WO2016148104A1 - レーダ動画作成装置および方法 - Google Patents

レーダ動画作成装置および方法 Download PDF

Info

Publication number
WO2016148104A1
WO2016148104A1 PCT/JP2016/057960 JP2016057960W WO2016148104A1 WO 2016148104 A1 WO2016148104 A1 WO 2016148104A1 JP 2016057960 W JP2016057960 W JP 2016057960W WO 2016148104 A1 WO2016148104 A1 WO 2016148104A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
moving image
image
unit
doppler frequency
Prior art date
Application number
PCT/JP2016/057960
Other languages
English (en)
French (fr)
Inventor
智也 山岡
啓 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16764934.2A priority Critical patent/EP3273265A4/en
Priority to US15/554,868 priority patent/US10495749B2/en
Priority to JP2016547959A priority patent/JP6165350B2/ja
Publication of WO2016148104A1 publication Critical patent/WO2016148104A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • the present invention relates to a radar moving image generating apparatus and a radar moving image generating method for generating a moving image from a synthetic aperture radar image (hereinafter referred to as “SAR image”).
  • SAR image a synthetic aperture radar image
  • Patent Document 1 discloses a radar moving image creating apparatus that creates a moving image from raw data that is raw data observed by a radar device in a spotlight mode.
  • a radar apparatus when RAW data observed in a spotlight mode is acquired by a radar apparatus, a plurality of partial RAW data are divided from the RAW data, and each partial RAW data is obtained.
  • a method of generating a plurality of partial SAR images and confirming a change in an observation region by performing image reproduction processing is set as a conventional technique.
  • the invention described in Patent Document 1 as a process of extracting a plurality of partial RAW data, it is possible not to divide the RAW data but to allow overlap between the partial RAW data, This is done by cutting out RAW data. Since the SAR image obtained by cutting out the RAW data and performing the image reproduction process changes smoothly, it is possible to confirm a more detailed change in the target.
  • the conventional radar moving image creation device is configured as described above, a moving image can be created if RAW data is given from a radar device on a moving platform.
  • a SAR image is given without RAW data being given from the radar device, it has not been possible to create a moving image from the SAR image. Therefore, for the purpose of reducing the amount of communication, not the RAW data with a large amount of data but the SAR image obtained by performing the image reproduction process on the RAW data acquired by the radar device on the platform is transmitted to the radar moving image creating device.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a radar moving image generating apparatus and a radar moving image generating method capable of generating a moving image from a SAR image.
  • a radar moving image creating apparatus includes a first conversion unit that converts a synthetic aperture radar image generated from observation data of a radar device into a Doppler frequency band component, and a Doppler frequency converted by the first conversion unit.
  • a band cut-out unit that cuts out a plurality of sub-band components from the band component, and a second conversion unit that converts each of the sub-band components cut out by the band cut-out unit into a time-domain image;
  • the reconstruction unit extracts, for each irradiation region of the beam by the radar device, a pixel row corresponding to the irradiation region from the plurality of time region images converted by the second conversion unit, and extracts each A plurality of pixel columns are collected to form a moving image.
  • the first conversion unit that converts the synthetic aperture radar image generated from the observation data of the radar device into the Doppler frequency band component, and the Doppler frequency band component converted by the first conversion unit.
  • a band cutout unit that cuts out a plurality of subband components
  • a second conversion unit that respectively converts the plurality of subband components cut out by the band cutout unit into an image in a time domain.
  • a pixel column corresponding to the irradiation region is extracted from a plurality of time region images converted by the second conversion unit, and the plurality of extracted pixel columns are respectively extracted. Since the moving image is constructed by collecting the images, the moving image can be created from the synthetic aperture radar image.
  • FIG. 1 is a block diagram showing a radar moving image creating apparatus according to Embodiment 1 of the present invention.
  • a radar apparatus 1 is a radar that observes in a strip map mode or a sliding spotlight mode. For example, after irradiating a target on a ground surface with a beam, the radar apparatus 1 receives an echo from the target, and receives a RAW from the echo. For example, IQ data is generated as data (observation data).
  • the radar moving image creation device 2 performs image reproduction processing on the RAW data generated by the radar device 1 to generate a synthetic aperture radar image (hereinafter referred to as “SAR image”), and creates a moving image from the SAR image.
  • SAR image synthetic aperture radar image
  • the synthetic aperture radar image generation unit 11 acquires RAW data generated by the radar apparatus 1 and performs image reproduction processing on the RAW data to generate a SAR image.
  • image reproduction processing for example, a back projection algorithm can be considered, but any algorithm may be used as long as a SAR image can be generated from RAW data.
  • the SAR image storage unit 12 includes a storage device such as a RAM or a hard disk, and stores the SAR image output from the synthetic aperture radar image generation unit 11.
  • a storage device such as a RAM or a hard disk
  • RAW data is transmitted from the radar device 1 and the SAR image generated from the RAW data by the synthetic aperture radar image generation unit 11 is stored in the SAR image storage unit 12.
  • the SAR image may be stored in the SAR image storage unit 12.
  • a SAR image that is a previously generated product may be stored in the SAR image storage unit 12.
  • the azimuth Fourier transform unit 13 performs a process of transforming the SAR image into a Doppler frequency band component by Fourier transforming the SAR image stored in the SAR image storage unit 12 in the azimuth direction.
  • the azimuth Fourier transform unit 13 constitutes a first transform unit.
  • the band cutout unit 14 performs a process of cutting out a plurality of subband components from the Doppler frequency band component converted by the azimuth Fourier transform unit 13.
  • the azimuth inverse Fourier transform unit 15 performs a process of transforming the components of the plurality of subbands into images in the time domain by performing inverse Fourier transform on the components of the plurality of subbands cut out by the band cutout unit 14 in the azimuth direction. To do.
  • the azimuth inverse Fourier transform unit 15 constitutes a second transform unit.
  • the image reconstruction unit 16 extracts, for each irradiation region of the beam by the radar apparatus 1, a pixel row corresponding to the irradiation region from the plurality of time region images converted by the azimuth inverse Fourier transform unit 15.
  • a process for constructing a moving image is performed by collecting a plurality of extracted pixel columns.
  • the moving image storage unit 17 is constituted by a storage device such as a RAM or a hard disk, for example, and stores the moving image formed by the image reconstruction unit 16 for each beam irradiation area.
  • the moving image reproduction unit 18 performs processing for sequentially reproducing a plurality of moving image images stored in the moving image storage unit 17.
  • a synthetic aperture radar image generation unit 11 a SAR image storage unit 12, an azimuth Fourier transform unit 13, a band cutout unit 14, an azimuth inverse Fourier transform unit 15, and an image reconstruction unit that are components of the radar moving image creation device 2.
  • each of the configuration unit 16, the moving image storage unit 17, and the moving image reproduction unit 18 is configured by dedicated hardware.
  • the hardware of the synthetic aperture radar image generation unit 11, the azimuth Fourier transform unit 13, the band cutout unit 14, the azimuth inverse Fourier transform unit 15, the image reconstruction unit 16, and the moving image reproduction unit 18, for example, a CPU is mounted. Possible semiconductor integrated circuits and one-chip microcomputers.
  • the radar moving image creating apparatus 2 in FIG. 1 is not limited to one in which each component is configured by dedicated hardware, and the entire radar moving image creating apparatus 2 is configured by a computer. May be.
  • FIG. 11 is a hardware configuration diagram in the case where the radar video creating apparatus 2 is configured by a computer.
  • the SAR image storage unit 12 and the moving image image storage unit 17 are configured on the memory 41 of the computer, and the synthetic aperture radar image generation unit 11, azimuth Fourier transform
  • the program describing the processing contents of the unit 13, the band cutout unit 14, the azimuth inverse Fourier transform unit 15, the image reconstruction unit 16, and the moving image reproduction unit 18 is stored in the memory 41.
  • the program stored in the program may be executed.
  • FIG. 2 is a flowchart showing a radar moving image creating method as processing contents of the radar moving image creating apparatus according to the first embodiment of the present invention.
  • the radar device As an observation mode of the radar device, there are a strip map mode, a spotlight mode, and a sliding spotlight mode.
  • the strip map mode the direction of the beam emitted from the radar device mounted on the platform such as an airplane is fixed, and the irradiation area of the beam moves with the movement of the platform.
  • the SAR image can be obtained.
  • the spotlight mode is characterized in that the observation is performed while changing the beam direction so that the center of the irradiation region of the beam always coincides with the center of the observation region.
  • the observation range of the obtained SAR image is narrow, but the synthetic aperture angle can be made larger than that in the strip map mode, so that a high-resolution SAR image can be obtained in the azimuth direction.
  • the sliding spotlight mode will be described. In the spotlight mode, the direction of the beam was always changed so that the center of the irradiation area of the beam and the center of the observation area coincided, but in the sliding spotlight mode, assuming that the beam penetrates the ground, The observation is performed while changing the beam direction so that the center of the irradiation region of the beam always captures a certain point in the ground.
  • the sliding spotlight mode is an observation mode having intermediate performance between the strip map mode and the spotlight mode.
