WO2016147527A1 - Component measurement device set and body fluid measurement chip - Google Patents

Component measurement device set and body fluid measurement chip Download PDF

Info

Publication number
WO2016147527A1
WO2016147527A1 PCT/JP2016/000326 JP2016000326W WO2016147527A1 WO 2016147527 A1 WO2016147527 A1 WO 2016147527A1 JP 2016000326 W JP2016000326 W JP 2016000326W WO 2016147527 A1 WO2016147527 A1 WO 2016147527A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood glucose
body fluid
measurement
light
unit
Prior art date
Application number
PCT/JP2016/000326
Other languages
French (fr)
Japanese (ja)
Inventor
健行 森内
嘉哉 佐藤
雅夫 滝浪
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2016147527A1 publication Critical patent/WO2016147527A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a component measuring device set and a body fluid measuring chip.
  • the body fluid measuring chip has an inflow port through which a body fluid can flow and a bodily fluid passage communicating with the inflow port.
  • a configuration is disclosed in which a reagent for component measurement is applied to a body fluid developing part having a measuring part, and a measuring part is provided downstream of the body fluid developing part in the body fluid flow direction (see Patent Document 3).
  • Patent Document 1 Japanese Patent Publication No. 10-505676
  • Patent Document 2 JP 2011-64596 A
  • Patent Document 3 International Publication No. 2014/049744
  • the molar extinction coefficient varies depending on the type of coloring reagent, and this limits the range that can be accurately measured with one type of coloring reagent.
  • the invention disclosed in the above prior art documents is based on the premise that a single coloring reagent is held in one body fluid measurement chip, and each of the same body fluid measurement chip measures high blood sugar and low blood sugar with high accuracy. It is not envisaged.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a component measurement device set and a body fluid measurement chip that can suppress fluctuations in measurement accuracy based on absorbance.
  • the component measuring device set is a component measuring device set for measuring a predetermined component in a body fluid, a body fluid measuring chip having a color developing reagent, and a reaction product of the body fluid and the color developing reagent.
  • An irradiating unit that irradiates light, a light receiving unit that receives measurement light transmitted through the reactant, and a processing unit that processes a signal obtained from the measurement light, wherein the body fluid measurement chip includes a base member
  • the color reagent is two or more color reagents having different molar extinction coefficients held at different positions on the base member.
  • the body fluid measurement chip according to the second aspect of the present invention is a body fluid measurement chip having a coloring reagent, comprising a base member, wherein the coloring reagent is at least two or more kinds held at different positions of the base member. It is characterized in that it is a coloring reagent having different molar extinction coefficients.
  • FIG. 1 shows a blood glucose meter set 1 as a component measuring apparatus set according to an embodiment of the present invention.
  • the blood glucose meter set 1 includes a blood glucose meter 11 as a component measurement device and a blood glucose measurement chip 12 as a body fluid measurement chip.
  • the blood glucose measurement chip 12 is attached to the tip of the blood glucose meter 11.
  • the blood glucose meter 11 includes a display 111 for displaying measurement results and operation details, a power button 112 for instructing activation and termination of the blood glucose meter 11, an operation button 113, a removal lever 114 for removing the blood glucose measurement chip 12, It has.
  • the display 111 is composed of a liquid crystal or LED.
  • FIG. 2A is a longitudinal sectional view separately showing the tip of the blood glucose meter 11 of the blood glucose meter set 1 and the blood glucose measurement chip 12.
  • a mounting portion 22 that partitions a mounting hole 23 for mounting the blood glucose measuring chip 12 is provided.
  • an optical measurement unit 24 for measuring a predetermined component (blood glucose level in the present embodiment) of body fluid (blood in the present embodiment) collected in the blood glucose measurement chip 12 is provided inside the blood glucose meter 11.
  • the blood glucose meter 11 includes a processing unit 25 that processes a signal obtained from the measurement light and calculates a blood glucose level.
  • the opening communicating with the mounting hole 23 is provided with an eject pin 26 for detaching the blood sugar measuring chip 12 in conjunction with the removal lever 114.
  • FIG. 2B is a cross-sectional view showing a state in which the blood glucose measurement chip 12 is attached to the blood glucose meter 11 shown in FIG. 2A, that is, a cross-sectional view of the distal end portion of the blood glucose meter set 1.
  • 2C shows the blood glucose meter set 1 shown in FIG. 2B, the first irradiation unit 31A and the second irradiation unit 31B, the first light receiving unit 32A and the second light receiving unit 32B, and the blood glucose measurement chip 12. It is the figure which was extracted from the back side (right side of FIG. 2B).
  • the blood glucose measurement chip 12 is mounted in the mounting hole 23 during measurement. The mounting operation is performed manually by the user.
  • an appropriate lock mechanism or the like for fixing the blood glucose measurement chip 12 to a predetermined position in the mounting hole 23 is preferably installed.
  • the optical measurement unit 24 includes an irradiation unit 31 and a light receiving unit 32. More specifically, the optical measurement unit 24 of the present embodiment includes a first irradiation unit 31A that irradiates a reaction product of a first coloring reagent 121A and blood described later, and a second coloring reagent described later. A second irradiating unit 31B for irradiating a reaction product of 121B and blood with light, and a first light receiving unit 32A for receiving light transmitted through the reaction product of the first color reagent 121A and blood as measurement light; And a second light receiving unit 32B that receives, as measurement light, light transmitted through the reaction product of the second coloring reagent 121B and blood.
  • a first space 41 and a second space 42 communicating with the mounting hole 23 are formed.
  • the first irradiation unit 31A and the second irradiation unit 31B are arranged in the first space 41, and the first light receiving unit 32A and the second light receiving unit 32B are arranged in the second space 42, respectively.
  • the first space 41 and the second space 42 face each other with the attachment hole 23 therebetween (see FIG. 2A).
  • the first space 41 and the second space 42 are the first coloring reagent 121A and the second coloring reagent of the blood glucose measurement chip 12. Opposing across the position where 121B is held (see FIG. 2B).
  • the first irradiation unit 31A and the first light receiving unit 32A face each other with a first coloring reagent 121A described later interposed therebetween.
  • the second irradiation unit 31B and the second light receiving unit 32B are opposed to each other with a second coloring reagent 121B to be described later interposed therebetween.
  • the first light receiving unit 32A is preferably arranged so that it can receive the irradiation light 33A from the first irradiation unit 31A transmitted through the blood sugar measurement chip 12 without loss.
  • the second light receiving unit 32B is preferably arranged so that it can receive the irradiation light 33B from the second irradiation unit 31B transmitted through the blood sugar measurement chip 12 without loss.
  • the first irradiation unit 31A is positioned at a position where the irradiation light 33A can be irradiated vertically to the bottom surface of the blood glucose measurement chip 12.
  • the two irradiation units 31B are preferably arranged at positions where the irradiation light 33B can be irradiated perpendicularly to the bottom surface of the blood glucose measurement chip 12.
  • each of the first irradiation unit 31A and the second irradiation unit 31B emits light having a first wavelength that emits light having a first wavelength and light having a second wavelength different from the first wavelength.
  • the first wavelength is a wavelength for measuring the degree of color development according to the blood glucose level, and is in the wavelength band of 600 to 900 nm, for example.
  • the second wavelength is a wavelength for measuring the concentration of red blood cells in blood, for example, in the wavelength band of 510 to 590 nm.
  • the first light emitting element and the second light emitting element related to the first irradiation unit 31A, and the first light emitting element and the second light emitting element related to the second irradiation unit 31B emit light.
  • a diode (LED) is used, a halogen lamp, a laser, or the like may be used.
  • a photodiode (PD) is used for the first light receiving unit 32A and the second light receiving unit 32B.
  • the first light receiving unit 32A and the second light receiving unit 32B may be any one that can convert received light into a predetermined signal, and may be a CCD, a CMOS, or the like.
  • a spectral filter may be provided to extract only a specific wavelength.
  • a condensing lens may be provided for effective implementation with low energy irradiation.
  • the processing unit 25 calculates a blood glucose level as a value of a predetermined component in the body fluid based on a signal obtained from the measurement light, and a predetermined range in which the blood glucose level is included based on the signal obtained from the measurement light And a prediction unit 25B that predicts. A specific processing method will be described later (see FIG. 5A or 5B).
  • the blood glucose measurement chip 12 is a disposable type, and is attached to the blood glucose meter 11 before the start of measurement, and is removed from the blood glucose meter 11 after the measurement is completed.
  • the blood glucose measurement chip 12 includes a first coloring reagent 121A and a second coloring reagent 121B, and a base member 122.
  • the first coloring reagent 121A and the second coloring reagent 121B have a property of reacting with blood to develop color.
  • reagents include (i) glucose oxidase (GOD), (ii) peroxidase (POD), and (iii) 1- (4-sulfophenyl) -2,3-dimethyl-4-amino-5- Mixed reagent of pyrazolone and (iv) N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethylaniline, sodium salt, monohydrate (MAOS), or glucose dehydrogenase (GDH) And a mixed reagent of tetrazolium salt and an electron mediator.
  • GOD glucose oxidase
  • POD peroxidase
  • 1- (4-sulfophenyl) -2,3-dimethyl-4-amino-5- Mixed reagent of pyrazolone and (iv) N-ethyl
  • the first coloring reagent 121A and the second coloring reagent 121B are provided on the base member 122 by coating or the like.
  • the first coloring reagent includes glucose dehydrogenase (GDH) and 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl bromide.
  • FIG. 3A (a) is a top view of the blood glucose measurement chip 12 according to an embodiment of the present invention.
  • Two kinds of coloring reagents 121A and 121B having different molar extinction coefficients are held at different positions of the base member 122.
  • the one having the larger molar extinction coefficient is the first coloring reagent 121A
  • the one having the smaller molar extinction coefficient is the second coloring reagent 121B.
  • FIG. 3A (b) is a DD cross-sectional view of FIG. 3A (a).
  • the base member 122 has a groove at the center, and includes a first coloring reagent 121A and a second coloring reagent 121B at the groove bottom.
  • this groove functions as a flow path 124 for carrying blood.
  • a supply part 123 serving as one end of the flow path 124 is formed at the tip of the blood glucose measurement chip 12, and blood can be supplied from the supply part 123.
  • the blood supplied to the supply unit 123 is accurately guided to the holding positions of the first coloring reagent 121A and the second coloring reagent 121B by the partitioned flow path 124 without spilling on the way.
  • one end side where the supply unit 123 is formed is an upstream side
  • the other end side where the first coloring reagent 121A and the second coloring reagent 121B are held is a downstream side.
  • the shape and dimension of the cross section of the base member 122 are not limited to the shape of the embodiment.
  • the cross section of the groove as the flow path 124 may be an arc.
  • the base member may have a cross-sectional shape surrounding the flow path 124, and such a configuration may be formed of a bottom plate member and a lid member as a cover thereof.
  • the flow path 124 may not be partitioned and the supply unit 123 may not be provided.
  • FIG. 3B is a top view showing a blood glucose measurement chip as a modification of the blood glucose measurement chip 12 shown in FIG. 3A.
  • the first coloring reagent 121A may be arranged on the upstream side, and the second coloring reagent 121B may be arranged on the downstream side.
  • the first coloring reagent 121A may be arranged on the downstream side, and the second coloring reagent 121B may be arranged on the upstream side.
  • FIG. 3B is a top view showing a blood glucose measurement chip as a modification of the blood glucose measurement chip 12 shown in FIG. 3A.
  • the first coloring reagent 121A may be arranged on the upstream side
  • the second coloring reagent 121B may be arranged on the downstream side.
  • the second coloring reagent 121B may be arranged on the upstream side.
  • 3B (b), three or more kinds of coloring reagents having different molar extinction coefficients are used, and the first coloring reagent 121A and the second coloring reagent are sequentially arranged from the upstream side to the downstream side.
  • 121B and a third coloring reagent 121C having a molar extinction coefficient smaller than that of the second coloring reagent 121B may be provided.
  • FIG. 4 is a graph showing an example of the relationship between the absorbance and blood glucose level of the first coloring reagent 121A and the second coloring reagent 121B.
  • the horizontal axis 201 is absorbance
  • the vertical axis 202 is blood glucose level.
  • the blood glucose level is the mass of glucose contained in blood per unit volume, and mg / dL is used as the unit.
  • the relationship between the absorbance and the blood glucose level can be expressed by a linear function (straight line).
  • the first color-developing reagent 121A having a large molar extinction coefficient has a large absorbance even at a low blood glucose level, and therefore the slope of the straight line is small (see reference numeral “203” in FIG. 4).
  • the second color developing reagent 121B having a small molar extinction coefficient has a small absorbance even at a high blood glucose level, and therefore has a large slope of the straight line (see reference numeral “204” in FIG. 4).
  • a coloring reagent having a large molar extinction coefficient (the first coloring reagent 121A in this embodiment) is in the low blood glucose measurement range W1
  • a coloring reagent having a small molar extinction coefficient (the second coloring reagent 121B in this embodiment) is high.
  • Each is suitable for the blood glucose level measurement range W2. Further, this relational expression is used as a calibration curve by the processing unit 25 in the blood glucose level calculation process described later.
  • the range of the blood glucose level that is not more than the threshold value of absorbance is the measurement range of the low blood glucose level, and the blood glucose level of which absorbance is not less than the threshold value.
  • the range was defined as the range of high blood glucose level.
  • the material of the base member 122 it is preferable to use a transparent material for light transmission.
  • transparent organic resin materials such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polystyrene (PS), cyclic polyolefin (COP), cyclic olefin copolymer (COC), and polycarbonate (PC); glass, quartz, etc. Transparent inorganic materials.
  • the blood glucose meter 11 When the power button 112 is pressed, the blood glucose meter 11 is activated. The blood glucose measurement chip 12 is attached to the attachment hole 23.
  • the first color reagent 121A and the second color reagent are punctured with a puncture device, for example, a fingertip, and the small amount of blood that has flowed out from the supply unit 123 through the flow path 124. And the coloring reagent 121B.
  • a puncture device for example, a fingertip
  • the first irradiation unit 31A alternately irradiates light from the first light emitting element and the second light emitting element to the reaction product of the first coloring reagent 121A and blood.
  • the second irradiation unit 31B alternately irradiates light from the first light emitting element and the second light emitting element to the reaction product of the second coloring reagent 121B and blood.
