WO2016150166A1 - 成虚像的放大显示装置 - Google Patents

成虚像的放大显示装置 Download PDF

Info

Publication number
WO2016150166A1
WO2016150166A1 PCT/CN2015/093795 CN2015093795W WO2016150166A1 WO 2016150166 A1 WO2016150166 A1 WO 2016150166A1 CN 2015093795 W CN2015093795 W CN 2015093795W WO 2016150166 A1 WO2016150166 A1 WO 2016150166A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
free curved
free
image
optical element
Prior art date
Application number
PCT/CN2015/093795
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
赵远
林清云
Original Assignee
广景科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景科技有限公司 filed Critical 广景科技有限公司
Publication of WO2016150166A1 publication Critical patent/WO2016150166A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a virtual image display system, and more particularly to an enlarged display device for forming a virtual image.
  • the virtual image display device has mainly made breakthroughs in miniaturization and light weight, and has achieved wide-angle in the case of ensuring high-quality images.
  • virtual images can be used to display vehicle speed and speed. , water temperature, voltage, navigation and other information.
  • a head-mounted display (HMD) or a head-up display (HUD), etc. usually uses virtual reflection and refraction for virtual image display.
  • the HUD and HMD map image information onto the holographic half mirror of the windshield, which has the advantage that the driver can see the information without having to bow his head, thus avoiding distracting attention to the road ahead; the driver does not have to observe the distance.
  • the virtual images of HUD and HMD are displayed on the distant road and merged with the outside scene. Therefore, the virtual image displayed should have sufficient size and brightness to clearly distinguish the external scene and virtual image display information, and the display brightness requirement of the virtual image display system is better. High, thus increasing the cost and difficulty of manufacturing.
  • an object of the present invention is to provide an enlarged display device which is compact in structure, strong in practicability, and relatively low in cost, and which requires a virtual image having a small brightness requirement for a virtual image magnifying display system.
  • the present invention provides an enlarged display device for creating a virtual image, comprising: an image display device for displaying an image frame to be enlargedly displayed; and a first free curved surface disposed on a side of the image display device for displaying an image a front end for transmitting the image beam projected by the image display device; a second free curved surface disposed on the optical path of the image beam transmitted through the first free curved surface, the second free curved surface receiving the light beam from the first free curved surface, Reflecting or totally reflecting the light beam from the first free curved surface; and a third free curved surface disposed on the optical path of the image beam reflected by the second free curved surface, transmitting the image beam from the second free curved surface, and transmitting the image beam Zoom in to get an enlarged virtual image display at the designed distance.
  • the first free curved surface, the second free curved surface and the third free curved surface are simultaneously disposed on the optical element one, and the optical element is a free curved surface part including at least three free curved surfaces.
  • the first free curved surface and the third free curved surface are simultaneously disposed on the optical element 2, and the second free curved surface is disposed on the optical element 3.
  • the optical element 2 is a free-form surface part comprising at least two free-form surfaces, and the optical element three is a free-form surface part including at least one free-form surface.
  • the optical element three is a free-form surface mirror comprising at least one free-form surface.
  • the first free curved surface, the second free curved surface, and the third free curved surface are respectively disposed on the optical element 4, the optical element 5, and the optical element 6.
  • the optical element four and/or the optical element five and/or the optical element six are respectively free-form curved parts comprising at least one free-form surface.
  • the free curved surface is disposed on an incident surface or an exit surface of the free curved surface member.
  • the method further includes: a relay lens that can further shape the light beam, disposed at a front end of the light exit surface of the third free curved surface.
  • the light incident surface of the second free curved surface is plated with a reflective film, or the angle between the second free curved surface and the image beam from the first free curved surface is set according to a certain rule, so that the image beam from the first free curved surface After the second free-form surface is reflected, the total reflection law is satisfied.
  • the virtual image display device of the present invention has the following beneficial effects: three optical curved surfaces are used as the light guiding members, the structure is compact and reasonable, and the utility is strong; in addition, the virtual image display is compared with the observer's line of sight. The position is not integrated with the external scene, and is less interfered by sunlight. Therefore, the brightness of the virtual image magnifying display system is small, practical, easy to implement, and relatively low in cost.
  • FIG. 1 is a schematic structural view of a first embodiment of an enlarged display device for a virtual image according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of an enlarged display device for a virtual image according to the present invention
  • FIG. 3 is a schematic structural view of a third embodiment of an enlarged display device for a virtual image according to the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment of an enlarged display device for a virtual image according to the present invention.
  • FIG. 5 is a schematic diagram of a first use state of the second embodiment of the virtual display device according to the present invention.