  • the observation mode of the radar apparatus 1 is a strip map mode or a sliding spotlight mode.
  • FIG. 3 is an explanatory diagram showing components of the Doppler frequency band converted from the SAR image and the beam pattern of the radar apparatus 1.
  • the Doppler frequency band component 100 and the beam pattern 103 of the radar apparatus 1 are associated with each other.
  • the forward direction of the beam pattern 103 corresponds to the high frequency component of the Doppler frequency
  • the beam The backward direction of the pattern 103 corresponds to the low frequency component of the Doppler frequency.
  • FIG. 4 shows a state in which the Doppler frequency band component is divided into a plurality of sub-band components in order to explain the correspondence between the Doppler frequency band component and the beam irradiation direction. It is explanatory drawing shown in an example.
  • the subband components 101-1 to 101-3 obtained by dividing the Doppler frequency band component 100 are respectively converted into the time domain, subimages 102-1 to 102-3, which are time domain images, are obtained.
  • the sub-image 102-1 is obtained by being irradiated with the beam pattern 103-1, which is a divided pattern of the beam pattern 103.
  • the sub image 102-2 corresponds to an image obtained by irradiation with the beam pattern 103-2 which is a divided pattern of the beam pattern 103.
  • the sub image 102-3 corresponds to an image obtained by irradiation with the beam pattern 103-3 which is a divided pattern of the beam pattern 103.
  • the bandwidth of the Doppler frequency band component 100 is B +
  • the bandwidth of the subband components 101-1 to 101-3 is B and the bandwidth is narrow. Therefore, it should be noted that the azimuth resolution and the signal-to-noise power ratio of the sub-images 102-1 to 102-3 are deteriorated as compared with the SAR image from which the component 100 in the Doppler frequency band is converted.
  • FIG. 5 is an explanatory diagram showing a part of the processing content of the radar moving image creating apparatus 2 of FIG. 1
  • FIG. 6 is an explanatory diagram showing the processing content of the image reconstruction unit 16.
  • the radar apparatus 1 observes in the strip map mode or the sliding spotlight mode, and transmits RAW data as the observation data to the radar moving image creating apparatus 2.
  • the synthetic aperture radar image generation unit 11 of the radar moving image generating apparatus 2 When receiving the RAW data from the radar apparatus 1, the synthetic aperture radar image generation unit 11 of the radar moving image generating apparatus 2 performs an image reproduction process on the RAW data to generate the SAR image 21 (step ST1 in FIG. 2).
  • the SAR image 21 generated by the synthetic aperture radar image generation unit 11 is stored in the SAR image storage unit 12.
  • the SAR image 21 is converted from the RAW data. Is generated and the SAR image is transmitted from the radar device 1, the SAR image 21 may be stored in the SAR image storage unit 12.
  • the SAR image 21 that is a product that has been generated in the past may be stored in the SAR image storage unit 12.
  • the azimuth Fourier transform unit 13 transforms the SAR image 21 into a Doppler frequency band component 22 as shown in FIG. 5 by Fourier transforming the SAR image 21 stored in the SAR image storage unit 12 in the azimuth direction.
  • Doppler frequency band components 22 There are as many Doppler frequency band components 22 as there are range bins, but in FIG. 5, for convenience of explanation, only one range bin is drawn focusing on only one dimension in the azimuth direction.
  • a Fourier transform method for example, FFT (Fast Fourier Transform), DFT (Discrete Fourier Transform), or the like can be used.
  • the band cutout unit 14 performs a process of cutting out subband components 23-1 to 23-5 from the Doppler frequency band component 22.
  • step ST3 In the case where in the course of image reproduction does not extract the components 22 of the Doppler frequency band having a pulse repetition bandwidth from the bandwidth of the B + of the frequency in the Doppler frequency domain, pulse repetition from the band width of the frequency B + of It is assumed that after extracting the Doppler frequency band component 22 having the bandwidth, the subband components 23-1 to 23-5 are cut out.
  • FIG. 5 shows an example in which five sub-band components are cut out from the Doppler frequency band component 22.
  • the bandwidth B dif is derived from the Doppler frequency band component 22 having a bandwidth B +.
  • the components 23-1 to 23-5 in the sub-band having the bandwidth B are cut out while being shifted one by one.
  • an example in which components of five subbands are cut out is shown, but it goes without saying that components of four or less subbands or six or more subbands may be cut out.
  • B> B dif as shown in FIG. 5 and overlapping the component of the adjacent subband and a part of the band, an effect of smoothly confirming the change of the image is obtained as in Patent Document 1. It is done. However, it is not always necessary to set B> B dif as shown in FIG.
  • sub-band components 23-1 to 23-5 exist as many as the number of range bins. However, in FIG. 5, for convenience of explanation, only one dimension in the azimuth direction is present. Paying attention, only one range bin is drawn. In addition, since subband components 23-1 to 23-5 having the bandwidth B necessary to achieve the azimuth resolution necessary for moving images are extracted, the subimage obtained from the subband is improved in the azimuth direction. It is assumed that no sample has been taken.
  • the approximate value ⁇ T of the synthetic aperture time in the bandwidth B can be obtained from the approximate value ⁇ of the synthetic aperture angle obtained from the bandwidth B as shown in the following equations (1) and (2).
  • is the wavelength
  • v is the platform speed
  • R is the slant range distance.
  • the bandwidth B dif which is the shift amount between the sub-band components 23-1 to 23-5, as shown in the following equations (3) and (4), the sub-band corresponding to the bandwidth B dif The approximate value ⁇ T dif of the observation time difference between the components 23-1 to 23-5 can be calculated.
  • B> B dif the common band increases among the sub-band components 23-1 to 23-5, so that when the moving image is reproduced, the change in the observation region becomes difficult to understand.
  • the visibility of the moving target may deteriorate, for example, when the target moving in the azimuth direction is observed extending in the azimuth direction. Accordingly, it is necessary to set the bandwidth B of the sub-band components 23-1 to 23-5 in consideration of both the image quality of the moving image and the visibility of changes in the moving image.
  • the azimuth inverse Fourier transform unit 15 cuts the sub-band components 23-1 to 23-5 in the azimuth direction when the band cut-out unit 14 cuts the sub-band components 23-1 to 23-5 from the Doppler frequency band component 22.
  • the sub-band components 23-1 to 23-5 are converted into sub-images 24-1 to 24-5, which are time-domain images, respectively, as shown in FIG. 5 (step ST4).
  • the sub images 24-1 to 24-5 are images whose observation times are shifted by approximately ⁇ T dif , and the Doppler bandwidth of the sub images 24-1 to 24-5 is B.
  • an inverse Fourier transform method for example, an IFFT (Inverse Fast Fourier Transform), an IDFT (Inverse Discrete Fourier Transform), or the like can be used.
  • the number of sample points in the azimuth direction is reduced by B / B + times compared to the SAR image 21, and the pixel spacing in the azimuth direction is reduced.
  • B + / B times increase.
  • Pixel spacing corresponds to the length per pixel.
  • the azimuth inverse Fourier transform unit 15 obtains the sub-images 24-1 to 24-5.
  • the visibility of the sub-images 24-1 to 24-5 is improved and the number of pixels when moving to a moving image is reduced.
  • the sub-images 24-1 to 24-5 obtained by the azimuth inverse Fourier transform unit 15 are images obtained by separating the signal components for each beam irradiation direction of the radar apparatus 1.
  • the observation time is shifted by approximately ⁇ T dif .
  • the sub-image 24-k is thinned and the number of data points in the azimuth direction is multiplied by 1 / Z
  • the value obtained by multiplying ⁇ a in Equation (5) by Z is the pixel spacing in the azimuth direction.
  • X floor (v ⁇ ⁇ T dif / ⁇ a).
  • floor () is an operation symbol indicating that an integer part of v ⁇ ⁇ T dif / ⁇ a is extracted.
  • X (l ⁇ 1) + X + 1 to X (l ⁇ 1) + 2X [pix] pixel columns in the azimuth direction are extracted from the sub-image 24-2.
  • the moving image 25-1 is an image in which the radar apparatus 1 reproduces an image obtained by performing beam reproduction for a synthetic aperture time corresponding to ⁇ T seconds and performing image reproduction processing in a pseudo manner.
  • the image reconstructing unit 16 stores the moving image 25-1 to 25-L in the moving image storage unit 17.
  • the moving image reproduction unit 18 reads out the moving image 25-1 to 25-L from the moving image storage unit 17, and moves the moving image 25-1, 25-2, 25-3,..., 25-L.
  • the moving image images 25-1 to 25-L are reproduced in this order (step ST6).
  • step ST6 the situation in which the observation region is changing every moment with the movement of the platform on which the radar apparatus 1 is mounted is reproduced. For this reason, it is possible to confirm changes such as the movement of the moving target and the sea surface tide.
  • the moving image playback unit 18 generates the moving image 25-1 to 25-L as the observation time difference is approximately ⁇ T dif between the sub-band components 23-1 to 23-5.
  • the approximate value ⁇ T dif of the observation time difference is calculated from the above equations (3) and (4), and the moving image 25-1 to 25-L is calculated from the reciprocal of the approximate value ⁇ T dif of the observation time difference.
  • the frame rate for playback is determined. For example, the frame rate for reproducing the moving image 25-1 to 25-L is made to coincide with the reciprocal number of the approximate observation time difference ⁇ Tdif .
  • the actual speed of the moving target in the moving image can be confirmed.
  • B dif based on the frame rate
  • the SAR image 21 stored in the SAR image storage unit 12 is Fourier-transformed in the azimuth direction, so that the SAR image 21 is converted into the Doppler frequency band component 22.
  • An azimuth Fourier transform unit 13 that converts the subband components 23-1 to 23-5 from the Doppler frequency band component 22 transformed by the azimuth Fourier transform unit 13, and a band cutout unit 14 The sub-band components 23-1 to 23-5 cut out by the inverse Fourier transform in the azimuth direction so that the sub-band components 23-1 to 23-5 are sub-images 24-1 to 24-
  • An azimuth inverse Fourier transform unit 15 for converting the signals into 24-5, and the image reconstruction unit 16 For each irradiation region # 1 (# l # 1, # 2,..., #L), the irradiation region is selected from the sub-images 24-1 to 24-5 converted by the azimuth inverse Fourier transform unit 15.
