WO2016145927A1 - 一种设备到设备通信的方法、装置及计算机存储介质 - Google Patents

一种设备到设备通信的方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2016145927A1
WO2016145927A1 PCT/CN2015/100323 CN2015100323W WO2016145927A1 WO 2016145927 A1 WO2016145927 A1 WO 2016145927A1 CN 2015100323 W CN2015100323 W CN 2015100323W WO 2016145927 A1 WO2016145927 A1 WO 2016145927A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
information
data packet
user equipment
window
Prior art date
Application number
PCT/CN2015/100323
Other languages
English (en)
French (fr)
Inventor
戴博
吴栓栓
陈琳
黄莹
贺海港
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15885295.4A priority Critical patent/EP3258723B1/en
Priority to US15/558,200 priority patent/US20180077716A1/en
Publication of WO2016145927A1 publication Critical patent/WO2016145927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a device-to-device communication method, apparatus, and computer storage medium.
  • D2D Device to Device
  • the communication model is receiving increasing attention.
  • D2D means that the service data is not forwarded by the base station and the core network, and is directly transmitted by the source user equipment (UE, User Equipment) to the target user equipment through an air interface, and may also be called a ProSe (Proximity Service).
  • UE User Equipment
  • ProSe Proximity Service
  • Wireless communication typically includes communication modes such as broadcast, groupcast, and unicast. Broadcasting usually does not have a specific receiving end. For example, a device interested in the service sent by the transmitting end can receive the service; multicast is another one-to-many communication, and the terminal constituting one communication group can receive the sending by the transmitting end. Service; unicast is to send a service to a specific receiver.
  • embodiments of the present invention provide a device-to-device communication method, apparatus, and computer storage medium.
  • An embodiment of the present invention provides a device-to-device communication method, where the method is applied to a first user equipment, and the method includes:
  • the first user equipment receives the D2D communication data packet sent by the second user equipment in the determined resource.
  • the first scheduling window includes: a hybrid automatic repeat request (HARQ) scheduling window, or a corresponding scheduling resource allocation SA window in D2D communication, or multiple data packet joint scheduling windows.
  • HARQ hybrid automatic repeat request
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment.
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window maps all available children in the first scheduling window. On the frame.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window corresponds to one scheduling information, or the first scheduling window. All packets in the packet are divided into multiple packet groups, and each packet group corresponds to one scheduling information.
  • the scheduling information is repeatedly transmitted in the time domain in the first scheduling window. lose.
  • a plurality of data packet frequency domain locations corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or
  • the location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is based on the first user identifier, the second user identifier, and the scheduling information. At least one of the indicated offsets is determined.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the method further includes:
  • the first user equipment performs joint feedback on the feedback information corresponding to the data packet in the first scheduling window.
  • the subframe index of the feedback information is determined according to a subframe index of the last data packet in the first scheduling window.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the first scheduling window.
  • the location of the feedback information is determined according to a ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to configuration information of the first transit node corresponding to the first user equipment.
  • An embodiment of the present invention further provides a device-to-device communication device, which is applied to a first user equipment, where the device includes:
  • a first resource location determining unit configured to determine a location of a resource configured in the first scheduling window to be received by the device to the device D2D communication;
  • the data packet receiving unit is configured to receive the D2D communication data packet sent by the second user equipment in the determined resource.
  • the first scheduling window includes: a HARQ scheduling window, or a corresponding scheduling resource allocation SA window in D2D communication, or multiple data packet joint scheduling windows.
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment.
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window maps all available children in the first scheduling window. On the frame.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window corresponds to one scheduling information, or the first scheduling window. All packets in the packet are divided into multiple packet groups, one for each packet group Scheduling information.
  • the scheduling information is repeatedly transmitted in the time domain in the first scheduling window.
  • a plurality of data packet frequency domain locations corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or
  • the location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is based on the first user identifier, the second user identifier, and the scheduling information. At least one of the indicated offsets is determined.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the apparatus further includes a feedback unit configured to perform joint feedback on the feedback information corresponding to the data packet in the first scheduling window.
  • the feedback unit is configured to determine a subframe index of the feedback information according to a subframe index of a last data packet transmitted in the first scheduling window.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is the largest transmission packet configured according to the first scheduling window.
  • the number of subframes is determined.
  • the location of the feedback information is determined according to a ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to configuration information of the first transit node corresponding to the first user equipment.
  • the embodiment of the invention further provides a device-to-device communication method, the method is applied to a first transmission node, and the method includes:
  • the first transmitting node determines information of the first user equipment that the second user equipment transmits data
  • the information of the first user equipment is carried in the scheduling information sent by the first transmitting node to the second user equipment; or the information of the first user equipment is determined according to the resource where the scheduling information is located.
  • the first transmitting node sends a message to notify the first user equipment that the first user equipment is configured to receive the scheduling information sent by the second user equipment and/or the identifier information of the second user equipment.
  • the embodiment of the present invention further provides a device-to-device communication device, which is applied to a first transmission node, where the node includes:
  • An information determining unit configured to determine information of the first user equipment that the second user equipment transmits data
  • An information sending unit configured to send information of the first user equipment to the second user equipment
  • the information of the first user equipment is carried in the scheduling information sent by the first transmitting node to the second user equipment; or the information of the first user equipment is located according to the scheduling information.
  • the source is determined.
  • the information sending unit is configured to send the information to the first user equipment to be configured to receive the scheduling information sent by the second user equipment and/or the identification information of the second user equipment.
  • the embodiment of the present invention further provides a device-to-device communication method, where the method is applied to a second user equipment, and the method includes:
  • the second user equipment transmits a D2D communication data packet in the determined resource.
  • the first scheduling window includes: a HARQ scheduling window, or a corresponding scheduling resource allocation SA window in D2D communication, or multiple data packet joint scheduling windows.
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment.
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window maps all available children in the first scheduling window. On the frame.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window corresponds to one scheduling information, or the first scheduling window. All packets in the packet are divided into multiple packet groups, and each packet group corresponds to one scheduling information.
  • the scheduling information is repeatedly transmitted in the time domain in the first scheduling window.
  • a plurality of data packet frequency domain locations corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or
  • the location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is based on the first user identifier, the second user identifier, and the scheduling information. At least one of the indicated offsets is determined.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the method further includes:
  • the second user equipment receives the feedback information of the first user equipment, where the feedback information includes all feedback information corresponding to the data packet in the first scheduling window.
  • the subframe index of the feedback information is determined according to a subframe index of the last data packet transmitted in the first scheduling window.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the first scheduling window.
