WO2016147605A1 - Method for reducing corrosion of metal member - Google Patents

Method for reducing corrosion of metal member Download PDF

Info

Publication number
WO2016147605A1
WO2016147605A1 PCT/JP2016/001258 JP2016001258W WO2016147605A1 WO 2016147605 A1 WO2016147605 A1 WO 2016147605A1 JP 2016001258 W JP2016001258 W JP 2016001258W WO 2016147605 A1 WO2016147605 A1 WO 2016147605A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal member
corrosion
corrosive
contact
Prior art date
Application number
PCT/JP2016/001258
Other languages
French (fr)
Japanese (ja)
Inventor
秀平 丸田
佐々木 唯
星野 恭之
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201680003826.0A priority Critical patent/CN107002253A/en
Priority to JP2017506068A priority patent/JPWO2016147605A1/en
Priority to KR1020177013274A priority patent/KR20170067893A/en
Publication of WO2016147605A1 publication Critical patent/WO2016147605A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation

Definitions

  • the present invention relates to a method for reducing corrosion of a metal member.
  • the corrosive gas adsorbed on the surface of the metal member at the time of contact is desorbed.
  • the method disclosed in Patent Document 1 has a problem of high cost because a large heating device is required when the size of the pipe is large.
  • temperature unevenness may occur in the piping.
  • the present invention solves the above-mentioned problems of the prior art, and allows the corrosive gas adsorbed on the surface of the metal member at the time of contact to be desorbed sufficiently and reliably at a low cost, thereby making the metal member It is an object of the present invention to provide a method for reducing corrosion of steel.
  • a method for reducing corrosion of a metal member due to contact with a corrosive gas wherein a preheated desorption gas is brought into contact with a contact surface of the metal member which is in contact with the corrosive gas. And reducing the corrosion of the metallic member, comprising desorbing the corrosive gas adsorbed on the contact surface.
  • the corrosive gas is hydrogen bromide, hydrogen chloride, hydrogen fluoride, bromine gas, chlorine gas, fluorine gas, boron trichloride, ammonia, hydrogen sulfide, sulfur dioxide, nitrogen monoxide, nitrogen dioxide, selenization.
  • the corrosive gas adsorbed on the surface of the metal member at the time of contact can be desorbed sufficiently and reliably at low cost, and the corrosion of the metal member can be reduced.
  • the method for reducing corrosion of a metal member according to the present embodiment is a method for reducing corrosion of a metal member due to contact with a corrosive gas. Contacting the heated desorption gas to desorb the corrosive gas adsorbed on the contact surface.
  • the metal member is not heated directly, but the metal member is heated via the desorption gas. Therefore, if only the facility for heating the desorption gas is provided, the metal member is heated. be able to. Therefore, the corrosive gas can be desorbed by the same operation regardless of the size of the metal member. Therefore, even when the metal member size is large, the corrosive gas can be desorbed at a low cost. Can do. Furthermore, even if there are complicatedly shaped parts (for example, complicatedly complicated parts) in the metal member, the metal member can be heated uniformly with no problem by the heated desorption gas. Even in the case of a manufactured member, it is possible to desorb corrosive gas.
  • the temperature of the desorption gas heated in advance can be 30 ° C. or higher and lower than 100 ° C., and preferably 30 ° C. or higher and 80 ° C. or lower. When the temperature is 30 ° C. or more and less than 100 ° C., the corrosive gas can be desorbed without causing the metal member to proceed with corrosion.
  • the method for heating the desorption gas is not particularly limited, and any method can be adopted as long as the desorption gas can be heated to a desired temperature in advance before contacting the contact surface of the metal member. May be.
  • the temperature of the metal member before contacting the desorption gas can be normal temperature or lower, for example, 25 ° C. or lower, or 20 ° C. or higher and 25 ° C. or lower.
  • the kind of corrosive gas is not specifically limited,
  • area is mention
  • Specific examples include hydrogen bromide (HBr), hydrogen chloride (HCl), hydrogen fluoride (HF), bromine gas (Br 2 ), chlorine gas (Cl 2 ), fluorine gas (F 2 ), boron trichloride ( BCl 3 ), ammonia (NH 3 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), hydrogen selenide (H 2 Se), tetrafluoride
  • the gas include corrosive compounds such as silicon fluoride (SiF 4 ) and tungsten hexafluoride (WF 6 ).
  • N 2 nitrogen gas
  • N 2 at least one of the gases of the corrosive compounds, it may be used as a corrosive gas that is mixed with non-corrosive gases such as air.
  • the method for reducing corrosion of a metal member according to this embodiment is particularly suitable when a corrosive gas containing hydrogen bromide, which is a bromine compound having a bromine atom in its molecule, is used among various corrosive gases.
  • the type of desorption gas is not particularly limited, for example, nitrogen gas (N 2), argon (Ar), helium (the He), hydrogen gas (H 2), carbon dioxide (CO 2), and oxygen
  • Non-corrosive gases such as gas (O 2 ) and air can be mentioned.
  • These non-corrosive gases may be used alone as a desorption gas, or two or more types may be appropriately mixed to form a desorption gas. However, it is preferable to use a gas having good diffusibility as the desorption gas.
  • the type of the metal member is not particularly limited, and examples thereof include a metal member that is used in a corrosive gas production process, a purification process, or a semiconductor production process and comes into contact with the corrosive gas. More specifically, pipes that distribute corrosive gas in the respective steps and metal members provided in various devices (tanks, pumps, compressors, etc.) used in the respective steps.
  • the corrosion reduction method for metal members according to the present embodiment is applied to pipes through which corrosive gas has been circulated and various equipment used in each of the above steps, the corrosive gas is removed from the pipes and various equipment. Therefore, even if these pipes and various devices are used for other types of gases, mixing of corrosive gas into other types of gases can be suppressed.
  • the type of metal constituting the metal member is not particularly limited.
  • pure metal such as iron (Fe), titanium (Ti), tantalum (Ta), stainless steel, carbon steel, nickel alloy And the like. Of these metals, stainless steel is preferred.
  • this embodiment shows an example of this invention and this invention is not limited to this embodiment.
  • various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
  • the stainless steel electrolytic polishing tube container into which the test piece was inserted was cooled to ⁇ 20 ° C.
  • hydrogen bromide gas corrosive gas
  • liquid hydrogen bromide containing 1 ppm of water was brought into contact with the test piece.
  • the temperature of the hydrogen bromide is raised to 40 ° C.
  • the pressure inside the stainless steel electrolytic polishing tube container is set to 3.2 MPa with a gauge pressure
  • hydrogen bromide is vaporized
  • the test piece is made into hydrogen bromide. Left in gas for 1 day. In this test example, the entire surface of the test piece is the contact surface of the corrosive gas.
  • nitrogen gas desorption gas
  • the pressure inside the stainless steel electrolytic polishing tube container is adjusted to the gauge pressure.
  • the pressure was raised to 1.5 MPa (crushing), and the purging operation consisting of the subsequent blow procedure was repeated 15 times.
  • the temperature of the nitrogen gas was 20 ° C, 30 ° C, 40 ° C, 50 ° C, 80 ° C, or 100 ° C.
  • the temperature inside the stainless steel electrolytic polishing tube container was constantly measured, and it was confirmed that the nitrogen gas was adjusted to a predetermined temperature.
  • the measuring method of the quantity of each ion is as follows. First, a method for measuring the amount of bromide ions will be described. 1 mL of pure water in which the test piece was immersed was collected with a syringe and then injected into an ion chromatograph to quantify bromide ions. Details of the ion chromatograph used are described below.
  • Measuring device ion chromatograph manufactured by DIONEX (model: DX-120) Guard column: Dionex IonPac AG23 made by DIONEX Separation column: Dionex IonPac AS23 manufactured by DIONEX Suppressor: Suppressor ASRS-300 manufactured by DIONEX Suppressor current: 50 mA Eluent flow rate: 1.5 mL / min Eluent: 2.7 mmol / L Na 2 CO 3 , 0.3 mmol / L NaHCO 3
  • the amount of bromide ions eluted from the test piece was smaller when the temperature of the nitrogen gas was 30 to 80 ° C. than when the temperature of the nitrogen gas was 20 ° C. Further, when the temperature of the nitrogen gas was 30 to 80 ° C., no corrosion was confirmed on the surface of the test piece after being left for 5 days, whereas when the temperature of the nitrogen gas was 20 ° C., the surface was kept for 5 days. Corrosion was confirmed on the surface of the test piece after being left, and the corrosion progressed during the standing for 5 days.
  • the amount of metal ions eluted from the test piece is larger than when the temperature of the nitrogen gas is 30 to 80 ° C. You can see that is progressing.
  • the temperature of nitrogen gas was 100 degreeC, corrosion was confirmed on the surface of the test piece immediately after taking out the test piece from the stainless steel electrolytic polishing tube container. From this, it can be seen that the corrosion by hydrogen bromide and water remaining on the surface of the test piece was accelerated by nitrogen gas heated to 100 ° C. in advance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