  • the SAR The moving image images 25-1 to 25-L can be created from the image 21. Therefore, instead of transmitting RAW data with a large amount of data to the radar video creation device 2 for the purpose of reducing the communication amount, the SAR image 21 is generated from the RAW data acquired by the radar device 1 on the platform 3. Then, the SAR image 21 is transmitted to the radar moving image creating apparatus 2, and a request to create moving image 25-1 to 25-L from the SAR image 21 or a moving image from the SAR image 21 which has been generated in the past.
  • FIG. 7 is a configuration diagram showing the radar moving image creation device 2 when the platform 3 on which the radar device 1 is mounted transmits the SAR image 21. In the configuration of FIG. Is implemented on the platform 3.
  • the synthetic aperture radar image generation unit 11 is mounted in order to cope with the case where the RAW data is transmitted from the radar apparatus 1, but the RAW data is transmitted from the radar apparatus 1.
  • the synthetic aperture radar image generation unit 11 can be omitted when the processing is always limited to those for creating the moving image 25-1 to 25-L from the SAR image 21.
  • the SAR image 21 stored in the SAR image storage unit 12 corresponds to the one generated from the RAW data observed by the radar apparatus 1 in the strip map mode or the sliding spotlight mode, the strip map mode Alternatively, there is an effect that it is possible to generate a moving image when observed in the observation mode of the sliding spotlight mode. In addition, the SAR image 21 obtained by bistatic observation can also be handled.
  • the band cutout unit 14 uses the component 22 of the adjacent subband and the band from the component 22 of the Doppler frequency band converted by the azimuth Fourier transform unit 13. Since the sub-band components 23-1 to 23-5 are cut out so as to partially overlap, it is possible to generate moving image images 25-1 to 25-L that change smoothly.
  • Embodiment 2 FIG. In the first embodiment, the radar moving image creating apparatus 2 that can be applied to the observation mode in the strip map mode or the sliding spotlight mode has been described. However, in the second embodiment, the radar that can be applied to the observation mode in the spotlight mode. The moving image creating device 32 will be described.
  • the radar device 31 is a radar that observes in a spotlight mode. For example, after irradiating a target on the ground surface with a beam, the radar device 31 receives an echo from the target, and uses the echo as RAW data (observation data), for example, IQ. Generate data.
  • the radar moving image creating apparatus 32 is an apparatus that performs image reproduction processing on the RAW data generated by the radar apparatus 31 to generate a SAR image, creates a moving image from the SAR image, and reproduces the moving image. is there.
  • the synthetic aperture radar image generation unit 19 acquires RAW data generated by the radar device 31, and performs image reproduction processing on the RAW data to generate a SAR image.
  • image reproduction processing for example, a back projection algorithm can be considered, but any algorithm may be used as long as a SAR image can be generated from RAW data.
  • the synthetic aperture radar image generation unit 19 the SAR image storage unit 12, the azimuth Fourier transform unit 13, the band cutout unit 14, the azimuth inverse Fourier transform unit 15, and moving image components that are components of the radar movie creation device 32. It is assumed that each of the image storage unit 17 and the moving image image reproduction unit 18 is configured by dedicated hardware.
  • the radar moving image creating apparatus 32 in FIG. 8 is not limited to one in which each component is configured by dedicated hardware, and the entire radar moving image creating apparatus 32 is configured by a computer. May be.
  • FIG. 9 is a flowchart showing a radar moving image creating method as processing contents of the radar moving image creating apparatus according to the second embodiment of the present invention.
  • the radar device 31 performs observation in the spotlight mode, and transmits RAW data as the observation data to the radar moving image creation device 32.
  • the synthetic aperture radar image generating unit 19 of the radar moving image generating device 32 When receiving the RAW data from the radar device 31, the synthetic aperture radar image generating unit 19 of the radar moving image generating device 32 performs an image reproduction process on the RAW data to generate the SAR image 21 (step ST11 in FIG. 9).
  • the radar device 31 generates the SAR image 21 from the RAW data, thereby When the SAR image 21 is transmitted from the device 31, the SAR image 21 may be stored in the SAR image storage unit 12. Alternatively, the SAR image 21 that is a product that has been generated in the past may be stored in the SAR image storage unit 12.
  • the azimuth Fourier transform unit 13 performs Fourier transform on the SAR image 21 stored in the SAR image storage unit 12 in the azimuth direction, as shown in FIG. Is converted into a Doppler frequency band component 22 (step ST12).
  • Doppler frequency band components 22 There are as many Doppler frequency band components 22 as there are range bins, but in FIG. 5, for convenience of explanation, only one range bin is drawn focusing on only one dimension in the azimuth direction.
  • the band cutout unit 14 converts a plurality of subband components from the Doppler frequency band component 22 as in the first embodiment.
  • a process of cutting out 23-1 to 23-5 is performed (step ST13).
  • FIG. 5 shows an example in which five sub-band components are cut out from the Doppler frequency band component 22. Specifically, the bandwidth B dif is derived from the Doppler frequency band component 22 having a bandwidth B +. The components 23-1 to 23-5 in the sub-band having the bandwidth B are cut out while being shifted one by one.
  • sub-band components 23-1 to 23-5 exist as many as the number of range bins. However, in FIG. 5, for convenience of explanation, only one dimension in the azimuth direction is present. Paying attention, only one range bin is drawn.
  • the subband component 23 -1 to 23-5 are subjected to inverse Fourier transform in the azimuth direction, so that the sub-band components 23-1 to 23-5 are sub-images 24-1 to 24- Each is converted to 5 (step ST14).
  • the sub images 24-1 to 24-5 are images whose observation times are shifted by approximately ⁇ T dif , and the Doppler bandwidth of the sub images 24-1 to 24-5 is B.
  • the image reconstruction unit 16 does not need to construct the moving image 25-1 to 25-L from the sub image 24-1 to 24-5, and uses the sub image 24-1 to 24-5 as the moving image. Can do.
  • the moving image storage unit 17 stores sub images 24-1 to 24-5 as moving images.
  • the moving image reproduction unit 18 reads out the sub images 24-1 to 24-5 as moving image from the moving image storage unit 17, and sub images 24-1 ⁇ 24-2 ⁇ ... ⁇ 24-5.
  • the sub images 24-1 to 24-5 are reproduced in order (step ST15).
  • the moving image reproducing unit 18 generates approximately ⁇ T dif as the observation time difference between the sub-band components 23-1 to 23-5, so that the sub image 24-1 to When reproducing 24-5, the approximate value ⁇ Tdif of the observation time difference is calculated from the above equations (3) and (4), and the sub-images 24-1 to 24-24 are calculated from the reciprocal of the approximate value ⁇ Tdif of the observation time difference.
  • the frame rate for reproducing the sub-images 24-1 to 24-5 is made to coincide with the reciprocal of the approximate observation time difference ⁇ Tdif .
  • the actual speed of the moving target in the moving image can be confirmed.
  • a moving image can be confirmed at an arbitrary playback speed.
  • the SAR image 21 stored in the SAR image storage unit 12 is Fourier-transformed in the azimuth direction, so that the SAR image 21 is converted into the Doppler frequency band component 22.
  • An azimuth Fourier transform unit 13 that converts the subband components 23-1 to 23-5 from the Doppler frequency band component 22 transformed by the azimuth Fourier transform unit 13, and a band cutout unit 14
  • the sub-band components 23-1 to 23-5 cut out in the above are subjected to inverse Fourier transform in the azimuth direction, so that the sub-band components 23-1 to 23-5 are converted into moving image images as time-domain images.
  • FIG. 10 is a configuration diagram showing the radar moving image creation device 32 when the platform 3 on which the radar device 31 is mounted transmits the SAR image 21. In the configuration of FIG. Is implemented on the platform 3.
  • the synthetic aperture radar image generation unit 19 is mounted in order to cope with the case where the RAW data is transmitted from the radar device 31, but the RAW data is transmitted from the radar device 31.
  • the synthetic aperture radar image generation unit 19 can be omitted when the processing is always limited to those for creating the moving image 25-1 to 25-L from the SAR image 21.
  • the SAR image 21 obtained by bistatic observation can also be handled.
  • the band cutout unit 14 uses the component 22 of the adjacent subband and the band from the component 22 of the Doppler frequency band converted by the azimuth Fourier transform unit 13. Since the sub-band components 23-1 to 23-5 are cut out so as to partially overlap, the sub-images 24-1 to 24-5 can be generated as moving image images that change smoothly. The same effect as in Patent Document 1 is achieved. However, since the image reproduction processing by the synthetic aperture radar image generation unit 19 of the radar moving image creation device 32 does not include redundant image reproduction processing for the overlapping portion, the same effect as in Patent Document 1 can be obtained. In addition, an effect that the amount of calculation is reduced is also obtained.
  • a radar moving image creating apparatus and method converts a synthetic aperture radar image generated from observation data of a radar device into Doppler frequency band components, and converts the converted Doppler frequency band components into a plurality of subbands.
  • the components are cut out, and the extracted components of the plurality of sub-bands are converted into time domain images, respectively, and each irradiation region of the beam by the radar apparatus is converted into the irradiation region from among the converted plurality of time domain images.
  • Each corresponding pixel column is extracted, and a plurality of extracted pixel columns are collected to form a moving image. Therefore, a moving image can be created from a synthetic aperture radar image, and a radar moving image can be created. Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 SAR画像(21)をドップラー周波数帯域の成分(22)に変換するアジマスフーリエ変換部(13)と、ドップラー周波数帯域の成分(22)から、サブ帯域の成分(23-1~23-5)を切り出すバンド切り出し部(14)と、サブ帯域の成分(23-1~23-5)をサブ画像(24-1~24-5)にそれぞれ変換するアジマス逆フーリエ変換部(15)とを設け、画像再構成部(16)が、ビームの照射領域毎に、サブ画像(24-1~24-5)の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像(25-1~25-L)を構成する。