  • the location of the feedback information is based on the data packet at the first
  • the position in the dispatch window is determined from the top to the back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to configuration information of the first transit node corresponding to the first user equipment.
  • the embodiment of the present invention further provides a device-to-device communication device, which is applied to a second user equipment, where the device includes:
  • a second resource location determining unit configured to determine a resource location configured as D2D communication in the first scheduling window
  • a data packet sending unit configured to send the D2D communication data packet in the determined resource.
  • the first scheduling window includes: a HARQ scheduling window, or a corresponding scheduling resource allocation SA window in D2D communication, or multiple data packet joint scheduling windows.
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment.
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window maps all available children in the first scheduling window. On the frame.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window corresponds to one scheduling information, or the first scheduling window. All packets in the packet are divided into multiple packet groups, and each packet group corresponds to one scheduling information.
  • the scheduling information is repeatedly transmitted in the time domain in the first scheduling window. lose.
  • a plurality of data packet frequency domain locations corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or
  • the location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is based on the first user identifier, the second user identifier, and the scheduling information. At least one of the indicated offsets is determined.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the device further includes:
  • the feedback receiving unit is configured to receive feedback information of the first user equipment, where the feedback information includes all feedback information corresponding to the data packet in the first scheduling window.
  • the subframe index of the feedback information is determined according to a subframe index of the last data packet transmitted in the first scheduling window.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the first scheduling window.
  • the location of the feedback information is determined according to a ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to configuration information of the first transit node corresponding to the first user equipment.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the application in the first user equipment according to the embodiment of the present invention.
  • Device-to-device communication method
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the application in the first transmission node according to the embodiment of the present invention.
  • Device-to-device communication method
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the application in the second user equipment according to the embodiment of the present invention.
  • Device-to-device communication method
  • the device-to-device communication method and device and the computer storage medium provided by the embodiments of the present invention solve the problem of the HARQ transmission based on the scheduling window in the D2D communication, and the implementation complexity of the terminal is not significantly increased in the embodiment of the present invention. Under the premise of overhead, D2D unicast communication is realized.
  • FIG. 1 is a schematic diagram of a cellular network deployment in the related art
  • FIG. 2 is a schematic diagram of a radio resource structure in the related art
  • FIG. 3 is a flowchart of a method for device-to-device communication according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another method for device-to-device communication according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another device-to-device communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for device-to-device communication according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another apparatus for device-to-device communication according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another apparatus for device-to-device communication according to an embodiment of the present invention.
  • a common cellular wireless communication system may be based on Code Division Multiplexing Access (CDMA) technology, Frequency Division Multiplexing (FDMA), Frequency Division Multiplexing (FDMA) technology, and positive Inter-frequency division multiple access (OFDMA) technology, single carrier frequency division multiple access (SC-FDMA, Single Carrier-FDMA) technology.
  • CDMA Code Division Multiplexing Access
  • FDMA Frequency Division Multiplexing
  • FDMA Frequency Division Multiplexing
  • OFDMA positive Inter-frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SC-FDMA Single Carrier-FDMA
  • the 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • SC-FDMA SC-FDMA multiple access technology
  • a radio resource configured to communicate is a time-frequency two-dimensional form.
  • uplink and downlink communication resources are divided in units of radio frames in the time direction.
  • Each radio frame has a length of 10 ms and includes 10 lengths.
  • the number of subframes in the radio frame is 0-9, and the number of radio frames is 0-1023. As shown in Figure 1.
  • resources are divided into subcarriers.
  • the smallest unit of frequency domain resource allocation is a resource block (RB, Resource Block), and one physical resource block corresponding to a physical resource (PRB, Physical RB).
  • a PRB contains 12 sub-carriers in the frequency domain, corresponding to one slot in the time domain.
  • the two PRBs adjacent to each other in the time domain of the subframe are called PRB pairs.
  • a resource corresponding to one subcarrier on a carrier-Orthogonal Frequency Division symbol is called a resource element (RE, Resource Element).
  • Figure 2 shows a schematic diagram of network deployment of a cellular wireless communication system.
  • the figure shown may be a 3GPP LTE/LTE-A system, or other cellular wireless communication system.
  • a network device In an access network of a cellular radio communication system, a network device generally includes a certain number of base stations (also referred to as a Node B, ie, a NodeB, or an evolved Node B, ie, an evolved NodeB, or an enhanced node. B, ie Enhanced NodeB), and other network entities or network elements. Or, in general, it can also be collectively referred to as an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) in 3GPP.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the base station mentioned here also includes a low power node (LPN) in the network, for example, a femto cell or a home base station (pico, relay, femto, home eNB, etc.), etc., which may also be collectively referred to as a small cell ( Small cell).
  • LPN low power node
  • Figure 2 shows only three base stations.
  • the base station provides a certain wireless signal coverage, and a terminal (also referred to as a user equipment or device) within the coverage area can perform wireless communication with the base station.
  • the radio signal coverage area of a base station may be divided into one or more cells or sectors based on certain criteria, for example, the radio signal coverage area of one base station is divided into three cells.
  • the embodiment of the invention provides a device-to-device communication method. As shown in FIG. 3, the method mainly includes:
  • Step 301 The first user equipment determines a location of a resource configured to be received by the D2D communication in the first scheduling window.
  • Step 302 The first user equipment receives the D2D communication data packet sent by the second user equipment in the determined resource.
  • the method of the embodiment of the present invention can be well compatible with the existing scheduling window-based multicast mechanism that has been supported, and the terminal implementation cost is reduced.
  • the first scheduling window includes: a scheduling window corresponding to D2D communication supporting a Hybrid Automatic Repeat ReQuest (HARQ) function, which is simply referred to as a HARQ scheduling window, or a scheduling corresponding to D2D communication.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the SA window method can achieve good compatibility and reduce the complexity of implementation.
  • the scheduling based on the SA window can also reduce the signaling overhead.
  • the first scheduling window has a preset scheduling relationship, or the scheduling relationship between the first scheduling windows is indicated according to signaling sent by the first transmitting node that covers the first user equipment.
  • the scheduling relationship may be determined by at least one of the following information: a maximum number of scheduling windows that the first transmission node can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and a scheduling window. Domain location.