Provided is a method for reducing corrosion of a metal member by sufficiently and reliably desorbing, at low cost, corrosive gas which has been adsorbed by a surface of the metal member during contact. Previously heated desorbing gas is brought into contact with a contact surface of the surface of the metal member with which corrosive gas has come into contact, so that the corrosive gas adsorbed by the contact surface is desorbed. This reduces corrosion of the metal member caused by the contact of the corrosive gas.

Description

金属製部材の腐食低減方法Method for reducing corrosion of metal parts
 本発明は、金属製部材の腐食を低減する方法に関する。 The present invention relates to a method for reducing corrosion of a metal member.
 腐食性ガスの接触による金属製部材の腐食を低減するため、接触時に金属製部材の表面に吸着された腐食性ガスの脱着が行われる。例えば、腐食性ガスを流通する配管であれば、配管を加熱しながら不活性ガスを流通する方法(特許文献1を参照)がある。
 しかしながら、特許文献1に開示の方法では、配管のサイズが大きいと大型の加熱装置が必要となるため、高コストであるという問題があった。また、複雑な形状の部分では、加熱自体が困難であるという問題があった。さらに、特許文献1に開示の方法では、配管に温度ムラが生じる場合があった。そのため、局所的に温度が上がりすぎた部分では、腐食性ガス中に水分が含有されている場合は脱着よりもむしろ腐食性ガスによる腐食が進むおそれがあり、局所的に温度が低い部分では腐食性ガスを十分に脱着することができないおそれがあった。
In order to reduce the corrosion of the metal member due to the contact with the corrosive gas, the corrosive gas adsorbed on the surface of the metal member at the time of contact is desorbed. For example, if it is piping which distribute | circulates corrosive gas, there exists the method (refer patent document 1) which distribute | circulates inert gas, heating piping.
However, the method disclosed in Patent Document 1 has a problem of high cost because a large heating device is required when the size of the pipe is large. In addition, there is a problem that heating itself is difficult in a complicated shape portion. Furthermore, in the method disclosed in Patent Document 1, temperature unevenness may occur in the piping. For this reason, in areas where the temperature is excessively high, if the corrosive gas contains moisture, corrosion by the corrosive gas may proceed rather than desorption, and corrosion may occur in areas where the temperature is low. There was a possibility that the property gas could not be sufficiently desorbed.
日本国特許公報 第3134116号Japanese Patent Gazette No. 3134116
 そこで、本発明は、上記のような従来技術が有する問題点を解決し、接触時に金属製部材の表面に吸着された腐食性ガスを、低コストで十分且つ確実に脱着させて、金属製部材の腐食を低減する方法を提供することを課題とする。 Accordingly, the present invention solves the above-mentioned problems of the prior art, and allows the corrosive gas adsorbed on the surface of the metal member at the time of contact to be desorbed sufficiently and reliably at a low cost, thereby making the metal member It is an object of the present invention to provide a method for reducing corrosion of steel.
 前記課題を解決するため、本発明の一態様は以下の[1]~[5]の通りである。
[1] 腐食性ガスの接触による金属製部材の腐食を低減する方法であって、前記金属製部材の表面のうち前記腐食性ガスが接触した接触面に、予め加熱された脱着用ガスを接触させて、前記接触面に吸着された前記腐食性ガスを脱着させることを含む金属製部材の腐食低減方法。
In order to solve the above problems, one aspect of the present invention is as described in [1] to [5] below.
[1] A method for reducing corrosion of a metal member due to contact with a corrosive gas, wherein a preheated desorption gas is brought into contact with a contact surface of the metal member which is in contact with the corrosive gas. And reducing the corrosion of the metallic member, comprising desorbing the corrosive gas adsorbed on the contact surface.
[2] 前記予め加熱された脱着用ガスの温度が30℃以上100℃未満である[1]に記載の金属製部材の腐食低減方法。
[3] 前記腐食性ガスが、臭化水素、塩化水素、フッ化水素、臭素ガス、塩素ガス、フッ素ガス、三塩化ホウ素、アンモニア、硫化水素、二酸化硫黄、一酸化窒素、二酸化窒素、セレン化水素、四フッ化ケイ素、及び六フッ化タングステンのうちの少なくとも1種を含有する[1]又は[2]に記載の金属製部材の腐食低減方法。
[2] The method for reducing corrosion of a metal member according to [1], wherein the temperature of the preheated desorption gas is 30 ° C. or higher and lower than 100 ° C.
[3] The corrosive gas is hydrogen bromide, hydrogen chloride, hydrogen fluoride, bromine gas, chlorine gas, fluorine gas, boron trichloride, ammonia, hydrogen sulfide, sulfur dioxide, nitrogen monoxide, nitrogen dioxide, selenization. The method for reducing corrosion of a metal member according to [1] or [2], which contains at least one of hydrogen, silicon tetrafluoride, and tungsten hexafluoride.
[4] 前記脱着用ガスが、窒素ガス、アルゴン、ヘリウム、水素ガス、二酸化炭素、酸素ガス、及び空気のうちの少なくとも1種である[1]~[3]のいずれか一項に記載の金属製部材の腐食低減方法。
[5] 前記金属製部材の金属がステンレス鋼である[1]~[4]のいずれか一項に記載の金属製部材の腐食低減方法。
[4] The desorption gas according to any one of [1] to [3], wherein the desorption gas is at least one of nitrogen gas, argon, helium, hydrogen gas, carbon dioxide, oxygen gas, and air. Method for reducing corrosion of metal parts.
[5] The method for reducing corrosion of a metal member according to any one of [1] to [4], wherein the metal of the metal member is stainless steel.
 本発明によれば、接触時に金属製部材の表面に吸着された腐食性ガスを、低コストで十分且つ確実に脱着させて、金属製部材の腐食を低減することができる。 According to the present invention, the corrosive gas adsorbed on the surface of the metal member at the time of contact can be desorbed sufficiently and reliably at low cost, and the corrosion of the metal member can be reduced.