Description

レーダ動画作成装置および方法
 この発明は、合成開口レーダ画像(以下、「SAR画像」と称する)から動画用画像を作成するレーダ動画作成装置及びレーダ動画作成方法に関するものである。
 以下の特許文献1には、レーダ装置によりスポットライトモードで観測された生データであるRAWデータから、動画用画像を作成するレーダ動画作成装置が開示されている。
 特許文献1では、レーダ装置によりスポットライトモードで観測されたRAWデータを取得すると、そのRAWデータの中から、複数の部分的なRAWデータの分割を行い、各々の部分的なRAWデータに対して画像再生処理を実施することで、複数の部分的なSAR画像を生成し、観測領域の変化を確認できる方法を従来技術として設定している。
 これに対して、この特許文献1に記載されている発明では、複数の部分的なRAWデータの抽出処理として、RAWデータの分割によってではなく、部分的なRAWデータ間の重複を許容して、RAWデータを切り出すことによって行っている。このようなRAWデータの切り出しを行って画像再生処理を実施して得られたSAR画像は滑らかに変化するので、より細かな目標の変化を確認することができる。
US7498968,“Synthetic aperture design for increased SAR Image rate”
 従来のレーダ動画作成装置は以上のように構成されているので、移動するプラットフォーム上のレーダ装置からRAWデータが与えられれば、動画用画像を作成することができる。しかし、レーダ装置からRAWデータが与えられずに、SAR画像が与えられても、そのSAR画像からの動画用画像の作成には対応できていなかった。したがって、通信量の削減を目的として、データ量が多いRAWデータではなく、レーダ装置で取得したRAWデータに対してプラットフォーム上で画像再生処理を行って得られたSAR画像をレーダ動画作成装置に送信し、そのSAR画像から動画用画像を作成したいという要求や、過去の生成済みのプロダクトであるSAR画像から動画用画像を作成したいという要求などに対処することができない課題があった。
 この発明は上記のような課題を解決するためになされたもので、SAR画像から動画用画像を作成することができるレーダ動画作成装置及びレーダ動画作成方法を得ることを目的とする。
 この発明に係るレーダ動画作成装置は、レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換する第1の変換部と、第1の変換部により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出すバンド切り出し部と、バンド切り出し部により切り出された複数のサブ帯域の成分を時間領域の画像にそれぞれ変換する第2の変換部とを設け、画像再構成部が、レーダ装置によるビームの照射領域毎に、第2の変換部により変換された複数の時間領域の画像の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像を構成するようにしたものである。
 この発明によれば、レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換する第1の変換部と、第1の変換部により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出すバンド切り出し部と、バンド切り出し部により切り出された複数のサブ帯域の成分を時間領域の画像にそれぞれ変換する第2の変換部とを設け、画像再構成部が、レーダ装置によるビームの照射領域毎に、第2の変換部により変換された複数の時間領域の画像の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像を構成するようにしたので、合成開口レーダ画像から動画用画像を作成することができる効果がある。
この発明の実施の形態1によるレーダ動画作成装置を示す構成図である。 この発明の実施の形態1によるレーダ動画作成装置の処理内容であるレーダ動画作成方法を示すフローチャートである。 SAR画像から変換されたドップラー周波数帯域の成分及びレーダ装置のビームパターンを示す説明図である。 ドップラー周波数帯域の成分を複数のサブ帯域の成分に分割している様子を、ビームのスクイントのないストリップマップモードを例に示す説明図である。 図1のレーダ動画作成装置の処理内容の一部を示す説明図である。 この発明の実施の形態1によるレーダ動画作成装置の画像再構成部16の処理内容を示す説明図である。 この発明の実施の形態1による他のレーダ動画作成装置を示す構成図である。 この発明の実施の形態2によるレーダ動画作成装置を示す構成図である。 この発明の実施の形態2によるレーダ動画作成装置の処理内容であるレーダ動画作成方法を示すフローチャートである。 この発明の実施の形態2による他のレーダ動画作成装置を示す構成図である。 レーダ動画作成装置がコンピュータで構成される場合のハードウェア構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1によるレーダ動画作成装置を示す構成図である。
 図1において、レーダ装置1はストリップマップモード又はスライディングスポットライトモードで観測するレーダであり、例えば、ビームを地表面上のターゲットに照射したのち、そのターゲットからのエコーを受信し、そのエコーからRAWデータ(観測データ)として、例えばIQデータを生成する。
 レーダ動画作成装置2はレーダ装置1により生成されたRAWデータに対する画像再生処理を実施して合成開口レーダ画像(以下、「SAR画像」と称する)を生成し、そのSAR画像から動画用画像を作成して、その動画用画像を再生する装置である。
 合成開口レーダ画像生成部11はレーダ装置1により生成されたRAWデータを取得し、そのRAWデータに対する画像再生処理を実施してSAR画像を生成する処理を実施する。
 なお、画像再生処理として、例えば、バックプロジェクションアルゴリズムなどが考えられるが、RAWデータからSAR画像を生成することができれば、どのようなアルゴリズムを用いるものであってもよい。
 SAR画像格納部12は例えばRAMやハードディスクなどの記憶装置から構成されており、合成開口レーダ画像生成部11から出力されたSAR画像を格納する。
 ここでは、レーダ装置1からRAWデータが送信され、合成開口レーダ画像生成部11によりRAWデータから生成されたSAR画像がSAR画像格納部12に格納される例を示しているが、レーダ装置1において、RAWデータからSAR画像が生成され、レーダ装置1からSAR画像が送信される場合には、そのSAR画像がSAR画像格納部12に格納されるものであってもよい。あるいは、過去の生成済みのプロダクトであるSAR画像がSAR画像格納部12に格納されるものであってもよい。
 アジマスフーリエ変換部13はSAR画像格納部12に格納されているSAR画像をアジマス方向にフーリエ変換することで、そのSAR画像をドップラー周波数帯域の成分に変換する処理を実施する。なお、アジマスフーリエ変換部13は第1の変換部を構成している。
 バンド切り出し部14はアジマスフーリエ変換部13により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出す処理を実施する。
 アジマス逆フーリエ変換部15はバンド切り出し部14により切り出された複数のサブ帯域の成分をアジマス方向に逆フーリエ変換することで、複数のサブ帯域の成分を時間領域の画像にそれぞれ変換する処理を実施する。なお、アジマス逆フーリエ変換部15は第2の変換部を構成している。
 画像再構成部16はレーダ装置1によるビームの照射領域毎に、アジマス逆フーリエ変換部15により変換された複数の時間領域の画像の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像を構成する処理を実施する。
 動画用画像格納部17は例えばRAMやハードディスクなどの記憶装置から構成されており、画像再構成部16によりビームの照射領域毎に構成された動画用画像をそれぞれ格納する。
 動画用画像再生部18は動画用画像格納部17に格納されている複数の動画用画像を順番に再生する処理を実施する。
 図1の例では、レーダ動画作成装置2の構成要素である合成開口レーダ画像生成部11、SAR画像格納部12、アジマスフーリエ変換部13、バンド切り出し部14、アジマス逆フーリエ変換部15、画像再構成部16、動画用画像格納部17及び動画用画像再生部18のそれぞれが専用のハードウェアで構成されているものを想定している。合成開口レーダ画像生成部11、アジマスフーリエ変換部13、バンド切り出し部14、アジマス逆フーリエ変換部15、画像再構成部16及び動画用画像再生部18のハードウェアとして、例えば、CPUを実装している半導体集積回路や、ワンチップマイコンなどが考えられる。
 ただし、図1のレーダ動画作成装置2は、構成要素のそれぞれが専用のハードウェアで構成されているものに限るものではなく、レーダ動画作成装置2の全体がコンピュータで構成されているものであってもよい。
 図11はレーダ動画作成装置2がコンピュータで構成される場合のハードウェア構成図である。
 図1のレーダ動画作成装置2がコンピュータで構成される場合、SAR画像格納部12及び動画用画像格納部17をコンピュータのメモリ41上に構成するとともに、合成開口レーダ画像生成部11、アジマスフーリエ変換部13、バンド切り出し部14、アジマス逆フーリエ変換部15、画像再構成部16及び動画用画像再生部18の処理内容を記述しているプログラムをメモリ41に格納し、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行するようにすればよい。
 図2はこの発明の実施の形態1によるレーダ動画作成装置の処理内容であるレーダ動画作成方法を示すフローチャートである。
 レーダ装置の観測モードとして、ストリップマップモード、スポットライトモード、スライディングスポットライトモードがある。ストリップマップモードは、飛行機などのプラットフォームに搭載されているレーダ装置から照射されるビームの方向が固定されており、プラットフォームの移動に伴ってビームの照射領域が移動する特徴があり、広域な観測範囲のSAR画像が得られる特徴がある。
 これに対して、スポットライトモードは、ビームの照射領域の中心が常に観測領域の中心に一致するようにビームの方向の変えながら観測を行うことを特徴とする。常に同様の観測領域をビームで照射することになるので、得られるSAR画像の観測範囲は狭いものの、合成開口角をストリップマップモードより大きくできることから、アジマス方向に高分解能なSAR画像が得られる特徴がある。
 スライディングスポットライトモードについて説明する。スポットライトモードでは、常にビームの照射領域の中心と観測領域の中心とを一致させるようにビームの方向を変えていたが、スライディングスポットライトモードでは、ビームが地中を透過すると仮定した場合に、ビームの照射領域の中心が常に地中のある一点をとらえるようにビームの方向の変えながら観測を行うことを特徴とする。その結果、ストリップマップモードよりも合成開口角を大きくしてアジマス分解能を改善して、スポットライトモードよりもビーム照射範囲を広げて広域な画像を得ることが可能になる。つまり、スライディングスポットライトモードは、ストリップマップモードとスポットライトモードに対して中間的な性能を有する観測モードである。
 この実施の形態1では、レーダ装置1の観測モードがストリップマップモード又はスライディングスポットライトモードである例を説明する。
 次に動作について説明する。
 図1のレーダ動画作成装置の処理内容を具体的に説明する前に、処理のバックグラウンドについて説明する。
 図3はSAR画像から変換されたドップラー周波数帯域の成分及びレーダ装置1のビームパターンを示す説明図である。
 ドップラー周波数帯域の成分100と、レーダ装置1のビームパターン103とは対応付けが存在しており、図3に示すように、ビームパターン103の前方向がドップラー周波数の高周波数成分に対応し、ビームパターン103の後ろ方向がドップラー周波数の低周波数成分に対応している。
 図4はドップラー周波数帯域の成分とビームの照射方向の対応を説明するために、ドップラー周波数帯域の成分を複数のサブ帯域の成分に分割している様子を、ビームのスクイントのないストリップマップモードを例に示す説明図である。
 ドップラー周波数帯域の成分100が分割されたサブ帯域の成分101-1~101-3を時間領域にそれぞれ変換すると、時間領域の画像であるサブ画像102-1~102-3が得られる。
 このとき、ドップラー周波数帯域の成分100とビームパターン103の対応付けが存在しているため、サブ画像102-1は、ビームパターン103の分割パターンであるビームパターン103-1で照射されて得られた画像に対応し、サブ画像102-2は、ビームパターン103の分割パターンであるビームパターン103-2で照射されて得られた画像に対応する。
 また、サブ画像102-3は、ビームパターン103の分割パターンであるビームパターン103-3で照射されて得られた画像に対応する。
 ただし、ドップラー周波数帯域の成分100では帯域幅がBであったが、サブ帯域の成分101-1~101-3では帯域幅Bになり、帯域幅が狭くなっている。このため、サブ画像102-1~102-3は、ドップラー周波数帯域の成分100の変換元のSAR画像より、アジマス分解能と信号対雑音電力比が劣化している点に注意が必要である。
 次に図1のレーダ動画作成装置2の処理内容を具体的に説明する。
 図5は図1のレーダ動画作成装置2の処理内容の一部を示す説明図であり、図6は画像再構成部16の処理内容を示す説明図である。
 レーダ装置1は、ストリップマップモード又はスライディングスポットライトモードで観測し、その観測データであるRAWデータをレーダ動画作成装置2に送信する。
 レーダ動画作成装置2の合成開口レーダ画像生成部11は、レーダ装置1からRAWデータを受信すると、そのRAWデータに対する画像再生処理を実施してSAR画像21を生成する(図2のステップST1)。
 ここでは、合成開口レーダ画像生成部11により生成されたSAR画像21がSAR画像格納部12に格納される例を示しているが、上述したように、レーダ装置1において、RAWデータからSAR画像21が生成され、レーダ装置1からSAR画像が送信される場合には、そのSAR画像21がSAR画像格納部12に格納されるものであってもよい。あるいは、過去の生成済みのプロダクトであるSAR画像21がSAR画像格納部12に格納されるものであってもよい。
 アジマスフーリエ変換部13は、SAR画像格納部12に格納されているSAR画像21をアジマス方向にフーリエ変換することで、図5に示すように、そのSAR画像21をドップラー周波数帯域の成分22に変換する(ステップST2)。
 ドップラー周波数帯域の成分22は、レンジビンの数分だけ存在しているが、図5では、説明の便宜上、アジマス方向の1次元だけに着目して、1レンジビン分のみを描画している。
 フーリエ変換の方法として、例えば、FFT(Fast Fourier Transform)や、DFT(Discrete Fourier Transform)などを用いることができる。
 バンド切り出し部14は、アジマスフーリエ変換部13がSAR画像21をドップラー周波数帯域の成分22に変換すると、そのドップラー周波数帯域の成分22から、サブ帯域の成分23-1~23-5を切り出す処理を実施する(ステップST3)。なお、画像再生の過程でドップラー周波数領域におけるパルス繰り返し周波数の帯域幅からBの帯域幅を有するドップラー周波数帯域の成分22を抽出していない場合には、パルス繰り返し周波数の帯域幅からBの帯域幅を有するドップラー周波数帯域の成分22を抽出してからサブ帯域の成分23-1~23-5を切り出す処理を実施するものとする。
 図5では、ドップラー周波数帯域の成分22から、5個のサブ帯域の成分を切り出す例を示しており、具体的には、帯域幅がBのドップラー周波数帯域の成分22から、帯域幅Bdifずつずらしながら、帯域幅がBのサブ帯域の成分23-1~23-5を切り出すようにしている。ここでは、5個のサブ帯域の成分を切り出す例を示しているが、4個以下又は6個以上のサブ帯域の成分を切り出すようにしてもよいことは言うまでもない。
 また、図5のようにB>Bdifと設定して、隣のサブ帯域の成分と帯域の一部を重複させることにより、特許文献1と同様に画像の変化を滑らかに確認できる効果が得られる。しかし、必ずしも図5のようにB>Bdifと設定する必要はない。
 サブ帯域の成分23-1~23-5についても、ドップラー周波数帯域の成分22と同様に、レンジビンの数分だけ存在しているが、図5では、説明の便宜上、アジマス方向の1次元だけに着目して、1レンジビン分のみを描画している。
 また、動画に必要なアジマス分解能を達成するために必要な帯域幅Bを有するサブ帯域の成分23-1~23-5を抽出しているので、サブ帯域から得られるサブ画像はアジマス方向のアップサンプルは行われていないものとする。
 ここで、帯域幅Bにおける合成開口時間の概算値ΔTは、下記の式(1)(2)に示すように、帯域幅Bから得られる合成開口角の概算値θから求めることができる。