  • the first light receiving unit 32A receives, as measurement light, transmitted light that has passed through a reaction product between the first coloring reagent 121A and blood.
  • the second light receiving unit 32B receives, as measurement light, transmitted light that has passed through a reaction product between the second coloring reagent 121B and blood.
  • the processing unit 25 calculates the absorbance based on a signal having a magnitude corresponding to the intensity of the transmitted light.
  • the blood glucose measurement chip 12 includes two kinds of color developing reagents 121A and B, the first absorbance relating to the reaction product of the first color developing reagent 121A and blood, and the second color developing reagent 121B. Two kinds of absorbances are obtained, that is, a second absorbance related to a reaction product of blood and blood.
  • the processing unit 25 calculates the blood glucose level using these two types of absorbance.
  • a processing method of blood glucose level calculation performed by the processing unit 25 will be described.
  • FIG. 5A is a flowchart for explaining the processing method of the processing unit 25.
  • the calculation unit 25A calculates the absorbance based on the intensity of transmitted light from each reaction product (step S1). S2).
  • the prediction unit 25B predicts a range to which the blood glucose level belongs.
  • a predetermined threshold is set for the first absorbance related to the first coloring reagent 121A (for example, 1.0). This predetermined threshold value is registered in the storage unit of the blood glucose meter 11 in advance.
  • the prediction unit 25B determines whether or not the first absorbance is less than a predetermined threshold value (step S3).
  • a predetermined threshold it is predicted that the blood glucose level belongs to a range lower than the predetermined value (see reference numeral “205” in FIG. 4).
  • the value is equal to or higher than the predetermined threshold, it is predicted that the blood glucose level does not belong to a range lower than the predetermined value, that is, belongs to a higher range equal to or higher than the predetermined value (number “206” in FIG. "reference).
  • the first coloring reagent 121A having a large molar extinction coefficient is suitable for measurement of a low blood glucose level
  • the second coloring reagent 121B having a small molar extinction coefficient is suitable for measurement of a high blood sugar level. Accordingly, when the predicting unit 25B determines that the value is less than the predetermined threshold value, the calculating unit 25A calculates a blood glucose level based on the first absorbance related to the first coloring reagent 121A (step S4). On the other hand, when the prediction unit 25B determines that the value is equal to or greater than the predetermined threshold value, the calculation unit 25A calculates a blood glucose level based on the second absorbance related to the second coloring reagent 121B (step S5).
  • step S4 Specific calculation method of blood glucose level is shown.
  • the blood glucose level is calculated based on the first absorbance (step S4)
  • the first absorbance is calculated based on the absorbance of light having the first wavelength emitted from the first light emitting element according to the first irradiation unit 31A.
  • the degree of coloration produced by the reaction between the coloring reagent 121A and blood is measured, and the blood glucose level is estimated with reference to the calibration curve (see FIG. 4) showing the relationship between the absorbance and the blood sugar level.
  • the red blood cell concentration is measured based on the absorbance of light having the second wavelength emitted from the second light emitting element according to the first irradiation unit 31A.
  • the blood glucose level is corrected using the hematocrit value obtained from the red blood cell concentration, and the blood glucose level is calculated.
  • step S5 when calculating the blood glucose level based on the second absorbance (step S5), first, by the absorbance of the light having the first wavelength emitted from the first light emitting element according to the second irradiation unit 31B, The degree of color development produced by the reaction between the second color development reagent 121B and blood is measured, and the blood glucose level is estimated with reference to the calibration curve (see FIG. 4) showing the relationship between the absorbance and the blood glucose level. Next, the red blood cell concentration is measured based on the absorbance of light having the second wavelength emitted from the second light emitting element related to the second irradiation unit 31B. The blood glucose level is corrected using the hematocrit value obtained from the red blood cell concentration, and the blood glucose level is calculated.
  • the calculated blood glucose level is displayed on the display 111 (step S6).
  • FIG. 5B shows a modification of the processing method performed by the processing unit 25.
  • a predetermined threshold value may be provided as a reference value for the amount of transmitted light that is the intensity of transmitted light. That is, after the blood is attached to the first coloring reagent 121A and the second coloring reagent 121B and reacted (Step S1), the light receiving units 32A and 32B acquire the transmission amount from each reactant (Step S2). .
  • the prediction unit 25B determines whether or not the first permeation amount related to the first coloring reagent 121A is less than a predetermined threshold value (step S3).
  • the calculation unit 25A calculates the blood glucose level based on the second permeation amount relating to the second color reagent 121B (step S4).
  • the prediction unit 25B determines that the value is equal to or greater than the predetermined threshold value
  • the calculation unit 25A calculates a blood glucose level based on the first permeation amount related to the first coloring reagent 121A (step S5).
  • the processing unit 25 calculates the value of the predetermined component based on the range predicted by the prediction unit. Then, the blood glucose level as the final result is displayed on the display 111 (step S6).
  • the predetermined threshold value as the absorbance reference value is 1.0, but may be another value, preferably 0.5 to 1.5, more preferably 0.7 to 1. By providing the reference value in the range of .3, better accuracy can be ensured.
  • the reference is provided for the first absorbance relating to the first coloring reagent 121A, the reference may be provided for the second absorbance relating to the second coloring reagent 121B.
  • a reference may be provided for the second transmission amount related to the second coloring reagent 121B.
  • a color reagent of a different type from the first color reagent 121A and the second color reagent 121B may be further provided, and a reference value may be set for the absorbance and transmission amount of the color reagent and used for prediction.
  • the absolute value of the difference between the calculated absorbance and a predetermined absorbance (for example, 1.0) as a reference value is compared, and the absorbance of the coloring reagent showing the smallest value is used for calculating the blood glucose level.
  • a predetermined absorbance for example, 1.0
  • the absolute value of the difference between the acquired transmission amount and a predetermined transmission amount for example, 150
  • the transmission amount of the coloring reagent showing the smallest value is determined.
  • the method of using for calculation of a blood glucose level may be used. These methods are particularly effective when three or more coloring reagents having different molar extinction coefficients can be used.
  • the calculation unit 25A may first calculate each blood glucose level for each absorbance, and select the optimum one based on the result of the prediction unit 25B. According to this method, the blood sugar level itself calculated by the calculation unit 25A can be used for prediction.
  • the used blood glucose measuring chip 12 is removed from the blood glucose meter 11.
  • the removal lever 114 is pulled, the eject pin 26 interlocked in the blood glucose meter 11 slides in the extending direction and the blood glucose measuring chip 12 is pushed out.
  • the power button 112 is pressed, the blood glucose meter 11 stops.
  • the first embodiment it is possible to realize a wide range of measurement from a low blood glucose level to a high blood glucose level, which is limited in the measurement with the conventional single color reagent, with one blood glucose measurement chip. It becomes possible. Thereby, a blood glucose meter set with high reproducibility in repeated measurement can be provided.
  • FIG. 6A is a top view showing a modification of the blood glucose measurement chip shown in FIG.
  • FIG. 6B is a cross-sectional view taken along the line EE of FIG.
  • the blood glucose measurement chip 12 has a base member 122.
  • the base member 122 has a flat bottom plate member 131 provided with the first coloring reagent 121A and the second coloring reagent 121B, and the thickness direction of the bottom plate member. This is realized by a spacer member 132 formed by double-sided tape or the like at both ends in the width direction that goes straight, and a lid member 133 laid over the spacer member 132.
  • the material of the bottom plate member 131 and the lid member 133 it is preferable to use a transparent material for light transmission, like the material of the base member 122 described above.
  • the base member 122 of the blood glucose measurement chip 12 communicates with a supply port 125 as a supply unit that supplies blood as a body fluid to the holding position of the coloring reagent (same as the reaction position in FIG. 6) from the supply port 125.
  • the flow path 124 is partitioned.
  • a substantially semi-elliptical cutout 141 is formed in the bottom plate member 131 and the lid member 133. Thereby, blood can be easily drawn into the flow path 124 from the supply port 125.
  • the cross-sectional shape is substantially square, and the cross-sectional thickness of the blood glucose measurement chip 12 is 100 ⁇ m or less. Is preferred. This is because the amount of blood to be used is reduced and the effect of capillary action described below is sufficiently obtained.
  • a small amount of blood that has flowed out of the fingertip or the like is spotted on the supply port 125.
  • Blood is sucked into the flow path 124 from the supply port 125 by capillary action and guided to the reaction position. Therefore, blood adheres to the first coloring reagent 121A and the second coloring reagent 121B, and each reaction starts. Capillary action allows blood to flow smoothly, and as a result, blood can be quickly guided to the reaction position.
  • the base member 122 includes a partition 126 between a position where the first coloring reagent 121A is held and a position where the second coloring reagent 121B is held.
  • the partition part is provided between different positions where two or more kinds of coloring reagents 121A and 121B having different molar extinction coefficients are held.
  • the partition 126 can physically separate the reaction product of the first coloring reagent 121A and the blood and the reaction product of the second coloring reagent 121B and the blood, enabling more accurate measurement. It becomes.
  • reaction product of the coloring reagent and blood may be moved by a flow channel means and measured at a position different from the reaction position.
  • FIG. 7A is a longitudinal sectional view showing a blood glucose meter set 2 as an embodiment of the present invention.
  • FIG. 7B is the figure which extracted the irradiation part, the light-receiving part, and the blood glucose measurement chip
  • the blood glucose meter set 2 includes a blood glucose measurement chip 14 and a blood glucose meter 13. Each will be described below.
  • the same components as those in the blood glucose meter set 1 described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the blood glucose measurement chip 14 has a base member 122. Moreover, it differs from the blood glucose measurement chip 12 shown in FIG. 6 in that a reflection film as a reflection part 127 that reflects light is provided inside the base member 122.
  • the reflecting portion 127 In order to reflect light, it is necessary to color the reflecting portion 127.
  • the coloration is not limited as long as it can be efficiently reflected without absorbing the irradiation wavelength, but white is most preferable.
  • Materials include polypropylene (PP), polyethylene (PE), polystyrene (PS), polycarbonate (PC), acrylic (PMMA), polyethylene terephthalate (PET), cyclic polyolefin (COP) and cyclic olefin copolymer (COC).
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • PC polycarbonate
  • acrylic PMMA
  • PET polyethylene terephthalate
  • COP cyclic polyolefin
  • COC cyclic olefin copolymer
  • titanium oxide, silicon dioxide, barium sulfate, aluminum, zinc, nickel, chromium, etc. are treated by means such as vacuum deposition, sputtering, or plating to obtain
  • the reflecting surface may be obtained by adding a certain amount of titanium oxide, silicon dioxide, barium sulfate or the like to the resin.
  • the reflection part 127 of this embodiment is provided in the position which opposes the 1st coloring reagent 121A and the 2nd coloring reagent 121B among the inner surfaces of the cover member 133. FIG.
  • the arrangement of the optical measurement unit 27 is different from the arrangement of the optical measurement unit 24 of the blood glucose meter 11 according to the first embodiment described above. Further, the light receiving unit 34 constituting the optical measuring unit 27 is different from the above-described light receiving units 32A and 32B in that the light reflected by the reflecting unit 127 is received.
  • the blood glucose meter 13 is divided into one space 43, in which a first irradiation unit 31A and a second irradiation unit 31B, and a first light receiving unit 34A and a second light receiving unit 34B are installed. ing. Although not shown in FIG. 7A, the second light receiving unit 34B is arranged at a position overlapping the first light receiving unit 34A in a direction perpendicular to the paper surface of FIG. 7A.
  • the first irradiation unit 31A and the second irradiation unit 31B, the first light receiving unit 34A and the second light receiving unit 34B, are arranged on one side of the blood measurement chip 14 in the thickness direction of the blood measurement chip 14. Further, the first irradiation unit 31A and the first light receiving unit 34A are arranged at positions where the irradiation light 33A can pass through the reactant, be reflected by the reflection unit 127, and be received by the first light receiving unit 34A. Has been.
  • the second irradiation unit 31B and the second light receiving unit 34B are arranged at positions where the irradiation light 33B can pass through the reaction product, be reflected by the reflection unit 127, and be received by the second light receiving unit 34B.
  • the first irradiation unit 31A and the second irradiation unit 31B are arranged at positions that overlap the first light receiving unit 34A and the second light receiving unit 34B, respectively, in a direction perpendicular to the paper surface of FIG. 7B.
  • the first irradiation unit 31A and the second irradiation unit 31B are indicated by dotted lines.
  • the blood glucose measuring chip 14 After attaching the blood glucose measuring chip 14 to the blood glucose meter 13, blood is supplied to the supply port 125.
  • the reaction starts when the blood reaches the first coloring reagent 121A and the second coloring reagent 121B.
  • the irradiation light 33A applied to the reactant is reflected by the reflection unit 127 described above, and is received by the first light receiving unit 34A as measurement light. Further, the irradiation light 33B is reflected by the reflection unit 127 described above, and is received by the second light receiving unit 34B as measurement light.
  • the blood glucose level is calculated by the processing unit 25 and the result is displayed on the display 111.
  • the processing method of the processing unit 25 is the same as that shown in the blood glucose meter set 1 (see FIG. 5A or FIG. 5B).
  • the blood glucose meter set 2 has the same effect as the blood glucose meter set 1 described above.
  • the component measuring device may be other than a blood glucose meter as long as the component measurement using absorbance is performed. That is, the body fluid may be other than blood (for example, urine), and the predetermined component may be other than blood glucose level (for example, protein, enzyme, etc.).
  • a blood suction / discharge mechanism (not shown) is installed on the blood glucose meter 11 side, and blood that has been collected in advance using a blood collection tube or the like using the discharge mechanism is used. You may discharge directly to the 1st coloring reagent 121A and the 2nd coloring reagent 121B.
  • the present invention relates to a component measuring device set and a body fluid measuring chip.