脱着用ガスの温度と試験片から溶出した臭化物イオンの量との関係を示すグラフである。It is a graph which shows the relationship between the temperature of desorption gas, and the quantity of the bromide ion eluted from the test piece. 脱着用ガスの温度と試験片から溶出した金属イオンの量との関係を示すグラフである。It is a graph which shows the relationship between the temperature of desorption gas, and the quantity of the metal ion eluted from the test piece.
 本発明の一実施形態について、以下に詳細に説明する。
 本実施形態の金属製部材の腐食低減方法は、腐食性ガスの接触による金属製部材の腐食を低減する方法であって、金属製部材の表面のうち腐食性ガスが接触した接触面に、予め加熱された脱着用ガスを接触させて、接触面に吸着された腐食性ガスを脱着させることを含む。
An embodiment of the present invention will be described in detail below.
The method for reducing corrosion of a metal member according to the present embodiment is a method for reducing corrosion of a metal member due to contact with a corrosive gas. Contacting the heated desorption gas to desorb the corrosive gas adsorbed on the contact surface.
 このような構成であれば、金属製部材の表面のうち腐食性ガスが接触した接触面が、予め加熱された脱着用ガスによって確実に且つ均一に加熱されるので、金属製部材の接触面に温度ムラが生じにくい。接触時に金属製部材の接触面に吸着された腐食性ガスの吸着平衡が加熱によって脱着側にシフトするが、金属製部材の接触面が脱着用ガスによって確実に且つ均一に加熱されるため、接触面に吸着された腐食性ガスを、接触面から十分に且つ確実に脱着することができ、金属製部材の腐食を低減することができる。そして、金属製部材の温度が局所的に上がりすぎるということがないので、腐食性ガス中に水分が含有されている場合であっても、脱着時に脱着よりも腐食性ガスによる腐食が進むという現象が生じにくい。 If it is such a structure, since the contact surface which the corrosive gas contacted among the surfaces of a metal member will be heated reliably and uniformly by the degassing gas heated previously, it will be in the contact surface of a metal member. Temperature unevenness hardly occurs. The adsorption equilibrium of the corrosive gas adsorbed on the contact surface of the metal member at the time of contact is shifted to the desorption side by heating, but the contact surface of the metal member is reliably and uniformly heated by the desorption gas. The corrosive gas adsorbed on the surface can be sufficiently and reliably desorbed from the contact surface, and the corrosion of the metal member can be reduced. And since the temperature of the metal member does not rise too much locally, even when moisture is contained in the corrosive gas, the phenomenon that the corrosion by the corrosive gas proceeds more than the desorption at the time of desorption Is unlikely to occur.
 また、金属製部材に腐食性ガスが残留していると、金属製部材が大気に開放されて大気中の水分と接触した場合に、大気中の水分の影響で腐食が急速に進むおそれがあるが、接触面に吸着された腐食性ガスが脱着されているので、金属製部材が大気に開放されても腐食が生じにくいし、金属製部材が大気中に長期間にわたって暴露されても腐食の進行が生じにくい。 In addition, if corrosive gas remains in a metal member, corrosion may proceed rapidly due to the influence of moisture in the atmosphere when the metal member is opened to the atmosphere and comes into contact with moisture in the atmosphere. However, since the corrosive gas adsorbed on the contact surface is desorbed, corrosion does not easily occur even if the metal member is opened to the atmosphere, and corrosion does not occur even if the metal member is exposed to the atmosphere for a long time. Progress is difficult to occur.
 また、金属製部材を直接的に加熱するのではなく、脱着用ガスを介して金属製部材を加熱するので、脱着用ガスを加熱する設備のみを有していれば、金属製部材を加熱することができる。よって、金属製部材のサイズに関係なく同様の操作で腐食性ガスの脱着を行うことができるので、金属製部材のサイズが大きい場合であっても、低コストで腐食性ガスの脱着を行うことができる。さらに、金属製部材に複雑な形状の部分(例えば、複雑に入り組んだ部分)が存在したとしても、加熱された脱着用ガスによって問題なく均一に加熱することができるので、どのような形状の金属製部材であっても、腐食性ガスの脱着を行うことができる。 In addition, the metal member is not heated directly, but the metal member is heated via the desorption gas. Therefore, if only the facility for heating the desorption gas is provided, the metal member is heated. be able to. Therefore, the corrosive gas can be desorbed by the same operation regardless of the size of the metal member. Therefore, even when the metal member size is large, the corrosive gas can be desorbed at a low cost. Can do. Furthermore, even if there are complicatedly shaped parts (for example, complicatedly complicated parts) in the metal member, the metal member can be heated uniformly with no problem by the heated desorption gas. Even in the case of a manufactured member, it is possible to desorb corrosive gas.
 予め加熱された脱着用ガスの温度は、30℃以上100℃未満とすることができ、好ましくは30℃以上80℃以下である。30℃以上100℃未満の温度であれば、金属製部材に腐食を進行させることなく腐食性ガスの脱着を行うことができる。
 脱着用ガスを加熱する方法は特に限定されるものではなく、金属製部材の接触面に接触させる前に脱着用ガスを予め所望の温度に加熱することができるならば、どのような方法を採用してもよい。
 なお、脱着用ガスを接触させる前の金属製部材の温度は、常温以下とすることができ、例えば25℃以下としてもよいし、20℃以上25℃以下としてもよい。
The temperature of the desorption gas heated in advance can be 30 ° C. or higher and lower than 100 ° C., and preferably 30 ° C. or higher and 80 ° C. or lower. When the temperature is 30 ° C. or more and less than 100 ° C., the corrosive gas can be desorbed without causing the metal member to proceed with corrosion.