  • the data packet can only be transmitted in the scheduling window corresponding to the same virtual scheduling window index. For example, if there are four consecutive scheduling windows on the time domain, the retransmission scheduling window of the first scheduling window is the third scheduling window. The retransmission scheduling window of the two scheduling windows is the fourth scheduling window;
  • the retransmission scheduling window of the current scheduling window is the latest next scheduling window
  • the scheduling window in a scheduling window configuration period is numbered, where k is the current scheduling window index, and the virtual scheduling window corresponding to the scheduling window is k mod M;
  • Supporting M scheduling windows using X bits to represent the scheduling window corresponding to the current scheduling window, such as: supporting up to 4 scheduling windows, using 2 bits to represent the virtual scheduling window index corresponding to the current scheduling window, which can represent the retransmission of the current scheduling window. Is the packet of the previous dispatch window.
  • the data packet transmission in the first scheduling window includes: the data packets corresponding to each subframe in which the data packet is transmitted in the first scheduling window are different from each other, or the data packet mapping And configured to transmit each subframe of the data packet in the first scheduling window;
  • each subframe corresponds to one data packet, and different data packets corresponding to different subframes are different, or one data packet is mapped on all available subframes in the scheduling window.
  • all data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window corresponds to one scheduling information, or in the first scheduling window. All data packets are divided into multiple data packet groups, and each data packet group corresponds to one scheduling information.
  • the scheduling information may be repeatedly transmitted in the time domain in the first scheduling window.
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or, in the uncovered scenario,
  • the location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, and the offset may be according to the offset indicated by the first user identifier, the second user identifier, and the scheduling information. At least one of the ok.
  • the scheduling information corresponding to the data packet includes data packet indication information, where the data packet indication information is configured to indicate whether the data indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • Package type
  • the corresponding refers to the correspondence between the feedback information corresponding to the scheduling window and the retransmission scheduling window; for example, the retransmission scheduling window corresponds to the feedback information of the previous corresponding scheduling window, and is determined according to the current scheduling window of the feedback information of the previous corresponding scheduling window.
  • the number of subframes for transmitting data packets in the first scheduling window is 4, and the first user equipment generates feedback information as ACK, NACK, ACK, NACK after receiving data in 4 subframes, if the first The second user equipment receives the feedback information of the first user equipment, and the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to determine the scheduling information according to the corresponding feedback information of the first user equipment.
  • the data packet type if the scheduling data is still included in the subframe in the scheduling window, or the number of subframes scheduled in the scheduling window is still 4, the corresponding data packet of the subframe is: a new data packet, Retransmitting the data packet, the new data packet, and retransmitting the data packet; if the second user does not receive the feedback information of the first user equipment, the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window as Determining, according to the corresponding feedback information of the first user equipment, a data packet type indicated by the scheduling information, where the first user equipment needs to perform a scheduling signal corresponding to the scheduling window. Determining for each packet type, or the default data packet scheduling window are new data packet;
  • the method can reduce the overhead of indicating new and old data packets.
  • the conventional technical means is that each data packet corresponds to 1 bit, indicating a new data packet or retransmitting a data packet, and the signaling overhead of the method increases as the scheduling data packet increases.
  • the signaling is defined according to the maximum data packet. When a small number of data packets are scheduled, the signaling is idle and the resources are wasted. If the number of dynamic bits is used, the number of bits corresponding to the downlink control signaling format is dynamically changed, which is disadvantageous for the receiving end.
  • the detection, the above method can reduce the overhead of the signaling, and at the same time, reduce the complexity of the detection at the receiving end;
  • 1 bit in the above example may also be greater than 1 bit, such as: 2 bits, in addition to the above two states, add two or more states, such as: the same as the last packet state of the corresponding scheduling window, or, All are retransmission packages;
  • the data packet indication information includes three states, which are determined according to the feedback information, determined according to the packet state of the last corresponding scheduling window, all of which are new data packets, and all of which are arbitrarily selected in the retransmission data packet, for example, according to the feedback information. Determine, according to the data status of the last corresponding scheduling window, all of which are new data packets, or according to the feedback information, according to the last corresponding scheduling window Packet status determination, all retransmission data packets, etc.;
  • the data packet indication information includes two states, which are determined according to the feedback information, determined according to the data packet state of the last corresponding scheduling window, all of which are new data packets, and all of which are arbitrarily selected in the retransmission data packet, for example, according to the feedback information. Determining, all being new data packets, or determining according to the feedback information, all being retransmitted data packets, or determining according to the feedback information, determining according to the state of the data packet of the last corresponding scheduling window, etc.;
  • the data packet indication information includes four states, such as: determining according to the feedback information, determining according to the data packet state of the last corresponding scheduling window, all being new data packets, all being retransmitted data packets;
  • the data packet indication method may also be configured as other data communication, such as: data communication between the user equipment and the base station, or communication between the base station and the base station, or communication between the base station and the relay.
  • the subframe for transmitting data in the scheduling window is determined according to the data packet indication information, and includes: when the data packet indication information indicates that the data packet information is confirmed according to the first user equipment feedback information, the scheduling window
  • the subframe position indicated by the corresponding scheduling information is the location of the new data packet transmission, and the retransmission data packet corresponding subframe position is the same as the transmission location of the data packet corresponding to the feedback information in the scheduling window.
  • the embodiment of the present invention may further include a step 303, where the first user equipment performs joint feedback on the feedback information corresponding to the data packet in the first scheduling window.
  • the first user equipment After receiving the data packet transmitted by the second user equipment in the first scheduling window, the first user equipment feeds back feedback information of the data packet corresponding to the scheduling information in the first scheduling window. .
  • the subframe index of the feedback information is determined according to a subframe index of the last data packet transmitted in the first scheduling window
  • the TDD system determines the current uplink-downlink ratio and the scheduling window period configuration information.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information. Alternatively, the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the scheduling window.
  • the location of the feedback information is determined according to a ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to configuration information of the first transmission node (eNB) corresponding to the first user equipment.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the application in the first user equipment according to the embodiment of the present invention.
  • Device-to-device communication method
  • the first transmission node in the embodiment of the present invention is described below.
  • the first transmission node in the embodiment of the present invention is a node that covers the first user equipment and/or the second user equipment.
  • the method for device-to-device communication applied to the first transit node, as shown in FIG. 4, includes:
  • Step 401 The first transit node determines information of the first user equipment that the second user equipment transmits data.
  • Step 402 The first transit node sends the information of the first user equipment to the second user equipment. That is to say, the first transmission node sends a message to inform the second user equipment that the object for transmitting data is the first user equipment.
  • the information of the first user equipment is carried in the scheduling information sent by the first transmitting node to the second user equipment; or the information of the first user equipment is determined according to the resource where the scheduling information is located.