Abstract

A component measurement device set (1) for measuring a predetermined component in a body fluid, characterized by comprising: a body fluid measurement chip (12, 14) that has chromogenic reagents (121); irradiation units (31) that irradiate light on reaction products of the body fluid and the chromogenic reagents (121); light receiving units (32) that receive measurement light that has passed through the reaction products; and a processing unit (25) that processes signals obtained from the measurement light; wherein the body fluid measurement chip (12, 14) comprises a base member (122), and at least two chromogenic reagents (121) having molar absorption coefficients differing from one another are held in different locations on the base member (122).

Description

成分測定装置セット及び体液測定チップComponent measuring device set and body fluid measuring chip
 本発明は、成分測定装置セット及び体液測定チップに関する。 The present invention relates to a component measuring device set and a body fluid measuring chip.
 従来、血液や尿等の体液中の所定成分を測定する成分分析装置が広く普及している。測定原理として、発色試薬に体液を付着させて反応させ、発色度合を光学的に測定する方式が広く採用されている(特許文献1参照)。 Conventionally, component analyzers for measuring predetermined components in body fluids such as blood and urine have become widespread. As a measurement principle, a method of optically measuring the degree of color development by attaching a body fluid to a color-developing reagent and reacting it is widely adopted (see Patent Document 1).
 近年では、糖尿病患者の増加に伴い、患者自身が血糖値を測定できる簡易型の血糖計が利用されている。このような簡易型の血糖計には、発色試薬を有する使い捨てタイプの体液測定チップが用いられる(特許文献2参照)。 In recent years, with an increase in the number of diabetic patients, simple blood glucose meters that can measure blood glucose levels themselves have been used. In such a simple blood glucose meter, a disposable body fluid measuring chip having a coloring reagent is used (see Patent Document 2).
 この体液測定チップに関する発明では、例えば、特許文献3では、迅速な測定を可能にするため、体液が流入可能な流入口と、この流入口に連通する体液通路と、を有し、複数の突起を有する体液展開部に成分測定用の試薬を塗布し、この体液展開部よりも体液の流れ方向の下流側に測定部を設ける構成が開示されている(特許文献3参照)。 In the invention related to the body fluid measuring chip, for example, in Patent Document 3, in order to enable quick measurement, the body fluid measuring chip has an inflow port through which a body fluid can flow and a bodily fluid passage communicating with the inflow port. A configuration is disclosed in which a reagent for component measurement is applied to a body fluid developing part having a measuring part, and a measuring part is provided downstream of the body fluid developing part in the body fluid flow direction (see Patent Document 3).
特許文献1:特表平10-505676号公報 Patent Document 1: Japanese Patent Publication No. 10-505676
特許文献2:特開2011-64596号公報 Patent Document 2: JP 2011-64596 A
特許文献3:国際公開第2014/049704号 Patent Document 3: International Publication No. 2014/049744
 近年の市場ニーズとして、低血糖値から高血糖値までの広いレンジを精度よく測定することが課題となっている。 As a recent market need, it has been an issue to accurately measure a wide range from low blood glucose level to high blood glucose level.
 しかしながら、発色試薬は種類によりモル吸光係数が異なり、これにより1つの種類の発色試薬で精度よく測定できるレンジは限られている。上記の先行技術文献で開示されている発明は、一つの体液測定チップに単一の発色試薬を保持する方式を前提としており、高血糖と低血糖を同一の体液測定チップでそれぞれ精度よく測定することまでは想定されていない。 However, the molar extinction coefficient varies depending on the type of coloring reagent, and this limits the range that can be accurately measured with one type of coloring reagent. The invention disclosed in the above prior art documents is based on the premise that a single coloring reagent is held in one body fluid measurement chip, and each of the same body fluid measurement chip measures high blood sugar and low blood sugar with high accuracy. It is not envisaged.
 また、血糖計に限らず、吸光度を利用した他の成分測定装置においても、同様の課題がある。 In addition to the blood glucose meter, other component measuring devices using absorbance also have the same problem.
 本発明はこのような課題を考慮してなされたものであり、吸光度に基づく測定精度の変動を抑制可能な成分測定装置セット及び体液測定チップを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a component measurement device set and a body fluid measurement chip that can suppress fluctuations in measurement accuracy based on absorbance.
 本発明の第1の態様としての成分測定装置セットは、体液中の所定成分を測定する成分測定装置セットであって、発色試薬を有する体液測定チップと、前記体液と前記発色試薬との反応物に光を照射する照射部と、前記反応物を透過した測定光を受光する受光部と、前記測定光から得られる信号を処理する処理部と、を備え、前記体液測定チップは、ベース部材を備え、前記発色試薬は、前記ベース部材の異なる位置に保持されたモル吸光係数が互いに異なる2種以上の発色試薬であることを特徴とするものである。 The component measuring device set according to the first aspect of the present invention is a component measuring device set for measuring a predetermined component in a body fluid, a body fluid measuring chip having a color developing reagent, and a reaction product of the body fluid and the color developing reagent. An irradiating unit that irradiates light, a light receiving unit that receives measurement light transmitted through the reactant, and a processing unit that processes a signal obtained from the measurement light, wherein the body fluid measurement chip includes a base member And the color reagent is two or more color reagents having different molar extinction coefficients held at different positions on the base member.
 本発明の第2の態様としての体液測定チップは、発色試薬を有する体液測定チップであって、ベース部材を備え、前記発色試薬は、前記ベース部材の異なる位置に保持された少なくとも2種以上のモル吸光係数が互いに異なる発色試薬であることを特徴とするものである。 The body fluid measurement chip according to the second aspect of the present invention is a body fluid measurement chip having a coloring reagent, comprising a base member, wherein the coloring reagent is at least two or more kinds held at different positions of the base member. It is characterized in that it is a coloring reagent having different molar extinction coefficients.
 本発明によると、吸光度に基づく測定精度の変動を抑制することができる。 According to the present invention, fluctuations in measurement accuracy based on absorbance can be suppressed.
本発明の一実施形態に係る血糖計セットを示す平面図である。It is a top view which shows the blood glucose meter set which concerns on one Embodiment of this invention. 図1に示す血糖計セットの血糖計及び血糖測定チップを別々に示す縦断面図である。It is a longitudinal cross-sectional view which shows separately the blood glucose meter and blood glucose measurement chip | tip of the blood glucose meter set shown in FIG. 図2Aに示す血糖計に血糖測定チップが装着された状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state with which the blood glucose measuring chip was mounted | worn with the blood glucose meter shown to FIG. 2A. 図1に示す血糖計セットから照射部、受光部及び血糖測定チップを抜き出して背面側から見た図である。It is the figure which extracted the irradiation part, the light-receiving part, and the blood glucose measurement chip | tip from the blood glucose meter set shown in FIG. 1, and was seen from the back side. 本発明の一実施形態に係る血糖測定チップの図である。It is a figure of the blood glucose measuring chip concerning one embodiment of the present invention. 図3Aに示す血糖測定チップの変形例としての血糖測定チップを示す上面図である。It is a top view which shows the blood glucose measurement chip | tip as a modification of the blood glucose measurement chip | tip shown to FIG. 3A. 発色試薬の吸光度と血糖値の関係を例示するグラフである。It is a graph which illustrates the relationship between the light absorbency of a coloring reagent, and a blood glucose level. 図1に示す血糖計セットの処理部の処理方法を説明するフローチャートである。It is a flowchart explaining the processing method of the process part of the blood glucose meter set shown in FIG. 図5Aに示す血糖計セットの処理部の処理方法の変形例を示すフローチャートである。It is a flowchart which shows the modification of the processing method of the process part of the blood glucose meter set shown to FIG. 5A. 図3Aに示す血糖測定チップの変形例としての血糖測定チップを示す図である。It is a figure which shows the blood glucose measurement chip | tip as a modification of the blood glucose measurement chip | tip shown to FIG. 3A. 本発明の一実施形態としての血糖計セットを示す縦断面図である。It is a longitudinal cross-sectional view which shows the blood glucose meter set as one Embodiment of this invention. 図1に示す血糖計セットから照射部、受光部及び血糖測定チップを抜き出して背面側から見た図である。It is the figure which extracted the irradiation part, the light-receiving part, and the blood glucose measurement chip | tip from the blood glucose meter set shown in FIG. 1, and was seen from the back side.
 以下、本発明の実施形態を、図1~図7を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the common member in each figure.
<実施形態1>
 図1は本発明の一実施形態に係る成分測定装置セットとしての血糖計セット1を示す。血糖計セット1は、成分測定装置としての血糖計11と体液測定チップとしての血糖測定チップ12と、を備えている。当該血糖測定チップ12は血糖計11の先端部に装着される。血糖計11は、測定結果や操作内容などを表示するディスプレー111と、血糖計11の起動と終了を指示する電源ボタン112と、操作ボタン113と、血糖測定チップ12を取り外す取外レバー114と、を備えている。ディスプレー111は、液晶またはLED等で構成される。
<Embodiment 1>
FIG. 1 shows a blood glucose meter set 1 as a component measuring apparatus set according to an embodiment of the present invention. The blood glucose meter set 1 includes a blood glucose meter 11 as a component measurement device and a blood glucose measurement chip 12 as a body fluid measurement chip. The blood glucose measurement chip 12 is attached to the tip of the blood glucose meter 11. The blood glucose meter 11 includes a display 111 for displaying measurement results and operation details, a power button 112 for instructing activation and termination of the blood glucose meter 11, an operation button 113, a removal lever 114 for removing the blood glucose measurement chip 12, It has. The display 111 is composed of a liquid crystal or LED.
 図2Aは血糖計セット1の血糖計11の先端部及び血糖測定チップ12を別々に示す縦断面図である。血糖計11の先端部には、血糖測定チップ12を装着する装着孔23を区画する装着部22が設けられている。また、血糖計11の内部には、血糖測定チップ12に採取した体液(本実施形態では血液)の所定成分(本実施形態では血糖値)を測定するための光学測定部24を設ける。また、血糖計11は、測定光から得られる信号を処理し血糖値を算出する処理部25を備える。また、前記装着孔23に連通する開口に、取外レバー114と連動し血糖測定チップ12を取り外すイジェクトピン26を備える。以下、各構成について説明する。 FIG. 2A is a longitudinal sectional view separately showing the tip of the blood glucose meter 11 of the blood glucose meter set 1 and the blood glucose measurement chip 12. At the tip of the blood glucose meter 11, a mounting portion 22 that partitions a mounting hole 23 for mounting the blood glucose measuring chip 12 is provided. In addition, an optical measurement unit 24 for measuring a predetermined component (blood glucose level in the present embodiment) of body fluid (blood in the present embodiment) collected in the blood glucose measurement chip 12 is provided inside the blood glucose meter 11. The blood glucose meter 11 includes a processing unit 25 that processes a signal obtained from the measurement light and calculates a blood glucose level. In addition, the opening communicating with the mounting hole 23 is provided with an eject pin 26 for detaching the blood sugar measuring chip 12 in conjunction with the removal lever 114. Each configuration will be described below.
 図2Bは、図2Aに示した血糖計11に血糖測定チップ12が装着された状態を示す断面図、すなわち血糖計セット1の先端部の断面図である。図2Cは、図2Bに示した血糖計セット1のうち、第1の照射部31A及び第2の照射部31Bと、第1の受光部32A及び第2の受光部32Bと、血糖測定チップ12と、を抜き出して背面側(図2Bの右側)から見た図である。図2Bに示すように、測定の際は、血糖測定チップ12が装着孔23に装着される。装着作業はユーザーにより手作業で行われる。図示はしないが、手作業より生ずる装着位置のバラツキを最小限にするために、好ましくは、血糖測定チップ12を装着孔23内の所定位置に固定するための適当なロック機構等を設置する。 FIG. 2B is a cross-sectional view showing a state in which the blood glucose measurement chip 12 is attached to the blood glucose meter 11 shown in FIG. 2A, that is, a cross-sectional view of the distal end portion of the blood glucose meter set 1. 2C shows the blood glucose meter set 1 shown in FIG. 2B, the first irradiation unit 31A and the second irradiation unit 31B, the first light receiving unit 32A and the second light receiving unit 32B, and the blood glucose measurement chip 12. It is the figure which was extracted from the back side (right side of FIG. 2B). As shown in FIG. 2B, the blood glucose measurement chip 12 is mounted in the mounting hole 23 during measurement. The mounting operation is performed manually by the user. Although not shown, in order to minimize the variation of the mounting position caused by manual work, an appropriate lock mechanism or the like for fixing the blood glucose measurement chip 12 to a predetermined position in the mounting hole 23 is preferably installed.
 図2Cに示すように、光学測定部24は、照射部31と、受光部32と、を備える。より具体的には、本実施形態の光学測定部24は、後述する第1の発色試薬121Aと血液との反応物に光を照射する第1の照射部31Aと、後述する第2の発色試薬121Bと血液との反応物に光を照射する第2の照射部31Bと、当該第1の発色試薬121Aと血液との反応物を透過した光を測定光として受光する第1の受光部32Aと、当該第2の発色試薬121Bと血液との反応物を透過した光を測定光として受光する第2の受光部32Bと、を備えている。 As shown in FIG. 2C, the optical measurement unit 24 includes an irradiation unit 31 and a light receiving unit 32. More specifically, the optical measurement unit 24 of the present embodiment includes a first irradiation unit 31A that irradiates a reaction product of a first coloring reagent 121A and blood described later, and a second coloring reagent described later. A second irradiating unit 31B for irradiating a reaction product of 121B and blood with light, and a first light receiving unit 32A for receiving light transmitted through the reaction product of the first color reagent 121A and blood as measurement light; And a second light receiving unit 32B that receives, as measurement light, light transmitted through the reaction product of the second coloring reagent 121B and blood.
 血糖計11の内部には、装着孔23と連通する第1の空間41と第2の空間42とが形成されている。第1の照射部31A及び第2の照射部31Bは当該第1の空間41に、第1の受光部32A及び第2の受光部32Bは当該第2の空間42に、それぞれ配置されている。血糖測定チップ12が血糖計11に装着されていない状態では、当該第1の空間41と、当該第2の空間42とは、装着孔23を挟んで対向する(図2A参照)。血糖測定チップ12が血糖計11に装着された状態では、当該第1の空間41と、当該第2の空間42とは、当該血糖測定チップ12の第1の発色試薬121A及び第2の発色試薬121Bが保持されている位置を挟んで対向する(図2B参照)。 In the blood glucose meter 11, a first space 41 and a second space 42 communicating with the mounting hole 23 are formed. The first irradiation unit 31A and the second irradiation unit 31B are arranged in the first space 41, and the first light receiving unit 32A and the second light receiving unit 32B are arranged in the second space 42, respectively. In a state where the blood glucose measurement chip 12 is not attached to the blood glucose meter 11, the first space 41 and the second space 42 face each other with the attachment hole 23 therebetween (see FIG. 2A). In a state in which the blood glucose measurement chip 12 is attached to the blood glucose meter 11, the first space 41 and the second space 42 are the first coloring reagent 121A and the second coloring reagent of the blood glucose measurement chip 12. Opposing across the position where 121B is held (see FIG. 2B).