  • the virtual display display device of the present invention comprises: an image display device 10 for displaying an image image to be enlarged and projected, and projecting the image beam; the free curved surface member 11 (ie, optical component 1) a front end of the image display device 10 on the display image side for guiding the image beam projected by the image display device into the observer's line of sight, including: a first free curved surface S1, a second free curved surface S2, and a third free curved surface S3.
  • the first free-form surface S1 is adjacent to the image display device 10 at a close distance, so that the first free-form surface S1 satisfies the ability to transmit the image beam emitted by the image display device 10, and the closer the distance is, the better the projection quality is.
  • the better, the compact display device that is a virtual image has a compact structure and a smaller weight.
  • the first free curved surface is disposed at a front end of the image display device on the side of the display image, and is located on the optical path of the image beam emitted by the image display device 10 for transmitting the image beam projected by the image display device.
  • the second free-form surface S2 is disposed at a front end of the first free-form surface S1 facing away from the image display device 10, and is located on the optical path of the image beam transmitted through the first free-form surface S1, and can be used for the light beam from the first free-form surface S1. Perform reflection or total reflection.
  • the third free-form surface S3 is disposed on the optical path of the image beam reflected by the second reflective free-form surface S2, transmits the image beam from the second reflective free-form surface S2, and amplifies the image beam to obtain a distance at the designed distance.
  • the magnified virtual image shows that the distance of this design can be set according to the distance of the observer's eye from the third free-form surface S3.
  • the image beam emitted by the image display device 10 is first transmitted through the first free curved surface S1 of the free-form surface member 11 into the free-form surface member 11, the first free curved surface S1 transmits the light beam from the image display device 10, and then the free curved surface member 11
  • the second free-form surface S2 is reflected or totally reflected, and finally transmitted through the third free-form surface S3 of the free-form surface member 11 into the human eye to form a virtual image display, and the third free-form surface S3
  • the settings not only magnify the virtual image but also correct the aberration.
  • the first free-form surface S1 can also homogenize, shape, and correct the light beam from the image display device 10, depending on the actual situation.
  • the first free curved surface S1, the second free curved surface S2, and the third free curved surface S3 are simultaneously disposed on the free curved surface member 11.
  • the positions and positions of the three settings may be as shown in the figure, or may be in other positions.
  • the angle is set as long as it can satisfy the functions realized by the above three free-form surfaces.
  • the freeform surface member 11 includes, but is not limited to, three free curved surfaces, and may include other curved surfaces or planes, and may include other types of curved surfaces or planes according to actual conditions.
  • the material of the free-form surface member 11 is glass or plastic, or other material having good light transmittance.
  • the light incident surface of the first free curved surface S1 is a concave convergence surface, transmits the light beam from the image display device 10 and homogenizes the light beam;
  • the second free curved surface S2 is plated with a reflective film, or the second free curved surface S2 and
  • the angle between the image beams from the first free-form surface S1 may be set according to a certain rule, so that the image beam from the first free-form surface S1 is reflected by the second free-form surface S2 to satisfy the total reflection law, and the second free-form surface S2 may be incident on the second free-form surface S2.
  • the light is reflected or totally reflected;
  • the beam exit surface of the third free-form surface S3 is a convex convergence surface, which not only corrects the image beam but also corrects the aberration of the image beam;
  • first free curved surface S1 and/or the third free curved surface S3 may also be plated with an antireflection film to increase the transmittance of the image beam;
  • the three optical surfaces of the free curved surface member 11 (the first free curved surface S1, the second free The faces of the curved surface S2 and the third free curved surface S3) satisfy the following equation:
  • C is the curvature radius of the surface and Cj is the polynomial coefficient.
  • the image display device 10 may be a projector or an electronic device such as a mobile phone or a tablet computer, and displays multimedia information such as pictures, videos, and texts.
  • the optical surface A4 of the optical element 2 can be a flat or curved surface that transmits the image beam.
  • the optical element three 22 may be a component having only one free curved surface, or the optical element three 22 may be a free curved surface component having at least one free curved surface, and may be a free curved surface mirror having only one free curved surface, and may include other according to actual conditions.
  • the second free curved surface A2 may be plated with a reflective film, or the angle between the second free curved surface A2 and the image beam from the optical element 21 may satisfy the total reflection law.
  • the image beam emitted by the image display device 20 passes through the first free curved surface A1 and the optical surface A4 of the optical element 21, then passes through the second free curved surface A2 of the optical element 32 and is reflected or totally reflected, and finally passes through the optical element.
  • the third free-form surface A3 of the second 21 is transmitted into the human eye to form a virtual image display, and the setting of the third free-form surface A3 can not only amplify the virtual image but also correct the aberration.
