WO2016145939A1 - 一种信道指示方法和装置 - Google Patents

一种信道指示方法和装置 Download PDF

Info

Publication number
WO2016145939A1
WO2016145939A1 PCT/CN2016/070820 CN2016070820W WO2016145939A1 WO 2016145939 A1 WO2016145939 A1 WO 2016145939A1 CN 2016070820 W CN2016070820 W CN 2016070820W WO 2016145939 A1 WO2016145939 A1 WO 2016145939A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
value
field
mhz
mhz channels
Prior art date
Application number
PCT/CN2016/070820
Other languages
English (en)
French (fr)
Inventor
李云波
蓝洲
李彦淳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680012793.6A priority Critical patent/CN107409324B/zh
Publication of WO2016145939A1 publication Critical patent/WO2016145939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention belongs to the field of communications technologies, and in particular, to a channel indication method and apparatus.
  • WLAN Wireless Local Area Network
  • the standard usually uses 20MHz as the basic bandwidth unit, 20MHz bandwidth in 802.11a, 40MHz in 802.11n, and 80MHz and 160MHz in 802.11ac.
  • 20MHz bandwidth in 802.11a When the bandwidth is greater than 20 MHz, one of the 20 MHz is the primary 20 MHz channel, and the remaining 20 MHz channels are the slave channels.
  • a station when a station accesses a channel, it must include a primary 20 MHz channel. That is, when the primary 20 MHz channel is occupied, it cannot be used even if other channels are idle.
  • the channel bandwidth defined in the current standard has a main 20 MHz. Main 40MHz, main 80MHz and 160 (80+80)MHz four modes.
  • next-generation WLAN standard 802.11ax the focus is on dense deployment scenarios, and the focus of research has shifted from peak throughput to improved spectrum efficiency.
  • BSS Basic Services Set
  • the deployment of the basic service set (Basic Services Set, BSS for short) is too dense, and the Unlicensed Spectrum cannot provide a non-overlapping large bandwidth for each BSS (for example, :80MHz).
  • a plurality of overlapping basic service sets need to share spectrum resources, and time division multiplexing is performed by a CSMA/CA (English: Carrier Sense Multiple Access with Collision Avoidance) mechanism.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • the discontinuity of the unlicensed spectrum there are several aspects to the discontinuity of the unlicensed spectrum: on the one hand, there is a spectrum tube.
  • Reasons for the system such as the discontinuity of the unlicensed spectrum itself, the interference of the radar band, and the partial licensed spectrum can only be used indoors; on the other hand, the interference of the signal of the WLAN system itself will also cause the spectrum, such as the old WLAN site only Can be transmitted in 20MHz or 40MHz bandwidth, where narrowband transmission will cut the channel; for example, when uplink OFDMA (English: Orthogonal Frequency Division Multiple Access) technology is used on the 80MHz channel, different The stations are allocated on different 20 MHz or narrower channels, and different site coverages may cause some areas to receive only part of the 20 MHz channel and make the idle channel discontinuous.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the present invention provides a method and apparatus for channel indication in a wireless local area network, which is used to solve the problem of excessive complexity caused by performing arbitrary discontinuous channel binding in an unlicensed spectrum.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • a channel for data transmission the channel comprising a first channel and a second channel, the first channel and the second channel being discontinuous;
  • the first station sends a data frame on the channel, where the data frame includes a first field and a second field, where the first field and the second field indicate a bandwidth of the channel, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used.
  • the value of a field is a first value to a third value
  • the second field indicates a bandwidth of the second channel, specifically:
  • the second channel respectively includes one of the four 20 MHz channels
  • the second channel respectively includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the second field indicates a bandwidth of the first channel, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • the second field indicates a bandwidth of the first channel, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz The first, second, and fourth 20 MHz channels in the channel;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the second station receives a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used to indicate a channel bandwidth of data transmission;
  • the second station parses a first field and a second field in the data frame to determine a channel for data transmission, the channel including a first channel and a second channel, the first channel and the second channel are not Continuous, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used.
  • the second station parses the value of the first field to a first value to a third value, the second field indicates The bandwidth of the second channel is specifically:
  • the second channel respectively includes one of the four 20 MHz channels
  • the second channel respectively includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the bandwidth of the channel is specifically as follows:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • the second station parses the value of the first field to a fourth value, the second field indicates the first channel Bandwidth, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the first station determines a channel for data transmission
  • the first station sends a data frame on the channel, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used by the second field.
  • the first field is used to indicate a bandwidth range of channel binding
  • the second field is used by the second field. In the mode indicating channel bonding.
  • the bandwidth of the channel is any combination of four 20 MHz channels
  • the second field The mode used to indicate channel bonding, specifically:
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the bandwidth of the channel is any combination of four 20 MHz channels
  • the second field The mode used to indicate channel bonding, specifically:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the second station receives a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used to indicate a mode of channel bonding;
  • the second station parses the first field and the second field in the data frame to determine a channel for data transmission.
  • the second station determines that the value of the first field is a first value, and the second station parses the first one of the data frames
  • the two fields are used to determine the channel used for data transmission, specifically:
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the second station determines that the value of the first field is a first value, and the second station parses the first one of the data frames
  • the two fields are used to determine the channel used for data transmission, specifically:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the first station determines a channel for data transmission, the channel includes a first channel and a second channel, the first channel and the second channel are discontinuous, and the first channel specifically includes any one of the following: The first 20 MHz channel of the eight 20 MHz channels, the first two 20 MHz channels of the eight 20 MHz channels, and the second channel specifically includes any of the following: the third and fourth 20 MHz channels of the eight 20 MHz channels, The last four 20MHz channels of the eight 20MHz channels;
  • the first station sends a data frame on the channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • the first field is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of the data transmission;
  • the first channel specifically includes any one of the following: the first 20 MHz channel of the eight 20 MHz channels, and the first two 20 MHz channels of the eight 20 MHz channels
  • the second channel specifically includes any one of the following: eight 20 MHz channels.
  • the second station parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the first station determines a channel for data transmission, the channel comprising any combination of eight 20 MHz channels;
  • the data frame includes a first field, the first field includes seven bits, and seven bits in the first field respectively correspond to the eight 20 MHz channels Use of seven 20MHz channels except the main 20MHz channel.
  • an embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the second station receives the data frame, where the data frame includes a first field, where the first field is used to indicate channel usage of the data transmission;
  • a ninth aspect, the embodiment of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • a channel for data transmission the channel comprising a first channel and a second channel, the first channel and the second channel being discontinuous;
  • the first station sends a data frame on the channel, the data frame includes a first field, the first field is used to indicate a bandwidth of the channel, and the first channel and the second channel are four 20 MHz A subset of the channel set.
  • the first field is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the four 20 MHz a first 20 MHz channel in the channel, the second channel being a third 20 MHz channel of the four 20 MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • a tenth aspect of the present invention provides a channel indication method in a WLAN of a wireless local area network, including:
  • the second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of the data transmission;
  • the second station parses a first field in the data frame to determine a channel for data transmission, the channel includes a first channel and a second channel, the first channel and the second channel are discontinuous, The first channel and the second channel are a subset of four 20 MHz channel sets.
  • the second station parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the third of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is in the four 20 MHz channels. The last two 20MHz channels.
  • an embodiment of the present invention provides a channel indication apparatus in a WLAN of a wireless local area network, including:
  • a processing unit determining a channel for data transmission, the channel including a first channel and a second channel, the first channel and the second channel being discontinuous;
  • the processing unit is further configured to generate a data frame, where the data frame includes a first field and a second field, where the first field and the second field indicate a bandwidth of the channel, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used;
  • transceiver unit that transmits the data frame generated by the processing unit on the channel.
  • the second The field indicates the bandwidth of the second channel, specifically:
  • the second channel respectively includes one of the four 20 MHz channels
  • the second channel respectively includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the second field indicates the The bandwidth of the first channel is specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes four 20 MHz The first two 20 MHz channels in the channel;
  • the first channel includes four 20 MHz channels.
  • the second field indicates the The bandwidth of the first channel is specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • the embodiment of the present invention provides a channel indication apparatus in a WLAN of a wireless local area network, including:
  • a transceiver unit configured to receive a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used to indicate a channel bandwidth of data transmission;
  • a processing unit configured to parse a first field and a second field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are not Continuous, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used.
  • the processing unit parses the value of the first field to a first value to a third value, the second field indication
  • the bandwidth of the second channel is specifically:
  • the second channel respectively includes one of the four 20 MHz channels
  • the second channel respectively includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the processing unit parses the value of the first field as a fourth value, the second field indicates the first
  • the bandwidth of the channel is specifically as follows:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • the processing unit parses the value of the first field as a fourth value, the second field indicates the first
  • the bandwidth of the channel is specifically as follows:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • the embodiment of the invention provides a channel indication device in a WLAN of a wireless local area network, which is characterized in that:
  • a processing unit that determines a channel for data transmission
  • the processing unit is further configured to generate a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used to indicate a channel binding Fixed mode
  • transceiver unit that transmits the data frame generated by the processing unit on the channel.
  • the bandwidth of the channel is four Any combination of 20 MHz channels
  • the second field is used to indicate a mode of channel bonding, specifically:
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the bandwidth of the channel is four Any combination of 20 MHz channels
  • the second field is used to indicate a mode of channel bonding, specifically:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the embodiment of the present invention provides a channel indication apparatus in a WLAN of a wireless local area network, which is characterized by comprising:
  • a transceiver unit configured to receive a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used to indicate a mode of channel bonding ;
  • a processing unit configured to parse the first field and the second field in the data frame to determine a channel used for data transmission.
  • the processing unit determines that the value of the first field is a first value, and the processing unit parses the first in the data frame
  • the two fields are used to determine the channel used for data transmission, specifically:
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the processing unit determines that the value of the first field is a first value, and the processing unit parses the first in the data frame
  • the two fields are used to determine the channel used for data transmission, specifically:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • an embodiment of the present invention provides a channel indication apparatus in a WLAN of a wireless local area network, which is characterized by comprising:
  • a processing unit determining a channel for data transmission, the channel includes a first channel and a second channel, the first channel and the second channel are discontinuous, and the first channel specifically includes any one of the following: eight 20 MHz channels The first 20 MHz channel, the first two 20 MHz channels of the eight 20 MHz channels, and the second channel specifically includes any of the following: the third and fourth 20 MHz channels of the eight 20 MHz channels, and the eight 20 MHz channels The last four 20MHz channels;
  • the processing unit is further configured to generate a data frame, where the data frame includes a first field, where the first field is used to indicate a bandwidth of the channel;
  • the transceiver unit transmits the data frame generated by the processing unit on the channel.
  • the first field in the data frame generated by the processing unit is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is in the eight 20 MHz channels.
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • the embodiment of the present invention provides a channel indication apparatus in a WLAN of a wireless local area network, which is characterized by comprising:
  • a transceiver unit configured to receive a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of data transmission;
  • a processing unit configured to parse a first field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous,
  • the first channel specifically includes any one of the following: the first 20 MHz channel of the eight 20 MHz channels, and the first two 20 MHz channels of the eight 20 MHz channels
  • the second channel specifically includes any one of the following: eight 20 MHz channels.
  • the processing unit parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • the embodiment of the present invention provides a channel indication device in a WLAN of a wireless local area network, which is characterized in that:
  • a processing unit that determines a channel for data transmission, the channel comprising any combination of eight 20 MHz channels;
  • the processing unit is further configured to generate a data frame, where the data frame includes a first field, the first field includes seven bits, and seven bits in the first field respectively correspond to the main 20 MHz of the eight 20 MHz channels Use of seven 20MHz channels outside the channel;
  • transceiver unit that transmits the data frame generated by the processing unit on the channel.
  • the embodiment of the invention provides a channel indication device in a WLAN of a wireless local area network, which is characterized in that:
  • a transceiver unit configured to receive a data frame, where the data frame includes a first field, where the first field is used to indicate a channel usage of the data transmission;
  • a processing unit configured to parse a first field in the data frame to determine a channel for data transmission, the channel includes any combination of eight 20 MHz channels, the first field includes seven bits, the first The seven bits in the field correspond to the usage of seven 20 MHz channels in the eight 20 MHz channels except the primary 20 MHz channel.
  • an embodiment of the present invention provides a channel indication apparatus in a WLAN of a wireless local area network, which is characterized by comprising:
  • a processing unit determining a channel for data transmission, the channel including a first channel and a second channel, the first channel and the second channel being discontinuous;
  • the processing unit is further configured to generate a data frame, where the data frame includes a first field, where the first field is used to indicate a bandwidth of the channel, and the first channel and the second channel are four 20 MHz channel sets. Subset
  • transceiver unit that transmits the data frame generated by the processing unit on the channel.
  • the first field in the data frame generated by the processing unit is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the third of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the four 20 MHz The first two 20 MHz channels in the channel, the second channel being the fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • the embodiment of the present invention provides a channel indication device in a WLAN of a wireless local area network, which is characterized in that:
  • a transceiver unit configured to receive a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of data transmission;
  • a processing unit configured to parse a first field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous, The first channel and the second channel are a subset of four 20 MHz channel sets.
  • the processing unit parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the third of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame containing a field indicating the bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame containing a field indicating the bandwidth of the channel.
  • Figure 2a is a schematic diagram 1 of a channel structure of the present invention.
  • Figure 2b is a schematic diagram 2 of the channel structure of the present invention.
  • FIG. 3 is a schematic diagram of a frame structure of the present invention.
  • Figure 5 is a schematic diagram 1 of a channel according to Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram 2 of a channel according to Embodiment 1 of the present invention.
  • Figure 7 is a schematic diagram 3 of a channel according to Embodiment 1 of the present invention.
  • FIG. 11 is a flowchart of a method according to Embodiment 5 of the present invention.
  • FIG. 13 is a flowchart of a method according to Embodiment 7 of the present invention.
  • Figure 14 is a schematic diagram 1 of a channel according to Embodiment 7 of the present invention.
  • Figure 15 is a schematic diagram 2 of a channel according to Embodiment 7 of the present invention.
  • Figure 17 is a flowchart of a method according to Embodiment 9 of the present invention.
  • FIG. 19 is a logical structural diagram of a station in Embodiment 1 of the present invention.
  • FIG. 21 is a logical structural diagram of a station in Embodiment 3 of the present invention.
  • FIG. 22 is a logical structural diagram of a station in Embodiment 4 of the present invention.
  • FIG. 23 is a logical structural diagram of a station in Embodiment 5 of the present invention.
  • FIG. 24 is a logical structural diagram of a station in Embodiment 6 of the present invention.
  • FIG. 25 is a logical structural diagram of a station in Embodiment 7 of the present invention.
  • 26 is a logical structural diagram of a station in Embodiment 8 of the present invention.
  • Figure 27 is a logical structural diagram of a station in Embodiment 9 of the present invention.
  • FIG. 29 is a physical structural diagram of a station in Embodiment 1 of the present invention.
  • Figure 30 is a physical structural diagram of a station in Embodiment 2 of the present invention.
  • Figure 31 is a physical structural diagram of a station in Embodiment 3 of the present invention.
  • Figure 33 is a physical structural diagram of a station in Embodiment 5 of the present invention.
  • Figure 34 is a physical structural diagram of a station in Embodiment 6 of the present invention.
  • Figure 35 is a physical structural diagram of a station in Embodiment 7 of the present invention.
  • Figure 36 is a physical structural diagram of a station in Embodiment 8 of the present invention.
  • Figure 38 is a diagram showing the physical structure of a station in Embodiment 10 of the present invention.
  • FIG. 39 is a schematic diagram of a bandwidth field according to Embodiment 31 of the present invention.
  • FIG. 40 is a bandwidth field mapping diagram of Embodiment 31 of the present invention.
  • Figure 41 is a schematic diagram of a bandwidth field according to Embodiment 32 of the present invention.
  • Embodiment 42 is a bandwidth field mapping diagram of Embodiment 32 of the present invention.
  • FIG. 43 is a schematic diagram of a bandwidth field of scheme 1 in Embodiment 33 of the present invention.
  • FIG. 44 is a schematic diagram of a bandwidth field of scheme 2 in Embodiment 33 of the present invention.
  • FIG. 45 is a schematic diagram of a bandwidth field of scheme 3 in Embodiment 33 of the present invention.
  • FIG. 46 is a schematic diagram of a bandwidth field of scheme 4 in Embodiment 33 of the present invention.
  • Figure 47 is a schematic diagram of a bandwidth field of scheme 5 in Embodiment 33 of the present invention.
  • FIG. 48 is a schematic diagram of a bandwidth field of scheme 6 in Embodiment 33 of the present invention.
  • 49 is a schematic diagram of a bandwidth field of scenario 1 in Embodiment 34 of the present invention.
  • FIG. 50 is a schematic diagram of a bandwidth field of scenario 2 in Embodiment 34 of the present invention.
  • Figure 51 is a diagram showing a bandwidth field map of Embodiment 34 of the present invention.
  • FIG. 52 is a schematic diagram of a bandwidth field of scenario 1 in Embodiment 36 of the present invention.
  • FIG. 53 is a schematic diagram of a bandwidth field of scenario 2 in Embodiment 36 of the present invention.
  • Figure 54 is a bandwidth field map of Embodiment 36 of the present invention.
  • Figure 55 is a schematic diagram of a bandwidth field in Embodiment 37 of the present invention.
  • Figure 56 is a diagram showing the bandwidth field mapping in Embodiment 37 of the present invention.
  • 57 is a bandwidth field mapping diagram in Embodiment 37 of the present invention.
  • Figure 58 is a schematic diagram of a bandwidth field in Embodiment 38 of the present invention.
  • Figure 59 is a diagram showing the bandwidth field mapping in Embodiment 38 of the present invention.
  • Figure 60 is a diagram 2 of a bandwidth field map in Embodiment 38 of the present invention.
  • Figure 61 is a schematic diagram of a bandwidth field in Embodiment 39 of the present invention.
  • Figure 62 is a diagram showing the bandwidth field mapping in Embodiment 39 of the present invention.
  • Figure 63 is a diagram 2 of a bandwidth field map in Embodiment 39 of the present invention.
  • Figure 64 is a schematic diagram of a bandwidth field in Embodiment 40 of the present invention.
  • Figure 65 is a diagram showing the bandwidth field mapping in Embodiment 40 of the present invention.
  • FIG. 66 is a diagram 2 of a bandwidth field mapping in Embodiment 40 of the present invention.
  • 67 is a schematic diagram of a bandwidth field in Embodiment 41 of the present invention.
  • the embodiment of the present invention can be applied to a WLAN (English: Wireless Local Area Network), and the WLAN can include multiple basic service sets (abbreviation: BSS, English: Basic Service Set), network nodes in the basic service set.
  • BSS Basic Service Set
  • the site includes the site of the access point class (abbreviation: AP, English: Access Point) and the site of the non-access point class (English: None Access Point Station, referred to as: Non- AP STA).
  • Each basic service set may contain one AP and multiple Non-AP STAs associated with the AP.
  • Access point class sites (abbreviation: AP, English: Access Point), also known as wireless access points or hotspots.