 図2Cに示すように、血糖測定チップ12を装着孔23に装着した状態では、第1の照射部31Aと第1の受光部32Aとは、後述する第1の発色試薬121Aを挟んで対向する。また、第2の照射部31Bと第2の受光部32Bとは、後述する第2の発色試薬121Bを挟んで対向する。 As shown in FIG. 2C, in a state in which the blood glucose measurement chip 12 is mounted in the mounting hole 23, the first irradiation unit 31A and the first light receiving unit 32A face each other with a first coloring reagent 121A described later interposed therebetween. . Further, the second irradiation unit 31B and the second light receiving unit 32B are opposed to each other with a second coloring reagent 121B to be described later interposed therebetween.
 第1の受光部32Aは、血糖測定チップ12を透過した第1の照射部31Aからの照射光33Aを損失なく受光できるように配置されるのが好ましい。また、第2の受光部32Bは、血糖測定チップ12を透過した第2の照射部31Bからの照射光33Bを損失なく受光できるように配置されるのが好ましい。例えば、後述するように、血糖測定チップ12が平板状でありその底面が平面の場合は、第1の照射部31Aは照射光33Aが血糖測定チップ12の底面に垂直に照射できる位置に、第2の照射部31Bは照射光33Bが血糖測定チップ12の底面に垂直に照射できる位置に、それぞれ配置されるのが好ましい。 The first light receiving unit 32A is preferably arranged so that it can receive the irradiation light 33A from the first irradiation unit 31A transmitted through the blood sugar measurement chip 12 without loss. The second light receiving unit 32B is preferably arranged so that it can receive the irradiation light 33B from the second irradiation unit 31B transmitted through the blood sugar measurement chip 12 without loss. For example, as will be described later, when the blood glucose measurement chip 12 has a flat plate shape and the bottom surface is flat, the first irradiation unit 31A is positioned at a position where the irradiation light 33A can be irradiated vertically to the bottom surface of the blood glucose measurement chip 12. The two irradiation units 31B are preferably arranged at positions where the irradiation light 33B can be irradiated perpendicularly to the bottom surface of the blood glucose measurement chip 12.
 また、第1の照射部31A及び第2の照射部31Bそれぞれは、第1の波長を有する光を発する第1の発光素子と、第1の波長と異なる第2の波長を有する光を発する第2の発光素子とを含む。ここで、第1の波長は、血糖量に応じた発色度合を測定するための波長であり、例えば600~900nmの波長帯にある。第2の波長は、血液中の赤血球濃度を測定するための波長であり、例えば510~590nmの波長帯にある。 In addition, each of the first irradiation unit 31A and the second irradiation unit 31B emits light having a first wavelength that emits light having a first wavelength and light having a second wavelength different from the first wavelength. 2 light emitting elements. Here, the first wavelength is a wavelength for measuring the degree of color development according to the blood glucose level, and is in the wavelength band of 600 to 900 nm, for example. The second wavelength is a wavelength for measuring the concentration of red blood cells in blood, for example, in the wavelength band of 510 to 590 nm.
 本実施形態では、第1の照射部31Aに係る第1の発光素子及び第2の発光素子と、第2の照射部31Bに係る第1の発光素子及び第2の発光素子と、には発光ダイオード(LED)を用いるが、ハロゲンランプ、レーザー等であってもよい。また、第1の受光部32A及び第2の受光部32Bには、例えば、フォトダイオード(PD)を用いる。第1の受光部32A及び第2の受光部32Bは受光した光を所定の信号に変換できるものであればよく、CCD、CMOS等であってもよい。 In the present embodiment, the first light emitting element and the second light emitting element related to the first irradiation unit 31A, and the first light emitting element and the second light emitting element related to the second irradiation unit 31B emit light. Although a diode (LED) is used, a halogen lamp, a laser, or the like may be used. For example, a photodiode (PD) is used for the first light receiving unit 32A and the second light receiving unit 32B. The first light receiving unit 32A and the second light receiving unit 32B may be any one that can convert received light into a predetermined signal, and may be a CCD, a CMOS, or the like.
 図示はしないが、照射部としてハロゲンランプを用いる場合は、特定の波長のみを抽出するために分光フィルタを設けてもよい。また、低エネルギーの照射で有効に実施するために、集光レンズを備えてもよい。 Although not shown, when a halogen lamp is used as the irradiation unit, a spectral filter may be provided to extract only a specific wavelength. In addition, a condensing lens may be provided for effective implementation with low energy irradiation.
 処理部25は、測定光から得られる信号に基づいて体液中の所定成分の値としての血糖値を算出する算出部25Aと、測定光から得られる信号に基づいて血糖値が含まれる所定の範囲を予測する予測部25Bと、を含む。具体的な処理方法は後述する(図5Aまたは図5B参照)。 The processing unit 25 calculates a blood glucose level as a value of a predetermined component in the body fluid based on a signal obtained from the measurement light, and a predetermined range in which the blood glucose level is included based on the signal obtained from the measurement light And a prediction unit 25B that predicts. A specific processing method will be described later (see FIG. 5A or 5B).
 次に、血糖測定チップ12の実施形態について詳細を説明する。当該血糖測定チップ12は使い捨てタイプであり、測定の開始前に血糖計11に装着され、測定終了後は血糖計11から外される。 Next, details of the embodiment of the blood glucose measurement chip 12 will be described. The blood glucose measurement chip 12 is a disposable type, and is attached to the blood glucose meter 11 before the start of measurement, and is removed from the blood glucose meter 11 after the measurement is completed.
 血糖測定チップ12は、第1の発色試薬121A及び第2の発色試薬121Bと、ベース部材122と、を備える。 The blood glucose measurement chip 12 includes a first coloring reagent 121A and a second coloring reagent 121B, and a base member 122.
 第1の発色試薬121A及び第2の発色試薬121Bは、血液と反応して発色する性質を有する。このような試薬としては、例えば、(i)グルコースオキシダーゼ(GOD)と(ii)ペルオキシダーゼ(POD)と(iii)1-(4-スルホフェニル)-2,3-ジメチル-4-アミノ-5-ピラゾロンと(iv)N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン,ナトリウム塩,1水和物(MAOS)との混合試薬、あるいはグルコースデヒドロゲナーゼ(GDH)とテトラゾリウム塩及び電子メディエーターとの混合試薬などが挙げられる。また、第1の発色試薬121A及び第2の発色試薬121Bは、塗布等により、前記ベース部材122の上に設けられる。第1の発色試薬と第2の発色試薬の組み合わせ例として、第1の発色試薬に、グルコースデヒドロゲナーゼ(GDH)と臭化3-(4,5-ジメチル-2-チアゾリル)-2,5-ジフェニル-2H-テトラゾリウム(MTT)と塩化コバルトと1-メトキシ-5-メチルフェナジニウムメチルサルフェイト(1-メトキシPMS)との混合試薬(モル吸光係数ε=20,000(MTTコバルトキレートλ=660nm))、第2の発色試薬に、グルコースデヒドロゲナーゼ(GDH)と水溶性テトラゾリウム塩(WST-4)と1-メトキシ-5-メチルフェナジニウムメチルサルフェイト(1-メトキシPMS)との混合試薬(モル吸光係数ε=12,000(λ=660nm))と、を用いることができる。 The first coloring reagent 121A and the second coloring reagent 121B have a property of reacting with blood to develop color. Examples of such reagents include (i) glucose oxidase (GOD), (ii) peroxidase (POD), and (iii) 1- (4-sulfophenyl) -2,3-dimethyl-4-amino-5- Mixed reagent of pyrazolone and (iv) N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethylaniline, sodium salt, monohydrate (MAOS), or glucose dehydrogenase (GDH) And a mixed reagent of tetrazolium salt and an electron mediator. The first coloring reagent 121A and the second coloring reagent 121B are provided on the base member 122 by coating or the like. As an example of the combination of the first coloring reagent and the second coloring reagent, the first coloring reagent includes glucose dehydrogenase (GDH) and 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl bromide. -2H-tetrazolium (MTT), cobalt chloride and 1-methoxy-5-methylphenazinium methyl sulfate (1-methoxy PMS) mixed reagent (molar extinction coefficient ε = 20,000 (MTT cobalt chelate λ = 660 nm)) In addition, a mixed reagent (molar absorption) of glucose dehydrogenase (GDH), water-soluble tetrazolium salt (WST-4) and 1-methoxy-5-methylphenazinium methyl sulfate (1-methoxy PMS) was used as the second coloring reagent. The coefficient ε = 12,000 (λ = 660 nm) can be used.
 図3A(a)は、本発明の一実施形態に係る血糖測定チップ12の上面図である。ベース部材122の異なる位置に、互いにモル吸光係数が異なる2種類の発色試薬121A、121Bが保持されている。本実施形態では、モル吸光係数が大きい方を第1の発色試薬121Aと、小さい方を第2の発色試薬121Bと、する。 FIG. 3A (a) is a top view of the blood glucose measurement chip 12 according to an embodiment of the present invention. Two kinds of coloring reagents 121A and 121B having different molar extinction coefficients are held at different positions of the base member 122. In the present embodiment, the one having the larger molar extinction coefficient is the first coloring reagent 121A, and the one having the smaller molar extinction coefficient is the second coloring reagent 121B.
 図3A(b)は、図3A(a)のD-D断面図である。ベース部材122は中央に溝を区画し、溝底部に、第1の発色試薬121Aと、第2の発色試薬121Bと、を備える。また、この溝は、血液を運ぶ流路124としての機能を果たす。血糖測定チップ12の先端部には、流路124の一端となる供給部123が形成されており、供給部123から血液を供給することが可能である。当該供給部123に供給された血液は、区画された流路124により、途中でこぼれることなく第1の発色試薬121A及び第2の発色試薬121Bの保持位置まで正確に誘導される。ここで、流路124のうち、供給部123が形成された一端側を上流側と、第1の発色試薬121A及び第2の発色試薬121Bが保持される他端側を下流側と、する。 FIG. 3A (b) is a DD cross-sectional view of FIG. 3A (a). The base member 122 has a groove at the center, and includes a first coloring reagent 121A and a second coloring reagent 121B at the groove bottom. In addition, this groove functions as a flow path 124 for carrying blood. A supply part 123 serving as one end of the flow path 124 is formed at the tip of the blood glucose measurement chip 12, and blood can be supplied from the supply part 123. The blood supplied to the supply unit 123 is accurately guided to the holding positions of the first coloring reagent 121A and the second coloring reagent 121B by the partitioned flow path 124 without spilling on the way. Here, in the flow path 124, one end side where the supply unit 123 is formed is an upstream side, and the other end side where the first coloring reagent 121A and the second coloring reagent 121B are held is a downstream side.
 なお、ベース部材122の断面の形状及び寸法は、当該実施形態の形状に限られない。例えば、流路124としての溝の横断面が円弧であってもよい。また、ベース部材が、流路124を取り囲む断面形状を有していてもよく、このような構成は底板部材とそのカバーとしての蓋部材と、から形成してもよい。また、血液を直接第1の発色試薬121A及び第2の発色試薬121Bに付着させる方法による場合は、流路124を区画しなくてもよく、供給部123を備えなくてもよい。 In addition, the shape and dimension of the cross section of the base member 122 are not limited to the shape of the embodiment. For example, the cross section of the groove as the flow path 124 may be an arc. Further, the base member may have a cross-sectional shape surrounding the flow path 124, and such a configuration may be formed of a bottom plate member and a lid member as a cover thereof. Further, in the case of using a method in which blood is directly attached to the first coloring reagent 121A and the second coloring reagent 121B, the flow path 124 may not be partitioned and the supply unit 123 may not be provided.
 発色試薬の配置は、本実施形態に限られない。図3Bは、図3Aに示した血糖測定チップ12の変形例としての血糖測定チップを示す上面図である。例えば、図3B(a)に示すように、第1の発色試薬121Aを上流側に、第2の発色試薬121Bを下流側に、配置してもよい。また、逆に、第1の発色試薬121Aを下流側に、第2の発色試薬121Bを上流側に、配置してもよい。また、図3B(b)に示すように、互いにモル吸光係数の異なる3種類以上の発色試薬を用い、上流側から下流側に向かって順に、第1の発色試薬121Aと、第2の発色試薬121Bと、この第2の発色試薬121Bよりモル吸光係数の小さい第3の発色試薬121Cと、を設置してもよい。 The arrangement of the coloring reagent is not limited to this embodiment. FIG. 3B is a top view showing a blood glucose measurement chip as a modification of the blood glucose measurement chip 12 shown in FIG. 3A. For example, as shown in FIG. 3B (a), the first coloring reagent 121A may be arranged on the upstream side, and the second coloring reagent 121B may be arranged on the downstream side. Conversely, the first coloring reagent 121A may be arranged on the downstream side, and the second coloring reagent 121B may be arranged on the upstream side. Further, as shown in FIG. 3B (b), three or more kinds of coloring reagents having different molar extinction coefficients are used, and the first coloring reagent 121A and the second coloring reagent are sequentially arranged from the upstream side to the downstream side. 121B and a third coloring reagent 121C having a molar extinction coefficient smaller than that of the second coloring reagent 121B may be provided.
 図4に、上記の第1の発色試薬121A及び第2の発色試薬121Bの吸光度と血糖値との関係の一例をグラフで示す。横軸201は吸光度、縦軸202は血糖値である。血糖値は、単位体積当たりの血液に含まれるグルコースの質量のことで、単位にはmg/dLが使われる。図4に示すように、吸光度と血糖値との関係は一次関数(直線)で表すことができる。モル吸光係数の大きい第1の発色試薬121Aは、低血糖値でも吸光度が大きいため、直線の傾きが小さい(図4の符番「203」参照)。一方で、モル吸光係数の小さい第2の発色試薬121Bは、高血糖値でも吸光度が小さいため、直線の傾きが大きい(図4の符番「204」参照)。モル吸光係数の大きい発色試薬(本実施形態では第1の発色試薬121A)は低血糖値の測定範囲W1に、モル吸光係数の小さい発色試薬(本実施形態では第2の発色試薬121B)は高血糖値の測定範囲W2に、それぞれ適している。また、この関係式は後述する血糖値の算出過程で処理部25により検量線として用いられる。なお、本実施形態では、モル吸光係数の大きい第1の発色試薬において、吸光度のしきい値以下である血糖値の範囲を低血糖値の測定範囲、吸光度がしきい値以上である血糖値の範囲を高血糖値の範囲とした。 FIG. 4 is a graph showing an example of the relationship between the absorbance and blood glucose level of the first coloring reagent 121A and the second coloring reagent 121B. The horizontal axis 201 is absorbance, and the vertical axis 202 is blood glucose level. The blood glucose level is the mass of glucose contained in blood per unit volume, and mg / dL is used as the unit. As shown in FIG. 4, the relationship between the absorbance and the blood glucose level can be expressed by a linear function (straight line). The first color-developing reagent 121A having a large molar extinction coefficient has a large absorbance even at a low blood glucose level, and therefore the slope of the straight line is small (see reference numeral “203” in FIG. 4). On the other hand, the second color developing reagent 121B having a small molar extinction coefficient has a small absorbance even at a high blood glucose level, and therefore has a large slope of the straight line (see reference numeral “204” in FIG. 4). A coloring reagent having a large molar extinction coefficient (the first coloring reagent 121A in this embodiment) is in the low blood glucose measurement range W1, and a coloring reagent having a small molar extinction coefficient (the second coloring reagent 121B in this embodiment) is high. Each is suitable for the blood glucose level measurement range W2. Further, this relational expression is used as a calibration curve by the processing unit 25 in the blood glucose level calculation process described later. In the present embodiment, in the first coloring reagent having a large molar extinction coefficient, the range of the blood glucose level that is not more than the threshold value of absorbance is the measurement range of the low blood glucose level, and the blood glucose level of which absorbance is not less than the threshold value. The range was defined as the range of high blood glucose level.
 ベース部材122の材質としては、光の透過のために透明性の素材を用いるのが好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、環状ポリオレフィン(COP)や環状オレフィンコポリマー(COC)、ポリカーボネード(PC)等の透明な有機樹脂材料;ガラス、石英等の透明性な無機材料;が挙げられる。 As the material of the base member 122, it is preferable to use a transparent material for light transmission. For example, transparent organic resin materials such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polystyrene (PS), cyclic polyolefin (COP), cyclic olefin copolymer (COC), and polycarbonate (PC); glass, quartz, etc. Transparent inorganic materials.
 以上が本実施形態に係る血糖計セット1の基本的な構成の詳細であり、以下では、測定方法を説明する。 The above is the details of the basic configuration of the blood glucose meter set 1 according to the present embodiment, and the measurement method will be described below.
 電源ボタン112を押下すると血糖計11が起動する。血糖測定チップ12を装着孔23に装着する。 When the power button 112 is pressed, the blood glucose meter 11 is activated. The blood glucose measurement chip 12 is attached to the attachment hole 23.