  • FIG. 3 is a schematic structural view of a third embodiment of an enlarged display device for a virtual image according to the present invention.
  • the first free curved surface B1, the second free curved surface B2, and the third free curved surface B3 are respectively disposed on the optical element four 31, the optical element five 32, and the optical element six 33. on.
  • the optical element four 31 and/or the optical element five 32 and/or the optical element six 33 are respectively free-form surface parts including at least one free-form surface, and may include other types of curved surfaces or planes according to actual conditions.
  • the first free curved surface B1 may be disposed on the image beam exit surface of the optical element 41, and the image beam incident surface of the optical element 41 is disposed in a plane; the first free curved surface B1 may also be disposed on the image beam incident surface of the optical element 41 Upper, the image beam exit surface of the optical element 41 is arranged in a plane.
  • the third free curved surface B3 may be disposed on the beam exit surface of the optical element 636, and the light incident surface of the optical element 630 may be disposed in a plane; the third free curved surface B3 may also be disposed on the image beam incident surface of the optical element 633.
  • the image beam exit surface of the optical element 639 is arranged in a plane.
  • the optical element 520 may be a lens or mirror provided with only one second freeform surface B2.
  • the second free curved surface B2 may also be disposed on the beam incident surface of the optical element 532, and the other surfaces may be arranged as a plane or a curved surface as needed; or the light beam transmitted through the first free curved surface B1 may be first disposed on the optical component
  • the plane on 32 is transmitted to the second freeform surface B2, and then the beam is reflected or totally reflected.
  • the image beam emitted by the image display device 30 is first transmitted through the first free curved surface B1 of the optical element 41, and then passes through the second free curved surface B2 of the optical element 5 and is reflected or totally reflected, and finally passes through the optical element.
  • the third free-form surface B3 of 33 is transmitted into the human eye to form a virtual image display.
  • the optical component four 31 and the optical component six 33 are free-form curved parts, which can transmit and shape the image beam; the optical component five 32 is a free-form surface component or a free-form surface mirror, and the second free-form surface B2 is plated with a reflective film, or The angle between the second free-form surface B2 and the image beam from the optical element 41 satisfies the total reflection law, and the setting of the third free-form surface B3 can not only amplify the virtual image but also correct the aberration.
  • the virtual image display device can be provided with a relay lens for further shaping the image beam of the third free curved surface.
  • the enlarged display device which is virtual image only on the basis of the first embodiment can be provided with a relay lens 42 which can further shape the light beam, and is disposed on the third free curved surface C3. The front end of the beam exit surface, between the freeform surface member 41 and the observer.
  • the image beam emitted by the image display device 40 first enters the free curved surface member 41 through the first free curved surface C1 of the free curved surface member 41, and then reflects or totally reflects the second free curved surface C2 of the free curved surface member 41, and then passes through the free curved surface member.
  • the third free-form surface C3 of 41 is transmitted and amplified, and finally shaped into the human eye by the relay lens 42 to form a virtual image display.
  • FIG. 5 is a schematic diagram of a first use state of the second embodiment of the virtual display device according to the present invention.
  • the above-mentioned virtual image display device can be applied to the field of automobile display. As shown in FIG. 5, the virtual display image display device 51 is placed above the automobile display platform 50 near the windshield 52, and the enlarged display device 51 from the virtual image is obtained.
  • the observer can observe the magnified virtual image X and the road real scene S outside the automobile through the windshield 52, and the enlarged virtual image X and the road view S within the observer's line of sight are not Overlap (magnifying the virtual image X between the road scene S and the observer) is less affected by sunlight, so the display brightness of the magnified display device of the virtual image is lower than that of the HUD and the HMD, so that the clear display of the virtual image can be satisfied. Manufacturing costs are relatively low.
  • the virtual display device disclosed in the present invention adopts three optical curved surfaces as light guiding members, and has compact and reasonable structure, strong practicability, compact and reasonable structure, strong practicability and easy implementation. Now, the cost is relatively low; in addition, compared with the observer's line of sight, the virtual image display position is not fused with the external scene, and the sunlight interference is small, so the brightness requirement of the virtual image enlargement display system is small.
  • the optical element and the free-form surface member according to the present invention may be provided as a lens or a mirror as the case may be.
  • the optical component and the free-form surface component of the present invention may further include other planes or curved surfaces according to actual conditions.
  • the optical element and the free-form surface member of the present invention can simultaneously implement other functions according to actual conditions, such as filtering, shaping, and the like while amplifying or transmitting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种成虚像的放大显示装置,包括:影像显示装置(10);第一自由曲面(S1),设置于影像显示装置(10)显示图像一侧的前端,用于对影像显示装置(10)投射的影像光束进行透射;第二自由曲面(S2),设置在经过第一自由曲面(S1)透射后的影像光束的光路上,第二自由曲面(S2)接收来自第一自由曲面(S1)的光束,可对来自第一自由曲面(S1)的光束进行反射或全反射;以及第三自由曲面(S3),设置在经过第二自由曲面(S2)反射后的影像光束的光路上透射来自第二自由曲面(S2)的影像光束。这种成虚像的放大显示装置结构紧凑合理,且相对观察者视线来说,虚像显示位置与外界景象并不融合一起,受日光干扰较小,因此对成虚像的放大显示装置的亮度要求较小,易于实现且成本低。