  • the first transmission node pre-configures different second user equipments to different resources, and the second user equipments correspond to different resource areas. In which area the first user equipment detects the scheduling information, the first user equipment learns
  • the data transmission object is the corresponding second user setting Information.
  • the data packet that is scheduled by the SA and/or the SA is scrambled by using the information; the specific scrambling manner includes: CRC scrambling, bit level scrambling, and the like. A variety of scrambling methods.
  • the first transmitting node may send information to the first user equipment to be configured to receive scheduling information sent by the second user equipment and/or identification information of the second user equipment.
  • the first user equipment sends the feedback information to the first transmission node.
  • the scheduling information includes the received feedback information of the first user equipment.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the application in the first transmission node according to the embodiment of the present invention.
  • Device-to-device communication method
  • the method for the second user equipment in the embodiment of the present invention, the device-to-device communication method applied to the second user equipment, as shown in FIG. 5, includes:
  • Step 501 The second user equipment determines a resource location configured as D2D communication in the first scheduling window.
  • Step 502 The second user equipment sends the D2D communication data packet in the determined resource.
  • the first scheduling window includes: a hybrid automatic repeat request HARQ scheduling window, or a corresponding scheduling resource allocation SA window in the D2D communication, or multiple data packet joint scheduling windows.
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or a scheduling relationship between the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment;
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window is mapped on all available subframes in the first scheduling window.
  • All the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window respectively corresponds to one scheduling information, or all data packets in the first scheduling window are divided into For multiple data packet groups, each data packet group corresponds to one scheduling information.
  • the scheduling information is repeatedly transmitted in the time domain in the first scheduling window.
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or, in the uncovered scenario,
  • the position of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is according to the offset indicated by the first user identifier, the second user identifier, and the scheduling information. At least one of them is ok.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the method may further include the step 503, the second user equipment receiving feedback information of the first user equipment, where the feedback information includes all feedback information corresponding to the data packet in the first scheduling window.
  • the subframe index of the feedback information is determined according to a subframe index of the last data packet transmitted in the first scheduling window.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the first scheduling window.
  • the location of the feedback information is determined based on the ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to the configuration information of the first transit node corresponding to the first user equipment.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the application in the second user equipment according to the embodiment of the present invention.
  • Device-to-device communication method
  • the embodiment of the present invention further provides a device-to-device communication device, which is applied to the first user equipment.
  • the device includes:
  • the first resource location determining unit 10 is configured to determine a location of the resource configured to be received by the D2D communication in the first scheduling window;
  • the data packet receiving unit 20 is configured to receive the D2D communication data packet sent by the second user equipment in the determined resource.
  • the first scheduling window includes: a HARQ scheduling window, or a corresponding SA window in D2D communication, or multiple data packet joint scheduling windows.
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or a scheduling relationship between the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment;
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window is mapped on all available subframes in the first scheduling.
  • All the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window respectively corresponds to one scheduling information, or all data packets in the first scheduling window are divided into For multiple data packet groups, each data packet group corresponds to one scheduling information.
  • the scheduling information may be repeatedly transmitted in the time domain in the first scheduling window.
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or, in the uncovered scenario,
  • the position of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is according to the offset indicated by the first user identifier, the second user identifier, and the scheduling information. At least one of them is ok.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the apparatus of the embodiment of the present invention may further include a feedback unit 30 configured to perform joint feedback on the feedback information corresponding to the data packet in the first scheduling window.
  • the feedback unit 30 is further configured to determine a subframe index of the feedback information according to a subframe index of the last data packet transmitted in the first scheduling window.
  • the number of bits of the feedback information is the maximum number of subframes scheduled according to the scheduling information. Quantity to determine, or,
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the first scheduling window.
  • the location of the feedback information is determined based on a ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to the configuration information of the first transmission node corresponding to the first user equipment.
  • the first resource location determining unit 10 and the feedback unit 30 in the device-to-device communication device may be implemented by a central processing unit (CPU) in the device in the actual application.
  • a central processing unit CPU
  • DSP Digital Signal Processor
  • FPGA Field-Programmable Gate Array
  • the data packet receiving unit 20 in the device may be used by a receiver in the device or Receive antenna implementation.
  • the embodiment of the present invention further provides a device-to-device communication device, which is applied to the first transmission node.
  • the device includes:
  • the information determining unit 40 is configured to determine information of the first user equipment that the second user equipment transmits data
  • the information sending unit 50 is configured to send information of the first user equipment to the second user equipment;
  • the information of the first user equipment is carried in the scheduling information sent by the first transmitting node to the second user equipment; or the information of the first user equipment is located according to the scheduling information.
  • the source is determined.
  • the information sending unit 50 is configured to send the information to the first user equipment to be configured to receive the scheduling information sent by the second user equipment and/or the identification information of the second user equipment.
  • the information determining unit 40 in the device-to-device communication device may be implemented by a CPU, a DSP or an FPGA in the device in an actual application; the information transmitting unit 50 in the device is actually
  • the application may be implemented by a transmitter or a transmit antenna in the apparatus.
  • the embodiment of the present invention further provides a device-to-device communication device, which is applied to the second user equipment.
  • the device includes:
  • the second resource location determining unit 60 is configured to determine a resource location configured as D2D communication in the first scheduling window;
  • the packet transmitting unit 70 is configured to transmit the D2D communication packet in the determined resource.
  • the first scheduling window includes: a HARQ scheduling window, or a corresponding scheduling resource allocation SA window in D2D communication, or multiple data packet joint scheduling windows.
  • a scheduling relationship between the scheduling windows is pre-configured in the first scheduling window, or a scheduling relationship between the first scheduling window is indicated according to signaling sent by the first transmitting node that covers the first user equipment;
  • the scheduling relationship is determined by at least one of the following information:
  • the data packets corresponding to each subframe in the first scheduling window are different from each other, or one data packet in the first scheduling window is mapped on all available subframes in the first scheduling window.
  • All the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the first scheduling window corresponds to one scheduling information, or in the first scheduling window. All data packets are divided into multiple data packet groups, and each data packet group corresponds to one scheduling information.
  • the scheduling information is repeatedly transmitted in the time domain in the first scheduling window.
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are different;
  • the frequency domain locations of the plurality of data packets corresponding to one scheduling information in the first scheduling window are the same.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window; or, in the uncovered scenario,
  • the position of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is according to the offset indicated by the first user identifier, the second user identifier, and the scheduling information. At least one of them is ok.
  • the scheduling information includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet type indicated by the scheduling information is determined according to the corresponding feedback information of the first user equipment.