 次に、図示はしないが、穿刺器具で患者の体の一部である例えば指先などを穿刺し、流出した少量の血液を供給部123から流路124を通じて第1の発色試薬121Aと、第2の発色試薬121Bと、に付着させる。 Next, although not shown in the figure, the first color reagent 121A and the second color reagent are punctured with a puncture device, for example, a fingertip, and the small amount of blood that has flowed out from the supply unit 123 through the flow path 124. And the coloring reagent 121B.
 反応が開始すると、血糖量に応じて発色体が生じそれにより発色する。発色度合は吸光度により測定できる。具体的には、第1の照射部31Aは、第1の発光素子と、第2の発光素子と、から第1の発色試薬121Aと血液との反応物に対して光を交互に照射する。また、第2の照射部31Bは、第1の発光素子と、第2の発光素子と、から第2の発色試薬121Bと血液との反応物に対して光を交互に照射する。そして、第1の受光部32Aは、第1の発色試薬121Aと血液との反応物を透過した透過光を測定光として受光する。また、第2の受光部32Bは、第2の発色試薬121Bと血液との反応物を透過した透過光を測定光として受光する。 When the reaction starts, a colored body is generated according to the blood glucose level, and the color is developed. The degree of color development can be measured by absorbance. Specifically, the first irradiation unit 31A alternately irradiates light from the first light emitting element and the second light emitting element to the reaction product of the first coloring reagent 121A and blood. In addition, the second irradiation unit 31B alternately irradiates light from the first light emitting element and the second light emitting element to the reaction product of the second coloring reagent 121B and blood. The first light receiving unit 32A receives, as measurement light, transmitted light that has passed through a reaction product between the first coloring reagent 121A and blood. In addition, the second light receiving unit 32B receives, as measurement light, transmitted light that has passed through a reaction product between the second coloring reagent 121B and blood.
 処理部25はこの透過光の強度に対応した大きさの信号に基づき吸光度を演算する。本実施形態では、血糖測定チップ12は二種類の発色試薬121A及びBを備えているため、第1の発色試薬121Aと血液との反応物に係る第1の吸光度と、第2の発色試薬121Bと血液との反応物に係る第2の吸光度と、の二種類の吸光度が得られる。処理部25は、この二種類の吸光度を使い、血糖値を算出する。以下、処理部25で行われる血糖値算出の処理方法を説明する。 The processing unit 25 calculates the absorbance based on a signal having a magnitude corresponding to the intensity of the transmitted light. In this embodiment, since the blood glucose measurement chip 12 includes two kinds of color developing reagents 121A and B, the first absorbance relating to the reaction product of the first color developing reagent 121A and blood, and the second color developing reagent 121B. Two kinds of absorbances are obtained, that is, a second absorbance related to a reaction product of blood and blood. The processing unit 25 calculates the blood glucose level using these two types of absorbance. Hereinafter, a processing method of blood glucose level calculation performed by the processing unit 25 will be described.
 図5Aは、処理部25の処理方法を説明するフローチャートである。第1の発色試薬121A及び第2の発色試薬121Bに血液を付着して反応させたのち(ステップS1)、算出部25Aは各反応物からの透過光の強度を基に吸光度を演算する(ステップS2)。 FIG. 5A is a flowchart for explaining the processing method of the processing unit 25. After attaching blood to the first coloring reagent 121A and the second coloring reagent 121B and reacting them (step S1), the calculation unit 25A calculates the absorbance based on the intensity of transmitted light from each reaction product (step S1). S2).
 次に、予測部25Bが、血糖値が属する範囲を予測する。本実施形態では、予測するための基準として、第1の発色試薬121Aに係る第1の吸光度に、所定のしきい値を設定する(例えば1.0)。この所定のしきい値は、あらかじめ血糖計11の記憶部に登録されている。 Next, the prediction unit 25B predicts a range to which the blood glucose level belongs. In the present embodiment, as a reference for prediction, a predetermined threshold is set for the first absorbance related to the first coloring reagent 121A (for example, 1.0). This predetermined threshold value is registered in the storage unit of the blood glucose meter 11 in advance.
 予測部25Bは、当該第1の吸光度が所定のしきい値未満かどうかを判定する(ステップS3)。第1の吸光度が所定のしきい値未満の場合、血糖値が所定値より低い範囲に属すると予測する(図4の符番「205」参照)。一方で、当該値が所定のしきい値以上の場合、血糖値が所定値より低い範囲に属するものではない、すなわち、所定値以上の高い範囲に属すると予測する(図4の符番「206」参照)。 The prediction unit 25B determines whether or not the first absorbance is less than a predetermined threshold value (step S3). When the first absorbance is less than a predetermined threshold, it is predicted that the blood glucose level belongs to a range lower than the predetermined value (see reference numeral “205” in FIG. 4). On the other hand, if the value is equal to or higher than the predetermined threshold, it is predicted that the blood glucose level does not belong to a range lower than the predetermined value, that is, belongs to a higher range equal to or higher than the predetermined value (number “206” in FIG. "reference).
 上述したように、モル吸光係数の大きい第1の発色試薬121Aは低血糖値の測定に適しており、モル吸光係数の小さい第2の発色試薬121Bは高血糖値の測定に適している。従い、予測部25Bが所定のしきい値未満と判断した場合、算出部25Aは、第1の発色試薬121Aに係る第1の吸光度に基づいて血糖値を算出する(ステップS4)。一方で、予測部25Bが所定のしきい値以上と判断した場合、算出部25Aは、第2の発色試薬121Bに係る第2の吸光度に基づいて血糖値を算出する(ステップS5)。 As described above, the first coloring reagent 121A having a large molar extinction coefficient is suitable for measurement of a low blood glucose level, and the second coloring reagent 121B having a small molar extinction coefficient is suitable for measurement of a high blood sugar level. Accordingly, when the predicting unit 25B determines that the value is less than the predetermined threshold value, the calculating unit 25A calculates a blood glucose level based on the first absorbance related to the first coloring reagent 121A (step S4). On the other hand, when the prediction unit 25B determines that the value is equal to or greater than the predetermined threshold value, the calculation unit 25A calculates a blood glucose level based on the second absorbance related to the second coloring reagent 121B (step S5).
 具体的な血糖値の算出方法を示す。第1の吸光度に基づいて血糖値を算出する場合(ステップS4)、まず、第1の照射部31Aに係る第1の発光素子から発せられた第1の波長を有する光の吸光度によって、第1の発色試薬121Aと血液との反応で生じた発色度合を測定し、上述した吸光度と血糖値との関係を示した検量線(図4参照)を参照して、血糖値を推定する。次に、第1の照射部31Aに係る第2の発光素子から発せられた第2の波長を有する光の吸光度によって、赤血球濃度を測定する。当該赤血球濃度から得られるへマトクリット値を用いて前記血糖値を補正して、血糖値を算出する。 Specific calculation method of blood glucose level is shown. When the blood glucose level is calculated based on the first absorbance (step S4), first, the first absorbance is calculated based on the absorbance of light having the first wavelength emitted from the first light emitting element according to the first irradiation unit 31A. The degree of coloration produced by the reaction between the coloring reagent 121A and blood is measured, and the blood glucose level is estimated with reference to the calibration curve (see FIG. 4) showing the relationship between the absorbance and the blood sugar level. Next, the red blood cell concentration is measured based on the absorbance of light having the second wavelength emitted from the second light emitting element according to the first irradiation unit 31A. The blood glucose level is corrected using the hematocrit value obtained from the red blood cell concentration, and the blood glucose level is calculated.
 一方、第2の吸光度に基づいて血糖値を算出する場合(ステップS5)、まず、第2の照射部31Bに係る第1の発光素子から発せられた第1の波長を有する光の吸光度によって、第2の発色試薬121Bと血液との反応で生じた発色度合を測定し、上述した吸光度と血糖値との関係を示した検量線(図4参照)を参照して、血糖値を推定する。次に、第2の照射部31Bに係る第2の発光素子から発せられた第2の波長を有する光の吸光度によって、赤血球濃度を測定する。当該赤血球濃度から得られるへマトクリット値を用いて前記血糖値を補正して、血糖値を算出する。 On the other hand, when calculating the blood glucose level based on the second absorbance (step S5), first, by the absorbance of the light having the first wavelength emitted from the first light emitting element according to the second irradiation unit 31B, The degree of color development produced by the reaction between the second color development reagent 121B and blood is measured, and the blood glucose level is estimated with reference to the calibration curve (see FIG. 4) showing the relationship between the absorbance and the blood glucose level. Next, the red blood cell concentration is measured based on the absorbance of light having the second wavelength emitted from the second light emitting element related to the second irradiation unit 31B. The blood glucose level is corrected using the hematocrit value obtained from the red blood cell concentration, and the blood glucose level is calculated.
 算出された最終結果としての血糖値は、ディスプレー111に表示される(ステップS6)。 The calculated blood glucose level is displayed on the display 111 (step S6).
 図5Bに、処理部25が行う処理方法の変形例を示す。図5Bに示すように透過光の強度である透過量の基準値としての所定のしきい値を設けてもよい。すなわち、第1の発色試薬121A及び第2の発色試薬121Bに血液を付着して反応させたのち(ステップS1)、受光部32A及び32Bは各反応物からの透過量を取得する(ステップS2)。予測部25Bは、第1の発色試薬121Aに係る第1の透過量が所定のしきい値未満かどうかを判定する(ステップS3)。当該第1の透過量が所定のしきい値未満の場合、算出部25Aは、第2の発色試薬121Bに係る第2の透過量に基づいて血糖値を算出する(ステップS4)。一方で、予測部25Bが所定のしきい値以上と判断した場合、算出部25Aは、第1の発色試薬121Aに係る第1の透過量に基づいて血糖値を算出する(ステップS5)。換言すれば、処理部25は、予測部が予測する範囲に基づいて前記所定成分の値を算出するものである。そして、最終結果としての血糖値がディスプレー111に表示される(ステップS6)。 FIG. 5B shows a modification of the processing method performed by the processing unit 25. As shown in FIG. 5B, a predetermined threshold value may be provided as a reference value for the amount of transmitted light that is the intensity of transmitted light. That is, after the blood is attached to the first coloring reagent 121A and the second coloring reagent 121B and reacted (Step S1), the light receiving units 32A and 32B acquire the transmission amount from each reactant (Step S2). . The prediction unit 25B determines whether or not the first permeation amount related to the first coloring reagent 121A is less than a predetermined threshold value (step S3). When the first permeation amount is less than the predetermined threshold value, the calculation unit 25A calculates the blood glucose level based on the second permeation amount relating to the second color reagent 121B (step S4). On the other hand, when the prediction unit 25B determines that the value is equal to or greater than the predetermined threshold value, the calculation unit 25A calculates a blood glucose level based on the first permeation amount related to the first coloring reagent 121A (step S5). In other words, the processing unit 25 calculates the value of the predetermined component based on the range predicted by the prediction unit. Then, the blood glucose level as the final result is displayed on the display 111 (step S6).
 なお、本実施形態では、吸光度の基準値としての所定のしきい値を1.0としたが、別の値でもよく、好ましくは0.5~1.5、より好ましくは0.7~1.3の範囲に基準値を設けることでより良好な精度を確保することができる。また、第1の発色試薬121Aに係る第1の吸光度に基準を設けたが、第2の発色試薬121Bに係る第2の吸光度に基準を設けてもよい。また、透過量を予測に使用する場合、第2の発色試薬121Bに係る第2の透過量に基準を設けてもよい。さらに、第1の発色試薬121Aや第2の発色試薬121Bとは別の種類の発色試薬を更に設け、この発色試薬の吸光度、透過量に基準値を設定し、予測に使用してもよい。 In the present embodiment, the predetermined threshold value as the absorbance reference value is 1.0, but may be another value, preferably 0.5 to 1.5, more preferably 0.7 to 1. By providing the reference value in the range of .3, better accuracy can be ensured. In addition, although the reference is provided for the first absorbance relating to the first coloring reagent 121A, the reference may be provided for the second absorbance relating to the second coloring reagent 121B. When the transmission amount is used for prediction, a reference may be provided for the second transmission amount related to the second coloring reagent 121B. Furthermore, a color reagent of a different type from the first color reagent 121A and the second color reagent 121B may be further provided, and a reference value may be set for the absorbance and transmission amount of the color reagent and used for prediction.
 また、演算された吸光度と基準値となる所定の吸光度(例えば1.0)との差の絶対値を比較し、もっとも小さい値を示した発色試薬の吸光度を血糖値の算出に使用するという方法でもよい。また、透過量を予測に使用する場合、取得した透過量と基準値となる所定の透過量(例えば150)との差の絶対値を比較し、もっとも小さい値を示した発色試薬の透過量を血糖値の算出に使用するという方法でもよい。これらの方法は、モル吸光係数の異なる発色試薬を3種類以上使用できる場合に特に有効である。 Further, the absolute value of the difference between the calculated absorbance and a predetermined absorbance (for example, 1.0) as a reference value is compared, and the absorbance of the coloring reagent showing the smallest value is used for calculating the blood glucose level. But you can. When the transmission amount is used for prediction, the absolute value of the difference between the acquired transmission amount and a predetermined transmission amount (for example, 150) as a reference value is compared, and the transmission amount of the coloring reagent showing the smallest value is determined. The method of using for calculation of a blood glucose level may be used. These methods are particularly effective when three or more coloring reagents having different molar extinction coefficients can be used.
 また、算出部25Aで、各吸光度に対するそれぞれの血糖値の算出を先に行い、予測部25Bの結果に基づいて最適な方を選択するという方法でもよい。この方法によると、算出部25Aが算出した血糖値そのものを予測に使用することも可能となる。 Alternatively, the calculation unit 25A may first calculate each blood glucose level for each absorbance, and select the optimum one based on the result of the prediction unit 25B. According to this method, the blood sugar level itself calculated by the calculation unit 25A can be used for prediction.
 測定終了後は、使用済みの血糖測定チップ12を血糖計11から外す。取外レバー114を引くと、血糖計11内で連動するイジェクトピン26が延在方向にスライドし血糖測定チップ12が外側に押し出される。最後に、電源ボタン112を押下すると血糖計11が停止する。 After the measurement, the used blood glucose measuring chip 12 is removed from the blood glucose meter 11. When the removal lever 114 is pulled, the eject pin 26 interlocked in the blood glucose meter 11 slides in the extending direction and the blood glucose measuring chip 12 is pushed out. Finally, when the power button 112 is pressed, the blood glucose meter 11 stops.
 以上説明したように、実施形態1によると、従来の単一発色試薬での測定では限界のあった低血糖値から高血糖値までの広いレンジの測定を一つの血糖測定チップで実現することが可能となる。また、これにより、繰り返し測定における再現性の高い血糖計セットを提供できる。 As described above, according to the first embodiment, it is possible to realize a wide range of measurement from a low blood glucose level to a high blood glucose level, which is limited in the measurement with the conventional single color reagent, with one blood glucose measurement chip. It becomes possible. Thereby, a blood glucose meter set with high reproducibility in repeated measurement can be provided.
 次に、血糖測定チップの変形例を説明する。図6(a)は、図3に示した血糖測定チップの変形例を示す上面図である。図6(b)は、図6(a)のE-E断面図である。 Next, a modified example of the blood glucose measurement chip will be described. FIG. 6A is a top view showing a modification of the blood glucose measurement chip shown in FIG. FIG. 6B is a cross-sectional view taken along the line EE of FIG.