Description

成虚像的放大显示装置 【技术领域】
本发明涉及虚像显示***,尤其涉及用于成虚像的放大显示装置。
【背景技术】
目前,虚像显示装置主要往小型化及轻量化进行突破,并且在保证高质画面的情况下实现广角化,近年来得到人们的广泛关注与研究,尤其是在汽车领域,可虚像显示车速、转速、水温、电压、导航等信息。例如头戴式显示器(HMD)或者平视显示器(HUD)等通常都是利用光学反射与折射进行虚像显示。HUD和HMD将影像信息映射在风窗玻璃的全息半镜上,具有下述优点:驾驶员不必低头,就可以看到信息,从而避免分散对前方道路的注意力;驾驶员不必在观察远方的道路和近处的仪表之间调节眼睛,可避免眼睛的疲劳。但是HUD和HMD虚像显示于远方道路,与外界的景象融合在一起,因此显示的虚像应具有足够的大小和亮度,才能清楚的分辨外界景象与虚像显示信息,对虚像显示***的显示亮度要求较高,因而也加大了制造的成本与难度。
【发明内容】
基于上述问题,本发明的目的在于提供了一种结构紧凑,实用性强,且成本比较低,对虚像放大显示***的亮度要求较小的成虚像的放大显示装置。
为了实现上述发明目的,本发明提供了一种成虚像的放大显示装置,包括:影像显示装置,用于显示需放大显示的影像画面;第一自由曲面,设置于影像显示装置显示图像一侧的前端,用于对影像显示装置投射的影像光束进行透射;第二自由曲面,设置在经过第一自由曲面透射后的影像光束的光路上,第二自由曲面接收来自第一自由曲面的光束,可对来自第一自由曲面的光束进行反射或全反射;以及第三自由曲面,设置在经过第二自由曲面反射后的影像光束的光路上,透射来自第二自由曲面的影像光束,并对影像光束进行放大,在所设计的距离得到一个放大的虚像显示。
优选地,所述第一自由曲面、第二自由曲面以及第三自由曲面同时设置于光学元件一上,所述光学元件一为至少包括三个自由曲面的自由曲面部件。
优选地,所述第一自由曲面和第三自由曲面同时设置于光学元件二上,第二自由曲面设置于光学元件三上。
优选地,所述光学元件二为至少包括两个自由曲面的自由曲面部件,所述光学元件三为至少包括一个自由曲面的自由曲面部件。
优选地,所述光学元件三为至少包括一个自由曲面的自由曲面反射镜。
优选地,所述第一自由曲面、第二自由曲面以及第三自由曲面分别设置于光学元件四、光学元件五和光学元件六上。
优选地,所述光学元件四和/或光学元件五和/或光学元件六分别为至少包括一个自由曲面的自由曲面部件。
优选地,所述自由曲面设置在自由曲面部件的入射面或出射面。
优选地,还包括:可对光束进一步整形的中继透镜,设置于第三自由曲面的光束出射面的前端。
优选地,所述第二自由曲面的光束入射面镀有反射膜,或者第二自由曲面与来自第一自由曲面的影像光束之间的角度按照一定规律设置,使得来自第一自由曲面的影像光束经过第二自由曲面反射后满足全反射规律。
与现有技术相比,本发明的成虚像的放大显示装置具有如下有益效果:采用三个光学曲面作为导光部件,结构紧凑合理,实用性强;另外,相对观察者视线来说,虚像显示位置与外界景象并不融合一起,受日光干扰较小,因此对虚像放大显示***的亮度要求较小,实用性强,容易实现,且成本比较低。
【附图说明】
图1为本发明的成虚像的放大显示装置实施例一的结构示意图;
图2为本发明的成虚像的放大显示装置实施例二的结构示意图;
图3为本发明的成虚像的放大显示装置实施例三的结构示意图;
图4为本发明的成虚像的放大显示装置实施例四的结构示意图;
图5为本发明的成虚像的放大显示装置实施例二的使用状态一的示意图。
【具体实施方式】
为了更清楚地说明本发明实施例的技术方案,下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
下面结合附图详细说明本发明的具体实施内容。
图1为本发明的成虚像的放大显示装置实施例一的结构示意图。如图1所示,本发明的成虚像的放大显示装置,包括:影像显示装置10,用于显示需放大显示的影像画面,并将影像光束投射出去;自由曲面部件11(即光学元件一),位于影像显示装置10的显示图像一侧的前端,用于引导影像显示装置投射的影像光束进入观察者的视线范围,其包括:第一自由曲面S1,第二自由曲面S2以及第三自由曲面S3。