  • the device may further include: a feedback receiving unit 80 configured to receive feedback information of the first user equipment, where the feedback information includes all feedback information corresponding to the data packet in the first scheduling window.
  • the subframe index of the feedback information is determined according to a subframe index of the last data packet transmitted in the first scheduling window.
  • the number of bits of the feedback information is determined according to the maximum number of subframes scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the maximum number of data packets scheduled according to the scheduling information, or
  • the number of bits of the feedback information is determined according to the number of subframes of the maximum transmission data packet configured according to the first scheduling window.
  • the location of the feedback information is determined based on the ranking of the location of the data packet in the first scheduling window from front to back.
  • the feedback channel resource corresponding to the feedback information is determined according to the scheduling information corresponding to the first scheduling window, or is determined according to configuration information of the first transit node corresponding to the first user equipment.
  • the second resource location determining unit 60 in the device-to-device communication device may be implemented by a CPU, a DSP or an FPGA in the device in an actual application; a data packet sending unit in the device 70. In practical applications, it may be implemented by a transmitter or a transmitting antenna in the apparatus; the feedback receiving unit 80 in the apparatus may be implemented by a receiver or a receiving antenna in the apparatus in practical applications.
  • Example 1 is for a base station side description in a coverage scenario.
  • the base station When the base station receives the feedback information sent by the first user equipment, the base station transmits the feedback information together with the scheduling information to the second user equipment.
  • Example 2 is directed to a first user equipment side description in a coverage scenario.
  • the first user equipment performs SA detection according to the resource configured by the base station and the second user equipment information; or the first user equipment uses the first user equipment ID for SA detection on the configured or pre-configured resource of the base station, when a match is detected.
  • SA indication information After the SA indication information, data reception is performed according to the SA indication information.
  • each second user equipment corresponds to one scheduling window, or all the second user equipments share the same resource (ie, share one scheduling window), and the first user equipment passes the blind detection SA.
  • the way to receive data is not limited to 1, each second user equipment corresponds to one scheduling window, or all the second user equipments share the same resource (ie, share one scheduling window), and the first user equipment passes the blind detection SA. The way to receive data.
  • the first scheduling window includes: a scheduling window corresponding to the D2D communication supporting the HARQ function, or a corresponding SA window in the D2D communication.
  • the HARQ scheduling window is a pre-configured scheduling window dedicated to the HARQ function.
  • the data packets are not retransmitted in the HARQ scheduling window, and are only retransmitted between the HARQ scheduling windows.
  • the scheduling windows have a predetermined scheduling relationship between them, or the correspondence between the scheduling windows is indicated by signaling.
  • the scheduling window relationship may be determined by at least one of the following information: a maximum number of scheduling windows that the receiving end can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and scheduling.
  • a maximum number of scheduling windows that the receiving end can support a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and scheduling.
  • the time domain position of the window may be determined by at least one of the following information: a maximum number of scheduling windows that the receiving end can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and scheduling. The time domain position of the window;
  • the data packet can only be transmitted in the scheduling window corresponding to the same virtual scheduling window index. For example, if there are 6 consecutive scheduling windows in the time domain, the retransmission scheduling window of the first scheduling window is the fourth scheduling window. The retransmission scheduling window of the two scheduling windows is the fifth scheduling window, and the retransmission scheduling window of the third scheduling window is the sixth scheduling window; or, in the manner of the immediate scheduling window, the retransmission scheduling window of the current scheduling window For the next next scheduling window, at this time, the time limit of feedback transmission and reception needs to be met between the last data packet transmission subframe of the first scheduling window and the SA transmission subframe of the second scheduling window; or, according to the radio frame No.
  • the scheduling window corresponds to the virtual scheduling window as k mod M; or, the maximum supporting M scheduling windows, using X bits to represent the current scheduling window
  • the corresponding scheduling window for example, supports up to 2 scheduling windows, and uses 1 bit to represent the virtual scheduling window index corresponding to the current scheduling window, which can indicate which of the previous scheduling windows is retransmitted by the current scheduling window.
  • the data packet transmission in the first scheduling window includes: the data packets corresponding to each subframe in which the data packet is transmitted in the first scheduling window are different from each other, or the data packet is mapped in the The SA window is configured to transmit each packet of each packet;
  • each subframe corresponds to one data packet, and different data packets corresponding to different subframes are different. It is assumed that there are four subframes in the scheduling window to transmit data packets, and four subframes respectively correspond to data packets; Or, a data packet is mapped on all available subframes in the scheduling window, and if two subframes in the scheduling window transmit data packets, one data packet may be transmitted in a repeated manner on two subframes. Or, transmit in different versions of the same packet.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the SA window corresponds to one scheduling information, or all data packets in the first scheduling window are divided into For multiple data packet groups, each data packet group corresponds to one scheduling information;
  • each packet corresponds to one scheduling information; or, k packets correspond to the same scheduling information, have the same frequency domain bandwidth and MCS; or, the SA scheduling window
  • the data packet is divided into two data packet groups, and each data packet group is independently configured to transmit MCS, and the data packets in each data packet group have the same MCS; different data packet groups may be located in the same frequency domain, or may be located at different frequencies. area.
  • the first user equipment detects the scheduling information according to a pre-agreed scheduling information transmission manner, and performs data reception according to the scheduling information.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window
  • the scheduling information corresponding to the data packet includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet is determined according to the latest feedback information of the first user equipment;
  • the number of subframes for transmitting data packets in the first scheduling window is 2, and the first user equipment generates feedback information as ACK and NACK after receiving data in 2 subframes, if the first The second user equipment receives the feedback information of the first user equipment, and the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window as the data packet determined according to the latest feedback information of the first user equipment, if scheduling The data is still scheduled to be included in the subframe, or the number of subframes scheduled in the scheduling window is still two, and the corresponding data packet of the subframe is: a new data packet, and a retransmission data packet; If the second user does not receive the feedback information of the first user equipment, the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be the data that is not determined according to the latest user equipment feedback information.
  • the first user equipment needs to determine each data packet type according to the scheduling information corresponding to the scheduling window, for example, whether each data packet is independently configured to retransmit the data packet information, or the data packets in the default scheduling window are For new data packets;
  • 1 bit in the above example may also be greater than 1 bit, such as: 2 bits, in addition to the above two states, and then add the same state as the packet state of the last corresponding scheduling window and all of the two states of the retransmission packet, or Then, add one of the two states of the packet status of the last corresponding scheduling window and all of them are retransmission packets.