 血糖測定チップ12はベース部材122を有し、このベース部材122は、第1の発色試薬121A及び第2の発色試薬121Bが設けられる平板状の底板部材131と、この底板部材の厚み方向に対して直行する幅方向の両端に両面テープ等により形成されたスペーサ部材132と、このスペーサ部材上132に架け渡された蓋部材133と、により実現される。 The blood glucose measurement chip 12 has a base member 122. The base member 122 has a flat bottom plate member 131 provided with the first coloring reagent 121A and the second coloring reagent 121B, and the thickness direction of the bottom plate member. This is realized by a spacer member 132 formed by double-sided tape or the like at both ends in the width direction that goes straight, and a lid member 133 laid over the spacer member 132.
 底板部材131及び蓋部材133の材質としては、上述したベース部材122の材質と同様、光の透過のために透明性の素材を用いるのが好ましい。 As the material of the bottom plate member 131 and the lid member 133, it is preferable to use a transparent material for light transmission, like the material of the base member 122 described above.
 また、血糖測定チップ12のベース部材122は、体液としての血液を供給する供給部としての供給口125と、当該供給口125から発色試薬の保持位置(図6では反応位置と同じ)まで連通する流路124と、を区画している。 Further, the base member 122 of the blood glucose measurement chip 12 communicates with a supply port 125 as a supply unit that supplies blood as a body fluid to the holding position of the coloring reagent (same as the reaction position in FIG. 6) from the supply port 125. The flow path 124 is partitioned.
 この供給口125の部分には、底板部材131及び蓋部材133に、略半楕円形状の切り欠き部141が形成されている。これにより、血液を供給口125から流路124に引き込みやすくすることができる。 In the portion of the supply port 125, a substantially semi-elliptical cutout 141 is formed in the bottom plate member 131 and the lid member 133. Thereby, blood can be easily drawn into the flow path 124 from the supply port 125.
 供給口125及び流路124の断面の形状及び寸法には特に制限はないが、例えば、断面の形状が略四角形であって、血糖測定チップ12の断面の厚み方向の寸法が100μm以下とすることが好ましい。使用する血液の量を低減し、以下に記載する毛細管現象の効果を十分に得るためである。 There are no particular restrictions on the cross-sectional shapes and dimensions of the supply port 125 and the flow path 124. For example, the cross-sectional shape is substantially square, and the cross-sectional thickness of the blood glucose measurement chip 12 is 100 μm or less. Is preferred. This is because the amount of blood to be used is reduced and the effect of capillary action described below is sufficiently obtained.
 指先等から流出した少量の血液を供給口125に点着させる。血液は、毛細管現象により当該供給口125から流路124に吸引され、反応位置まで導かれる。そこで、血液が第1の発色試薬121Aと、第2の発色試薬121Bと、に付着し、それぞれの反応が開始する。毛細管現象により、血液をスムーズに流すことができ、その結果血液を迅速に反応位置まで誘導することができる。 A small amount of blood that has flowed out of the fingertip or the like is spotted on the supply port 125. Blood is sucked into the flow path 124 from the supply port 125 by capillary action and guided to the reaction position. Therefore, blood adheres to the first coloring reagent 121A and the second coloring reagent 121B, and each reaction starts. Capillary action allows blood to flow smoothly, and as a result, blood can be quickly guided to the reaction position.
 別の変形例として、ベース部材122は、第1の発色試薬121Aが保持される位置と、第2の発色試薬121Bが保持される位置と、の間に仕切り部126を備える。換言すれば、モル吸光係数が互いに異なる2種以上の発色試薬121A、121Bが保持された異なる位置の間に仕切り部を備えている。 As another modification, the base member 122 includes a partition 126 between a position where the first coloring reagent 121A is held and a position where the second coloring reagent 121B is held. In other words, the partition part is provided between different positions where two or more kinds of coloring reagents 121A and 121B having different molar extinction coefficients are held.
 この仕切り部126により、第1の発色試薬121Aと血液との反応物と、第2の発色試薬121Bと血液との反応物と、を物理的に隔てることができ、より精度の良い測定が可能となる。 The partition 126 can physically separate the reaction product of the first coloring reagent 121A and the blood and the reaction product of the second coloring reagent 121B and the blood, enabling more accurate measurement. It becomes.
 また、図示しないが、発色試薬と血液との反応物を流路手段等で移動させ、反応位置とは別の位置で測定してもよい。 Although not shown, the reaction product of the coloring reagent and blood may be moved by a flow channel means and measured at a position different from the reaction position.
<実施形態2>
 別の実施形態として、測定光に反射光を用いる血糖計を備えた血糖計セットの例を示す。図7Aは、本発明の一実施形態としての血糖計セット2を示す縦断面図である。また、図7Bは、図7Aに示す血糖計セットから照射部、受光部及び血糖測定チップを抜き出して背面側(図7Aの右側)から見た図である。
<Embodiment 2>
As another embodiment, an example of a blood glucose meter set including a blood glucose meter using reflected light as measurement light is shown. FIG. 7A is a longitudinal sectional view showing a blood glucose meter set 2 as an embodiment of the present invention. Moreover, FIG. 7B is the figure which extracted the irradiation part, the light-receiving part, and the blood glucose measurement chip | tip from the blood glucose meter set shown to FIG. 7A, and was seen from the back side (right side of FIG. 7A).
 図7Aに示すように、血糖計セット2は、血糖測定チップ14と、血糖計13と、を備える。それぞれ以下説明する。なお、血糖計セット2において、上述した血糖計セット1と同一の構成要素には同一の参照符号を付し、詳細な説明は省略する。 As shown in FIG. 7A, the blood glucose meter set 2 includes a blood glucose measurement chip 14 and a blood glucose meter 13. Each will be described below. In the blood glucose meter set 2, the same components as those in the blood glucose meter set 1 described above are denoted by the same reference numerals, and detailed description thereof is omitted.
 先ず、血糖測定チップ14について説明する。血糖測定チップ14は、ベース部材122を有する。また、ベース部材122の内側に光を反射する反射部127としての反射膜を備えている点で、図6に示す血糖測定チップ12と異なる。 First, the blood glucose measurement chip 14 will be described. The blood glucose measurement chip 14 has a base member 122. Moreover, it differs from the blood glucose measurement chip 12 shown in FIG. 6 in that a reflection film as a reflection part 127 that reflects light is provided inside the base member 122.
 光を反射させるためには、当該反射部127を着色させる必要がある。照射する波長を吸収せずに効率よく反射することができれば着色に制限はないが、白色が最も好ましい。素材には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリカーボネート(PC)、アクリル(PMMA)、ポリエチレンテレフタレート(PET)、環状ポリオレフィン(COP)や環状オレフィンコポリマー(COC)等の樹脂を使用し、必要に応じて酸化チタン、二酸化ケイ素、硫酸バリウム、アルミニウム、亜鉛、ニッケル、クロム等を真空蒸着やスパッタリング、またはめっき等の手段で処理して反射面を得る。または、酸化チタン、二酸化ケイ素、硫酸バリウム等を一定量、樹脂に含有させて反射面を得ても良い。なお、本実施形態の反射部127は、蓋部材133の内面のうち、第1の発色試薬121A及び第2の発色試薬121Bと対向する位置に設けられている。 In order to reflect light, it is necessary to color the reflecting portion 127. The coloration is not limited as long as it can be efficiently reflected without absorbing the irradiation wavelength, but white is most preferable. Materials include polypropylene (PP), polyethylene (PE), polystyrene (PS), polycarbonate (PC), acrylic (PMMA), polyethylene terephthalate (PET), cyclic polyolefin (COP) and cyclic olefin copolymer (COC). If necessary, titanium oxide, silicon dioxide, barium sulfate, aluminum, zinc, nickel, chromium, etc. are treated by means such as vacuum deposition, sputtering, or plating to obtain a reflective surface. Alternatively, the reflecting surface may be obtained by adding a certain amount of titanium oxide, silicon dioxide, barium sulfate or the like to the resin. In addition, the reflection part 127 of this embodiment is provided in the position which opposes the 1st coloring reagent 121A and the 2nd coloring reagent 121B among the inner surfaces of the cover member 133. FIG.
 次に、血糖計13について説明する。本実施形態に係る血糖計13は、光学測定部27の配置が、上述した実施形態1に係る血糖計11の光学測定部24の配置と異なる。また、光学測定部27を構成する受光部34は、反射部127で反射した光を受光する点で上述した受光部32A及びBと異なる。 Next, the blood glucose meter 13 will be described. In the blood glucose meter 13 according to the present embodiment, the arrangement of the optical measurement unit 27 is different from the arrangement of the optical measurement unit 24 of the blood glucose meter 11 according to the first embodiment described above. Further, the light receiving unit 34 constituting the optical measuring unit 27 is different from the above-described light receiving units 32A and 32B in that the light reflected by the reflecting unit 127 is received.
 血糖計13の内部には空間43が一つ区画され、そこに第1の照射部31A及び第2の照射部31Bと、第1の受光部34A及び第2の受光部34Bと、が設置されている。なお、第2の受光部34Bは、図7Aには示されていないが、図7Aの紙面に垂直な方向で、第1の受光部34Aと重なる位置に配置されている。 The blood glucose meter 13 is divided into one space 43, in which a first irradiation unit 31A and a second irradiation unit 31B, and a first light receiving unit 34A and a second light receiving unit 34B are installed. ing. Although not shown in FIG. 7A, the second light receiving unit 34B is arranged at a position overlapping the first light receiving unit 34A in a direction perpendicular to the paper surface of FIG. 7A.
 図7Bに示すように、血糖測定チップ14を血糖計13に装着した状態では、第1の照射部31A及び第2の照射部31Bと、第1の受光部34A及び第2の受光部34Bと、は血液測定チップ14の厚みの方向において、血液測定チップ14の一方側に配置されている。また、第1の照射部31Aと第1の受光部34Aとは、照射光33Aが、反応物を透過し、反射部127で反射し、第1の受光部34Aで受光できるような位置に配置されている。また、第2の照射部31Bと第2の受光部34Bとは、照射光33Bが、反応物を透過し、反射部127で反射し、第2の受光部34Bで受光できるような位置に配置されている。なお、第1の照射部31A及び第2の照射部31Bは、図7Bの紙面に垂直な方向で、それぞれ第1の受光部34A及び第2の受光部34Bと重なる位置に配置されているため、図7Bでは第1の照射部31A及び第2の照射部31Bは点線で示した。 As shown in FIG. 7B, in a state where the blood glucose measuring chip 14 is mounted on the blood glucose meter 13, the first irradiation unit 31A and the second irradiation unit 31B, the first light receiving unit 34A and the second light receiving unit 34B, Are arranged on one side of the blood measurement chip 14 in the thickness direction of the blood measurement chip 14. Further, the first irradiation unit 31A and the first light receiving unit 34A are arranged at positions where the irradiation light 33A can pass through the reactant, be reflected by the reflection unit 127, and be received by the first light receiving unit 34A. Has been. In addition, the second irradiation unit 31B and the second light receiving unit 34B are arranged at positions where the irradiation light 33B can pass through the reaction product, be reflected by the reflection unit 127, and be received by the second light receiving unit 34B. Has been. Note that the first irradiation unit 31A and the second irradiation unit 31B are arranged at positions that overlap the first light receiving unit 34A and the second light receiving unit 34B, respectively, in a direction perpendicular to the paper surface of FIG. 7B. In FIG. 7B, the first irradiation unit 31A and the second irradiation unit 31B are indicated by dotted lines.
 以上が本実施形態に係る血糖計セット2の基本的な構成の詳細である。次に、測定方法を説明する。 The above is the details of the basic configuration of the blood glucose meter set 2 according to the present embodiment. Next, a measurement method will be described.
 血糖計13に血糖測定チップ14を装着したのち、供給口125に血液を供給する。血液が第1の発色試薬121A及び第2の発色試薬121Bに到達して反応が開始する。反応物に照射された照射光33Aが、上述した反射部127にて反射し、測定光として第1の受光部34Aで受光される。また、照射光33Bが、上述した反射部127にて反射し、測定光として第2の受光部34Bで受光される。処理部25で血糖値を算出し、結果はディスプレー111に表示される。処理部25の処理方法は、血糖計セット1で示した内容と同じである(図5Aまたは図5B参照)。 After attaching the blood glucose measuring chip 14 to the blood glucose meter 13, blood is supplied to the supply port 125. The reaction starts when the blood reaches the first coloring reagent 121A and the second coloring reagent 121B. The irradiation light 33A applied to the reactant is reflected by the reflection unit 127 described above, and is received by the first light receiving unit 34A as measurement light. Further, the irradiation light 33B is reflected by the reflection unit 127 described above, and is received by the second light receiving unit 34B as measurement light. The blood glucose level is calculated by the processing unit 25 and the result is displayed on the display 111. The processing method of the processing unit 25 is the same as that shown in the blood glucose meter set 1 (see FIG. 5A or FIG. 5B).
 以上説明したように、血糖計セット2おいても、上述した血糖計セット1と同じ効果を奏する。 As described above, the blood glucose meter set 2 has the same effect as the blood glucose meter set 1 described above.
 上述した第1の実施形態及び第2の実施形態は一例であり、特許請求の範囲に記載した内容を逸脱しない範囲での変更が可能である。例えば、成分測定装置は、吸光度を使用した成分測定でれば、血糖計以外でもよい。すなわち、体液は血液以外でもよく(例えば、尿等)、所定成分は血糖値以外でもよく(例えば、タンパク、酵素等)。また、血液の供給に係る実施形態については、例えば、血糖計11側に血液の吸引吐出機構(図示しない)を設置し、当該吐出機構を使用して採血管等で事前に採取済みの血液を直接、第1の発色試薬121A及び第2の発色試薬121Bに吐出してもよい。 The first embodiment and the second embodiment described above are examples, and can be changed without departing from the contents described in the claims. For example, the component measuring device may be other than a blood glucose meter as long as the component measurement using absorbance is performed. That is, the body fluid may be other than blood (for example, urine), and the predetermined component may be other than blood glucose level (for example, protein, enzyme, etc.). As for the embodiment relating to blood supply, for example, a blood suction / discharge mechanism (not shown) is installed on the blood glucose meter 11 side, and blood that has been collected in advance using a blood collection tube or the like using the discharge mechanism is used. You may discharge directly to the 1st coloring reagent 121A and the 2nd coloring reagent 121B.
 本発明は、成分測定装置セット及び体液測定チップに関するものである。 The present invention relates to a component measuring device set and a body fluid measuring chip.
1:血糖計セット(成分測定装置セット)
11、13:血糖計(成分測定装置)
12、14:血糖測定チップ(体液測定チップ)
22:装着部
23:装着孔
24:光学測定部
25:処理部
25A:算出部
25B:予測部
26: イジェクトピン
27:光学測定部
31:照射部
31A:第1の照射部
31B:第2の照射部
32:受光部
32A:第1の受光部
32B:第2の受光部
33A:第1照射部に係る照射光
33B:第2照射部に係る照射光
34:受光部
34A:第1の受光部
34B:第2の受光部
41:第1の空間
42:第2の空間
43:空間
111:ディスプレー
112:電源ボタン
113:操作ボタン
114:取外レバー
121:発色試薬
121A:第1の発色試薬
121B:第2の発色試薬
121C:第3の発色試薬
122:ベース部材
123:供給部
124:流路
125:供給口(供給部)
126:仕切り部
127:反射部
131:底板部材 
132:スペーサ部材
133:蓋部材
141:切り欠き部
1: Blood glucose meter set (component measuring device set)
11, 13: Blood glucose meter (component measuring device)
12, 14: Blood glucose measurement chip (body fluid measurement chip)
22: mounting unit 23: mounting hole 24: optical measurement unit 25: processing unit 25A: calculation unit 25B: prediction unit 26: eject pin 27: optical measurement unit 31: irradiation unit 31A: first irradiation unit 31B: second Irradiation unit 32: Light reception unit 32A: First light reception unit 32B: Second light reception unit 33A: Irradiation light 33B related to the first irradiation unit: Irradiation light 34 related to the second irradiation unit: Light reception unit 34A: First light reception Unit 34B: second light receiving unit 41: first space 42: second space 43: space 111: display 112: power button 113: operation button 114: removal lever 121: coloring reagent 121A: first coloring reagent 121B: 2nd coloring reagent 121C: 3rd coloring reagent 122: Base member 123: Supply part 124: Channel 125: Supply port (supply part)
126: Partition part 127: Reflection part 131: Bottom plate member
132: Spacer member 133: Lid member 141: Notch