所述第一自由曲面S1与影像显示装置10近距离相邻,使得第一自由曲面S1满足能够将影像显示装置10发出的图像光束透射出去,并且在保证投影质量的前提下,距离优选越近越好,使得成虚像的放大显示装置的结构紧凑,重量体积更小。第一自由曲面设置于影像显示装置显示图像一侧的前端,位于影像显示装置10发出的图像光束的光路上,用于对影像显示装置投射的影像光束进行透射。第二自由曲面S2,设置在第一自由曲面S1背对影像显示装置10一侧的前端,位于经过第一自由曲面S1透射后的影像光束的光路上,可对来自第一自由曲面S1的光束进行反射或全反射。第三自由曲面S3,设置在经过第二反射自由曲面S2反射后的影像光束的光路上,透射来自第二反射自由曲面S2的影像光束,并对影像光束进行放大,在所设计的距离得到一个放大的虚像显示,这个设计的距离可以根据观察者的眼睛距离第三自由曲面S3的远近来设置。影像显示装置10所发出的影像光束先经过自由曲面部件11的第一自由曲面S1透射进入自由曲面部件11,第一自由曲面S1透射来自影像显示装置10的光束,然后在自由曲面部件11的第二自由曲面S2发生反射或全反射,最后经过自由曲面部件11的第三自由曲面S3透射进入人眼,形成虚像显示,第三自由曲面S3 的设置不但可以放大虚像还可以校正像差。第一自由曲面S1除了透射来自影像显示装置10的光束,还可以对来自影像显示装置10的光束进行均匀化,整形及校正等,根据实际情况的需要而定。
其中,第一自由曲面S1,第二自由曲面S2,和第三自由曲面S3同时设置在自由曲面部件11上,三者设置的位置和设置的角度可以如图所示,也可以按照其他的位置和角度来设置,只要能满足上述三个自由曲面所实现的功能即可。自由曲面部件11包括但不限于三个自由曲面,还可包括其他的曲面或者平面,可以根据实际情况还包括其他类型的曲面或者平面。
自由曲面部件11的材料为玻璃或者塑料,或者其他透光性好的材料。优选地,第一自由曲面S1的光束入射面为凹的收敛面,透射来自影像显示装置10的光束并对光束进行均匀化;第二自由曲面S2镀有反射膜,或者第二自由曲面S2与来自第一自由曲面S1的影像光束之间的角度可以按照一定规律设置,使得来自第一自由曲面S1的影像光束经过第二自由曲面S2反射后满足全反射规律,第二自由曲面S2可以对入射的光线发生反射或全反射;第三自由曲面S3的光束出射面为凸的收敛面,不仅对影像光束有透射放大的作用还可校正影像光束的像差;
另外,第一自由曲面S1和/或第三自由曲面S3也可镀增透膜,增大影像光束的透过率;自由曲面部件11的三个光学曲面(第一自由曲面S1、第二自由曲面S2和第三自由曲面S3)的面型满足以下方程:
Figure PCTCN2015093795-appb-000001
其中,C为曲面曲率半径,Cj为多项式系数。
所述影像显示装置10可以是投影仪或者手机或者平板电脑等电子设备,显示图片、视频、文本等多媒体信息。
图2为本发明的成虚像的放大显示装置实施例二的结构示意图。如图2所示,与实施例一不同的是,所述第一自由曲面A1和第三自由曲面A3设置于同 一光学元件二21,第二自由曲面A2独立设置于光学元件三22上;所述光学元件二21为至少有两个自由曲面的自由曲面部件,可以根据实际情况还包括其他类型的曲面或者平面。光学元件二21的光学面A4可以是平面或者曲面,透射影像光束。
光学元件三22可以是仅具有一个自由曲面的部件,或者光学元件三22为至少有一个自由曲面的自由曲面部件,可以是仅有一个自由曲面的自由曲面反射镜,可以根据实际情况还包括其他类型的曲面或者平面。第二自由曲面A2可以镀有反射膜,或者第二自由曲面A2与来自光学元件二21的影像光束之间的角度满足全反射规律。影像显示装置20所发出的影像光束先经过光学元件二21的第一自由曲面A1和光学面A4,然后经过光学元件三22的第二自由曲面A2并发生反射或全反射,最后再经过光学元件二21的第三自由曲面A3透射进入人眼,形成虚像显示,第三自由曲面A3的设置不但可以放大虚像还可以校正像差。