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 ただし、λは波長、vはプラットフォームの速度、Rはスラントレンジ距離である。
 また、サブ帯域の成分23-1~23-5の間のずれ量である帯域幅Bdifから、下記の式(3)(4)に示すように、その帯域幅Bdifに対応するサブ帯域の成分23-1~23-5間の観測時刻差の概算値ΔTdifを計算することができる。

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 なお、バンド切り出し部14により切り出されるサブ帯域の成分23-1~23-5の帯域幅Bが広いほど、動画像の画質に係るアジマス分解能と信号対雑音電力比を改善することができる。しかし、B>Bdifの場合、サブ帯域の成分23-1~23-5の間で、共通する帯域が増大するため、動画を再生したときに、観測領域内の変化が分かり難くなるほか、アジマス方向へ移動している目標がアジマス方向に延びて観測されるなど、移動目標の視認性が劣化することがある。
 したがって、動画像の画質と、動画像内の変化の視認性の両者を勘案して、サブ帯域の成分23-1~23-5の帯域幅Bを設定する必要がある。
 アジマス逆フーリエ変換部15は、バンド切り出し部14がドップラー周波数帯域の成分22から、サブ帯域の成分23-1~23-5を切り出すと、サブ帯域の成分23-1~23-5をアジマス方向に逆フーリエ変換することで、図5に示すように、サブ帯域の成分23-1~23-5を時間領域の画像であるサブ画像24-1~24-5にそれぞれ変換する(ステップST4)。
 サブ画像24-1~24-5は、観測時刻がおおよそΔTdifずつずれた画像になっており、サブ画像24-1~24-5のドップラー帯域幅はBである。
 逆フーリエ変換の方法として、例えば、IFFT(Inverser Fast Fourier Transform)や、IDFT(Inverse Discrete Fourier Transform)などを用いることができる。
 サブ画像24-k(k=1,2,・・・,5)は、SAR画像21と比較して、アジマス方向のサンプル点数がB/B倍に減少し、アジマス方向のピクセルスペーシングがB/B倍に増大している。ピクセルスペーシングは1画素当りの長さに相当する。
 このため、アジマス方向のサンプル点数と、アジマス方向のピクセルスペーシングとを乗算した値が、SAR画像21とサブ画像24-kは同一になり、SAR画像21とサブ画像24-kの観測領域が一致する。したがって、サブ画像24-1~24-5の観測領域も一致する。
 しかし、画像再生後に、アジマス方向において合成開口長の半分の長さに相当する両端の領域を削除せず、SAR画像21の両端にアジマス分解能が劣化した領域が残存している場合には、サブ画像24-k内にビームが照射されていない領域が現れるようになる。したがって、SAR画像21の両端にアジマス分解能が劣化した領域が残存している場合、ビームの照射されていない領域であるために目標を確認できないという意味で、SAR画像21とサブ画像24-kの観測される領域が一致していない点には注意が必要である。
 ここでは、アジマス逆フーリエ変換部15がサブ画像24-1~24-5を得ているが、サブ画像24-1~24-5の視認性の改善と、動画化する際の画素数の削減を目的として、サブ画像24-k毎に、当該サブ画像24-kを構成している画素の電力値を移動平均した後に、振幅の次元に戻してから間引き処理を行うという高画質化を実現する処理や、データ点数を削減する処理を追加するようにしてもよい。
 アジマス逆フーリエ変換部15により得られたサブ画像24-1~24-5は、図4に示すように、レーダ装置1のビームの照射方向毎に、信号成分を分別して得られた画像であり、おおよそΔTdifずつ観測時間がずれている。
 サブ画像24-k(k=1,2,・・・,5)のアジマス方向のピクセルスペーシングΔaは、間引き処理を行っていない場合、下記の式(5)のように表される。