Claims (8)

  1.  体液中の所定成分を測定する成分測定装置セットであって、
    発色試薬を有する体液測定チップと、
    前記体液と前記発色試薬との反応物に光を照射する照射部と、
    前記反応物を透過した測定光を受光する受光部と、
    前記測定光から得られる信号を処理する処理部と、
    を備え、
    前記体液測定チップは、
    ベース部材を備え、
    前記発色試薬は、前記ベース部材の異なる位置に保持されたモル吸光係数が互いに異なる2種以上の発色試薬であることを特徴とする成分測定装置セット。
    A component measuring device set for measuring a predetermined component in a body fluid,
    A body fluid measuring chip having a coloring reagent;
    An irradiation unit for irradiating light to a reaction product of the body fluid and the coloring reagent;
    A light receiving portion for receiving measurement light transmitted through the reactant;
    A processing unit for processing a signal obtained from the measurement light;
    With
    The body fluid measurement chip is
    A base member,
    The component measuring apparatus set according to claim 1, wherein the coloring reagents are two or more coloring reagents having different molar extinction coefficients held at different positions of the base member.
  2.  前記ベース部材は、
    前記異なる位置の間に仕切り部を備えたことを特徴とする請求項1に記載の成分測定装置セット。
    The base member is
    The component measuring apparatus set according to claim 1, further comprising a partition portion between the different positions.
  3.  前記ベース部材は、
    体液を供給する供給部と、
    該供給部から前記発色試薬の保持位置まで連通する流路と、を区画していることを特徴とする請求項1または2に記載の成分測定装置セット。
    The base member is
    A supply for supplying body fluid;
    The component measuring device set according to claim 1, wherein a flow path communicating from the supply unit to the holding position of the color reagent is partitioned.
  4.  前記体液測定チップは、血糖測定チップであることを特徴とする請求項1ないし3のいずれか一項に記載の成分測定装置セット。 4. The component measurement device set according to claim 1, wherein the body fluid measurement chip is a blood glucose measurement chip.
  5.  前記処理部は、
    前記測定光から得られる信号に基づいて前記所定成分の値を算出する算出部を備えることを特徴とする請求項1ないし4のいずれか一項に記載の成分測定装置セット。
    The processor is
    5. The component measuring apparatus set according to claim 1, further comprising a calculating unit that calculates a value of the predetermined component based on a signal obtained from the measuring light.
  6.  前記処理部は、
    前記測定光から得られる信号に基づいて前記所定成分の値が含まれる所定の範囲を予測する予測部を備えることを特徴とする請求項5に記載の成分測定装置セット。
    The processor is
    The component measuring apparatus set according to claim 5, further comprising a prediction unit that predicts a predetermined range in which the value of the predetermined component is included based on a signal obtained from the measurement light.
  7.  前記算出部は、
    前記予測部が予測する範囲に基づいて前記所定成分の値を算出することを特徴とする請求項6に記載の成分測定装置セット。
    The calculation unit includes:
    The component measurement device set according to claim 6, wherein the value of the predetermined component is calculated based on a range predicted by the prediction unit.
  8.  発色試薬を有する体液測定チップであって、
    ベース部材を備え、
    前記発色試薬は、前記ベース部材の異なる位置に保持された少なくとも2種以上のモル吸光係数が互いに異なる発色試薬であることを特徴とする体液測定チップ。
    A body fluid measurement chip having a coloring reagent,
    A base member,
    The body fluid measuring chip, wherein the color-developing reagent is a color-developing reagent having at least two or more molar extinction coefficients held at different positions of the base member.
PCT/JP2016/000326 2015-03-19 2016-01-22 Component measurement device set and body fluid measurement chip WO2016147527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056747 2015-03-19
JP2015056747 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147527A1 true WO2016147527A1 (en) 2016-09-22