  • the AP is an access point for mobile users to enter the wired network. It is mainly deployed in the home, inside the building, and inside the campus. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the standard adopted by AP is IEEE (English: Institute of Electrical and Electronics Engineers) 802.11 series.
  • the AP may be a terminal device or a network device with a WiFi (English: Wireless Fidelity) chip.
  • the AP may be a device supporting the 802.11ax standard.
  • Non-AP STA A non-access point class (English: None Access Point Station, referred to as Non-AP STA), which can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • a mobile phone with WiFi communication function a tablet computer supporting WiFi communication function, a set-top box supporting WiFi communication function, a smart TV supporting WiFi communication function, a smart wearable device supporting WiFi communication function, and a computer supporting WiFi communication function.
  • the site can support the 802.11ax standard.
  • Figure 1 is a system diagram of a typical WLAN deployment scenario, including an AP and three STAs, and the AP communicates with STA1, STA2, and STA3, respectively. Among them, both AP and STA1-3 can be used as the first site or the second site.
  • channels 0 to 7 represent a 20 MHz channel.
  • Channel 0 represents the primary 20 MHz channel
  • channel 1 represents the secondary 20 MHz channel
  • channels 0 and 1 form the primary 40 MHz channel
  • channels 2 and 3 form the secondary 40 MHz channel
  • channels 0, 1, 2 and 3 form the primary 80 MHz channel.
  • Channels 4, 5, 6, and 7 form the next 80 MHz channel.
  • Channels 4 and 5, channels 5 and 6, and channels 6 and 7 are respectively adjacent.
  • the composition rule of the multi-channel is that there is only one 20 MHz which is the main 20 MHz channel, and the adjacent 20 MHz to the left or the right of the main 20 MHz channel is the 20 MHz channel (left or right can be selected, But only one can be selected.
  • the left side can also be described as below, and the right side can also be described as above, where the left or lower refers to the lower frequency than the main 20MHz channel, and the right or upper refers to the higher than the main 20MHz channel frequency)
  • the main 20MHz channel and the 20MHz channel form the main 40MHz channel; the adjacent 40MHz to the left or right of the main 40MHz channel is the 40MHz channel (left or right can be optional, but only one can be selected), the main 40MHz channel and the 40MHz channel Main 80MHz channel; 80MHz to the left or right of the main 80MHz channel is the 80MHz channel (left or right can be optional, but only one can be selected).
  • the main 80MHz channel is adjacent to the 80MHz channel, it forms a 160MHz channel, when the main 80MHz The channel and the 80MHz channel are not adjacent, forming an 80+80MHz channel.
  • the arrangement of channels 0-7 can be in various ways as shown in Figure 2b.
  • the numbering sequence from two 20 MHz channels in 40 MHz and four 20 MHz channels in 80 MHz may be left to right or right to left, which is not limited in this patent.
  • the first channel and the second channel are logically discontinuous (ie, discontinuous in channel number according to the definition of channels 0-7 above), but in the actual physical spectrum.
  • the first channel and the second channel may be discontinuous or continuous.
  • the main 20 MHz is the first channel from the left
  • channel 0 and channel 2 are not discontinuous in the spectrum, but in the case of the main 20 MHz channel from the left, channel 0 and 2
  • the number channel may be contiguous in the spectrum.
  • channel 0 and channel 2 are both logically discontinuous, and the channel binding mode is not supported in the existing standards, and therefore belongs to the protection scope of this patent.
  • channel 0 is the main 20 MHz channel.
  • the data frame involved in the embodiment of the present invention is a possible 802.11ax data frame, as shown in FIG. 3 .
  • the data frame includes a preamble field and a data field, and is compatible with the existing WLAN system device.
  • the head of the 802.11ax data frame is a Legacy Preamble field, including L-STF (English: Legacy Short Training) Field, Chinese: traditional short training field), L-LTF (English: Legacy Long Training Field, Chinese: Traditional Length Training Field) and L-SIG (English: Legacy Signaling Field, Chinese: Traditional Signaling Field).
  • L-STF English: Legacy Short Training
  • Chinese traditional short training field
  • L-LTF English: Legacy Long Training Field
  • Chinese Traditional Length Training Field
  • L-SIG English: Legacy Signaling Field, Chinese: Traditional Signaling Field
  • the Legacy Preamble field is followed by an efficient signaling field (English: High Efficiency Signal Field, referred to as HE-SIG) and other efficient preamble fields Other HE Preamble.
  • the Other HE Preamble refers to a field or a combination of multiple fields, and is not limited to a specific field.
  • the Other Hew Preamble field is followed by a data field (Data).
  • Data data field
  • the name of the system or the name of the field, etc. may be replaced by any other name, and should not be considered as limiting the scope of the present invention, and the description of the data frame also applies to Subsequent embodiments.
  • Embodiment 1 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • 4 is an exemplary block diagram of the data transmission method, and the specific steps are as follows:
  • Step 101 The first station determines a channel for data transmission, where the channel includes a first channel and a second channel, and the first channel and the second channel are discontinuous.
  • Step 102 The first station sends a data frame on the channel, where the data frame includes a first field and a second field, where the first field and the second field indicate a bandwidth of the channel, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used.
  • first field and the second field in step 102 are located in the HE-SIG field of the data frame.
  • the first field contains two or more bits. The case where the first field contains two bits is as shown in FIG. 5. If the value of the first field is 00, the first channel includes channel 0, and if the value of the first field is 01, the first channel includes channels 0 and 1. If the value of the first field is 10, the first channel includes channel 0-3. If the value of the first field is 11, the current data transmission uses only the first channel, and the second channel is not used. The range of the first channel is channel 0-3, and the range of the second channel is channel 4-7.
  • the first field can take eight values. If the value of the first field is 000, the first channel includes channel 0. If the value of the first field is 001, the first channel includes channels 0 and 1. If the value of the first field is 010, the first channel includes Channel 0-3, if the value of the first field is 011, the current data transmission uses only the first channel, and the second channel is not used, wherein the range of the first channel is channel 0-3, and the range of the second channel is channel 4-7. When the first field takes a value of 100-111, it is reserved as another case. The case where the first field contains four bits or more is similar to the case where the first field contains three bits, and details are not described herein again.
  • the second field indicates a bandwidth of the second channel, specifically:
  • the second channel includes one of the four 20 MHz channels;
  • the second channel includes four Two consecutive 20 MHz channels in a 20 MHz channel;
  • the second channel includes four 20 MHz channels.
  • the second field contains 3 or more bits.
  • the second field contains 3 bits.
  • the second channel includes one of the 20 MHz channels 4-7 (for example, channel 4, 5, 6, or 7); If the value of the second field is 100-110, the second channel includes a 20 MHz channel 4-5, a 20 MHz channel 5-6 or a 20 MHz channel 6-7; if the second field has a value of 111, the second channel includes a 20 MHz channel 4- 7.
  • the range of the second channel is channel 4-7.
  • the first field can take 16 values. If the value of the second field is 0000-0011, the second channel includes one of the 20 MHz channels 4-7; if the value of the second field is 0100-0110, the second channel includes the 20 MHz channel 4-5, the 20 MHz channel 5-6 Or 20MHz channel 6-7; if the value of the second field is 0111, the second channel contains 20MHz channel 4-7. The range of the second channel is channel 4-7. When the value of the second field is 1000-1111, it is reserved as another case. The case where the second field contains five bits or more is similar to the case where the second field contains four bits, and will not be described again.
  • the situation of the first bandwidth and the second bandwidth is as shown in FIG. 7 : wherein the sequence number 1-8 is a case where the first field is the first value, and the sequence number is 9 -16 is the case where the first field is the second value, and the number 17-24 is the case where the first field is the third value.
  • the channel 0-7 is a continuous 160 MHz bandwidth
  • the three cases of sequence numbers 17, 21, and 24 are not used, and the channel 0-7 is a discontinuous (80+80) MHz bandwidth.
  • the serial number 17, 21, 24 are allowed to use.
  • the AP can also handle the case of the main 20 MHz, the main 40 MHz, and the main 80 MHz.
  • the AP can handle the channel binding flexibility. In the case of three consecutive channel bindings of 17, 21, 24, the above situation does not contradict the content of this patent protection, and does not constitute a limitation, and is advantageous for the completeness of the specific implementation.
  • the second field indicates a bandwidth of the first channel, and includes two scenarios.
  • Case 1 if the value of the second field is a first value, the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • BW1 in Table 1 is the first field
  • BW2 in Table 1 is the second field
  • Case 1 is specifically shown in Table 1.
  • Table 1 is only one possible implementation of BW1 and BW2.
  • the correspondence between BW1 and BW2 co-channels can also be other forms, and details are not described herein.
  • Case 2 if the value of the second field is a first value, the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • BW1 in Table 2 is the first field
  • BW2 in Table 2 is the second field
  • Case 2 is specifically shown in Table 2.
  • Table 2 is only one possible implementation of the BW1 and the BW2.
  • the correspondence between the BW1 and the BW2 co-channels can also be other forms,
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous, the first station transmits a data frame on the channel, the data frame includes a first field and a second field, where the first field and the second field are used to indicate a bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous, the first station transmits a data frame on the channel, the data frame includes a first field and a second field, where the first field and the second field are used to indicate a bandwidth of the channel.
  • Embodiment 2 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • FIG. 8 is an exemplary block diagram of the data transmission method, and the specific steps are as follows:
  • Step 201 The second station receives a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used to indicate a channel bandwidth of data transmission.
  • Step 202 The second station parses a first field and a second field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, the first channel and the first channel
  • the two channels are discontinuous, and the MHz is specifically:
  • the first channel includes four 20 MHz The first 20 MHz channel in the channel;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used.
  • the second station parses the value of the first field to a first value to a third value
  • the second field indicates a bandwidth of the second channel, specifically:
  • the second channel includes one of the four 20 MHz channels;
  • the second channel includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the second station parses the value of the first field to a fourth value, the second field indicates a bandwidth of the first channel, and includes two scenarios.
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a second station receives a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used by a channel bandwidth indicating data transmission; the second station parses a first field and a second field in the data frame to determine a channel for data transmission, the channel including a first channel and a second channel, The first channel and the second channel are discontinuous.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • Embodiment 3 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • FIG. 9 is an exemplary block diagram of the data transmission method, and the specific steps are as follows:
  • Step 301 The first station determines a channel for data transmission.
  • Step 302 The first station sends a data frame on the channel, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used to Indicates the mode of channel bonding.
  • first field and the second field in step 302 are located in the HE-SIG field of the data frame.
  • the bandwidth of the channel is any combination of four 20 MHz channels
  • the second field is used to indicate a mode of channel bonding, specifically Can be divided into two situations.
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the first field includes 2 bits. To be compatible with the existing standard, when the first field takes three cases except the first value, it corresponds to the main 20 MHz channel, the main 40 MHz channel, and the 160 MHz channel, respectively. And the number of bits of the second field is 0 at this time.
  • the number of bits of the second field is not fixed.
  • the second field contains 3 or more bits
  • the second field contains 2 or more bits.
  • Table 3 gives a possible correspondence of the first field and the second field to the channel, where BW1 is the first field and BW2 is the second field.
  • BW1 is the first field
  • BW2 is the second field.
  • the corresponding relationship between the BW1 and the BW2 co-channels may also be other forms, and details are not described herein.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission; a first station transmits a data frame on a determined channel, where the data frame includes a first field and a second field, the first field is used to indicate a bandwidth range of channel bonding, and the second field is used to indicate a mode of channel bonding.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • Embodiment 4 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • FIG. 10 is an exemplary block diagram of the data transmission method, and the specific steps are as follows:
  • Step 401 The second station receives a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used to indicate channel binding. mode.
  • Step 402 The second station parses the first field and the second field in the data frame to determine a channel for data transmission.
  • the second station determines that the value of the first field is a first value
  • the second The station parses the second field in the data frame to determine the channel for data transmission, specifically including two scenarios.
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the second station determines that the value of the first field is a first value, and the second station parses a second field in the data frame to determine a channel used for data transmission, specifically:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a second station receives a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate channel binding. Bandwidth range, the second field is used to indicate a mode of channel bonding; the second station parses the first field and the second field in the data frame to determine A channel for data transmission, the channel including any combination of eight 20 MHz channels.
  • Embodiment 5 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • 11 is an exemplary block diagram of the data transmission method, and the specific steps are as follows:
  • Step 501 The first station determines a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous, and the first channel specifically includes any one of the following: The first 20MHz channel of the 20MHz channel, the first two 20MHz channels of the eight 20MHz channels, and the second channel specifically includes any of the following: the third and fourth 20MHz channels of the eight 20MHz channels, eight The last four 20MHz channels in a 20MHz channel.
  • Step 502 The first station sends a data frame on the channel, where the data frame includes a first field, where the first field is used to indicate a bandwidth of the channel.
  • the first field in step 502 is located in the HE-SIG field of the data frame.
  • first channel and the second channel may be in the main 80 MHz and the 80 MHz channel respectively, or may be in the main 80 MHz channel, and the first channel may select one of the main 20 MHz, one of the main 40 MHz, and the second.
  • the channel can be selected from one of 40 MHz and from 80 MHz.
  • the first field is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • the other values of the first field are respectively Should be the main 20MHz channel, the main 40MHz channel, the main 80MHz channel and the main 160MHz channel.
  • the bandwidth mode indication manner includes two types, as shown in Table 4.
  • BW 100 means main 20MHz+from 40MHz
  • BW 101 means main 20MHz+from 80MHz
  • BW 110 means main 40MHz+from 80MHz
  • Indication mode B The indication mode is assigned from small to large in order of bandwidth.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • Embodiment 6 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • Figure 12 is an exemplary block diagram of the data transmission method, the specific steps are as follows:
  • Step 601 The second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of data transmission.
  • Step 602 The second station parses a first field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, the first channel and the second channel Discontinuity, the first channel specifically includes any one of the following: the first 20 MHz channel of the eight 20 MHz channels, the first two 20 MHz channels of the eight 20 MHz channels, and the second channel specifically includes any one of the following: eight The third and fourth 20 MHz channels in the 20 MHz channel, and the last four 20 MHz channels in the eight 20 MHz channels.
  • the second station parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • Embodiment 7 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • Figure 13 is an exemplary block diagram of the data transmission method, the specific steps are as follows:
  • Step 701 The first station determines a channel for data transmission, the channel including any combination of eight 20 MHz channels.
  • Step 702 The first station sends a data frame on the channel, where the data frame includes a first field, the first field includes 7 bits, and each bit in the first field corresponds to the eight The use of seven 20MHz channels in addition to the main 20MHz channel in a 20MHz channel.
  • the first field in step 702 is located in the HE-SIG field of the data frame.
  • the discontinuous channel is bound, and the number of segments is not limited. Different segments of the discontinuous channel may be in the main 80 MHz channel and in the 80 MHz channel, or both in the main 80 MHz channel.
  • Figure 14 and Figure 15 show the binding of the main 80MHz and the 80MHz channels, respectively.
  • the main 80MHz channel has 8 modes, and there are 16 modes from the 80MHz channel. There are 128 modes in which the two are combined with each other and need to be represented by 7 bits.
  • a 7-bit bitmap bitmap is used to indicate the usage of eight channels. Since the primary 20 MHz channel must be used in all modes, it may not be indicated. The use of the remaining 20 MHz channels of channels 1-7 is represented by 1 bit, and when the corresponding bit is set to 1, it indicates that the 20 MHz channel is bound, when the corresponding bit is set to 0, Indicates that the 20MHz channel is not bound. For example, 0000000 means that only the primary 20 MHz channel (channel 0) is used, and 0110000 means that the primary 20 MHz channel and the secondary 40 MHz channel (channel 0, 2, 3) are used.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes any combination of eight 20 MHz channels; and the first station is in a determined channel.
  • a data frame is transmitted, the data frame includes a first field, and the first field includes 7 bits, where the first field is used to indicate the usage of the channel.
  • Embodiment 8 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • Figure 16 is an exemplary block diagram of the data transmission method, the specific steps are as follows:
  • Step 801 The second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate channel usage of data transmission.
  • Step 802 The second station parses a first field in the data frame to determine a channel for data transmission, the channel includes any combination of eight 20 MHz channels, and the first field includes 7 bits. Each bit in the first field corresponds to the usage of seven 20 MHz channels of the eight 20 MHz channels except the main 20 MHz channel.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network (WLAN), wherein a second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel usage of the data transmission; The second station parses the first field in the data frame to determine a channel for data transmission, the channel comprising any combination of eight 20 MHz channels.
  • WLAN wireless local area network
  • Embodiment 9 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • Figure 17 is an exemplary block diagram of the data transmission method, the specific steps are as follows:
  • Step 901 The first station determines a channel for data transmission, where the channel includes a first channel and a second channel, and the first channel and the second channel are discontinuous.
  • Step 902 The first station sends a data frame on the channel, where the data frame includes a first field, where the first field is used to indicate a bandwidth of the channel, and the first channel and the second channel are A subset of four 20 MHz channel sets.
  • the first field in step 902 is located in the HE-SIG field of the data frame.
  • the first field is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the four 20 MHz a first 20 MHz channel in the channel, the second channel being a third 20 MHz channel of the four 20 MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • the correspondence between the first field and the channel is as shown in Table 5, and BW1 in Table 5 is the first field.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel The channel is discontinuous; the first station sends a data frame on the channel, the data frame includes a first field, the first field is used to indicate a bandwidth of the channel, and the first channel and the second channel are four A subset of a 20 MHz channel set.
  • Embodiment 10 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • Figure 18 is an exemplary block diagram of the data transmission method, the specific steps are as follows:
  • Step 1001 The second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of data transmission.
  • Step 1002 The second station parses a first field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous The first channel and the second channel are a subset of four 20 MHz channel sets.
  • the second station parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the third of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth for data transmission;
  • the site parses the first field in the data frame to confirm a channel for data transmission, the channel comprising a first channel and a second channel, the first channel and the second channel being discontinuous, the first channel and the second channel being a set of four 20 MHz channels Subset.
  • FIG. 19 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 11 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1100 shown in FIG. 19 includes a processing unit 1101 and a transceiving unit 1102.
  • the channel indication device 1100 may be the AP or STA1-STA3 shown in FIG. 1.
  • the processing unit 1101 determines a channel for data transmission, the channel including a first channel and a second channel, the first channel and the second channel being discontinuous.
  • the processing unit 1101 is further configured to generate a data frame, where the data frame includes a first field and a second field, where the first field and the second field indicate a bandwidth of the channel, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used;
  • the transceiver unit 1102 transmits the data frame generated by the processing unit on the channel.
  • the second field indicates a bandwidth of the second channel, specifically:
  • the second channel respectively includes one of the four 20 MHz channels
  • the second channel respectively includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the value of the first field in the data frame generated by the processing unit 1101 is fourth The value indicates that the second field indicates the bandwidth of the first channel, and is specifically divided into two cases.
  • Case 1 if the value of the second field is a first value, the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • Case 2 if the value of the second field is a first value, the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • Embodiments of the present invention provide a channel indication apparatus in a wireless local area network WLAN, where a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel are not Continuously, the transceiver unit transmits a data frame on the channel, the data frame includes a first field and a second field, where the first field and the second field are used to indicate a bandwidth of the channel.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • Figure 20 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 12 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1200 shown in FIG. 20 includes a processing unit 1201 and a transceiving unit 1202.
