WO2016146120A1 - Verfahren zur herstellung eines porösen bauteils aus mindestens einem material m und mit einer schaumstruktur sowie ein danach hergestelltes poröses bauteil - Google Patents

Verfahren zur herstellung eines porösen bauteils aus mindestens einem material m und mit einer schaumstruktur sowie ein danach hergestelltes poröses bauteil Download PDF

Info

Publication number
WO2016146120A1
WO2016146120A1 PCT/DE2016/200125 DE2016200125W WO2016146120A1 WO 2016146120 A1 WO2016146120 A1 WO 2016146120A1 DE 2016200125 W DE2016200125 W DE 2016200125W WO 2016146120 A1 WO2016146120 A1 WO 2016146120A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
molding
powder
injection molding
granules
Prior art date
Application number
PCT/DE2016/200125
Other languages
English (en)
French (fr)
Inventor
Heinrich Sauer
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2016146120A1 publication Critical patent/WO2016146120A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1271Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed parts being partially covered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/06Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • B22F2003/1131Foaming in a liquid suspension and decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances

Definitions

  • the invention relates to a method for producing a porous component from at least one material M and having a foam structure and a porous component produced by the method.
  • Porous components having a foam structure formed of different materials, such as metal, metal alloys, ceramics, glass or plastic are already known.
  • DE 197 17 894 A1 discloses a process for the production of moldings based on metal foam.
  • a powder of a metal or a metal alloy with particles of a blowing agent which splits off a gas at elevated temperatures, compacted to form a green body and heated to a temperature above the decomposition temperature of the blowing agent and the melting temperature of the metallic powder.
  • the forming metallic melt is foamed by the forming gas of the decomposing blowing agent and the formed metal foam solidified by cooling to a shaped body.
  • DE 10 2006 053 155 A1 describes a process for the production of open-pore ceramic foam, wherein an open-pore, burn-off foam structure is impregnated with an aqueous suspension containing talc, silica and kaolinite and dried. Subsequently, the impregnated foam structure is calcined at a temperature at which the foam structure burns off and the talc, silica and kaolinite sinter together to form the ceramic foam.
  • DE 44 05 331 A1 also describes a method for producing a
  • Ceramic member having a ceramic foam structure in which a molded article comprising substantially non-oxide ceramic components is prepared by oxidizing from a surface of the molded article.
  • the foam structure is also provided by impregnating an open-pore plastic foam with a Keramikschiicker.
  • German Patent No. 634405 discloses a process for the production of foam glass, wherein a non-refined glass containing sulfate radicals is fritted with reducing substances until the melt is swollen.
  • plastic foams For the production of plastic foams several methods are known. In physical foaming, a plastic melt is foamed by a physical action, for example, by release of gas in a polymerization reaction. In a chemical foaming, a propellant is added to a plastic granulate and the granules are melted. Due to the heat supply, a volatile constituent of the propellant separates, which leads to foaming of the plastic melt. In the case of mechanical foaming, a gas is pressed into the melt of the plastic to be foamed or a liquid organic mass still to be polymerized.
  • DE 103 07 736 A1 describes the production of an open-cell foam by melting a thermoplastic or a mixture containing a thermoplastic. The melt thus obtained is mixed under pressure with at least one blowing agent and foamed.
  • the cell opener used is a powdery solid, in particular comprising graphite, or a foreign polymer.
  • blowing agents inert gases, hydrocarbons, aliphatic alcohols or ketones or esters, chemical blowing agents, etc. are described. These are optionally used in combination with water.
  • the foam is produced, for example, by means of an extruder.
  • WO 201 1/016718 A1 discloses a process for the production of components by injection molding, wherein a mixture of a powder and binder comprising at least one thermally decomposable polymer and a low molecular weight solvent larhard, produced and sprayed. This is followed by debindering and sintering to form a component.
  • US 4,734,237 discloses a method for the production of components of metallic see and / or ceramic powders.
  • the powder is mixed with a gelling agent, in particular agar and / or agarose, and water and sprayed to form a dimensionally stable component.
  • a drying and sintering to form a component made of metal and / or ceramic.
  • JP2003213304 A discloses an injection molding method using pellets formed of metal or ceramic powder and binder kneaded together.
  • a foaming agent is added during injection molding, so that bubbles are formed in the formed component.
  • foaming agent a gas of the injection molding compound is abandoned.
  • the formed injection molded part is after the
  • the object is achieved for the method for producing a porous component of at least one material M and having a foam structure comprising the following steps:
  • a granulate comprising a first powder containing at least one polymer and further comprising a second powder of the at least one material M in an injection molding machine, by means of which the granules are conveyed and converted into a molding material;
  • the foamed molding compound is injection molded onto the at least one injection molded part, wherein after solidification of the foamed molding compound the formed injection molding comprises the at least one injection molded part, and / or at least one of the injection mold simultaneously and / or successively two molding compounds are introduced, which contain different materials (M).
  • the first powder is also used to form the injection-molded part. This facilitates the bonding of the foamed molding compound to the molding in the injection mold. It is possible to produce porous components which have the foam structure only in part of their component volume. Also different materials M in the molding and in the molding compound can be joined together by sintering.
  • At least two foamed molding materials containing different materials M are introduced into the injection mold simultaneously and / or in succession, a smooth transition between the molding compounds and thus also the second powder in the produced injection molding and porous component can be produced , This improves the connection and thus the mechanical strength between the areas with different materials M.
  • the inventive method allows a fast, automated and thus cost-effective production of the molding by means of an already known for the production of plastic foam using an injection molding machine.
  • the foaming of the molding compound takes place at the outlet of the gassed molding compound from the injection molding machine, wherein the required temperatures and pressures can be accurately monitored and adjusted.
  • the molding compound is applied in an injection mold and solidified in the mold. It will the outer shape of the formed, solidified injection molded to the desired final contour of the porous component to be produced.
  • porous component is also understood as meaning that has a foam structure only in a partial region of its component volume.
  • porous components with open or closed porosity can be formed, and in macroscopic partial regions of the porous component as well
  • a closed porosity can be formed next to an open porosity and furthermore next to an area without porosity.
  • component volumes which have at least a wall thickness of 1 mm are regarded as macroscopic partial regions.
  • the granules are preferably formed by forming a powder mixture of the first powder and the second powder and converting the powder mixture into the free-flowing granules.
  • the granules are produced in particular in a so-called compounding process, in which the first and the second powder are intimately mixed and a molding compound is produced. From the molding compound a free-flowing granules is produced, with which an injection molding machine can be automatically charged. Alternatively, ready-to-process granules may alternatively be finished.
  • biopolymers are used for the inventive method for the formation of the first powder.
  • the method according to the invention comprises the following steps:
  • the granulate comprising the first powder containing at least one thermoplastic polymer and further the second powder of the at least one material M;
  • the use of thermoplastic polymers allows a mechanical foaming of the melt, without at the same time chemical reactions take place in the injection molding machine and at the same time have to be controlled or at least monitored. This leads to a simplification of the process and the required system technology.
  • the first powder comprising the at least one thermoplastic polymer melts in a temperature range from 50 ° C to 250 ° C, in particular from 80 ° C to 180 ° C, on.
  • the temperature range in which the second powder melts from the material M is significantly higher, so that it does not change its solid state of aggregation during the performance of the process.
  • thermoplastic polymer from the group comprising polyacetal (POM), polyolefins and polyamides is used.
  • the first powder preferably comprises the at least one thermoplastic polymer and further at least one substance from the group of alcohols, waxes and Karbonkla- rederivate.
  • paraffin wax has proved to be a wax.
  • Supercritical CO2 or supercritical N 2 is preferably used as the supercritical gas. In an alternative embodiment of the method according to the invention, this comprises the following steps:
  • the solid aggregate can be mixed homogeneously and thus a particularly uniform distribution of the pore structure in the porous component can be achieved.
  • this comprises the following steps:
  • Hydrocolloid and further comprises the second powder of the at least one material
  • hydrocolloids encompasses a large group of polysaccharides and proteins which dissolve in water as colloids and show a high ability to gel
  • a particularly suitable hydrocolloid being the biopolymer agar can be solidified by drying.
  • a bonding of a solidified first injection molding with at least one solidified further injection molding takes place.
  • a joint debindering of the interconnected injection-molded parts and sintering of the debindered, interconnected injection-molded parts to form the porous component are formed which, because of their complex geometry, can not be produced in a single injection molding process or at least can not be readily manufactured.
  • the injection-molded parts are joined, for example by plastic welding, in which a thermoplastic polymer in the first powder is heated and the heated joining surfaces of the injection-molded parts are pressed against one another. Upon cooling of the bonding surfaces, a solid bond is formed between the moldings, whereby the molding formed therefrom can have a highly complex shape.
  • plastic welding in which a thermoplastic polymer in the first powder is heated and the heated joining surfaces of the injection-molded parts are pressed against one another.
  • a solid bond is formed between the moldings, whereby the molding formed therefrom can have a highly complex shape.