The method for heating the desorption gas is not particularly limited, and any method can be adopted as long as the desorption gas can be heated to a desired temperature in advance before contacting the contact surface of the metal member. May be.
In addition, the temperature of the metal member before contacting the desorption gas can be normal temperature or lower, for example, 25 ° C. or lower, or 20 ° C. or higher and 25 ° C. or lower.
 また、腐食性ガスの種類は特に限定されるものではなく、例えば、電子工業分野においてエッチング、クリーニング等の用途で使用される腐食性ガスがあげられる。具体例としては、臭化水素(HBr)、塩化水素(HCl)、フッ化水素(HF)、臭素ガス(Br)、塩素ガス(Cl)、フッ素ガス(F)、三塩化ホウ素(BCl)、アンモニア(NH)、硫化水素(HS)、二酸化硫黄(SO)、一酸化窒素(NO)、二酸化窒素(NO)、セレン化水素(HSe)、四フッ化ケイ素(SiF)、六フッ化タングステン(WF)等の腐食性化合物のガスがあげられる。これらの腐食性化合物のガスは、1種類を単独で腐食性ガスとしてもよいし、2種以上を適宜混合して腐食性ガスとしてもよい。また、上記の腐食性化合物のガスのうちの少なくとも1種を窒素ガス(N)、空気等の非腐食性ガスと混合したものを腐食性ガスとしてもよい。 Moreover, the kind of corrosive gas is not specifically limited, For example, the corrosive gas used for uses, such as an etching and cleaning, in the electronic industry field | area is mention | raise | lifted. Specific examples include hydrogen bromide (HBr), hydrogen chloride (HCl), hydrogen fluoride (HF), bromine gas (Br 2 ), chlorine gas (Cl 2 ), fluorine gas (F 2 ), boron trichloride ( BCl 3 ), ammonia (NH 3 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), hydrogen selenide (H 2 Se), tetrafluoride Examples of the gas include corrosive compounds such as silicon fluoride (SiF 4 ) and tungsten hexafluoride (WF 6 ). One type of these corrosive compound gases may be used alone, or two or more types may be appropriately mixed to form a corrosive gas. Further, nitrogen gas (N 2) at least one of the gases of the corrosive compounds, it may be used as a corrosive gas that is mixed with non-corrosive gases such as air.
 本実施形態の金属製部材の腐食低減方法は、各種の腐食性ガスの中でも、分子中に臭素原子を有する臭素化合物である臭化水素を含有する腐食性ガスを用いた場合に特に好適である。
 さらに、脱着用ガスの種類は特に限定されるものではなく、例えば、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)、水素ガス(H)、二酸化炭素(CO)、酸素ガス(O)、空気等の非腐食性ガスがあげられる。これらの非腐食性ガスは、1種類を単独で脱着用ガスとしてもよいし、2種以上を適宜混合して脱着用ガスとしてもよい。ただし、脱着用ガスとして、拡散性が良好であるものを用いることが好ましい。
The method for reducing corrosion of a metal member according to this embodiment is particularly suitable when a corrosive gas containing hydrogen bromide, which is a bromine compound having a bromine atom in its molecule, is used among various corrosive gases. .
Furthermore, the type of desorption gas is not particularly limited, for example, nitrogen gas (N 2), argon (Ar), helium (the He), hydrogen gas (H 2), carbon dioxide (CO 2), and oxygen Non-corrosive gases such as gas (O 2 ) and air can be mentioned. These non-corrosive gases may be used alone as a desorption gas, or two or more types may be appropriately mixed to form a desorption gas. However, it is preferable to use a gas having good diffusibility as the desorption gas.
 さらに、金属製部材の種類は特に限定されるものではなく、例えば、腐食性ガスの製造工程、精製工程や半導体の製造工程において使用されて腐食性ガスと接触する金属製部材があげられる。より具体的には、前記各工程において腐食性ガスを流通する配管や、前記各工程において使用される各種機器(タンク、ポンプ、コンプレッサー等)に備えられる金属製部材があげられる。
 なお、腐食性ガスを流通した配管や、前記各工程において使用された各種機器に対して、本実施形態の金属製部材の腐食低減方法を実施すれば、配管や各種機器から腐食性ガスを除去することができるので、これら配管や各種機器を他種のガスに対して使用したとしても、他種のガスへの腐食性ガスの混入を抑制することができる。
Furthermore, the type of the metal member is not particularly limited, and examples thereof include a metal member that is used in a corrosive gas production process, a purification process, or a semiconductor production process and comes into contact with the corrosive gas. More specifically, pipes that distribute corrosive gas in the respective steps and metal members provided in various devices (tanks, pumps, compressors, etc.) used in the respective steps.
In addition, if the corrosion reduction method for metal members according to the present embodiment is applied to pipes through which corrosive gas has been circulated and various equipment used in each of the above steps, the corrosive gas is removed from the pipes and various equipment. Therefore, even if these pipes and various devices are used for other types of gases, mixing of corrosive gas into other types of gases can be suppressed.
 さらに、金属製部材を構成する金属の種類は特に限定されるものではなく、例えば、鉄(Fe)、チタン(Ti)、タンタル(Ta)等の純金属や、ステンレス鋼、炭素鋼、ニッケル合金等の合金があげられる。これらの金属の中では、ステンレス鋼が好適である。
 なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
Furthermore, the type of metal constituting the metal member is not particularly limited. For example, pure metal such as iron (Fe), titanium (Ti), tantalum (Ta), stainless steel, carbon steel, nickel alloy And the like. Of these metals, stainless steel is preferred.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
 以下に試験例を示して、本発明をより詳細に説明する。
 ステンレス(SUS316L)製電解研磨管容器の内部にステンレス(SUS316L)製の板状試験片(縦2cm、横5cm、厚さ0.2cm)を挿入した後に、ステンレス製電解研磨管容器の内部に窒素ガスを1時間流通させて、ステンレス製電解研磨管容器の内部及び試験片に付着の水分を除去した。なお、試験片は、表面を研磨度400番相当に研磨したものを用いた。
Hereinafter, the present invention will be described in more detail with reference to test examples.