  • the channel indication device 1200 can be the AP or STA1-STA3 shown in FIG.
  • the transceiver unit 1202 is configured to receive a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used to indicate a channel bandwidth of data transmission.
  • the processing unit 1201 is configured to parse the first field and the second field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, the first channel and the second channel Not continuous, specifically:
  • the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels;
  • the data transmission uses only the first channel, and the second channel is not used.
  • the second field indicates a bandwidth of the second channel, specifically:
  • the second channel respectively includes one of the four 20 MHz channels
  • the second channel respectively includes two consecutive 20 MHz channels of four 20 MHz channels;
  • the second channel includes four 20 MHz channels.
  • the processing unit 1201 parses the value of the first field to a fourth value, the second field indicates a bandwidth of the first channel, specifically including two scenarios:
  • Case 1 if the value of the second field is a first value, the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes four 20 MHz The first two 20 MHz channels in the channel;
  • the first channel includes four 20 MHz channels.
  • Case 2 if the value of the second field is a first value, the first channel includes a first 20 MHz channel of four 20 MHz channels;
  • the first channel includes the first two 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first one of the four 20 MHz channels and a third 20 MHz channel;
  • the first channel includes a first one of the four 20 MHz channels and a fourth 20 MHz channel;
  • the first channel includes the first three 20 MHz channels of the four 20 MHz channels;
  • the first channel includes a first, a second, and a fourth 20 MHz channel of the four 20 MHz channels;
  • the first channel includes the first, third, and fourth 20 MHz channels of the four 20 MHz channels;
  • the first channel includes four 20 MHz channels.
  • processing unit 1201 parses the correspondence between the first field and the second field in the data frame and the channel in the first embodiment, and details are not described herein again.
  • An embodiment of the present invention provides a channel indication apparatus in a wireless local area network (WLAN), wherein a transceiver unit receives a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used by Determining a channel bandwidth for data transmission; the processing unit parses a first field and a second field in the data frame to determine a channel for data transmission, the channel including a first channel and a second channel, the first The channel and the second channel are discontinuous.
  • WLAN wireless local area network
  • Figure 21 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 13 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel indication device 1300 shown in FIG. 21 includes a processing unit 1301 and a transceiver unit 1302.
  • the channel indication device 1300 can be the AP or STA1-STA3 shown in FIG. 1.
  • the processing unit 1301 determines a channel used for data transmission
  • the processing unit 1301 is further configured to generate a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel bonding, and the second field is used to indicate a channel Bound mode
  • the transceiver unit 1302 transmits the data frame generated by the processing unit on the channel.
  • the bandwidth of the channel is any combination of four 20 MHz channels, and the second field is used to indicate channel bonding.
  • the specific mode is as follows:
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the bandwidth of the channel is any combination of four 20 MHz channels, and the second field is used to indicate channel bonding.
  • the specific mode is as follows:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • Embodiments of the present invention provide a channel indication apparatus in a wireless local area network WLAN, where a processing unit determines a channel for data transmission; a transceiver unit transmits a data frame on the determined channel, where the data frame includes a first field and a second a field, the first field is used to indicate a bandwidth range of channel bonding, and the second field is used to indicate a mode of channel bonding.
  • a processing unit determines a channel for data transmission
  • a transceiver unit transmits a data frame on the determined channel, where the data frame includes a first field and a second a field, the first field is used to indicate a bandwidth range of channel bonding, and the second field is used to indicate a mode of channel bonding.
  • FIG. 22 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 14 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1400 shown in FIG. 22 includes a processing unit 1401 and a transceiving unit 1402.
  • the channel indication device 1400 can be the AP or STA1-STA3 shown in FIG.
  • the transceiver unit 1402 is configured to receive a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate a bandwidth range of channel binding, and the second field is used to indicate channel binding. mode;
  • the processing unit 1401 is configured to parse the first field and the second field in the data frame to determine a channel for data transmission.
  • the processing unit 1401 determines that the value of the first field is a first value, and the processing unit 1401 parses the second field in the data frame to determine a channel used for data transmission, specifically:
  • the bandwidth of the channel is the first of the four 20 MHz channels and the third 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first three 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first of the four 20 MHz channels, and the third and fourth 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • the processing unit 1401 determines that the value of the first field is a first value, and the processing unit 1401 parses the second field in the data frame to determine a channel used for data transmission, specifically:
  • the bandwidth of the channel is the first and third 20 MHz channels of the four 20 MHz channels, or the first and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is the first of the four 20 MHz channels, the second and the fourth 20 MHz channel;
  • the bandwidth of the channel is the first, third and fourth 20 MHz channels of the four 20 MHz channels;
  • the bandwidth of the channel is four 20 MHz channels.
  • An embodiment of the present invention provides a channel indication apparatus in a wireless local area network (WLAN), wherein a transceiver unit receives a data frame, where the data frame includes a first field and a second field, where the first field is used for indicating channel binding. a bandwidth range, the second field is used to indicate a mode of channel bonding; the processing unit parses a first field and a second field in the data frame to determine a channel for data transmission, the channel including eight 20 MHz channels.
  • the channel bonding mode in the WLAN is increased, and the system throughput is improved.
  • Figure 23 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 15 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1500 shown in FIG. 23 includes a processing unit 1501 and a transceiving unit 1502.
  • the channel indication device 1500 can be the AP or STA1-STA3 shown in FIG.
  • the processing unit 1501 determines a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous, and the first channel specifically includes any one of the following: eight 20 MHz The first 20MHz channel in the channel, the first two 20MHz channels of the eight 20MHz channels, the second channel specifically includes any of the following: the third and fourth 20MHz channels of the eight 20MHz channels, eight 20MHz The last four 20 MHz channels in the channel;
  • the processing unit 1501 is further configured to generate a data frame, where the data frame includes a first field, where The first field is used to indicate the bandwidth of the channel;
  • the transceiver unit 1502 transmits the data frame generated by the processing unit on the channel.
  • the first field in the data frame generated by the processing unit 1501 is used to indicate a bandwidth of the channel, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • Embodiments of the present invention provide a channel indication apparatus in a wireless local area network WLAN, where a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel are not Continuously; the transceiver unit transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel are not Continuously;
  • the transceiver unit transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • Figure 24 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 16 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1600 shown in FIG. 24 includes a processing unit 1601 and a transceiver unit 1602.
  • the channel indication device 1600 can be the AP or STA1-STA3 shown in FIG.
  • the transceiver unit 1602 is configured to receive a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of the data transmission;
  • the processing unit 1601 is configured to parse the first field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous
  • the first channel specifically includes any one of the following: eight 20 MHz channels
  • the first 20MHz channel, the first two 20MHz channels of the eight 20MHz channels, the second channel specifically includes any of the following: the third and fourth 20MHz channels of the eight 20MHz channels, and the eight 20MHz channels The last four 20MHz channels.
  • the processing unit 1601 parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the third of the eight 20 MHz channels. And a fourth 20 MHz channel;
  • the first channel is the first 20 MHz channel of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the eight 20 MHz channels, and the second channel is the last four of the eight 20 MHz channels. 20MHz channels.
  • Embodiments of the present invention provide a channel indication apparatus in a wireless local area network WLAN, where a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel are not Continuously; the transceiver unit transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel are not Continuously;
  • the transceiver unit transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • FIG. 25 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 17 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1700 shown in FIG. 25 includes a processing unit 1701 and a transceiving unit 1702.
  • the channel indication device 1700 can be the AP or STA1-STA3 shown in FIG. 1.
  • Processing unit 1701 determining a channel for data transmission, the channel including any combination of eight 20 MHz channels;
  • the processing unit 1701 is further configured to generate a data frame, where the data frame includes a first field, the first field includes seven bits, and seven bits in the first field respectively correspond to the eight Use of seven 20MHz channels in addition to the main 20MHz channel in the 20MHz channel;
  • the transceiver unit 1702 transmits the data frame generated by the processing unit 1701 on the channel.
  • Embodiments of the present invention provide a channel indication apparatus in a wireless local area network WLAN, where a processing unit determines a channel for data transmission, the channel includes any combination of eight 20 MHz channels; and the transceiver unit transmits a data frame on the determined channel.
  • the data frame includes a first field, and the first field includes 7 bits, where the first field is used to indicate the usage of the channel.
  • Figure 26 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 18 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1800 shown in FIG. 26 includes a processing unit 1801 and a transceiving unit 1802.
  • the channel indication device 1800 can be the AP or STA1-STA3 shown in FIG.
  • the transceiver unit 1802 is configured to receive a data frame, where the data frame includes a first field, where the first field is used to indicate a channel usage of the data transmission;
  • a processing unit 1801 configured to parse a first field in the data frame to determine a channel for data transmission, where the channel includes any combination of eight 20 MHz channels, where the first field includes seven bits, The seven bits in a field correspond to the use of seven 20 MHz channels in the eight 20 MHz channels except the primary 20 MHz channel.
  • An embodiment of the present invention provides a channel indication apparatus in a wireless local area network (WLAN), wherein a transceiver unit receives a data frame, the data frame includes a first field, and the first field is used to indicate a channel usage of data transmission; A first field in the data frame is parsed to determine a channel for data transmission, the channel comprising any combination of eight 20 MHz channels.
  • WLAN wireless local area network
  • FIG. 27 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 19 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 1900 shown in FIG. 27 includes a processing unit 1901 and a transceiving unit 1902.
  • the channel indication device 1900 can be the AP or STA1-STA3 shown in FIG.
  • the processing unit 1901 determines a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous;
  • the processing unit 1901 is further configured to generate a data frame, where the data frame includes a first field, where the first field is used to indicate a bandwidth of the channel, and the first channel and the second channel are four 20 MHz channels. a subset of the collection;
  • the transceiver unit 1902 transmits the data frame generated by the processing unit 1901 on the channel.
  • the first field in the data frame generated by the processing unit 1901 is used to indicate the bandwidth of the channel, specifically:
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the third of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • Embodiments of the present invention provide a channel indication apparatus in a wireless local area network WLAN, where a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the transceiver unit transmits a data frame on the channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel, where The first channel and the second channel are a subset of four 20 MHz channel sets.
  • a processing unit determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the transceiver unit transmits a data frame on the channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel, where The first channel and the second channel are a subset of four 20 MHz channel sets.
  • Figure 28 is a schematic block diagram of a channel pointing device in a wireless local area network according to Embodiment 20 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the channel pointing device 2000 shown in FIG. 28 includes a processing unit 2001 and a transceiving unit 2002.
  • the channel indication device 2000 can be the AP or STA1-STA3 shown in FIG.
  • the transceiver unit 2002 is configured to receive a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth of the data transmission;
  • the processing unit 2001 is configured to parse the first field in the data frame to determine a channel for data transmission, where the channel includes a first channel and a second channel, where the first channel and the second channel are discontinuous, The first channel and the second channel are a subset of four 20 MHz channel sets.
  • the processing unit 2001 parses the first field in the data frame to determine a channel used for data transmission, specifically:
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the third of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channel;
  • the first channel is the first two 20 MHz channels of the four 20 MHz channels, and the second channel is the fourth of the four 20 MHz channels. 20MHz channels;
  • the first channel is the first 20 MHz channel of the four 20 MHz channels
  • the second channel is the last two of the four 20 MHz channels. 20MHz channel.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a transceiver unit receives a data frame, and the data frame includes a first field, where the first field is used to Determining a channel bandwidth for data transmission; the processing unit parses a first field in the data frame to determine a channel for data transmission, the channel including a first channel and a second channel, the first channel and the second channel not Continuously, the first channel and the second channel are a subset of four 20 MHz channel sets.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • FIG. 29 is a diagram showing the hardware configuration of a station in a wireless local area network.
  • station 2100 can be implemented by bus 2110 as a general bus architecture.
  • bus 2110 can include any number of interconnect buses and bridges.
  • the bus connects various circuits together, including a processor 2120, a storage medium 2130, and a bus interface 2140.
  • the site 2100 connects the network adapter 2150 or the like to the site 2100 via the bus 2110 using the bus interface 2140.
  • the network adapter 310 can be used to implement signal processing functions of the physical layer in the wireless local area network, and transmit and receive radio frequency signals through the antenna 2170.
  • the user interface 2160 can be connected to a user terminal such as a keyboard, display, mouse, joystick, and the like.
  • the bus 2110 can also be connected to various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • Site 2100 can be configured as a general purpose processing system including: one or more microprocessors that provide processor functionality; and external memory that provides at least a portion of storage medium 2130, all through external bus architectures and others Support circuits are connected together.
  • the site 2100 can be implemented using an ASIC (application specific integrated circuit) having a processor 2120, a bus interface 2140, a user interface 2160, and at least a portion of the storage medium 2130 integrated in a single chip, or a site
  • the 2100 can be implemented using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuitry, or capable of Any combination of circuits that perform the various functions described throughout the present invention.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuitry, or capable of Any combination of circuits that perform the various
  • the processor 2120 is responsible for managing the bus and general processing (including executing software stored on the storage medium 2130).
  • the processor 2120 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware. Describe the language or something else.
  • storage medium 2130 is shown as being separate from processor 2120, however, those skilled in the art will readily appreciate that storage medium 2130, or any portion thereof, may be located outside of station 2100.
  • storage medium 2130 can include a transmission line, a carrier waveform modulated with data, and/or a computer article separate from the wireless node, which can be accessed by processor 2120 through bus interface 2140.
  • storage medium 2130, or any portion thereof, may be integrated into processor 2120, for example, may be a cache and/or a general purpose register.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous, the first station transmits a data frame on the channel, the data frame includes a first field and a second field, where the first field and the second field are used to indicate a bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous, the first station transmits a data frame on the channel, the data frame includes a first field and a second field, where the first field and the second field are used to indicate a bandwidth of the channel.
  • FIG 30 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 21, and details are not described herein again.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a second station receives a data frame, where the data frame includes a first field and a second field, where the first field and the second field are used by a channel bandwidth indicating data transmission; the second station parses a first field and a second field in the data frame to determine a channel for data transmission, the channel including a first channel and a second channel, The first channel and the second channel are discontinuous.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • FIG 31 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 21, and details are not described herein again.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission; a first station transmits a data frame on a determined channel, where the data frame includes a first field and a second field, the first field is used to indicate a bandwidth range of channel bonding, and the second field is used to indicate a mode of channel bonding.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • Figure 32 is a block diagram showing the hardware configuration of a station in a wireless local area network.
  • the hardware configuration of the site is the same as that of the embodiment 21, and details are not described herein again.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a second station receives a data frame, where the data frame includes a first field and a second field, where the first field is used to indicate channel binding. Bandwidth range, the second field is used to indicate a mode of channel bonding; the second station parses a first field and a second field in the data frame to determine a channel for data transmission, the channel including By combining the above eight 20MHz channels, the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • FIG 33 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 21, and details are not described herein again.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • FIG 34 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration structure of the site is the same as that of the embodiment 21, and details are not described herein again.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel Discontinuous; the first station transmits a data frame on the determined channel, the data frame includes a first field, and the first field is used to indicate a bandwidth of the channel.
  • FIG 35 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 21, and details are not described herein again.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes any combination of eight 20 MHz channels; and the first station is in a determined channel.
  • a data frame is transmitted, the data frame includes a first field, and the first field includes 7 bits, where the first field is used to indicate the usage of the channel.
  • Figure 36 is a diagram showing the hardware configuration of a station in a wireless local area network.
  • the hardware configuration structure of the site is the same as that of the embodiment 21, and details are not described herein again.
  • Embodiment 28 the instructions executed by the processor 2820 in the site in Embodiment 28 have been elaborated in Embodiment 8, and are not described again.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network (WLAN), wherein a second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel usage of the data transmission; The second station parses the first field in the data frame to determine a channel for data transmission, the channel comprising any combination of eight 20 MHz channels.
  • WLAN wireless local area network
  • FIG 37 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration structure of the site is the same as that of the embodiment 21, and details are not described herein again.
  • Embodiments of the present invention provide a channel indication method in a wireless local area network WLAN, where a first station determines a channel for data transmission, the channel includes a first channel and a second channel, and the first channel and the second channel The channel is discontinuous; the first station sends a data frame on the channel, the data frame includes a first field, the first field is used to indicate a bandwidth of the channel, and the first channel and the second channel are four A subset of a 20 MHz channel set.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • FIG 38 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 21, and details are not described herein again.
  • An embodiment of the present invention provides a channel indication method in a wireless local area network WLAN, where a second station receives a data frame, where the data frame includes a first field, where the first field is used to indicate a channel bandwidth for data transmission; The station parses a first field in the data frame to determine a channel for data transmission, the channel includes a first channel and a second channel, the first channel and the second channel are discontinuous, the first channel and The second channel is a subset of four 20 MHz channel sets.
  • the mode of channel bonding in the WLAN is increased, and the system throughput is improved.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented by the present invention.
  • the implementation of the examples constitutes any limitation.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. Specifically, it can be implemented by means of software plus necessary general hardware including general-purpose integrated circuits, general-purpose CPUs, general-purpose digital signal processors (DSPs), field-programmable gate arrays (FPGAs), and programmable logic devices (PLDs). ), general-purpose memory, general-purpose components, etc., of course, can also be realized by dedicated hardware including an application-specific integrated circuit (ASIC), a dedicated CPU, a dedicated memory, a dedicated component, and the like.
  • ASIC application-specific integrated circuit
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard A medium that can store program code, such as a disk, a read-only memory (English: Read-Only Memory, ROM), a random access memory (English: Random Access Memory, RAM), a disk, or an optical disk.
  • program code such as a disk, a read-only memory (English: Read-Only Memory, ROM), a random access memory (English: Random Access Memory, RAM), a disk, or an optical disk.
  • Software or instructions can also be transferred over a transmission medium.
  • a transmission medium For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: DSL) or wireless technology (such as infrared, radio and microwave) to transfer software from websites, servers or other remote sources.
  • coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies are included in the definition of the transmission medium.
  • discontinuous channel bonding method involved in this patent further includes the following embodiments.
  • Embodiment 31 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 31 are as follows:
  • Step 3101 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 5 bits, and the bandwidth field is The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel, and the third bit of the bandwidth field is used to indicate the channel from 40 MHz In the latter half of the use case, the fourth bit of the bandwidth field is used to indicate usage from the first half of the 80 MHz channel, and the fifth bit of the bandwidth field is used to indicate usage from the second half of the 80 MHz channel.
  • the PPDU includes a bandwidth field
  • the bandwidth field is used to indicate a channel bandwidth of data transmission
  • the bandwidth field includes 5 bits
  • the bandwidth field is The first bit is used to indicate usage from the 20 MHz channel
  • the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel
  • Step 3102 The first station sends the PPDU.
  • Step 3103 The second station receives the PPDU.
  • Step 3104 The second station parses the bandwidth field in the PPDU to determine data transmission.
  • the location of the bandwidth field in the PPDU is not limited in the present invention.
  • the bandwidth field can be located in the HE-SIG portion.
  • the channel bandwidth used by the station for data transmission in this embodiment may be a continuous bandwidth or a few segments of discontinuous bandwidth. The above also applies to other embodiments.
  • the bandwidth field uses a bitmap (English: Bitmap) to indicate the channel usage.
  • the Bitmap contains 5 bits, B0 to B4.
  • B0 indicates from 20 MHz
  • B1 indicates from 40 MHz A
  • B2 indicates from 40 MHz B
  • B3 indicates from 80 MHz A
  • B4 indicates from 80 MHz B.
  • B4 indicates from 20MHz
  • B3 indicates from 40MHz A
  • B2 indicates from 40MHz B
  • B1 indicates from 80MHz A
  • B0 indicates from 80MHz B.
  • the above also applies to other embodiments.
  • mapping relationship between the Bitmap and the channel is as shown in FIG. 40, and the mapping relationship includes other modes, which are not limited by the present invention.
  • the primary 20 MHz channel must be used, so no special indication is needed.
  • from 40MHz A and from 40MHz B are respectively a 20MHz channel from a 40MHz channel, which together form a 40MHz channel;
  • from 80MHz A and from 80MHz B are respectively a 40MHz channel from a 80MHz channel, both Commonly composed from the 80MHz channel.
  • the above also applies to other embodiments.
  • channel binding is performed using different channel granularities at the primary 80 MHz and from 80 MHz, and a larger channel granularity is adopted from the 80 MHz channel, which can save signaling overhead.
  • Embodiment 32 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 32 are as follows:
  • Step 3201 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 4 bits, and the bandwidth field is The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel, and the third bit of the bandwidth field is used to indicate the channel from 40 MHz In the latter half of the use case, the fourth bit of the bandwidth field is used to indicate usage from the 80 MHz channel.
  • the PPDU includes a bandwidth field
  • the bandwidth field is used to indicate a channel bandwidth of data transmission
  • the bandwidth field includes 4 bits
  • the bandwidth field is The first bit is used to indicate usage from the 20 MHz channel
  • the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel
  • the third bit of the bandwidth field is used to indicate the channel from 40 MHz
  • the fourth bit of the bandwidth field is used to indicate
  • Step 3202 The first station sends the PPDU.
  • Step 3203 The second station receives the PPDU.
  • Step 3204 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the present invention does not limit the location of the bandwidth field in the PPDU.
  • the bandwidth field may be located in the HE-SIG part.
  • the channel bandwidth used by the station for data transmission in this embodiment may be a continuous bandwidth or a few segments of discontinuous bandwidth.
  • the bandwidth field uses a bitmap Bitmap to indicate the usage of the channel.
  • the Bitmap contains 4 bits, B0 to B3.
  • the correspondence between Bitmap and channel is shown in Figure 41.
  • B0 indicates from 20 MHz
  • B1 indicates from 40 MHz A
  • B2 indicates from 40 MHz B
  • B3 indicates from 80 MHz.
  • B3 indicates from 20MHz
  • B2 indicates from 40MHz A
  • B1 indicates from 40MHz B
  • B0 indicates from 80MHz.
  • mapping relationship between the Bitmap and the channel is as shown in FIG. 42 , and the mapping relationship includes other modes, which are not limited by the present invention.
  • channel binding is performed using different channel granularities at the primary 80 MHz and from 80 MHz, and a larger channel granularity is adopted from the 80 MHz channel, which can save signaling overhead.
  • Embodiment 33 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • a station for example, an AP and a STA1-STA3 in FIG. 1
  • the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • the channel indication method in this scenario includes at least the following solutions:
  • the total channel bandwidth that the station can use is 240 MHz, the station uses 20 MHz channel granularity in the main 80 MHz, and the two uses 40 MHz channel granularity in the 80 MHz bandwidth.
  • the bandwidth field in the PPDU transmitted by the station contains 7 bits.
  • B0 to B2 indicate the availability of three 20 MHz channels in the main 80 MHz except for the main 20 MHz;
  • B3 to B6 indicate the availability of two 40 MHz channels from 80 MHz.
  • the correspondence between the bandwidth field and the channel is as shown in FIG.
  • the total channel bandwidth that the station can use is 240MHz.
  • the station uses 20MHz channel granularity in the main 80MHz, one uses 40MHz channel granularity from the 80MHz bandwidth, and the other uses 80MHz channel granularity from the 80MHz bandwidth.
  • the PPDU in the station transmits.
  • the bandwidth field contains 6 bits.
  • B0 to B2 indicate the availability of three 20 MHz channels in the main 80 MHz except for the main 20 MHz;
  • B3 to B4 indicate the availability of two 40 MHz channels from 80 MHz;
  • B5 indicates the availability of another from the 80 MHz channel.
  • the correspondence between the bandwidth field and the channel is as shown in FIG.
  • the total channel bandwidth that the station can use is 240MHz.
  • the station uses 20MHz channel granularity in the main 80MHz, the first uses 80MHz channel granularity from the 80MHz bandwidth, and the second uses 80MHz channel granularity from the 80MHz bandwidth.
  • the bandwidth field in the PPDU contains 5 bits.
  • B0 to B2 indicate the availability of three 20 MHz channels in the main 80 MHz except for the main 20 MHz;
  • B3 indicates the availability of the first channel from 80 MHz;
  • B4 indicates the availability of the second from the 80 MHz channel.
  • the correspondence between the bandwidth field and the channel is as shown in FIG. 45.
  • the total channel bandwidth that the station can use is 320 MHz.
  • the station uses a 20 MHz channel granularity in the main 80 MHz, an 80 MHz channel granularity from 80 MHz, and an 80 MHz channel granularity from 160 MHz.
  • the bandwidth field in the PPDU transmitted by the station contains 6 bits.
  • B0 to B2 indicate the availability of three 20 MHz channels except for the main 20 MHz in the main 80 MHz;
  • B3 indicates the availability of the channel from the 80 MHz;
  • B4 to B5 indicate the from 160 MHz.
  • the availability of two 80MHz channels within Specifically, the correspondence between the bandwidth field and the channel is as shown in FIG. 46.
  • the total channel bandwidth that the station can use is 320 MHz.
  • the station uses a 20 MHz channel granularity in the main 80 MHz, a 40 MHz channel granularity from 80 MHz, and an 80 MHz channel granularity from 160 MHz.
  • the bandwidth field in the PPDU transmitted by the station contains 7 bits.
  • B0 to B2 indicate the availability of three 20 MHz channels in the main 80 MHz except for the main 20 MHz;
  • B3 to B4 indicate the availability of two 40 MHz channels from within 80 MHz;
  • B5 to B6 indicate the availability of two 80 MHz channels from within 160 MHz.
  • the correspondence between the bandwidth field and the channel is as shown in FIG. 47.
  • the total channel bandwidth that the station can use is 320 MHz.
  • the station uses a 20 MHz channel granularity in the main 80 MHz, an 80 MHz channel granularity from 80 MHz, and a 160 MHz channel granularity from 160 MHz.
  • the bandwidth field in the PPDU transmitted by the station contains 5 bits.
  • B0 to B2 indicate the availability of three 20 MHz channels in the main 80 MHz except for the main 20 MHz;
  • B3 indicates the availability of the channel from the 80 MHz;
  • B4 indicates the availability of the channel from the 160 MHz.
  • the correspondence between the bandwidth field and the channel is as shown in FIG.
  • the location of the bandwidth field in the PPDU is not limited.
  • the bandwidth field can be located in the HE-SIG portion.
  • the channel bandwidth used by the station for data transmission in this embodiment may be a continuous bandwidth or a few segments of discontinuous bandwidth.
  • This embodiment saves signaling overhead by employing different channel granularities in different bandwidths.
  • Embodiment 34 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 34 are as follows:
  • Step 3401 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 4 bits, where the bandwidth field The first bit is used to indicate that the channel bandwidth for data transmission is 80 MHz or 160 MHz.
  • the remaining 3 bits of the bandwidth field indicate channel usage from 20 MHz, from the first half of 40 MHz, and from the second half of 40 MHz, respectively.
  • the remaining 3 bits of the bandwidth field indicate channel usage from 40 MHz, from the first half of 80 MHz, and from the second half of 80 MHz, respectively.
  • Step 3402 The first station sends the PPDU.
  • Step 3403 The second station receives the PPDU.
  • Step 3404 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the mapping relationship includes other modes, which are not limited by the present invention.
  • the channel corresponding to the bit when a certain bit takes a value of 0, the channel corresponding to the bit is unavailable, and when the value is 1, the channel corresponding to the bit is available.
  • the bit value when the bit value is 0, the channel corresponding to the bit is available, and when the bit value is 1, the channel corresponding to the bit is unavailable.
  • the primary 20 MHz channel must be used, so no special indication is needed.
  • from 40MHz A and from 40MHz B are respectively a 20MHz channel from a 40MHz channel, which together form a 40MHz channel;
  • from 80MHz A and from 80MHz B are respectively a 40MHz channel from a 80MHz channel, both Commonly composed from the 80MHz channel.
  • the bandwidth indication field is used to indicate the 80 MHz channel and the 160 MHz channel, which can save signaling overhead.
  • Embodiment 35 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • a station for example, an AP and a STA1-STA3 in FIG. 1
  • the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • the present embodiment is directed to a scenario in which the total channel bandwidth is 320 MHz, and the channel indication method in this scenario is specifically as follows:
  • the bandwidth field in the PPDU sent by the station contains 5 bits.
  • the bandwidth of the available channel distribution can be indicated by 2 bits B0 ⁇ B1 in the bandwidth field.
  • the value 0 represents the available channel distribution in the 80MHz bandwidth
  • the value 1 represents the available channel distribution at 160MHz.
  • the value 2 represents the available channel distribution within the 320 MHz bandwidth and the value 3 is reserved.
  • the remaining 3 bits in the station use bandwidth field respectively indicate the availability of the corresponding channel in different bandwidths.
  • the channel indication granularity of 20 MHz is adopted, and 3 bits respectively indicate the availability of three 20 MHz except for the main 20 MHz channel in the main 80 MHz; when the available bandwidth is within 160 MHz, the channel of 40 MHz is adopted. Indicating the granularity, 3 bits respectively indicate the availability of 3 40 MHz except for the main 40 MHz channel in 160 MHz; when the available bandwidth is within 320 MHz, the channel indicating granularity of 80 MHz is used, and 3 bits respectively indicate that the main is excluded in 320 MHz. Three 80MHz available cases outside the 80MHz channel.
  • the bandwidth indication field is used to indicate the 320 MHz channel, which can save signaling overhead.
  • Embodiment 36 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 36 are as follows:
  • Step 3601 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 5 bits, and the bandwidth field is The first bit is used to indicate that the channel bandwidth for data transmission is 80 MHz or 160 MHz.
  • the three bits in the bandwidth field indicate channel usage from 20 MHz, from the first half of 40 MHz, and from the second half of 40 MHz, respectively.
  • the remaining bit of the bandwidth field is reserved.
  • the remaining 3 bits of the bandwidth field indicate channel usage from 40 MHz, from the first half of 80 MHz, and from the second half of 80 MHz, respectively.
  • Step 3602 The first station sends the PPDU.
  • Step 3603 The second station receives the PPDU.
  • Step 3604 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the mapping relationship includes other modes, which are not limited by the present invention.
  • one bit B0 is used to indicate whether the available channel is only distributed in the main 80 MHz or in the main 80 MHz and the following 80 MHz channels; in addition, three bits B1 to B3 are used to indicate the corresponding channel availability; One bit B4 is used to indicate the availability of the 20 MHz channel when the available channels are simultaneously distributed in the main 80 MHz and from the 80 MHz channel.
  • B1 to B3 respectively represent the availability of three 20 MHz channels (i.e., from 20 MHz, from 40 MHz A, and from 40 MHz B) in addition to the main 20 MHz in 80 MHz.
  • B1 to B3 respectively represent the availability of three 40 MHz channels (ie, from 40 MHz, from 80 MHz A, and from 80 MHz B) in the 160 MHz (80+80 MHz) except for the main 40 MHz.
  • B4 is a reserved bit, and can also be used to indicate other modes than the one provided in this embodiment;
  • a value of B4 of 0 means that the channel is not available from the 20 MHz channel
  • a value of B4 of 1 means that the channel is available from the 20 MHz channel.
  • the positional order of B0, B1 to B3, and B4 is not limited.
  • B4 may be placed before B1 to B3.
  • the primary 20 MHz channel must be used, so no special indication is needed.
  • from 40MHz A and from 40MHz B are respectively a 20MHz channel from a 40MHz channel, which together form a 40MHz channel;
  • from 80MHz A and from 80MHz B are respectively a 40MHz channel from a 80MHz channel, both Commonly composed from the 80MHz channel.
  • the bandwidth indication field is used to indicate the 80 MHz channel and the 160 MHz channel, which can save signaling overhead.
  • the embodiment of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. Support for next-generation WLAN standards such as the 802.11ax standard.
  • the specific steps of the channel indication method provided in Embodiment 37 are as follows:
  • Step 3701 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 5 bits, where the bandwidth field The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel, and the third bit of the bandwidth field is used to indicate the channel from 40 MHz In the latter half of the use case, the fourth bit of the bandwidth field is used to indicate usage from the first half of the 80 MHz channel, and the fifth bit of the bandwidth field is used to indicate usage from the second half of the 80 MHz channel.
  • the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 5 bits, where the bandwidth field The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel, and the third bit of the
  • Step 3702 The first station sends the PPDU.
  • Step 3703 The second station receives the PPDU.
  • Step 3704 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the bandwidth field uses a bitmap (English: Bitmap) to indicate the usage of the channel.
  • the Bitmap contains 5 bits, B0 to B4, and the main 20 MHz channel is the channel used by each station by default, so the Bitmap indication is not used.
  • one possible mapping of 5 bits to a channel in the bandwidth field is shown in Figure 55, where B0 indicates from the 20 MHz channel, B1 indicates the first half of the 40 MHz channel, and B2 indicates the second half of the 40 MHz channel. B3 indicates the first half of the 80MHz channel and B4 indicates the second half of the 80MHz channel.
  • the first bit in the bandwidth field may be B0 in the bandwidth field or B4 in the bandwidth field, and the principle of the indication is similar, which is not limited by the present invention.
  • FIG. 56 includes 17 corresponding situations
  • FIG. 57 includes 18 corresponding situations. Since B0-B4 can indicate 32 corresponding situations, the remaining The situation is a reserved situation.
  • the foregoing correspondences include other modes, which are not limited by the present invention.
  • the bandwidth indication field uses 5 bits to implement indication of channels of different bandwidths, which can save signaling overhead.
  • Embodiment 38 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 38 are as follows:
  • Step 3801 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 4 bits, where the bandwidth field The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel, and the third bit of the bandwidth field is used to indicate the channel from 40 MHz In the latter half of the use case, the fourth bit of the bandwidth field is used to indicate usage from the 80 MHz channel.
  • the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 4 bits, where the bandwidth field The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the first half of the 40 MHz channel, and the third bit of the bandwidth field is used to indicate the channel from 40 MHz In the latter half of the use case, the fourth bit of the bandwidth field
  • Step 3802 The first station sends the PPDU.
  • Step 3803 The second station receives the PPDU.
  • Step 3804 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the bandwidth field uses a bitmap (English: Bitmap) to indicate the usage of the channel.
  • the Bitmap contains 4 bits, B0 to B3, and the main 20 MHz channel is the channel used by each station by default, so the Bitmap indication is not used.
  • FIG. 58 one possible mapping of 4 bits in the bandwidth field to the channel is shown in Figure 58, where B0 indicates from the 20 MHz channel, B1 indicates the first half of the 40 MHz channel, and B2 indicates the second half of the 40 MHz channel. , B3 indicates from the 80MHz channel.
  • the first bit in the bandwidth field may be B0 in the bandwidth field or B3 in the bandwidth field, and the principle of the indication is similar, which is not limited by the present invention.
  • the detailed correspondence between the bandwidth field and the channel is as shown in FIG. 59 or FIG. 60, wherein FIG. 59 includes nine corresponding situations, and FIG. 60 includes ten corresponding situations. Since B0-B3 can indicate 16 corresponding situations, the remaining The situation is a reserved situation.
  • the foregoing correspondences include other modes, which are not limited by the present invention.
  • the bandwidth indication field uses 4 bits to implement indication of channels of different bandwidths, which can save signaling overhead.
  • Embodiment 39 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, which can support a next-generation WLAN standard, for example, 802.11ax System.
  • a station for example, an AP and a STA1-STA3 in FIG. 1, which can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 39 are as follows:
  • Step 3901 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 4 bits, where the bandwidth field The first bit is used to indicate that the channel bandwidth for data transmission is 80 MHz or 160 MHz.
  • the remaining 3 bits of the bandwidth field indicate channel usage from 20 MHz, from the first half of 40 MHz, and from the second half of 40 MHz, respectively.
  • the remaining 3 bits of the bandwidth field indicate channel usage from 40 MHz, from the first half of 80 MHz, and from the second half of 80 MHz, respectively.
  • Step 3902 The first station sends the PPDU.
  • Step 3903 The second station receives the PPDU.
  • Step 3904 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the bandwidth field uses a bitmap (English: Bitmap) to indicate the usage of the channel.
  • the Bitmap contains 4 bits, B0 to B3.
  • the primary 20 MHz channel is the default channel used by each station, for 160 MHz.
  • Bandwidth the primary 40MHz channel is the channel used by each station by default, so no Bitmap indication is required.
  • FIG. 61 one possible mapping of 4 bits to a channel in the bandwidth field is shown in Figure 61, where B0 indicates a bandwidth of 80 MHz or 160 MHz, for an 80 MHz bandwidth, B1 indicates a channel from 20 MHz, and B2 indicates a channel from a 40 MHz channel. In the first half, B3 indicates the second half of the 40 MHz channel. For a 160 MHz bandwidth, B1 indicates a 40 MHz channel, B2 indicates a first half of the 80 MHz channel, and B3 indicates a second half of the 80 MHz channel.
  • FIG. 62 includes 13 corresponding situations
  • FIG. 63 includes 14 corresponding situations. Since B0-B3 can indicate 16 corresponding situations, the remaining The situation is a reserved situation.
  • the foregoing correspondences include other modes, which are not limited by the present invention.
  • the bandwidth indication field uses 4 bits, and the bit bandwidth is 80 or 160 MHz, and the remaining three bits are used to indicate a specific channel, which can save signaling overhead.
  • Embodiment 40 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a site, such as the AP and STA1-STA3 in FIG. 1, and the site can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 40 are as follows:
  • Step 4001 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, and the bandwidth field includes 3 bits, where the bandwidth field The first bit is used to indicate usage from the 20 MHz channel, the second bit of the bandwidth field is used to indicate usage from the 40 MHz channel, and the third bit of the bandwidth field is used to indicate usage from the 80 MHz channel.
  • Step 4002 The first station sends the PPDU.
  • Step 4003 The second station receives the PPDU.
  • Step 4004 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • the bandwidth field uses a bitmap (English: Bitmap) to indicate the usage of the channel.
  • the Bitmap contains 3 bits, B0 to B2, and the main 20 MHz channel is the channel used by each station by default, so the Bitmap indication is not used.
  • the detailed correspondence between the bandwidth field and the channel is as shown in FIG. 65.
  • the channel bandwidth is greater than or equal to 40 MHz, the main 40 MHz channel must be included, and the detailed correspondence between the bandwidth field and the channel is as shown in FIG. 66.
  • the bandwidth indication field uses three bits to implement indication of channels of different bandwidths, which can save signaling overhead.
  • Embodiment 41 of the present invention provides a channel indication method applied to a WLAN, and the method can be applied to a station, for example, an AP and a STA1-STA3 in FIG. 1, and the station can support a next-generation WLAN standard, for example, 802.11ax System.
  • the specific steps of the channel indication method provided in Embodiment 41 are as follows:
  • Step 4101 The first station generates a physical layer protocol data unit PPDU, where the PPDU includes a bandwidth field, where the bandwidth field is used to indicate a channel bandwidth of data transmission, where the bandwidth field includes 3 bits, where the bandwidth field takes a value.
  • 0 represents 20MHz channel mode
  • the bandwidth field takes 1 for 40MHz channel mode
  • the bandwidth field takes 2 for 80MHz channel mode
  • the bandwidth field takes 3 for 160MHz channel mode or 80+80MHz channel mode
  • bandwidth field value One of 4 to 7 represents a 40+80 MHz channel mode.
  • Step 4102 The first station sends the PPDU.
  • Step 4103 The second station receives the PPDU.
  • Step 4104 The second station parses the bandwidth field in the PPDU to determine a channel used for data transmission.
  • mapping relationship also includes other manners, which are not limited by the present invention.
  • the bandwidth indication field uses three bits to implement indication of channels of different bandwidths, which can save signaling overhead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述第一站点在确定的信道上发送数据帧,所述数据帧包含用于指示信道的带宽的字段。本发明实施例还提供了相应的信道指示装置,通过应用本发明实施例的方法和装置,增加了无线局域网中信道绑定的模式,提高了***吞吐量。

Description

一种信道指示方法和装置
本申请要求于2015年7月1日提交中国专利局、申请号为PCT/CN2015/083096、发明名称为“一种信道指示方法和装置”的PCT专利申请的优先权,本申请要求于2015年3月19日提交中国专利局、申请号为PCT/CN2015/074593、发明名称为“一种信道指示方法和装置”的PCT专利申请的优先权,上述两个专利的全部内容通过引用结合在本申请中。
技术领域
本发明属于通信技术领域,尤其涉及一种信道指示方法和装置。
背景技术
随着无线局域网(英文:Wireless Local Area Network,简称:WLAN)标准的演进,WLAN***通过使用更大的带宽以获取更高的传输速率。标准中通常以20MHz为基本带宽单位,在802.11a中采用20MHz带宽,到802.11n时带宽增加为40MHz,到802.11ac时已经增加到80MHz和160MHz。当带宽大于20MHz的时候,其中一个20MHz是主20MHz信道,其余的20MHz信道为从信道。在目前的标准中,当站点接入信道的时候,必须包括主20MHz信道,即当主20MHz信道被占用的情况下,即使其它信道空闲也不可以使用,目前标准中定义的信道带宽有主20MHz、主40MHz、主80MHz和160(80+80)MHz四种模式。
在下一代WLAN标准802.11ax中,主要研究密集部署的场景,研究的重心也从峰值吞吐量转向了频谱效率的提高。在密集部署的场景中会由于基本服务集(英文:Basic Services Set,简称:BSS)的部署过于密集,而导致未授权频谱(Unlicensed Spectrum)不能为每个BSS提供一个不重叠的大带宽(例如:80MHz)。在这种情况下多个重叠的基本服务集需要共用频谱资源,通过CSMA/CA(英文:Carrier sense multiple access with collision avoidance,中文:载波侦听多路访问/冲突避免)机制进行时分复用。
此外,导致未授权频谱的不连续化有多个方面:一方面是有频谱管 制方面的原因,例如未授权频谱本身的不连续、雷达频段的干扰、以及部分授权频谱仅可室内使用等;另一方面WLAN***本身信号的干扰也会造成频谱的,例如老的WLAN站点只能采用20MHz或者40MHz带宽传输,此时窄带传输会对信道进行切割;又例如当在80MHz信道上使用上行OFDMA(英文:Orthogonal Frequency Division Multiple Access,中文:正交频分多址)技术时,不同的站点被分配在不同的20MHz或更窄的信道上,而不同的站点覆盖范围不同会导致一些区域只能收到部分20MHz信道而使得空闲信道的不连续。
在这种情况下,通过把多段不连续的小带宽绑定成大的带宽进行使用,是提高***吞吐量的一种有效的方法。如果在未授权频谱内进行任意的不连续信道绑定,则可能的模式非常多,导致实现的复杂度过高。
发明内容
有鉴于此,本发明提供一种无线局域网中信道指示的方法和装置,用于解决在未授权频谱内进行任意的不连续信道绑定导致的实现复杂度过高的问题。
第一方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段指示所述信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
结合第一方面,在第一方面的第一种可能的实现方式中,若所述第 一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
结合第一方面,在第一方面的第二种可能的实现方式中,若所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
结合第一方面,在第一方面的第三种可能的实现方式中,若所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz 信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
第二方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;
所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
结合第二方面,在第二方面的第一种可能的实现方式中,若所述第二站点解析所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
结合第二方面,在第二方面的第二种可能的实现方式中,若所述第二站点解析所述第一字段的值为第四值,则所述第二字段指示所述第一 信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
结合第二方面,在第二方面的第三种可能的实现方式中,若所述第二站点解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
第三方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第一站点确定用于数据传输的信道;
第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用 于指示信道绑定的模式。
结合第三方面,在第三方面的第一种可能的实现方式中,第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
结合第三方面,在第三方面的第二种可能的实现方式中,第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
第四方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道。
结合第四方面,在第四方面的第一种可能的实现方式中,所述第二站点确定所述第一字段的值为第一值,所述第二站点解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
结合第四方面,在第四方面的第二种可能的实现方式中,所述第二站点确定所述第一字段的值为第一值,所述第二站点解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
第五方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道具体包括以下任一: 八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道;
所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示所述信道的带宽。
结合第五方面,在第五方面的第一种可能的实现方式中,所述第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
第六方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和所述第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
结合第六方面,在第六方面的第一种可能的实现方式中,所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
第七方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第一站点确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;
所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
第八方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;
所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
第九方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
结合第九方面,在第九方面的第一种可能的实现方式中,所述第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz 信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
第十方面,本发明实施例提供了一种无线局域网WLAN中的信道指示方法,包括:
第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
结合第十方面,在第十方面的第一种可能的实现方式中,所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的 后两个20MHz信道。
第十一方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,包括:
处理单元,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
所述处理单元,还用于生成数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段指示所述信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道;
收发单元,在所述信道上发送所述处理单元生成的数据帧。
结合第十一方面,在第十一方面的第一种可能的实现方式中,若所述处理单元生成的数据帧中第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
结合第十一方面,在第十一方面的第二种可能的实现方式中,若所述处理单元生成的数据帧中第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz 信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
结合第十一方面,在第十一方面的第三种可能的实现方式中,若所述处理单元生成的数据帧中第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
第十二方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,包括:
收发单元,用于接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;
处理单元,用于解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
结合第十二方面,在第十二方面的第一种可能的实现方式中,若所述处理单元解析所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
结合第十二方面,在第十二方面的第二种可能的实现方式中,若所述处理单元解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
结合第十二方面,在第十二方面的第三种可能的实现方式中,若所述处理单元解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
第十三方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
处理单元,确定用于数据传输的信道;
所述处理单元,还用于生成数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
收发单元,在所述信道上发送所述处理单元生成的数据帧。
结合第十三方面,在第十三方面的第一种可能的实现方式中,所述处理单元生成的数据帧中第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
结合第十三方面,在第十三方面的第二种可能的实现方式中,所述处理单元生成的数据帧中第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
第十四方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
收发单元,用于接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
处理单元,用于解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道。
结合第十四方面,在第十四方面的第一种可能的实现方式中,所述处理单元确定所述第一字段的值为第一值,所述处理单元解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
结合第十四方面,在第十四方面的第一种可能的实现方式中,所述处理单元确定所述第一字段的值为第一值,所述处理单元解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
第十五方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
处理单元,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道;
处理单元,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段用于指示所述信道的带宽;
收发单元在所述信道上发送所述处理单元生成的数据帧。
结合第十五方面,在第十五方面的第一种可能的实现方式中,所述处理单元生成的数据帧中第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的 第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
第十六方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
收发单元,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
处理单元,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和所述第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
结合第十六方面,在第十六方面的第一种可能的实现方式中,所述处理单元解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
第十七方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
处理单元,确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;
处理单元,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况;
收发单元,在所述信道上发送所述处理单元生成的数据帧。
第十八方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
收发单元,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;
处理单元,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
第十九方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
处理单元,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
所述处理单元,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集;
收发单元,在所述信道上发送所述处理单元生成的数据帧。
结合第十九方面,在第十九方面的第一种可能的实现方式中,所述处理单元生成的数据帧中第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz 信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
第二十方面,本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
收发单元,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
处理单元,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
结合第二十方面,在第二十方面的第一种可能的实现方式中,所述处理单元解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述第一站点在确定的信道上发送数据帧,所述数据帧包含用于指示信道的带宽的字段。通过上述方式, 增加了无线局域网中信道绑定的模式,提高了***吞吐量。
附图说明
图1为本发明的应用场景图;
图2a为本发明的信道结构示意图1;
图2b为本发明的信道结构示意图2;
图3为本发明的一种帧结构示意图;
图4为本发明实施例1的方法流程图;
图5为本发明实施例1的信道示意图1;
图6为本发明实施例1的信道示意图2;
图7为本发明实施例1的信道示意图3;
图8为本发明实施例2的方法流程图;
图9为本发明实施例3的方法流程图;
图10为本发明实施例4的方法流程图;
图11为本发明实施例5的方法流程图;
图12为本发明实施例6的方法流程图;
图13为本发明实施例7的方法流程图;
图14为本发明实施例7的信道示意图1;
图15为本发明实施例7的信道示意图2;
图16为本发明实施例8的方法流程图;
图17为本发明实施例9的方法流程图;
图18为本发明实施例10的方法流程图;
图19为本发明实施例1站点的逻辑结构图;
图20为本发明实施例2站点的逻辑结构图;
图21为本发明实施例3站点的逻辑结构图;
图22为本发明实施例4站点的逻辑结构图;
图23为本发明实施例5站点的逻辑结构图;
图24为本发明实施例6站点的逻辑结构图;
图25为本发明实施例7站点的逻辑结构图;
图26为本发明实施例8站点的逻辑结构图;
图27为本发明实施例9站点的逻辑结构图;
图28为本发明实施例10站点的逻辑结构图;
图29为本发明实施例1站点的物理结构图;
图30为本发明实施例2站点的物理结构图;
图31为本发明实施例3站点的物理结构图;
图32为本发明实施例4站点的物理结构图;
图33为本发明实施例5站点的物理结构图;
图34为本发明实施例6站点的物理结构图;
图35为本发明实施例7站点的物理结构图;
图36为本发明实施例8站点的物理结构图;
图37为本发明实施例9站点的物理结构图;
图38为本发明实施例10站点的物理结构图。
图39为本发明实施例31的带宽字段示意图。
图40为本发明实施例31的带宽字段映射图。
图41为本发明实施例32的带宽字段示意图。
图42为本发明实施例32的带宽字段映射图。
图43为本发明实施例33中方案1的带宽字段示意图。
图44为本发明实施例33中方案2的带宽字段示意图。
图45为本发明实施例33中方案3的带宽字段示意图。
图46为本发明实施例33中方案4的带宽字段示意图。
图47为本发明实施例33中方案5的带宽字段示意图。
图48为本发明实施例33中方案6的带宽字段示意图。
图49为本发明实施例34中场景1的带宽字段示意图。
图50为本发明实施例34中场景2的带宽字段示意图。
图51为本发明实施例34的带宽字段映射图。
图52为本发明实施例36中场景1的带宽字段示意图。
图53为本发明实施例36中场景2的带宽字段示意图。
图54为本发明实施例36的带宽字段映射图。
图55为本发明实施例37中带宽字段示意图。
图56为本发明实施例37中带宽字段映射图1。
图57为本发明实施例37中带宽字段映射图2。
图58为本发明实施例38中带宽字段示意图。
图59为本发明实施例38中带宽字段映射图1。
图60为本发明实施例38中带宽字段映射图2。
图61为本发明实施例39中带宽字段示意图。
图62为本发明实施例39中带宽字段映射图1。
图63为本发明实施例39中带宽字段映射图2。
图64为本发明实施例40中带宽字段示意图。
图65为本发明实施例40中带宽字段映射图1。
图66为本发明实施例40中带宽字段映射图2。
图67为本发明实施例41中带宽字段示意图。
具体实施方式
本发明实施例可以应用于WLAN(英文:Wireless Local Area Network,中文:无线局域网),无线局域网中可以包括多个基本服务集(简称:BSS,英文:Basic Service Set),基本服务集中的网络节点为站点(英文:Station,简称:STA),站点包括接入点类的站点(简称:AP,英文:Access Point)和非接入点类的站点(英文:None Access Point Station,简称:Non-AP STA)。每个基本服务集可以包含一个AP和多个关联于该AP的Non-AP STA。
接入点类站点(简称:AP,英文:Access Point),也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。目前AP主要采用的标准为IEEE(英文:Institute of Electrical and Electronics Engineers,中文:电气和电子工程师协会)802.11系列。具体地,AP可以是带有WiFi(英文:Wireless Fidelity,中文:无线保真)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备。
非接入点类的站点(英文:None Access Point Station,简称:Non-AP STA),可以是无线通讯芯片、无线传感器或无线通信终端。例如:支 持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备和支持WiFi通讯功能的计算机。可选地,站点可以支持802.11ax制式。
图1为一个典型的WLAN部署场景的***示意图,包括一个AP和3个STA,AP分别与STA1、STA2和STA3进行通信。其中,AP和STA1-3均可以作为第一站点或第二站点。
需要说明的是,对于WLAN中信道的划分如图2a所示,将信道进行了编号,0~7每个序号代表一个20MHz信道。其中0号信道代表主20MHz信道,1号信道代表次20MHz信道,0和1号信道组成主40MHz信道,2和3号信道组成次40MHz信道,0、1、2和3号信道组成主80MHz信道,4、5、6和7号信道组成次80MHz信道。其中4和5号信道、5和6号信道、6和7号信道分别相邻。
应理解的是,在现有WLAN标准中,多信道的组成规则是有唯一一个20MHz是主20MHz信道,在主20MHz信道左边或者右边的相邻20MHz为从20MHz信道(左边或者右边可以任选,但只能选择一个。另外左边也可描述为下面,右边也可描述为上面,其中左边或下面是指比主20MHz信道频率更低,而右边或者上面是指比主20MHz信道频率更高),主20MHz信道和从20MHz信道组成主40MHz信道;在主40MHz信道左边或者右边的相邻40MHz为从40MHz信道(左边或者右边可以任选,但只能选择一个),主40MHz信道和从40MHz信道组成主80MHz信道;在主80MHz信道左边或者右边的80MHz为从80MHz信道(左边或者右边可以任选,但只能选择一个),当主80MHz信道和从80MHz信道相邻的时候,组成160MHz信道,当主80MHz信道和从80MHz信道不相邻的时候,组成80+80MHz信道。
基于如上规则,信道0~7的排列方式可以如图2b所示的多种方式。另外从40MHz中的2个20MHz信道以及从80MHz中的4个20MHz信道的编号顺序既可以是从左到右,也可以是从右到左,本专利中不做限定。
本专利中所有实施例中,第一信道和第二信道是在逻辑上不连续(即根据上述信道0~7的定义,在信道编号上不连续),而在实际物理频谱 上,第一信道和第二信道即可能是不连续的,也可能是连续的。例如在主20MHz在左起第1个信道的情况下,0号信道和2号信道在频谱上是不连续的,但是在主20MHz在左起第2个信道的情况下,0号信道和2号信道在频谱上可能是连续的。无论哪种情况下,0号信道和2号信道都是逻辑上不连续的,而且现有标准中不支持该信道绑定方式,因此都属于本专利的保护范围。
为了介绍方便,在所有的实施例中对于WLAN中信道的划分,以0号信道为主20MHz信道。
需要说明的是,本发明实施例涉及的数据帧为一种可能的802.11ax数据帧,如图3所示。该数据帧包含前导字段和数据字段,为与现有的WLAN制式设备保持兼容,该802.11ax数据帧的头部为Legacy Preamble(中文:传统前导)字段,包括L-STF(英文:Legacy Short Training Field,中文:传统短训练字段)、L-LTF(英文:Legacy Long Training Field,中文:传统长短训练字段)和L-SIG(英文:Legacy Signaling Field,中文:传统信令字段)。Legacy Preamble字段后面是高效信令字段(英文:High Efficiency Signal Field,简称:HE-SIG)以及其他高效前导字段Other HE Preamble。需要说明的是,Other HE Preamble是指一个字段或多个字段的组合,并不限定为特指一个具体的字段,Other Hew Preamble字段之后是数据字段(Data)。在未来可能的WLAN制式中,其制式的名称或字段的名称等均可以采用任意其他名称进行替换,并不应被认为会对本发明的保护范围构成限制,并且对于该数据帧的说明同样适用于后续实施例。
为了介绍方便,对于该数据帧的说明同样适用于所有实施例。
实施例1
本发明实施例1提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图4是该数据传输方法的示例性框图,具体步骤如下:
步骤101:第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续。
步骤102:所述第一站点在所述信道上发送数据帧,所述数据帧包含 第一字段和第二字段,所述第一字段和所述第二字段指示所述信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
需要说明的是,步骤102中的第一字段和第二字段位于数据帧的HE-SIG字段。
需要说明的是,第一字段包含两个或两个以上比特。第一字段包含两个比特的情形如图5所示,若第一字段的值为00,则第一信道包含信道0,若第一字段的值为01,则第一信道包含信道0和1,若第一字段的值为10,则第一信道包含信道0-3,若第一字段的值为11,则本次数据传输只使用第一信道,未使用第二信道。其中第一信道的范围为信道0-3,第二信道的范围为信道4-7。
除此以外,对于第一字段包含三个比特的情形,第一字段可以取8个值。若第一字段的值为000,则第一信道包含信道0,若第一字段的值为001,则第一信道包含信道0和1,若第一字段的值为010,则第一信道包含信道0-3,若第一字段的值为011,则本次数据传输只使用第一信道,未使用第二信道,其中第一信道的范围为信道0-3,第二信道的范围为信道4-7。对于第一字段取值为100-111时,保留作为其他情形。对于第一字段包含四个比特或四个比特以上的情形同第一字段包含三个比特的情形类似,不再赘述。
可选地,若所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道包含四个 20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
需要说明的是,第二字段包含3个或3个以上比特。第二字段包含3个比特的情形如图6所示,若第二字段的值为000-011,第二信道包含20MHz信道4-7中的一个(例如信道4,5,6或7);若第二字段的值为100-110,第二信道包含20MHz信道4-5、20MHz信道5-6或20MHz信道6-7;若第二字段的值为111,第二信道包含20MHz信道4-7。其中第二信道的范围为信道4-7。
除此以外,对于第二字段包含4个比特的情形,第一字段可以取16个值。若第二字段的值为0000-0011,第二信道包含20MHz信道4-7中的一个;若第二字段的值为0100-0110,第二信道包含20MHz信道4-5、20MHz信道5-6或20MHz信道6-7;若第二字段的值为0111,第二信道包含20MHz信道4-7。第二信道的范围为信道4-7。对于第二字段取值为1000-1111时,保留作为其他情形。对于第二字段包含五个比特或五个比特以上的情形同第二字段包含四个比特的情形类似,不再赘述。
结合第一字段为第一值到第三值以及第二字段,第一带宽和第二带宽的情形如图7所示:其中序号1-8是第一字段为第一值的情形,序号9-16是第一字段为第二值的情形,序号17-24是第一字段为第三值的情形。需要说明的是,对于信道0-7为连续160MHz带宽的情形,则序号17,21,24这三种情形不予使用,对于信道0-7为不连续的(80+80)MHz带宽的情形,则序号17,21,24这三种情形允许使用。
需要说明的是,在具体实施方案中出于兼容性的考虑,AP也可以处理主20MHz、主40MHz以及主80MHz的情形,在具体实施方案中出于信道绑定灵活性的考虑,AP可以处理17,21,24这三种连续信道绑定的情形,以上情形与本专利保护的内容不矛盾,并不构成限制,且有利于具体实施方案的完备性。
可选地,当第一字段的值为第四值时,则所述第二字段指示所述第一信道的带宽,包含两种情形。
情形1:若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
需要说明的是,表1中的BW1为第一字段,表1中的BW2为第二字段,情形1具体如表1所示。其中,BW1=3表示只有第一段带宽,BW2=0表示第一段带宽为80MHz,BW2=1表示第一段带宽为40MHz,BW2=2表示第一段带宽为20MHz。表1仅为BW1和BW2的一种可能的实现方式,BW1与BW2同信道的对应关系还可以为其他形式,不再赘述。
表1
Figure PCTCN2016070820-appb-000001
情形2:若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
需要说明的是,表2中的BW1为第一字段,表2中的BW2为第二字段,情形2具体如表2所示。其中,BW1=3表示所有带宽都在第一个80MHz 带宽内,BW2=0表示第一段带宽为20MHz,位于信道0;BW2=1,带宽为40MHz,位于信道0,1;BW2=2,带宽为20+20MHz,位于信道0,2;BW2=3,带宽为20+20MHz,位于信道0,3;BW2=4,带宽为60MHz,位于信道0,1,2;BW2=5,带宽为40+20MHz,位于信道0,1,3;BW2=6,带宽为20+40MHz,位于信道0,2,3;BW2=7,带宽为80MHz,位于信道0,1,2,3。表2仅为BW1和BW2的一种可能的实现方式,BW1与BW2同信道的对应关系还可以为其他形式,不再赘述。
表2
Figure PCTCN2016070820-appb-000002
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例2
本发明实施例2提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图8是该数据传输方法的示例性框图,具体步骤如下:
步骤201:第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽。
步骤202:所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,MHz具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz 信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
可选地,若所述第二站点解析所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
可选地,若所述第二站点解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,包含两种情形。
情形1:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
情形2:
若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
需要说明的是,第一字段以及第二字段和信道的对应关系在实施例1中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例3
本发明实施例3提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图9是该数据传输方法的示例性框图,具体步骤如下:
步骤301:第一站点确定用于数据传输的信道。
步骤302:第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式。
需要说明的是,步骤302中的第一字段和第二字段位于数据帧的HE-SIG字段。
可选地,第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体 可分为两种情形。
情形1:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
情形2:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
需要说明的是,第一字段包含2个比特,为了与现有标准相兼容,当第一字段取除第一值以外的三种情形时,分别对应主20MHz信道、主40MHz信道以及160MHz信道,且此时第二字段的比特数目为0。
当第一字段取第一值的情形时,第二字段的比特数目不固定。在情形1中,第二字段包含3个或3个以上比特,在情形2中,第二字段包含2个或2个以上比特。
示例性地,表3给出第一字段和第二字段与信道的一种可能的对应关系,其中BW1为第一字段,BW2为第二字段。其中,BW1与BW2同信道的对应关系还可以为其他形式,不再赘述。
表3
Figure PCTCN2016070820-appb-000003
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道;第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例4
本发明实施例4提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图10是该数据传输方法的示例性框图,具体步骤如下:
步骤401:第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式。
步骤402:所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道。
可选地,所述第二站点确定所述第一字段的值为第一值,所述第二 站点解析所述数据帧中的第二字段来确定用于数据传输的信道,具体包含两种情形。
情形1:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
情形2:
所述第二站点确定所述第一字段的值为第一值,所述第二站点解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
需要说明的是,第一字段以及第二字段和信道的对应关系在实施例3中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示的信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;所述第二站点解析所述数据帧中的第一字段和第二字段来确定 用于数据传输的信道,所述信道包括八个20MHz信道的任意组合通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例5
本发明实施例5提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图11是该数据传输方法的示例性框图,具体步骤如下:
步骤501:第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
步骤502:所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示所述信道的带宽。
需要说明的是,步骤502中的第一字段位于数据帧的HE-SIG字段。
需要说明的是,第一信道和第二信道可以分别在主80MHz内和从80MHz信道内,也可以都在主80MHz信道内,第一信道可以选择主20MHz,主40MHz中的一种,第二信道可以选择从40MHz和从80MHz中的一种。
可选地,所述第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
需要说明的是,为了与现有的标准兼容,第一字段的其他值分别对 应主20MHz信道、主40MHz信道、主80MHz信道和主160MHz信道。
具体地,所述带宽模式指示方式包含两种,如表4所示。
指示方式A:对当前标准中的四种带宽模式指示方式不变,BW=000、001、010、011分别表示20MHz、40MHz、80MHz和160(80+80)MHz。用新增的模式按照带宽从小到大来分配指示方式。BW=100表示主20MHz+从40MHz,BW=101表示主20MHz+从80MHz,BW=110表示主40MHz+从80MHz,BW=111表示主20MHz+从40MHz+从80MHz。
其中20MHz+从40MHz+从80MHz仅可能适用于160MHz模式,对于80+80MHz模式不适用。如果该模式被禁止,则BW=111保留。
指示方式B:按照带宽从小到大依次从小到大分配指示方式。BW=000表示主20MHz,BW=001表示主40MHz,BW=010表示主20MHz+从40MHz,BW=011表示主80MHz,BW=100表示主20MHz+从80MHz,BW=101表示主40MHz+从80MHz,BW=110表示主20MHz+从40MHz+从80MHz,BW=111表示主80MHz+从80MHz。
其中20MHz+从40MHz+从80MHz仅可能适用于160MHz模式,对于80+80MHz模式不适用。如果该模式被禁止,则BW=110保留。
表4
0 1 2 3 4 5 6 7 指示方式A 指示方式B
                000 000
                001 001
                100 010
                101 011
                010 100
                110 101
                111 110
                011 111
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例6
本发明实施例6提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图12是该数据传输方法的示例性框图,具体步骤如下:
步骤601:第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽。
步骤602:所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和所述第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
可选地,所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
需要说明的是,第一字段和信道的对应关系在实施例5中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例7
本发明实施例7提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图13是该数据传输方法的示例性框图,具体步骤如下:
步骤701:第一站点确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合。
步骤702:所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段包含7个比特,所述第一字段中每个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
需要说明的是,步骤702中的第一字段位于数据帧的HE-SIG字段。
本实施例对不连续信道绑定,不做分段数目的限制。不同段不连续信道既可以在主80MHz信道内和从80MHz信道内,也可以都在主80MHz信道内。图14和图15分别显示了主80MHz和从80MHz信道的绑定方式。其中主80MHz信道有8种模式,从80MHz信道有16种模式。两者相互组合共有128种模式,需要用7个比特来表示。
具体地,利用7个比特的位图bitmap来表示8个信道的使用情况。由于在所有的模式中主20MHz信道必须使用,因此可以不指示。而剩下的信道1~7这七个20MHz信道的使用情况分别用1个比特来表示,对应的比特设为1的时候表示该20MHz信道被绑定,当对应的比特设为0的时候,表示该20MHz信道未被绑定。例如0000000表示只使用主20MHz信道(信道0),0110000表示使用主20MHz信道和次40MHz信道(信道0,2,3)。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;所述第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段,第一字段包含7个比特,所述第一字段用于指示信道的使用情况。MHz通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例8
本发明实施例8提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图16是该数据传输方法的示例性框图,具体步骤如下:
步骤801:第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况。
步骤802:所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合,所述第一字段包含7个比特,所述第一字段中每个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
需要说明的是,第一字段和信道的对应关系在实施例7中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例9
本发明实施例9提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图17是该数据传输方法的示例性框图,具体步骤如下:
步骤901:第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续。
步骤902:所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
需要说明的是,步骤902中的第一字段位于数据帧的HE-SIG字段。
可选地,所述第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz 信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
具体地,第一字段与信道的对应关系如表5所示,表5中的BW1为第一字段。
表5
  0 1 2 3
BW1=000        
BW1=001        
BW1=010        
BW1=011        
BW1=100        
BW1=101        
BW1=110        
BW1=111        
需要说明的是,在具体实施方案中出于兼容性的考虑,BW1=000,001,111分别对应主20MHz信道,主40MHz信道,主80MHz信道的情形,在具体实施方案中出于信道绑定灵活性的考虑,AP可以处理BW1=100这种连续信道绑定的情形,以上情形与本专利保护的内容不矛盾,并不构成限制,且有利于具体实施方案的完备性。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中,第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集。通过上述方 式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例10
本发明实施例10提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图18是该数据传输方法的示例性框图,具体步骤如下:
步骤1001:第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽。
步骤1002:所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
可选地,所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
需要说明的是,第一字段和信道的对应关系在实施例9中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;第二站点解析所述数据帧中的第一字段来确 定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例11
图19是本发明实施例11的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图19所示的信道指示装置1100包括处理单元1101和收发单元1102。例如,该信道指示装置1100可以为图1中示出的AP或STA1-STA3。
处理单元1101,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续。
处理单元1101,还用于生成数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段指示所述信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道;
收发单元1102,在所述信道上发送所述处理单元生成的数据帧。
可选地,若所述处理单元1101生成的数据帧中第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
可选地,若所述处理单元1101生成的数据帧中第一字段的值为第四 值,则所述第二字段指示所述第一信道的带宽,具体分两种情形。
情形1:若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
情形2:若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
需要说明的是,处理单元1101生成的数据帧中的第一字段和第二字段与信道的对应关系在实施例1中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中处理单元确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,收发单元在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例12
图20是本发明实施例12的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图20所示的信道指示装置1200包括处理单元1201和收发单元1202。例如,该信道指示装置1200可以为图1中示出的AP或STA1-STA3。
收发单元1202,用于接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽。
处理单元1201,用于解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,具体为:
若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
可选地,若所述处理单元1201解析所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
可选地,若所述处理单元1201解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体包括两种情形:
情形1:若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz 信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
情形2:若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
需要说明的是,处理单元1201解析数据帧中的第一字段和第二字段与信道的对应关系在实施例1中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中收发单元接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;所述处理单元解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例13
图21是本发明实施例13的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图21所示的信道指示装置1300包括处理单元1301和收发单元 1302。例如,该信道指示装置1300可以为图1中示出的AP或STA1-STA3。
处理单元1301,确定用于数据传输的信道;
所述处理单元1301,还用于生成数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
收发单元1302,在所述信道上发送所述处理单元生成的数据帧。
可选地,所述处理单元1301生成的数据帧中第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
可选地,所述处理单元1301生成的数据帧中第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
需要说明的是,处理单元1301生成的数据帧中的第一字段和第二字段与信道的对应关系在实施例3中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中处理单元确定用于数据传输的信道;收发单元在确定的信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例14
图22是本发明实施例14的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图22所示的信道指示装置1400包括处理单元1401和收发单元1402。例如,该信道指示装置1400可以为图1中示出的AP或STA1-STA3。
收发单元1402,用于接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
处理单元1401,用于解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道。
可选地,所述处理单元1401确定所述第一字段的值为第一值,所述处理单元1401解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
可选地,所述处理单元1401确定所述第一字段的值为第一值,所述处理单元1401解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
需要说明的是,处理单元1401解析的数据帧中的第一字段和第二字段与信道的对应关系在实施例3中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中收发单元接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示的信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;处理单元解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例15
图23是本发明实施例15的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图23所示的信道指示装置1500包括处理单元1501和收发单元1502。例如,该信道指示装置1500可以为图1中示出的AP或STA1-STA3。
处理单元1501,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道;
处理单元1501,还用于生成数据帧,所述数据帧包含第一字段,所 述第一字段用于指示所述信道的带宽;
收发单元1502,在所述信道上发送所述处理单元生成的数据帧。
可选地,所述处理单元1501生成的数据帧中第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
需要说明的是,处理单元1501生成的数据帧中的第一字段与信道的对应关系在实施例5中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中处理单元确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述收发单元在确定的信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例16
图24是本发明实施例16的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图24所示的信道指示装置1600包括处理单元1601和收发单元1602。例如,该信道指示装置1600可以为图1中示出的AP或STA1-STA3。
收发单元1602,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
处理单元1601,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和所述第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中 的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
可选地,所述处理单元1601解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
需要说明的是,处理单元1601解析的数据帧中的第一字段与信道的对应关系在实施例5中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中处理单元确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述收发单元在确定的信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例17
图25是本发明实施例17的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图25所示的信道指示装置1700包括处理单元1701和收发单元1702。例如,该信道指示装置1700可以为图1中示出的AP或STA1-STA3。
处理单元1701,确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;
处理单元1701,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个 20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况;
收发单元1702,在所述信道上发送所述处理单元1701生成的数据帧。
需要说明的是,处理单元1701生成的数据帧中的第一字段与信道的对应关系在实施例7中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中处理单元确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;收发单元在确定的信道上发送数据帧,所述数据帧包含第一字段,第一字段包含7个比特,所述第一字段用于指示信道的使用情况。MHz通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例18
图26是本发明实施例18的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图26所示的信道指示装置1800包括处理单元1801和收发单元1802。例如,该信道指示装置1800可以为图1中示出的AP或STA1-STA3。
收发单元1802,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;
处理单元1801,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
需要说明的是,处理单元1801解析的数据帧中的第一字段与信道的对应关系在实施例7中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中收发单元接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;处理单元解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例19
图27是本发明实施例19的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图27所示的信道指示装置1900包括处理单元1901和收发单元1902。例如,该信道指示装置1900可以为图1中示出的AP或STA1-STA3。
处理单元1901,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
所述处理单元1901,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集;
收发单元1902,在所述信道上发送所述处理单1901元生成的数据帧。
可选地,所述处理单元1901生成的数据帧中第一字段用于指示信道的带宽,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
需要说明的是,处理单元1901生成的数据帧中的第一字段与信道的对应关系在实施例9中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示装置,其中,处理单元确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;收发单元在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所 述第一信道和所述第二信道为四个20MHz信道集合的子集。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例20
图28是本发明实施例20的无线局域网中的信道指示装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图28所示的信道指示装置2000包括处理单元2001和收发单元2002。例如,该信道指示装置2000可以为图1中示出的AP或STA1-STA3。
收发单元2002,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
处理单元2001,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
可选地,所述处理单元2001解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
需要说明的是,处理单元2001解析的数据帧中的第一字段与信道的对应关系在实施例9中已有详细阐释,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中收发单元接收数据帧,所述数据帧包含第一字段,所述第一字段用于 指示数据传输的信道带宽;处理单元解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例21
图29所示为无线局域网中站点的硬件配置结构图。在实施例21中,站点2100可以由总线2110作一般性的总线体系结构来实现,根据站点2100的具体应用和整体设计约束条件,总线2110可以包括任意数量的互连总线和桥接。总线将各种电路连接在一起,这些电路包括处理器2120、存储介质2130和总线接口2140。站点2100使用总线接口2140将网络适配器2150等经由总线2110连接至站点2100。网络适配器310可用于实现无线局域网中物理层的信号处理功能,并通过天线2170实现射频信号的发送和接收。用户接口2160可以连接用户终端,例如:键盘、显示器、鼠标、操纵杆等。总线2110还可以连接各种其它电路,如定时源、***设备、电压调节器、功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
站点2100可配置成通用处理***,该通用处理***包括:提供处理器功能的一个或多个微处理器;以及提供存储介质2130的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。可替换地,站点2100可以使用下述来实现:具有处理器2120、总线接口2140、用户接口2160的ASIC(专用集成电路);以及集成在单个芯片中的存储介质2130的至少一部分,或者,站点2100可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
处理器2120负责管理总线和一般处理(包括执行存储在存储介质2130上的软件)。处理器2120可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件 描述语言还是其它。
在图29所示的硬件实现方案中,存储介质2130被示为与处理器2120分离,然而,本领域技术人员很容易明白,存储介质2130或其任意部分可位于站点2100之外。举例来说,存储介质2130可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器2120通过总线接口2140来访问。可替换地,存储介质2130或其任意部分可以集成到处理器2120中,例如,可以是高速缓存和/或通用寄存器。
处理器2120执行的其他指令在实施例1中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例22
图30所示为无线局域网中站点的硬件配置结构图。在实施例22中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例22中站点中的处理器2220执行的指令在实施例2中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例23
图31所示为无线局域网中站点的硬件配置结构图。在实施例23中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例23中站点中的处理器2320执行的指令在实施例3中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道;第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例24
图32所示为无线局域网中站点的硬件配置结构图。在实施例24中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例24中站点中的处理器2420执行的指令在实施例4中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示的信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例25
图33所示为无线局域网中站点的硬件配置结构图。在实施例25中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例25中站点中的处理器2520执行的指令在实施例5中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例26
图34所示为无线局域网中站点的硬件配置结构图。在实施例26中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例26中站点中的处理器2620执行的指令在实施例6中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;所述第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例27
图35所示为无线局域网中站点的硬件配置结构图。在实施例27中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例27中站点中的处理器2720执行的指令在实施例7中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第一站点确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;所述第一站点在确定的信道上发送数据帧,所述数据帧包含第一字段,第一字段包含7个比特,所述第一字段用于指示信道的使用情况。MHz通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例28
图36所示为无线局域网中站点的硬件配置结构图。在实施例28中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例28中站点中的处理器2820执行的指令在实施例8中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例29
图37所示为无线局域网中站点的硬件配置结构图。在实施例29中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例29中站点中的处理器2920执行的指令在实施例9中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中,第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
实施例30
图38所示为无线局域网中站点的硬件配置结构图。在实施例30中,站点的硬件配置结构与实施例21相同,不再赘述。
具体地,实施例30中站点中的处理器3020执行的指令在实施例10中已有详细阐述,不再赘述。
本发明实施例提供了一种无线局域网WLAN中的信道指示方法,其中第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。通过上述方式,增加了无线局域网中信道绑定的模式,提高了***吞吐量。
应理解地,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。具体的,可以借助软件加必需的通用硬件的方式来实现,通用硬件包括通用集成电路、通用CPU、通用数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、通用存储器、通用元器件等,当然也可以通过专用硬件包括专用集成电路(ASIC)、专用CPU、专用存储器、专用元器件等来实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬 盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
软件或指令还可以通过传输介质来传输。例如,如果使用同轴电缆、光纤光缆、双绞线、数字用户线(英文:Digital Subscriber Line,简称:DSL)或者无线技术(如红外线、无线电和微波)从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤光缆、双绞线、DSL或者无线技术(如红外线、无线电和微波))包括在传输介质的定义中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
需要说明的是,本专利涉及的不连续的信道绑定方法还包括以下实施例。
实施例31
本发明实施例31提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例31提供的信道指示方法具体步骤如下:
步骤3101:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含5个比特,所述带宽字段的第一个比特用于指示从20MHz信道的使用情况,所述带宽字段的第二个比特用于指示从40MHz信道前半部分的使用情况,所述带宽字段的第三个比特用于指示从40MHz信道后半部分的使用情况,所述带宽字段的第四个比特用于指示从80MHz信道前半部分的使用情况,所述带宽字段的第五个比特用于指示从80MHz信道后半部分的使用情况。
步骤3102:第一站点发送所述PPDU。
步骤3103:第二站点接收所述PPDU。
步骤3104:所述第二站点解析所述PPDU中的带宽字段确定数据传 输使用的信道。
需要说明的是,本实施例针对总的信道带宽为160MHz或者(80+80)MHz的场景,本发明对带宽字段在PPDU中的位置不做限定。优选地,该带宽字段可以位于HE-SIG部分。此外,本实施例中站点用于数据传输的信道带宽可以为一段连续的带宽或几段不连续的带宽。上述内容也适用于其他实施例。
带宽字段采用位图(英文:Bitmap)的方式来指示信道的使用情况。该Bitmap包含5个比特,B0~B4。Bitmap与信道的对应关系如图39所示。B0指示从20MHz,B1指示从40MHz A,B2指示从40MHz B,B3指示从80MHz A,B4指示从80MHz B。需要补充的是,Bitmap与信道的对应关系还包括其他方式,本发明对此不做限定。例如:B4指示从20MHz,B3指示从40MHz A,B2指示从40MHz B,B1指示从80MHz A,B0指示从80MHz B。上述内容也适用于其他实施例。
具体地,Bi tmap与信道的一种可能的映射关系如图40所示,该映射关系还包括其他方式,本发明对此不做限定。
需要说明的是,当某一个比特取值为0的时候,代表该比特对应的信道不可用,当其取值为1的时候,代表该比特对应的信道可用。可选地,比特取值为0的时候,代表该比特对应的信道可用,比特取值为1的时候,代表该比特对应的信道不可用。上述内容也适用于其他实施例。
需要说明的是,对于WLAN数据传输中,主20MHz信道必须使用,因此不用专门指示。此外,从40MHz A和从40MHz B分别为从40MHz信道中的某一个20MHz信道,两者共同组成从40MHz信道;从80MHz A和从80MHz B分别为从80MHz信道中的某一个40MHz信道,两者共同组成从80MHz信道。上述内容也适用于其他实施例。
本实施例中在主80MHz和从80MHz采用不同的信道粒度进行信道绑定,在从80MHz信道采用更大的信道粒度,可以节省信令开销。
实施例32
本发明实施例32提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例32提供的信道指示方法具体步骤如下:
步骤3201:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含4个比特,所述带宽字段的第一个比特用于指示从20MHz信道的使用情况,所述带宽字段的第二个比特用于指示从40MHz信道前半部分的使用情况,所述带宽字段的第三个比特用于指示从40MHz信道后半部分的使用情况,所述带宽字段的第四个比特用于指示从80MHz信道的使用情况。
步骤3202:第一站点发送所述PPDU。
步骤3203:第二站点接收所述PPDU。
步骤3204:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
需要说明的是,本实施例针对总的信道带宽为160MHz或者(80+80)的场景,本发明对带宽字段在PPDU中的位置不做限定,优选地,该带宽字段可以位于HE-SIG部分。此外,本实施例中站点用于数据传输的信道带宽可以为一段连续的带宽或几段不连续的带宽。
具体地,带宽字段采用位图Bitmap来指示信道的使用情况。该Bitmap包含4个比特,B0~B3。Bitmap与信道的对应关系如图41所示。B0指示从20MHz,B1指示从40MHz A,B2指示从40MHz B,B3指示从80MHz。需要补充的是,Bitmap与信道的对应关系还包括其他方式,本发明对此不做限定。例如:B3指示从20MHz,B2指示从40MHz A,B1指示从40MHz B,B0指示从80MHz。
需要说明的是,从40MHz A和从40MHz B的定义在方案1中已有详述,不再赘述。
具体地,Bitmap与信道的一种可能的映射关系如图42所示,该映射关系还包括其他方式,本发明对此不做限定。
本实施例中在主80MHz和从80MHz采用不同的信道粒度进行信道绑定,在从80MHz信道采用更大的信道粒度,可以节省信令开销。
实施例33
本发明实施例33提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。
需要说明的是,本实施例针对总的信道带宽为240MHz或320MHz的场景,该场景下的信道指示方法至少包括以下几种方案:
方案1:
站点可以使用的总的信道带宽为240MHz,站点在主80MHz内采用20MHz信道粒度,两个从80MHz带宽内采用40MHz信道粒度,此时站点传输的PPDU中的带宽字段包含7个比特。B0~B2指示主80MHz内除主20MHz在外的3个20MHz信道的可用情况;B3~B6指示两个从80MHz内的四个40MHz信道的可用情况。具体地,带宽字段与信道的对应关系如图43所示。
方案2:
站点可以使用的总的信道带宽为240MHz,站点在主80MHz内采用20MHz信道粒度,一个从80MHz带宽内采用40MHz信道粒度,另一个从80MHz带宽内采用80MHz信道粒度,此时站点传输的PPDU中的带宽字段包含6个比特。B0~B2指示主80MHz内除主20MHz在外的3个20MHz信道的可用情况;B3~B4指示一个从80MHz内的两个40MHz信道的可用情况;B5指示另一个从80MHz信道的可用情况。具体地,带宽字段与信道的对应关系如图44所示。
方案3:
站点可以使用的总的信道带宽为240MHz,站点在主80MHz内采用20MHz信道粒度,第一个从80MHz带宽内采用80MHz信道粒度,第二个从80MHz带宽内采用80MHz信道粒度,此时站点传输的PPDU中的带宽字段包含5个比特。B0~B2指示主80MHz内除主20MHz在外的3个20MHz信道的可用情况;B3指示第一个从80MHz的信道的可用情况;B4指示第二个从80MHz信道的可用情况。具体地,带宽字段与信道的对应关系如图45所示。
方案4:
站点可以使用的总的信道带宽为320MHz,站点在主80MHz内采用20MHz信道粒度,从80MHz内采用80MHz信道粒度,从160MHz内采用80MHz信道粒度。此时站点传输的PPDU中的带宽字段包含6个比特。B0~B2指示主80MHz内除主20MHz在外的3个20MHz信道的可用情况;B3指示从80MHz信道的可用情况;B4~B5指示从160MHz 内的两个80MHz信道的可用情况。具体地,带宽字段与信道的对应关系如图46所示。
方案5:
站点可以使用的总的信道带宽为320MHz,站点在主80MHz内采用20MHz信道粒度,从80MHz内采用40MHz信道粒度,从160MHz内采用80MHz信道粒度。此时站点传输的PPDU中的带宽字段包含7个比特。B0~B2指示主80MHz内除主20MHz在外的3个20MHz信道的可用情况;B3~B4指示从80MHz内的两个40MHz信道的可用情况;B5~B6指示从160MHz内的两个80MHz信道的可用情况。具体地,带宽字段与信道的对应关系如图47所示。
方案6:
站点可以使用的总的信道带宽为320MHz,站点在主80MHz内采用20MHz信道粒度,从80MHz内采用80MHz信道粒度,从160MHz内采用160MHz信道粒度。此时站点传输的PPDU中的带宽字段包含5个比特。B0~B2指示主80MHz内除主20MHz在外的3个20MHz信道的可用情况;B3指示从80MHz信道的可用情况;B4指示从160MHz信道的可用情况。具体地,带宽字段与信道的对应关系如图48所示。
本实施例中对带宽字段在PPDU中的位置不做限定。优选地,该带宽字段可以位于HE-SIG部分。此外,本实施例中站点用于数据传输的信道带宽可以为一段连续的带宽或几段不连续的带宽。
本实施例通过在不同的带宽中采用不同的信道粒度节省信令指示开销。
实施例34
本发明实施例34提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例34提供的信道指示方法具体步骤如下:
步骤3401:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含4个比特,所述带宽字段的第一个比特用于指示数据传输的信道带宽为80MHz或160MHz。
若所述带宽字段的第一个比特指示数据传输的带宽为80MHz,则所述带宽字段的剩余3个比特分别指示从20MHz、从40MHz前半部分以及从40MHz后半部分的信道使用情况。
若所述带宽字段的第一个比特指示数据传输的带宽为160MHz,则所述带宽字段的剩余3个比特分别指示从40MHz、从80MHz前半部分以及从80MHz后半部分的信道使用情况。
步骤3402:第一站点发送所述PPDU。
步骤3403:第二站点接收所述PPDU。
步骤3404:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
示例性地,当B0字段指示80MHz带宽时,带宽字段与信道的对应关系如图49所示。当B0字段指示160MHz带宽时,带宽字段与信道的对应关系如图50所示。带宽字段与信道的一种可能的映射关系如图51所示,该映射关系还包括其他方式,本发明对此不做限定。
需要说明的是,当某一个比特取值为0的时候,代表该比特对应的信道不可用,当其取值为1的时候,代表该比特对应的信道可用。可选地,比特取值为0的时候,代表该比特对应的信道可用,比特取值为1的时候,代表该比特对应的信道不可用。
需要说明的是,对于WLAN数据传输中,主20MHz信道必须使用,因此不用专门指示。此外,从40MHz A和从40MHz B分别为从40MHz信道中的某一个20MHz信道,两者共同组成从40MHz信道;从80MHz A和从80MHz B分别为从80MHz信道中的某一个40MHz信道,两者共同组成从80MHz信道。
本实施例中用带宽指示字段对80MHz信道以及160MHz信道进行指示,可以节省信令开销。
实施例35
本发明实施例35提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。
需要说明的是,本实施例针对总的信道带宽为320MHz的场景,该场景下的信道指示方法具体如下:
站点发送的PPDU中的带宽字段包含5个比特。
站点在传输带宽为320MHz的情况下,可以用带宽字段中的2个比特B0~B1指示可用信道分布的带宽范围,例如数值0代表可用信道分布在80MHz带宽内,数值1代表可用信道分布在160MHz带宽内,数值2代表可用信道分布在320MHz带宽内,数值3保留。
进一步地,站点使用带宽字段中剩余的3个比特分别指示不同带宽下对应的信道的可用情况。当可用带宽在80MHz内时,采用20MHz的信道指示粒度,3个比特分别指示在主80MHz内除主20MHz信道之外的3个20MHz的可用情况;当可用带宽在160MHz内时,采用40MHz的信道指示粒度,3个比特分别指示在160MHz内除主40MHz信道之外的3个40MHz的可用情况;当可用带宽在320MHz内时,采用80MHz的信道指示粒度,3个比特分别指示在320MHz内除主80MHz信道之外的3个80MHz的可用情况。
本实施例中用带宽指示字段对320MHz信道进行指示,可以节省信令开销。
实施例36
本发明实施例36提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例36提供的信道指示方法具体步骤如下:
步骤3601:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含5个比特,所述带宽字段的第一个比特用于指示数据传输的信道带宽为80MHz或160MHz。
若所述带宽字段的第一个比特指示数据传输的带宽为80MHz,则所述带宽字段中的三个比特分别指示从20MHz、从40MHz前半部分以及从40MHz后半部分的信道使用情况,所述带宽字段剩余的一个比特为预留比特。
若所述带宽字段的第一个比特指示数据传输的带宽为160MHz,则所述带宽字段的剩余3个比特分别指示从40MHz、从80MHz前半部分以及从80MHz后半部分的信道使用情况。
步骤3602:第一站点发送所述PPDU。
步骤3603:第二站点接收所述PPDU。
步骤3604:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
示例性地,当B0字段指示80MHz带宽时,带宽字段与信道的对应关系如图49所示。当B0字段指示160MHz带宽时,带宽字段与信道的对应关系如图50所示。带宽字段与信道的一种可能的映射关系如图54所示,该映射关系还包括其他方式,本发明对此不做限定。
具体地,本实施例中使用一个比特B0指示可用信道只分布在主80MHz内,还是同时分布在主80MHz和从80MHz信道内;另外用3个比特B1~B3指示对应的信道可用情况;还有一个比特B4用于指示可用信道同时分布在主80MHz和从80MHz信道内时,从20MHz信道的可用情况。
当B0=0的情况下,B1~B3分别代表80MHz内除主20MHz以外的3个20MHz信道(即从20MHz、从40MHz A和从40MHz B)的可用情况。
当B0=1的情况下,B1~B3分别代表160MHz(80+80MHz)内除主40MHz以外的3个40MHz信道(即从40MHz、从80MHz A和从80MHz B)的可用情况。
当B0=0的情况下,B4为保留比特,也可以用于指示本实施例所提供之外的其它模式;
当B0=1的情况下,B4取值为0代表从20MHz信道不可用,反之,B4取值为1代表从20MHz信道可用。本实施例中B0,B1~B3和B4的位置顺序不做限定,比如B4可以放置在B1~B3之前。
需要说明的是,对于WLAN数据传输中,主20MHz信道必须使用,因此不用专门指示。此外,从40MHz A和从40MHz B分别为从40MHz信道中的某一个20MHz信道,两者共同组成从40MHz信道;从80MHz A和从80MHz B分别为从80MHz信道中的某一个40MHz信道,两者共同组成从80MHz信道。
本实施例中用带宽指示字段对80MHz信道以及160MHz信道进行指示,可以节省信令开销。
实施例37
本发明实施例37提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以 支持下一代WLAN标准,例如:802.11ax制式。实施例37提供的信道指示方法具体步骤如下:
步骤3701:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含5个比特,所述带宽字段的第一个比特用于指示从20MHz信道的使用情况,所述带宽字段的第二个比特用于指示从40MHz信道前半部分的使用情况,所述带宽字段的第三个比特用于指示从40MHz信道后半部分的使用情况,所述带宽字段的第四个比特用于指示从80MHz信道前半部分的使用情况,所述带宽字段的第五个比特用于指示从80MHz信道后半部分的使用情况。
步骤3702:第一站点发送所述PPDU。
步骤3703:第二站点接收所述PPDU。
步骤3704:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
其中,带宽字段采用位图(英文:Bitmap)的方式来指示信道的使用情况,该Bitmap包含5个比特,B0~B4,主20MHz信道为每个站点默认使用的信道,因此不用Bitmap指示。
示例性地,带宽字段中5个比特与信道的一种可能的映射关系如图55所示,其中B0指示从20MHz信道,B1指示从40MHz信道的前半段,B2指示从40MHz信道的后半段,B3指示从80MHz信道的前半段,B4指示从80MHz信道的后半段。需要说明的是,所述带宽字段中的第一个比特可以为带宽字段中的B0,也可以为带宽字段中的B4,指示的原理类似,本发明对此不做限定。
具体地,带宽字段与信道的详细对应关系如图56或图57所示,其中图56包含17种对应情形,图57包含18种对应情形,由于B0-B4可以指示32种对应情形,因此剩余情形为预留的情形。上述对应关系还包括其他方式,本发明对此不做限定。
本实施例中,带宽指示字段使用5个比特,实现对多种不同带宽的信道进行指示,可以节省信令开销。
实施例38
本发明实施例38提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例38提供的信道指示方法具体步骤如下:
步骤3801:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含4个比特,所述带宽字段的第一个比特用于指示从20MHz信道的使用情况,所述带宽字段的第二个比特用于指示从40MHz信道前半部分的使用情况,所述带宽字段的第三个比特用于指示从40MHz信道后半部分的使用情况,所述带宽字段的第四个比特用于指示从80MHz信道的使用情况。
步骤3802:第一站点发送所述PPDU。
步骤3803:第二站点接收所述PPDU。
步骤3804:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
其中,带宽字段采用位图(英文:Bitmap)的方式来指示信道的使用情况,该Bitmap包含4个比特,B0~B3,主20MHz信道为每个站点默认使用的信道,因此不用Bitmap指示。
示例性地,带宽字段中4个比特与信道的一种可能的映射关系如图58所示,其中B0指示从20MHz信道,B1指示从40MHz信道的前半段,B2指示从40MHz信道的后半段,B3指示从80MHz信道。需要说明的是,所述带宽字段中的第一个比特可以为带宽字段中的B0,也可以为带宽字段中的B3,指示的原理类似,本发明对此不做限定。
具体地,带宽字段与信道的详细对应关系如图59或图60所示,其中图59包含9种对应情形,图60包含10种对应情形,由于B0-B3可以指示16种对应情形,因此剩余情形为预留的情形。上述对应关系还包括其他方式,本发明对此不做限定。
本实施例中,带宽指示字段使用4个比特,实现对多种不同带宽的信道进行指示,可以节省信令开销。
实施例39
本发明实施例39提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例39提供的信道指示方法具体步骤如下:
步骤3901:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含4个比特,所述带宽字段的第一个比特用于指示数据传输的信道带宽为80MHz或160MHz。
若所述带宽字段的第一个比特指示数据传输的带宽为80MHz,则所述带宽字段的剩余3个比特分别指示从20MHz、从40MHz前半部分以及从40MHz后半部分的信道使用情况。
若所述带宽字段的第一个比特指示数据传输的带宽为160MHz,则所述带宽字段的剩余3个比特分别指示从40MHz、从80MHz前半部分以及从80MHz后半部分的信道使用情况。
步骤3902:第一站点发送所述PPDU。
步骤3903:第二站点接收所述PPDU。
步骤3904:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
其中,带宽字段采用位图(英文:Bitmap)的方式来指示信道的使用情况,该Bitmap包含4个比特,B0~B3,对于80MHz带宽,主20MHz信道为每个站点默认使用的信道,对于160MHz带宽,主40MHz信道为每个站点默认使用的信道,因此不用Bitmap指示。
示例性地,带宽字段中4个比特与信道的一种可能的映射关系如图61所示,其中B0指示采用80MHz或者160MHz带宽,对于80MHz带宽,B1指示从20MHz信道,B2指示从40MHz信道的前半段,B3指示从40MHz信道的后半段。对于160MHz带宽,B1指示从40MHz信道,B2指示从80MHz信道的前半段,B3指示从80MHz信道的后半段。
具体地,带宽字段与信道的详细对应关系如图62或图63所示,其中图62包含13种对应情形,图63包含14种对应情形,由于B0-B3可以指示16种对应情形,因此剩余情形为预留的情形。上述对应关系还包括其他方式,本发明对此不做限定。
本实施例中,带宽指示字段使用4个比特,采用一个比特指示信道带宽为80或160MHz,采用剩余三个比特指示具体的信道,可以节省信令开销。
实施例40
本发明实施例40提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例40提供的信道指示方法具体步骤如下:
步骤4001:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含3个比特,所述带宽字段的第一个比特用于指示从20MHz信道的使用情况,所述带宽字段的第二个比特用于指示从40MHz信道的使用情况,所述带宽字段的第三个比特用于指示从80MHz信道的使用情况。
步骤4002:第一站点发送所述PPDU。
步骤4003:第二站点接收所述PPDU。
步骤4004:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
其中,带宽字段采用位图(英文:Bitmap)的方式来指示信道的使用情况,该Bitmap包含3个比特,B0~B2,主20MHz信道为每个站点默认使用的信道,因此不用Bitmap指示。
示例性地,带宽字段中3个比特与信道的一种可能的映射关系如图64所示,其中B0指示从20MHz信道,B1指示从40MHz信道,B2指示从80MHz信道。
具体地,带宽字段与信道的详细对应关系如图65所示。
需要补充的是,若信道带宽大于等于40MHz的时候,必须包含主40MHz信道,带宽字段与信道的详细对应关系如图66所示。
本实施例中,带宽指示字段使用3个比特,实现对多种不同带宽的信道进行指示,可以节省信令开销。
实施例41
本发明实施例41提供了一种应用于WLAN中的信道指示方法,该方法可以应用于站点,例如:图1中的AP和STA1-STA3,该站点可以支持下一代WLAN标准,例如:802.11ax制式。实施例41提供的信道指示方法具体步骤如下:
步骤4101:所述第一站点生成物理层协议数据单元PPDU,所述PPDU包含带宽字段,所述带宽字段用于指示数据传输的信道带宽,所述带宽字段包含3个比特,其中带宽字段取值为0代表20MHz信道模式,带宽字段取值为1代表40MHz信道模式,带宽字段取值为2代表80MHz信道模式,带宽字段取值为3代表160MHz信道模式或80+80MHz信道模式,带宽字段取值为4~7其中之一代表40+80MHz信道模式。
步骤4102:第一站点发送所述PPDU。
步骤4103:第二站点接收所述PPDU。
步骤4104:所述第二站点解析所述PPDU中的带宽字段确定数据传输使用的信道。
具体地,带宽字段与信道详细对应关系如图67所示,其中x为4~7其中之一。该映射关系还包括其他方式,本发明对此不做限定。
本实施例中,带宽指示字段使用3个比特,实现对多种不同带宽的信道进行指示,可以节省信令开销。

Claims (48)

  1. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
    所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段指示所述信道的带宽,具体为:
    若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
    若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
  2. 根据权利要求1所述的方法,其特征在于,若所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
    若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
    若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
    若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
  3. 根据权利要求1所述的方法,其特征在于,若所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
  4. 根据权利要求1所述的方法,其特征在于,若所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
    若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
    若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
    若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
    若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
    若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
  5. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;
    所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,具体为:
    若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
    若所述第一字段的值为第四值,则所述数据传输只使用所述第一信 道,未使用所述第二信道。
  6. 根据权利要求5所述的方法,其特征在于,若所述第二站点解析所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
    若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
    若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
    若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
  7. 根据权利要求5所述的方法,其特征在于,若所述第二站点解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
  8. 根据权利要求5所述的方法,其特征在于,若所述第二站点解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
    若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
    若所述第二字段的值为第五值,则所述第一信道包含四个20MHz 信道中的首三个20MHz信道;
    若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
    若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
    若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
  9. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第一站点确定用于数据传输的信道;
    第一站点在所述信道上发送数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式。
  10. 根据权利要求9所述的方法,其特征在于,第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
    若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
  11. 根据权利要求9所述的方法,其特征在于,第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个 20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
  12. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第二站点接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
    所述第二站点解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道。
  13. 根据权利要求12所述的方法,其特征在于,所述第二站点确定所述第一字段的值为第一值,所述第二站点解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
    若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
  14. 根据权利要求12所述的方法,其特征在于,所述第二站点确定所述第一字段的值为第一值,所述第二站点解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个 20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
  15. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道;
    所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段用于指示所述信道的带宽。
  16. 根据权利要求15所述的方法,其特征在于,所述第一字段用于指示信道的带宽,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
  17. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
    所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和所述第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个 20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
  18. 根据权利要求17所述的方法,其特征在于,所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
  19. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第一站点确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;
    所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
  20. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;
    所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
  21. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第一站点确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
    所述第一站点在所述信道上发送数据帧,所述数据帧包含第一字段, 所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
  22. 根据权利要求21所述的方法,其特征在于,所述第一字段用于指示信道的带宽,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
  23. 一种无线局域网WLAN中的信道指示方法,其特征在于,包括:
    第二站点接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
    所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
  24. 根据权利要求23所述的方法,其特征在于,所述第二站点解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz 信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
  25. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    处理单元,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
    所述处理单元,还用于生成数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段指示所述信道的带宽,具体为:
    若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
    若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道;
    收发单元,在所述信道上发送所述处理单元生成的数据帧。
  26. 根据权利要求25所述的装置,其特征在于,若所述处理单元生成的数据帧中第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
    若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
    若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
    若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
  27. 根据权利要求25所述的装置,其特征在于,若所述处理单元生成的数据帧中第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
  28. 根据权利要求25所述的装置,其特征在于,若所述处理单元生成的数据帧中第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
    若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
    若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
    若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
    若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
    若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
  29. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    收发单元,用于接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段和所述第二字段用于指示数据传输的信道带宽;
    处理单元,用于解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,具体为:
    若所述第一字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道包含四个20MHz信道;
    若所述第一字段的值为第四值,则所述数据传输只使用所述第一信道,未使用所述第二信道。
  30. 根据权利要求29所述的装置,其特征在于,若所述处理单元解析所述第一字段的值为第一值到第三值,则所述第二字段指示所述第二信道的带宽,具体为:
    若所述第二字段的值为第一值到第四值,则所述第二信道分别包含四个20MHz信道中的一个20MHz信道;
    若所述第二字段的值为第五值到第七值,则所述第二信道分别包含四个20MHz信道中的两个连续的20MHz信道;
    若所述第二字段的值为第八值,则所述第二信道包含四个20MHz信道。
  31. 根据权利要求29所述的装置,其特征在于,若所述处理单元解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道。
  32. 根据权利要求29所述的装置,其特征在于,若所述处理单元解析所述第一字段的值为第四值,则所述第二字段指示所述第一信道的带宽,具体为:
    若所述第二字段的值为第一值,则所述第一信道包含四个20MHz信道中的首个20MHz信道;
    若所述第二字段的值为第二值,则所述第一信道包含四个20MHz信道中的首两个20MHz信道;
    若所述第二字段的值为第三值,则所述第一信道包含四个20MHz信道中的第一个和第三个20MHz信道;
    若所述第二字段的值为第四值,则所述第一信道包含四个20MHz信道中的第一个和第四个20MHz信道;
    若所述第二字段的值为第五值,则所述第一信道包含四个20MHz信道中的首三个20MHz信道;
    若所述第二字段的值为第六值,则所述第一信道包含四个20MHz信道中的第一个、第二个和第四个20MHz信道;
    若所述第二字段的值为第七值,则所述第一信道包含四个20MHz信道中的第一个、第三个和第四个20MHz信道;
    若所述第二字段的值为第八值,则所述第一信道包含四个20MHz信道。
  33. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    处理单元,确定用于数据传输的信道;
    所述处理单元,还用于生成数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
    收发单元,在所述信道上发送所述处理单元生成的数据帧。
  34. 根据权利要求33所述的装置,其特征在于,所述处理单元生成的数据帧中第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
    若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
  35. 根据权利要求33所述的装置,其特征在于,所述处理单元生成的数据帧中第一字段的值为第一值时,则所述信道的带宽为四个20MHz信道的任意组合,所述第二字段用于指示信道绑定的模式,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
  36. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    收发单元,用于接收数据帧,所述数据帧包含第一字段和第二字段,所述第一字段用于指示信道绑定的带宽范围,所述第二字段用于指示信道绑定的模式;
    处理单元,用于解析所述数据帧中的第一字段和第二字段来确定用于数据传输的信道。
  37. 根据权利要求36所述的装置,其特征在于,所述处理单元确定所述第一字段的值为第一值,所述处理单元解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中的首三个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第五值,则所述信道的带宽为四个20MHz信道中的第一个,第三个和第四个20MHz信道;
    若第二字段为第六值,则所述信道的带宽为四个20MHz信道。
  38. 根据权利要求36所述的装置,其特征在于,所述处理单元确定所述第一字段的值为第一值,所述处理单元解析所述数据帧中的第二字段来确定用于数据传输的信道,具体为:
    若第二字段为第一值,则所述信道的带宽为四个20MHz信道中的第一个和第三个20MHz信道,或者四个20MHz信道中的第一个和第四个20MHz信道;
    若第二字段为第二值,则所述信道的带宽为四个20MHz信道中的第一个,第二个和第四个20MHz信道;
    若第二字段为第三值,则所述信道的带宽为四个20MHz信道中第一个,第三个和第四个20MHz信道;
    若第二字段为第四值,则所述信道的带宽为四个20MHz信道。
  39. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    处理单元,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道;
    处理单元,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段用于指示所述信道的带宽;
    收发单元在所述信道上发送所述处理单元生成的数据帧。
  40. 根据权利要求39所述的装置,其特征在于,所述处理单元生成的数据帧中第一字段用于指示信道的带宽,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的 后四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
  41. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    收发单元,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
    处理单元,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和所述第二信道不连续,所述第一信道具体包括以下任一:八个20MHz信道中的首个20MHz信道,八个20MHz信道中的首两个20MHz信道,所述第二信道具体包括以下任一:八个20MHz信道中的第三个和第四个20MHz信道,八个20MHz信道中的后四个20MHz信道。
  42. 根据权利要求41所述的装置,其特征在于,所述处理单元解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的第三个和第四个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述八个20MHz信道中的首个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述八个20MHz信道中的首两个20MHz信道,所述第二信道为所述八个20MHz信道中的后四个20MHz信道。
  43. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    处理单元,确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合;
    处理单元,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况;
    收发单元,在所述信道上发送所述处理单元生成的数据帧。
  44. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    收发单元,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道使用情况;
    处理单元,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括八个20MHz信道的任意组合,所述第一字段包含七个比特,所述第一字段中七个比特分别对应所述八个20MHz信道中除主20MHz信道外的七个20MHz信道的使用情况。
  45. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    处理单元,确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续;
    所述处理单元,还用于生成数据帧,所述数据帧包含第一字段,所述第一字段用于指示信道的带宽,所述第一信道和所述第二信道为四个20MHz信道集合的子集;
    收发单元,在所述信道上发送所述处理单元生成的数据帧。
  46. 根据权利要求45所述的装置,其特征在于,所述处理单元生成的数据帧中第一字段用于指示信道的带宽,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
  47. 一种无线局域网WLAN中的信道指示装置,其特征在于,包括:
    收发单元,用于接收数据帧,所述数据帧包含第一字段,所述第一字段用于指示数据传输的信道带宽;
    处理单元,用于解析所述数据帧中的第一字段来确定用于数据传输的信道,所述信道包括第一信道和第二信道,所述第一信道和第二信道不连续,所述第一信道和所述第二信道为四个20MHz信道集合的子集。
  48. 根据权利要求47所述的装置,其特征在于,所述处理单元解析所述数据帧中的第一字段来确定用于数据传输的信道,具体为:
    若所述第一字段的值为第一值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第三个20MHz信道;
    若所述第一字段的值为第二值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第三值,则所述第一信道为所述四个20MHz信道中的首两个20MHz信道,所述第二信道为所述四个20MHz信道中的第四个20MHz信道;
    若所述第一字段的值为第四值,则所述第一信道为所述四个20MHz信道中的首个20MHz信道,所述第二信道为所述四个20MHz信道中的后两个20MHz信道。
PCT/CN2016/070820 2015-03-19 2016-01-13 一种信道指示方法和装置 WO2016145939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680012793.6A CN107409324B (zh) 2015-03-19 2016-01-13 一种信道指示方法和装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/074593 2015-03-19
CN2015074593 2015-03-19
CN2015083096 2015-07-01
CNPCT/CN2015/083096 2015-07-01

Publications (1)

Publication Number Publication Date
WO2016145939A1 true WO2016145939A1 (zh) 2016-09-22

Family

ID=56918243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070820 WO2016145939A1 (zh) 2015-03-19 2016-01-13 一种信道指示方法和装置

Country Status (2)

Country Link
CN (1) CN107409324B (zh)
WO (1) WO2016145939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149310A1 (en) * 2017-02-17 2018-08-23 Huawei Technologies Co., Ltd. Channel width indication in edmg capabilities and edmg operations elements in 802.11ay

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769467B (zh) * 2018-07-28 2023-04-11 华为技术有限公司 一种带宽信息的指示方法和通信设备
CN117081714A (zh) * 2018-12-10 2023-11-17 华为技术有限公司 信息指示方法及装置
US11943643B2 (en) 2020-07-24 2024-03-26 Mediatek Singapore Pte. Ltd. Wide bandwidth transmission schemes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315903A (zh) * 2010-02-23 2012-01-11 英特尔公司 宽信道无线通信的带宽和信道通知
CN102598769A (zh) * 2009-11-12 2012-07-18 交互数字专利控股公司 提供用于无线通信的甚高吞吐量操作和能力信令的方法和设备
WO2014110803A1 (en) * 2013-01-18 2014-07-24 Broadcom Corporation Interworking among dissimilar radio networks
CN104221456A (zh) * 2012-04-04 2014-12-17 高通股份有限公司 无线信道化

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497153B1 (ko) * 2008-12-22 2015-03-02 엘지전자 주식회사 무선랜 시스템에서의 기본서비스세트 부하 관리 절차
US9025428B2 (en) * 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US8787385B2 (en) * 2010-06-11 2014-07-22 Marvell World Trade Ltd. Method and apparatus for determining channel bandwidth
US9060352B2 (en) * 2012-08-14 2015-06-16 Cisco Technology, Inc. Dynamic channel assignment for WLAN deployments with IEEE 802.11ac access points

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598769A (zh) * 2009-11-12 2012-07-18 交互数字专利控股公司 提供用于无线通信的甚高吞吐量操作和能力信令的方法和设备
CN102315903A (zh) * 2010-02-23 2012-01-11 英特尔公司 宽信道无线通信的带宽和信道通知
CN104221456A (zh) * 2012-04-04 2014-12-17 高通股份有限公司 无线信道化
WO2014110803A1 (en) * 2013-01-18 2014-07-24 Broadcom Corporation Interworking among dissimilar radio networks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149310A1 (en) * 2017-02-17 2018-08-23 Huawei Technologies Co., Ltd. Channel width indication in edmg capabilities and edmg operations elements in 802.11ay
US10470165B2 (en) 2017-02-17 2019-11-05 Huawei Technologies Co., Ltd. Channel width indication in EDMG capabilities and EDMG operations elements in 802.11AY
US10609688B2 (en) 2017-02-17 2020-03-31 Huawei Technologies Co., Ltd. Channel bandwidth indication in EDMG capabilities element and EDMG operations element in 802.11ay

Also Published As

Publication number Publication date
CN107409324A (zh) 2017-11-28
CN107409324B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US11811687B2 (en) Systems and methods for providing high data throughput in 6 GHz Wi-Fi network
EP3158795B1 (en) Apparatus and methods for bandwidth efficient operations in wireless local area networks
US11343054B2 (en) Communication method, network device, and terminal device
WO2016145939A1 (zh) 一种信道指示方法和装置
US9055593B2 (en) Method and apparatus for transceiving channel transmit power information in a wireless communication system
JP2023528312A (ja) 無線ローカルエリアネットワークにおけるシグナリング情報交換方法及び通信機器
US10993259B2 (en) Resource indication processing method, processing apparatus, access point, and station
WO2022022249A1 (zh) 资源调度方法及相关装置
CN107078879A (zh) 用于无线电信***中的载波选择的***、用户设备、和基站
CN109802757A (zh) 一种控制信息的检测方法及装置
WO2021139791A1 (zh) 指示多资源单元Multi-RU合并的方法和装置
WO2017076160A1 (zh) 信令配置及传输方法、站点、终端、计算机存储介质
CN112020069B (zh) 无线网络中的宽频带传输的资源单元
JP2019510400A (ja) 無線ローカルエリアネットワークにおいてチャネルを示すための方法および装置
WO2021207975A1 (zh) 时域资源确定方法及装置
CN113645710A (zh) 请求发送(rts)帧/允许发送(cts)帧和传输规则
CN110971358B (zh) 一种重复传输的激活方法、终端和网络侧设备
CN115243326A (zh) 一种带宽指示方法、装置及相关设备
WO2022252679A1 (zh) 一种物理层协议数据单元、触发帧的传输方法以及装置
WO2022135426A1 (zh) 通信方法、装置及***
JP6968240B2 (ja) データ送信方法および装置
CN112153687B (zh) 一种缓存信息上报方法、接收方法、终端和网络侧设备
CN112187320B (zh) 一种天线端口确定方法和通信设备
EP4247085A1 (en) Method for indicating channel division information, and communication apparatus
CN118139179A (zh) 通信方法、装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764121

Country of ref document: EP

Kind code of ref document: A1