  • the first injection molding and at least one of the further injection molded parts each contain second powder of different materials M.
  • porous components can be formed, which are formed in partial areas of different foam materials. This makes it possible to achieve a targeted adaptation of the properties of the porous component to the existing application and, in particular, to the local application on the component.
  • regions of the porous component which are subject to wear for example, can be formed, for example, from ceramic, while corrosively stressed regions can be formed from metals or metal alloys.
  • the production of such a porous component requires special attention to the adaptation of the shrinkage or the temporal shrinkage behavior of the first injection molding and the at least one further injection molding during debindering and subsequent sintering.
  • a deviation in the shrinkage behavior of the first injection molding from the shrinkage behavior of the at least one further injection molding leads to stresses in the transition region of the first injection molding to at least one further injection molding and thus to cracks and / or structural weakening the porous member, if such can be formed dimensionally stable.
  • the material M is formed in particular from metal, a metal alloy, ceramic or a mixture of at least two of these materials.
  • the material M is formed of metal, a metal alloy or ceramic.
  • the melting range for the material M ie the temperature at which the material M begins to soften, is generally above the melting range or the melting temperature of the first powder.
  • Titanium is to be mentioned as a particularly preferred metal here.
  • Metal alloys of tempered steel, stainless steel, mild steel and tool steel are also preferred.
  • a particularly preferred ceramic material M is Si 3 N 4 here .
  • At least 50% by volume and at most 70% by volume of the granules are formed from the second powder.
  • a higher proportion of the second powder in the granules affects the foamability of the melt, while a smaller proportion of the second powder in the granules affects the stability of the sintered framework of the material M, which remains after debindering the molding with stabilizing residues from the first powder.
  • Debinding of the molded part takes place in particular by means of bakeout, by means of dissolving out by a solvent or by chemical decomposition of the carbon-containing components of the first powder. Not 100% of the first powder is usually removed, but only 80 to 99%, in particular 90 to 95%, to ensure a residual strength of the debindered sprue for the sintering process. When sintering the debindered sprue, the remaining residues of the first powder decomposes and ideally completely removed.
  • the object is further achieved for the porous component of at least one material M and having a foam structure at least in partial regions of its component volume produced by the method according to the invention, in that the foam structure has a degree of foaming in the range from 2: 5 to 1:50.
  • the degree of foaming is the ratio of the density of the sintered foam structure to the density of the second powder from which the foam structure is formed.
  • Such porous components have a reduced weight compared to components made of solid material and are inexpensive and automated to produce.
  • the porous member is designed in the form of a cage or a cage segment for a roller bearing, wherein the cage or the cage segment is designed for receiving rolling elements.
  • a cage in lightweight construction is ideal in particular for rolling bearings in special applications in the field of aerospace engineering.
  • the porous component is in the form of a motor element, in particular in the form of a finger lever.
  • the porous component in the form of a cage, a cage segment or a motor element is preferably formed from a material M made of metal and / or a metal alloy and / or ceramic.
  • engine elements are particularly preferably formed from metal or a metal alloy.
  • Figures 1 to 6 are intended to exemplify a known and in particular inventive method and porous components produced therewith. So shows:
  • FIG. 1 shows a known process using a first powder comprising a thermoplastic polymer
  • FIG. 2 shows a porous component made of a metal alloy
  • FIG. 3 shows a method according to the invention, in which an injection-molded
  • Form part of a foam structure is molded Figure 4 a from the injection molding according to Figure 3 after debinding and
  • Figure 5 shows a method in which two solidified moldings are connected
  • FIG. 1 shows a known process using a first powder comprising a thermoplastic polymer in the form of polypropylene.
  • a second powder of the material M tool steel is used, which has a higher melting temperature than the first powder of polypropylene.
  • the first powder and the second powder are mixed together, one not shown here
  • Compounding process takes place, which provides a flowable granules 6.
  • the granulate 6 is filled via a filling aid 5 in an injection molding machine 2 (both shown here in longitudinal section) and compacted by means of a screw conveyor 4.
  • the injection molding machine 2 has a heating tape 3, which causes heating of the granules 6 in the injection molding machine 2.
  • a molding compound 6a in the form of a melt of the thermoplastic polymer is formed, into which the second powder is mixed.
  • an injecting a supercritical gas 8 takes place, here in the form of supercritical N 2, a Gaszu 1500ein- direction 7 into the injection molding machine 2, and thus the melt.
  • An application of the gassed molding compound 6a ' or fumigated melt from the injection molding machine 2 is carried out to form a foamed molding compound and a molded part 10.
  • the introduced into the melt gas 8 expands upon exiting the fumigated molding compound 6a ' from the injection molding machine 2 and foams the Melt up.
  • the foamed melt is injected into a cavity 9c (indicated by dashed lines) of an injection mold 9, which consists of two parts 9a, 9b.
  • the part 9b is movable (see double arrow) in order to enable removal from the injection mold 9 of the solidified injection molding 10 (shown visibly here in the closed injection mold 9 for the sake of clarity).
  • the solidification of the injection molding 10 takes place by cooling the injection molding 10 to a temperature below the melting temperature of the thermoplastic polymer in the closed injection mold 9.
  • the injection mold 9 is connected to a cooling device, not shown.
  • the solidified injection molded part 10 removed from the injection mold 9 is debinded by baking, with the first powder extending to decomposed to a residue and volatilized. This is followed by sintering of the debinded injection molding to form a porous component 1 (see FIG. 2) from the second powder.
  • FIG. 2 shows a porous component 1 formed from the material M, in this case from the tool steel, according to the known method according to FIG. 1, with a closed pore space 11.
  • the porous component 1 generally has a foam structure with regard to its component volume.
  • Figure 3 shows a method according to the invention, in which an injection-molded
  • Molded part 12 a foam structure is molded.
  • the injection molding machine 2 is shown in longitudinal section.
  • an injection molded part 12 is inserted and the injection mold 9 is closed.
  • the fumigated molding compound 6a ' is injected into the injection mold 9, wherein the formed foamed molding compound covers the free surfaces of the molding 12 and connects to them.
  • the molded part 10 c which includes the molded part 12.
  • the molded part 12 can also be formed by injecting an injection molding compound into the injection mold 9 and solidifying it before the foamed molding compound is injected into the same injection mold 9.
  • the injection mold 9 is transported by a first injection molding machine, which is filled to form the molding 12, to a further injection molding machine, which provides the foamed molding compound.
  • At least two molding compounds 6a which contain different materials M, can be introduced into the injection mold 9 simultaneously and / or successively.
  • An injection of the injection molding compounds in the injection mold 9 can be carried out simultaneously or immediately successively, with the un solidified injection molding compounds intimately connect and mix in the contact area.
  • a solidification of the first injected injection molding compound to form a molding to which the second injection molding compound is injected is possible.
  • combinations of these approaches wherein from the first injection molding compound produces a molding and then both injection molding compounds are injected simultaneously is possible.
  • first a solidified molded part can be formed and then a third injection-molding compound can be injection molded, the composition of which differs preferably from the two injection molding compounds used to form the molded article.
  • FIG. 4 shows the porous component 1 ' which has been formed from the molded part 10c comprising the molded part 12 (formed in accordance with the method shown in FIG. 5) by subsequent debindering and sintering.
  • the area of the porous component 1 ' which is formed by the sintered shaped part 12 ' without porosity, and furthermore the area of the porous component 1 ' , which is formed by the sintered foam structure 10c ' , are shown separately.
  • FIG. 5 shows a method in which two injection-molded parts 10a, 10b which have been formed by a method according to the invention are joined.
  • the solidified injection-molded parts 10a, 10b are heated at their connecting surfaces 100 until the first powder can be softened and deformed.
  • the two injection-molded parts 10a, 10b are pressed against one another with their heated connecting surfaces 100 (see arrows on force F), wherein the connecting surfaces 100 connect to one another.
  • a molded part 10 see Figure 6, which is composed of the two moldings 10a, 10b.
  • Now debindering and sintering of the molding 10 can take place to form a porous component thereof. In this way, porous components with highly complex outer geometry and internal structure and composition can be produced. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines porösen Bauteils (1, 1´) aus einem Material (M) und mit einer Schaumstruktur, umfassend folgende Schritte: - Einbringen eines Granulats (6) umfassend ein erstes Pulver enthaltend mindestens ein Polymer und umfassend weiterhin ein zweites Pulver aus dem Material (M) in eine Spritzgussmaschine (2), mittels welcher das Granulat (6) gefördert und in eine Formmasse (6a) überführt wird; - Begasen der Formmasse (6a); - Ausbringen der begasten Formmasse (6a´) aus der Spritzgussmaschine (2) in eine Spritzgussform (9) unter Ausbildung einer aufgeschäumten Formmasse und eines Spritzlings (10), sowie Verfestigung des Spritzlings (10); - Entbindern des verfestigten Spritzlings (10) und Sintern des entbinderten Spritzlings (10) unter Bildung des porösen Bauteils (1, 1´), wobei in der Spritzgussform (9) mindestens ein spritzgegossenes Formteil (12) eingelegt wird und die aufgeschäumte Formmasse an das mindestens eine spritzgegossene Formteil (12) angespritzt wird, wobei nach Verfestigung der aufgeschäumten Formmasse der gebildete Spritzling (10c) das mindestens eine spritzgegossene Formteil (12) umfasst, und/oder in die Spritzgussform (9) gleichzeitig und/oder nacheinander mindestens zwei Formmassen (6a) eingebracht werden, die unterschiedliche Materialien (M) enthalten.