After inserting a stainless steel (SUS316L) plate-like test piece (length 2 cm, width 5 cm, thickness 0.2 cm) into the stainless steel (SUS316L) electrolytic polishing tube container, nitrogen is put into the stainless steel electrolytic polishing tube container. The gas was allowed to flow for 1 hour to remove water adhering to the inside of the stainless steel electrolytic polishing tube container and the test piece. In addition, the test piece used what grind | polished the surface to the polish degree 400 equivalent was used.
 次に、試験片を挿入したステンレス電解研磨管容器を-20℃に冷却した。そして、臭化水素ガス(腐食性ガス)を加圧して液化しながらステンレス電解研磨管容器に導入し、1ppmの水分を含む液状の臭化水素が試験片に接触するようにした。その後、臭化水素の液温が40℃となるように昇温し、ステンレス電解研磨管容器の内部の圧力をゲージ圧で3.2MPaとして臭化水素を気化させて、試験片を臭化水素ガス中で1日間放置した。本試験例においては、試験片の表面全面が腐食性ガスの接触面となる。 Next, the stainless steel electrolytic polishing tube container into which the test piece was inserted was cooled to −20 ° C. Then, hydrogen bromide gas (corrosive gas) was introduced into the stainless electrolytic polishing tube container while being pressurized and liquefied, and liquid hydrogen bromide containing 1 ppm of water was brought into contact with the test piece. Thereafter, the temperature of the hydrogen bromide is raised to 40 ° C., the pressure inside the stainless steel electrolytic polishing tube container is set to 3.2 MPa with a gauge pressure, hydrogen bromide is vaporized, and the test piece is made into hydrogen bromide. Left in gas for 1 day. In this test example, the entire surface of the test piece is the contact surface of the corrosive gas.
 1日間放置後、臭化水素ガスをステンレス電解研磨管容器から抜出したら、予め所定の温度に調整した窒素ガス(脱着用ガス)を導入して、ステンレス電解研磨管容器の内部の圧力をゲージ圧で1.5MPaまで上昇させ(圧張り)、続いてブローする手順からなるパージ操作を15回繰り返した。窒素ガスの温度は、20℃、30℃、40℃、50℃、80℃、又は100℃とした。なお、ステンレス電解研磨管容器の内部の温度を常時測定し、窒素ガスが所定の温度に調整されていることを確認した。 After leaving for one day, when hydrogen bromide gas is extracted from the stainless steel electrolytic polishing tube container, nitrogen gas (desorption gas) adjusted to a predetermined temperature in advance is introduced, and the pressure inside the stainless steel electrolytic polishing tube container is adjusted to the gauge pressure. The pressure was raised to 1.5 MPa (crushing), and the purging operation consisting of the subsequent blow procedure was repeated 15 times. The temperature of the nitrogen gas was 20 ° C, 30 ° C, 40 ° C, 50 ° C, 80 ° C, or 100 ° C. In addition, the temperature inside the stainless steel electrolytic polishing tube container was constantly measured, and it was confirmed that the nitrogen gas was adjusted to a predetermined temperature.
 15回のパージ操作が終了してから60分後にステンレス電解研磨管容器の内部の温度が20℃に調整されていることを確認したら、ステンレス電解研磨管容器から試験片を取り出した。そして、試験片を気温25℃、湿度50%の大気中に5日間放置した後に、試験片の表面の状態を目視により観察した。結果を表1に示す。
 また、15回のパージ操作が終了してから60分後にステンレス電解研磨管容器の内部の温度が20℃に調整されていることを確認したら、ステンレス電解研磨管容器から試験片を取り出し、20℃の純水に30分間浸漬させた。そして、純水を分析して、試験片から溶出した臭化物イオンの量と、金属イオン(鉄イオン、クロムイオン、及びニッケルイオン)の量を測定した。なお、1種の金属について異なる価数のイオンが存在する場合には、全ての価数のイオンの量を測定し、合計した。例えば、2価の鉄イオンと3価の鉄イオンが純水中に存在する場合には、両イオンのトータルの量を測定した。結果を、表1及び図1,2のグラフに示す。表1及び図1,2のグラフに示した臭化物イオンの量及び金属イオンの量は、純水中に含有されていた各イオンの量を試験片の表面積で除した値であり、すなわち、単位面積当たりの各イオンの溶出量を示す。
When it was confirmed that the temperature inside the stainless electrolytic polishing tube container was adjusted to 20 ° C. 60 minutes after the completion of the 15 purge operations, the test piece was taken out from the stainless electrolytic polishing tube container. And after leaving the test piece in air | atmosphere of temperature 25 degreeC and humidity 50% for 5 days, the state of the surface of the test piece was observed visually. The results are shown in Table 1.
When it was confirmed that the temperature inside the stainless steel electrolytic polishing tube container was adjusted to 20 ° C. 60 minutes after the completion of the 15 purge operations, the test piece was taken out from the stainless steel electrolytic polishing tube container, and 20 ° C. For 30 minutes. And the pure water was analyzed and the quantity of the bromide ion eluted from the test piece and the quantity of metal ion (iron ion, chromium ion, and nickel ion) were measured. When ions with different valences exist for one kind of metal, the amounts of ions with all valences were measured and totaled. For example, when divalent iron ions and trivalent iron ions exist in pure water, the total amount of both ions was measured. The results are shown in Table 1 and the graphs of FIGS. The amount of bromide ions and the amount of metal ions shown in Table 1 and the graphs of FIGS. 1 and 2 are values obtained by dividing the amount of each ion contained in pure water by the surface area of the test piece, that is, the unit. The elution amount of each ion per area is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、各イオンの量の測定方法は、以下の通りである。まず、臭化物イオンの量の測定方法について説明する。
 試験片を浸漬させた純水1mLをシリンジで分取後、イオンクロマトグラフに注入し臭化物イオンを定量した。使用したイオンクロマトグラフの詳細を以下に記載する。
   測定装置:DIONEX社製イオンクロマトグラフ(型式:DX-120)
   ガードカラム:DIONEX社製カラムDionex IonPac AG23
   分離カラム:DIONEX社製カラムDionex IonPac AS23
   サプレッサー:DIONEX社製サプレッサーASRS-300
   サプレッサー電流:50mA
   溶離液の流量:1.5mL/min
   溶離液:2.7mmol/L NaCO、0.3mmol/L NaHCO
In addition, the measuring method of the quantity of each ion is as follows. First, a method for measuring the amount of bromide ions will be described.
1 mL of pure water in which the test piece was immersed was collected with a syringe and then injected into an ion chromatograph to quantify bromide ions. Details of the ion chromatograph used are described below.
Measuring device: ion chromatograph manufactured by DIONEX (model: DX-120)
Guard column: Dionex IonPac AG23 made by DIONEX
Separation column: Dionex IonPac AS23 manufactured by DIONEX
Suppressor: Suppressor ASRS-300 manufactured by DIONEX
Suppressor current: 50 mA
Eluent flow rate: 1.5 mL / min
Eluent: 2.7 mmol / L Na 2 CO 3 , 0.3 mmol / L NaHCO 3
 次に、金属イオンの量の測定方法について説明する。試験片を浸漬させた純水100mLを分取後、電子工業用塩酸(和光純薬工業株式会社製)を1mL加え試料液とした後、ICP発光分光分析装置に導入して金属イオンを定量した。使用したICP発光分光分析装置の詳細を以下に記載する。
   測定装置:株式会社島津製作所製ICP発光分光分析装置(型式:ICPS-8100)
   RF出力:1.2kW
   試料導入速度:1mL/min
   積分時間:50sec.
   平均回数:3回
   測定元素、波長:Fe 259.940nm
           Cr 267.716nm
           Ni 231.604nm
Next, a method for measuring the amount of metal ions will be described. After separating 100 mL of pure water in which the test piece was immersed, 1 mL of hydrochloric acid for electronics industry (manufactured by Wako Pure Chemical Industries, Ltd.) was added to prepare a sample solution, which was then introduced into an ICP emission spectroscopic analyzer to quantify metal ions. . Details of the ICP emission spectroscopic analyzer used are described below.
Measuring device: ICP emission spectroscopic analyzer manufactured by Shimadzu Corporation (model: ICPS-8100)
RF output: 1.2kW
Sample introduction speed: 1 mL / min
Integration time: 50 sec.
Average number of times: 3 times Measurement element, wavelength: Fe 259.940 nm
Cr 267.716 nm
Ni 231.604nm
 表1から分かるように、窒素ガスの温度が30~80℃である場合は、窒素ガスの温度が20℃である場合と比べて、試験片から溶出した臭化物イオンの量が少なかった。また、窒素ガスの温度が30~80℃である場合は、5日間放置後の試験片の表面に腐食は確認されなかったのに対し、窒素ガスの温度が20℃である場合は、5日間放置後の試験片の表面に腐食が確認され、5日間の放置中に腐食が進行していた。 As can be seen from Table 1, the amount of bromide ions eluted from the test piece was smaller when the temperature of the nitrogen gas was 30 to 80 ° C. than when the temperature of the nitrogen gas was 20 ° C. Further, when the temperature of the nitrogen gas was 30 to 80 ° C., no corrosion was confirmed on the surface of the test piece after being left for 5 days, whereas when the temperature of the nitrogen gas was 20 ° C., the surface was kept for 5 days. Corrosion was confirmed on the surface of the test piece after being left, and the corrosion progressed during the standing for 5 days.
 さらに、窒素ガスの温度が100℃である場合は、窒素ガスの温度が30~80℃である場合と比べて、試験片から溶出した金属イオンの量が多く、5日間の放置前に既に腐食が進んでいることが分かる。また、窒素ガスの温度が100℃である場合は、ステンレス電解研磨管容器から試験片を取り出した直後において試験片の表面に腐食が確認された。このことから、試験片の表面に残存する臭化水素と水による腐食が、予め100℃に加熱された窒素ガスによって加速されたことが分かる。 Furthermore, when the temperature of the nitrogen gas is 100 ° C., the amount of metal ions eluted from the test piece is larger than when the temperature of the nitrogen gas is 30 to 80 ° C. You can see that is progressing. Moreover, when the temperature of nitrogen gas was 100 degreeC, corrosion was confirmed on the surface of the test piece immediately after taking out the test piece from the stainless steel electrolytic polishing tube container. From this, it can be seen that the corrosion by hydrogen bromide and water remaining on the surface of the test piece was accelerated by nitrogen gas heated to 100 ° C. in advance.
 これらの結果から、腐食を進行させずに金属製部材から臭化水素を除去するためには、予め30℃~80℃に加熱した脱着用ガスを用いることが効果的であることが分かる。また、臭化水素を除去すれば、臭化水素の除去後に大気に晒されても金属製部材の腐食は進行しにくいことが分かる。
 なお、上記の試験例では、腐食性ガスを脱着するために予め加熱した脱着用ガスを金属製部材に接触させる方法として、脱着用ガスを圧張りした後にブローする手順からなるパージ操作を複数回繰り返す方法を採用したが、予め加熱した脱着用ガスを圧張りせずに流通させる方法も適用可能である。
From these results, it can be seen that in order to remove hydrogen bromide from a metal member without causing corrosion, it is effective to use a desorption gas heated to 30 ° C. to 80 ° C. in advance. It can also be seen that if hydrogen bromide is removed, the corrosion of the metal member does not proceed easily even if it is exposed to the atmosphere after removal of hydrogen bromide.
In the above test example, as a method for bringing the desorption gas heated in advance to desorb the corrosive gas into contact with the metal member, a purge operation consisting of a procedure of blowing the desorption gas and then blowing it multiple times is performed. Although the method of repeating is adopted, a method of circulating a pre-heated desorption gas without being compressed is also applicable.

Claims (5)

  1.  腐食性ガスの接触による金属製部材の腐食を低減する方法であって、前記金属製部材の表面のうち前記腐食性ガスが接触した接触面に、予め加熱された脱着用ガスを接触させて、前記接触面に吸着された前記腐食性ガスを脱着させることを含む金属製部材の腐食低減方法。 A method for reducing corrosion of a metal member due to contact with a corrosive gas, wherein a contact surface that is in contact with the corrosive gas among the surfaces of the metal member is contacted with a pre-heated desorption gas, A method for reducing corrosion of a metal member, comprising desorbing the corrosive gas adsorbed on the contact surface.
  2.  前記予め加熱された脱着用ガスの温度が30℃以上100℃未満である請求項1に記載の金属製部材の腐食低減方法。 The method for reducing corrosion of a metal member according to claim 1, wherein the temperature of the degassing gas heated in advance is 30 ° C or higher and lower than 100 ° C.
  3.  前記腐食性ガスが、臭化水素、塩化水素、フッ化水素、臭素ガス、塩素ガス、フッ素ガス、三塩化ホウ素、アンモニア、硫化水素、二酸化硫黄、一酸化窒素、二酸化窒素、セレン化水素、四フッ化ケイ素、及び六フッ化タングステンのうちの少なくとも1種を含有する請求項1又は請求項2に記載の金属製部材の腐食低減方法。 The corrosive gas is hydrogen bromide, hydrogen chloride, hydrogen fluoride, bromine gas, chlorine gas, fluorine gas, boron trichloride, ammonia, hydrogen sulfide, sulfur dioxide, nitrogen monoxide, nitrogen dioxide, hydrogen selenide, four The method for reducing corrosion of a metal member according to claim 1 or 2, comprising at least one of silicon fluoride and tungsten hexafluoride.
  4.  前記脱着用ガスが、窒素ガス、アルゴン、ヘリウム、水素ガス、二酸化炭素、酸素ガス、及び空気のうちの少なくとも1種である請求項1~3のいずれか一項に記載の金属製部材の腐食低減方法。 The corrosion of a metal member according to any one of claims 1 to 3, wherein the desorption gas is at least one of nitrogen gas, argon, helium, hydrogen gas, carbon dioxide, oxygen gas, and air. Reduction method.
  5.  前記金属製部材の金属がステンレス鋼である請求項1~4のいずれか一項に記載の金属製部材の腐食低減方法。 The method for reducing corrosion of a metal member according to any one of claims 1 to 4, wherein the metal of the metal member is stainless steel.
PCT/JP2016/001258 2015-03-17 2016-03-08 Method for reducing corrosion of metal member WO2016147605A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680003826.0A CN107002253A (en) 2015-03-17 2016-03-08 The corrosion method of metal member
JP2017506068A JPWO2016147605A1 (en) 2015-03-17 2016-03-08 Method for reducing corrosion of metal parts
KR1020177013274A KR20170067893A (en) 2015-03-17 2016-03-08 Method for reducing corrosion of metal member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053332 2015-03-17
JP2015-053332 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016147605A1 true WO2016147605A1 (en) 2016-09-22

Family

ID=56918806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001258 WO2016147605A1 (en) 2015-03-17 2016-03-08 Method for reducing corrosion of metal member

Country Status (5)

Country Link
JP (1) JPWO2016147605A1 (en)
KR (1) KR20170067893A (en)
CN (1) CN107002253A (en)
TW (1) TWI592517B (en)
WO (1) WO2016147605A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097398A (en) * 1998-09-24 2000-04-04 Nippon Sanso Corp Inner surface treatment method for gas cylinder
JP3134116B2 (en) * 1999-04-23 2001-02-13 岩谷産業株式会社 Corrosion reduction method in corrosive gas supply system
JP2002126502A (en) * 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Air-tight supporting device of discharge tube for decomposition device of organic halogenated compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344344C (en) * 2005-12-07 2007-10-24 成都华西化工研究所 Process for removing SO2 and NOX from flume gas adopting circulated moving bed
CN101398127A (en) * 2007-09-27 2009-04-01 力晶半导体股份有限公司 Purge gas supply system and gas removal method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097398A (en) * 1998-09-24 2000-04-04 Nippon Sanso Corp Inner surface treatment method for gas cylinder
JP3134116B2 (en) * 1999-04-23 2001-02-13 岩谷産業株式会社 Corrosion reduction method in corrosive gas supply system
JP2002126502A (en) * 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Air-tight supporting device of discharge tube for decomposition device of organic halogenated compound

Also Published As

Publication number Publication date
TWI592517B (en) 2017-07-21
KR20170067893A (en) 2017-06-16
TW201704540A (en) 2017-02-01
JPWO2016147605A1 (en) 2017-12-28
CN107002253A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP5231155B2 (en) Liquid phase compound purification equipment
TWI786043B (en) storage container
TWI670232B (en) Method for purifying fluorine compound gas
JP5929386B2 (en) Dry cleaning method for metal film in film forming apparatus
JP6845235B2 (en) Hydrogen sulfide mixture and its manufacturing method and filling container
WO2019167885A1 (en) Stainless steel member and production method thereof
JPH0625822A (en) Treatment for surface passivation of stainless steel
TW201731762A (en) Method for purifying fluorine gas
JP2018107438A (en) Method for surface treatment of metal member, and method for manufacturing semiconductor element
DK200801617A (en) Downhole equipment removal system
US3836410A (en) Method of treating titanium-containing structures
WO2016147605A1 (en) Method for reducing corrosion of metal member
JP4744017B2 (en) Analysis method of trace impurities in high purity fluorine gas
WO2021182045A1 (en) Sulfur dioxide mixture, method for producing same, and filling container
JPWO2019188912A1 (en) Polycrystalline silicon cleaning method, manufacturing method and cleaning apparatus
JPH05287496A (en) Surface treatment of stainless steel member
JP5888174B2 (en) Hydrogen gas generation method
TWI680022B (en) Cleaning method of high-pressure gas container and high-pressure gas container
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
US10895014B2 (en) Processing method and processing apparatus of metal member
JP6826049B2 (en) Method for producing hydrogen chloride mixture
US3905837A (en) Method of treating titanium-containing structures
TWI434725B (en) Method for purifying fluoride etching solution by using hydroxide compound and ion exchange resin absorption
JP2006522226A (en) Method for reducing degradation of reactive compounds during transport
JPH03215656A (en) Metallic material with passivating fluoride film and its production and equipment using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506068

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177013274

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764438

Country of ref document: EP

Kind code of ref document: A1