图3为本发明的成虚像的放大显示装置实施例三的结构示意图。如图3所示,与实施例一不同的是,所述第一自由曲面B1、第二自由曲面B2以及第三自由曲面B3分别设置于光学元件四31、光学元件五32和光学元件六33上。光学元件四31和/或光学元件五32和/或光学元件六33分别为至少包括一个自由曲面的自由曲面部件,可以根据实际情况还包括其他类型的曲面或者平面。第一自由曲面B1可以设置在光学元件四31的图像光束出射面上,光学元件四31的图像光束入射面设置成平面;第一自由曲面B1还可以设置在光学元件四31的图像光束入射面上,光学元件四31的图像光束出射面设置成平面。第三自由曲面B3可以设置在光学元件六33的光束出射面上,光学元件六33的光束入射面设置成平面;第三自由曲面B3还可以设置在光学元件六33的图像光束入射面上,光学元件六33的图像光束出射面设置成平面。光学元件五32可以是仅仅设置有一个第二自由曲面B2的透镜或反射镜。第二自由曲面B2也可以设置在光学元件五32的光束入射面上,其他面可以根据需要设置成平面或者曲面;也可以是经过第一自由曲面B1透射的光束,先经过设置在光学元件五32上的平面,透射到第二自由曲面B2上,再对光束进行反射或全反射。
影像显示装置30所发出的影像光束先经过光学元件四31的第一自由曲面B1发生透射整形,然后经过光学元件五32的第二自由曲面B2并发生反射或全反射,最后再经过光学元件六33的第三自由曲面B3透射进入人眼,形成虚像显示。其中,光学元件四31和光学元件六33为自由曲面部件,可对影像光束进行透射和整形;光学元件五32为自由曲面部件或者自由曲面反射镜,第二自由曲面B2镀有反射膜,或者第二自由曲面B2与来自光学元件四31的影像光束之间的角度满足全反射规律,第三自由曲面B3的设置不但可以放大虚像还可以校正像差。
图4为本发明的成虚像的放大显示装置实施例四的结构示意图。在施例一或实施例二或实施例三的基础上,成虚像的放大显示装置可多设置一个中继透镜,可对来第三自由曲面的影像光束进一步整形。如图4所示,与实施例一不同的是,仅在实施例一的基础上成虚像的放大显示装置可多设置一个可对光束进一步整形的中继透镜42,设置于第三自由曲面C3的光束出射面的前端,自由曲面部件41与观测者之间。影像显示装置40所发出的影像光束先经过自由曲面部件41的第一自由曲面C1进入自由曲面部件41,其次在自由曲面部件41的第二自由曲面C2发生反射或全反射,然后经过自由曲面部件41的第三自由曲面C3透射放大,最后经中继透镜42整形进入人眼,形成虚像显示。
图5为本发明的成虚像的放大显示装置实施例二的使用状态一的示意图。上述的成虚像的放大显示装置可应用于汽车显示领域,如图5所示,将成虚像的放大显示装置51放置于汽车显示平台上方50靠近挡风玻璃52处,来自成虚像的放大显示装置51的影像光束入射到观察者的眼睛E后,观察者可透过挡风玻璃52在汽车外观察到放大的虚像X和道路实景S,该放大虚像X与观察者视线范围内的道路实景S不重叠(放大虚像X在道路实景S与观察者之间),受日光干扰较小,因此成虚像的放大显示装置的显示亮度相对HUD和HMD来说要求更低,即可满足虚像的清晰显示,制造成本比较低。
综上所述,本发明所公开的成虚像的放大显示装置采用采用三个光学曲面作为导光部件,结构紧凑合理,实用性强,结构紧凑合理,实用性强,容易实 现,且成本比较低;另外,相对观察者视线来说,虚像显示位置与外界景象并不融合一起,受日光干扰较小,因此对虚像放大显示***的亮度要求较小。本发明所述的光学元件和自由曲面部件可以根据情况设置成透镜或反射镜。在实现本发明实施例所述的各种功能的基础上,本发明所述的光学元件和自由曲面部件还可以根据实际情况包括其他的平面或者曲面。本发明所述的光学元件和自由曲面部件除了实现本发明所述的各种功能之外,还可以根据实际情况同时实现其他的功能,比如在放大或透射的同时进行过滤、整形等等。
以上内容是结合优选技术方案对本发明所做的进一步详细说明,不能认定发明的具体实施仅限于这些说明。对本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,可以做出简单的推演及替换,都应该视为本实用型新型的保护范围。

Claims (10)

  1. 一种成虚像的放大显示装置,其特征在于,包括:
    影像显示装置,用于显示需放大显示的影像画面;
    第一自由曲面,设置于影像显示装置显示图像一侧的前端,用于对影像显示装置投射的影像光束进行透射;第二自由曲面,设置在经过第一自由曲面透射后的影像光束的光路上,第二自由曲面接收来自第一自由曲面的光束,可对来自第一自由曲面的光束进行反射或全反射;以及第三自由曲面,设置在经过第二自由曲面反射后的影像光束的光路上,透射来自第二自由曲面的影像光束,并对影像光束进行放大,在所设计的距离得到一个放大的虚像显示。
  2. 根据权利要求1所述的成虚像的放大显示装置,其特征在于,所述第一自由曲面、第二自由曲面以及第三自由曲面同时设置于光学元件一上,所述光学元件一为至少包括三个自由曲面的自由曲面部件。
  3. 根据权利要求1所述的成虚像的放大显示装置,其特征在于,所述第一自由曲面和第三自由曲面同时设置于光学元件二上,第二自由曲面设置于光学元件三上。
  4. 根据权利要求3所述的成虚像的放大显示装置,其特征在于,所述光学元件二为至少包括两个自由曲面的自由曲面部件,所述光学元件三为至少包括一个自由曲面的自由曲面部件。
  5. 根据权利要求3所述的成虚像的放大显示装置,其特征在于,所述光学元件三为至少包括一个自由曲面的自由曲面反射镜。
  6. 根据权利要求1所述的成虚像的放大显示装置,其特征在于,所述第一自由曲面、第二自由曲面以及第三自由曲面分别设置于光学元件四、光学元件五和光学元件六上。
  7. 根据权利要求6所述的成虚像的放大显示装置,其特征在于,所述光学元件四和/或光学元件五和/或光学元件六分别为至少包括一个自由曲面的自由曲面部件。
  8. 根据权利要求7所述的成虚像的放大显示装置,其特征在于,所述自由曲面设置在自由曲面部件的入射面或出射面。
  9. 根据权利要求1-8任一项所述的成虚像的放大显示装置,其特征在于,还包括:可对光束进一步整形的中继透镜,设置于第三自由曲面的光束出射面的前端。
  10. 根据权利要求1-8任一项所述的成虚像的放大显示装置,其特征在于,所述第二自由曲面的光束入射面镀有反射膜,或者第二自由曲面与来自第一自由曲面的影像光束之间的角度按照一定规律设置,使得来自第一自由曲面的影像光束经过第二自由曲面反射后满足全反射规律。
PCT/CN2015/093795 2015-03-25 2015-11-04 成虚像的放大显示装置 WO2016150166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520171550.X 2015-03-25
CN201520171550.XU CN204439938U (zh) 2015-03-25 2015-03-25 成虚像的放大显示装置