Description

Verfahren zur Herstellung eines porösen Bauteils aus mindestens einem Material M und mit einer Schaumstruktur sowie ein danach hergestelltes poröses Bauteil
Die Erfindung betrifft ein Verfahren zur Herstellung eines porösen Bauteils aus mindestens einem Material M und mit einer Schaumstruktur sowie ein nach dem Verfahren hergestelltes poröses Bauteil. Poröse Bauteile mit einer Schaumstruktur, die aus unterschiedlichen Materialien gebildet sind, wie beispielsweise aus Metall, Metalllegierungen, Keramik, Glas oder Kunststoff, sind bereits bekannt.
So offenbart die DE 197 17 894 A1 ein Verfahren zur Herstellung von Formkörpern auf Basis von Metallschaum. Dabei wird ein Pulver eines Metalls oder einer Metalllegierung mit Partikeln eines Treibmittels, das bei erhöhten Temperaturen ein Gas abspaltet, zu einem Roh-Formkörper kompaktiert und auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels sowie der Schmelztemperatur des metallischen Pulvers erwärmt. Die sich ausbildende metallische Schmelze wird durch das sich bildende Gas des sich zersetzenden Treibmittels geschäumt und der gebildete Metallschaum durch Abkühlen zu einem Formkörper verfestigt.
Als weitere Möglichkeiten zur Herstellung von Metallschaum ist das Einblasen von Gas in eine Metallschmelze bekannt, die zuvor durch Zugabe fester Bestandteile schäumbar gemacht wurde.
Die DE 10 2006 053 155 A1 beschreibt ein Verfahren zu Herstellung von offenporigem Keramikschaum, wobei eine offenporige, abbrennbare Schaumstruktur mit einer wässrigen Talk-, Kieselsäure- sowie Kaolinit-enthaltenden Suspension imprägniert und getrocknet wird. Anschließend wird die imprägnierte Schaumstruktur bei einer Temperatur kalziniert, bei welcher die Schaumstruktur abbrennt und der Talk, die Kieselsäure und der Kaolinit zusammensintern, um den Keramikschaum auszubilden. Die DE 44 05 331 A1 beschreibt ebenfalls ein Verfahren zu Herstellung eines
Keramikbauteils mit einer Keramikschaum-Struktur, bei welchem ein Formkörper umfassend im Wesentlichen nichtoxidische Keramikbestandteile durch von einer Oberfläche des Formkörpers ausgehendes Oxidieren hergestellt wird. Die Schaumstruktur wird dabei ebenfalls durch Imprägnieren eines offenporigen Kunststoffschaums mit einem Keramikschiicker bereitgestellt.
Die Deutsche Patentschrift Nr. 634405 offenbart ein Verfahren zur Herstellung von Schaumglas, wobei ein nicht geläutertes Glas enthaltend Sulfatreste mit reduzieren- den Stoffen bis zum Aufblähen der Schmelze gefrittet wird.
Zur Herstellung von Schaumstoffen aus Kunststoff sind mehrere Verfahren bekannt. Bei einem physikalischen Schäumen wird eine Kunststoffschmelze durch einen physikalischen Vorgang geschäumt, beispielsweise durch Freisetzung von Gas bei einer Polymerisationreaktion. Bei einem chemischen Schäumen wird einem Kunststoffgra- nulat ein Treibmittel zugegeben und das Granulat erschmolzen. Durch die Wärmezufuhr spaltet sich ein flüchtiger Bestandteil des Treibmittels ab, was zum Aufschäumen der Schmelze aus Kunststoff führt. Bei einem mechanischen Schäumen wird ein Gas in die Schmelze des aufzuschäumenden Kunststoffs oder eine flüssige, noch zu polymerisierende organische Masse eingepresst.
Die DE 103 07 736 A1 beschreibt die Herstellung eines offenzelligen Schaumstoffs durch Aufschmelzen eines thermoplastischen Kunststoffs oder einer Mischung enthaltend einen thermoplastischen Kunststoff. Die dabei erhaltene Schmelze wird unter Druck mit mindestens einem Treibmittel vermischt und aufgeschäumt. Als Zellöffner wird dabei ein pulverförmiger Feststoff, insbesondere umfassend Graphit, oder ein Fremdpolymer eingesetzt. Als Treibmittel sind inerte Gase, Kohlenwasserstoffe, aliphatische Alkohole oder Ketone oder Ester, chemische Treibmittel usw. beschrieben. Diese werden gegebenenfalls in Kombination mit Wasser eingesetzt. Die Herstellung des Schaumstoffs erfolgt beispielsweise mittels eines Extruders.
Die WO 201 1/016718 A1 offenbart ein Verfahren zur Herstellung von Bauteilen durch Spritzgießen, wobei eine Mischung aus einem Pulver und Binder, umfassend mindestens ein thermisch zersetzbares Polymer und ein Lösungsmittel mit geringem Moleku- largewicht, erzeugt und verspritzt wird. Anschließend erfolgen eine Entbinderung und ein Sintern unter Bildung eines Bauteils.
Die US 4,734,237 offenbart ein Verfahren zur Herstellung von Bauteilen aus metalli- sehen und/oder keramischen Pulvern. Das Pulver wird mit einem Gelbildner, insbesondere aus Agar und/oder Agarose, sowie Wasser vermengt und zu einem dimensionsstabilen Bauteil verspritzt. Anschließend erfolgen eine Trocknung und ein Sintern unter Bildung eines Bauteils aus Metall und/oder Keramik. Die JP2003213304 A offenbart ein Spritzguss-Verfahren, bei welchen Pellets eingesetzt werden, die aus miteinander verknetetem Metall- oder Keramikpulver und Binder gebildet sind. Es wird weiterhin beim Spritzguss ein Schaumbildner zugefügt, so dass im gebildeten Bauteil Bläschen ausgebildet werden. Als Schaumbildner wird ein Gas der Spritzgussmasse aufgegeben. Das gebildete Spritzgussteil wird nach dem
Entformen entbindert und gesintert.
Die DE 102012202104 A1 beschreibt eine Herstellung eines Wälzlagerkäfigs oder - käfigsegments mittels Metallpulverspritzgießen (MIM = Metal Powder Injection
Moulding).
Es ist Aufgabe der Erfindung, ein weiteres Verfahren zur Herstellung eines porösen Bauteils aus einem Material M und mit einer Schaumstruktur sowie ein nach diesem Verfahren hergestelltes poröses Bauteil bereitzustellen. Die Aufgabe wird für das Verfahren zur Herstellung eines porösen Bauteils aus mindestens einem Material M und mit einer Schaumstruktur, umfassend folgende Schritte gelöst:
- Einbringen eines Granulats umfassend ein erstes Pulver enthaltend mindestens ein Polymer und umfassend weiterhin ein zweites Pulver aus dem mindestens einen Ma- terial M in eine Spritzgussmaschine, mittels welcher das Granulat gefördert und in eine Formmasse überführt wird;
- Begasen der Formmasse;
- Ausbringen der begasten Formmasse aus der Spritzgussmaschine in eine Spritzgussform unter Ausbildung einer aufgeschäumten Formmasse und eines Spritzlings, sowie Verfestigung des Spritzlings;
- Entbindern des verfestigten Spritzlings und Sintern des entbinderten Spritzlings unter Bildung des porösen Bauteils, wobei
in der Spritzgussform mindestens ein spritzgegossenes Formteil eingelegt wird und die aufgeschäumte Formmasse an das mindestens eine spritzgegossene Formteil angespritzt wird, wobei nach Verfestigung der aufgeschäumten Formmasse der gebildete Spritzling das mindestens eine spritzgegossene Formteil umfasst, und/oder in die Spritzgussform gleichzeitig und/oder nacheinander mindestens zwei Formmassen eingebracht werden, die unterschiedliche Materialien (M) enthalten.