Family

ID=56920287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000326 WO2016147527A1 (en) 2015-03-19 2016-01-22 Component measurement device set and body fluid measurement chip

Country Status (1)

Country Link
WO (1) WO2016147527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061484A1 (en) * 2016-09-28 2018-04-05 テルモ株式会社 Method, composition, and chip for detecting analysis object in blood sample
JP2018084511A (en) * 2016-11-24 2018-05-31 テルモ株式会社 Body fluid measurement device set and body fluid measurement chip
WO2019138681A1 (en) * 2018-01-15 2019-07-18 テルモ株式会社 Component measurement system, measurement device, and measurement tip

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292224A (en) * 1988-04-29 1989-11-24 Boehringer Mannheim Corp Colorimeter
JPH02290541A (en) * 1989-04-29 1990-11-30 Konica Corp Analysis element
JPH06194313A (en) * 1992-12-24 1994-07-15 Jeol Ltd Reactive measurement method
JPH1078433A (en) * 1996-07-23 1998-03-24 Boehringer Mannheim Gmbh Carrier for diagnostic test without dependence on capacity and use thereof for measuring material to be inspected
JP2002340911A (en) * 2001-05-15 2002-11-27 Hitachi Ltd Sheet-type microreactor and mobile type chemical analyzer
JP2010185750A (en) * 2009-02-12 2010-08-26 Omron Healthcare Co Ltd Body fluid analyzing sensor and body fluid analyzing chip
WO2011132525A1 (en) * 2010-04-20 2011-10-27 株式会社日立ハイテクノロジーズ Automatic analysis device and automatic analysis method
US20120183442A1 (en) * 2005-04-01 2012-07-19 Kloepfer Hans G Body fluid testing component for simultaneous analyte detection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292224A (en) * 1988-04-29 1989-11-24 Boehringer Mannheim Corp Colorimeter
JPH02290541A (en) * 1989-04-29 1990-11-30 Konica Corp Analysis element
JPH06194313A (en) * 1992-12-24 1994-07-15 Jeol Ltd Reactive measurement method
JPH1078433A (en) * 1996-07-23 1998-03-24 Boehringer Mannheim Gmbh Carrier for diagnostic test without dependence on capacity and use thereof for measuring material to be inspected
JP2002340911A (en) * 2001-05-15 2002-11-27 Hitachi Ltd Sheet-type microreactor and mobile type chemical analyzer
US20120183442A1 (en) * 2005-04-01 2012-07-19 Kloepfer Hans G Body fluid testing component for simultaneous analyte detection
JP2010185750A (en) * 2009-02-12 2010-08-26 Omron Healthcare Co Ltd Body fluid analyzing sensor and body fluid analyzing chip
WO2011132525A1 (en) * 2010-04-20 2011-10-27 株式会社日立ハイテクノロジーズ Automatic analysis device and automatic analysis method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061484A1 (en) * 2016-09-28 2018-04-05 テルモ株式会社 Method, composition, and chip for detecting analysis object in blood sample
US11150193B2 (en) 2016-09-28 2021-10-19 Terumo Kabushiki Kaisha Method, composition, and chip for detecting analyte in blood sample
US11656182B2 (en) 2016-09-28 2023-05-23 Terumo Kabushiki Kaisha Method, composition, and chip for detecting analyte in blood sample
JP2018084511A (en) * 2016-11-24 2018-05-31 テルモ株式会社 Body fluid measurement device set and body fluid measurement chip
WO2019138681A1 (en) * 2018-01-15 2019-07-18 テルモ株式会社 Component measurement system, measurement device, and measurement tip
JPWO2019138681A1 (en) * 2018-01-15 2021-01-14 テルモ株式会社 Component measurement system, measuring device and measuring chip
JP7241033B2 (en) 2018-01-15 2023-03-16 テルモ株式会社 Component measurement system and measurement device

Similar Documents

Publication Publication Date Title
US10101317B2 (en) Rotatable analyzing device with a separating cavity and a capillary cavity
US20150109608A1 (en) Device and method for measuring hemoglobin
JP7155109B2 (en) Component measuring device and component measuring device set
WO2016147527A1 (en) Component measurement device set and body fluid measurement chip
CA2721508C (en) Diagnostic tape unit and diagnostic measuring system
WO2017154270A1 (en) Component measurement device, component measurement method, and component measurement program
US20150014162A1 (en) Connector for connecting bio-sensor and measuring instrument thereof
US20220018765A1 (en) Methods and systems for point-of-care coagulation assays by optical detection
US10126232B2 (en) Sample test method, microfluidic device, and test device
WO2016152225A1 (en) Bodily fluid measurement chip and component measurement device set
EP3180614B1 (en) Sample test method and test device
JPH1164226A (en) Bio-sensor
WO2018061772A1 (en) Component measurement device, component measurement method, and component measurement program
EP4286834A1 (en) Component measurement device, component measurement device set, and information processing method
WO2021166561A1 (en) Component measurement device, component measurement device set, and information processing method
JP2007047004A (en) Reactor and analyzer using it
WO2021166471A1 (en) Component measurement device, component measurement device set, and information processing method
WO2021166510A1 (en) Component measurement device, component measurement device set, and information processing method
WO2021166470A1 (en) Component measurement device, component measurement device set, and information processing method
US20070291250A1 (en) Solid control and/or calibration element for use in a diagnostic analyzer
JP7372310B2 (en) Blood sugar level calculation program, blood sugar level calculation method, and blood sugar level measuring device
JP6952045B2 (en) Component measuring device set and component measuring chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP