開始される。したがって、図3に示すように、高出力・高速走行状態では、低出力・低速走行状態でのEV優先モードよりも早期に発電が開始される。このように早期に発電を開始することで、燃料電池8の出力を抑えることができ、車両消費電力に対する不足分はバッテリ6からの出力で補われる。
 発電が開始してからは、燃料残量Qfが低下するに伴って目標充電率SOCtが低下するように設定され、燃料残量Qfが到達目標燃料残量Qfbに達することと目標充電率SOCtが到達目標充電率SOCbに達することが同時となるように目標充電率SOCtが設定される。そして、この目標充電率SOCtと現在の充電率SOCとの差に基づいて発電出力Pfを演算するので、充電率SOCが目標充電率SOCtに一致するように正確にフィードバック制御される。
As described above, when the vehicle 1 is in the high output / high speed traveling state and the vehicle power consumption continues over the predetermined time Ta and exceeds the threshold value Va, the charging rate SOC of the battery 6 reaches even in the EV priority mode. Even if it does not decrease to the target charging rate SOCb, it is determined that the power generation is started, and the power generation of the fuel cell 8 is started. Therefore, as shown in FIG. 3, power generation is started earlier in the high power / high speed traveling state than in the EV priority mode in the low power / low speed traveling state. Thus, by starting power generation early, the output of the fuel cell 8 can be suppressed, and the shortage for the vehicle power consumption is compensated by the output from the battery 6.
After the start of power generation, the target charging rate SOCt is set to decrease as the fuel remaining amount Qf decreases, and the fuel remaining amount Qf reaches the target fuel remaining amount Qfb and the target charging rate SOCt The target charging rate SOCt is set so as to simultaneously reach the reaching target charging rate SOCb. Then, since the power generation output Pf is calculated based on the difference between the target charging rate SOCt and the current charging rate SOC, feedback control is accurately performed so that the charging rate SOC matches the target charging rate SOCt.
 目標充電率SOCtは、燃料残量Qfの減少とともに徐々に低下し、燃料残量Qfが到達目標燃料残量Qfbに達することと同時期に到達目標充電率SOCbに達するように制御されるので、実際のバッテリ6の充電率SOCも目標充電率SOCtに合わせて略同時期に到達目標充電率SOCbに達する。したがって、バッテリ6の充電率が100%であり燃料残量が開始時燃料残量Qfaの状態から、到達目標充電率SOCb及び燃料残量Qfbになるまで車両が走行する距離が最大走行可能な航続距離となる。そして高出力・高速走行状態では、燃料残量Qfが到達目標燃料残量Qfbに達するまで燃料電池8から出力することになり、目標充電率SOCtを燃料残量Qfの減少とともに徐々に低下させることで、発電開始から走行終了まで発電時間を確保し、燃料電池8の出力を抑えることが可能となる。 The target charging rate SOCt gradually decreases with the decrease of the remaining fuel amount Qf, and is controlled so as to reach the reaching target charging rate SOCb at the same time as the remaining fuel amount Qf reaches the target fuel remaining amount Qfb. The actual charging rate SOC of the battery 6 also reaches the target charging rate SOCb substantially simultaneously with the target charging rate SOCt. Therefore, from the state where the charge rate of battery 6 is 100% and the remaining fuel amount at the time of start fuel remaining amount Qfa, the distance traveled by the vehicle can be maximized until reaching the target charging rate SOCb and remaining fuel amount Qfb It becomes a distance. Then, in the high power / high speed running state, the fuel cell 8 outputs the fuel until the remaining fuel amount Qf reaches the attainment target fuel remaining amount Qfb, and the target charging rate SOCt is gradually decreased with the decrease of the remaining fuel amount Qf. Thus, it is possible to secure the power generation time from the start of power generation to the end of travel, and to suppress the output of the fuel cell 8.
 低出力・低速走行状態でのEV優先モードでは、発電開始以降では、すでにバッテリ6の充電率SOCが到達目標充電率SOCbに達しているので、バッテリ6からの出力増加が困難であり、よって車両消費電力が大きく増加した場合には、その変動に合わせて燃料電池8からの出力を大きく増加させなければならない。これに対し、高出力・高速走行状態では、発電開始してから走行終了までの期間で充電率SOCが到達目標充電率SOCbを上回っているので、車両消費電力が一時的に増加したとしてもバッテリ6からの出力が増加して燃料電池8の出力の変動を抑制することができる。 In the EV priority mode in the low output / low speed traveling state, since the charging rate SOC of the battery 6 has already reached the target charging rate SOCb after the start of power generation, it is difficult to increase the output from the battery 6, When the power consumption is greatly increased, the output from the fuel cell 8 must be largely increased in accordance with the fluctuation. On the other hand, in the high-power and high-speed running state, the charging rate SOC exceeds the target charging rate SOCb in the period from the start of power generation to the end of the run, so even if the vehicle power consumption temporarily increases The output from 6 can be increased to suppress the fluctuation of the output of the fuel cell 8.
 以上のように、EV優先モードであっても高出力・高速走行状態では、充電開始時期を早め、かつ燃料残量Qfが到達目標燃料残量Qfbに到達するまで燃料残量Qfの減少に伴って目標充電率SOCtを低下させることで、発電時間を確保して燃料電池8の出力を一定に抑えることができる。燃料電池8は、一般的に出力が増加するに伴って効率が低下するので、燃料電池8の出力が抑えられることで、燃料電池8の効率が向上する。また、車両消費電力の変動に対しても燃料電池8の出力の変動が抑えられるので、この点でも燃料電池8の効率を向上させることができる。 As described above, even in the EV priority mode, in the high power / high speed traveling state, the charge start timing is advanced and the remaining fuel amount Qf decreases until the remaining fuel amount Qf reaches the target fuel remaining amount Qfb. By reducing the target charging rate SOCt, it is possible to secure the power generation time and keep the output of the fuel cell 8 constant. Since the fuel cell 8 generally decreases in efficiency as the output increases, the output of the fuel cell 8 is suppressed, and the efficiency of the fuel cell 8 is improved. Further, since the fluctuation of the output of the fuel cell 8 can be suppressed also against the fluctuation of the vehicle power consumption, the efficiency of the fuel cell 8 can be improved also in this respect.
 以上のように、高出力・高速走行状態で航続距離を延長させる機能を有することで、走行距離の予定が立てらずに例えモード切換装置23をEV優先モードにしておいても、例えば高速道路を走行するときのように高出力・高速走行状態が続く状況では、燃料電池8を効率よく発電させることができ、燃料消費を抑え、航続距離を増加させることができる。
 なお、EV優先モードにおける低出力・低速走行状態では、早期に発電開始判定されないが、電気モータ3の消費電力が少ないので、燃料電池8を高出力にする必要がなく、よって燃料電池8の効率低下は抑えられる。
As described above, by having the function of extending the cruising distance in the high output / high speed traveling state, for example, even if the mode switching device 23 is set to the EV priority mode without making a schedule of the traveling distance, for example, In a situation where high power and high speed traveling conditions continue as when traveling on the road, the fuel cell 8 can be efficiently generated, fuel consumption can be suppressed, and the cruising distance can be increased.
In the low power / low speed traveling state in the EV priority mode, although the power generation start determination is not performed early, since the power consumption of the electric motor 3 is small, the fuel cell 8 does not need to have a high output. The decline is suppressed.
 また、本実施形態では、車両消費電力を平滑化して演算した車速相当値によって発電開始判定を行っており、当該車速相当値が所定時間Ta以上閾値Vaを超えた場合に車両が高出力・高速走行状態であるとして、発電開始するように判定する。したがって、車両消費電力を平滑化した車速相当値によって発電開始判定を判定していることで、登坂や下り坂等での影響を受け難く、かつ加減速による出力変動の影響も抑制して、車両の高出力・高速走行状態を安定して正確に判定することができる。 Further, in the present embodiment, the power generation start determination is performed based on the vehicle speed equivalent value calculated by smoothing the vehicle power consumption, and the vehicle has high output and high speed when the vehicle speed equivalent value exceeds the threshold value Va for a predetermined time or more. It is determined to start power generation, assuming that the vehicle is in a traveling state. Therefore, by judging the power generation start determination based on the vehicle speed equivalent value obtained by smoothing the vehicle power consumption, the vehicle is not easily affected by the uphill or the downhill, and the influence of the output fluctuation due to acceleration and deceleration is also suppressed. It is possible to stably and accurately determine the high power / high speed running condition of the vehicle.
 以上で発明の実施形態の説明を終えるが、発明の形態は本実施形態に限定されるものではない。
 例えば、本実施形態では、高出力・高速走行状態において目標充電率SOCtを設定して航続距離を延長させる機能を有しているが、この機能を削除してもよい。本発明は、少なくともTOTAL燃費優先モードを可能にすることで、バッテリ6からの電力のみで走行可能な距離よりも長く走行する際に、燃料消費を抑えることができる。
This completes the description of the embodiments of the invention, but the mode of the invention is not limited to this embodiment.
For example, although the present embodiment has the function of setting the target state of charge SOCt and extending the cruising distance in the high power / high speed traveling state, this function may be deleted. By enabling at least the TOTAL fuel consumption priority mode, the present invention can suppress fuel consumption when traveling longer than the distance that can be traveled solely by the power from the battery 6.
 また、本実施形態では、発電ユニットとして燃料電池8を使用しているが、燃料電池8の代わりにエンジンと発電機を組み合わせたユニットを用いてもよい。この場合、車両はシリーズモードが可能なハイブリッド車となるが、このような車両においても、発電機及びエンジンを駆動制御して当該発電機からの出力を、上記燃料電池の出力制御と同様に制御することで、エンジンを効率よく作動させ、航続距離を増加させることができる。 Further, in the present embodiment, the fuel cell 8 is used as a power generation unit, but instead of the fuel cell 8, a unit in which an engine and a generator are combined may be used. In this case, the vehicle is a hybrid vehicle capable of series mode, but even in such a vehicle, the generator and the engine are drive-controlled to control the output from the generator in the same manner as the output control of the fuel cell. By doing this, the engine can be operated efficiently and the cruising distance can be increased.
  1 車両
  3 電気モータ
  6 バッテリ
  8 燃料電池(発電ユニット)
 20 燃料残量検出器(燃料残量検出部)
 21 バッテリモニタリングユニット(充電率検出部)
 22 コントロールユニット(発電開始判定部、発電制御部)
 23 モード切換装置 (モード選択部)
 24 到達目標充電率設定装置(到達目標充電率設定部)
1 vehicle 3 electric motor 6 battery 8 fuel cell (power generation unit)
20 Fuel level detector (fuel level detector)
21 Battery monitoring unit (charging rate detection unit)
22 Control unit (generation start determination unit, generation control unit)
23 Mode Switching Device (Mode Selection Unit)
24 Target goal charging rate setting device (target goal charging rate setting unit)

