WO2016148249A1 - Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode - Google Patents

Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode Download PDF

Info

Publication number
WO2016148249A1
WO2016148249A1 PCT/JP2016/058557 JP2016058557W WO2016148249A1 WO 2016148249 A1 WO2016148249 A1 WO 2016148249A1 JP 2016058557 W JP2016058557 W JP 2016058557W WO 2016148249 A1 WO2016148249 A1 WO 2016148249A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
production method
electrode element
producing
pts
Prior art date
Application number
PCT/JP2016/058557
Other languages
French (fr)
Japanese (ja)
Inventor
鳥光 慶一
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2017506201A priority Critical patent/JP6686244B2/en
Publication of WO2016148249A1 publication Critical patent/WO2016148249A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/262Needle electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present invention relates to a method for producing an electrode element that can be used as an electrode using a specific material, and more specifically, relates to a method for producing an electrode element that can be used as a silk electrode. Furthermore, the present invention is an invention relating to a body electrode used in the body surface or in the body using a conductive material having excellent biocompatibility, and more specifically, an electromyography measurement system such as an electromyograph, an electroencephalograph, etc. And a myoelectric measurement system or an electroencephalogram measurement system using the bioelectrode.
  • conductive polymers are used as materials that are more conductive and hydrophilic and more compatible with living organisms. It is attracting attention. This is because metals, carbon, and the like are hydrophobic and hard, and problems with compatibility with living bodies are recognized. For example, when used on a body surface as a bioelectrode, a conductive paste must be used between the bioelectrode and the body surface in order to ensure electrical continuity between the bioelectrode and the body surface. In addition, problems such as unpleasantness and pruritus caused by stuffiness, contact dermatitis and bacterial infection have been pointed out by users.
  • PEDOT-PSS Poly (3,4-ethlenedioxythiophene) -polystyrenesulfonate
  • bioelectrodes using conductive polymers include electromyographs and electroencephalographs using the bioelectrodes.
  • EMG electromyography
  • the former needle electromyogram is increasingly required in modern society where complex neuromuscular diseases are increasing.
  • the muscle action potential is derived through the surface electrode of the living body and visualized as an electromyogram. I can know.
  • the electromyogram measurement system that provides an electromyogram has improved the performance and cost of the apparatus, and has improved usability including software, so that the myoelectric potential measurement itself is becoming easier. Also, by using general-purpose signal processing software, various signal processing can be easily executed using a personal computer.
  • Electroencephalogram measurement is starting to occupy an important position not only in medical institutions but also in home testing, telemedicine, psychological research, nursing care welfare field, ubiquitous health care system, BCI (Brain Computer Interface), etc.
  • a composite system capable of synchronizing the action potential of the electroencephalogram and the eye movement is also provided.
  • PEDOT-pTS poly (3,4-ethylene-dioxythiophene) -p-toluenesulfonate
  • PEDOT-pTS is an essential component of an electrode element based on silk or the like instead of the PEDOT-PSS.
  • PEDOT-pTS is different in chemical characteristics from PEDOT-PSS, and there are problems unique to PEDOT-PSS in its practical use.
  • the first problem of the present invention is that when the PEDOT-pTS is used as a conductive polymer, the conductive polymer can be directly and efficiently applied to a substrate, which can be used as an electrode element while suppressing bleeding. It is to provide application means.
  • the second problem of the present invention is that the surface bioelectrode of the same use that overcomes the drawbacks associated with the metal surface bioelectrode of the above-described myoelectric measurement system, that is, does not use a conductive gel, and is in a use mode. Accordingly, it is possible to reduce the surface area of the electrode body with excellent conductivity performance, and it is possible to make it close to the skin, and with a little movement, it does not cause blurring between the electrode and the skin. It is to provide a surface electrode applicable to an electromyography measurement system and an electroencephalogram measurement system used in various living situations.
  • pTS solution organic solvent solution containing an oxidizing component and pTS (p-toluenesulfonate).
  • pTS-EDOT mixed liquid EDOT (3,4-ethylenedioxythiophene) mixed liquid
  • the solution is applied to the contact portion with a polymerization acceleration treatment synchronized with the contact, and the solution in the substrate
  • the polymerization reaction of EDOT immediately proceeds in the pTS-EDOT mixed solution, and PEDOT-pTS which is a high molecular polymer is formed.
  • This polymerization reaction follows the following formula. Fe 3+ is exemplified as the oxidizing component, but it is not limited to this as described later.
  • “synchronous” means that the polymerization promotion treatment is performed at a timing related to the timing at which the pTS-EDOT mixed solution contacts the substrate. Specifically, both timings may be the same, or the polymerization promotion treatment may be performed with a time lag from the timing at which the pTS-EDOT mixed solution contacts the substrate. In principle, the time lag is preferably within one minute.
  • the synchronized polymerization promotion treatment is preferably started within 1 minute from the contact of the pTS-EDOT mixed solution with the base material. It is. Further, for example, the production method of the present invention may be configured such that the pTS-EDOT mixed solution is contacted on the surface of the base material while maintaining the state in which the polymerization promotion treatment is continuously performed, and the time lag is not substantially provided. Included in “Synchronization”.
  • the time lag of the above synchronization can be extended by including a binder in the pTS solution.
  • the synchronized polymerization promotion treatment using this binder is preferably started within 24 hours from the contact of the pTS-EDOT mixed solution with the substrate, and more preferably 45 minutes. And most preferably within 10 minutes.
  • the adhesion of the pTS-EDOT mixed solution to the base material in this case is characterized not by impregnation but mainly by superficial adhesion due to the adhesive strength of the binder.
  • the polymerization promotion treatment in the production method of the present invention is not particularly limited as long as it is one or more selected from treatments for promoting the polymerization reaction to PEDOT-pTS in the pTS-EDOT mixed solution of the above formula.
  • the local heat treatment is set so that (a) the direct or indirect contact of the radiator at 50 to 90 ° C. and / or (b) the relevant portion is 50 to 90 ° C. Contact with hot air.
  • “local heat treatment” means, for example, that the heat treatment is not performed by placing the base material in the “heating atmosphere”, but is limited to the contact between the heat radiator and the corresponding part or the vicinity of the corresponding part.
  • an organic solvent solution containing an oxidizing component and pTS, and (2) an adhering portion of the mixed solution of EDOT by contacting the substrate is a part on the substrate plane.
  • Drawing design is different from simple one-sided attachment, and includes simple drawings such as circles and triangles, various drawings such as animal and plant drawings, portraits, characters, patterns, and the like.
  • This mask processing mode is the production method according to the present invention, in which (1) an organic solvent solution containing an oxidative component and pTS and (2) EDOT are adhered to each other by contact with a substrate.
  • contact with the mixed solution at least at the planned adhesion location, and further performing a polymerization promoting treatment, and then removing the mask Is.
  • the mask treatment include, for example, application of anti-staining paste or beeswax as a masking agent.
  • the anti-resisting paste include starch paste such as regular candy paste, corn starch paste and sweet potato starch paste; rubber paste; seaweed paste such as paste; and other various types of paste.
  • starch paste is suitable.
  • concentration of the antifouling paste at the time of use is not particularly limited, but is generally 3 to 5 mass%.
  • the removal of the stain-proofing paste can be performed by washing with water.
  • beeswax a wax derived from beehives. In use, it is usually heated and melted directly. The beeswax is removed by melting again by heating.
  • the base material used in the production method of the present invention is preferably a base material made of silk fiber or a base material coated with sericin or fibroin. Furthermore, it is preferable that the silk fiber has been subjected to soap scouring, alkali scouring, soap / alkali scouring, enzyme scouring, high temperature / high pressure scouring, or acid scouring.
  • the shape of the base material is not particularly limited, such as a fiber-like, string-like, cloth or ribbon-like fiber bundle, film-like, cloth-like, film-like, sheet-like, or gel-like, but as described above, the production method of the present invention
  • it is a substrate with a plane having a certain width, that is, a film shape, a film shape, or a sheet shape. Is preferred.
  • production efficiency can be remarkably improved by performing the production method of the present invention.
  • the content of pTS in the pTS solution is preferably 0.1 to 10% by mass with respect to the organic solvent solution.
  • EDOT may be appropriately diluted in an aqueous solvent such as water.
  • the oxidizing component in the pTS solution is not particularly limited as long as it has a predetermined oxidizing ability, and examples thereof include transition metals and halogens, and transition metals are particularly preferable.
  • the adhesion by contact in the production method of the present invention is preferably performed by dripping, spraying, dipping, transferring, or coating.
  • the mixed solution in order to eliminate waste of the EDOT-pTS mixed solution, the mixed solution is applied, dropped or sprayed so that the mixed solution is attached only in the vicinity of the target portion. It is preferable to apply or drop.
  • the dipping treatment is not impossible.
  • the electrode element of the present invention is an electrode element produced by the production method of the present invention described above, and the electrode of the present invention is characterized by using the electrode element of the present invention. Electrode.
  • the electrode of the present invention can be produced by an electrode production method, characterized in that an electrode element is produced by the production method of the invention, and then an electrode is produced using the electrode element. In the production method of the present invention, it is possible to easily provide two or more regions of different conductivity in the produced electrode element.
  • the electrode element of the present invention has a low resistance value and uses a fiber such as silk as a base material, it has a good touch, is excellent in durability and water resistance, and has flexibility. It can be used as a part or an electrode itself, and moreover, it can be produced as an electrode element having a variety of designs compared to the prior art in order to efficiently produce by the production method of the present invention that allows drawing.
  • the present inventors apply a bioelectrode using an electrode element produced using the production method of the present invention to an electromyography measurement system or an electroencephalogram measurement system, A surface or puncture bioelectrode (hereinafter referred to as a living body according to the present invention), characterized in that the second problem relating to an electroencephalogram measurement system can be solved and the electrode element according to the present invention is used. And also a production method thereof.
  • the biological electrode of the present invention is roughly classified into (a) a surface electrode or (b) a puncture electrode.
  • the area of the electrode element that can contact the skin is 0.25 to 100 cm 2 because the “small and high performance” characteristics of the electrode element of the present invention are apparent.
  • the shape of the electrode element is preferably “linear” or “planar”.
  • “linear” means a thread, string, cloth or ribbon-like fiber bundle, etc.
  • “planar” means a cloth, film, film, or sheet. And so on.
  • a “gel” base material can be used.
  • the shape of the bioelectrode of the present invention is typically linear or needle-like, which substantially coincides with the shape of the electrode element, and puncture the living body from the tip of these shapes. It can be carried out.
  • an electrode element and an auxiliary mechanism for inserting the electrode element into a living body are provided.
  • the mechanism is exemplified by an injection needle-like instrument and the like, and after this is inserted into the living body, only the electrode element portion is left in the living body, and the auxiliary mechanism is removed to remove the bioelectrode.
  • the element part can be left in the body.
  • the contactable surface area of the electrode element of the puncture electrode with the living tissue is preferably 0.0004 to 0.02 cm 2 .
  • the above-described biological electrode of the present invention can be suitably used for a myoelectric measurement system or an electroencephalogram measurement system.
  • the electrical resistance value of the conductive portion in the electrode element or the like in the present invention is calculated as follows.
  • the “conductive portion” means a region where a conductive treatment, specifically, PEDOT-pTS is attached on the base material.
  • PEDOT-pTS is attached to only a part of the base material
  • the PEDOT-pTS attached region corresponds to the “conductive portion”.
  • the electrical resistance value of the linear electrode element or the like is a value obtained by detecting the electrical resistance value per 1 cm of the linear length with a cross-sectional area of about 2.5 ⁇ 10 ⁇ 4 cm 2 by a tester.
  • the cross-sectional area of about 2.5 ⁇ 10 ⁇ 4 cm 2 is the cross-sectional area of a standard thickness silk thread. “About” means that the number after the second decimal place of “2.5” is rounded off. Since the cross-sectional area is inversely proportional to the resistance value, the resistance value corresponding to the cross-sectional area can be easily calculated.
  • the cross-sectional area of the linear base material increases, the cross-sectional area of PEDOT-pTS is also expected to increase accordingly, making it possible to easily compare the electrode elements of the present invention with each other or with other electrode elements. It is a parameter of an appropriate electrical resistance value in the present invention. When the length of 1 cm cannot be secured, the electrical resistance value in the entire conductive region of the linear electrode element is measured, and the comparison can be made by converting the electrical resistance value into the 1 cm length and the cross-sectional area. it can.
  • an electrode element that can efficiently produce an electrode element using a fiber such as silk that is suitable for use in an electrode, particularly a biological electrode, without bleeding into the base material.
  • a production method is provided.
  • the present invention provides a small and high-performance electrode element produced by the production method, an electrode such as a biological electrode using the electrode element, and a production method of the electrode.
  • the bioelectrode can be suitably used as a bioelectrode of an electromyography measurement system or an electroencephalogram measurement system, and a production method thereof is also provided.
  • FIG. 2 (a) shows a part of a flat electrode produced by drawing a plurality of dumbbells on a plain weave silk fabric. The silk fabric is sufficiently impregnated with PEDOT-pTS and is in contact with the brain. An electrode having PEDOT-pTS attached to the surface is also shown.
  • FIG. 2 (b) shows an electrode having PEDOT-pTS attached only to the contact surface with the brain.
  • FIG. 7B shows an electromyogram obtained by the measurement shown in FIG. 7B among the drawings showing the measurement of the muscle action potential using the surface electrode of the present invention. It is drawing which showed the electroencephalogram obtained using the electrode for puncture (needle electrode) of this invention.
  • FIG. 8A is a schematic view showing the state of this measurement
  • FIG. 8B shows an electroencephalogram obtained by this measurement. It is drawing which showed the result of having measured the muscle action potential using the electrode for puncture (needle electrode) of this invention.
  • FIG. 9A is a schematic view showing the state
  • FIG. 9B is a needle electromyogram obtained by this measurement.
  • the pTS-EDOT mixed solution is a mixed solution of pTS solution and EDOT.
  • the pTS solution is an organic solvent solution containing pTS (p-toluenesulfonate) and an oxidizing component.
  • PTS is known as a p-toluenesulfonic acid compound (a salt or ester with p-toluenesulfonic acid (tosylic acid)) and is also commercially available.
  • An organic solvent that can serve as a solvent for the pTS solution is capable of dissolving pTS and an oxidizing component, and preferably has good compatibility with an aqueous solvent.
  • Specific examples include monovalent lower alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, or hexanol.
  • the skeleton of carbon atoms constituting these monovalent lower alcohols may be linear, branched or cyclic, and may be used alone or in combination of two or more. Moreover, you may dilute and use with water suitably.
  • monovalent lower alcohols having 1 to 4 carbon atoms specifically, methanol, ethanol, propyl alcohol, isopropyl alcohol, or butanol are suitable as the organic solvent for the pTS solution.
  • the oxidizing component contained in the pTS solution is not particularly limited as long as it can activate the polymerization reaction to PEDOT-pTS in the pTS-EDOT mixed solution, and examples thereof include transition elements and halogens.
  • Transition elements include first transition elements such as iron, titanium, chromium, manganese, cobalt, nickel, and zinc; second transition elements such as molybdenum, silver, zirconium, and cadmium; third transition elements such as cerium, platinum, and gold Is exemplified. These transition elements may be used as a single metal or as a metal salt. Among these, it is preferable to use a first transition element such as iron or zinc.
  • the content of the oxidizing component in the pTS solution varies depending on the type of the oxidizing component used, and is not particularly limited as long as it is an amount that can activate the polymerization reaction.
  • the ferric chloride is 1 to 10% by mass with respect to the solution, and particularly preferable. Is 3 to 7% by mass. If the amount is too large, the polymerization reaction proceeds rapidly, but it is difficult to remove iron in the subsequent step, and if it is small, the polymerization reaction proceeds slowly.
  • the content of pTS acting as a dopant in the pTS solution is preferably 0.1 to 10% by mass, more preferably 0.15 to 7% by mass, and particularly preferably 1 to 6% by mass with respect to the solution. %, Most preferably 2-5% by weight.
  • EDOT is known as 3,4-ethylenedioxythiophene and is also commercially available. It is liquid at room temperature and water-soluble, and can be appropriately diluted in an aqueous solvent such as water.
  • the pTS solution can contain a binder. As described above, it is possible to delay the timing at which the polymerization acceleration treatment is applied to the pTS-EDOT mixed solution in synchronism with the binder. However, the adhesion of PEDOT-pTS to the substrate has a larger factor of superficial adhesion due to the adhesive force of the binder itself than the impregnation.
  • the binder used here is not particularly limited, and can be selected according to, for example, the characteristics of dissolution thereof, and examples thereof include thermoplastic resins, thermosetting resins, and photocurable resins. Specifically, Nafion, polycarbonate, polyacrylonitrile, polyethylene, polypropylene, polybutene, polyether, polyester, polystyrene, poly-p-xylene, polyvinyl acetate, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl Thermoplastic resins including thermoplastic elastomers such as ether, polyvinyl ketone, polyamide, butadiene resin, and fluorine resin; polyurethane resin, urea resin, melamine resin, modified silicone resin, phthalic acid resin, phenol resin, furan resin, aniline Thermosetting resins such as resin, unsaturated polyester resin, xylene / formaldehyde resin, epoxy resin; light such as epoxy
  • the content of the binder in the above solution is not particularly limited as long as the conductivity of the electrode element of the present invention is maintained.
  • 10 to 30% by mass of the total amount of the pTS solution and EDOT is preferably 10%.
  • -40% by weight or 1-30% by weight is second preferred, 1-40% is third preferred, 1-50% by weight or 0.1-40% by weight fourth preferred, 0.1-50 5% by mass is preferred.
  • 0.1 to 1% by mass, 0.1 to 10% by mass, 1 to 10% by mass, 40 to 50% by mass, 30 to 50% by mass, and 30 to 40% by mass of the total amount of the pTS solution are also preferable.
  • the other components include glycerol, polyethylene glycol-polyprene glycol polymer, ethylene glycol, sorbitol, sphingosine, and phosphatidylcholine, preferably glycerol, polyethylene glycol-polyprene glycol polymer, and sorbitol. 1 type, or 2 or more types.
  • cationic surfactants such as quaternary alkyl ammonium salts and alkylpyridinium halides; anionic surfactants such as alkyl sulfates, alkylbenzene sulfonates, alkyl sulfosuccinates, fatty acid salts; polyoxyethylene, poly Nonionic surfactants such as oxyethylene alkyl ethers; natural polysaccharides such as chitosan, chitin, glucose and aminoglycan; sugar alcohols, dimethyl sulfoxide and the like.
  • the pTS-EDOT mixed solution is a mixed solution obtained by mixing the pTS solution and EDOT, and the polymerization reaction to PEDOT-pTS starts immediately by the above mixing.
  • the polymerization accelerating treatment is particularly limited as long as it is one or more selected from treatments that promote the polymerization reaction to PEDOT-pTS in the pTS-EDOT mixed solution.
  • heat processing etc. are mentioned.
  • As the heat treatment (a) direct or indirect contact with a radiator at 50 to 90 ° C. or (b) contact with hot air set so that the corresponding portion reaches 50 to 90 ° C. , Etc.
  • the “corresponding portion” specifically means a portion where the pTS-EDOT mixed solution is brought into contact with the substrate.
  • the time for performing these polymerization promotion treatments is preferably as short as possible while the polymerization is performed without impairing the conductivity of PEDOT-pTS.
  • the electrical resistance that is a measure of conductivity in the electrode element of the present invention is preferably as small as possible, the upper limit of the electrical resistance is 15.0 ⁇ 10 4 ⁇ / cm at most. It is preferably 2.0 ⁇ 10 4 ⁇ / cm or less.
  • the electrical resistance increases according to the length of the treatment time, that is, 2.0 ⁇ 10 4 ⁇ .
  • An electrode element having an electric resistance value exceeding / cm can be obtained, and the electric resistance of the electrode element can be freely adjusted by controlling the processing time.
  • the mask to be selected is made of a material that can be easily removed and that the mask removing means such as water washing is accurately performed. is there.
  • the heating time is preferably 3 to 10 minutes, particularly preferably 3 to 6 minutes, and most preferably 4 to 6 minutes. . If the heating time is other than the preferred time, it is difficult to set the value of the electrical resistance of the electrode element within an assumed condition. However, as described above, this is not the case when the electric resistance value is intentionally increased.
  • the heat treatment under such conditions can be performed, for example, by setting the heat source to 1000 W, the distance from the corresponding part to about 7 to 20 cm, and the air volume to 1 to 2 m 3 / min.
  • the contact with the hot air includes a mode in which air is blown toward the corresponding part in the atmosphere maintained at 50 to 90 ° C. as described above.
  • PEDOT-pTS in the corresponding part of the base material can be generated quickly and in a good conductive state.
  • [A] -3 Substrate
  • the substrate used in the production method of the present invention is not limited as long as sericin or fibroin is contained, and even if it is silk that originally contains these proteins, It is possible to add these proteins afterwards.
  • Base materials for coating sericin or fibroin include polyamide fibers such as nylon, polyester fibers such as PET, synthetic fibers such as acrylic fibers, aramid fibers, polyurethane fibers, and carbon fibers; plant materials such as cotton, hemp, and jute In addition to the above-mentioned silk, animal fibers such as wool and collagen fibers; or mixed fibers thereof can be widely used. It may be a dyed fiber.
  • “covering” is an action of covering the surface of an object with a covering component in appearance, and its specific mode is not limited. For example, any form of “attachment”, “containing”, and “penetration” of the coating component to the object to be coated may be used.
  • Both sericin and fibroline can be obtained from silk (raw silk) by a known method, and are also commercially available.
  • Sericin is a protein component that forms the outside of raw silk, and can be recovered from raw silk by, for example, the method disclosed in JP-A-11-131318, and is also commercially available (for example, stocks) Company plateau company).
  • Fibroin is a protein component that forms the core of raw silk, and can be obtained, for example, by dissolving silk fiber with an alkaline solution and dialyzing it by the method disclosed in JP-A-6-70702, Commercially available (Silkgen G Solvel KE: Ichimaru Falcos Co., Ltd.).
  • sericin or fibroin can be produced basically by immersing the object to be coated (including yarn and fabric) in aqueous sericin or fibroin, drying, and washing to form a film. Yes (Patent Document 3). It is also possible to outsource such coating work to obtain a desired sericin coated substrate [for example, Art Co., Ltd. (Kiryu City, Gunma Prefecture): http://art-silk.jp/ ].
  • the above “silk fiber” means “silk or a fiber mainly composed thereof”.
  • the silk fiber may be a single silk, but if necessary, a mixed fiber with other fibers can be used.
  • the “other fibers” include synthetic fibers, plant fibers, and animal fibers other than silk, which are exemplified as the objects to be coated with sericin or fibroin.
  • silk is obtained from ordinary silkworm silk, wild silk thread, natural silk derived from silkworms and bees, and silk obtained using genetic recombination technology, such as silkworms obtained by incorporating a gene encoding a fluorescent protein. It is also possible to use “silk” or the like.
  • silk that originally contains sericin and fibroline, is excellent in affinity and adhesion with PEDOT-pTS, and is excellent in biocompatibility and strength, or a fiber mainly composed of this, that is, It is preferable to select “silk fiber”.
  • scouring is a process of removing sericin and other impurities from raw silk and the like.
  • scouring include soap scouring, alkali scouring, soap / alkali scouring, enzyme scouring, high temperature / high pressure scouring, acid scouring, and any scouring method can be used. These scouring can be performed on a yarn basis or on a fabric basis. That is, the silk cloth-like substrate may be a raw silk fabric or a kneaded silk fabric.
  • the shape of the substrate is a fiber-like, string-like, cloth- or ribbon-like fiber bundle, film-like, film-like, sheet-like, or gel-like, and is cloth-like, membrane-like, film-like, or sheet-like (
  • a planar substrate which is suitable as an application target of the production method of the present invention, and is a fiber bundle in the form of a thread, string, cloth, or ribbon (hereinafter, these are linear substrates)
  • the production method of the present invention has a great significance in terms of production efficiency.
  • the contact of the pTS-EDOT mixed solution with the substrate is accompanied by a drawing design on a part of the substrate plane. It is suitable for exhibiting the difficulty.
  • the thickness of the linear base material is not particularly limited, and can usually be selected as necessary within a range of about 0.1 ⁇ m to 1 mm. When used for electrodes such as biological electrodes, the thickness is usually about 1 ⁇ m to 100 ⁇ m. The length of the linear substrate can also be selected as necessary.
  • linear base material may be subjected to treatment as necessary, for example, plasma treatment for improving hydrophilicity, pore treatment, chemical coating treatment and the like.
  • the texture of the woven fabric is not particularly limited.
  • it can be used as a three-layer structure of plain weave, twill weave, and satin weave.
  • it may be a changed organization in which the Mihara organization is changed or combined, or may be a single special organization or a pattern weave organization with an aggressive pattern.
  • multiple woven fabrics such as a warp double fabric, a weft double fabric, a warp double fabric, a pile fabric, a towel fabric, and a kneading fabric may be used.
  • [A] -4 Mode of Synchronization Processing
  • “synchronization processing” is performed in which the above-described polymerization promotion processing is performed in synchronization with the contact of the pTS-EDOT mixed solution with the substrate.
  • the time from the above contact to the start of the polymerization accelerating treatment in the synchronous treatment is preferably as short as possible especially in the pTS-EDOT mixed solution not containing the above-mentioned binder, and preferably within 1 minute. More preferably, it is within 30 seconds. By managing this time short, it is possible to prevent the pTS-EDOT mixed solution from spreading on the base material and to increase the production efficiency of the electrode elements.
  • the time is preferably within 24 hours, more preferably within 45 minutes, and most preferably within 10 minutes.
  • the step of mixing the pTS solution and EDOT, preferably within the range of the volume ratio described above, to produce a pTS-EDOT mixed solution and bringing it into contact with the substrate first step
  • the synchronous process includes a stage (second stage) and a stage (second stage) in which the polymerization promotion treatment is performed within the above-described time and the pTS-PEDOT is adhered to the substrate.
  • the first stage and the second stage can be performed manually, but in reality, it is preferable to perform all or part of the process automatically by using a printing process technique or the like.
  • FIG. 1 shows a schematic diagram of an embodiment of a system for performing this process.
  • FIG. 1 shows a synchronization process.
  • An ink mechanism 3 capable of bringing the pTS-EDOT mixed solution into contact with the pTS-EDOT mixed solution from above in the vertical direction is provided on the conveyor guide belt 2 capable of feeding the planar substrate mounted thereon in the direction of arrow 1.
  • a thermal head 4 is provided as a heat dissipator at the tip of the arrow 1, and a polymerization acceleration processing mechanism 5 is further provided at the tip.
  • the substrate 6 is set between the ink mechanism 3 of the guide belt 2 and the thermal head 4.
  • the step of bringing the pTS-EDOT mixed solution into contact with the base material 6 through the ink mechanism 3 is the first step described above, and the predetermined polymerization is performed in the thermal head 4 or the polymerization promotion processing mechanism 5 while performing time management.
  • the step of performing the promotion process is the second step.
  • the pTS-EDOT mixed solution is supplied to the substrate 6 and a predetermined contact is performed.
  • a mechanism (not shown) for mixing the pTS solution and EDOT at a specific ratio is provided in the ink mechanism 3 or externally from the ink mechanism 3, and the pTS is provided to the ink outlet 31 via the mixing mechanism.
  • -EDOT mixture is supplied. Examples of the contact mode of the pTS-EDOT mixed liquid from the ink outlet 31 to the substrate 6 include dropping using a syringe pipette or the like, spraying using an inkjet nozzle, or the like. In addition, transfer by a silk screen or the like can be performed in a mode different from this figure.
  • the mechanical or automatic setting for performing a desired drawing design on the substrate is performed by, for example, a pressure-sensitive sensor using a piezo element or the like.
  • the periphery of the drawing design is covered or surrounded with a masking agent to suppress the infiltration of the pTS-EDOT mixed solution into the coating part or the surrounding area, thereby making the drawing design clear and clear. Further improvements can be made.
  • drawing is performed in a short time by contacting the base material 6 with the pTS-EDOT mixed liquid, and the drawing portion is immediately transferred to the thermal head 4 by feeding the drawn base material 6 in the direction of arrow 1 by the guide belt 2.
  • the production method of the present invention is carried out by setting the drawing design by this contact and the time until the start of the polymerization accelerating treatment by the thermal head 4 or the like preferably within 1 minute, more preferably within 30 seconds.
  • direct or indirect contact with the thermal head 4, that is, contact with the heat radiating body is one of the polymerization promotion treatments, and the polymerization promotion by the polymerization promotion treatment mechanism 5 without the contact treatment. You may process and you may combine both.
  • the polymerization promotion processing mechanism 5 is provided with equipment for performing the above-described polymerization promotion processing, for example, hot air processing.
  • a first hot air treatment is performed by a hot air blowing device (not shown) provided in the polymerization promotion mechanism 5, and then drying is performed.
  • a step of performing the water washing of the corresponding part and the masking agent removing process may be mentioned, and then performing the second hot air process again and drying.
  • the second stage is the contact with the thermal head 4 and the first hot air treatment.
  • the water washing treatment performed after the first hot air treatment is performed to remove oxidizing components such as unreacted EDOT and transition metal.
  • the process of attaching pTS-PEDOT to the substrate 6 is completed by the synchronous processing through the processes of the first stage and the second stage.
  • FIG. 1 showing this example is only a schematic diagram. Variations in the embodiment of the production method of the present invention are diverse.
  • the pTS solution and EDOT can be ejected separately, and both solutions can be mixed in the air to make contact with the substrate 6 as a pTS-EDOT mixed solution.
  • the transition from the first stage to the second stage is performed by the feeding operation of the drawn base material 6 on the plane by the guide belt 2, but for example, a space where the drawn base material 6 is directed.
  • the angle it is possible to perform hot air treatment, direct or indirect contact treatment with the thermal head, etc. from the direction in which the drawn substrate 6 is directed at the changed angle.
  • the second stage process can be performed in a “hanging” state or a “stretching” state.
  • the electrode element of the present invention can be produced.
  • the electrode of the present invention is characterized by using the electrode element (electrode element of the present invention) obtained by the production method of the present invention.
  • the electrode “Used” means that the electrode element of the present invention is used as all or part of the electrode.
  • the electrode of the present invention can be produced by an electrode production method characterized in that an electrode element is produced by the production method of the present invention, and then an electrode is produced using the electrode element.
  • the electrode of the present invention is all of the electrodes to which the electrode element of the present invention can be applied due to its properties, but the resistance value is low, and since the fibers such as silk are used as the base material, the touch is good and the durability is high. In order to have excellent water resistance and flexibility, it is particularly preferable to use it as a bioelectrode part or the product itself.
  • the aspect in the case of using the electrode of this invention as a bioelectrode biologically.
  • [B] -1 Surface electrode
  • the surface electrode transmits action potential and brain waves transmitted by volume conduction on the skin, directly on the surface of muscles, brain, and other organs (hereinafter referred to as “body tissue”). It is an electrode that is led out without puncturing the electrode from the surface), and is a biological electrode that is attached to the muscle abdomen or head for use. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment.
  • the electrode of the present invention is a surface electrode
  • the use of the electrode of the present invention is particularly suitable.
  • the contactable area of the electrode element with the body tissue surface is preferably 0.0004 to 100 cm 2 , particularly preferably 0.0004 to 25 cm 2 .
  • the feature of the electrode of the present invention that “it can be derived well” is not fully utilized.
  • the contactable area is smaller than 0.0004 cm 2 , it is difficult to sufficiently derive an action potential or an evoked potential, and an electroencephalogram. However, if the performance of the myoelectric measurement system or electroencephalogram measurement system is improved in the future, even if the contactable area is smaller than 0.0004 cm 2 , there is a possibility that it can be used favorably as the surface electrode.
  • the “area that can be contacted with the body tissue surface” is an area that can contact the body tissue surface when a conductive material is used as the electrode element of the surface electrode.
  • the electrode element is planar. In this case, it is the area of the sheet surface. In the case of such a planar electrode element, 0.25 to 100 cm 2 is particularly preferable, and 0.25 to 25 cm 2 is more preferable.
  • the electrode element is linear
  • the area of the surface area of the linear electrode element that is expected to be in contact with the body surface is the area that can come into contact with the body tissue surface.
  • 0.0004 to 0.02 cm 2 is particularly preferable, and 0.0004 to 0.005 cm 2 is more preferable.
  • the contactable area is a single electrode element. For example, in the case where a plurality of electrode elements are provided in a single surface electrode without contact with each other, the area of each electrode element.
  • the basic structure of the surface electrode according to the present invention includes (1) an electrode element, and (2) an action potential or evoked potential captured by the electrode element, such as the following signal cable or transmitter chip, and an electroencephalogram, an amplifier, etc. It is a mechanism for transmitting to the main body of the myoelectric measurement system and the electroencephalogram measurement system.
  • the surface electrode of the present invention can be produced by a conventional method.
  • the electrode for the surface of the present invention having this basic structure is attached to the muscle belly or scalp on the skin to be measured, or directly to the surface of the muscle or brain, at least two locations, preferably at least three locations.
  • the action potential or evoked potential in the muscle can be measured, or the electroencephalogram in the brain region can be measured.
  • two or more, preferably three or more surface electrodes of the present invention are applied to the muscle belly or scalp on the skin where electrical stimulation is performed, or directly on the surface of the muscle or brain, and electrical stimulation for the subject is performed. It can be performed.
  • the sticking means to the body tissue surface can be easily performed by using a double-sided tape, a single-sided tape or the like when the body tissue surface is skin, for example.
  • the double-sided tape can be used by adhering the region other than the electrode element in the electrode and the body tissue surface, and the single-sided tape is adhered to the body tissue surface from the upper side of the electrode element placed on the body tissue surface. It is possible to use.
  • the body tissue surface is the brain surface or the organ surface, it is preferable to perform placement depending on the moisture on the surface of the brain or the like without using the above-mentioned adhesive means such as the double-sided tape.
  • the fixing means for the skin surface and the surface electrode provided in the member can be fixed on the body tissue surface.
  • the skin and the electrode can be fixed by the adhesive force of the adhesive part protruding from the electrode element of the adhesive sheet as an adhesive sheet provided with an adhesive part on the side facing the skin.
  • an electrode element is incorporated in the contact part with the skin of daily products such as bracelets, wristbands, wristwatch bands, stomach wraps, supporters, etc. It can be set as the surface electrode of the present invention.
  • the surface electrode of the present invention can be provided with an opening for preventing stuffiness and a humidity control unit incorporating a water-absorbing material that can absorb sweat, water vapor, etc., if necessary. is there.
  • the first feature of the surface electrode of the present invention is that it is possible to freely draw an electrode element on a planar substrate, and therefore, the use location of the electrode can be selected flexibly. Can do.
  • a surface electrode element having a design adapted to the shape of a desired part of the body can be easily created, and the surface of the textile It is possible to diversify the electrodes.
  • the surface electrode of the present invention can be directly mounted on the body tissue.
  • the electrode element is formed by drawing an electrode element of a desired shape on the plane of a planar base material such as silk fabric excellent in biocompatibility based on the first feature.
  • the conductive performance of the electrode element used is superior to that of a product using a conventional conductive polymer. It is possible to transmit an evoked potential and also an electroencephalogram. For example, even if the shape of the electrode element is “linear”, it is possible to accurately transmit action potentials, evoked potentials, and brain waves.
  • multi-channel surface electrodes multi-point electrodes
  • smaller surface electrode elements arranged at higher density, which enables analysis of a wide range of muscle activities and multi-regional electroencephalograms. It becomes possible to carry out precisely.
  • FIG. 2 shows a plurality of dumbbells (both lines bulging at both ends) on a plain-woven silk fabric in accordance with the production process described above (FIG. 2 (a) shows a part of two and FIG. 2 (b) shows a part of each).
  • the drawing shows a state in which a material having the drawn portion as a planar electrode element is placed on a human brain model.
  • the bulging portions at both ends correspond to the electrode elements, and the thin linear portions connecting these correspond to the cords connecting the electrode elements.
  • the black drawing portion by PEDOT-pTS may be on the front side as shown in FIG. Fully impregnated PEDOT-pTS is in direct contact with the brain).
  • FIG. 1 shows a plurality of dumbbells (both lines bulging at both ends) on a plain-woven silk fabric in accordance with the production process described above
  • FIG. 2 (a) shows a part of two
  • FIG. 2 (b) shows a part of each).
  • the drawing shows a state in which a material
  • the unit is an electrode element of about 10 mm square, but the size can be further adjusted. In the case of the surface electrode of the brain, it is assumed that the size is about 3 ⁇ 3 with an interval of about 10 mm if the size is about this example.
  • the drawing unit of individual dumbbells can be made finer, and a lattice-like surface electrode that can be brought into direct contact with a higher density brain can be obtained.
  • the wired cord electrically connected to the external device has an insulating coating.
  • the coating material include natural fibers such as silk, chemical fibers such as polyester, and synthetic resins such as silicone resins.
  • the electrode of the present invention is a surface electrode
  • action potentials, evoked potentials, and brain waves can be measured in every scene of life, and health management, disease diagnosis, elucidation of exercise principles, and the like can be performed more flexibly and widely.
  • Puncture electrode is an electrode that literally brings a desired biological signal into contact with an electrode element in a living body. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment.
  • Accessible surface area of the biological tissue of a living body electrode element of this embodiment is preferably a 0.0004 ⁇ 0.02 cm 2, particularly preferably a 0.0004 ⁇ 0.002 cm 2. This is a very small surface area as compared with the conventional one, but at the same time, an excellent bioelectrode function can be exerted due to good conductive properties.
  • the basic configuration of the puncture electrode according to the present invention includes (1) an electrode element, and (2) an action potential or evoked potential captured by the electrode element, such as the following signal cable or transmission chip, and an electroencephalogram, an amplifier, etc. It is a mechanism for transmitting to the main body of the myoelectric measurement system and the electroencephalogram measurement system.
  • the puncture electrode of the present invention can be produced by a conventional method.
  • the puncture electrode of the present invention having this basic configuration is punctured at one or more locations in a living tissue to be measured, and an action potential or an evoked potential captured by the electrode element, or an electroencephalogram is used as an electromyography measurement system or electroencephalogram measurement.
  • an action potential or an evoked potential captured by the electrode element, or an electroencephalogram is used as an electromyography measurement system or electroencephalogram measurement.
  • the action potential and evoked potential in the muscle, and the electroencephalogram in the brain region can be measured.
  • the electrodes used are all “two or more, preferably three or more” as in the case of the surface electrode described above, but it is not always necessary to use all of them as puncture electrodes. It is also possible to use the part as a surface electrode. If all the electrodes are for puncturing, the number is “two or more, preferably three or more”, as with the surface electrode.
  • the biological electrode of this embodiment is typically in the shape of a needle and is used by inserting it into the living body, and a linear wire electrode element is inserted into the body of an electrode such as an injection needle.
  • a “wire electrode” is used that is inserted into a living body using an auxiliary mechanism for insertion and is used by removing the auxiliary mechanism.
  • the electrode of the present invention is used as a puncture electrode will be described focusing on these two typical examples.
  • a hard linear material for example, a hard silk thread
  • the hard silk thread is provided without removing sericin by scouring, and by applying the PEDOT-pTS through the production process described above, a wire having a hardness close to that of a wire is obtained.
  • Electrode element The needle electrode of the present invention can be produced by adding a basic configuration to the needle electrode element of the present invention by a known means. If the hardness of the electrode element is about this level, it is possible to puncture the body from the outside of the living body if it is a soft part of the skin.
  • the target organ for direct insertion of the needle electrode examples include the brain, but are not limited thereto.
  • the subject's brain is diagnosed in detail and the brain function is elucidated. be able to.
  • [B] -4 Wire electrode
  • a puncture assist mechanism for inserting the electrode element into the living body separately from the electrode element.
  • the most basic puncture assisting mechanism is a hollow needle with a through hole having both ends opened in the length direction. By puncturing from outside the skin with the linear electrode element being passed through the through hole of the hollow needle and then pulling out the hollow needle, only the electrode element can be left in the living body.
  • Such a wire electrode of the present invention can produce a desired electrode by adding the above auxiliary mechanism or the like to the electrode element of the present invention by a known means.
  • wire electrode is the same as that of the needle electrode described above.
  • Puncture electrode PEDOT-pTS utilizing the characteristics of PEDOT-pTS has a characteristic of swelling when it comes into contact with moisture, and it is possible to provide an in-vivo electrode utilizing this characteristic.
  • the basic concept is the same as that of the wire electrode. That is, by the stress accompanying the shrinkage of PEDOT-pTS when moving from the wet state to the dry state, the electrode element to which the PEDOT-pTS is attached adheres to the puncture assisting mechanism, and this is provided as an internal electrode.
  • the moisture in the living body is supplied to the PEDOT-pTS of the electrode element over time to swell and adhere to the puncture assist mechanism of the electrode element The state is released. By pulling out the puncture assist mechanism from the skin in this released state, only the electrode element can be left in the living body.
  • [B] -6 Free adjustment of electric resistance value
  • the electric resistance value in the electrode element using PEDOT-pTS can be adjusted by adjusting the time for heat treatment or the like. it can. That is, it is possible to provide two or more regions having different conductivity in the electrode element. This is one of the major characteristics when the above electrode element production process is used. Normally, the lower the electrical resistance value of the electrode element is, the better. However, for example, the treatment of burning the affected part by applying heat to generate heat is performed using the in vivo electrode of the present invention. In this case, the electrical resistance value on the tip end side of the needle-like electrode element is increased, and the electrical resistance value of the remaining portion is decreased.
  • action potential and evoked potential are measured at low voltage even when voltage is applied.
  • the low electrical resistance region is extracted and only the high electrical resistance part is extracted.
  • an insulating material other than a portion used as an electrode element for example, natural fibers such as silk, chemical fibers such as polyester, synthetic resins such as silicone resin, etc., only a desired portion is obtained. It is possible to create a body electrode in which the electrode element is exposed.
  • [B] -7 Drug Delivery System
  • An injection mechanism for injecting a drug solution into the body is provided in a part of the body electrode of the present invention, and a drug solution corresponding to the muscle action potential or brain wave can be supplied into the body.
  • a tube for drug transport may be provided as an injection mechanism.
  • the electrode element and the drug transport path can be integrated by making the drug transporting means osmotic pressure movement of the base material (silk fiber or the like) of the electrode element.
  • the drug include drugs that alleviate central nervous system disorders such as GSNO (S-Nitrosoglutathione) when the body electrode of the present invention is used as a brain electrode.
  • the myoelectric measurement system and electroencephalogram measurement system of the present invention are characterized by using the bioelectrode (surface electrode or puncture electrode) of the present invention as an electrode.
  • bioelectrode surface electrode or puncture electrode
  • it has other mechanisms necessary as an electromyography measurement system and an electroencephalogram measurement system.
  • amplification unit various stimulation units for obtaining evoked potentials, analysis unit for analysis / recording / addition / calibration, etc.
  • display unit for displaying myoelectric and electroencephalogram movement by voice or video, etc. Is provided as needed.
  • the electric signal transmission means may be wired or wireless.
  • the myoelectric measurement system of the present invention can be produced by producing an electrode by the above production method and then providing the electrode in the myoelectric measurement system as an electrode (biological electrode) for contacting the living body. At this time, a myoelectric measurement system having a desired configuration can be produced by adding the other mechanisms in combination by known means. Furthermore, the electroencephalogram measurement system of the present invention can be produced by producing an electrode by the above production method, and then providing the electrode in the electroencephalogram measurement system as an electrode (biological electrode) for contacting the living body. At this time, an electroencephalogram measurement system having a desired configuration can be produced by adding the above-mentioned other mechanisms in combination by known means.
  • the myoelectric measurement system and the electroencephalogram measurement system can synchronize with other types of biological signals, respectively, so that the state of the muscles and the brain can be grasped further.
  • the blood pressure, electrocardiogram signal, pulse oxy signal, muscle strength, joint angle, etc. can be combined and synchronized.
  • bioelectrode of the present invention is useful as a bioelectrode in the case of a combination of this electroencephalogram and myoelectric signal.
  • a plain-woven silk fabric (thickness of about 0.4 mm) made of silk thread that has been subjected to enzyme scouring (scouring with a proteolytic enzyme); Double (thin silk cloth, thickness of about 0.12 mm), (3) a cloth in which polyester cloth was coated with sericin (consigned production of Art Co., Ltd. (Kiryu City, Gunma Prefecture), thickness of about 0.15 mm) was used.
  • a butanol solution containing iron (III) ions of transition metal and pTS (CLEVIOS CB 40 V2 made by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate: “CLEVIOS”) are registered trademarks).
  • EDOT an aqueous solution of EDOT (CLEVIOS MV2, manufactured by Heraeus, approximately 98.5% by mass of EDOT: “CLEVIOS” is a registered trademark) was used.
  • Example 1 Examination of heat treatment using thermal head For plain weave silk fabric (4 cm x 4 cm) used as the base material, 6.3 ml of the above pTS solution and 220 ⁇ l of EDOT were prepared. Within 30 seconds after mixing, the mixture was transferred onto the silk fabric used as the substrate using a silk screen cut into two rectangular shapes (1 cm ⁇ 2 cm) adjacent to each other. This operation was performed for 20 minutes in a heated atmosphere at 70 ° C.
  • the mixed liquid is transferred onto the silk fabric used as the base material by using the above-described two silk-shaped silk screens, and 70% from above the entire transfer portion.
  • a metallic thermal head (heat radiating body) at 0 ° C. was immediately brought into direct contact with the transfer portion and maintained in contact with the thermal head for 5 minutes. As a result, there was no blur as described above, and the rectangular PEDOT-pTS could be drawn as intended (FIG. 3).
  • Example 2 Examination of heat treatment using hot air
  • the hot air of a 900 W dryer was set so that the temperature of the two rectangular drawing portions was 70 ° C. Then, local hot air treatment of the drawing portion was performed for 4 minutes.
  • a cloth-like substrate that was drawn in a heated atmosphere at 70 ° C. was used.
  • Example 3 Examination of treatment using a mask
  • the hot air treatment was performed using a mask.
  • FIG. 5B shows a photograph showing the state at that time. Clearly, it is clearly confirmed that black PEDOT-pTS is not observed in the area where the normal glue is applied. When the electric resistance value was measured, it was a slightly high value of 7.0 ⁇ 10 4 ⁇ / cm, which is considered to be due to the fact that a slight amount of regular glue remained.
  • Example 4 Measurement of Muscle Action Potential Using Surface Electrode of the Present Invention
  • a resistance value of 1.5 ⁇ 10 4 prepared by a method using the same material and thermal head as in Example 1 on the subject's upper arm.
  • Three ribbon-shaped surface silk electrodes (width: 1 cm, length: 6 cm) of ⁇ / cm (Fig. 7 (a): one of which is a reference electrode and the other two are measurement electrodes) are arranged at intervals of 2 cm.
  • the time change of the myoelectricity obtained when each was connected to the wireless electromyograph is shown.
  • a substance for reducing impedance, such as gel was not applied between the silk electrode and the skin, but was directly brought into contact with the skin (FIG. 7B).
  • the entire electrode is covered with a transparent adhesive sheet for fixation, and is adhered to the skin surface, but this sheet is for fixing the whole, not for adhering individual electrodes to the surface. No particularly strong force is required for contact of the electrode with the skin.
  • FIG. 8A is a schematic view of the situation. In the measurement, the same puncture silk electrode was used for the reference electrode as well as the measurement electrode. As a result, brain waves (frequency 50 to 70 Hz) including gamma waves (arrows in the figure) could be measured (FIG. 8B).
  • Example 6 Measurement of muscle action potential using puncture electrode (needle electrode) of the present invention
  • Example 5 is the same as Example 5 except that it was prepared by the method using heat treatment by the dryer of Example 2.
  • a puncture electrode made of No. 3 hard silk as a base material was inserted and placed in the muscular tissue of chicken thigh muscle, and the potential change inside the muscle accompanying movement was measured.
  • the reference silk electrode was placed on the surface of the muscle directly under the skin.
  • FIG. 9A is a schematic diagram showing the state.

Abstract

The present invention addresses the problem of providing: a means for applying an electrically conductive polymer onto a base material directly and with high efficiency so that the electrically conductive polymer can be used as an electrode element without being bled when PEDOT-pTS is used as the electrically conductive polymer; a surface electrode which is produced without using an electrically conductive gel, has excellent electrical conduction performance and therefore can have a reduced surface area, can be adhered onto skin, does not undergo the displacement on skin even upon the application of a little movement of a body, and can be used in myoelectric signal measurement systems and brain wave measurement systems that have been used in various situations of life. Provided are: a method for producing an electrode element, said method being characterized in that a mixed solution of (1) an organic solvent-based solution containing an oxidative component and p-toluenesulfonate (pTS) and (2) 3,4-ethylenedioxythiophene (EDOT) is brought into contact with a base material to adhere the mixed solution onto the base material and then the contact part is subjected to a polymerization acceleration treatment in synchronization with the contacting; and a biopotential electrode to be applied onto a surface or to be punctured upon use, said biopotential electrode being characterized by comprising the electrode element.

Description

電極素子及び電極の生産方法、並びに、当該電極を用いる測定システムの作製Electrode element, electrode production method, and production of measurement system using the electrode
 本発明は、特定の材料を用いた電極として用いることができる電極素子の生産方法に関し、さらに具体的には絹電極として用いることができる電極素子の生産方法に関する発明である。さらに本発明は、生体親和性に優れる導電性素材を用いた、体表又は体内において用いる生体電極に関する発明であり、さらに具体的には、筋電計等の筋電測定システムや、脳波計等の脳波測定システムにおいて用いる生体電極、及び、当該生体電極を用いる筋電測定システム又は脳波測定システムに関する発明である。 The present invention relates to a method for producing an electrode element that can be used as an electrode using a specific material, and more specifically, relates to a method for producing an electrode element that can be used as a silk electrode. Furthermore, the present invention is an invention relating to a body electrode used in the body surface or in the body using a conductive material having excellent biocompatibility, and more specifically, an electromyography measurement system such as an electromyograph, an electroencephalograph, etc. And a myoelectric measurement system or an electroencephalogram measurement system using the bioelectrode.
 現在、銅等の金属やカーボン等を導電素材として用いた従来の導電性繊維に代えて、より導電性及び親水性に優れて、かつ、生体への適合性が優れる素材として導電性高分子が着目されている。これは、金属やカーボン等は疎水性で、しかも硬質であり、生体との適合性に問題が認められるからである。例えば、生体電極として体表面に用いる場合には、当該生体電極と体表面とを電気的連続性を確保するために、導電性のペーストを当該生体電極と体表面の間で使用しなければならず、使用者において蒸れによる不快感や掻痒感、さらには接触性皮膚炎や細菌の感染等の問題が指摘されている。 At present, instead of conventional conductive fibers using metals such as copper and carbon as conductive materials, conductive polymers are used as materials that are more conductive and hydrophilic and more compatible with living organisms. It is attracting attention. This is because metals, carbon, and the like are hydrophobic and hard, and problems with compatibility with living bodies are recognized. For example, when used on a body surface as a bioelectrode, a conductive paste must be used between the bioelectrode and the body surface in order to ensure electrical continuity between the bioelectrode and the body surface. In addition, problems such as unpleasantness and pruritus caused by stuffiness, contact dermatitis and bacterial infection have been pointed out by users.
 このような問題を解決する素材として着目されている冒頭の導電性高分子として、既に「PEDOT-PSS(Poly(3,4-ethlenedioxythiophene)-polystyrenesulfonate)」が提供されており、当該導電性高分子を、生体材料である絹等の繊維にコーティングした導電性の繊維が、本発明者等によって開発されている(例えば、特許文献1、2、非特許文献1)。 “PEDOT-PSS (Poly (3,4-ethlenedioxythiophene) -polystyrenesulfonate)” has already been provided as an initial conductive polymer that has been attracting attention as a material for solving such problems. The present inventors have developed conductive fibers obtained by coating a fiber such as silk which is a biomaterial (for example, Patent Documents 1 and 2 and Non-Patent Document 1).
 導電性高分子を用いた生体電極の応用として、当該生体電極を用いる筋電計や脳波計が挙げられる。 Applications of bioelectrodes using conductive polymers include electromyographs and electroencephalographs using the bioelectrodes.
 ヒトや動物が歩いたり走ったり運動を行っているときは、そのもとになっている駆動力は筋の収縮によって生み出される。このような筋の活動状態を知る方法として、筋電図法(Electromyography:EMG)がある。筋電図法は、神経筋疾患の臨床診断に用いられる針筋電図と、動作解析に用いられる表面筋電図に二分される。 When a human or animal is walking, running or exercising, the driving force that is the basis is generated by muscle contraction. There is an electromyography (EMG) as a method of knowing the activity state of such a muscle. The electromyography is divided into a needle electromyogram used for clinical diagnosis of neuromuscular disease and a surface electromyogram used for motion analysis.
 前者の針筋電図は、複雑な神経筋疾患が増加しつつある現代社会においてますます必要とされるものである。後者の表面筋電図では、生体表面電極を通して筋肉の活動電位を導出し、それを筋電図として視覚化することにより、動作に対応して、どの筋がどの時点で、どの程度活動しているかを知ることができる。 The former needle electromyogram is increasingly required in modern society where complex neuromuscular diseases are increasing. In the latter surface electromyogram, the muscle action potential is derived through the surface electrode of the living body and visualized as an electromyogram. I can know.
 近年、筋電図を提供する筋電測定システムは、装置が高性能化及び低コスト化し、ソフトウエアも含めた使い勝手も向上したため、筋電位の測定自体は従来よりも容易になりつつある。また、汎用の信号処理ソフトを用いることによりパーソナルコンピュータを用いて様々な信号処理も簡単に実行できるようになった。 In recent years, the electromyogram measurement system that provides an electromyogram has improved the performance and cost of the apparatus, and has improved usability including software, so that the myoelectric potential measurement itself is becoming easier. Also, by using general-purpose signal processing software, various signal processing can be easily executed using a personal computer.
 その結果、特に表面筋電測定システムにおいて、スポーツ動作解析やリハビリテーション分野での積極的な活用が検討されるに至っている。 As a result, the active use in the field of sports motion analysis and rehabilitation has been studied especially in the surface electromyography measurement system.
 脳波測定に関しては、医療機関における検査を始めとして、在宅検査、遠隔医療、心理学的研究、介護福祉分野、ユビキタスヘルスケアシステム、BCI(ブレインコンピュータインターフェース)等において重要な位置を占めつつある。 Electroencephalogram measurement is starting to occupy an important position not only in medical institutions but also in home testing, telemedicine, psychological research, nursing care welfare field, ubiquitous health care system, BCI (Brain Computer Interface), etc.
 このような状況の中、より一般的な生活場面において脳波の測定を被験者に肉体的、心理的な負担をかけずに脳波測定を実行する手段が求められている。 Under such circumstances, there is a need for means for performing electroencephalogram measurement in a more general life scene without subjecting the subject to physical and psychological burdens.
 また、脳波と眼球運動を関連づけるために、脳波と眼球運動の活動電位を同期させることが可能な複合システムも提供されている。 Also, in order to correlate the electroencephalogram with the eye movement, a composite system capable of synchronizing the action potential of the electroencephalogram and the eye movement is also provided.
国際公開WO2013/073673号公報International Publication WO2013 / 073673 特開2014-108134号公報JP 2014-108134 A
[A]上記の非特許文献2には、PEDOT-PSSよりも導電性に優れた導電性高分子として、「PEDOT-pTS(poly(3,4-ethylene-dioxythiophene)-p-toluenesulfonate)」が開示されている。 [A] In the above Non-Patent Document 2, “PEDOT-pTS (poly (3,4-ethylene-dioxythiophene) -p-toluenesulfonate)” is disclosed as a conductive polymer having better conductivity than PEDOT-PSS. It is disclosed.
 本発明者等は、このPEDOT-pTSを上記のPEDOT-PSSに代えて、絹等を基材とする電極素子の本質成分として用いることを目指している。しかしながら、PEDOT-pTSは、PEDOT-PSSとは化学的な特性が異なっており、その実用化にはPEDOT-PSS独特の問題が存在する。 The present inventors aim to use this PEDOT-pTS as an essential component of an electrode element based on silk or the like instead of the PEDOT-PSS. However, PEDOT-pTS is different in chemical characteristics from PEDOT-PSS, and there are problems unique to PEDOT-PSS in its practical use.
 導電性高分子を導電成分として用いる電極素子を作出するには、塗布、化学的又は物理的処理、洗浄、乾燥等の工程を経なければならず、相応の手間とコストがかかる。基材の表面に導電性高分子による所望の描画を行い、当該描画部分をそのまま電極として用いることができれば理想的である。 In order to produce an electrode element using a conductive polymer as a conductive component, it is necessary to go through steps such as coating, chemical or physical treatment, washing, and drying, which requires corresponding labor and cost. It is ideal if a desired drawing with a conductive polymer is performed on the surface of the substrate and the drawn portion can be used as an electrode as it is.
 ところが、導電性高分子で布等の基材の表面に描画を行うと滲んでしまい、企図する通りのデザインの平面形状の電極部分を作出することは困難である。 However, when drawing is performed on the surface of a base material such as a cloth with a conductive polymer, it is difficult to produce a planar electrode portion having a design as intended.
 よって本発明の第1の課題は、PEDOT-pTSを導電性高分子として用いる場合における、滲みを抑制しつつ電極素子として実用可能な、基材に対する直接的かつ効率的な当該導電性高分子の適用手段を提供することにある。 Therefore, the first problem of the present invention is that when the PEDOT-pTS is used as a conductive polymer, the conductive polymer can be directly and efficiently applied to a substrate, which can be used as an electrode element while suppressing bleeding. It is to provide application means.
[B]筋電測定システムや脳波測定システムのモニター用の金属製の表面生体電極は、既に広く普及している。筋肉の活動電位や脳波の測定に際しては、呼吸や体動によりノイズ(アーチファクト)が発生してしまうことが問題となっており、導電性ゲルの粘着性パッドの使用により、これを防いでいる。 [B] Metal surface bioelectrodes for monitoring myoelectric measurement systems and electroencephalogram measurement systems are already widely used. In measuring muscle action potentials and electroencephalograms, noise (artifacts) is generated due to breathing and body movement, which is prevented by the use of a conductive gel adhesive pad.
 しかしながら、このような使用形態は、筋肉の活動電位信号や脳波信号の高い周波数成分が減衰してしまい、正確な信号の解析や外部装置との高速通信を困難にする要因となっている。 However, such a usage pattern attenuates high frequency components of the muscle action potential signal and the electroencephalogram signal, which makes accurate signal analysis and high-speed communication with an external device difficult.
 また、粘着性パッドの装着者にとっては、当該パッドの皮膚における密着により蒸れが発生しやすくなり、長時間使用では不快感が生じることが少なくない。また、粘着剤の効果を高めるためのアルコール類による事前の脱脂処理は、皮膚への刺激が強く、敏感肌の装着者においては、掻痒感や接触性皮膚炎の原因となることも指摘されている。また、特に脳波測定を室外で行う場合、外見上の違和感も問題となる。 In addition, for the wearer of the adhesive pad, stuffiness is likely to occur due to the close contact of the pad with the skin, and uncomfortable feeling often occurs when used for a long time. In addition, it has been pointed out that pre-degreasing treatment with alcohols to enhance the effect of adhesives is highly irritating to the skin and may cause itching and contact dermatitis in sensitive skin wearers. Yes. In addition, when the electroencephalogram measurement is performed outdoors, the uncomfortable appearance is also a problem.
 また、金属製の表面生体電極の導電性能では、かなり表面積を大きくする必要があり、かつ、硬質であるために、装着者の細かな筋肉の動きに伴い電極が微妙に動いてしまい、これがノイズ信号を生んで、正確な測定が困難になることが指摘されている。 In addition, the conductive performance of metal surface bioelectrodes requires a fairly large surface area and is hard, so the electrodes move slightly with the movement of the wearer's fine muscles. It has been pointed out that producing a signal makes accurate measurement difficult.
 本発明の第2の課題は、上記の筋電測定システムの金属製の表面生体電極に伴う欠点を克服した同用途の表面生体電極、すなわち、導電性ゲルを使用せず、かつ、使用態様に応じて導電性能に優れて電極本体の表面積をより小さくすることが可能であり、さらに、皮膚に密着させることが可能であり、少々の動きでは、電極と皮膚の間にブレを生じさせない、多様な生活場面において用いられる筋電測定システムや脳波測定システムに適用可能な表面用電極を提供することにある。 The second problem of the present invention is that the surface bioelectrode of the same use that overcomes the drawbacks associated with the metal surface bioelectrode of the above-described myoelectric measurement system, that is, does not use a conductive gel, and is in a use mode. Accordingly, it is possible to reduce the surface area of the electrode body with excellent conductivity performance, and it is possible to make it close to the skin, and with a little movement, it does not cause blurring between the electrode and the skin. It is to provide a surface electrode applicable to an electromyography measurement system and an electroencephalogram measurement system used in various living situations.
 また、筋電測定システムや脳波測定システムで用いられる医療用の針電極やワイヤー電極においても、金属性の針の使用による痛覚や金属アレルギー等が問題となっており、より生体適合性に優れ、かつ、導電性能に優れた製品の提供が求められている。この針電極やワイヤー電極にまつわる問題の解決も、本発明の課題である。 In addition, in the needle electrode and wire electrode for medical use used in the myoelectric measurement system and the electroencephalogram measurement system, pain sensation and metal allergy due to the use of a metallic needle are problems, and the biocompatibility is superior. In addition, there is a demand for the provision of a product having excellent conductive performance. The solution of the problems associated with the needle electrode and the wire electrode is also an object of the present invention.
 さらに、上記の課題を克服した電極を活用する筋電測定システムや脳波測定システムの提供もまた、本発明の課題である。 Furthermore, the provision of a myoelectric measurement system and an electroencephalogram measurement system using an electrode that has overcome the above-mentioned problems is also an object of the present invention.
[A]本発明者等は、上記の第1の課題の解決に向けて検討を行った結果、驚くべきことに、(1)酸化成分とpTS(p-toluenesulfonate)を含有する有機溶媒性溶液(以下、「pTS溶液」ともいう)と、(2)EDOT(3,4-ethylenedioxythiophene)、の混合液(以下、「pTS-EDOT混合液」ともいう)の、基材への接触による付着を行い、当該接触に同期させた重合促進処理を当該接触箇所に施すことを特徴とする、電極素子の生産方法(以下、本発明の生産方法ともいう)を提供することにより、基材における上記溶液乃至上記溶液の内容成分同士の重合により生成するPEDOT-pTS、の滲みを防止しつつ、PEDOT-pTSを含む所望の平面図形を基材上に描いて、当該描画部分の電気的抵抗値を低下させて電極としての働きを付与することができることを見出し、本発明を完成した。しかも、本発明の生産方法により、電極に至るまでの一連の作業が著しく省力化されることを見出した。 [A] As a result of studies aimed at solving the above first problem, the present inventors have surprisingly found (1) an organic solvent solution containing an oxidizing component and pTS (p-toluenesulfonate). (Hereinafter also referred to as “pTS solution”) and (2) EDOT (3,4-ethylenedioxythiophene) mixed liquid (hereinafter also referred to as “pTS-EDOT mixed liquid”) due to contact with the substrate Providing the electrode element production method (hereinafter, also referred to as the production method of the present invention), characterized in that the solution is applied to the contact portion with a polymerization acceleration treatment synchronized with the contact, and the solution in the substrate Draw a desired plane figure including PEDOT-pTS on the base material while preventing bleeding of PEDOT-pTS generated by polymerization of the content components of the above solution, and reduce the electrical resistance value of the drawn part. Let it work as an electrode It found that it is possible to impart, and have completed the present invention. In addition, the production method of the present invention has found that a series of operations up to the electrode are remarkably labor-saving.
 本発明の生産方法において、pTS溶液とEDOTを混合することにより、直ちにEDOTの重合反応がpTS-EDOT混合液中において進行し、高分子ポリマーであるPEDOT-pTSが形成される。この重合反応は、下記式に従う。酸化成分としてFe3+が例示されているが、後述するように、これに限定されるものではない。 In the production method of the present invention, by mixing the pTS solution and EDOT, the polymerization reaction of EDOT immediately proceeds in the pTS-EDOT mixed solution, and PEDOT-pTS which is a high molecular polymer is formed. This polymerization reaction follows the following formula. Fe 3+ is exemplified as the oxidizing component, but it is not limited to this as described later.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の生産方法において「同期」とは、pTS-EDOT混合液が基材に接触するタイミングに関連させたタイミングで重合促進処理を行うことを意味する。具体的には、両タイミングは同時であっても良く、pTS-EDOT混合液が基材に接触するタイミングからタイムラグを設けて、重合促進処理を行っても良い。当該タイムラグは、原則として1分以内であることが好適である。 In the production method of the present invention, “synchronous” means that the polymerization promotion treatment is performed at a timing related to the timing at which the pTS-EDOT mixed solution contacts the substrate. Specifically, both timings may be the same, or the polymerization promotion treatment may be performed with a time lag from the timing at which the pTS-EDOT mixed solution contacts the substrate. In principle, the time lag is preferably within one minute.
 すなわち本発明の生産方法は上記事項に加えて、同期させた重合促進処理は、pTS-EDOT混合液の基材への接触から1分以内に開始することを好適とする、電極素子の生産方法である。また、例えば基材表面上において重合促進処理を行う状態を継続的に保ちつつ、その上にpTS-EDOT混合液の接触を行い、当該タイムラグを実質的に設けない態様も、本発明の生産方法における「同期」に含まれる。 That is, in the production method of the present invention, in addition to the above items, the synchronized polymerization promotion treatment is preferably started within 1 minute from the contact of the pTS-EDOT mixed solution with the base material. It is. Further, for example, the production method of the present invention may be configured such that the pTS-EDOT mixed solution is contacted on the surface of the base material while maintaining the state in which the polymerization promotion treatment is continuously performed, and the time lag is not substantially provided. Included in “Synchronization”.
 なお、pTS溶液にバインダーを含有させることにより、上記の同期のタイムラグを延長することが可能である。具体的には、このバインダーを用いた場合の同期させた重合促進処理は、pTS-EDOT混合液の基材への接触から24時間以内に開始することが好適であり、さらに好適には45分以内であり、最も好適には10分以内である。ただしこの場合の基材へのpTS-EDOT混合液の付着は、含浸ではなく、主にバインダーの接着力による表面的な接着によるところに特徴がある。 It should be noted that the time lag of the above synchronization can be extended by including a binder in the pTS solution. Specifically, the synchronized polymerization promotion treatment using this binder is preferably started within 24 hours from the contact of the pTS-EDOT mixed solution with the substrate, and more preferably 45 minutes. And most preferably within 10 minutes. However, the adhesion of the pTS-EDOT mixed solution to the base material in this case is characterized not by impregnation but mainly by superficial adhesion due to the adhesive strength of the binder.
 本発明の生産方法における重合促進処理は、上式のpTS-EDOT混合液における、PEDOT-pTSへの重合反応を促進する処理から選ばれる1種若しくは2種以上であれば特に限定されず、例えば、局所的な加熱処理等が挙げられる。局所的な加熱処理としては、(a)該当部分における50~90℃の放熱体の直接的若しくは間接的な接触、及び/又は、(b)該当部分が50~90℃になるように設定された熱風との接触、等が挙げられる。ここで「局所的な加熱処理」とは、例えば、「加熱雰囲気」に基材を載置して加熱処理を行うのではなく、上記の放熱体と該当部分の接触や、該当部分近傍に限定した熱風処理等、該当部分とその他の部分を区別して、実質的に該当部分のみに向けての加熱処理である。後述の線状基材の場合は、「局所」とは長さ方向のみを指標とした「局所」であり、幅方向は部分の区別が困難であるために、「局所」の指標とはならない。放熱体の「直接的な接触」とは、放熱体を直接pTS-EDOT混合液の付着部分に接触させることを意味するものであり、「間接的な接触」とは、放熱体をpTS-EDOT混合液の付着部分とは異なる基材の部分に接触させて予め混合液の付着部分を所定の温度に加熱しておくことを意味するものである。「間接的な接触」の典型例として、布状基材における混合液の付着部分の裏側に放熱体を接触させる態様が挙げられる。放熱体の材料は特に限定されないが、金属であることが好適である。 The polymerization promotion treatment in the production method of the present invention is not particularly limited as long as it is one or more selected from treatments for promoting the polymerization reaction to PEDOT-pTS in the pTS-EDOT mixed solution of the above formula. And local heat treatment. The local heat treatment is set so that (a) the direct or indirect contact of the radiator at 50 to 90 ° C. and / or (b) the relevant portion is 50 to 90 ° C. Contact with hot air. Here, “local heat treatment” means, for example, that the heat treatment is not performed by placing the base material in the “heating atmosphere”, but is limited to the contact between the heat radiator and the corresponding part or the vicinity of the corresponding part. This is a heat treatment that is substantially directed only to the relevant part by distinguishing the relevant part from other parts, such as hot air treatment. In the case of a linear substrate described later, “local” is “local” with only the length direction as an index, and the width direction is difficult to distinguish between parts, so it is not an index of “local”. . “Direct contact” of the radiator means that the radiator is brought into direct contact with the adhering portion of the pTS-EDOT mixed solution, and “indirect contact” means that the radiator is pTS-EDOT. This means that the adhering portion of the mixed liquid is heated to a predetermined temperature in advance by contacting a portion of the base material different from the adhering portion of the mixed liquid. A typical example of “indirect contact” includes a mode in which a radiator is brought into contact with the back side of the adhering portion of the mixed liquid in the cloth-like substrate. The material of the radiator is not particularly limited, but is preferably a metal.
 例えば本発明の生産方法において、(1)酸化成分とpTSを含有する有機溶媒性溶液と、(2)EDOTの混合液の、基材への接触による付着部分を、基材平面上の一部における描画デザインとすることにより、「付着部分が滲みにくい」という本発明の生産方法の特徴を活かすことができる。描画デザインとは、単純な一面付着とは異なるものであり、丸、三角等の単純な図形から、動植物画、人物画等の各種描写図、文字、模様等を包含するものである。 For example, in the production method of the present invention, (1) an organic solvent solution containing an oxidizing component and pTS, and (2) an adhering portion of the mixed solution of EDOT by contacting the substrate is a part on the substrate plane. By using the drawing design in, the feature of the production method of the present invention that “the attached portion is difficult to bleed” can be utilized. Drawing design is different from simple one-sided attachment, and includes simple drawings such as circles and triangles, various drawings such as animal and plant drawings, portraits, characters, patterns, and the like.
 本発明の生産方法を行うに際して、マスク処理を行って、基材上の特に描画デザインの作成をより緻密に行うことができる。マスク処理とは、予め、導電性高分子の付着を行わない部分をマスクで覆う処理を行うことある。このマスク処理態様は、本発明の生産方法において、(1)酸化成分とpTSを含有する有機溶媒性溶液と、(2)EDOT、の混合液の、基材への接触による付着を行う前に、当該付着予定箇所を除く部分にマスク処理を行った後、少なくとも当該付着予定箇所において上記混合液との接触を行い、さらに重合促進処理を行った後に、上記マスクを除去することを特徴とするものである。 In carrying out the production method of the present invention, it is possible to perform a mask process to create a drawing design on the substrate more precisely. The mask process is to perform a process of previously covering a portion where the conductive polymer is not attached with a mask. This mask processing mode is the production method according to the present invention, in which (1) an organic solvent solution containing an oxidative component and pTS and (2) EDOT are adhered to each other by contact with a substrate. In addition, after performing a mask process on a portion other than the planned adhesion portion, contact with the mixed solution at least at the planned adhesion location, and further performing a polymerization promoting treatment, and then removing the mask. Is.
 マスク処理の具体例としては、例えば、マスク剤として防染糊又はミツロウの塗布が挙げられる。防染糊としては、正麩糊、コーンスターチ糊、さつまいもデンプン糊等のデンプン糊;ゴム糊;ふのり等の海藻糊;その他各種の型糊が挙げられる。防染糊としては、デンプン糊が好適である。使用時の防染糊の濃度(糊粉末質量/水質量)は、特に限定されないが、概ね3~5質量%ある。防染糊の除去は水洗により行うことができる。ミツバチの巣由来の蝋であるミツロウも好適である。使用時は通常、直接加温して融解させて用いる。またミツロウの除去は加温により再び融解させて行う。 Specific examples of the mask treatment include, for example, application of anti-staining paste or beeswax as a masking agent. Examples of the anti-resisting paste include starch paste such as regular candy paste, corn starch paste and sweet potato starch paste; rubber paste; seaweed paste such as paste; and other various types of paste. As the dyeing paste, starch paste is suitable. The concentration of the antifouling paste at the time of use (paste powder mass / water mass) is not particularly limited, but is generally 3 to 5 mass%. The removal of the stain-proofing paste can be performed by washing with water. Also suitable is beeswax, a wax derived from beehives. In use, it is usually heated and melted directly. The beeswax is removed by melting again by heating.
 本発明の生産方法に用いられる基材は、絹繊維を材料とする基材、又は、セリシン若しくはフィブロインを被覆した基材であることが好適である。さらに、絹繊維は、セッケン精練、アルカリ精練、セッケン・アルカリ精練、酵素精練、高温・高圧精練、又は、酸精練されていることが好適である。基材の形状は、糸状、紐状、布若しくはリボン状の繊維束、膜状、布状、フィルム状、シート状、又は、ゲル状等特に限定されないが、上述のように本発明の生産方法が、基材上のPEDOTの滲みを防止することを主要な効果の一つとしていることから、一定の広さの平面が伴う基材、すなわち、膜状、フィルム状、又は、シート状であることが好適である。しかしながら、これ以外の形状の基材であっても、本発明の生産方法を行うことにより生産効率を著しく向上させることができる。 The base material used in the production method of the present invention is preferably a base material made of silk fiber or a base material coated with sericin or fibroin. Furthermore, it is preferable that the silk fiber has been subjected to soap scouring, alkali scouring, soap / alkali scouring, enzyme scouring, high temperature / high pressure scouring, or acid scouring. The shape of the base material is not particularly limited, such as a fiber-like, string-like, cloth or ribbon-like fiber bundle, film-like, cloth-like, film-like, sheet-like, or gel-like, but as described above, the production method of the present invention However, since one of the main effects is to prevent PEDOT from spreading on the substrate, it is a substrate with a plane having a certain width, that is, a film shape, a film shape, or a sheet shape. Is preferred. However, even if it is a base material of shapes other than this, production efficiency can be remarkably improved by performing the production method of the present invention.
 pTS溶液におけるpTSの含有量は、当該有機溶媒性溶液に対して0.1~10質量%であることが好適である。EDOTは、適宜水等の水性溶媒に希釈して用いてもよい。 The content of pTS in the pTS solution is preferably 0.1 to 10% by mass with respect to the organic solvent solution. EDOT may be appropriately diluted in an aqueous solvent such as water.
 pTS溶液における酸化成分は、所定の酸化能がある成分であれば特に限定されず、遷移金属、ハロゲン等が例示され、特に遷移金属が好適である。 The oxidizing component in the pTS solution is not particularly limited as long as it has a predetermined oxidizing ability, and examples thereof include transition metals and halogens, and transition metals are particularly preferable.
 本発明の生産方法における接触による付着は、滴下、噴霧、浸漬、転写、又は、塗布により行われることが好適である。なお、前記のマスク処理を行う態様では、EDOT-pTS混合液の無駄を排除するために、これらの混合液の付着が標的部分近傍においてのみ行われるように、塗布、滴下、又は、噴霧により行われることが好適であり、特に好適には、塗布又は滴下が選択される。ただし、後述する実施例3(1)のように、浸漬処理が出来ない訳ではない。 The adhesion by contact in the production method of the present invention is preferably performed by dripping, spraying, dipping, transferring, or coating. In the above-described mask processing, in order to eliminate waste of the EDOT-pTS mixed solution, the mixed solution is applied, dropped or sprayed so that the mixed solution is attached only in the vicinity of the target portion. It is preferable to apply or drop. However, as in Example 3 (1) described later, the dipping treatment is not impossible.
 本発明の電極素子は、上述した本発明の生産方法により生産されたことを特徴とする電極素子であり、さらに、本発明の電極は、本発明の電極素子を用いてなることを特徴とする電極である。本発明の電極は、本発明の生産方法により電極素子を生産し、次いで、当該電極素子を用いて電極を生産することを特徴とする、電極の生産方法により生産することができる。本発明の生産方法においては、生産される電極素子に、2以上の異なる導電率の領域を設けることが容易に可能である。 The electrode element of the present invention is an electrode element produced by the production method of the present invention described above, and the electrode of the present invention is characterized by using the electrode element of the present invention. Electrode. The electrode of the present invention can be produced by an electrode production method, characterized in that an electrode element is produced by the production method of the invention, and then an electrode is produced using the electrode element. In the production method of the present invention, it is possible to easily provide two or more regions of different conductivity in the produced electrode element.
 本発明の電極素子は、抵抗値が低く、基材として絹等の繊維を用いているために肌触りが良く、耐久性と耐水性に優れ、柔軟性を伴うために、電極、特に生体電極のパーツ又は電極そのものとして用いることが可能であり、しかも、描画が自在な本発明の生産方法により効率的に生産を行うために、従来よりも多彩なデザインの電極素子として生産することができる。 Since the electrode element of the present invention has a low resistance value and uses a fiber such as silk as a base material, it has a good touch, is excellent in durability and water resistance, and has flexibility. It can be used as a part or an electrode itself, and moreover, it can be produced as an electrode element having a variety of designs compared to the prior art in order to efficiently produce by the production method of the present invention that allows drawing.
[B]さらに本発明者等は、上記の本発明の生産方法を用いて生産した電極素子を用いた生体電極を、筋電測定システムや脳波測定システムに適用することにより、筋電測定システムや脳波測定システムにまつわる、上記の第2の課題を解決し得ることを見出し、上記の本発明の電極素子を用いてなることを特徴とする、表面又は穿刺用の生体電極(以下、本発明の生体電極ともいう)と、その生産方法を提供する。 [B] Furthermore, the present inventors apply a bioelectrode using an electrode element produced using the production method of the present invention to an electromyography measurement system or an electroencephalogram measurement system, A surface or puncture bioelectrode (hereinafter referred to as a living body according to the present invention), characterized in that the second problem relating to an electroencephalogram measurement system can be solved and the electrode element according to the present invention is used. And also a production method thereof.
 ここで用いられている用語の大部分に関しては、本発明の生産方法に関して上記した通りである。 Most of the terms used here are as described above for the production method of the present invention.
 本発明の生体電極は、(a)表面用電極、又は、(b)穿刺用電極、に大別される。 The biological electrode of the present invention is roughly classified into (a) a surface electrode or (b) a puncture electrode.
 (a)表面用電極の場合は、電極素子の皮膚との接触可能面積が、0.25~100cmであることが、本発明の電極素子の「小型かつ高性能」の特徴が顕れ好適であり、特に当該電極素子の形状が「線状」又は「平面状」であることが好適である。ここで、「線状」とは、糸状、紐状、布若しくはリボン状の繊維束等を意味するものであり、「平面状」とは、布状、膜状、フィルム状、又は、シート状等を意味するものである。これらの「線状」又は「平面状」の他に、例えば「ゲル状」の基材を用いることも可能である。基材が平面状である場合には、pTS-EDOT混合液の基材への接触は、基材平面上の一部における描画デザインを伴うことが、電極素子の生産工程での描画の滲みにくさを活用する上で好適である。 (A) In the case of the surface electrode, it is preferable that the area of the electrode element that can contact the skin is 0.25 to 100 cm 2 because the “small and high performance” characteristics of the electrode element of the present invention are apparent. In particular, the shape of the electrode element is preferably “linear” or “planar”. Here, “linear” means a thread, string, cloth or ribbon-like fiber bundle, etc., and “planar” means a cloth, film, film, or sheet. And so on. In addition to these “linear” or “planar”, for example, a “gel” base material can be used. When the substrate is flat, the contact of the pTS-EDOT mixed solution with the substrate is accompanied by a drawing design on a part of the substrate plane, which may cause bleeding of drawing in the electrode element production process. It is suitable for utilizing the wedge.
 (b)穿刺用電極の場合は、電極素子を直接的に生体組織に差し入れる部分を有している態様が挙げられる。この場合、本発明の生体電極の形状は、典型的には、線状又は針状である、これは電極素子の形状とほぼ一致し、これらの形状の先端部から生体内への刺し入れを行うことができる。 (B) In the case of a puncture electrode, an embodiment in which the electrode element is directly inserted into a living tissue can be mentioned. In this case, the shape of the bioelectrode of the present invention is typically linear or needle-like, which substantially coincides with the shape of the electrode element, and puncture the living body from the tip of these shapes. It can be carried out.
 また、これとは別個に、電極素子とこれを生体内に刺し入れるための補助機構が設けられている態様が挙げられる。後述するように、当該機構は注射針状の器具等が例示され、これを生体内に刺し入れた後に、電極素子部分のみを生体内に残して、当該補助機構は抜き去ることにより、生体電極素子部分の体内残置を行うことができる。 Separately from this, there may be mentioned an aspect in which an electrode element and an auxiliary mechanism for inserting the electrode element into a living body are provided. As will be described later, the mechanism is exemplified by an injection needle-like instrument and the like, and after this is inserted into the living body, only the electrode element portion is left in the living body, and the auxiliary mechanism is removed to remove the bioelectrode. The element part can be left in the body.
 穿刺用電極の電極素子の生体組織との接触可能表面積は、0.0004~0.02cmが好適である。 The contactable surface area of the electrode element of the puncture electrode with the living tissue is preferably 0.0004 to 0.02 cm 2 .
 上述した本発明の生体電極は、筋電測定システム又は脳波測定システムに好適に用いることができる。 The above-described biological electrode of the present invention can be suitably used for a myoelectric measurement system or an electroencephalogram measurement system.
 本発明における電極素子等における導電部分の電気抵抗値は、以下のように算出している。「導電部分」とは、基材において導電処理、具体的にはPEDOT-pTSの付着がなされている領域のことを意味するものである。例えば、基材の一部のみにPEDOT-pTSが付着している場合には、当該PEDOT-pTS付着領域が「導電部分」に該当する。 The electrical resistance value of the conductive portion in the electrode element or the like in the present invention is calculated as follows. The “conductive portion” means a region where a conductive treatment, specifically, PEDOT-pTS is attached on the base material. For example, when PEDOT-pTS is attached to only a part of the base material, the PEDOT-pTS attached region corresponds to the “conductive portion”.
(a) 線状の電極素子等の電気抵抗値は、断面積約2.5x10-4cmで線状長さ1cm当たりの電気抵抗値をテスターで検出した値である。断面積の約2.5x10-4cmは、標準的な太さの絹糸の断面積である。「約」とは、「2.5」の小数点第2位以降の数字は四捨五入されることを意味している。断面積は抵抗値と反比例するので、断面積に応じた抵抗値を容易に算出することができる。線状基材の断面積が増加すれば、それに応じてPEDOT-pTSの断面積も増加することが見込まれ、本発明の電極素子同士、または、他の電極素子との比較検討が容易に可能であり、本発明における適切な電気抵抗値のパラメータである。1cmの長さが確保できない場合は、当該線状の電極素子の全導電領域における電気抵抗値を測定して、その電気抵抗値を1cm長と上記断面積に換算することにより比較をすることができる。 (A) The electrical resistance value of the linear electrode element or the like is a value obtained by detecting the electrical resistance value per 1 cm of the linear length with a cross-sectional area of about 2.5 × 10 −4 cm 2 by a tester. The cross-sectional area of about 2.5 × 10 −4 cm 2 is the cross-sectional area of a standard thickness silk thread. “About” means that the number after the second decimal place of “2.5” is rounded off. Since the cross-sectional area is inversely proportional to the resistance value, the resistance value corresponding to the cross-sectional area can be easily calculated. If the cross-sectional area of the linear base material increases, the cross-sectional area of PEDOT-pTS is also expected to increase accordingly, making it possible to easily compare the electrode elements of the present invention with each other or with other electrode elements. It is a parameter of an appropriate electrical resistance value in the present invention. When the length of 1 cm cannot be secured, the electrical resistance value in the entire conductive region of the linear electrode element is measured, and the comparison can be made by converting the electrical resistance value into the 1 cm length and the cross-sectional area. it can.
(b) 基材の形状が線状以外の場合、典型的には織物等の平面状部材の場合には、単純に基材の断面積のみで判断することはできないが、一般的に総合的な導電断面積換算としては、一本の線状部材の断面積よりも大きくなる。よって、基材の形状が線状以外の場合には、導電部分における1cm長における電気抵抗値を求め、これを「1cm当たりの電気抵抗値(ΩまたはkΩ/cm)」として、上記(a)の線状部材の好適範囲、および、最適範囲を、本発明の電極素子の特徴として規定することができる。 (B) When the shape of the substrate is other than a linear shape, typically in the case of a planar member such as a woven fabric, it cannot be determined simply by the cross-sectional area of the substrate, but generally In terms of conductive cross-sectional area conversion, it becomes larger than the cross-sectional area of one linear member. Therefore, when the shape of the substrate is other than a linear shape, the electrical resistance value at a length of 1 cm in the conductive portion is obtained, and this is defined as “the electrical resistance value per 1 cm (Ω or kΩ / cm)”. The preferred range and the optimum range of the linear member can be defined as the characteristics of the electrode element of the present invention.
 本発明により、電極、特に生体電極において用いることが好適な絹等の繊維を用いた電極素子を、基材への滲みを伴わずに、かつ、効率的に生産することが可能な電極素子の生産方法が提供される。さらに本発明は、当該生産方法により生産される小型かつ高性能の電極素子と、これを用いる生体電極等の電極及び当該電極の生産方法を提供する。当該生体電極は、特に、筋電測定システムや脳波測定システムの生体電極として好適に用いることが可能であり、その生産方法も提供される。 According to the present invention, there is provided an electrode element that can efficiently produce an electrode element using a fiber such as silk that is suitable for use in an electrode, particularly a biological electrode, without bleeding into the base material. A production method is provided. Furthermore, the present invention provides a small and high-performance electrode element produced by the production method, an electrode such as a biological electrode using the electrode element, and a production method of the electrode. In particular, the bioelectrode can be suitably used as a bioelectrode of an electromyography measurement system or an electroencephalogram measurement system, and a production method thereof is also provided.
本発明の生産方法の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the production method of this invention. 絹織物上に、亜鈴状の平面電極を描いて、これを脳表面に直接用いる脳波測定用の電極として用いる態様を、ヒト脳の模型を用いて示した図面である。図2(a)は、平織りの絹織物上に複数の亜鈴状の描画を行って作出した平面電極の一部を示しており、絹織物において十分にPEDOT-pTSが含浸され、脳との接触面にもPEDOT-pTSが付着している電極を示している。図2(b)は、脳との接触面のみにPEDOT-pTSが付着している電極を示している。It is drawing which showed the aspect which draws a dumbbell-shaped plane electrode on a silk fabric, and uses this as an electrode for the electroencephalogram measurement which uses this directly on the brain surface using the model of a human brain. FIG. 2 (a) shows a part of a flat electrode produced by drawing a plurality of dumbbells on a plain weave silk fabric. The silk fabric is sufficiently impregnated with PEDOT-pTS and is in contact with the brain. An electrode having PEDOT-pTS attached to the surface is also shown. FIG. 2 (b) shows an electrode having PEDOT-pTS attached only to the contact surface with the brain. シルクスクリーンを用いて、熱ヘッドによる局所加熱を行った場合の滲みの抑制を明らかにした図面である。It is the figure which clarified suppression of bleeding when performing a local heating with a thermal head using a silk screen. 本発明の生産方法において熱風を用いた局所加熱の効果を検討した結果を示す図面である。It is drawing which shows the result of having examined the effect of local heating using hot air in the production method of the present invention. ミツロウによるリング状のマスク領域を設けて、本発明の生産方法の検証を行った結果を示す写真である。It is a photograph which shows the result of having verified the production method of this invention by providing the ring-shaped mask area | region by beeswax. 正麩糊による長さ方向のマスク領域を設けて、本発明の生産方法の検証を行った結果を示す写真である。It is a photograph which shows the result of having verified the production method of this invention by providing the mask area | region of the length direction by a regular paste. 比較例として加熱雰囲気中における電気抵抗値の経時的変化を示す図面である。It is drawing which shows the time-dependent change of the electrical resistance value in a heating atmosphere as a comparative example. 本発明の表面用電極を用いた筋肉の活動電位の測定の様子を示した図面のうち、用いた表面用電極3本を示している。Of the drawings showing the state of measurement of the muscle action potential using the surface electrode of the present invention, three surface electrodes used are shown. 本発明の表面用電極を用いた筋肉の活動電位の測定の様子を示した図面のうち、図7(a)に示されている表面用電極を用いた筋電の活動電位の測定の様子を示している。Of the drawings showing the measurement of muscle action potential using the surface electrode of the present invention, the measurement of myoelectric action potential using the surface electrode shown in FIG. Show. 本発明の表面用電極を用いた筋肉の活動電位の測定の様子を示した図面のうち、図7(b)に様子が示されている測定により得られた筋電図を示している。FIG. 7B shows an electromyogram obtained by the measurement shown in FIG. 7B among the drawings showing the measurement of the muscle action potential using the surface electrode of the present invention. 本発明の穿刺用電極(針電極)を用いて得られた脳波を示した図面である。図8(a)は、この測定の様子を示す概略図であり、図8(b)は、この測定により得られた脳波を示している。It is drawing which showed the electroencephalogram obtained using the electrode for puncture (needle electrode) of this invention. FIG. 8A is a schematic view showing the state of this measurement, and FIG. 8B shows an electroencephalogram obtained by this measurement. 本発明の穿刺用電極(針電極)を用いて筋肉の活動電位を測定した結果を示した図面である。図9(a)は、その様子を示す概略図であり、図9(b)は、この測定により得られた針筋電図である。It is drawing which showed the result of having measured the muscle action potential using the electrode for puncture (needle electrode) of this invention. FIG. 9A is a schematic view showing the state, and FIG. 9B is a needle electromyogram obtained by this measurement.
[A]本発明の生産方法
[A]-1: pTS-EDOT混合液
 上述したようにpTS-EDOT混合液は、pTS溶液とEDOTの混合液である。
[A] Production Method of the Present Invention [A] -1: pTS-EDOT Mixed Solution As described above, the pTS-EDOT mixed solution is a mixed solution of pTS solution and EDOT.
 [pTS溶液
 pTS溶液は、pTS(p-toluenesulfonate)と酸化成分を含有する有機溶媒性溶液である。
[ PTS solution ]
The pTS solution is an organic solvent solution containing pTS (p-toluenesulfonate) and an oxidizing component.
 pTSは、パラトルエンスルホン酸化合物(パラトルエンスルホン酸(トシル酸)との塩やエステル)として知られており、市販もなされている。 PTS is known as a p-toluenesulfonic acid compound (a salt or ester with p-toluenesulfonic acid (tosylic acid)) and is also commercially available.
 pTS溶液の溶媒となり得る有機溶媒は、pTSと酸化成分等を溶解することが可能であり、かつ、好適には水性溶媒との相溶性が良好であるものである。具体的には、炭素原子数が1~6の1価の低級アルコール、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、ペンタノール、又は、ヘキサノールが挙げられる。これらの1価の低級アルコールを構成する炭素原子の骨格は、直鎖状、分枝状、環状のいずれであってもよく、1種のみならず2種以上を組み合わせて用いてもよい。また、適宜水で希釈して用いてもよい。これらの中で、炭素原子数が1~4の1価の低級アルコール、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、又は、ブタノール、がpTS溶液の有機溶媒として好適である。 An organic solvent that can serve as a solvent for the pTS solution is capable of dissolving pTS and an oxidizing component, and preferably has good compatibility with an aqueous solvent. Specific examples include monovalent lower alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, or hexanol. The skeleton of carbon atoms constituting these monovalent lower alcohols may be linear, branched or cyclic, and may be used alone or in combination of two or more. Moreover, you may dilute and use with water suitably. Among these, monovalent lower alcohols having 1 to 4 carbon atoms, specifically, methanol, ethanol, propyl alcohol, isopropyl alcohol, or butanol are suitable as the organic solvent for the pTS solution.
 pTS溶液中に含有させる酸化成分は、pTS-EDOT混合液におけるPEDOT-pTSへの重合反応を活性化することが可能である限り特に限定されず、遷移元素、ハロゲン等が例示される。 The oxidizing component contained in the pTS solution is not particularly limited as long as it can activate the polymerization reaction to PEDOT-pTS in the pTS-EDOT mixed solution, and examples thereof include transition elements and halogens.
 遷移元素としては、鉄、チタン、クロム、マンガン、コバルト、ニッケル、亜鉛等の第一遷移元素;モリブデン、銀、ジルコニウム、カドミウム等の第二遷移元素;セリウム、白金、金等の第三遷移元素が例示される。これらの遷移元素は、金属単体としても、金属塩として用いてもよい。これらの中でも、鉄、亜鉛等の第一遷移元素を用いることが好適である。 Transition elements include first transition elements such as iron, titanium, chromium, manganese, cobalt, nickel, and zinc; second transition elements such as molybdenum, silver, zirconium, and cadmium; third transition elements such as cerium, platinum, and gold Is exemplified. These transition elements may be used as a single metal or as a metal salt. Among these, it is preferable to use a first transition element such as iron or zinc.
 pTS溶液中の酸化成分の含有量は、用いる酸化成分の種類によっても異なり、上記の重合反応を活性化できる量であれば特に限定されない。例えば、本明細書の実施例で用いている第二鉄イオン(Fe3+)であれば、塩化第二鉄として、当該溶液に対して1~10質量%であることが好適であり、特に好適には3~7質量%である。この配合量が多すぎると重合反応の進行は速いが、後工程での鉄の除去が困難になり、少ないと重合反応の進行が遅くなる。 The content of the oxidizing component in the pTS solution varies depending on the type of the oxidizing component used, and is not particularly limited as long as it is an amount that can activate the polymerization reaction. For example, in the case of ferric ions (Fe 3+ ) used in the examples of the present specification, it is preferable that the ferric chloride is 1 to 10% by mass with respect to the solution, and particularly preferable. Is 3 to 7% by mass. If the amount is too large, the polymerization reaction proceeds rapidly, but it is difficult to remove iron in the subsequent step, and if it is small, the polymerization reaction proceeds slowly.
 pTS溶液中のドーパントとして働くpTSの含有量は、当該溶液に対して0.1~10質量%が好適であり、さらに好適には0.15~7質量%、特に好適には1~6質量%、最も好適には2~5質量%である。 The content of pTS acting as a dopant in the pTS solution is preferably 0.1 to 10% by mass, more preferably 0.15 to 7% by mass, and particularly preferably 1 to 6% by mass with respect to the solution. %, Most preferably 2-5% by weight.
 pTS溶液における、その他の含有成分については後述する。 Other components in the pTS solution will be described later.
 [EDOT
 EDOTは、上記のように3,4-エチレンジオキシチオフェンとして公知であり、市販もなされている。常温で液体で水溶性であり、適宜水等の水性溶媒に希釈して用いることも可能である。
[ EDOT ]
As described above, EDOT is known as 3,4-ethylenedioxythiophene and is also commercially available. It is liquid at room temperature and water-soluble, and can be appropriately diluted in an aqueous solvent such as water.
 [バインダー
 上記のpTS溶液にバインダーを含有させることができる。上述したように、バインダーを含有させることによりpTS-EDOT混合液に重合促進処理を同期して施すタイミングを遅らせることができる。しかしながら、基材へのPEDOT-pTSの付着は含浸よりも、このバインダー自体の接着力による表面的な付着の要素が大きくなる。
[ Binder ]
The pTS solution can contain a binder. As described above, it is possible to delay the timing at which the polymerization acceleration treatment is applied to the pTS-EDOT mixed solution in synchronism with the binder. However, the adhesion of PEDOT-pTS to the substrate has a larger factor of superficial adhesion due to the adhesive force of the binder itself than the impregnation.
 ここで用いられるバインダーは、特に限定されず、例えばその溶解の特徴に応じて選択することが可能であり、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、ナフィオン、ポリカーボネート、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリブテン、ポリエーテル、ポリエステル、ポリスチレン、ポリ-p-キシレン、ポリ酢酸ビニル、ポリアクリレート、ポリメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルエーテル、ポリビニルケトン、ポリアミド、ブタジエン系樹脂、フッ素系樹脂等の熱可塑性エラストマーを含む熱可塑性樹脂;ポリウレタン系樹脂、尿素樹脂、メラミン樹脂、変性シリコーン樹脂、フタル酸樹脂、フェノール樹脂、フラン樹脂、アニリン樹脂、不飽和ポリエステル樹脂、キシレン・ホルムアルデヒド樹脂、エポキシ樹脂等の熱硬化性樹脂;エポキシアクリレート系、アクリルエポキシカチオン重合系、感光性ポリイミド等の光硬化性樹脂等が挙げられる。 The binder used here is not particularly limited, and can be selected according to, for example, the characteristics of dissolution thereof, and examples thereof include thermoplastic resins, thermosetting resins, and photocurable resins. Specifically, Nafion, polycarbonate, polyacrylonitrile, polyethylene, polypropylene, polybutene, polyether, polyester, polystyrene, poly-p-xylene, polyvinyl acetate, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl Thermoplastic resins including thermoplastic elastomers such as ether, polyvinyl ketone, polyamide, butadiene resin, and fluorine resin; polyurethane resin, urea resin, melamine resin, modified silicone resin, phthalic acid resin, phenol resin, furan resin, aniline Thermosetting resins such as resin, unsaturated polyester resin, xylene / formaldehyde resin, epoxy resin; light such as epoxy acrylate, acrylic epoxy cationic polymerization, photosensitive polyimide Of resin, and the like.
 これらのうち、上記の各種ビニル樹脂、ナフィオン、ポリアミド、ポリエチレン、ポリプロピレン、フタル酸樹脂、変性シリコーン樹脂、アクリル系樹脂が好適である。 Among these, the above-mentioned various vinyl resins, Nafion, polyamide, polyethylene, polypropylene, phthalic acid resin, modified silicone resin, and acrylic resin are preferable.
 上記溶液におけるバインダーの含有量は、本発明の電極素子の導電性が維持される範囲内であれば特に限定されないが、pTS溶液とEDOTの総量の10~30質量%が第1に好ましく、10~40質量%又は1~30質量%が第2に好ましく、1~40%が第3に好ましく、1~50質量%又は0.1~40質量%が第4に好ましく、0.1~50質量%が第5に好ましい。また、pTS溶液の総量の0.1~1質量%、0.1~10質量%、1~10質量%、40~50質量%、30~50質量%、30~40質量%も好ましい。 The content of the binder in the above solution is not particularly limited as long as the conductivity of the electrode element of the present invention is maintained. However, 10 to 30% by mass of the total amount of the pTS solution and EDOT is preferably 10%. -40% by weight or 1-30% by weight is second preferred, 1-40% is third preferred, 1-50% by weight or 0.1-40% by weight fourth preferred, 0.1-50 5% by mass is preferred. Further, 0.1 to 1% by mass, 0.1 to 10% by mass, 1 to 10% by mass, 40 to 50% by mass, 30 to 50% by mass, and 30 to 40% by mass of the total amount of the pTS solution are also preferable.
 [その他の成分
 上記のpTS溶液に、pTS-EDOT混合液の基材への付着性と、出来上がった本発明の電極素子の導電性を損なわない等、本発明の効果を量的又は質的に損なわない限り、他の成分を必要に応じて配合することができる。
[ Other ingredients ]
As long as the effects of the present invention are not impaired quantitatively or qualitatively, such as adhesion to the base material of the pTS-EDOT mixed solution and conductivity of the completed electrode element of the present invention are not impaired in the above pTS solution. Other components can be blended as necessary.
 当該他の成分としては、例えば、グリセロール、ポリエチレングリコール-ポリプレングリコールポリマー、エチレングリコール、ソルビトール、スフィンゴシン、及び、フォスファチジルコリン、好ましくはグリセロール、ポリエチレングリコール-ポリプレングリコールポリマー、及び、ソルビトール、からなる1種又は2種以上が挙げられる。これらの成分を配合することにより、本発明の電極素子の濡れ特性を調整し、柔軟性を付与することによって、生体電極としての使用時における生体組織、特に皮膚との親和性を向上させることができる。 Examples of the other components include glycerol, polyethylene glycol-polyprene glycol polymer, ethylene glycol, sorbitol, sphingosine, and phosphatidylcholine, preferably glycerol, polyethylene glycol-polyprene glycol polymer, and sorbitol. 1 type, or 2 or more types. By blending these components, the wettability characteristics of the electrode element of the present invention can be adjusted, and flexibility can be imparted to improve the affinity with biological tissue, particularly skin, when used as a biological electrode. it can.
 その他、第4級アルキルアンモニウム塩、ハロゲン化アルキルピリジニウム等のカチオン性界面活性剤;アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、脂肪酸塩等のアニオン性界面活性剤;ポリオキシエチレン、ポリオキシエチレンアルキルエーテル等の非イオン性界面活性剤;キトサン、キチン、グルコース、アミノグリカン等の天然多糖類;糖アルコール、ジメチルスルホキシド等が挙げられる。 Other cationic surfactants such as quaternary alkyl ammonium salts and alkylpyridinium halides; anionic surfactants such as alkyl sulfates, alkylbenzene sulfonates, alkyl sulfosuccinates, fatty acid salts; polyoxyethylene, poly Nonionic surfactants such as oxyethylene alkyl ethers; natural polysaccharides such as chitosan, chitin, glucose and aminoglycan; sugar alcohols, dimethyl sulfoxide and the like.
 [pTS-EDOT混合液
 pTS-EDOT混合液は、pTS溶液とEDOTを混合して得られる混合液であり、上記混合によりPEDOT-pTSへの重合反応が即座に開始する。
[ PTS-EDOT mixture ]
The pTS-EDOT mixed solution is a mixed solution obtained by mixing the pTS solution and EDOT, and the polymerization reaction to PEDOT-pTS starts immediately by the above mixing.
 この重合反応を基材の上において、さらに重合反応を加速させるための重合促進処理を行いつつ、基材における当該混合液の接触と重合促進処理のタイミングを同期させることにより、基材上でのPEDOT-pTS滲みを防止しつつ、PEDOT-pTSの基材上における付着を促進させ、基材上にPEDOT-pTSの描画を自在に、かつ、極めて効率的に行うことができる。 While performing this polymerization reaction on the base material, and further performing a polymerization promotion process for accelerating the polymerization reaction, by synchronizing the timing of the polymerization promotion process with the contact of the mixed solution on the base material, While preventing PEDOT-pTS bleeding, adhesion of PEDOT-pTS on the base material is promoted, and PEDOT-pTS can be freely and extremely efficiently drawn on the base material.
 pTS溶液とEDOTの混合は、この工程の最初の段階で行われるものである。容積比でpTS溶液:EDOT=10:1~100:1、好適には20:1~40:1である。 Mixing of pTS solution and EDOT is performed in the first stage of this process. By volume ratio, pTS solution: EDOT = 10: 1 to 100: 1, preferably 20: 1 to 40: 1.
[A]-2: 重合促進処理
 上述したように重合促進処理は、pTS-EDOT混合液におけるPEDOT-pTSへの重合反応を促進する処理から選ばれる1種若しくは2種以上であれば特に限定されず、例えば、加熱処理等が挙げられる。加熱処理としては、(a)該当部分における50~90℃の放熱体の直接的若しくは間接的な接触、又は、(b)該当部分が50~90℃になるように設定された熱風との接触、等が挙げられる。「該当部分」とは、具体的には基材上においてpTS-EDOT混合液を接触させた部分のことを意味する。
[A] -2: Polymerization accelerating treatment As described above, the polymerization accelerating treatment is particularly limited as long as it is one or more selected from treatments that promote the polymerization reaction to PEDOT-pTS in the pTS-EDOT mixed solution. For example, heat processing etc. are mentioned. As the heat treatment, (a) direct or indirect contact with a radiator at 50 to 90 ° C. or (b) contact with hot air set so that the corresponding portion reaches 50 to 90 ° C. , Etc. The “corresponding portion” specifically means a portion where the pTS-EDOT mixed solution is brought into contact with the substrate.
 これらの重合促進処理を行う時間は、PEDOT-pTSの導電性を損なわずに重合が行われ、かつ、可能な限り短時間であることが好ましい。なお、本発明の電極素子における導電性の目安となる電気抵抗は可能な限り小さいことが好適であるが、当該電気抵抗の上限は大きくても15.0×10 Ω/cmであることが好適であり、特に好適には2.0×10Ω/cm以下である。ただし、積極的に電気抵抗を高くすることを所望する場合には、長時間の重合促進処理を行えば、処理時間の長さに応じて電気抵抗の高い、すなわち、2.0×104 Ω/cmを超える電気抵抗値の電極素子を得ることが可能であり、この処理時間のコントロールにより電極素子の電気抵抗を自由に調整することができる。 The time for performing these polymerization promotion treatments is preferably as short as possible while the polymerization is performed without impairing the conductivity of PEDOT-pTS. In addition, although the electrical resistance that is a measure of conductivity in the electrode element of the present invention is preferably as small as possible, the upper limit of the electrical resistance is 15.0 × 10 4 Ω / cm at most. It is preferably 2.0 × 10 4 Ω / cm or less. However, when it is desired to increase the electrical resistance positively, if the polymerization promotion treatment is performed for a long time, the electrical resistance increases according to the length of the treatment time, that is, 2.0 × 10 4 Ω. An electrode element having an electric resistance value exceeding / cm can be obtained, and the electric resistance of the electrode element can be freely adjusted by controlling the processing time.
 なお、マスク処理を行う場合には、マスク剤の残存成分が残ると電気抵抗値が大きくなる傾向がある。よって、マスク処理を行う場合で、かつ、電気抵抗値を小さくしたい場合には、選択するマスクを除去が容易な素材とすることと、水洗等のマスクの除去手段を精度良く行うことが好適である。 In addition, when performing a mask process, there exists a tendency for an electrical resistance value to become large if the residual component of a mask agent remains. Therefore, when mask processing is performed and it is desired to reduce the electrical resistance value, it is preferable that the mask to be selected is made of a material that can be easily removed and that the mask removing means such as water washing is accurately performed. is there.
 上記加熱処理(a)、(b)について、
 (a)該当部分における50~90℃の放熱体の直接的若しくは間接的な接触は、(i)直接的な接触は放熱体の接触から、(ii)間接的な接触は、基材のpTS-PEDOT混合液付着部分の付着前の加熱時間を除いて、それぞれ3~10分間の加熱時間が好適であり、特に好適には3~6分間であり、最も好適には4~6分間である。この好適時間以外の加熱時間であると、電極素子の電気抵抗の値を想定条件以内とすることが困難となる。ただし、上述したように、意図的に電気抵抗値を上げたい場合にはこの限りではない。
About the heat treatment (a), (b)
(A) Direct or indirect contact of the heat sink at 50 to 90 ° C. at the relevant part is (i) direct contact is from the heat sink contact, and (ii) indirect contact is the pTS of the substrate. -Except for the heating time before adhering the PEDOT mixed liquid adhering part, the heating time is preferably 3 to 10 minutes, particularly preferably 3 to 6 minutes, and most preferably 4 to 6 minutes. . If the heating time is other than the preferred time, it is difficult to set the value of the electrical resistance of the electrode element within an assumed condition. However, as described above, this is not the case when the electric resistance value is intentionally increased.
 (b)該当部分が50~90℃になるように設定された熱風との接触である場合は、3~10分間が好適であり、特に好適には3~6分間であり、最も好適には4~6分間である。この好適時間以外の加熱時間であると、電極素子の電気抵抗の値を想定条件以内とすることが困難となる。 (B) When the relevant part is in contact with hot air set to 50 to 90 ° C., 3 to 10 minutes is preferable, particularly preferably 3 to 6 minutes, and most preferably 4-6 minutes. If the heating time is other than the preferred time, it is difficult to set the value of the electrical resistance of the electrode element within an assumed condition.
 このような条件の加熱処理は、例えば熱源を1000Wとして、該当部分との距離を7~20cm程度として、風量を1~2m/分とすることで行うことができる。 The heat treatment under such conditions can be performed, for example, by setting the heat source to 1000 W, the distance from the corresponding part to about 7 to 20 cm, and the air volume to 1 to 2 m 3 / min.
 なお、この熱風との接触は、上記した50~90℃に保った雰囲気内で該当部分に向けて送風を行う態様も含まれる。 The contact with the hot air includes a mode in which air is blown toward the corresponding part in the atmosphere maintained at 50 to 90 ° C. as described above.
 これらの重合促進処理を単独で、又は、組み合わせて行うことで、基材の該当部分におけるPEDOT-pTSの、速やかで、かつ、導電性の良好な状態での生成を行うことができる。 By performing these polymerization promotion treatments singly or in combination, PEDOT-pTS in the corresponding part of the base material can be generated quickly and in a good conductive state.
[A]-3: 基材
 本発明の生産方法に用いられる基材は、セリシン又はフィブロインが含まれている限り限定されるものではなく、これらのタンパク質を本来的に含む絹であっても、事後的にこれらのタンパク質を付加したものであってもよい。
[A] -3: Substrate The substrate used in the production method of the present invention is not limited as long as sericin or fibroin is contained, and even if it is silk that originally contains these proteins, It is possible to add these proteins afterwards.
 セリシン又はフィブロインを被覆する基材の材料としては、ナイロン等のポリアミド繊維、PET等のポリエステル繊維、アクリル繊維、アラミド繊維、ポリウレタン繊維、炭素繊維等の合成繊維;綿、麻、ジュート等の植物性繊維;上記の絹の他、羊毛、コラーゲン繊維等の動物性繊維;或いは、これらの混合繊維を広く用いることができる。染色を施した繊維であってもよい。なお、「被覆」は、外見上被覆成分で対象物の表面を覆う行為であり、その具体的な態様は問わないこととする。例えば、被覆成分の被覆対象物への「付着」、「含有」、「染み込み」のいずれの態様であってもよい。 Base materials for coating sericin or fibroin include polyamide fibers such as nylon, polyester fibers such as PET, synthetic fibers such as acrylic fibers, aramid fibers, polyurethane fibers, and carbon fibers; plant materials such as cotton, hemp, and jute In addition to the above-mentioned silk, animal fibers such as wool and collagen fibers; or mixed fibers thereof can be widely used. It may be a dyed fiber. Note that “covering” is an action of covering the surface of an object with a covering component in appearance, and its specific mode is not limited. For example, any form of “attachment”, “containing”, and “penetration” of the coating component to the object to be coated may be used.
 セリシン、フィブロリン共に、公知の方法により絹(生糸)より得ることが可能であり、かつ、市販もなされている。セリシンは、生糸の外側をなすタンパク質成分であり、例えば、特開平11-131318号公報に開示された方法により、生糸から回収することが可能であり、かつ、市販もなされている(例えば、株式会社高原社等)。フィブロインは、生糸の芯部分をなすタンパク質成分であり、例えば、特開平6-70702号公報に開示された方法により、絹繊維をアルカリ溶液で溶解し、透析することにより得ることが可能であり、市販もなされている(シルクゲンGソルブルKE:一丸ファルコス株式会社)。これらのセリシン又はフィブロインは、基本的には被覆の対象(糸や布地を含む)を水溶液状のセリシン又はフィブロインに浸し、乾燥させた後、洗浄することで皮膜を形成加工させて作出することができる(特許文献3)。また、このような被覆の作業を外注して、所望のセリシンの被覆基材を得ることも可能である[例えば、株式会社アート(群馬県桐生市):http://art-silk.jp/]。 Both sericin and fibroline can be obtained from silk (raw silk) by a known method, and are also commercially available. Sericin is a protein component that forms the outside of raw silk, and can be recovered from raw silk by, for example, the method disclosed in JP-A-11-131318, and is also commercially available (for example, stocks) Company plateau company). Fibroin is a protein component that forms the core of raw silk, and can be obtained, for example, by dissolving silk fiber with an alkaline solution and dialyzing it by the method disclosed in JP-A-6-70702, Commercially available (Silkgen G Solvel KE: Ichimaru Falcos Co., Ltd.). These sericin or fibroin can be produced basically by immersing the object to be coated (including yarn and fabric) in aqueous sericin or fibroin, drying, and washing to form a film. Yes (Patent Document 3). It is also possible to outsource such coating work to obtain a desired sericin coated substrate [for example, Art Co., Ltd. (Kiryu City, Gunma Prefecture): http://art-silk.jp/ ].
 上記の「絹繊維」とは、「絹(シルク)又はこれを主体とする繊維」を意味するものである。絹繊維は、絹単体であってもよいが、必要に応じて他の繊維との混合繊維を用いることが可能である。ここで「他の繊維」とは、上記のセリシン又はフィブロインを被覆する対象として例示した、合成繊維、植物性繊維、絹以外の動物性繊維が挙げられる。また、絹は、通常の家蚕糸や野蚕糸、蜘蛛や蜂由来の天然絹の他、遺伝子組み換え技術を用いて得られる絹、例えば、蛍光タンパク質をコードする遺伝子を組み込んだ蚕から得られる「光る絹」等を用いることも可能である。 The above “silk fiber” means “silk or a fiber mainly composed thereof”. The silk fiber may be a single silk, but if necessary, a mixed fiber with other fibers can be used. Here, the “other fibers” include synthetic fibers, plant fibers, and animal fibers other than silk, which are exemplified as the objects to be coated with sericin or fibroin. In addition, silk is obtained from ordinary silkworm silk, wild silk thread, natural silk derived from silkworms and bees, and silk obtained using genetic recombination technology, such as silkworms obtained by incorporating a gene encoding a fluorescent protein. It is also possible to use “silk” or the like.
 これらの繊維の中でも、本来的にセリシンやフィブロリンを含み、PEDOT-pTSとの親和性や接着性に優れ、さらに生体親和性や強度にも優れる絹(シルク)又はこれを主体とする繊維、すなわち「絹繊維」、を選択することが好ましい。 Among these fibers, silk that originally contains sericin and fibroline, is excellent in affinity and adhesion with PEDOT-pTS, and is excellent in biocompatibility and strength, or a fiber mainly composed of this, that is, It is preferable to select “silk fiber”.
 また、生糸等からセリシンをはじめ、その他の不純物を除く工程である「精練」が行われた基材を用いることが好適である。精練には、セッケン精練、アルカリ精練、セッケン・アルカリ精練、酵素精練、高温・高圧精練、酸精練等が挙げられ、いずれの精練方法も用いることができる。これらの精練は、糸単位で行うことも、布単位で行うことも可能である。すなわち、絹の布状基材は、生絹織物であっても、練絹織物であってもよい。 It is also preferable to use a base material that has been subjected to “scouring”, which is a process of removing sericin and other impurities from raw silk and the like. Examples of scouring include soap scouring, alkali scouring, soap / alkali scouring, enzyme scouring, high temperature / high pressure scouring, acid scouring, and any scouring method can be used. These scouring can be performed on a yarn basis or on a fabric basis. That is, the silk cloth-like substrate may be a raw silk fabric or a kneaded silk fabric.
 基材の形状は、糸状、紐状、布若しくはリボン状の繊維束、膜状、フィルム状、シート状、又は、ゲル状等であり、布状、膜状、フィルム状、又は、シート状(以下、これらを平面状基材と総称することもある)が本発明の生産方法の適用対象として好適であり、糸状、紐状、布若しくはリボン状の繊維束(以下、これらを線状基材と総称することもある)においても、生産の効率化という観点から本発明の生産方法を適用することに大きな意義があることは、述した通りである。基材が平面状である場合には、pTS-EDOT混合液の基材への接触は、基材平面上の一部における描画デザインを伴うことが、本発明の生産方法に伴う描画の滲みにくさを発揮する上で好適である。 The shape of the substrate is a fiber-like, string-like, cloth- or ribbon-like fiber bundle, film-like, film-like, sheet-like, or gel-like, and is cloth-like, membrane-like, film-like, or sheet-like ( Hereinafter, these may be collectively referred to as a planar substrate), which is suitable as an application target of the production method of the present invention, and is a fiber bundle in the form of a thread, string, cloth, or ribbon (hereinafter, these are linear substrates) As described above, the production method of the present invention has a great significance in terms of production efficiency. In the case where the substrate is planar, the contact of the pTS-EDOT mixed solution with the substrate is accompanied by a drawing design on a part of the substrate plane. It is suitable for exhibiting the difficulty.
 線状基材の太さは特に限定されず、通常は0.1μm~1mm程度の範囲で必要に応じて選択することができる。生体電極等の電極に使用する場合は、通常は1μm~100μm程度である。線状基材の長さも必要に応じて選択することができる。 The thickness of the linear base material is not particularly limited, and can usually be selected as necessary within a range of about 0.1 μm to 1 mm. When used for electrodes such as biological electrodes, the thickness is usually about 1 μm to 100 μm. The length of the linear substrate can also be selected as necessary.
 また、線状基材は、必要に応じた処理、例えば、親水性を向上するためのプラズマ処理、細孔処理、化学的コーティング処理等を施したものであってもよい。 Further, the linear base material may be subjected to treatment as necessary, for example, plasma treatment for improving hydrophilicity, pore treatment, chemical coating treatment and the like.
 布状基材が織物である場合の、織物の組織は特に限定されない。例えば、平織り、綾織り、朱子織り、の三原組織として用いることができる。さらに、三原組織を変化させ、又は、組み合わせた変化組織であってもよく、積極的な文様を伴う一重特別組織や紋織り組織であってもよい。さらに、経二重織物、緯二重織物、経緯二重織物、パイル織物、タオル織物、搦み織物等の多重の織物であってもよい。 When the cloth-like substrate is a woven fabric, the texture of the woven fabric is not particularly limited. For example, it can be used as a three-layer structure of plain weave, twill weave, and satin weave. Furthermore, it may be a changed organization in which the Mihara organization is changed or combined, or may be a single special organization or a pattern weave organization with an aggressive pattern. Furthermore, multiple woven fabrics such as a warp double fabric, a weft double fabric, a warp double fabric, a pile fabric, a towel fabric, and a kneading fabric may be used.
[A]-4: 同期処理の態様
 本発明の生産方法では、pTS-EDOT混合液の基材への接触に同期させて、上述した重合促進処理を行う「同期処理」を行う。
[A] -4: Mode of Synchronization Processing In the production method of the present invention, “synchronization processing” is performed in which the above-described polymerization promotion processing is performed in synchronization with the contact of the pTS-EDOT mixed solution with the substrate.
 同期処理を行う際の、上記の接触から重合促進処理開始までの時間は、特に上述したバインダーが配合されていないpTS-EDOT混合液においては可能な限り短いことが好ましく、好適には1分以内、さらに好適には30秒以内である。この時間を短く管理することにより、pTS-EDOT混合液の基材上における滲みを防止し、かつ、電極素子の生産の効率化を実現することができる。また、バインダーが配合されたpTS-EDOT混合液においては、当該時間は24時間以内であることが好適であり、さらに好適には45分以内であり、最も好適には10分以内である。 The time from the above contact to the start of the polymerization accelerating treatment in the synchronous treatment is preferably as short as possible especially in the pTS-EDOT mixed solution not containing the above-mentioned binder, and preferably within 1 minute. More preferably, it is within 30 seconds. By managing this time short, it is possible to prevent the pTS-EDOT mixed solution from spreading on the base material and to increase the production efficiency of the electrode elements. In addition, in the pTS-EDOT mixed solution containing the binder, the time is preferably within 24 hours, more preferably within 45 minutes, and most preferably within 10 minutes.
 具体的には、第1に、pTS溶液とEDOTを、好適には上述した容積比の範囲内で混合して、pTS-EDOT混合液を作出して、これを基材に接触させる段階(第1段階)と、第2に、上記の時間内に重合促進処理を行い、基材におけるpTS-PEDOTの付着を行う段階(第2段階)を、当該同期処理は含んでいる。 Specifically, first, the step of mixing the pTS solution and EDOT, preferably within the range of the volume ratio described above, to produce a pTS-EDOT mixed solution and bringing it into contact with the substrate (first step) The synchronous process includes a stage (second stage) and a stage (second stage) in which the polymerization promotion treatment is performed within the above-described time and the pTS-PEDOT is adhered to the substrate.
 この第1段階と第2段階は、手作業で行うことも可能であるが、現実的には印刷工程技術等を用いて全部又は一部を自動化して行うことが好適である。 The first stage and the second stage can be performed manually, but in reality, it is preferable to perform all or part of the process automatically by using a printing process technique or the like.
 図1にこの工程を行うシステムの一実施態様の模式図を示す。 FIG. 1 shows a schematic diagram of an embodiment of a system for performing this process.
 図1においては、同期処理の工程が示されている。上載した平面状の基材を矢印1の方向に送ることが可能なコンベアの案内ベルト2の上に、垂直上方向からpTS-EDOT混合液を接触させることが可能なインク機構3が設けられており、さらにその矢印1の方向の先には、放熱体として熱ヘッド4が設けられており、さらにその先には、重合促進処理機構5が設けられている。今、基材6が案内ベルト2のインク機構3と熱ヘッド4の間にセットされている。 FIG. 1 shows a synchronization process. An ink mechanism 3 capable of bringing the pTS-EDOT mixed solution into contact with the pTS-EDOT mixed solution from above in the vertical direction is provided on the conveyor guide belt 2 capable of feeding the planar substrate mounted thereon in the direction of arrow 1. Further, a thermal head 4 is provided as a heat dissipator at the tip of the arrow 1, and a polymerization acceleration processing mechanism 5 is further provided at the tip. Now, the substrate 6 is set between the ink mechanism 3 of the guide belt 2 and the thermal head 4.
 インク機構3を介して基材6上にpTS-EDOT混合液を接触させる段階が、上記の第1段階であり、時間管理を行いつつ、熱ヘッド4又は重合促進処理機構5において、所定の重合促進処理を行う段階が上記の第2段階である。 The step of bringing the pTS-EDOT mixed solution into contact with the base material 6 through the ink mechanism 3 is the first step described above, and the predetermined polymerization is performed in the thermal head 4 or the polymerization promotion processing mechanism 5 while performing time management. The step of performing the promotion process is the second step.
 インク機構3に設けられたインク出口31からは、pTS-EDOT混合液が基材6に対して供給され、所定の接触が行われる。インク機構3の中、又は、インク機構3から外付けで、特定の割合でpTS溶液とEDOTを混合する機構(図示せず)が設けられており当該混合機構を介して、インク出口31にpTS-EDOT混合液が供給される。インク出口31から基材6に対するpTS-EDOT混合液の接触形式は、シリンジピペット等を用いた滴下、インクジェットノズル等を用いた噴霧等が挙げられる。また、この図とは異なる態様で、シルクスクリーン等による転写を行うことができる。ここに示した同期処理は厳密な時間管理を伴うので、所望の描画デザインを基材上に行う機械的又は自動的設定が、例えば、ピエゾ素子等による感圧センサー等によりなされていることが好ましい。また、描画予定箇所の周りをマスク剤で被覆し、又は囲んで、pTS-EDOT混合液の当該被覆部分又は囲み領域への浸潤を抑制することで描画デザインの際部を鮮明にして、仕上がりのさらなる向上を行うこともできる。当該設定に従い、基材6に対するpTS-EDOT混合液の接触による描画を短時間に行い、直ちに案内ベルト2による矢印1方向への描画済み基材6の送りにより、当該描画部分を熱ヘッド4に直接的又は間接的に接触させ、及び/又は、重合促進処理機構5による処理を施すことにより、pTS-PEDOTへの重合促進を行うことが必要である。この接触による描画デザインと熱ヘッド4等による重合促進処理の開始までの時間が、上述した好適には1分以内、さらに好適には30秒以内として、本発明の生産方法が行われる。なお、上述したように、熱ヘッド4との直接的又は間接的な接触、すなわち放熱体との接触は重合促進処理の一つであり、当該接触処理無しで、重合促進処理機構5による重合促進処理を行ってもよいし、両者を組み合わせてよい。重合促進処理機構5においては、上記した重合促進処理、例えば、熱風処理等を行うための設備が設けられている。 From the ink outlet 31 provided in the ink mechanism 3, the pTS-EDOT mixed solution is supplied to the substrate 6 and a predetermined contact is performed. A mechanism (not shown) for mixing the pTS solution and EDOT at a specific ratio is provided in the ink mechanism 3 or externally from the ink mechanism 3, and the pTS is provided to the ink outlet 31 via the mixing mechanism. -EDOT mixture is supplied. Examples of the contact mode of the pTS-EDOT mixed liquid from the ink outlet 31 to the substrate 6 include dropping using a syringe pipette or the like, spraying using an inkjet nozzle, or the like. In addition, transfer by a silk screen or the like can be performed in a mode different from this figure. Since the synchronization processing shown here involves strict time management, it is preferable that the mechanical or automatic setting for performing a desired drawing design on the substrate is performed by, for example, a pressure-sensitive sensor using a piezo element or the like. . In addition, the periphery of the drawing design is covered or surrounded with a masking agent to suppress the infiltration of the pTS-EDOT mixed solution into the coating part or the surrounding area, thereby making the drawing design clear and clear. Further improvements can be made. According to the setting, drawing is performed in a short time by contacting the base material 6 with the pTS-EDOT mixed liquid, and the drawing portion is immediately transferred to the thermal head 4 by feeding the drawn base material 6 in the direction of arrow 1 by the guide belt 2. It is necessary to promote polymerization to pTS-PEDOT by direct or indirect contact and / or treatment by the polymerization promotion treatment mechanism 5. The production method of the present invention is carried out by setting the drawing design by this contact and the time until the start of the polymerization accelerating treatment by the thermal head 4 or the like preferably within 1 minute, more preferably within 30 seconds. As described above, direct or indirect contact with the thermal head 4, that is, contact with the heat radiating body, is one of the polymerization promotion treatments, and the polymerization promotion by the polymerization promotion treatment mechanism 5 without the contact treatment. You may process and you may combine both. The polymerization promotion processing mechanism 5 is provided with equipment for performing the above-described polymerization promotion processing, for example, hot air processing.
 一例として、例えば、上記熱ヘッド4と描画済み基材6の接触後に、重合促進機構5において設けられた熱風の送風装置(図示せず)による第1の熱風処理を行って乾燥を行い、その後該当部分の水洗浄やマスク剤の除去処理を行い、その後、再び第2の熱風処理を行って乾燥を行う工程が挙げられる。この場合、上記の第2段階は熱ヘッド4との接触と第1の熱風処理である。第1の熱風処理の後に行う水洗処理は、未反応のEDOT及び遷移金属等の酸化成分の除去のために行うものである。 As an example, for example, after contact between the thermal head 4 and the drawn substrate 6, a first hot air treatment is performed by a hot air blowing device (not shown) provided in the polymerization promotion mechanism 5, and then drying is performed. There may be mentioned a step of performing the water washing of the corresponding part and the masking agent removing process, and then performing the second hot air process again and drying. In this case, the second stage is the contact with the thermal head 4 and the first hot air treatment. The water washing treatment performed after the first hot air treatment is performed to remove oxidizing components such as unreacted EDOT and transition metal.
 これらの第1段階、第2段階の工程を経ての同期処理により、基材6へのpTS-PEDOTの付着工程が完了する。 The process of attaching pTS-PEDOT to the substrate 6 is completed by the synchronous processing through the processes of the first stage and the second stage.
 なお、本例を示した図1はあくまでも略図である。本発明の生産方法の実施形態のバリエーションは多様である。例えば、インク機構3においては、pTS溶液とEDOTを別々に吐出させ、空中で両溶液を混ぜてpTS-EDOT混合液として、基材6に対して接触を行うことも可能である。さらに、本例においては、案内ベルト2による平面上における描画済み基材6の送り動作により、第1段階から第2段階への移行を行っているが、例えば、描画済み基材6が向く空間角度を変えて、当該変更角度において描画済み基材6が向かう方向から、熱風処理、熱ヘッドとの直接的又は間接的な接触処理等を行うことも可能である。また、特に基材6が線状基材である場合には、第2段階の工程を「吊し」状態や「張架」状態として行うことも可能である。 Note that FIG. 1 showing this example is only a schematic diagram. Variations in the embodiment of the production method of the present invention are diverse. For example, in the ink mechanism 3, the pTS solution and EDOT can be ejected separately, and both solutions can be mixed in the air to make contact with the substrate 6 as a pTS-EDOT mixed solution. Further, in this example, the transition from the first stage to the second stage is performed by the feeding operation of the drawn base material 6 on the plane by the guide belt 2, but for example, a space where the drawn base material 6 is directed. By changing the angle, it is possible to perform hot air treatment, direct or indirect contact treatment with the thermal head, etc. from the direction in which the drawn substrate 6 is directed at the changed angle. In particular, when the substrate 6 is a linear substrate, the second stage process can be performed in a “hanging” state or a “stretching” state.
 このようにして、本発明の電極素子を生産することができる。 In this way, the electrode element of the present invention can be produced.
[B]本発明の電極ないし生体電極の生産
 上述したように、本発明の電極は、本発明の生産方法により得られた電極素子(本発明の電極素子)を用いてなることを特徴とする、電極である。「用いてなる」とは、本発明の電極素子を、電極の全部又は一部として用いていることを意味するものである。また、本発明の電極は、本発明の生産方法により電極素子を生産し、次いで、当該電極素子を用いて電極を生産することを特徴とする、電極の生産方法により生産することができる。
[B] Production of electrode or biological electrode of the present invention As described above, the electrode of the present invention is characterized by using the electrode element (electrode element of the present invention) obtained by the production method of the present invention. , The electrode. “Used” means that the electrode element of the present invention is used as all or part of the electrode. Further, the electrode of the present invention can be produced by an electrode production method characterized in that an electrode element is produced by the production method of the present invention, and then an electrode is produced using the electrode element.
 本発明の電極は、その性質上本発明の電極素子を適用可能な電極の全てであるが、抵抗値が低く、基材として絹等の繊維を用いているために肌触りが良く、耐久性と耐水性に優れ、柔軟性を伴うために、特に生体電極のパーツ又は当該製品そのものとして用いることが好ましい。
以下、本発明の電極を生体電極(本発明の生体電極)として用いる場合の態様を示す。
The electrode of the present invention is all of the electrodes to which the electrode element of the present invention can be applied due to its properties, but the resistance value is low, and since the fibers such as silk are used as the base material, the touch is good and the durability is high. In order to have excellent water resistance and flexibility, it is particularly preferable to use it as a bioelectrode part or the product itself.
Hereinafter, the aspect in the case of using the electrode of this invention as a bioelectrode (bioelectrode of this invention) is shown.
 [B]-1: 表面用電極
 表面用電極は、容積伝導により伝わって来る活動電位や脳波を皮膚の上や、直接筋肉や脳、その他の臓器の表面(以下、これらの表面を「体組織表面」ともいう)から電極の穿刺を伴わずに導出する電極であり、筋腹や頭部に貼り付けて使用する生体電極である。これを誘発電位導出用や治療用の刺激電極とすることもできる。
[B] -1: Surface electrode The surface electrode transmits action potential and brain waves transmitted by volume conduction on the skin, directly on the surface of muscles, brain, and other organs (hereinafter referred to as “body tissue”). It is an electrode that is led out without puncturing the electrode from the surface), and is a biological electrode that is attached to the muscle abdomen or head for use. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment.
 本発明の電極が表面用電極である場合、体表面との接触可能面積を小さくすることが好適である場合が多く認められる。このような場合には、特に、本発明の電極の使用は好適である。当該電極素子の体組織表面との接触可能面積は、0.0004~100cmであることが好適であり、特に好適には0.0004~25cmである。25cmを超える接触可能面積であっても表面用電極として用いることは可能であるが、「体組織表面と電極素子との接触面積を著しく少なくしても、活動電位または誘発電位、さらに脳波を良好に導出することができる」、という本発明の電極の特徴を十分に活かすことにならない。接触可能面積が0.0004cmより狭いと、十分に活動電位または誘発電位、さらに脳波を導出することが困難になる。ただし、今後筋電測定システムや脳波測定システムの性能が向上すれば、0.0004cmより狭い接触可能面積であっても表面用電極として良好に用いることができる可能性がある。 When the electrode of the present invention is a surface electrode, it is often recognized that it is preferable to reduce the contactable area with the body surface. In such a case, the use of the electrode of the present invention is particularly suitable. The contactable area of the electrode element with the body tissue surface is preferably 0.0004 to 100 cm 2 , particularly preferably 0.0004 to 25 cm 2 . Although it can be used as a surface electrode even if the contactable area exceeds 25 cm 2 , “the action potential or the evoked potential, and the electroencephalogram can be applied even if the contact area between the body tissue surface and the electrode element is significantly reduced. The feature of the electrode of the present invention that “it can be derived well” is not fully utilized. If the contactable area is smaller than 0.0004 cm 2 , it is difficult to sufficiently derive an action potential or an evoked potential, and an electroencephalogram. However, if the performance of the myoelectric measurement system or electroencephalogram measurement system is improved in the future, even if the contactable area is smaller than 0.0004 cm 2 , there is a possibility that it can be used favorably as the surface electrode.
 なお、「体組織表面との接触可能面積」とは、導電性材を表面用電極の電極素子として用いた場合に、体組織表面と接触し得る面積であり、例えば、電極素子が平面状の場合には、当該シート面の面積である。このような平面状の電極素子の場合には、特に0.25~100cmが好適であり、さらに0.25~25cmが好適である。電極素子が線状の場合には、当該線状電極素子の体表面との接触を予定する表面積の半分の面積(当該面積は、例えば線状素材の直径を一辺、体表面との接触を予定する長さを他の一辺とする「長方形の面積」として近似することができる)が体組織表面と接触し得る面積である。このような線状の電極素子の場合には、特に0.0004~0.02cmが好適であり、さらに0.0004~0.005cmが好適である。他の形状の場合であっても、現実的に体組織表面に接触し得る面積であり、当業者であれば容易に把握することが可能である。また、当該接触可能面積は、1個のまとまった電極素子である。例えば、1個の表面用電極の中に、複数個の電極素子同士が接触せずに設けられている場合には、各々の電極素子における面積である。 The “area that can be contacted with the body tissue surface” is an area that can contact the body tissue surface when a conductive material is used as the electrode element of the surface electrode. For example, the electrode element is planar. In this case, it is the area of the sheet surface. In the case of such a planar electrode element, 0.25 to 100 cm 2 is particularly preferable, and 0.25 to 25 cm 2 is more preferable. If the electrode element is linear, the area of the surface area of the linear electrode element that is expected to be in contact with the body surface (the area is, for example, the diameter of the linear material is one side and the contact with the body surface is expected) The length that can be approximated as a “rectangular area” with the other side as the other side) is the area that can come into contact with the body tissue surface. In the case of such a linear electrode element, 0.0004 to 0.02 cm 2 is particularly preferable, and 0.0004 to 0.005 cm 2 is more preferable. Even in the case of other shapes, it is an area that can actually come into contact with the surface of the body tissue and can be easily understood by those skilled in the art. The contactable area is a single electrode element. For example, in the case where a plurality of electrode elements are provided in a single surface electrode without contact with each other, the area of each electrode element.
 本発明の表面用電極の基本構成は、(1)電極素子、及び、(2)下記の信号ケーブルや発信チップ等の、電極素子で捉えた活動電位又は誘発電位、さらに脳波等を、増幅器等を含む筋電測定システムや脳波測定システムの本体に伝達するための機構である。この基本構成に則って、常法により本発明の表面用電極を生産することができる。 The basic structure of the surface electrode according to the present invention includes (1) an electrode element, and (2) an action potential or evoked potential captured by the electrode element, such as the following signal cable or transmitter chip, and an electroencephalogram, an amplifier, etc. It is a mechanism for transmitting to the main body of the myoelectric measurement system and the electroencephalogram measurement system. In accordance with this basic configuration, the surface electrode of the present invention can be produced by a conventional method.
 この基本構成の本発明の表面用電極を、測定を行う皮膚上の筋腹や頭皮、又は、直接筋肉や脳の表面に2箇所以上、好適には3箇所以上貼り付けて、当該電極素子で捉えられた活動電位や誘発電位、又は、脳波を、筋電測定システム又は脳波測定システム本体に伝達することにより、当該筋肉における活動電位や誘発電位、当該脳領域における脳波の測定を行うことができる。あるいは、電気刺激を行う皮膚上の筋腹や頭皮、又は、直接筋肉や脳の表面に2箇所以上、好適には3箇所以上の本発明の表面用電極を貼り付けて、当該対象に対する電気刺激を行うことができる。 The electrode for the surface of the present invention having this basic structure is attached to the muscle belly or scalp on the skin to be measured, or directly to the surface of the muscle or brain, at least two locations, preferably at least three locations. By transmitting the captured action potential, evoked potential, or electroencephalogram to the myoelectric measurement system or the electroencephalogram measurement system main body, the action potential or evoked potential in the muscle can be measured, or the electroencephalogram in the brain region can be measured. . Alternatively, two or more, preferably three or more surface electrodes of the present invention are applied to the muscle belly or scalp on the skin where electrical stimulation is performed, or directly on the surface of the muscle or brain, and electrical stimulation for the subject is performed. It can be performed.
 この体組織表面への貼付手段は、例えば体組織表面が皮膚の場合には、両面テープ、片面テープ等を利用することにより手軽に行うことが可能である。両面テープは上記電極における電極素子以外の領域と体組織表面とを粘着させて用いることが可能であり、片面テープは、体組織表面に載置した電極素子の上側から体組織表面に粘着させて用いることが可能である。体組織表面が脳表面や臓器表面である場合には、上記の両面テープ等の接着手段を用いずに、脳等の表面の水分に依存した載置を行うことが好ましい。 The sticking means to the body tissue surface can be easily performed by using a double-sided tape, a single-sided tape or the like when the body tissue surface is skin, for example. The double-sided tape can be used by adhering the region other than the electrode element in the electrode and the body tissue surface, and the single-sided tape is adhered to the body tissue surface from the upper side of the electrode element placed on the body tissue surface. It is possible to use. When the body tissue surface is the brain surface or the organ surface, it is preferable to perform placement depending on the moisture on the surface of the brain or the like without using the above-mentioned adhesive means such as the double-sided tape.
 また、例えば、上記電極素子の皮膚表面との非接触側に当該非接触側の面積よりも広い面積の部材を設けて、当該部材において設けた上記の皮膚表面と表面用電極の定着手段により、体組織表面上における表面用電極の定着を行うことができる。 Further, for example, by providing a member having an area larger than the area of the non-contact side on the non-contact side of the electrode element with the skin surface, the fixing means for the skin surface and the surface electrode provided in the member, The surface electrode can be fixed on the body tissue surface.
 例えば、上記部材を、皮膚に向かう側に粘着部が設けられた粘着シートとして、粘着シートの電極素子からはみ出した粘着部の粘着力により、皮膚と電極の定着を行うことができる。さらに、この粘着シートの代わりに、体に巻き付けるためのゴムバンドや金属バンドとすることにより、腕輪、リストバンド、腕時計バンド、腹巻き、サポーター等の生活製品の皮膚との接触部分に電極素子を組み込んだ本発明の表面用電極とすることができる。その他、衣服、帽子、眼鏡、靴類、ハンドル等の皮膚接触部分に表面用電極の素子を組み込んだ本発明の表面用電極の作出も可能である。 For example, the skin and the electrode can be fixed by the adhesive force of the adhesive part protruding from the electrode element of the adhesive sheet as an adhesive sheet provided with an adhesive part on the side facing the skin. In addition, instead of this adhesive sheet, by using a rubber band or metal band for wrapping around the body, an electrode element is incorporated in the contact part with the skin of daily products such as bracelets, wristbands, wristwatch bands, stomach wraps, supporters, etc. It can be set as the surface electrode of the present invention. In addition, it is possible to produce the surface electrode of the present invention in which the surface electrode element is incorporated in a skin contact portion such as clothes, a hat, glasses, shoes, and a handle.
 その他、本発明の表面用電極には、必要に応じて、蒸れを防止するための開口部や、汗や水蒸気等を吸い取ることができる吸水材を組み込んだ調湿部、を設けることが可能である。 In addition, the surface electrode of the present invention can be provided with an opening for preventing stuffiness and a humidity control unit incorporating a water-absorbing material that can absorb sweat, water vapor, etc., if necessary. is there.
 本発明の表面用電極の第1の特徴として、平面状の基材の上では自在に電極素子の描画を行うことが可能であることが挙げられ、そのため電極の使用箇所を柔軟に選択することができる。例えば、衣服の裏側に本発明の表面用電極を貼り付けたテキスタイルの表面用電極において、身体の所望の部分の形状に適応させたデザインの表面用電極素子を容易に作出して、テキスタイルの表面用電極を多様化することが可能である。 The first feature of the surface electrode of the present invention is that it is possible to freely draw an electrode element on a planar substrate, and therefore, the use location of the electrode can be selected flexibly. Can do. For example, in a textile surface electrode in which the surface electrode of the present invention is pasted on the back side of a garment, a surface electrode element having a design adapted to the shape of a desired part of the body can be easily created, and the surface of the textile It is possible to diversify the electrodes.
 例えば、直接脳や筋肉等の体内組織において穿刺用電極を用いる代わりに、本発明の表面用電極を直接当該体内組織上に載置して用いることができる。この場合、生体適合性に優れた絹織物等の平面状基材の平面上に、当該第1の特徴に基づいて、所望の形状の電極素子が描かれることによって設けられた電極素子で構成される生体適合性織物を体内組織の上に載置することにより、生体への負担が軽減された状態での脳波や筋肉の活動電位の測定を行うことができる。 For example, instead of using the puncture electrode directly in the body tissue such as the brain or muscle, the surface electrode of the present invention can be directly mounted on the body tissue. In this case, the electrode element is formed by drawing an electrode element of a desired shape on the plane of a planar base material such as silk fabric excellent in biocompatibility based on the first feature. By placing the biocompatible fabric on the body tissue, it is possible to measure an electroencephalogram or a muscle action potential in a state where the burden on the living body is reduced.
 本発明の表面用電極の第2の特徴として、特に、用いる電極素子の導電性能が従来の導電性ポリマーを用いた製品よりも優れており、従来よりも小型であっても正確に活動電位や誘発電位、さらに脳波を伝達することが可能であることが挙げられる。例えば、電極素子の形状を「線状」としても正確に活動電位や誘発電位、さらに脳波を伝達することが可能である。 As the second feature of the surface electrode of the present invention, in particular, the conductive performance of the electrode element used is superior to that of a product using a conventional conductive polymer. It is possible to transmit an evoked potential and also an electroencephalogram. For example, even if the shape of the electrode element is “linear”, it is possible to accurately transmit action potentials, evoked potentials, and brain waves.
 また、小型の表面用電極素子をより高密度に設けたマルチチャンネルの表面用電極(多点電極)の提供が可能であり、これにより、広範囲の筋肉活動や多領域の脳波の解析を、さらに緻密に行うことが可能になる。 In addition, it is possible to provide multi-channel surface electrodes (multi-point electrodes) with smaller surface electrode elements arranged at higher density, which enables analysis of a wide range of muscle activities and multi-regional electroencephalograms. It becomes possible to carry out precisely.
 図2は、前述した生産工程に従って、平織りの絹織物上に複数(図2(a)は2本、(b)は3本、のそれぞれ一部を示す)の亜鈴状(両端が膨らんだ線状)の描画を行い、当該描画部分を平面の電極素子とした素材を、ヒトの脳の模型の上に載置した状態を示している。両端の膨らみの部分が、電極素子に相当し、これらを繋ぐ細い線状部分が電極素子同士を繋ぐコードに相当する。基材の中にPEDOT-pTSを十分に含浸させた場合には、図2(a)のようにPEDOT-pTSによる黒色の描画部分が表側になってもよい(裏面も同様に、基材に十分に含浸されたPEDOT-pTSが直接的に脳に接触している)。これに対して図2(b)のように基材の片面のみにPEDOT-pTSが付着している場合には、PEDOT-pTSの付着面が脳表面に接触している。本例は、一単位が10mm角程度の電極素子であるが、さらに大きさを調整することができる。本例程度のサイズであれば、10mm程度の間隔を空けて3×3程度の格子状とすることが、脳の表面用電極の場合に想定される。無論のこと、個々の亜鈴の描画単位をさらに微細にして、さらに高密度の脳に直接接触させることが可能な格子状の表面用電極とすることができる。 FIG. 2 shows a plurality of dumbbells (both lines bulging at both ends) on a plain-woven silk fabric in accordance with the production process described above (FIG. 2 (a) shows a part of two and FIG. 2 (b) shows a part of each). The drawing shows a state in which a material having the drawn portion as a planar electrode element is placed on a human brain model. The bulging portions at both ends correspond to the electrode elements, and the thin linear portions connecting these correspond to the cords connecting the electrode elements. When the substrate is sufficiently impregnated with PEDOT-pTS, the black drawing portion by PEDOT-pTS may be on the front side as shown in FIG. Fully impregnated PEDOT-pTS is in direct contact with the brain). On the other hand, as shown in FIG. 2B, when PEDOT-pTS is attached to only one surface of the base material, the attached surface of PEDOT-pTS is in contact with the brain surface. In this example, the unit is an electrode element of about 10 mm square, but the size can be further adjusted. In the case of the surface electrode of the brain, it is assumed that the size is about 3 × 3 with an interval of about 10 mm if the size is about this example. Of course, the drawing unit of individual dumbbells can be made finer, and a lattice-like surface electrode that can be brought into direct contact with a higher density brain can be obtained.
 なお、この場合、外部機器と電気的に接続される有線コードは、絶縁性のコーティングがなされていることが好ましい。当該コーティング材料としては、後述するように、絹等の天然繊維、ポリエステル等の化学繊維、シリコーン樹脂等の合成樹脂等が例示される。 In this case, it is preferable that the wired cord electrically connected to the external device has an insulating coating. Examples of the coating material include natural fibers such as silk, chemical fibers such as polyester, and synthetic resins such as silicone resins.
 このように本発明の電極が表面用電極である場合には、上述した生活製品をはじめ、本発明の電極を組み込み可能な応用範囲は従来の生体電極と比べても格段に広くなっている。すなわち、生活のあらゆるシーンにおける活動電位や誘発電位、さらに脳波を測定することが可能になり、健康管理、病気診断、運動原理の解明等をより柔軟にかつ広範囲に行うことが可能である。 Thus, when the electrode of the present invention is a surface electrode, the application range in which the electrode of the present invention can be incorporated, including the above-mentioned daily life products, is much wider than that of conventional biological electrodes. In other words, action potentials, evoked potentials, and brain waves can be measured in every scene of life, and health management, disease diagnosis, elucidation of exercise principles, and the like can be performed more flexibly and widely.
[B]-2: 穿刺用電極
 穿刺用電極は、文字通りに生体内に電極素子を穿刺により接触させて所望の生体シグナルを導出する電極である。これを誘発電位導出用や治療用の刺激電極とすることもできる。この態様の生体電極素子の生体組織との接触可能表面積は、好適には0.0004~0.02cmであり、特に好適には0.0004~0.002cmである。これは従来に比べて非常に小さい表面積であるが、同時に良好な導電特性ゆえに優れた生体電極機能を発揮することができる。
[B] -2: Puncture electrode A puncture electrode is an electrode that literally brings a desired biological signal into contact with an electrode element in a living body. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment. Accessible surface area of the biological tissue of a living body electrode element of this embodiment is preferably a 0.0004 ~ 0.02 cm 2, particularly preferably a 0.0004 ~ 0.002 cm 2. This is a very small surface area as compared with the conventional one, but at the same time, an excellent bioelectrode function can be exerted due to good conductive properties.
 本発明の穿刺用電極の基本構成は、(1)電極素子、及び、(2)下記の信号ケーブルや発信チップ等の、電極素子で捉えた活動電位又は誘発電位、さらに脳波等を、増幅器等を含む筋電測定システムや脳波測定システムの本体に伝達するための機構である。この基本構成に則って、常法により本発明の穿刺用電極を生産することができる。 The basic configuration of the puncture electrode according to the present invention includes (1) an electrode element, and (2) an action potential or evoked potential captured by the electrode element, such as the following signal cable or transmission chip, and an electroencephalogram, an amplifier, etc. It is a mechanism for transmitting to the main body of the myoelectric measurement system and the electroencephalogram measurement system. In accordance with this basic configuration, the puncture electrode of the present invention can be produced by a conventional method.
 この基本構成の本発明の穿刺用電極を、測定を行う生体組織に1箇所以上穿刺して、当該電極素子で捉えられた活動電位や誘発電位、又は、脳波を、筋電測定システム又は脳波測定システム本体に伝達することにより、当該筋肉における活動電位や誘発電位、当該脳領域における脳波の測定を行うことができる。あるいは、電気刺激を行う生体組織に1箇所以上穿刺して、当該対象に対する電気刺激を行うことができる。なお、これらの「1箇所以上」は、あくまでも用いる穿刺用電極の個数である。用いる電極全体としては、いずれも前述した表面用電極と同じく「2箇所以上、好適には3箇所以上」であるが、必ず全てを穿刺用電極とする必要は無く、必要に応じてこれらの一部を表面用電極とすることも可能である。仮に全てが穿刺用電極であれば、表面用電極と同様に、「2箇所以上、好適には3箇所以上」となる。 The puncture electrode of the present invention having this basic configuration is punctured at one or more locations in a living tissue to be measured, and an action potential or an evoked potential captured by the electrode element, or an electroencephalogram is used as an electromyography measurement system or electroencephalogram measurement. By transmitting to the system main body, the action potential and evoked potential in the muscle, and the electroencephalogram in the brain region can be measured. Alternatively, it is possible to puncture a living tissue to be subjected to electrical stimulation at one or more locations and perform electrical stimulation on the target. These “one or more places” are the number of puncture electrodes to be used. The electrodes used are all “two or more, preferably three or more” as in the case of the surface electrode described above, but it is not always necessary to use all of them as puncture electrodes. It is also possible to use the part as a surface electrode. If all the electrodes are for puncturing, the number is “two or more, preferably three or more”, as with the surface electrode.
 この態様の生体電極は典型的には、針状の形状をしておりこれを生体内に刺し入れて使用する「針電極」と、線状のワイヤー電極素子を注射針等の電極を体内に刺し入れるための補助機構を用いて生体内に刺入し、当該補助機構を取り去って使用する「ワイヤー電極」が含まれる。以下、これらの2つの典型例を中心に、本発明の電極が穿刺用電極として用いられる場合について述べる。 The biological electrode of this embodiment is typically in the shape of a needle and is used by inserting it into the living body, and a linear wire electrode element is inserted into the body of an electrode such as an injection needle. A “wire electrode” is used that is inserted into a living body using an auxiliary mechanism for insertion and is used by removing the auxiliary mechanism. Hereinafter, the case where the electrode of the present invention is used as a puncture electrode will be described focusing on these two typical examples.
[B]-3: 針電極
 本発明の電極を針電極として用いる場合には、原則として硬質の線状の素材、例えば硬質絹糸を基材として用いることができる。硬質の絹糸は、精練によるセリシンの除去を行わずに提供されているものであり、これに対して上述した生産工程を経て、PEDOT-pTSの付着を行うことにより、針金に近い硬度の、線状の電極素子とすることができる。このような本発明の針電極素子に、基本的な構成を公知の手段により付加することにより、本発明の針電極を生産することができる。電極素子の硬度がこの程度であれば、皮膚の柔らかい部分であれば生体外部から体内に穿刺することが十分に可能である。また、手術等を行いながらターゲット器官に直接刺し入れることも可能である。この針電極の直接刺し入れのターゲット器官としては、例えば、脳が挙げられるが、これに限定されるものではない。脳においては、例えば、本発明の針電極に向けて通電を行って、電気刺激をした場合の体の反射を観察することにより、被験者の脳の細かな機能の診断や脳機能の解明を行うことができる。
[B] -3: Needle electrode When the electrode of the present invention is used as a needle electrode, in principle, a hard linear material, for example, a hard silk thread, can be used as a base material. The hard silk thread is provided without removing sericin by scouring, and by applying the PEDOT-pTS through the production process described above, a wire having a hardness close to that of a wire is obtained. Electrode element. The needle electrode of the present invention can be produced by adding a basic configuration to the needle electrode element of the present invention by a known means. If the hardness of the electrode element is about this level, it is possible to puncture the body from the outside of the living body if it is a soft part of the skin. It is also possible to pierce directly into the target organ while performing surgery or the like. Examples of the target organ for direct insertion of the needle electrode include the brain, but are not limited thereto. In the brain, for example, by energizing the needle electrode of the present invention and observing the reflection of the body when electrical stimulation is performed, the subject's brain is diagnosed in detail and the brain function is elucidated. be able to.
[B]-4: ワイヤー電極
 本発明の電極をワイヤー電極として用いる場合には、電極素子とは別個に当該電極素子を生体内に刺し入れるための補助機構(以下、穿刺補助機構ともいう)が必要である。最も基本的な穿刺補助機構は、長さ方向に両端が開口した貫通孔を伴う中空針である。この中空針の貫通孔に線状の電極素子を通した状態で、皮膚外から穿刺を行い、その後中空針を引き抜くことにより、電極素子のみを生体内に存置することができる。このような本発明のワイヤー電極は、本発明の電極素子に上記補助機構等を公知の手段により付加して、所望の電極を生産することができる。
[B] -4: Wire electrode When the electrode of the present invention is used as a wire electrode, there is an auxiliary mechanism (hereinafter also referred to as a puncture assist mechanism) for inserting the electrode element into the living body separately from the electrode element. is necessary. The most basic puncture assisting mechanism is a hollow needle with a through hole having both ends opened in the length direction. By puncturing from outside the skin with the linear electrode element being passed through the through hole of the hollow needle and then pulling out the hollow needle, only the electrode element can be left in the living body. Such a wire electrode of the present invention can produce a desired electrode by adding the above auxiliary mechanism or the like to the electrode element of the present invention by a known means.
 ワイヤー電極の用途は、上述した針電極と同様である。 The use of the wire electrode is the same as that of the needle electrode described above.
[B]-5: PEDOT-pTSの特性を利用した穿刺用電極
 PEDOT-pTSは水分に接触すると膨潤する特性を有しており、この性質を活用した体内電極の提供も可能である。基本的な考え方は、上記のワイヤー電極と同様である。すなわち、湿潤状態から乾燥状態に向かう際のPEDOT-pTSの収縮に伴う応力によって、当該PEDOT-pTSが付着した電極素子の穿刺補助機構に対する付着を行い、これが体内電極として提供される。当該体内電極の穿刺補助機構を用いて、皮膚外からの穿刺を行うと、経時的に電極素子のPEDOT-pTSに生体内の水分が供給されて膨潤して、電極素子の穿刺補助機構に対する付着状態が解除される。この解除された状態で穿刺補助機構を皮膚から引き抜くことにより、電極素子のみを生体内に残置することができる。
[B] -5: Puncture electrode PEDOT-pTS utilizing the characteristics of PEDOT-pTS has a characteristic of swelling when it comes into contact with moisture, and it is possible to provide an in-vivo electrode utilizing this characteristic. The basic concept is the same as that of the wire electrode. That is, by the stress accompanying the shrinkage of PEDOT-pTS when moving from the wet state to the dry state, the electrode element to which the PEDOT-pTS is attached adheres to the puncture assisting mechanism, and this is provided as an internal electrode. When a puncture from outside the skin is performed using the puncture assist mechanism of the internal electrode, the moisture in the living body is supplied to the PEDOT-pTS of the electrode element over time to swell and adhere to the puncture assist mechanism of the electrode element The state is released. By pulling out the puncture assist mechanism from the skin in this released state, only the electrode element can be left in the living body.
[B]-6: 電気抵抗値の自由な調節
 前述した電極素子の生産工程においては、熱処理等の時間を調節することにより、PEDOT-pTSを用いた電極素子における電気抵抗値を調節することができる。すなわち、電極素子において、2以上の異なる導電率の領域を設けることが可能である。これは、上記の電極素子の生産工程を用いた場合の大きな特徴の一つである。通常であれば、電極素子の電気抵抗値は低ければ低いほど好適であるが、例えば、通電を行って発熱を起こして当該熱により患部を焼く等の治療を、本発明の生体内電極を用いて行う場合には、針状の電極素子の先端部側の電気抵抗値を大きくして、残りの部分の電気抵抗値を低くする。そして、穿刺初期には、活動電位や誘発電位の測定を、電圧を印加する場合であっても低電圧で行い、測定・診断後に、低電気抵抗の領域を引き抜き、高電気抵抗の部分のみを残して高電圧を印加することによって、当該電極素子近傍に熱を発生させて、相応の治療効果を提供することが可能である。
[B] -6: Free adjustment of electric resistance value In the above-described electrode element production process, the electric resistance value in the electrode element using PEDOT-pTS can be adjusted by adjusting the time for heat treatment or the like. it can. That is, it is possible to provide two or more regions having different conductivity in the electrode element. This is one of the major characteristics when the above electrode element production process is used. Normally, the lower the electrical resistance value of the electrode element is, the better. However, for example, the treatment of burning the affected part by applying heat to generate heat is performed using the in vivo electrode of the present invention. In this case, the electrical resistance value on the tip end side of the needle-like electrode element is increased, and the electrical resistance value of the remaining portion is decreased. At the initial stage of puncture, action potential and evoked potential are measured at low voltage even when voltage is applied.After measurement and diagnosis, the low electrical resistance region is extracted and only the high electrical resistance part is extracted. By applying a high voltage, it is possible to generate heat in the vicinity of the electrode element and provide a corresponding therapeutic effect.
 また、例えば、電極素子として用いる部分以外を絶縁物質、例えば、絹等の天然繊維、ポリエステル等の化学繊維、シリコーン樹脂等の合成樹脂等で、表面コーティング処理等を行うことにより、所望の部分のみ電極素子が露出した体内電極を作出することができる。 In addition, for example, by performing a surface coating treatment with an insulating material other than a portion used as an electrode element, for example, natural fibers such as silk, chemical fibers such as polyester, synthetic resins such as silicone resin, etc., only a desired portion is obtained. It is possible to create a body electrode in which the electrode element is exposed.
[B]-7: ドラッグデリバリーシステム
 本発明の体内電極の一部に、体内に薬液を注入するための注入機構を設けて、筋肉の活動電位や脳波に応じた薬液を体内に供給することが可能である。例えば、薬物輸送のための管を注入機構として設けることが挙げられる。また、薬物輸送手段を電極素子の基材(絹繊維等)の浸透圧移動とすることにより、電極素子と薬物輸送路を一体化することも可能である。薬物としては、例えば、脳電極として本発明の体内電極を用いる場合は、中枢神経の障害を緩和する薬物、例えばGSNO(S-Nitrosoglutathione)等が挙げられる。
[B] -7: Drug Delivery System An injection mechanism for injecting a drug solution into the body is provided in a part of the body electrode of the present invention, and a drug solution corresponding to the muscle action potential or brain wave can be supplied into the body. Is possible. For example, a tube for drug transport may be provided as an injection mechanism. In addition, the electrode element and the drug transport path can be integrated by making the drug transporting means osmotic pressure movement of the base material (silk fiber or the like) of the electrode element. Examples of the drug include drugs that alleviate central nervous system disorders such as GSNO (S-Nitrosoglutathione) when the body electrode of the present invention is used as a brain electrode.
[C]筋電測定システムと脳波測定システムとその生産
 本発明の筋電測定システムと脳波測定システムは、電極として本発明の生体電極(表面用電極又は穿刺用電極)を用いることを特徴とするが、筋電測定システムや脳波測定システムとして必要な他の機構を備えている。例えば、電極の他に、増幅部、誘発電位を得るための各種刺激部、解析・記録・加算・校正等を行う解析部、音声や動画等により筋電や脳波の動きを表示する表示部等が必要に応じて備わっている。電気信号の伝達手段は、有線であっても無線であってもよい。本発明の筋電測定システムは、上記の生産方法により電極を生産し、次いで、当該電極を生体に接触させる電極(生体電極)として筋電測定システムに設けることにより生産することができる。この際、上記の他の機構を公知の手段により組合せて付加することにより、所望の構成の筋電測定システムを生産することができる。さらに、本発明の脳波測定システムは、上記の生産方法により電極を生産し、次いで、当該電極を生体に接触させる電極(生体電極)として脳波測定システムに設けることにより生産することができる。この際、上記の他の機構を公知の手段により組合せて付加することにより、所望の構成の脳波測定システムを生産することができる。
[C] Myoelectric measurement system, electroencephalogram measurement system and production thereof The myoelectric measurement system and electroencephalogram measurement system of the present invention are characterized by using the bioelectrode (surface electrode or puncture electrode) of the present invention as an electrode. However, it has other mechanisms necessary as an electromyography measurement system and an electroencephalogram measurement system. For example, in addition to electrodes, amplification unit, various stimulation units for obtaining evoked potentials, analysis unit for analysis / recording / addition / calibration, etc., display unit for displaying myoelectric and electroencephalogram movement by voice or video, etc. Is provided as needed. The electric signal transmission means may be wired or wireless. The myoelectric measurement system of the present invention can be produced by producing an electrode by the above production method and then providing the electrode in the myoelectric measurement system as an electrode (biological electrode) for contacting the living body. At this time, a myoelectric measurement system having a desired configuration can be produced by adding the other mechanisms in combination by known means. Furthermore, the electroencephalogram measurement system of the present invention can be produced by producing an electrode by the above production method, and then providing the electrode in the electroencephalogram measurement system as an electrode (biological electrode) for contacting the living body. At this time, an electroencephalogram measurement system having a desired configuration can be produced by adding the above-mentioned other mechanisms in combination by known means.
 筋電測定システムと脳波測定システムは、それぞれ他の種類の生体シグナルと同期させることによって、筋肉や脳の状態把握をより突っ込んで行うことが可能であり、筋電測定システムであれば、例えば、血圧、心電信号、パルスオキシ信号、筋力、関節角度等を組み合わせて同期させることができる。 The myoelectric measurement system and the electroencephalogram measurement system can synchronize with other types of biological signals, respectively, so that the state of the muscles and the brain can be grasped further. The blood pressure, electrocardiogram signal, pulse oxy signal, muscle strength, joint angle, etc. can be combined and synchronized.
 脳波測定システムであれば、脳波と眼球運動を示す筋電信号を同期させることも可能である。この脳波と筋電信号の組み合わせの場合の生体電極として、本発明の生体電極は有用である。 In the case of an electroencephalogram measurement system, it is also possible to synchronize the electroencephalogram and the electromyogram indicating eye movement. The bioelectrode of the present invention is useful as a bioelectrode in the case of a combination of this electroencephalogram and myoelectric signal.
 以下、本発明の実施例を開示する。特に断らない限り、含有量は配合対象に対する質量%である。 Hereinafter, embodiments of the present invention will be disclosed. Unless otherwise specified, the content is mass% with respect to the compounding target.
[材料]
 本発明の電極素子の基となる基材として、(1)酵素精練(タンパク質分解酵素による精練)がなされた絹糸からなる平織りの絹織物(厚さ0.4mm程度)、(2)6匁羽二重(薄絹布、厚さ0.12mm程度)、(3)ポリエステル布地にセリシンを被覆した布地(アート株式会社(群馬県桐生市)の委託製造、厚さ0.15mm程度)を用いた。
[material]
As a base material on which the electrode element of the present invention is based, (1) a plain-woven silk fabric (thickness of about 0.4 mm) made of silk thread that has been subjected to enzyme scouring (scouring with a proteolytic enzyme); Double (thin silk cloth, thickness of about 0.12 mm), (3) a cloth in which polyester cloth was coated with sericin (consigned production of Art Co., Ltd. (Kiryu City, Gunma Prefecture), thickness of about 0.15 mm) was used.
 pTS溶液としては、遷移金属の鉄(III)イオンとpTSとを含むブタノール溶液(Heraeus社製 CLEVIOS C-B 40 V2:p-トルエンスルホン酸鉄(III)として、約4質量%である:「CLEVIOS」は登録商標)を用いた。EDOTとしては、EDOTの水溶液(Heraeus社製CLEVIOS MV2、EDOT約98.5質量%である:「CLEVIOS」は登録商標)を用いた。 As a pTS solution, a butanol solution containing iron (III) ions of transition metal and pTS (CLEVIOS CB 40 V2 made by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate: “CLEVIOS”) Are registered trademarks). As the EDOT, an aqueous solution of EDOT (CLEVIOS MV2, manufactured by Heraeus, approximately 98.5% by mass of EDOT: “CLEVIOS” is a registered trademark) was used.
[実施例1] 熱ヘッドを用いた加熱処理の検討
 上記の基材として用いる平織りの絹織物(4cm×4cm)に対して、上記のpTS溶液を6.3mlと、EDOT220μlを準備し、これらを混合して30秒以内に、2つの互いに隣接した長方形形状(1cm×2cm)に型抜きがなされたシルクスクリーンを用いて、上記の基材として用いる絹織物の上に当該混合液を転写した。この作業は70℃の加熱雰囲気内において20分間行われた。
[Example 1] Examination of heat treatment using thermal head For plain weave silk fabric (4 cm x 4 cm) used as the base material, 6.3 ml of the above pTS solution and 220 µl of EDOT were prepared. Within 30 seconds after mixing, the mixture was transferred onto the silk fabric used as the substrate using a silk screen cut into two rectangular shapes (1 cm × 2 cm) adjacent to each other. This operation was performed for 20 minutes in a heated atmosphere at 70 ° C.
 その結果、企図した形状は全て絹織物上で滲んでしまい、この方法では絹織物上にPEDOT-pTSの描画を行うことは困難であることが明らかになった(図示せず)。 As a result, it was revealed that all of the intended shapes oozed on the silk fabric, and it was difficult to draw PEDOT-pTS on the silk fabric by this method (not shown).
 これに対して、上記の2つの長方形形状の型抜きがなされたシルクスクリーンを用いて、上記の基材として用いる絹織物の上に上記混合液を転写し、当該転写部分の全面の上から70℃の金属製の熱ヘッド(放熱体)を速やかに転写部分に直接接触させて、5分間その熱ヘッドとの接触状態を維持した。その結果、上記のような滲みが無く、企図した通りの長方形のPEDOT-pTSの描画を行うことができた(図3)。 On the other hand, the mixed liquid is transferred onto the silk fabric used as the base material by using the above-described two silk-shaped silk screens, and 70% from above the entire transfer portion. A metallic thermal head (heat radiating body) at 0 ° C. was immediately brought into direct contact with the transfer portion and maintained in contact with the thermal head for 5 minutes. As a result, there was no blur as described above, and the rectangular PEDOT-pTS could be drawn as intended (FIG. 3).
 次いで、この長方形描画部分の電気抵抗値を測定したところ、1.7×10 Ω/cm程度と、非常に低い電気抵抗値を示した。 Next, when the electrical resistance value of the rectangular drawing portion was measured, it showed a very low electrical resistance value of about 1.7 × 10 4 Ω / cm.
 この結果は、本発明の生産方法を行うことにより、布状基材等の平面基材上に自由に描画が可能であり、かつ、当該描画部分は低電気抵抗値とすることが可能であることが明らかになった。 As a result, by performing the production method of the present invention, it is possible to draw freely on a flat substrate such as a cloth-like substrate, and the drawn portion can have a low electrical resistance value. It became clear.
[実施例2] 熱風を用いた加熱処理の検討
 本実施例では、上記の熱ヘッドに代えて、900Wのドライヤーの熱風を上記2つの長方形の描画部分の温度が70℃になるように設定して、描画部分の局所の熱風処理を4分間行った。対照として、70℃の加熱雰囲気において描画を行った布状基材を用いた。
[Example 2] Examination of heat treatment using hot air In this example, instead of the above-mentioned thermal head, the hot air of a 900 W dryer was set so that the temperature of the two rectangular drawing portions was 70 ° C. Then, local hot air treatment of the drawing portion was performed for 4 minutes. As a control, a cloth-like substrate that was drawn in a heated atmosphere at 70 ° C. was used.
 本例では、わずか4分間の局所の熱風処理で、描画は滲まずに、しかも、1.6×10Ω/cmという低い電気抵抗値が得られた。これに対して、加熱雰囲気を用いた対照は、実施例1の対照のように描画部分が滲んだだけではなく、電気抵抗値は4.0×10 Ω/cm程度という高い値であった(図4)。 In this example, with the local hot air treatment for only 4 minutes, drawing was not blurred and an electric resistance value as low as 1.6 × 10 4 Ω / cm was obtained. On the other hand, the control using the heating atmosphere was not only that the drawing portion was blurred like the control of Example 1, but also the electrical resistance value was a high value of about 4.0 × 10 4 Ω / cm. (FIG. 4).
 これは、熱風処理のように、速やかに加熱部分の温度を上昇させることが可能な局所の加熱手段が、本発明の生産方法において極めて好適な実施態様であることがわかる。 This shows that a local heating means that can quickly raise the temperature of the heated part, such as hot air treatment, is a very suitable embodiment in the production method of the present invention.
 上記の平織りの絹織物(1)に代えて、ポリエステル布地にセリシンを被覆した布地(2)を用いて同様の試験を行ったところ、同様に低い電気抵抗値が得られた。 When a similar test was performed using a fabric (2) obtained by coating polyester fabric with sericin instead of the plain weave silk fabric (1), a low electrical resistance value was obtained in the same manner.
[実施例3] マスクを用いた処理の検討
 本実施例では、マスクを用いて上記の熱風処理を行った。
[Example 3] Examination of treatment using a mask In this example, the hot air treatment was performed using a mask.
(1)ミツロウ又は型糊をマスク処理剤として用いた態様
 5cm×5cmの6匁羽二重(薄絹布)(2)上に、ミツロウ(松葉薬品社製)を70~80℃で溶かして、これを直径3cmのガラスリング上に十分に塗布して、これを当該薄絹布上に押しつけて、略当該リング形状のミツロウ塗布領域を作成した。当該塗布領域のミツロウが十分に固まったことを確認してから、上記のpTS溶液とEDOTの実施例1と同じ容積比の混合液10mlに30秒間浸漬した後、速やかに900Wのドライヤーで表面温度70℃の条件で局所加熱を5分間行い、PEDOT-pTSの重合反応を進行させた。その後、再び70℃で加熱することでミツロウを溶融させて除去し、さらにPEDOT-pTSの洗浄を水洗により行った。その際の状態を示した写真が、図5(a)である。リング形状(一部)のミツロウ塗布領域には黒色のPEDOT-pTSは認められないことが明確に確認される。黒色部分の電気抵抗値を測定したところ、1.2×10Ω/cmと若干高い値であったが、これはミツロウの除去が十分ではなかったことに起因すると考えられる。マスク剤をミツロウに代えて、市販の型糊(田中直染料店)を用いて、使用後に水洗除去を行ったところ、5.0×10Ω/cmと低電気抵抗値であることが確認された。
(1) A mode in which beeswax or mold paste is used as a mask treatment agent Beeswax (manufactured by Matsuba Pharmaceutical Co., Ltd.) is melted at 70 to 80 ° C. on a 5 cm × 5 cm 6 cocoon wing double (thin silk cloth) (2), This was sufficiently applied onto a glass ring having a diameter of 3 cm, and pressed onto the thin silk cloth to create a substantially ring-shaped beeswax application region. After confirming that the beeswax in the application area was sufficiently hardened, it was immersed in 10 ml of the above mixture of pTS solution and EDOT in the same volume ratio as in Example 1 for 30 seconds, and then quickly surface temperature with a 900 W dryer. Local heating was performed at 70 ° C. for 5 minutes to proceed the polymerization reaction of PEDOT-pTS. Thereafter, the beeswax was melted and removed by heating again at 70 ° C., and the PEDOT-pTS was washed with water. A photograph showing the state at that time is FIG. It is clearly confirmed that black PEDOT-pTS is not observed in the ring-shaped (partial) beeswax application region. When the electric resistance value of the black portion was measured, it was a slightly high value of 1.2 × 10 5 Ω / cm. This is considered to be due to insufficient removal of beeswax. When the mask agent was replaced with beeswax and a commercially available mold paste (Tanaka Nao Dye Store) was used to remove it after washing, it was confirmed that it had a low electrical resistance value of 5.0 × 10 4 Ω / cm. It was done.
(2)デンプン糊(正麩糊)をマスク処理剤として用いた態様
 2cm×5cmの6匁羽二重(薄絹布)の長さ方向全長(5cm)に、幅1cmのメンディングテープを布幅半分に貼り付けて、その上から正麩糊(田中直染料店)の4質量%水溶液を刷毛で十分に塗布し、糊が十分に乾いたことを確認してから、メンディングテープを剥がして、PEDOT-pTS重合領域を露出させた。当該重合領域の上から、上記のpTS溶液とEDOTの実施例1と同じ容積比の混合液2mlを筆で素早く塗布後、30秒間十分浸潤させた後、速やかに900Wのドライヤーで表面温度70℃の条件で局所加熱を5分間行い、PEDOT-pTSの重合反応を進行させた。その後、十分水洗を行って、PEDOT-pTSの洗浄と糊の除去を行った。その際の状態を示した写真が、図5(b)である。明瞭に、正麩糊の塗布領域には黒色のPEDOT-pTSは認められないことがはっきりと確認される。電気抵抗値を測定したところ、7.0×10Ω/cmと若干高い値であったが、これは正麩糊が僅かに残存していたことに起因すると考えられる。
(2) A mode in which starch paste (straight glue) is used as a mask treatment agent A length of 1 cm wide mending tape is applied to the entire length (5 cm) of a 6 cm double double (thin silk cloth) of 2 cm x 5 cm. Paste it in half, apply a 4% by weight aqueous solution of regular glue (Tanaka Nao Dye Store) thoroughly with a brush and make sure that the glue has dried sufficiently, and then remove the mending tape. The PEDOT-pTS polymerization region was exposed. From above the polymerization region, 2 ml of the mixture of the above pTS solution and EDOT having the same volume ratio as in Example 1 was quickly applied with a brush, sufficiently infiltrated for 30 seconds, and then quickly surface temperature of 70 ° C. with a 900 W dryer. The local heating was performed for 5 minutes under the conditions described above, and the polymerization reaction of PEDOT-pTS was advanced. Thereafter, it was sufficiently washed with water to wash PEDOT-pTS and remove the glue. FIG. 5B shows a photograph showing the state at that time. Clearly, it is clearly confirmed that black PEDOT-pTS is not observed in the area where the normal glue is applied. When the electric resistance value was measured, it was a slightly high value of 7.0 × 10 4 Ω / cm, which is considered to be due to the fact that a slight amount of regular glue remained.
[比較例1] 加熱雰囲気中における電気抵抗値の経時的変化
 加熱雰囲気中での抵抗値の時間依存性を検討した。上記した平織りの絹織物(4cm × 4cm)を、上記のpTS溶液とEDOTの、実施例1と同じ容積比の混合液10mlに浸漬して、これを30秒以内に70℃の加熱雰囲気中に載置して、当該浸漬物の経時的に電気抵抗値を測定した(図6)。その結果、雰囲気加熱後20分間で電気抵抗値は最低値となったが、当該最低値は2.0×104 Ω/cmを明白に超えており、この方法では上述した実施例1又は2程には電気抵抗値が下がらないことが明らかになった。
[Comparative Example 1] Temporal change in electrical resistance value in heating atmosphere The time dependence of the resistance value in the heating atmosphere was examined. The above-described plain weave silk fabric (4 cm × 4 cm) is immersed in 10 ml of the above pTS solution and EDOT in the same volume ratio as in Example 1, and this is placed in a heating atmosphere at 70 ° C. within 30 seconds. Then, the electrical resistance value of the immersed material was measured over time (FIG. 6). As a result, the electric resistance value became the minimum value in 20 minutes after the atmosphere heating, but the minimum value clearly exceeded 2.0 × 10 4 Ω / cm. In this method, Example 1 or 2 described above is used. It became clear that the electrical resistance value did not decrease as much.
[実施例4] 本発明の表面用電極を用いた筋肉の活動電位の測定
 被験者の上腕部に、実施例1と同様の素材と熱ヘッドを用いた方法で作成した、抵抗値1.5x104Ω/cmのリボン状の表面用シルク電極(幅1cm、長さ6cm)3本(図7(a):内、1本が基準電極、残り2本は測定電極)を2cmの間隔で配置し、無線筋電計にそれぞれ接続した時に得られた筋電の時間的変化を示す。測定に際し、シルク電極と皮膚との間には、ジェル等のインピーダンスを低減させるための物質は塗布せず、直接皮膚に接触させた(図7(b))。固定のために電極全体を透明粘着シートでカバーし、皮膚表面に付着させているが、このシートは全体を固定するためであり、個々の電極を表面に粘着させるためではない。電極の皮膚への接触のために特に強い力を要しない。
Example 4 Measurement of Muscle Action Potential Using Surface Electrode of the Present Invention A resistance value of 1.5 × 10 4 prepared by a method using the same material and thermal head as in Example 1 on the subject's upper arm. Three ribbon-shaped surface silk electrodes (width: 1 cm, length: 6 cm) of Ω / cm (Fig. 7 (a): one of which is a reference electrode and the other two are measurement electrodes) are arranged at intervals of 2 cm. The time change of the myoelectricity obtained when each was connected to the wireless electromyograph is shown. In the measurement, a substance for reducing impedance, such as gel, was not applied between the silk electrode and the skin, but was directly brought into contact with the skin (FIG. 7B). The entire electrode is covered with a transparent adhesive sheet for fixation, and is adhered to the skin surface, but this sheet is for fixing the whole, not for adhering individual electrodes to the surface. No particularly strong force is required for contact of the electrode with the skin.
 その結果、実質的にアーチファクトが存在しない、活動電位を反映した良好な表面筋電図を得ることができた(図7(c))。 As a result, it was possible to obtain a good surface electromyogram reflecting the action potential substantially free of artifacts (FIG. 7 (c)).
[実施例5] 本発明の穿刺用電極(針電極)を用いた脳波の測定
 硬質絹糸に対し、PEDOT-pTSを重合させたシルク電極は、その硬さ故に、脳や筋肉組織へ刺入することができる。本実施例では、3号硬質絹糸(直径0.20~0.269mm)を基材として用いて、実施例2のドライヤーによる熱処理を用いた方法に準じて作成した硬質線状のシルク電極を、ニワトリ胚(胚齢16~20日)の頭蓋骨を除去した脳に刺入することで脳神経活動を測定した。図8(a)は、その様子の概略図である。測定に際し、測定電極だけでなく基準電極も同一の穿刺用のシルク電極を用いた。これにより、ガンマ波(図中矢印)を含む脳波(周波数50~70Hz)を測定することができた(図8(b))。
[Example 5] Measurement of electroencephalogram using puncture electrode (needle electrode) of the present invention A silk electrode obtained by polymerizing PEDOT-pTS with a hard silk thread penetrates into the brain or muscle tissue due to its hardness. be able to. In this example, using a No. 3 hard silk thread (diameter 0.20 to 0.269 mm) as a base material, a hard linear silk electrode prepared according to the method using heat treatment by the dryer of Example 2, Cranial nerve activity was measured by inserting into the brain from which the skull of a chicken embryo (embryonic age 16-20 days) was removed. FIG. 8A is a schematic view of the situation. In the measurement, the same puncture silk electrode was used for the reference electrode as well as the measurement electrode. As a result, brain waves (frequency 50 to 70 Hz) including gamma waves (arrows in the figure) could be measured (FIG. 8B).
[実施例6] 本発明の穿刺用電極(針電極)を用いた筋肉の活動電位の測定
 本実施例では、実施例2のドライヤーによる熱処理を用いた方法で作成した点以外は、実施例5と同じく3号硬質絹糸を基材として作成した穿刺用電極を、ニワトリ大腿筋の筋肉組織に刺入・留置し、動きに伴う筋肉内部の電位変化を測定した。測定に際し、基準となるシルク電極は、皮膚直下の筋肉表面に設置した。図9(a)は、その様子を示す概略図である。
[Example 6] Measurement of muscle action potential using puncture electrode (needle electrode) of the present invention Example 5 is the same as Example 5 except that it was prepared by the method using heat treatment by the dryer of Example 2. Similarly, a puncture electrode made of No. 3 hard silk as a base material was inserted and placed in the muscular tissue of chicken thigh muscle, and the potential change inside the muscle accompanying movement was measured. In the measurement, the reference silk electrode was placed on the surface of the muscle directly under the skin. FIG. 9A is a schematic diagram showing the state.
 その結果、実質的にアーチファクトが存在しない、活動電位を反映した良好な針筋電図を得ることができた(図9(b))。 As a result, it was possible to obtain a good needle electromyogram reflecting the action potential substantially free of artifacts (FIG. 9B).
1: 矢印
2: 案内ベルト
3: インク機構
4: 熱ヘッド
5: 重合促進処理機構
6: 基材
1: Arrow 2: Guide belt 3: Ink mechanism 4: Thermal head 5: Polymerization acceleration processing mechanism 6: Substrate

Claims (32)

  1.  (1)酸化成分とpTS(p-toluenesulfonate)を含有する有機溶媒性溶液と、(2)EDOT(3,4-ethylenedioxythiophene)、の混合液の、基材への接触による付着を行い、当該接触に同期させた重合促進処理を当該接触箇所に施すことを特徴とする、電極素子の生産方法。 (1) An organic solvent solution containing an oxidizing component and pTS (p-toluenesulfonate) and (2) a mixed solution of EDOT (3,4-ethylenedioxythiophene) is attached to the substrate by contact, and the contact A method for producing an electrode element, characterized in that a polymerization promoting treatment synchronized with the above is applied to the contact portion.
  2.  上記生産方法において、(1)酸化成分とpTS(p-toluenesulfonate)を含有する有機溶媒性溶液と、(2)EDOT(3,4-ethylenedioxythiophene)の混合液の、基材への接触による付着部分は、基材平面上の一部における描画デザインであることを特徴とする、請求項1に記載の電極素子の生産方法。 In the above production method, an adhering portion of a mixed solution of (1) an oxidative component and an organic solvent solution containing pTS (p-toluenesulfonate) and (2) EDOT (3,4-ethylenedioxythiophene) due to contact with the substrate The method for producing an electrode element according to claim 1, wherein the drawing design is a part of the drawing on the plane of the substrate.
  3.  上記生産方法において、(1)酸化成分とpTS(p-toluenesulfonate)を含有する有機溶媒性溶液と、(2)EDOT(3,4-ethylenedioxythiophene)、の混合液の、基材への接触による付着を行う前に、当該付着予定箇所を除く部分に防染糊又はミツロウを塗布した後、少なくとも当該付着予定箇所において上記混合液との接触を行い、さらに重合促進処理を行った後に、上記防染糊又はミツロウを除去することを特徴とする、請求項1又は2に記載の電極素子の生産方法。 In the above production method, adhesion of a mixed liquid of (1) an organic solvent solution containing an oxidizing component and pTS (p-toluenesulfonate) and (2) EDOT (3,4-ethylenedioxythiophene) by contact with the substrate After applying the anti-staining paste or beeswax to the portion excluding the planned adhesion site, contact with the mixed solution at least at the planned adhesion site, and further subjecting the polymerization promotion treatment to 3. The method for producing an electrode element according to claim 1, wherein glue or beeswax is removed.
  4.  上記生産方法において、防染糊はデンプン糊であることを特徴とする、請求項3に記載の電極素子の生産方法。 The method for producing an electrode element according to claim 3, wherein in the production method, the anti-staining paste is a starch paste.
  5.  上記生産方法において、同期させた重合促進処理は、(1)の有機溶媒性溶液と(2)のEDOTの混合液の基材への接触から1分以内に開始することを特徴とする、請求項1~4のいずれかに記載の電極素子の生産方法。 In the above production method, the synchronized polymerization promotion treatment is started within 1 minute from the contact of the mixed solution of the organic solvent solution (1) and the EDOT solution (2) to the substrate. Item 5. The method for producing an electrode element according to any one of Items 1 to 4.
  6.  上記生産方法において、(1)の有機溶媒性溶液にバインダーが含有されており、同期させた重合促進処理は混合液の基材への接触から24時間以内に開始することを特徴とする、請求項1~4のいずれかに記載の電極素子の生産方法。 In the above production method, the organic solvent solution of (1) contains a binder, and the synchronized polymerization promotion treatment starts within 24 hours from the contact of the mixed solution with the substrate. Item 5. The method for producing an electrode element according to any one of Items 1 to 4.
  7.  上記生産方法において、重合促進処理は局所的な加熱処理であることを特徴とする、請求項1~6のいずれかに記載の電極素子の生産方法。 The method for producing an electrode element according to any one of claims 1 to 6, wherein in the production method, the polymerization promotion treatment is a local heat treatment.
  8.  上記生産方法において、局所的な加熱処理は、(a)該当部分における50~90℃の放熱体の直接的若しくは間接的な接触、及び/又は、(b)該当部分が50~90℃になるように設定された熱風との接触、であることを特徴とする、請求項7に記載の電極素子の生産方法。 In the above production method, the local heat treatment is performed by (a) direct or indirect contact with a heat radiator at 50 to 90 ° C. and / or (b) 50 to 90 ° C. of the corresponding portion. The method for producing an electrode element according to claim 7, wherein the contact is made with hot air set as described above.
  9.  上記生産方法において、基材は、絹繊維を材料とする基材、又は、セリシン若しくはフィブロインを被覆した基材であることを特徴とする、請求項1~8のいずれかに記載の電極素子の生産方法。 9. The electrode element according to claim 1, wherein the base material is a base material made of silk fiber or a base material coated with sericin or fibroin. Production method.
  10.  上記生産方法において、絹繊維を材料とする基材は、セッケン精練、アルカリ精練、セッケン・アルカリ精練、酵素精練、高温・高圧精練、又は、酸精練されていることを特徴とする、請求項9に記載の電極素子の生産方法。 10. The production method according to claim 9, wherein the base material made of silk fiber is soap scouring, alkali scouring, soap / alkali scouring, enzyme scouring, high temperature / high pressure scouring, or acid scouring. A method for producing the electrode element as described in 1.
  11.  上記生産方法において、基材の形状は、膜状、布状、フィルム状、シート状、又は、ゲル状であることを特徴とする、請求項1~10のいずれかに記載の電極素子の生産方法。 11. The production of an electrode element according to claim 1, wherein in the production method, the shape of the base material is a film shape, a cloth shape, a film shape, a sheet shape, or a gel shape. Method.
  12.  上記生産方法において、(1)の有機溶媒性溶液におけるpTSの含有量は、当該有機溶媒性溶液に対して0.1~10質量%であることを特徴とする、請求項1~11のいずれかに記載の電極素子の生産方法。 12. The production method according to claim 1, wherein the content of pTS in the organic solvent solution of (1) is 0.1 to 10% by mass with respect to the organic solvent solution. A method for producing the electrode element according to claim 1.
  13.  上記生産方法において、酸化成分は遷移金属であることを特徴とする、請求項1~12のいずれかに記載の電極素子の生産方法。 13. The method for producing an electrode element according to claim 1, wherein in the production method, the oxidizing component is a transition metal.
  14.  上記生産方法において、接触による付着は、滴下、噴霧、浸漬、転写、又は、塗布により行われることを特徴とする、請求項1~13のいずれかに記載の電極素子の生産方法。 14. The method for producing an electrode element according to claim 1, wherein adhesion by contact is performed by dripping, spraying, dipping, transferring, or coating.
  15.  上記生産方法において、基材上に2以上の異なる導電率の領域を設けることを特徴とする、請求項1~14のいずれかに記載の電極素子の生産方法。 15. The method for producing an electrode element according to claim 1, wherein two or more regions having different electrical conductivity are provided on the base material in the production method.
  16.  請求項1~15のいずれかに記載の生産方法により生産されたことを特徴とする、電極素子。 An electrode element produced by the production method according to any one of claims 1 to 15.
  17.  請求項1~15のいずれかに記載の電極素子の生産方法により電極素子を生産し、次いで、当該電極素子を用いて電極を生産することを特徴とする、電極の生産方法。 An electrode production method comprising: producing an electrode element by the electrode element production method according to any one of claims 1 to 15, and then producing an electrode using the electrode element.
  18.  上記電極は、表面又は穿刺用の生体電極であることを特徴とする、請求項17に記載の電極の生産方法。 The electrode production method according to claim 17, wherein the electrode is a surface or a bioelectrode for puncture.
  19.  上記生体電極は表面用電極であり、電極素子の形状は線状又は平面状であることを特徴とする、請求項18に記載の電極の生産方法。 19. The method for producing an electrode according to claim 18, wherein the biological electrode is a surface electrode, and the shape of the electrode element is linear or planar.
  20.  上記生体電極は、多点電極であることを特徴とする、請求項19に記載の電極の生産方法。 20. The electrode production method according to claim 19, wherein the biological electrode is a multipoint electrode.
  21.  上記生体電極は、表面用電極であり、かつ、電極素子の皮膚との接触可能面積が、0.25~100cmであることを特徴とする、請求項19又は20に記載の電極の生産方法。 The method for producing an electrode according to claim 19 or 20, wherein the biological electrode is a surface electrode, and an area where the electrode element can be contacted with the skin is 0.25 to 100 cm 2. .
  22.  上記生体電極は、表面用電極であり、かつ、電極素子の皮膚との接触可能面積が、0.0004~0.002cmであることを特徴とする、請求項19又は20に記載の電極の生産方法。 The electrode according to claim 19 or 20, wherein the biological electrode is a surface electrode, and an area of the electrode element that can contact the skin is 0.0004 to 0.002 cm 2 . Production method.
  23.  上記生体電極は、穿刺用電極であり、かつ、電極素子を直接的に生体組織に差し入れる部分を有していることを特徴とする、請求項18に記載の電極の生産方法。 19. The method for producing an electrode according to claim 18, wherein the biological electrode is a puncture electrode and has a portion into which the electrode element is directly inserted into the biological tissue.
  24.  上記生体電極の形状は、線状又は針状であることを特徴とする、請求項23に記載の電極の生産方法。 The method for producing an electrode according to claim 23, wherein the shape of the biological electrode is linear or needle-like.
  25.  上記生体電極は、穿刺用電極であり、かつ、電極素子とこれを生体内に刺し入れるための補助機構が設けられていることを特徴とする、請求項23又は24に記載の電極の生産方法。 25. The electrode production method according to claim 23 or 24, wherein the biological electrode is a puncture electrode, and an electrode element and an auxiliary mechanism for inserting the electrode element into the living body are provided. .
  26.  上記生体電極の電極素子と生体組織との接触可能表面積は、0.0004~0.002cmであることを特徴とする、請求項23~25のいずれかに記載の電極の生産方法。 The method for producing an electrode according to any one of claims 23 to 25, wherein a surface area of the biological electrode that can be contacted between the electrode element and the biological tissue is 0.0004 to 0.002 cm 2 .
  27.  上記生体電極は、筋電測定システム又は脳波測定システムに用いるための生体電極であることを特徴とする、請求項18~26のいずれかに記載の電極の生産方法。 The method for producing an electrode according to any one of claims 18 to 26, wherein the biological electrode is a biological electrode for use in a myoelectric measurement system or an electroencephalogram measurement system.
  28.  請求項17~27のいずれかの請求項の生産方法により生産されたことを特徴とする、電極。 An electrode produced by the production method according to any one of claims 17 to 27.
  29.  請求項17~27のいずれかの請求項の生産方法により電極を生産し、次いで、当該電極を生体に接触させる電極として筋電測定システムに設けることを特徴とする、筋電測定システムの生産方法。 An electromyography measurement system production method, comprising: producing an electrode by the production method according to any one of claims 17 to 27; and then providing the electrode in an electromyography measurement system as an electrode for contacting the living body. .
  30.  請求項28に記載の電極を用いてなることを特徴とする、筋電測定システム。 A myoelectric measurement system comprising the electrode according to claim 28.
  31.  請求項17~27のいずれかの請求項の生産方法により電極を生産し、次いで、当該電極を生体に接触させる電極として脳波測定システムに設けることを特徴とする、脳波測定システムの生産方法。 A method for producing an electroencephalogram measurement system, characterized in that an electrode is produced by the production method according to any one of claims 17 to 27 and then provided in the electroencephalogram measurement system as an electrode for bringing the electrode into contact with a living body.
  32.  請求項28に記載の生体電極を用いてなることを特徴とする、脳波測定システム。 An electroencephalogram measurement system comprising the bioelectrode according to claim 28.
PCT/JP2016/058557 2015-03-17 2016-03-17 Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode WO2016148249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506201A JP6686244B2 (en) 2015-03-17 2016-03-17 Electrode element and electrode production method, and production of measurement system using the electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015053942 2015-03-17
JP2015053945 2015-03-17
JP2015-053945 2015-03-17
JP2015-053942 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016148249A1 true WO2016148249A1 (en) 2016-09-22

Family

ID=56918887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058557 WO2016148249A1 (en) 2015-03-17 2016-03-17 Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode

Country Status (2)

Country Link
JP (1) JP6686244B2 (en)
WO (1) WO2016148249A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075832A (en) * 2016-11-01 2018-05-17 エーアイシルク株式会社 Manufacturing method of electroconductive polymer conductor and manufacturing method of substrate
WO2019240241A1 (en) * 2018-06-14 2019-12-19 鳥光 慶一 Electroconductive material and electrical element provided with same, and sensor
JP2020143416A (en) * 2019-03-01 2020-09-10 エーアイシルク株式会社 Conductive polymer conductor, and method of producing the same
JP2021028364A (en) * 2019-08-09 2021-02-25 エーアイシルク株式会社 Conductive polymer conductor, and method for producing the same
KR20210134372A (en) 2019-03-03 2021-11-09 고쿠리츠다이가쿠호진 도호쿠다이가쿠 electromagnetic shielding material
EP3780008A4 (en) * 2018-03-30 2022-01-26 AI Silk Corporation Conductive polymer conductor, and method for manufacturing same
JP7377012B2 (en) 2018-06-14 2023-11-09 慶一 鳥光 Conductive materials and electrical elements and sensors equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318775A (en) * 1993-03-09 1994-11-15 Philips Electron Nv Method for peparing conductive polymer pattern on substrate surface and method for metallizing such pattern
JP2003317814A (en) * 2002-04-24 2003-11-07 Shozo Yanagida Photovoltaic cell
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
JP5215314B2 (en) * 2007-09-26 2013-06-19 第一工業製薬株式会社 Method for producing conductive polymer electrode and dye-sensitized solar cell provided with the same
JP2014108134A (en) * 2012-11-30 2014-06-12 Nippon Telegr & Teleph Corp <Ntt> Conductor, conductor manufacturing method, pressure sensor using conductor, pressure sensor device, bioelectrode using conductor, and biosignal measurement device
JP2014151018A (en) * 2013-02-08 2014-08-25 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing conductive cloth, conductive cloth, biological signal measuring method, and biological signal measuring device
JP2015037695A (en) * 2011-11-17 2015-02-26 日本電信電話株式会社 Conductive polymer fibers, and biological electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299476B2 (en) * 2010-10-22 2016-03-29 Newsouth Innovations Pty Limited Polymeric material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318775A (en) * 1993-03-09 1994-11-15 Philips Electron Nv Method for peparing conductive polymer pattern on substrate surface and method for metallizing such pattern
JP2003317814A (en) * 2002-04-24 2003-11-07 Shozo Yanagida Photovoltaic cell
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
JP5215314B2 (en) * 2007-09-26 2013-06-19 第一工業製薬株式会社 Method for producing conductive polymer electrode and dye-sensitized solar cell provided with the same
JP2015037695A (en) * 2011-11-17 2015-02-26 日本電信電話株式会社 Conductive polymer fibers, and biological electrode
JP2014108134A (en) * 2012-11-30 2014-06-12 Nippon Telegr & Teleph Corp <Ntt> Conductor, conductor manufacturing method, pressure sensor using conductor, pressure sensor device, bioelectrode using conductor, and biosignal measurement device
JP2014151018A (en) * 2013-02-08 2014-08-25 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing conductive cloth, conductive cloth, biological signal measuring method, and biological signal measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICALS PL CONSULTATION CENTER: "Tsukiji Hokokusho Activity Note", KAGAKU NO ME DE MIRU NIPPON NO DENTO KOGEI, RENSAI SERIES 10, IPPAN SHADAN HOJIN NIPPON KAGAKU KOGYO KYOKAI, 1 April 2011 (2011-04-01), pages 8 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075832A (en) * 2016-11-01 2018-05-17 エーアイシルク株式会社 Manufacturing method of electroconductive polymer conductor and manufacturing method of substrate
EP3780008A4 (en) * 2018-03-30 2022-01-26 AI Silk Corporation Conductive polymer conductor, and method for manufacturing same
WO2019240241A1 (en) * 2018-06-14 2019-12-19 鳥光 慶一 Electroconductive material and electrical element provided with same, and sensor
JP7377012B2 (en) 2018-06-14 2023-11-09 慶一 鳥光 Conductive materials and electrical elements and sensors equipped with the same
JP2020143416A (en) * 2019-03-01 2020-09-10 エーアイシルク株式会社 Conductive polymer conductor, and method of producing the same
KR20210134372A (en) 2019-03-03 2021-11-09 고쿠리츠다이가쿠호진 도호쿠다이가쿠 electromagnetic shielding material
JP2021028364A (en) * 2019-08-09 2021-02-25 エーアイシルク株式会社 Conductive polymer conductor, and method for producing the same
JP7294651B2 (en) 2019-08-09 2023-06-20 エーアイシルク株式会社 Manufacturing method of conductive polymer conductor

Also Published As

Publication number Publication date
JPWO2016148249A1 (en) 2017-12-28
JP6686244B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2016148249A1 (en) Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode
JP7125634B2 (en) bioelectrode
Nigusse et al. Wearable smart textiles for long-term electrocardiography monitoring—A review
US20170296079A1 (en) Electrically conductive material and production method therefor, and bioelectrode
KR101384761B1 (en) Sports bra for measuring respiration and electrocardiogram simultaneously
CN101536903A (en) Wear-type electrocardioelectrode device and manufacturing method thereof
US20230031279A1 (en) Conductive thermoplastic elastomer electrodes, and method of manufacturing such electrodes
CN201414798Y (en) Wearable electrocardio electrode device
Zhao et al. Water-retentive, 3D knitted textile electrode for long-term and motion state bioelectrical signal acquisition
CN106580306A (en) Electrophysiological signal fabric collection device
CN211511793U (en) Head-mounted biological signal acquisition device
Chang et al. Conductive Elastic Composite Electrode and Its Application in Electrocardiogram Monitoring Clothing
Menke et al. Silky Liquid Metal Electrodes for On‐Skin Health Monitoring
Wang et al. Fabrication of Flexible and Conductive Microneedle Array Electrodes from Silk Fibroin by Mesoscopic Engineering
US20240145112A1 (en) Conductive Polymer Fibers, Method And Device For Producing Conductive Polymer Fibers, Biological Electrode, Device For Measuring Biological Signals, Implantable Electrode, And Device For Measuring Biological Signals
Yang Stretchable Surface Electromyography Electrode Array Based on Liquid Metal and Conductive Polymer
Kim DESIGN PRINCIPLES OF STRETCHABLE AND COMPLIANT ELECTROMECHANICAL DEVICES FOR BIOMEDICAL APPLICATIONS
Singh et al. Flexible, Conductive Fabric‐Backed, Microneedle Electrodes for Electrophysiological Monitoring
CN117158978A (en) Integrated electrocardiograph garment based on fiber-based fabric electrocardiograph electrode and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765078

Country of ref document: EP

Kind code of ref document: A1