Figure JPOXMLDOC01-appb-I000005
 サブ画像24-kに対する間引き処理を実施して、アジマス方向のデータ点数を1/Z倍にした場合には、式(5)のΔaにZを乗算した値が、アジマス方向のピクセルスペーシングになる。
 画像再構成部16は、図6に示すように、レーダ装置1によるビームの照射領域#l(#l=#1,#2,・・・,#L)毎に、アジマス逆フーリエ変換部15により変換されたサブ画像24-1~24-5の中から、当該照射領域#lに対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像25-l(l=1,2,・・・,L)を構成する(ステップST5)。
 以下、画像再構成部16による動画用画像25-l(l=1,2,・・・,L)の構成処理を具体的に説明する。
 例えば、l=1の場合、サブ画像24-1からアジマス方向のX(l-1)+1~X(l-1)+X[pix]の画素列を抽出する。
 ここで、X=floor(v×ΔTdif/Δa)である。
 floor()は、v×ΔTdif/Δaの整数部分を抽出することを示す演算記号である。
 次に、サブ画像24-2からアジマス方向のX(l-1)+X+1~X(l-1)+2X[pix]の画素列を抽出する。
 同様に、サブ画像24-k(k=3,4,5)からアジマス方向のX(l-1)+(k-1)X+1~X(l-1)+kX[pix]の画素列を抽出する。
 画像再構成部16は、サブ画像24-1~24-5の中から、照射領域#l=1の画素列をそれぞれ抽出すると、図6に示すように、それらの画素列を集めることで動画用画像25-1を構成する。動画用画像25-1は、レーダ装置1がΔT秒に相当する合成開口時間のビーム照射を実施して、画像再生処理を行うことで得られる画像を疑似的に再現している画像である。
 画像再構成部16は、l=2,・・・,Lの場合も、l=1の場合と同様に、サブ画像24-1~24-5の中から、照射領域#lの画素列をそれぞれ抽出し、それらの画素列を集めることで動画用画像25-l(l=2,3,・・・,L)を構成する。
 画像再構成部16は、動画用画像25-1~25-Lを構成すると、その動画用画像25-1~25-Lを動画用画像格納部17に格納する。
 動画用画像再生部18は、動画用画像格納部17から動画用画像25-1~25-Lを読み出し、動画用画像25-1→25-2→25-3→・・・→25-Lの順番で、動画用画像25-1~25-Lを再生する(ステップST6)。
 これにより、レーダ装置1を搭載しているプラットフォームの移動に伴って、刻々と観測領域が移り変わっている状況が再現される。このため、移動目標の動きや海面の潮流といった変化を確認することができる。
 なお、動画用画像再生部18は、サブ帯域の成分23-1~23-5の間に、観測時刻差として、おおよそΔTdifが生じているので、動画用画像25-1~25-Lを再生する際、上記の式(3)(4)より、観測時刻差の概算値ΔTdifを算出し、その観測時刻差の概算値ΔTdifの逆数から動画用画像25-1~25-Lを再生する際のフレームレートを決定するようにする。例えば、動画用画像25-1~25-Lを再生する際のフレームレートを観測時刻差の概算値ΔTdifの逆数に一致させるようにする。
 これにより、動画像における移動目標の実速度を確認することができるようになる。このように、フレームレートを基準にBdifを設定することで、任意の再生速度で動画を確認できる。
 以上で明らかなように、この実施の形態1によれば、SAR画像格納部12に格納されているSAR画像21をアジマス方向にフーリエ変換することで、そのSAR画像21をドップラー周波数帯域の成分22に変換するアジマスフーリエ変換部13と、アジマスフーリエ変換部13により変換されたドップラー周波数帯域の成分22から、サブ帯域の成分23-1~23-5を切り出すバンド切り出し部14と、バンド切り出し部14により切り出されたサブ帯域の成分23-1~23-5をアジマス方向に逆フーリエ変換することで、サブ帯域の成分23-1~23-5を時間領域の画像であるサブ画像24-1~24-5にそれぞれ変換するアジマス逆フーリエ変換部15とを設け、画像再構成部16が、レーダ装置1によるビームの照射領域#l(#l=#1,#2,・・・,#L)毎に、アジマス逆フーリエ変換部15により変換されたサブ画像24-1~24-5の中から、当該照射領域#lに対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像25-l(l=1,2,・・・,L)を構成するようにしたので、SAR画像21から動画用画像25-1~25-Lを作成することができる効果を奏する。
 したがって、通信量の削減を目的として、データ量が多いRAWデータをレーダ動画作成装置2に送信するのではなく、プラットフォーム3上でレーダ装置1により取得されたRAWデータからSAR画像21を生成して、そのSAR画像21をレーダ動画作成装置2に送信し、そのSAR画像21から動画用画像25-1~25-Lを作成したいという要求や、過去の生成済みのプロダクトであるSAR画像21から動画用画像25-1~25-Lを作成したいという要求などに対処することができるようになる。
 ここで、図7はレーダ装置1を実装しているプラットフォーム3がSAR画像21を送信する場合のレーダ動画作成装置2を示す構成図であり、図7の構成では、合成開口レーダ画像生成部11がプラットフォーム3に実装されている。
 図1の例では、レーダ装置1からRAWデータが送信された場合でも対処できるようにするために、合成開口レーダ画像生成部11を実装しているが、レーダ装置1からRAWデータが送信されることはなく、常に、SAR画像21から動画用画像25-1~25-Lを作成するものに処理を限定する場合には、合成開口レーダ画像生成部11を省略することができる。
 また、SAR画像格納部12に格納されているSAR画像21が、レーダ装置1によりストリップマップモード又はスライディングスポットライトモードで観測されたRAWデータから生成されたものに対応しているため、ストリップマップモード又はスライディングスポットライトモードの観測モードで観測された場合の動画用画像の生成が可能になる効果を奏する。また、バイスタティック観測で得られたSAR画像21にも対応することができる。
 また、この実施の形態1において、B>Bdifと設定すれば、バンド切り出し部14が、アジマスフーリエ変換部13により変換されたドップラー周波数帯域の成分22から、隣のサブ帯域の成分と帯域の一部が重複するように、サブ帯域の成分23-1~23-5を切り出す構成となるので、滑らかに変化する動画用画像25-1~25-Lを生成することができる効果を奏する。
実施の形態2.
 上記実施の形態1では、ストリップマップモード又はスライディングスポットライトモードの観測モードに適用可能なレーダ動画作成装置2について示したが、この実施の形態2では、スポットライトモードの観測モードに適用可能なレーダ動画作成装置32について説明する。
 図8はこの発明の実施の形態2によるレーダ動画作成装置を示す構成図であり、図8において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 レーダ装置31はスポットライトモードで観測するレーダであり、例えば、ビームを地表面上のターゲットに照射したのち、そのターゲットからのエコーを受信し、そのエコーからRAWデータ(観測データ)として、例えばIQデータを生成する。
 レーダ動画作成装置32はレーダ装置31により生成されたRAWデータに対する画像再生処理を実施してSAR画像を生成し、そのSAR画像から動画用画像を作成して、その動画用画像を再生する装置である。
 スポットライトモードの場合、レーダ装置31の地表面に対するビームの照射領域が固定されているため、図1の画像再構成部16が不要になっている。
 合成開口レーダ画像生成部19はレーダ装置31により生成されたRAWデータを取得し、そのRAWデータに対する画像再生処理を実施してSAR画像を生成する処理を実施する。
 なお、画像再生処理として、例えば、バックプロジェクションアルゴリズムなどが考えられるが、RAWデータからSAR画像を生成することができれば、どのようなアルゴリズムを用いるものであってもよい。
 図8の例では、レーダ動画作成装置32の構成要素である合成開口レーダ画像生成部19、SAR画像格納部12、アジマスフーリエ変換部13、バンド切り出し部14、アジマス逆フーリエ変換部15、動画用画像格納部17及び動画用画像再生部18のそれぞれが専用のハードウェアで構成されているものを想定している。合成開口レーダ画像生成部19、アジマスフーリエ変換部13、バンド切り出し部14、アジマス逆フーリエ変換部15及び動画用画像再生部18のハードウェアとして、例えば、CPUを実装している半導体集積回路や、ワンチップマイコンなどが考えられる。
 ただし、図8のレーダ動画作成装置32は、構成要素のそれぞれが専用のハードウェアで構成されているものに限るものではなく、レーダ動画作成装置32の全体がコンピュータで構成されているものであってもよい。