  • the subframe for transmitting data in the scheduling window is determined according to the data packet indication information, and includes: when the data packet indication information indicates that the data packet information is confirmed according to the first user equipment feedback information, the scheduling The subframe position indicated by the scheduling information corresponding to the window is the location of the new data packet transmission, and the retransmission data packet corresponding subframe position is the same as the transmission location of the data packet corresponding to the feedback information in the scheduling window;
  • the retransmission frequency domain may be the same or different.
  • Example 3 is directed to a second user equipment side description in an overlay scenario.
  • the second user equipment performs data transmission according to the resource configured by the base station and the first user equipment information, and the second user equipment performs data transmission based on the first scheduling device according to the feedback information and/or service requirements of the first user equipment.
  • the second user equipment performs data retransmission between the scheduling windows.
  • the first scheduling window specifically includes: a scheduling window corresponding to the D2D communication supporting the HARQ function, or a corresponding SA window in the D2D communication;
  • the scheduling window corresponding to the D2D communication supporting the HARQ function is a pre-configured scheduling window specially configured as a HARQ function, in which the data packets are not retransmitted, and only retransmissions are performed between the scheduling windows;
  • interval between the adjacent scheduling windows may be continuous;
  • the scheduling windows have a predetermined scheduling relationship between them, or indicate a correspondence between the scheduling windows by signaling;
  • the scheduling window relationship may be determined by at least one of the following information: a maximum number of scheduling windows that the receiving end can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and a scheduling window. Domain location.
  • the data packet can only be transmitted in the scheduling window corresponding to the same virtual scheduling window index. For example, if there are 6 consecutive scheduling windows in the time domain, the retransmission scheduling window of the first scheduling window is the fourth scheduling window. The retransmission scheduling window of the two scheduling windows is the fifth scheduling window, and the retransmission scheduling window of the third scheduling window is the sixth scheduling window; or, in the manner of the immediate scheduling window, the retransmission scheduling window of the current scheduling window For the next next scheduling window, at this time, the time limit of feedback transmission and reception needs to be met between the last data packet transmission subframe of the first scheduling window and the SA transmission subframe of the second scheduling window; or, according to the radio frame No.
  • the scheduling window corresponds to the virtual scheduling window as k mod M; or, the maximum supporting M scheduling windows, using X bits to represent the current scheduling
  • the scheduling window corresponding to the window for example, supports up to 2 scheduling windows, and uses 1 bit to represent the virtual scheduling window index corresponding to the current scheduling window, which can indicate which of the previous scheduling windows is retransmitted by the current scheduling window.
  • the data packet transmission in the first scheduling window includes: the data packets corresponding to each subframe in which the data packet is transmitted in the first scheduling window are different from each other, or the data packet is mapped in the SA Configuring in the window to transmit each subframe of the data packet;
  • each subframe corresponds to one data packet, and different data packets corresponding to different subframes are different, and it is assumed that four subframes in the scheduling window transmit data packets, and four subframes respectively correspond to data packets; or a data packet is mapped on all available subframes in the scheduling window. Assuming that there are 2 subframes in the scheduling window to transmit data packets, one data packet may be transmitted in a repeated manner on two subframes, or the same The different versions of the data packet are transmitted.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the SA window corresponds to one scheduling information, or all data packets in the first scheduling window are divided into For multiple data packet groups, each data packet group corresponds to one scheduling information;
  • each packet corresponds to one scheduling information; or, k packets correspond to the same scheduling information, have the same frequency domain bandwidth and MCS; or, in the SA scheduling window
  • the data packet is divided into two data packet groups, and each data packet group is independently configured to transmit MCS, and the data packets in each data packet group have the same MCS; different data packet groups may be located in the same frequency domain or in different frequency domains. .
  • the scheduling information may be repeatedly transmitted in the time domain in the scheduling window.
  • the retransmission data packet and the first transmission data packet are in the same position in the first scheduling window.
  • the scheduling information corresponding to the data packet includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet is determined according to the latest feedback information of the first user equipment;
  • the number of subframes for transmitting data packets in the first scheduling window is 2, and the second user equipment generates feedback information as ACK and NACK respectively after receiving data in 2 subframes, if the second user receives
  • the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be the data packet determined according to the latest user equipment feedback information, if the scheduling window is still in the Scheduling a data packet on a subframe; or, the scheduling If the number of subframes scheduled in the window is still two, the corresponding data packet of the subframe is: a new data packet, and a retransmission data packet; if the second user does not receive the feedback information of the first user equipment, The user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be a data packet that is not determined according to the latest user equipment feedback information. In this case, the first user equipment needs scheduling information corresponding to the scheduling window. Determine each packet type, such as: whether each packet is independently configured to retransmit packet information
  • 1 bit in the above example may also be greater than 1 bit, such as: 2 bits, in addition to the above two states, and then add the same state as the packet state of the last corresponding scheduling window and all of the two states of the retransmission packet, or Then, add one of the two states of the packet status of the last corresponding scheduling window and all of them are retransmission packets.
  • the subframe for transmitting data in the scheduling window is determined according to the data packet indication information, including: when the data packet indication information indicates that the data packet information is confirmed according to the first user equipment feedback information,
  • the subframe position indicated by the scheduling information corresponding to the scheduling window is the location of the new data packet transmission, and the retransmission data packet corresponding subframe position is the same as the transmission location of the data packet corresponding to the feedback information in the scheduling window;
  • the retransmission frequency domain may be the same or different.
  • Example 4 is directed to a first user equipment side description in a no coverage scenario.
  • the first user equipment performs SA detection according to the pre-configured resource and the second user equipment information; or the first user equipment uses the first user equipment ID to detect on the pre-configured resource, when detecting After the matching SA information, data reception is performed according to the SA indication.
  • each second user equipment corresponds to a dedicated scheduling window resource, or all the second user equipments share the same resource, and the first user equipment passes the method of blindly detecting the SA. Data reception.
  • the first scheduling window includes: a scheduling window corresponding to the D2D communication supporting the HARQ function, or a corresponding SA window in the D2D communication, or a plurality of data packet joint scheduling windows.
  • the scheduling window corresponding to the HARQ-enabled D2D communication is a pre-configured scheduling window dedicated to the HARQ function, in which the data packets are not retransmitted, and only retransmissions are performed between the scheduling windows.
  • intervals between the adjacent scheduling windows may be continuous or overlapping.
  • the scheduling windows have a predetermined scheduling relationship between them, or the correspondence between the scheduling windows is indicated by signaling.
  • the scheduling window relationship may be determined by at least one of the following information: a maximum number of scheduling windows that the receiving end can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and scheduling.
  • a maximum number of scheduling windows that the receiving end can support a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and scheduling.
  • the time domain position of the window may be determined by at least one of the following information: a maximum number of scheduling windows that the receiving end can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and scheduling. The time domain position of the window;
  • the data packet can only be transmitted in the scheduling window corresponding to the same virtual scheduling window index. For example, if there are 6 consecutive scheduling windows in the time domain, the retransmission scheduling window of the first scheduling window is the fourth scheduling window. The retransmission scheduling window of the two scheduling windows is the fifth scheduling window, and the retransmission scheduling window of the third scheduling window is the sixth scheduling window; or, in the manner of the immediate scheduling window, the retransmission scheduling window of the current scheduling window For the next next scheduling window, at this time, the time limit of feedback transmission and reception needs to be met between the last data packet transmission subframe of the first scheduling window and the SA transmission subframe of the second scheduling window; or, according to the radio frame No.
  • the scheduling window corresponds to the virtual scheduling window as k mod M; or, the maximum supporting M scheduling windows, using X bits to represent the current scheduling window
  • the corresponding scheduling window for example, supports up to 2 scheduling windows, and uses 1 bit to represent the virtual scheduling window index corresponding to the current scheduling window, which can indicate which of the previous scheduling windows is retransmitted by the current scheduling window.
  • the transmitting of the data packet in the first scheduling window includes: the data packets corresponding to each subframe in which the data packet is transmitted in the first scheduling window are different from each other, or the data packet is mapped in the The SA window is configured to transmit each packet of each packet;
  • each subframe corresponds to one data packet, and the number corresponding to different subframes According to different packets, it is assumed that there are 4 subframes in the scheduling window to transmit data packets, and 4 subframes respectively correspond to data packets; or, one data packet is mapped on all available subframes in the scheduling window, assuming the scheduling window There are 2 sub-frames to transmit data packets, then one data packet can be transmitted in duplicate on two subframes, or transmitted in different versions of the same data packet.
  • all data packets in the first scheduling window correspond to the same scheduling information; or, each data packet in the SA window corresponds to one scheduling information; or all data packets in the first scheduling window are divided into For multiple data packet groups, each data packet group corresponds to one scheduling information;
  • each packet corresponds to one scheduling information; or, k packets correspond to the same scheduling information, have the same frequency domain bandwidth and MCS; or, in the SA scheduling window
  • the data packet is divided into two data packet groups, and each data packet group is independently configured to transmit MCS, and the data packets in each data packet group have the same MCS; different data packet groups may be located in the same frequency domain or in different frequency domains. ;
  • an embodiment is: a plurality of data packets corresponding to one scheduling information in the first scheduling window have different frequency domain locations; and the frequency domain location is determined according to a pre-agreed manner, where the pre-agreed manner includes: At least one of the first user equipment ID, the second user equipment ID, and the offset parameter indicated by the scheduling information randomly generates a frequency domain location corresponding to each data packet, eg, determining a first data packet according to the scheduling information.
  • the frequency domain location is determined according to the scheduling information, and the other locations generate respective offsets according to the agreed manner, and determine the frequency domain location according to the initial location of the first data packet and the corresponding offset;
  • the first user equipment detects the scheduling information according to a pre-agreed scheduling information transmission manner, and performs data reception according to the scheduling information.
  • the time domain positions of the retransmission data packet and the first transmission data packet in the first scheduling window are the same; Or the time domain location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, the offset being at least according to the first user identifier, the second user identifier And determining, at least one of the offset parameters indicated by the scheduling information is determined.
  • the scheduling information corresponding to the data packet includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet is determined according to the latest feedback information of the first user equipment;
  • the number of subframes for transmitting data packets in the first scheduling window is 2, and the second user equipment generates feedback information as ACK and NACK respectively after receiving data in 2 subframes, if the second user receives
  • the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be the data packet determined according to the latest user equipment feedback information, if the scheduling window is still in the Scheduling data on the subframe includes: or, the number of subframes scheduled in the scheduling window is still two, and the data packet corresponding to the subframe is: a new data packet, a retransmission data packet; if the second user does not Receiving the feedback information of the first user equipment, the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be a data packet that is not determined according to the latest user equipment feedback information.
  • the user equipment needs to determine each data packet type according to the scheduling information corresponding to the scheduling window, for example, whether each data packet is independently configured to retransmit the data packet
  • 1 bit in the above example may also be greater than 1 bit, such as: 2 bits, in addition to the above two states, and then add the same state as the packet state of the last corresponding scheduling window and all of the two states of the retransmission packet, or Then, add one of the two states of the packet status of the last corresponding scheduling window and all of them are retransmission packets.
  • the subframe for transmitting data in the scheduling window is determined according to the data packet indication information, including: when the data packet indication information indicates that the data packet information is confirmed according to the first user equipment feedback information, The subframe position indicated by the scheduling information corresponding to the scheduling window is the location of the new data packet transmission, and the data packet corresponding to the subframe information of the retransmission data packet corresponding to the feedback information is the same in the scheduling window;
  • the retransmission frequency domain may be the same or different.
  • Example 5 is directed to a second user equipment side description in a no coverage scenario.
  • the second user equipment performs data transmission according to the first scheduling window according to the feedback information and the service requirement of the first user equipment, and the second user equipment performs data retransmission between the scheduling windows.
  • each second user equipment corresponds to one dedicated scheduling window resource, or all first user equipments share the same resource
  • the data of the first user equipment is scrambled by using a corresponding ID.
  • the first scheduling window specifically includes: a scheduling window corresponding to the D2D communication supporting the HARQ function, or a corresponding SA window in the D2D communication;
  • the scheduling window corresponding to the HARQ-enabled D2D communication is a pre-configured scheduling window dedicated to the HARQ function, in which the data packets are not retransmitted, and only retransmissions are performed between the scheduling windows.
  • intervals between the adjacent scheduling windows may be continuous or overlapping.
  • the scheduling windows have a predetermined scheduling relationship between them, or indicate a correspondence between the scheduling windows by signaling;
  • the scheduling window relationship may be determined by at least one of the following information: a maximum number of scheduling windows that the receiving end can support, a packet scheduling timing, a packet feedback timing, a packet retransmission timing, a scheduling window period, and a scheduling window. Time domain location.