Hier sind hohe Anforderungen an ein abgestimmtes Schwindungsverhalten des Formteils und der verfestigten, aufgeschäumten Formmasse beim Entbindern und Sintern zu stellen. Insbesondere hat es sich dabei bewährt, wenn das erste Pulver auch zur Bildung des spritzgegossenen Formteils eingesetzt wird. Dies erleichtert das Anbin- den der aufgeschäumten Formmasse an das Formteil in der Spritzgussform. Es sind poröse Bauteile herstellbar, die lediglich in einem Teil ihres Bauteilvolumens die Schaumstruktur aufweisen. Auch unterschiedliche Materialien M im Formteil und in der Formmasse können miteinander durch das Sintern verbunden werden. Werden - alternativ oder in Kombination dazu - in die Spritzgussform gleichzeitig und/oder nacheinander mindestens zwei aufgeschäumte Formmassen eingebracht, die unterschiedliche Materialien M enthalten, so lässt sich ein fließender Übergang zwischen den Formmassen und damit auch der zweiten Pulver im hergestellten Spritzling sowie porösen Bauteil erzeugen. Dies verbessert die Verbindung und damit die mechanische Festigkeit zwischen den Bereichen mit unterschiedlichen Materialien M.
Das erfindungsgemäße Verfahren ermöglicht eine schnelle, automatisierte und damit kostengünstige Herstellung des Spritzlings mittels eines für die Herstellung von Schaumstoff aus Kunststoffen bereits bekannten Vorgehens unter Verwendung einer Spritzgussmaschine. Dabei erfolgt das Aufschäumen der Formmasse beim Austritt der begasten Formmasse aus der Spritzgussmaschine, wobei die erforderlichen Temperaturen und Drücke genau überwacht und eingestellt werden können. Die Formmasse wird in eine Spritzgussform ausgebracht und in der Form verfestigt. Dabei wird die äußere Gestalt des gebildeten, verfestigten Spritzlings auf die gewünschte Endkontur des herzustellenden porösen Bauteils abgestimmt.
Dabei wird unter einem porösen Bauteil auch ein solches verstanden, das lediglich in einem Teilbereich seines Bauteilvolumens eine Schaumstruktur aufweist. Es können generell poröse Bauteile mit offener oder geschlossener Porosität ausgebildet werden, wobei in makroskopischen Teilbereichen des porösen Bauteils auch
- eine geschlossene Porosität neben einer offenen Porosität oder
- eine geschlossene Porosität neben einem Bereich ohne Porosität oder
- eine offene Porosität neben einem Bereich ohne Porosität oder
- eine geschlossene Porosität neben einer offenen Porosität und weiterhin neben einem Bereich ohne Porosität ausgebildet sein kann.
Als makroskopische Teilbereiche werden dabei Bauteilvolumina angesehen, die mindestens eine Wandstärke von 1 mm aufweisen.
Das Granulat wird vorzugsweise gebildet, indem ein Pulvergemenge aus dem ersten Pulver und dem zweiten Pulver gebildet wird und das Pulvergemenge in das rieselfähige Granulat überführt wird. Das Granulat wird insbesondere in einem sogenannten Compoundier-Vorgang erzeugt, bei dem das erste und das zweite Pulver innig ge- mischt werden und eine Formmasse erzeugt wird. Aus der Formmasse wird ein rieselfähiges Granulat erzeugt, mit welchem eine Spritzgussmaschine automatisiert beschickt werden kann. Verarbeitungsfähige Granulate können alternativ aber auch fertig bezogen werden. Insbesondere werden für das erfindungsgemäße Verfahren zur Bildung des ersten Pulvers, zumindest anteilig, Biopolymere eingesetzt.
In einer besonders bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren folgende Schritte:
- Verwenden des Granulats, das das erste Pulver enthaltend mindestens ein thermoplastisches Polymer und weiterhin das zweite Pulver aus dem mindestens einen Material M umfasst;
- Einbringen des Granulats in die Spritzgussmaschine, mittels welcher das Granulat gefördert und erwärmt wird, bis die Formmasse in Form einer Schmelze vorliegt; - Eindüsen eines überkritischen Gases in die Schmelze,
- Ausbringen der begasten Schmelze aus der Spritzgussmaschine in eine Spritzgussform unter Ausbildung einer aufgeschäumten Formmasse und eines Spritzlings;
- Abkühlen des Spritzlings auf eine Temperatur unterhalb des Schmelzbereichs des ersten Pulvers unter Verfestigung des Spritzlings;
- Entbindern des verfestigten Spritzling und Sintern des entbinderten Spritzlings unter Bildung des porösen Bauteils.
Der Einsatz thermoplastischer Polymere ermöglicht ein mechanisches Aufschäumen der Schmelze, ohne dass gleichzeitig chemische Reaktionen in der Spritzgussmaschine ablaufen und dabei gesteuert oder zumindest überwacht werden müssten. Dies führt zu einer Vereinfachung des Verfahrens und der erforderlichen Anlagentechnik. Vorzugsweise schmilzt das erste Pulver umfassend das mindestens eine thermoplastische Polymer in einem Temperaturbereich von 50 °C bis 250 °C, insbesondere von 80 °C bis 180°C, auf. Der Temperaturbereich, in welchem das zweite Pulver aus dem Material M schmilzt, liegt deutlich darüber, so dass es während der Durchführung des Verfahrens seinen festen Aggregatzustand nicht ändert.
Insbesondere wird dabei mindestens ein thermoplastisches Polymer aus der Gruppe umfassend Polyacetal (POM), Polyolefine und Polyamide eingesetzt. Das erste Pulver umfasst dabei vorzugsweise das mindestens eine thermoplastische Polymer und weiterhin mindestens einen Stoff aus der Gruppe der Alkohole, Wachse und Karbonsäu- rederivate. Als Wachs hat sich dabei insbesondere Paraffinwachs bewährt.
Als überkritisches Gas kommt vorzugsweise überkritisches CO2 oder überkritischer N2 zum Einsatz In einer alternativen Ausgestaltung des erfindungsgemäßen Verfahrens umfasst dieses folgende Schritte:
- Einbringen des Granulats in die Spritzgussmaschine, mittels welcher das Granulat gefördert und erwärmt wird, bis die Formmasse in Form einer Schmelze vorliegt;
- Zuführen eines Zuschlagsstoffs zu dem Granulat und/oder der Formmasse, welcher sich zersetzt und ein Treibgas freisetzt;
- Ausbringen der begasten Schmelze aus der Spritzgussmaschine in eine Spritzgussform unter Ausbildung einer aufgeschäumten Formmasse und eines Spritzlings, sowie Verfestigung des Spritzlings;
- Entbindern des verfestigten Spritzlings und Sintern des entbinderten Spritzlings unter Bildung des porösen Bauteils.
Aufgrund der Zugabe eines festen Zuschlagsstoffs zum Granulat und/oder zur Formmasse vereinfacht sich bei diesem Verfahren der Aufbau der Spritzgussmaschine. Der feste Zuschlagstoff kann homogen eingemischt werden und damit eine besonders gleichmäßige Verteilung der Porenstruktur im porösen Bauteil erreicht werden.
In einer weiteren alternativen Ausgestaltung des erfindungsgemäßen Verfahrens um- fasst dieses folgende Schritte:
- Verwenden des Granulats, das das erste Pulver enthaltend mindestens ein
Hydrokolloid und weiterhin das zweite Pulver aus dem mindestens einen Material um- fasst;
- Einbringen des Granulats, optional unter Zugabe von Wasser, in die Spritzgussmaschine, mittels welcher das Granulat gefördert und verdichtet wird, bis die gebildete Formmasse als Gel vorliegt;
- Eindüsen eines überkritischen Gases in das Gel;
- Ausbringen des begasten Gels aus der Spritzgussmaschine in eine Spritzgussform unter Ausbildung eines aufgeschäumten Gels und eines Spritzlings, sowie Verfestigung des Spritzlings;
- Entbindern des verfestigten Spritzlings und Sintern des entbinderten Spritzlings unter Bildung des porösen Bauteils.
Der Begriff der„Hydrokolloide" umfasst eine große Gruppe von Polysacchariden und Proteinen, die in Wasser als Kolloide in Lösung gehen und ein hohes Vermögen zur Gelbildung zeigen. Ein hier besonders geeignetes Hydrokolloid ist das Biopolymer Agar. Vorteilhaft ist bei dieser Verfahrensvariante, das der Spritzling durch eine Trocknung verfestigt werden kann. ln einer besonders bevorzugten Variante des erfindungsgemäßen Verfahrens erfolgt ein Verbinden eines verfestigten ersten Spritzlings mit mindestens einem verfestigten weiteren Spritzling. Danach erfolgt ein gemeinsames Entbindern der miteinander verbundenen Spritzlinge und ein Sintern der entbinderten, miteinander verbundenen Spritzlinge unter Bildung des porösen Bauteils. Dabei werden insbesondere poröse Bauteile ausgebildet, die aufgrund ihrer komplexen Geometrie in einem einzigen Spritzgussvorgang nicht oder zumindest nicht ohne weiteres hergestellt werden können. Je nach eingesetztem ersten Pulver erfolgt die Verbindung der Spritzlinge beispielsweise durch ein Kunststoffschweißen, bei dem ein thermoplastisches Polymer im ersten Pulver erhitzt und die erwärmten Verbindungsflächen der Spritzlinge aneinander angepresst werden. Beim Abkühlen der Verbindungsflächen bildet sich ein fester Verbund zwischen den Spritzlingen aus, wobei der aus diesen gebildete Spritzling eine hochkomplexe Form aufweisen kann. Bei Verwendung von Hydrokolloiden im ersten Pulver kann bereits ein Anfeuchten der Verbindungsflächen der Spritzlinge und ein in Kontakt bringen dieser ausreichen, um eine Verbindung zwischen den
Spritzlingen herzustellen. Nach dem Trocknen liegt auch hier ein gebildeter Spritzling vor, der eine hochkomplexe Form aufweisen kann.
Besonders vorteilhaft ist es dabei, wenn der erste Spritzling und mindestens einer der weiteren Spritzlinge jeweils zweite Pulver aus unterschiedlichen Materialen M enthalten. Dadurch können poröse Bauteile ausgebildet werden, die in Teilbereichen aus unterschiedlichen Schaummaterialien gebildet sind. Damit lässt sich eine gezielte Anpassung der Eigenschaften des porösen Bauteils an den vorhandenen Anwendungsfall und insbesondere an den lokalen am Bauteil vorliegenden Anwendungsfall errei- chen. Dabei können besonders auf Verschleiß beanspruchte Bereiche des porösen Bauteils beispielsweise aus Keramik gebildet werden, während korrosiv beanspruchte Bereiche aus Metallen oder Metalllegierungen gebildet sein können. Allerdings erfordert die Herstellung eines derartigen porösen Bauteils ein besonderes Augenmerk auf die Anpassung der Schwindungen bzw. des zeitlichen Schwindungsverhaltens des ersten Spritzlings und des mindestens einen weiteren Spritzlings beim Entbindern und nachfolgenden Sintern. Eine Abweichung im Schwindungsverhalten des ersten Spritzlings vom Schwindungsverhalten des mindestens einen weiteren Spritzlings führt zu Spannungen im Übergangsbereich des ersten Spritzlings zum mindestens einen weiteren Spritzling und damit zu Rissen und/oder einer strukturellen Schwächung des porösen Bauteils, sofern ein solches überhaupt maßhaltig ausgebildet werden kann.
Besonders bewährt hat es sich dabei, wenn zur Bildung des ersten Spritzling als Ma- terial M ein Vergütungsstahl und zur Bildung des mindestens einen weiteren
Spritzlings als Material M ein Werkzeugstahl eingesetzt wird.
Das Material M wird insbesondere aus Metall, einer Metalllegierung, Keramik oder ei- ner Mischung von mindestens zwei dieser Materialien gebildet. Insbesondere ist das Material M aus Metall, einer Metalllegierung oder aus Keramik gebildet. Dabei liegt der Schmelzbereich für das Material M, also die Temperatur, ab der das Material M zu erweichen beginnt, generell oberhalb des Schmelzbereichs oder der Schmelztemperatur des ersten Pulvers. Als besonders bevorzugtes Metall ist hier Titan zu nennen. Metalllegierungen aus Vergütungsstahl, Edelstahl, Normalstahl und Werkzeugstahl sind ebenfalls bevorzugt. Ein besonders bevorzugtes keramisches Material M ist hier Si3N4.
In einer bevorzugten Ausgestaltung des Verfahrens werden mindestens 50 Vol.-% und maximal 70 Vol.-% des Granulats aus dem zweiten Pulver gebildet. Bevorzugt werden 55 Vol.-% bis 65 Vol.-% des Granulats aus dem zweiten Pulver gebildet. Ein höherer Anteil des zweiten Pulvers im Granulat beeinträchtigt die Schäumbarkeit der Schmelze, während ein geringerer Anteil des zweiten Pulvers im Granulat die Standfestigkeit des zu sinternden Gerüsts aus dem Material M beeinträchtigt, das nach dem Entbindern des Spritzlings mit stabilisierenden Resten aus dem ersten Pulver verbleibt.
Ein Entbindern des Spritzlings erfolgt insbesondere mittels eines Ausheizens, mittels eines Herauslösens durch ein Lösungsmittel oder mittels einer chemischen Zerset- zung der Kohlenstoff-haltigen Komponenten des ersten Pulvers. Dabei werden in der Regel nicht 100% des ersten Pulvers entfernt, sondern lediglich 80 bis 99%, insbesondere 90 bis 95%, um eine Restfestigkeit des entbinderten Spritzlings für den Sintervorgang zu gewährleisten. Beim Sintern des entbinderten Spritzlings werden die noch vorhandenen Reste des ersten Pulvers zersetzt und idealerweise vollständig entfernt.
Die Aufgabe wird weiterhin für das poröse Bauteil aus mindestens einem Material M und mit einer Schaumstruktur zumindest in Teilbereichen seines Bauteilvolumens, hergestellt nach dem erfindungsgemäßen Verfahren, gelöst, indem die Schaumstruktur einen Schäumgrad im Bereich von 2:5 bis 1 :50 aufweist.
Der Schäumgrad ist dabei das Verhältnis der Dichte der gesinterten Schaumstruktur zur Dichte des zweiten Pulvers, aus dem die Schaumstruktur gebildet ist. Derartige poröse Bauteile weisen ein reduziertes Gewicht gegenüber Bauteilen aus Vollmaterial auf und sind kostengünstig und automatisiert herstellbar.
In einer besonders bevorzugten Ausführungsform ist das poröse Bauteil in Form eines Käfigs oder eines Käfigsegments für ein Wälzlager ausgebildet, wobei der Käfig oder das Käfigsegment zur Aufnahme von Wälzkörpern ausgestaltet ist. Ein derartiger Käfig in Leichtbauweise ist insbesondere für Wälzlager bei Spezialanwendungen im Bereich der Luft- und Raumfahrttechnik ideal. In einer weiteren bevorzugten Ausführungsform ist das poröse Bauteil in Form eines Motorenelements, insbesondere in Form eines Schlepphebels, ausgebildet.
Das poröse Bauteil in Form eines Käfigs, eines Käfigsegments oder eines Motorenelements ist dabei bevorzugt aus einem Material M aus Metall und/oder einer Metall- legierung und/oder Keramik gebildet. Dabei sind Motorenelemente jedoch besonders bevorzugt aus Metall oder einer Metalllegierung gebildet.
Die Figuren 1 bis 6 sollen ein bekanntes und insbesondere erfindungsgemäße Verfahren und damit hergestellte poröse Bauteile beispielhaft erläutern. So zeigt:
Figur 1 ein bekanntes Verfahren unter Einsatz eines ersten Pulvers umfassend ein thermoplastisches Polymer;
Figur 2 ein poröses Bauteil aus einer Metalllegierung;
Figur 3 ein erfindungsgemäßes Verfahren, bei dem an ein spritzgegossenes
Formteil eine Schaumstruktur angespritzt wird Figur 4 ein aus dem Spritzling gemäß Figur 3 nach dem Entbindern und
Sintern gebildetes erfindungsgemäßes poröses Bauteil;
Figur 5 ein Verfahren, bei dem zwei verfestigte Spritzlinge verbunden werden;
und
Figur 6 den gemäß Figur 5 gebildeten, verbundenen Spritzling. und
Figur 1 zeigt ein bekanntes Verfahren unter Einsatz eines ersten Pulvers umfassend ein thermoplastisches Polymer in Form von Polypropylen. Als zweites Pulver aus dem Material M kommt hier Werkzeugstahl zum Einsatz, welcher eine höhere Schmelz- temperatur aufweist als das erste Pulver aus Polypropylen. Das erste Pulver und das zweite Pulver werden miteinander gemischt, wobei ein hier nicht dargestellter
Compoundier-Vorgang erfolgt, der ein rieselfähiges Granulat 6 bereitstellt. Das Granulat 6 wird über eine Einfüllhilfe 5 in eine Spritzgussmaschine 2 (beides hier im Längsschnitt dargestellt) eingefüllt und mittels einer Förderschnecke 4 verdichtet. Die Spritzgussmaschine 2 weist ein Heizband 3 auf, welches eine Erwärmung des Granulats 6 in der Spritzgussmaschine 2 bewirkt. Es bildet sich beim Erschmelzen des Granulats 6 eine Formmasse 6a in Form einer Schmelze des thermoplastischen Polymers aus, in welche das zweite Pulver eingemischt ist. Nun erfolgt ein Eindüsen eines überkritischen Gases 8, hier in Form von überkritischem N2, über eine Gaszuführein- richtung 7 in die Spritzgussmaschine 2 und damit die Schmelze. Ein Ausbringen der begasten Formmasse 6a' bzw. begasten Schmelze aus der Spritzgussmaschine 2 erfolgt unter Ausbildung einer aufgeschäumten Formmasse und eines Spritzlings 10. Das in die Schmelze eingebrachte Gas 8 dehnt sich beim Austritt der begasten Formmasse 6a' aus der Spritzgussmaschine 2 aus und schäumt die Schmelze auf. Dabei wird die aufgeschäumte Schmelze in einen Hohlraum 9c (mit gestrichelter Linie angedeutet) einer Spritzgussform 9 eingespritzt, welche aus zwei Teilen 9a, 9b besteht. Dabei ist das Teil 9b beweglich (siehe Doppelpfeil), um eine Entformung des verfestigten Spritzlings 10 (hier der besseren Übersicht halber in der geschlossenen Spritzgussform 9 sichtbar dargestellt) aus der Spritzgussform 9 zu ermöglichen. Die Verfestigung des Spritzlings 10 erfolgt durch Abkühlen des Spritzlings 10 auf eine Temperatur unterhalb der Schmelztemperatur des thermoplastischen Polymers in der geschlossenen Spritzgussform 9. Dazu ist die Spritzgussform 9 mit einer nicht dargestellten Kühleinrichtung verbunden. Der aus der Spritzgussform 9 entnommene, verfestigte Spritzling 10 wird durch Ausheizen entbindert, wobei sich das erste Pulver bis auf einen Rest zersetzt und verflüchtigt. Danach erfolgt ein Sintern des entbinderten Spritzlings unter Bildung eines porösen Bauteils 1 (siehe Figur 2) aus dem zweiten Pulver. Figur 2 zeigt ein nach dem bekannten Verfahren gemäß Figur 1 gebildetes poröses Bauteil 1 aus dem Material M, hier aus dem Werkzeugstahl, mit einem geschlossenen Porenraum 1 1 . Dabei weist das poröse Bauteil 1 im Hinblick auf sein Bauteilvolumen generell eine Schaumstruktur auf. Figur 3 zeigt ein erfindungsgemäßes Verfahren, bei dem an ein spritzgegossenes
Formteil 12 eine Schaumstruktur angespritzt wird. Gleiche Bezugszeichen wie in Figur 1 kennzeichnen gleiche Elemente. Auch hier ist die Spritzgussmaschine 2 im Längsschnitt dargestellt. In die Spritzgussform 9 wird ein spritzgegossenes Formteil 12 eingelegt und die Spritzgussform 9 geschlossen. Anschließend wird die begaste Form- masse 6a' in die Spritzgussform 9 eingespritzt, wobei die gebildete aufgeschäumte Formmasse die freien Oberflächen des Formteils 12 bedeckt und sich mit diesen verbindet. Nach dem Verfestigen der aufgeschäumte Formmasse in die Spritzgussform 9 liegt ein Spritzling 10c vor, der das Formteil 12 beinhaltet. Alternativ kann das Formteil 12 auch durch Einspritzen einer Spritzgussmasse in die Spritzgussform 9 ausgebildet werden und dieses verfestigt werden, bevor die aufgeschäumte Formmasse in die gleiche Spritzgussform 9 eingespritzt wird. Dazu wird die Spritzgussform 9 von einer ersten Spritzgussmaschine, welche zur Bildung des Formteils 12 befüllt ist, zu einer weiteren Spritzgussmaschine transportiert, welche die auf- geschäumte Formmasse bereitstellt.
Alternativ kann erfindungsgemäß in die Spritzgussform 9 gleichzeitig und/oder nacheinander mindestens zwei Formmassen 6a eingebracht werden, die unterschiedliche Materialien M enthalten. Ein Einspritzen der Spritzgussmassen in die Spritzgussform 9 kann dabei gleichzeitig oder unmittelbar nacheinander erfolgen, wobei sich die un verfestigten Spritzgussmassen im Kontaktbereich innig verbinden und mischen. Aber auch eine Verfestigung der zuerst eingespritzten Spritzgussmasse unter Bildung eines Formteils, an das die zweite Spritzgussmasse angespritzt wird, ist möglich. Auch Kombinationen dieser Vorgehensweisen, wobei aus der ersten Spritzgussmasse ein Formteil erzeugt und anschließend beide Spritzgussmassen gleichzeitig angespritzt werden ist möglich. Auch kann aus den beiden gleichzeitig eingespritzen Spritzgussmassen erst ein verfestigtes Formteil gebildet werden und dann eine dritte Spritzgussmasse angespritzt werden, deren Zusammensetzung sich bevorzugt von den beiden zur Bildung des Formteils verwendeten Spritzgussmassen unterscheidet.
Auf diese Weise sind poröse Bauteile mit hochkomplexer äußerer Geometrie und innerer Struktur und Zusammensetzung herstellbar. Figur 4 zeigt das poröse Bauteil 1 ', das aus dem Spritzling 10c umfassend das Formteil 12 (gebildet gemäß dem in Figur 5 gezeigten Verfahren) durch nachfolgendes Entbindern und Sintern gebildet wurde. Dabei sind der Bereich des porösen Bauteils 1 ', der durch das gesinterte Formteil 12' ohne Porosität gebildet ist, und weiterhin der Bereich des porösen Bauteils 1 ', der durch die gesinterte Schaumstruktur 10c' gebil- det ist, gesondert dargestellt.
Figur 5 zeigt ein Verfahren, bei dem zwei Spritzlinge 10a, 10b verbunden werden, die nach einem erfindungsgemäßen Verfahren gebildet wurden. Dabei werden die verfestigten Spritzlinge 10a, 10b an ihren Verbindungsflächen 100 erwärmt, bis das erste Pulver erweicht und deformiert werden kann. Anschließend werden die beiden Spritzlinge 10a, 10b mit ihren erwärmten Verbindungsflächen 100 gegeneinander gedrückt (siehe Pfeile zu Kraft F), wobei sich die Verbindungsflächen 100 miteinander verbinden. Nach dem Abkühlen liegt ein Spritzling 10 vor, siehe Figur 6, der aus den beiden Spritzlingen 10a, 10b zusammengesetzt ist. Nun kann ein Entbindern und Sintern des Spritzlings 10 erfolgen, um ein poröses Bauteil daraus zu bilden. Auf diese Weise sind poröse Bauteile mit hochkomplexer äußerer Geometrie und innerer Struktur und Zusammensetzung herstellbar. Bezugszeichenliste
1 , 1 ' poröses Bauteil
2 Spritzgussmaschine
3 Heizband
4 Förderschnecke
5 Einfüllhilfe
6 Granulat
6a Formmasse
6a' begaste Formmasse
7 Gaszuführeinrichtung
8 überkritisches Gas
9 Spritzgussform, teilbar
9a, 9b Teile der Spritzgussform 9
9c Hohlraum
10,10a,10b,10c Spritzling
10c' gesinterte Schaumstruktur
100 Verbindungsfläche
1 1 Porenraum
12 Formteil
12' gesintertes Formteil
M Material
F Kraft