Publications (1)

Publication Number Publication Date
WO2016150166A1 true WO2016150166A1 (zh) 2016-09-29

Family

ID=53607785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093795 WO2016150166A1 (zh) 2015-03-25 2015-11-04 成虚像的放大显示装置

Country Status (2)

Country Link
CN (1) CN204439938U (zh)
WO (1) WO2016150166A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204439938U (zh) * 2015-03-25 2015-07-01 广景科技有限公司 成虚像的放大显示装置
CN106019591A (zh) * 2016-07-14 2016-10-12 联想(北京)有限公司 一种电子设备
US10466481B2 (en) 2016-07-14 2019-11-05 Lenovo (Beijing) Co., Ltd. Electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210996A (zh) * 2006-12-28 2008-07-02 亚洲光学股份有限公司 微型取像镜头
US20080239251A1 (en) * 2007-03-29 2008-10-02 Texas Instruments Incorporated Optical System for a Thin, Low-Chin, Projection Television
CN101359095A (zh) * 2007-07-30 2009-02-04 比亚迪股份有限公司 一种眼镜显示器及其光学***
CN201307184Y (zh) * 2008-09-16 2009-09-09 贾怀昌 一种由三个自由曲面构成的目镜光学元件
CN203275779U (zh) * 2013-04-28 2013-11-06 贾怀昌 一种基于rgb面光源的lcos微型显示器光学***
CN204439938U (zh) * 2015-03-25 2015-07-01 广景科技有限公司 成虚像的放大显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210996A (zh) * 2006-12-28 2008-07-02 亚洲光学股份有限公司 微型取像镜头
US20080239251A1 (en) * 2007-03-29 2008-10-02 Texas Instruments Incorporated Optical System for a Thin, Low-Chin, Projection Television
CN101359095A (zh) * 2007-07-30 2009-02-04 比亚迪股份有限公司 一种眼镜显示器及其光学***
CN201307184Y (zh) * 2008-09-16 2009-09-09 贾怀昌 一种由三个自由曲面构成的目镜光学元件
CN203275779U (zh) * 2013-04-28 2013-11-06 贾怀昌 一种基于rgb面光源的lcos微型显示器光学***
CN204439938U (zh) * 2015-03-25 2015-07-01 广景科技有限公司 成虚像的放大显示装置

Also Published As

Publication number Publication date
CN204439938U (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
CN108292039B (zh) 投影光学***和平视显示装置
JP3487859B2 (ja) ヘッドマウントディスプレー装置及び該装置に用いるディスプレー用光学系
JP6221731B2 (ja) 虚像表示装置
JP6521537B2 (ja) 普通のフロントガラスを使用したディスプレイ装置、および、その自動車のヘッドアップディスプレイシステム
JP6221732B2 (ja) 虚像表示装置
JP6697455B2 (ja) 交差光学系を含む頭部装着ビューイングシステム
CN108351518A (zh) 信息显示装置
US20180081174A1 (en) Projection optical system and head-up display apparatus using the same
CN106662745A (zh) 近眼显示***的紧致体系结构
JP6295640B2 (ja) 虚像表示装置
WO2016141720A1 (zh) 光学放大组合镜、头戴光学显示***及虚拟现实显示设备
CN207557584U (zh) 增强现实抬头显示装置
WO2017061039A1 (ja) 投影光学系及びヘッドアップディスプレイ装置
CN109874302B (zh) 光学***、放大影像装置、虚拟现实眼镜及增强现实眼镜
WO2017061016A1 (ja) 情報表示装置
WO2021139725A1 (zh) 近眼显示装置
WO2019144637A1 (zh) 显示装置及可穿戴设备
TWI609199B (zh) 反射式虛像顯示裝置
CN108646419B (zh) 可消除亮点的背投投影增强现实显示***
WO2016150166A1 (zh) 成虚像的放大显示装置
TWI649590B (zh) 反射式放大虛像顯示模組
TWM536362U (zh) 反射式放大虛像顯示模組
TW201910862A (zh) 使用普通風擋之顯示裝置及其車用抬頭顯示系統
JP3219059U (ja) 光学投影装置
TWM535811U (zh) 反射式虛像顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886088

Country of ref document: EP

Kind code of ref document: A1