 図8のレーダ動画作成装置32がコンピュータで構成される場合、SAR画像格納部12及び動画用画像格納部17を図11に示すコンピュータのメモリ41上に構成するとともに、合成開口レーダ画像生成部19、アジマスフーリエ変換部13、バンド切り出し部14、アジマス逆フーリエ変換部15及び動画用画像再生部18の処理内容を記述しているプログラムをメモリ41に格納し、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行するようにすればよい。
 図9はこの発明の実施の形態2によるレーダ動画作成装置の処理内容であるレーダ動画作成方法を示すフローチャートである。
 次に動作について説明する。
 レーダ装置31は、スポットライトモードで観測し、その観測データであるRAWデータをレーダ動画作成装置32に送信する。
 レーダ動画作成装置32の合成開口レーダ画像生成部19は、レーダ装置31からRAWデータを受信すると、そのRAWデータに対する画像再生処理を実施してSAR画像21を生成する(図9のステップST11)。
 ここでは、合成開口レーダ画像生成部19により生成されたSAR画像21がSAR画像格納部12に格納される例を示しているが、レーダ装置31において、RAWデータからSAR画像21が生成され、レーダ装置31からSAR画像21が送信される場合には、そのSAR画像21がSAR画像格納部12に格納されるものであってもよい。あるいは、過去の生成済みのプロダクトであるSAR画像21がSAR画像格納部12に格納されるものであってもよい。
 アジマスフーリエ変換部13は、上記実施の形態1と同様に、SAR画像格納部12に格納されているSAR画像21をアジマス方向にフーリエ変換することで、図5に示すように、そのSAR画像21をドップラー周波数帯域の成分22に変換する(ステップST12)。
 ドップラー周波数帯域の成分22は、レンジビンの数分だけ存在しているが、図5では、説明の便宜上、アジマス方向の1次元だけに着目して、1レンジビン分のみを描画している。
 バンド切り出し部14は、アジマスフーリエ変換部13がSAR画像21をドップラー周波数帯域の成分22に変換すると、上記実施の形態1と同様に、そのドップラー周波数帯域の成分22から、複数のサブ帯域の成分23-1~23-5を切り出す処理を実施する(ステップST13)。
 図5では、ドップラー周波数帯域の成分22から、5個のサブ帯域の成分を切り出す例を示しており、具体的には、帯域幅がBのドップラー周波数帯域の成分22から、帯域幅Bdifずつずらしながら、帯域幅がBのサブ帯域の成分23-1~23-5を切り出すようにしている。
 サブ帯域の成分23-1~23-5についても、ドップラー周波数帯域の成分22と同様に、レンジビンの数分だけ存在しているが、図5では、説明の便宜上、アジマス方向の1次元だけに着目して、1レンジビン分のみを描画している。
 アジマス逆フーリエ変換部15は、バンド切り出し部14がドップラー周波数帯域の成分22から、サブ帯域の成分23-1~23-5を切り出すと、上記実施の形態1と同様に、サブ帯域の成分23-1~23-5をアジマス方向に逆フーリエ変換することで、図5に示すように、サブ帯域の成分23-1~23-5を時間領域の画像であるサブ画像24-1~24-5にそれぞれ変換する(ステップST14)。
 サブ画像24-1~24-5は、観測時刻がおおよそΔTdifずつずれた画像になっており、サブ画像24-1~24-5のドップラー帯域幅はBである。
 レーダ装置31の観測モードがスポットライトモードの場合、レーダ装置31を搭載しているプラットフォームが移動しても、各観測時刻におけるビームの照射領域が変わらないため、上記実施の形態1のように、画像再構成部16が、サブ画像24-1~24-5から動画用画像25-1~25-Lを構成する必要がなく、サブ画像24-1~24-5を動画用画像として用いることができる。
 動画用画像格納部17には、動画用画像として、サブ画像24-1~24-5が格納される。
 動画用画像再生部18は、動画用画像格納部17から動画用画像として、サブ画像24-1~24-5を読み出し、サブ画像24-1→24-2→・・・→24-5の順番で、サブ画像24-1~24-5を再生する(ステップST15)。
 なお、動画用画像再生部18は、サブ帯域の成分23-1~23-5の間に、観測時刻差として、おおよそΔTdifが生じているので、動画用画像として、サブ画像24-1~24-5を再生する際、上記の式(3)(4)より、観測時刻差の概算値ΔTdifを算出し、その観測時刻差の概算値ΔTdifの逆数からサブ画像24-1~24-5を再生する際のフレームレートを決定するようにする。例えば、サブ画像24-1~24-5を再生する際のフレームレートを観測時刻差の概算値ΔTdifの逆数に一致させるようにする。
 これにより、動画像における移動目標の実速度を確認することができるようになる。このように、フレームレートを基準にBdifを設定することで、任意の再生速度で動画を確認できる。
 以上で明らかなように、この実施の形態2によれば、SAR画像格納部12に格納されているSAR画像21をアジマス方向にフーリエ変換することで、そのSAR画像21をドップラー周波数帯域の成分22に変換するアジマスフーリエ変換部13と、アジマスフーリエ変換部13により変換されたドップラー周波数帯域の成分22から、サブ帯域の成分23-1~23-5を切り出すバンド切り出し部14と、バンド切り出し部14により切り出されたサブ帯域の成分23-1~23-5をアジマス方向に逆フーリエ変換することで、サブ帯域の成分23-1~23-5を、動画像用画像として、時間領域の画像であるサブ画像24-1~24-5にそれぞれ変換するアジマス逆フーリエ変換部15とを設けるように構成したので、SAR画像21から動画用画像としてサブ画像24-1~24-5を作成することができる効果を奏する。
 したがって、通信量の削減を目的として、データ量が多いRAWデータをレーダ動画作成装置32に送信するのではなく、プラットフォーム3上でレーダ装置31により取得されたRAWデータからSAR画像21を生成して、そのSAR画像21をレーダ動画作成装置32に送信し、そのSAR画像21から動画用画像25-1~25-Lを作成したいという要求や、過去の生成済みのプロダクトであるSAR画像21から動画用画像25-1~25-Lを作成したいという要求などに対処することができるようになる。
 ここで、図10はレーダ装置31を実装しているプラットフォーム3がSAR画像21を送信する場合のレーダ動画作成装置32を示す構成図であり、図10の構成では、合成開口レーダ画像生成部19がプラットフォーム3に実装されている。
 図8の例では、レーダ装置31からRAWデータが送信された場合でも対処できるようにするために、合成開口レーダ画像生成部19を実装しているが、レーダ装置31からRAWデータが送信されることはなく、常に、SAR画像21から動画用画像25-1~25-Lを作成するものに処理を限定する場合には、合成開口レーダ画像生成部19を省略することができる。
 また、この実施の形態2では、バイスタティック観測で得られたSAR画像21にも対応することができる。
 また、この実施の形態2において、B>Bdifと設定すれば、バンド切り出し部14が、アジマスフーリエ変換部13により変換されたドップラー周波数帯域の成分22から、隣のサブ帯域の成分と帯域の一部が重複するように、サブ帯域の成分23-1~23-5を切り出す構成となるので、滑らかに変化する動画用画像としてサブ画像24-1~24-5を生成することができる、特許文献1と同様の効果を奏する。しかし、レーダ動画作成装置32の合成開口レーダ画像生成部19による画像再生処理は、重複部分に対する冗長的な画像再生処理を含んでいないため、特許文献1と同等の効果が得られるにもかかわらず、演算量が低減されている効果も得られている。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るレーダ動画作成装置および方法は、レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換し、変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出し、切り出された複数のサブ帯域の成分を時間領域の画像にそれぞれ変換し、レーダ装置によるビームの照射領域毎に、変換された複数の時間領域の画像の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像を構成しているので、合成開口レーダ画像から動画用画像を作成することができ、レーダ動画を作成するのに適している。
 1 レーダ装置、2 レーダ動画作成装置、3 プラットフォーム、11 合成開口レーダ画像生成部、12 SAR画像格納部、13 アジマスフーリエ変換部(第1の変換部)、14 バンド切り出し部、15 アジマス逆フーリエ変換部(第2の変換部)、16 画像再構成部、17 動画用画像格納部、18 動画用画像再生部、19 合成開口レーダ画像生成部、21 SAR画像、22 ドップラー周波数帯域の成分、23-1~23-5 サブ帯域の成分、24-1~24-5 サブ画像、25-1~25-L 動画用画像、31 レーダ装置、32 レーダ動画作成装置、41 メモリ、42 プロセッサ、100 ドップラー周波数帯域の成分、101-1~101-3 サブ帯域の成分、102-1~102-3 サブ画像、103 ビームパターン、103-1~103-3 分割されたビームパターン。

Claims (12)

  1.  レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換する第1の変換部と、
     前記第1の変換部により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出すバンド切り出し部と、
     前記バンド切り出し部により切り出された複数のサブ帯域の成分を時間領域の画像にそれぞれ変換する第2の変換部と、
     前記レーダ装置によるビームの照射領域毎に、前記第2の変換部により変換された複数の時間領域の画像の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像を構成する画像再構成部と
     を備えたレーダ動画作成装置。
  2.  前記レーダ装置によりストリップマップモード又はスライディングスポットライトモードで観測されたデータに対する合成開口処理を実施して合成開口レーダ画像を生成し、前記合成開口レーダ画像を前記第1の変換部に出力する合成開口レーダ画像生成部を備えたことを特徴とする請求項1記載のレーダ動画作成装置。
  3.  前記画像再構成部によりビームの照射領域毎に構成された動画用画像を順番に再生する動画用画像再生部を備えたことを特徴とする請求項1記載のレーダ動画作成装置。
  4.  レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換する第1の変換部と、
     前記第1の変換部により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出すバンド切り出し部と、
     前記バンド切り出し部により切り出された複数のサブ帯域の成分を、動画用画像として時間領域の画像にそれぞれ変換する第2の変換部と
     を備えたレーダ動画作成装置。
  5.  前記レーダ装置によりスポットライトモードで観測されたデータに対する合成開口処理を実施して合成開口レーダ画像を生成し、前記合成開口レーダ画像を前記第1の変換部に出力する合成開口レーダ画像生成部を備えたことを特徴とする請求項4記載のレーダ動画作成装置。
  6.  前記第2の変換部により変換された複数の時間領域の画像である動画用画像を順番に再生する動画用画像再生部を備えたことを特徴とする請求項4記載のレーダ動画作成装置。
  7.  前記動画用画像再生部は、前記サブ帯域の成分の帯域幅から、隣り合っているサブ帯域の成分の観測時刻差を算出し、前記観測時刻差の逆数から前記動画用画像を再生する際のフレームレートを決定することを特徴とする請求項3記載のレーダ動画作成装置。
  8.  前記動画用画像再生部は、前記サブ帯域の成分の帯域幅から、隣り合っているサブ帯域の成分の観測時刻差を算出し、前記観測時刻差の逆数から前記動画用画像を再生する際のフレームレートを決定することを特徴とする請求項6記載のレーダ動画作成装置。
  9.  前記バンド切り出し部は、前記第1の変換部により変換されたドップラー周波数帯域の成分から、隣のサブ帯域の成分と帯域の一部が重複するように、複数のサブ帯域の成分を切り出すことを特徴とする請求項1記載のレーダ動画作成装置。
  10.  前記バンド切り出し部は、前記第1の変換部により変換されたドップラー周波数帯域の成分から、隣のサブ帯域の成分と帯域の一部が重複するように、複数のサブ帯域の成分を切り出すことを特徴とする請求項4記載のレーダ動画作成装置。
  11.  第1の変換部が、レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換し、
     バンド切り出し部が、前記第1の変換部により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出し、
     第2の変換部が、前記バンド切り出し部により切り出された複数のサブ帯域の成分を時間領域の画像にそれぞれ変換し、
     画像再構成部が、前記レーダ装置によるビームの照射領域毎に、前記第2の変換部により変換された複数の時間領域の画像の中から、当該照射領域に対応する画素列をそれぞれ抽出し、それぞれ抽出した複数の画素列を集めて動画用画像を構成する
     レーダ動画作成方法。
  12.  第1の変換部が、レーダ装置の観測データから生成された合成開口レーダ画像をドップラー周波数帯域の成分に変換し、
     バンド切り出し部が、前記第1の変換部により変換されたドップラー周波数帯域の成分から、複数のサブ帯域の成分を切り出し、
     第2の変換部が、前記バンド切り出し部により切り出された複数のサブ帯域の成分を、動画用画像として時間領域の画像にそれぞれ変換する
     レーダ動画作成方法。
PCT/JP2016/057960 2015-03-16 2016-03-14 レーダ動画作成装置および方法 WO2016148104A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16764934.2A EP3273265A4 (en) 2015-03-16 2016-03-14 Radar moving image creation device and method
US15/554,868 US10495749B2 (en) 2015-03-16 2016-03-14 Radar video creation apparatus and method
JP2016547959A JP6165350B2 (ja) 2015-03-16 2016-03-14 レーダ動画作成装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051966 2015-03-16
JP2015051966 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016148104A1 true WO2016148104A1 (ja) 2016-09-22

Family

ID=56920196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057960 WO2016148104A1 (ja) 2015-03-16 2016-03-14 レーダ動画作成装置および方法

Country Status (4)

Country Link
US (1) US10495749B2 (ja)
EP (1) EP3273265A4 (ja)
JP (1) JP6165350B2 (ja)
WO (1) WO2016148104A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980117A (zh) * 2017-05-31 2017-07-25 西安电子科技大学 基于重叠孔径的毫米波雷达视频成像方法
WO2022085044A1 (ja) * 2020-10-19 2022-04-28 三菱電機株式会社 レーダ信号処理装置、及びレーダ信号処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205649B3 (de) * 2017-04-03 2018-03-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur rechnergestützten Verarbeitung von SAR-Rohdaten
WO2021149523A1 (ja) 2020-01-21 2021-07-29 株式会社デンソー センター装置及び車両情報通信システム
CN115720254B (zh) * 2023-01-09 2023-04-18 北京无线电测量研究所 一种视频合成孔径雷达的稳定视频流生成方法和***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225948A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 超音波診断装置、及びその制御方法
JP2010148135A (ja) * 2010-01-25 2010-07-01 Seiko Epson Corp 複数のフレーム画像データに基づく静止画像データの生成処理
JP2010223811A (ja) * 2009-03-24 2010-10-07 Mitsubishi Electric Corp 画像レーダ装置及び信号処理装置
JP2011247593A (ja) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp 画像レーダ装置
JP2012010263A (ja) * 2010-06-28 2012-01-12 Sony Corp 符号化装置、撮像装置、符号化伝送システムおよび符号化方法
JP2013137253A (ja) * 2011-12-28 2013-07-11 Mitsubishi Electric Corp 誘導装置
JP2014182124A (ja) * 2013-03-15 2014-09-29 Mitsubishi Electric Corp 画像を生成する方法およびシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243349A (en) * 1981-03-17 1993-09-07 Westinghouse Electric Corp. High resolution synthetic aperture radar having rectilinear output image format
US4851848A (en) * 1988-02-01 1989-07-25 The United States Of America As Represented By The Secretary Of The Navy Frequency agile synthetic aperture radar
DE4427657C2 (de) * 1994-08-05 1996-10-24 Deutsche Forsch Luft Raumfahrt Verfahren zur Bilderzeugung mittels einer zweidimensionalen Datenverarbeitung bei einem Radar mit synthetischer Apertur
US5805098A (en) * 1996-11-01 1998-09-08 The United States Of America As Represented By The Secretary Of The Army Method and system for forming image by backprojection
DE19757309C1 (de) * 1997-12-22 1999-07-15 Deutsch Zentr Luft & Raumfahrt Verfahren zur Verarbeitung von Spotlight SAR-Rohdaten
US6781541B1 (en) * 2003-07-30 2004-08-24 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm
US7498968B1 (en) * 2006-05-22 2009-03-03 Sandia Corporation Synthetic aperture design for increased SAR image rate
US8427359B1 (en) 2011-01-06 2013-04-23 Sandia Corporation Tracking moving radar targets with parallel, velocity-tuned filters
US9146312B1 (en) * 2011-05-25 2015-09-29 Sandia Corporation Pre-processing SAR image stream to facilitate compression for transport on bandwidth-limited-link

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225948A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 超音波診断装置、及びその制御方法
JP2010223811A (ja) * 2009-03-24 2010-10-07 Mitsubishi Electric Corp 画像レーダ装置及び信号処理装置
JP2010148135A (ja) * 2010-01-25 2010-07-01 Seiko Epson Corp 複数のフレーム画像データに基づく静止画像データの生成処理
JP2011247593A (ja) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp 画像レーダ装置
JP2012010263A (ja) * 2010-06-28 2012-01-12 Sony Corp 符号化装置、撮像装置、符号化伝送システムおよび符号化方法
JP2013137253A (ja) * 2011-12-28 2013-07-11 Mitsubishi Electric Corp 誘導装置
JP2014182124A (ja) * 2013-03-15 2014-09-29 Mitsubishi Electric Corp 画像を生成する方法およびシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROYUKI SATO ET AL.: "Evaluation of SAR Image Processing using GPUs", FORUM ON INFORMATION TECHNOLOGY KOEN RONBUNSHU, vol. 1, no. 10, 7 September 2011 (2011-09-07), pages 335 - 336, XP009506221 *
See also references of EP3273265A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980117A (zh) * 2017-05-31 2017-07-25 西安电子科技大学 基于重叠孔径的毫米波雷达视频成像方法
CN106980117B (zh) * 2017-05-31 2019-08-06 西安电子科技大学 基于重叠孔径的毫米波雷达视频成像方法
WO2022085044A1 (ja) * 2020-10-19 2022-04-28 三菱電機株式会社 レーダ信号処理装置、及びレーダ信号処理方法
JPWO2022085044A1 (ja) * 2020-10-19 2022-04-28
JP7214061B2 (ja) 2020-10-19 2023-01-27 三菱電機株式会社 レーダ信号処理装置、及びレーダ信号処理方法

Also Published As

Publication number Publication date
US20180045825A1 (en) 2018-02-15
US10495749B2 (en) 2019-12-03
EP3273265A4 (en) 2018-11-14
JP6165350B2 (ja) 2017-07-19
EP3273265A1 (en) 2018-01-24
JPWO2016148104A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6165350B2 (ja) レーダ動画作成装置および方法
US9250322B2 (en) Signal processing methods and apparatus
JP5542615B2 (ja) レーダ画像処理装置
JP2014119344A (ja) 合成開口レーダ装置
JP2008232626A (ja) ポラリメトリsar画像処理方法、ポラリメトリsar装置および画像処理装置
JP3781004B2 (ja) 合成開口レーダ装置及び数値標高モデル作成方法
WO2019118050A1 (en) System and method for synthetic aperture radar image formation
JP5489813B2 (ja) レーダ画像処理装置
JP6323156B2 (ja) 画像レーダ装置
JP5901767B2 (ja) レーダシステム、観測装置およびデータ処理装置
JP6413264B2 (ja) レーダ装置及びその制御方法
JP2013250122A (ja) レーダ装置及びレーダ信号処理装置
Lee et al. Analysis of a scan conversion algorithm for a real-time sector scanner
JP3427940B2 (ja) ホログラム観測装置
WO2020136871A1 (ja) レーダ信号処理装置及びレーダ信号処理方法
US10754006B2 (en) Signal processing device
JP4131466B2 (ja) 画像レーダ装置及び超解像処理方法
JP5498970B2 (ja) 画像縮小装置、画像拡大装置、及びこれらのプログラム
JP6289389B2 (ja) 画像レーダ装置
KR102174321B1 (ko) 광역 고해상도 sar 영상 구현 방법 및 광역 고해상도 sar 영상 구현 장치
JP5579360B2 (ja) レーダ装置
JP6735632B2 (ja) 信号処理装置、信号処理方法及び信号処理プログラム
JP3882086B2 (ja) 合成開口レーダ画像処理装置
WO2024042709A1 (ja) 信号処理装置および信号処理方法
US20170224310A1 (en) Ultrasonic diagnostic apparatus and ultrasonic signal processing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016547959

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764934

Country of ref document: EP