Claims

Patentansprüche
1 . Verfahren zur Herstellung eines porösen Bauteils (1 , 1 ') aus mindestens einem Material (M) und mit einer Schaumstruktur, umfassend folgende Schritte:
- Einbringen eines Granulats (6) umfassend ein erstes Pulver enthaltend mindestens ein Polymer und umfassend weiterhin ein zweites Pulver aus dem mindestens einen Material (M) in eine Spritzgussmaschine (2), mittels welcher das Granulat (6) gefördert und in eine Formmasse (6a) überführt wird;
- Begasen der Formmasse (6a);
- Ausbringen der begasten Formmasse (6a') aus der Spritzgussmaschine (2) in eine Spritzgussform (9) unter Ausbildung einer aufgeschäumten Formmasse und eines Spritzlings (10), sowie Verfestigung des Spritzlings (10);
- Entbindern des verfestigten Spritzlings (10) und Sintern des entbinderten Spritzlings (10) unter Bildung des porösen Bauteils (1 , Γ), wobei
in der Spritzgussform (9) mindestens ein spritzgegossenes Formteil (12)
eingelegt wird und die aufgeschäumte Formmasse an das mindestens eine spritzgegossene Formteil (12) angespritzt wird, wobei nach Verfestigung der aufgeschäumten Formmasse der gebildete Spritzling (10c) das mindestens eine spritzgegossene Formteil (12) umfasst, und/oder in die Spritzgussform (9) gleichzeitig und/oder nach- einander mindestens zwei Formmassen (6a) eingebracht werden, die unterschiedliche Materialien (M) enthalten.
2. Verfahren nach Anspruch 1 , wobei das Granulat (6) gebildet wird, indem ein Pulvergemenge aus dem ersten Pulver und dem zweiten Pulver gebildet wird und das Pulvergemenge in das rieselfähige Granulat (6) überführt wird.
3. Verfahren nach Anspruch 1 oder Anspruch 2, umfassend folgende Schritte:
- Verwenden des Granulats (6), das das erste Pulver enthaltend mindestens ein thermoplastisches Polymer und weiterhin das zweite Pulver aus dem mindestens ei- nen Material (M) umfasst;
- Einbringen des Granulats (6) in die Spritzgussmaschine (2), mittels welcher das Granulat (6) gefördert und erwärmt wird, bis die Formmasse (6a) in Form einer Schmelze vorliegt;
- Eindüsen eines überkritischen Gases (8) in die Schmelze,; - Ausbringen der begasten Schmelze aus der Spritzgussmaschine (2) in eine Spritzgussform (9) unter Ausbildung einer aufgeschäumten Formmasse und eines
Spritzlings (10);
- Abkühlen des Spritzlings (10) auf eine Temperatur unterhalb des Schmelzbereichs des ersten Pulvers unter Verfestigung des Spritzlings (10);
- Entbindern des verfestigten Spritzling (10) und Sintern des entbinderten Spritzlings (10) unter Bildung des porösen Bauteils (1 , Γ).
4. Verfahren nach Anspruch 1 oder Anspruch 2, umfassend folgende Schritte:
- Einbringen des Granulats (6) in die Spritzgussmaschine (2), mittels welcher das Granulat (6) gefördert und erwärmt wird, bis die Formmasse (6a) in Form einer Schmelze vorliegt;
- Zuführen eines Zuschlagsstoffs zu dem Granulat (6) und/oder der Formmasse (6a), welcher sich zersetzt und ein Treibgas freisetzt;
- Ausbringen der begasten Schmelze aus der Spritzgussmaschine (2) in eine Spritzgussform (9) unter Ausbildung einer aufgeschäumten Formmasse und eines
Spritzlings (10), sowie Verfestigung des Spritzlings (10);
- Entbindern des verfestigten Spritzlings (10) und Sintern des entbinderten Spritzlings (10) unter Bildung des porösen Bauteils (1 , Γ).
5. Verfahren nach Anspruch 1 oder Anspruch 2, umfassend folgende Schritte:
- Verwenden des Granulats (6), das das erste Pulver enthaltend mindestens ein Hydrokolloid und weiterhin das zweite Pulver aus dem mindestens einen Material (M) umfasst;
- Einbringen des Granulats (6), optional unter Zugabe von Wasser, in die Spritzgussmaschine (2), mittels welcher das Granulat (6) gefördert und verdichtet wird, bis die gebildete Formmasse (6a) als Gel vorliegt;
- Eindüsen eines überkritischen Gases (8) in das Gel;
- Ausbringen des begasten Gels aus der Spritzgussmaschine (2) in eine Spritzguss- form (9) unter Ausbildung eines aufgeschäumten Gels und eines Spritzlings (10), sowie Verfestigung des Spritzlings (10);
- Entbindern des verfestigten Spritzlings (10) und Sintern des entbinderten Spritzlings (10) unter Bildung des porösen Bauteils (1 , Γ).
6. Verfahren nach einem der Ansprüche 1 bis 5, umfassend folgende weiteren Schritte:
- Verbinden eines verfestigten ersten Spritzlings (10a) mit mindestens einem verfestigten weiteren Spritzling (10b);
- gemeinsames Entbindern der miteinander verbundenen Spritzlinge (10a, 10b) und Sintern der entbinderten, miteinander verbundenen Spritzlinge (10a, 10b) unter Bildung des porösen Bauteils (1 , 1 ').
7. Verfahren nach Anspruch 6, wobei der erste Spritzling (10a) und mindestens einer der weiteren Spritzlinge (10b) jeweils zweite Pulver aus unterschiedlichen Materialen
(M) enthalten.
8. Verfahren nach Anspruch 7, wobei zur Bildung des ersten Spritzling (10a) als Material (M) ein Vergütungsstahl und zur Bildung des mindestens einen weiteren
Spritzlings (10b) als Material (M) ein Werkzeugstahl eingesetzt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Material (M) aus Metall, einer Metalllegierung, Keramik oder einer Mischung von mindestens zwei dieser Materialien gebildet wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei mindestens 50 Vol.-% und maximal 70 Vol.-%, insbesondere 55 Vol.-% bis 65 Vol.-%, des Granulats (6) aus dem zweiten Pulver gebildet sind.
1 1 . Poröses Bauteil (1 , 1 ') aus mindestens einem Material (M) und mit einer Schaumstruktur zumindest in Teilbereichen seines Bauteilvolumens, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10, wobei die Schaumstruktur einen Schäumgrad im Bereich von 2:5 bis 1 :50 aufweist.
12. Poröses Bauteil nach Anspruch 1 1 , welches in Form eines Käfigs oder eines Käfigsegments für ein Wälzlager ausgebildet ist, und wobei der Käfig oder das Käfigsegment zur Aufnahme von Wälzkörpern ausgestaltet ist.
13. Poröses Bauteil nach Anspruch 1 1 , welches in Form eines Motorenelements, insbesondere in Form eines Schlepphebels, ausgebildet ist.
PCT/DE2016/200125 2015-03-17 2016-03-09 Verfahren zur herstellung eines porösen bauteils aus mindestens einem material m und mit einer schaumstruktur sowie ein danach hergestelltes poröses bauteil WO2016146120A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015204752.0A DE102015204752A1 (de) 2015-03-17 2015-03-17 Verfahren zur Herstellung eines porösen Bauteils aus mindestens einem Material M und mit einer Schaumstruktur sowie ein danach hergestelltes poröses Bauteil
DE102015204752.0 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016146120A1 true WO2016146120A1 (de) 2016-09-22

Family

ID=55802142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/200125 WO2016146120A1 (de) 2015-03-17 2016-03-09 Verfahren zur herstellung eines porösen bauteils aus mindestens einem material m und mit einer schaumstruktur sowie ein danach hergestelltes poröses bauteil

Country Status (2)

Country Link
DE (1) DE102015204752A1 (de)
WO (1) WO2016146120A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017000189U1 (de) 2017-01-12 2017-01-26 Tridelta Siperm Gmbh Poröses Erzeugnis
DE102017221078A1 (de) * 2017-11-24 2019-05-29 Zf Friedrichshafen Ag Verfahren zur Herstellung eines Ölverdrängerkörpers, Ölverdrängerkörper, Getriebeanordnung sowie Kraftfahrzeug
CN114029490A (zh) * 2021-11-29 2022-02-11 深圳艾利佳材料科技有限公司 一种三维金属陶瓷梯度材料凝胶注模

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE634405C (de) 1934-05-28 1936-08-27 Saint Gobain Verfahren zur Herstellung von Schaumglas
EP0246438A2 (de) * 1986-05-15 1987-11-25 AlliedSignal Inc. Wässerige Zusammensetzungen zum Spritzgiessen bestehend aus einem gelbildendem Material und aus keramischen und/oder metallischen Pulvern
EP0538073A2 (de) * 1991-10-18 1993-04-21 Fujitsu Limited Verfahren zur Herstellung von gesinterten Formkörper und Magnetkörper
DE4405331A1 (de) 1994-02-21 1995-08-24 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Keramikbauteils
DE19717894A1 (de) 1996-05-02 1997-11-27 Mepura Metallpulver Verfahren zur Herstellung von porösen Matrixmaterialien, insbesondere Formkörper auf Basis von Metallen , und von Halbzeug dafür
JP2003213304A (ja) 2002-01-23 2003-07-30 Yamaha Corp 粉末射出成形方法
DE10307736A1 (de) 2003-02-24 2004-09-02 Basf Ag Offenzelliger Schaumstoff aus hochschmelzenden Kunststoffen
US20040250653A1 (en) * 1999-07-20 2004-12-16 Dwivedi Ratnesh K. Microporous metal parts
WO2006003703A1 (ja) * 2004-07-02 2006-01-12 Mold Research Co., Ltd. 焼結相対密度の異なる部分が併存する焼結品及びその製造方法
DE102006053155A1 (de) 2006-11-10 2008-06-26 AS Lüngen GmbH Offenporiger Keramikschaum, Verfahren zu seiner Herstellung sowie Verwendung
WO2011016718A1 (en) 2009-08-03 2011-02-10 Syroko B.V. Method for producing a powder injection moulded part
US20130052074A1 (en) * 2011-08-31 2013-02-28 Eric Durocher Manufacturing of turbine shroud segment with internal cooling passages
DE102012202104A1 (de) 2012-02-13 2013-08-14 Aktiebolaget Skf Herstellung eines Wälzlagerkäfigs oder eines Wälzlagerkäfigsegments mittels Metallpulverspritzgießen
EP2759389A2 (de) * 2013-01-28 2014-07-30 LG Electronics, Inc. Schaumformungsverfahren, Schäummittel und Schaumkunststoff

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE634405C (de) 1934-05-28 1936-08-27 Saint Gobain Verfahren zur Herstellung von Schaumglas
EP0246438A2 (de) * 1986-05-15 1987-11-25 AlliedSignal Inc. Wässerige Zusammensetzungen zum Spritzgiessen bestehend aus einem gelbildendem Material und aus keramischen und/oder metallischen Pulvern
US4734237A (en) 1986-05-15 1988-03-29 Allied Corporation Process for injection molding ceramic composition employing an agaroid gell-forming material to add green strength to a preform
EP0538073A2 (de) * 1991-10-18 1993-04-21 Fujitsu Limited Verfahren zur Herstellung von gesinterten Formkörper und Magnetkörper
DE4405331A1 (de) 1994-02-21 1995-08-24 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Keramikbauteils
DE19717894A1 (de) 1996-05-02 1997-11-27 Mepura Metallpulver Verfahren zur Herstellung von porösen Matrixmaterialien, insbesondere Formkörper auf Basis von Metallen , und von Halbzeug dafür
US20040250653A1 (en) * 1999-07-20 2004-12-16 Dwivedi Ratnesh K. Microporous metal parts
JP2003213304A (ja) 2002-01-23 2003-07-30 Yamaha Corp 粉末射出成形方法
DE10307736A1 (de) 2003-02-24 2004-09-02 Basf Ag Offenzelliger Schaumstoff aus hochschmelzenden Kunststoffen
WO2006003703A1 (ja) * 2004-07-02 2006-01-12 Mold Research Co., Ltd. 焼結相対密度の異なる部分が併存する焼結品及びその製造方法
DE102006053155A1 (de) 2006-11-10 2008-06-26 AS Lüngen GmbH Offenporiger Keramikschaum, Verfahren zu seiner Herstellung sowie Verwendung
WO2011016718A1 (en) 2009-08-03 2011-02-10 Syroko B.V. Method for producing a powder injection moulded part
US20130052074A1 (en) * 2011-08-31 2013-02-28 Eric Durocher Manufacturing of turbine shroud segment with internal cooling passages
DE102012202104A1 (de) 2012-02-13 2013-08-14 Aktiebolaget Skf Herstellung eines Wälzlagerkäfigs oder eines Wälzlagerkäfigsegments mittels Metallpulverspritzgießen
EP2759389A2 (de) * 2013-01-28 2014-07-30 LG Electronics, Inc. Schaumformungsverfahren, Schäummittel und Schaumkunststoff

Also Published As

Publication number Publication date
DE102015204752A1 (de) 2016-09-22

Similar Documents

Publication Publication Date Title
EP1392875B1 (de) Verfahren zur herstellung von metall-/metallschaum-verbundbauteilen
EP1251985B9 (de) Verfahren zur herstellung von leichtbauteilen
DE10084853B3 (de) Verfahren zur Herstellung mikroporöser Metallteile
EP2437905B1 (de) Verfahren zur herstellung von porösen metall-sinterformkörpern
EP1625101B1 (de) Verfahren zur herstellung endkonturnaher, metallischer und/oder keramischer bauteile
DE102014018081A1 (de) Verfahren und Anlage zur additiven Fertigung von Metallteilen mittels eines Extrusionsverfahren - Composite Extrusion Modeling (CEM)
WO2016146120A1 (de) Verfahren zur herstellung eines porösen bauteils aus mindestens einem material m und mit einer schaumstruktur sowie ein danach hergestelltes poröses bauteil
WO2007014559A1 (de) Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
EP3160707A1 (de) Druckabhängiges formschäumen von poly(meth)acrylimid-partikeln in geschlossenen werkzeugen zur herstellung von hartschaumstoffkernen
EP1587772B1 (de) Verfahren zur herstellung poröser sinterformkörper
EP2322337A1 (de) Verfahren zum Herstellen von Gegenständen
DE3736660C2 (de)
WO2015124505A1 (de) Verfahren zur herstellung eines verbundbauteils
DE10046174C2 (de) Hohlkugel und Verfahren zur Herstellung von Leichtbauteilen mit Hohlkugeln
DE102013020494B4 (de) Filmscharniere aus faserverstärkten Kunststoffen
DE19614021B4 (de) Verfahren zur Herstellung eines Kunststoff-Formteiles und Formteil, hergestellt nach diesem Verfahren, sowie Treibmittelbatch zur Herstellung des Formteiles
DE10149793B4 (de) Verfahren zur Herstellung von Sinterkörpern aus einer plastischen Formmasse enthaltend Pulver, Wachs und Lösungsmittel
EP1597004B1 (de) Verfahren zum schäumen von sinterformkörpern mit zellstruktur
WO2002007949A1 (de) Verfahren und treibmittel zur herstellung von geschäumten kunststoffgegenständen
AT508511B1 (de) Verfahren zum herstellen eines artikels mit einem hohlraum aus einem kunststoffmaterial
DE102012004442B3 (de) Verfahren zur Herstellung von Formkörpern aus pulverförmigen keramischem oder metallischem Werkstoff
WO2005011901A1 (de) Schäumbares halbzeug und verfahren zur herstellung von metallteilen mit innerer porosität
DE1237735B (de) Verlorenes Giessmodell aus vergasbarem Schaumstoff und Verfahren zur Herstellung desselben
DE1571380A1 (de) Verfahren zur Herstellung keramischer Artikel
DE1261670B (de) Verfahren zur kontinuierlichen Herstellung von Zellkoerpern aus Polymerisaten von Vinylchlorid oder vinylaromatischen Monomeren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16717555

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16717555

Country of ref document: EP

Kind code of ref document: A1