Claims (8)

  1.  燃料を消費して発電する発電ユニット及びバッテリから走行駆動用の電気モータに電力を供給する車両の電力制御装置であって、
     前記発電ユニットを停止させて前記バッテリから供給される電力により前記電気モータを駆動して走行する第1のモードから前記発電ユニットを強制的に起動させて走行する第2のモードへ切り替え選択をするモード選択部と、
     前記発電ユニットの発電出力を制御する発電制御部と、を備え、
     前記発電制御部は、前記車両の走行開始の際に前記第1のモードを選択し、前記モード選択部により前記第2のモードが選択されてから前記バッテリの充電率が所定の到達目標充電率未満となるまで、前記発電ユニットの発電出力を一定の所定値に制御することを特徴とする車両の電力制御装置。
    A power generation unit for consuming fuel and generating electricity, and a power control apparatus for a vehicle that supplies power from a battery to an electric motor for driving and driving,
    The power generation unit is stopped, and the electric power supplied from the battery is driven to drive from the first mode in which the electric motor is driven to switch to a second mode in which the power generation unit is forcibly started to travel. Mode selection unit,
    A power generation control unit that controls the power generation output of the power generation unit;
    The power generation control unit selects the first mode at the start of traveling of the vehicle, and after the second mode is selected by the mode selection unit, the charging rate of the battery reaches a predetermined target charging rate. The electric power control apparatus for a vehicle, wherein the power generation output of the power generation unit is controlled to a predetermined value until the value becomes less than.
  2.  前記発電制御部は、前記第1のモードが選択されているときには、前記車両の走行開始から前記発電ユニットの充電率が前記到達目標充電率未満となるまで、前記発電ユニットを停止させて前記バッテリから供給される電力により前記電気モータを駆動することを特徴とする請求項1に記載の車両の電力制御装置。 When the first mode is selected, the power generation control unit stops the power generation unit from the start of traveling of the vehicle until the charge ratio of the power generation unit becomes less than the attainment target charge ratio and the battery The electric power control apparatus of a vehicle according to claim 1, wherein the electric motor is driven by the electric power supplied from a power source.
  3.  前記到達目標充電率を設定する到達目標充電率設定部を備えたことを特徴とする請求項1または2に記載の車両の電力制御装置。 The electric power control apparatus for a vehicle according to claim 1 or 2, further comprising an ultimate target charging rate setting unit that sets the ultimate target charging rate.
  4.  前記前記バッテリの現在の充電率を検出する充電率検出部を備え、
     前記発電制御部は、前記発電ユニットの充電率が前記到達目標充電率未満となった際には、前記到達目標充電率と前記現在の充電率との差に基づいて前記発電出力を制御することを特徴とする請求項1から3のいずれかに記載の車両の電力制御装置。
    A charging rate detection unit that detects a current charging rate of the battery;
    The power generation control unit controls the power generation output based on a difference between the target charging rate to be reached and the current charging rate when the charging rate of the power generation unit is less than the target charging rate to be reached. The power control device for a vehicle according to any one of claims 1 to 3, characterized in that
  5.  前記発電ユニットの燃料残量を検出する燃料残量検出部と、
     前記車両の消費電力に基づいて前記発電ユニットの発電開始判定をする発電開始判定部と、を備え、
     前記発電制御部は、前記発電開始判定された際には、前記燃料残量が減少するに伴って減少するように前記バッテリの目標充電率を設定し、前記目標充電率に基づいて前記発電出力を制御することを特徴とする請求項1から4のいずれかに記載の車両の電力制御装置。
    A fuel remaining amount detecting unit that detects a fuel remaining amount of the power generation unit;
    And a power generation start determination unit that makes a power generation start determination of the power generation unit based on the power consumption of the vehicle.
    The power generation control unit sets a target charging rate of the battery so as to decrease as the remaining amount of fuel decreases when the power generation start is determined, and the power generation output based on the target charging rate The electric power control apparatus of a vehicle according to any one of claims 1 to 4, characterized in that:
  6.  前記発電開始判定部は、前記車両の消費電力に基づいて車速相当値を演算し、当該車速相当値が所定の閾値を超えた際に前記発電開始判定することを特徴とする請求項5に記載の車両の電力制御装置。 The power generation start determination unit calculates a vehicle speed equivalent value based on the power consumption of the vehicle, and determines the power generation start when the vehicle speed equivalent value exceeds a predetermined threshold. Power control device for vehicles.
  7.  前記バッテリの現在の充電率を検出する充電率検出部を備え、
     前記発電制御部は、前記発電開始判定された際には、前記目標充電率と前記現在の充電率との差に基づいて前記発電出力を制御することを特徴とする請求項5または6に記載の車両の電力制御装置。
    A charging rate detection unit that detects a current charging rate of the battery;
    The power generation control unit controls the power generation output based on a difference between the target charging rate and the current charging rate when the power generation start determination is made. Power control device for vehicles.
  8.  前記発電ユニットは、燃料電池であることを特徴とする請求項1から7のいずれかに記載の車両の電力制御装置。 The said electric power generation unit is a fuel cell, The electric power control apparatus of the vehicle in any one of the Claims 1 to 7 characterized by the above-mentioned.
PCT/JP2015/058560 2015-03-20 2015-03-20 Vehicle power control device WO2016151696A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/058560 WO2016151696A1 (en) 2015-03-20 2015-03-20 Vehicle power control device
JP2017507162A JP6270010B2 (en) 2015-03-20 2015-03-20 Vehicle power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058560 WO2016151696A1 (en) 2015-03-20 2015-03-20 Vehicle power control device

Publications (1)

Publication Number Publication Date
WO2016151696A1 true WO2016151696A1 (en) 2016-09-29

Family

ID=56977083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058560 WO2016151696A1 (en) 2015-03-20 2015-03-20 Vehicle power control device

Country Status (2)

Country Link
JP (1) JP6270010B2 (en)
WO (1) WO2016151696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022055581A (en) * 2020-09-29 2022-04-08 株式会社日立製作所 Vehicle control device and vehicle control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111746352B (en) * 2019-03-29 2022-01-28 北京新能源汽车股份有限公司 Method and device for determining battery of power hybrid electric vehicle and upper computer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032606A (en) * 1998-07-14 2000-01-28 Toyota Motor Corp Vehicle
JP2010264873A (en) * 2009-05-14 2010-11-25 Nissan Motor Co Ltd Apparatus and method for control of electric vehicle
JP2011229356A (en) * 2010-03-31 2011-11-10 Equos Research Co Ltd Electric drive vehicle
JP2013075615A (en) * 2011-09-30 2013-04-25 Equos Research Co Ltd Electric driving vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032606A (en) * 1998-07-14 2000-01-28 Toyota Motor Corp Vehicle
JP2010264873A (en) * 2009-05-14 2010-11-25 Nissan Motor Co Ltd Apparatus and method for control of electric vehicle
JP2011229356A (en) * 2010-03-31 2011-11-10 Equos Research Co Ltd Electric drive vehicle
JP2013075615A (en) * 2011-09-30 2013-04-25 Equos Research Co Ltd Electric driving vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022055581A (en) * 2020-09-29 2022-04-08 株式会社日立製作所 Vehicle control device and vehicle control method
JP7431710B2 (en) 2020-09-29 2024-02-15 株式会社日立製作所 Vehicle control device

Also Published As

Publication number Publication date
JP6270010B2 (en) 2018-01-31
JPWO2016151696A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2016151695A1 (en) Vehicle power control device
US11007893B2 (en) Control device for electric vehicle and electric vehicle
US8639413B2 (en) Vehicle power supply system and method for controlling the same
JP6558280B2 (en) Control system
CN102883934A (en) Hybrid vehicle control device and hybrid vehicle provided with same
CN102844956A (en) Control device for electricity storage device and vehicle for mounting same
CN107985302B (en) Vehicle with a steering wheel
US9252630B2 (en) Battery charge control apparatus
US20150336466A1 (en) Charge/discharge system
WO2013044357A1 (en) Control strategies for state of charge of battery pack for electric vehicle with range extender
JP6435789B2 (en) Output control device for hybrid drive vehicle
JP2012090456A (en) Charge controller
CN107000602B (en) Method for managing the state of charge of a traction battery of a hybrid vehicle
KR20160038010A (en) Electricity-generation control device and electricity-generation control method
JP2014138536A (en) Vehicle power supply device
WO2008133154A1 (en) Electrical apparatus and method of controlling the same
JP2012045996A (en) Power generation control device of hybrid vehicle
JP5419745B2 (en) Series hybrid vehicle control system
WO2016151696A1 (en) Vehicle power control device
JP5445702B2 (en) Charge control device
KR20170025605A (en) Power conversion control method of for using high voltage vehicle
JP4064398B2 (en) Charge / discharge control device for motor battery
JP5648508B2 (en) Secondary battery charger
JP5450238B2 (en) Electric vehicle
JP2014011826A (en) Battery state of charge controller for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886253

Country of ref document: EP

Kind code of ref document: A1