  • the data packet can only be transmitted in the scheduling window corresponding to the same virtual scheduling window index. For example, if there are 6 consecutive scheduling windows in the time domain, the retransmission scheduling window of the first scheduling window is the fourth scheduling window. The retransmission scheduling window of the two scheduling windows is the fifth scheduling window, and the retransmission scheduling window of the third scheduling window is the sixth scheduling window; or, in the manner of the immediate scheduling window, the retransmission scheduling window of the current scheduling window For the next next scheduling window, at this time, the time limit of feedback transmission and reception needs to be met between the last data packet transmission subframe of the first scheduling window and the SA transmission subframe of the second scheduling window; or, according to the radio frame Number to number the scheduling window in a scheduling window configuration period, k is the current tuning
  • the degree window index, the scheduling window corresponds to the virtual scheduling window is k mod M; or, the maximum support M scheduling windows, using X bits to represent the scheduling window corresponding to the current scheduling window, such as: supporting up to 2 scheduling windows, using 1 bit
  • the transmitting of the data packet in the first scheduling window includes: the data packets corresponding to each subframe in which the data packet is transmitted in the first scheduling window are different from each other, or the data packet is mapped in The SA window is configured to transmit each subframe of the data packet;
  • each subframe corresponds to one data packet, and different data packets corresponding to different subframes are different, and it is assumed that four subframes in the scheduling window transmit data packets, and four subframes respectively correspond to data packets; or a data packet is mapped on all available subframes in the scheduling window. If there are 2 subframes in the scheduling window to transmit data packets, one data packet may be transmitted in a repeated manner on two subframes, or The same data packet is transmitted in different versions.
  • all the data packets in the first scheduling window correspond to the same scheduling information, or each data packet in the SA window corresponds to one scheduling information, or all data packets in the first scheduling window are divided into For multiple data packet groups, each data packet group corresponds to one scheduling information;
  • each packet corresponds to one scheduling information; or, k packets correspond to the same scheduling information, have the same frequency domain bandwidth and MCS; or, in the SA scheduling window
  • the data packet is divided into two data packet groups, and each data packet group is independently configured to transmit MCS, and the data packets in each data packet group have the same MCS; different data packet groups may be located in the same frequency domain or in different frequency domains. ;
  • an embodiment is: a plurality of data packets corresponding to one scheduling information in the first scheduling window have different frequency domain locations; and the frequency domain location is determined according to a pre-agreed manner, where the pre-agreed manner includes: At least one of the first user equipment ID, the second user equipment ID, and the offset parameter indicated by the scheduling information randomly generates a frequency domain location corresponding to each data packet, eg, determining a first data packet according to the scheduling information.
  • the frequency domain location is determined according to the scheduling information, other locations Generating corresponding offsets according to an agreed manner, and determining a frequency domain position according to the initial position of the first data packet and the corresponding offset;
  • the second user equipment transmits the scheduling information and corresponding data packets according to a pre-agreed scheduling information transmission manner.
  • the time domain positions of the retransmission data packet and the first transmission data packet in the first scheduling window are the same; Or the time domain location of the retransmission data packet and the first transmission data in the first scheduling window adopts a predefined offset, where the offset is based at least on the first user identifier and the second user identifier. At least one of the offset parameters indicated by the scheduling information is determined.
  • the scheduling information corresponding to the data packet includes data packet indication information, where the data packet indication information is configured to indicate whether the data packet is determined according to the latest feedback information of the first user equipment;
  • the number of subframes for transmitting data packets in the first scheduling window is 2, and the second user equipment generates feedback information as ACK and NACK respectively after receiving data in 2 subframes, if the second user receives
  • the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be the data packet determined according to the latest user equipment feedback information, if the scheduling window is still in the Scheduling data on the subframe includes: or, the number of subframes scheduled in the scheduling window is still two, and the data packet corresponding to the subframe is: a new data packet, a retransmission data packet; if the second user does not Receiving the feedback information of the first user equipment, the first user equipment sets the data packet indication information corresponding to the corresponding retransmission scheduling window to be a data packet that is not determined according to the latest user equipment feedback information.
  • the user equipment needs to determine each data packet type according to the scheduling information corresponding to the scheduling window, for example, whether each data packet is independently configured to retransmit the data packet
  • 1 bit in the above example may also be greater than 1 bit, such as: 2 bits, in addition to the above two states, the same as the last packet state of the corresponding scheduling window and all of the retransmission packets
  • the status or, is added to one of the two states of the packet state of the last corresponding scheduling window and all of which are retransmission packets.
  • the subframe for transmitting data in the scheduling window is determined according to the data packet indication information, including: when the data packet indication information indicates that the data packet information is confirmed according to the first user equipment feedback information, The subframe position indicated by the scheduling information corresponding to the scheduling window is the location of the new data packet transmission, and the data packet corresponding to the subframe information of the retransmission data packet corresponding to the feedback information is the same in the scheduling window;
  • the retransmission frequency domain may be the same or different.
  • the device-to-device communication mentioned above is not limited to communication between terminals, and can also be applied to communication between a base station and a base station, communication between a base station and a terminal, communication between a base station and a relay, a relay, and a terminal.
  • the user equipment may be a transmission node such as a base station, a terminal, or a relay.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the embodiment of the present invention solves the problem of the HARQ transmission based on the scheduling window in the D2D communication.
  • the embodiment of the present invention implements the D2D unicast communication without significantly increasing the complexity and signaling overhead of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种设备到设备通信的方法、装置及计算机存储介质,应用于第一用户设备的方法包括:第一用户设备确定第一调度窗中配置为设备到设备(D2D)通信接收的资源的位置;所述第一用户设备在确定的资源中接收第二用户设备发送的D2D通信数据包。

Description

一种设备到设备通信的方法、装置及计算机存储介质 技术领域
本发明涉及无线通信领域,尤其涉及一种设备到设备通信的方法、装置及计算机存储介质。
背景技术
随着移动通信业务的多样化,例如社交网络、电子支付等应用在无线通信***中的普及,使得近距离用户之间的业务传输需求日益增长;因此,设备到设备(D2D,Device to Device)的通信模式日益受到广泛关注。D2D是指业务数据不经过基站和核心网的转发,直接由源用户设备(UE,User Equipment)通过空口传输给目标用户设备,也可称之为邻近服务(ProSe,Proximity Service)。对于近距离通信的用户来说,D2D不但节省了无线频谱资源,而且降低了核心网的数据传输压力。
无线通信通常包括广播(broadcast)、组播(groupcast)、单播(unicast)等通信模式。广播通常没有特定的接收端,例如对发送端发送的业务感兴趣的设备都可以接收该业务;组播是另一种一对多通信,组成一个通信组的终端可以接收到发送端所发送的业务;单播则是将业务发送给特定的某个接收端。
因此,一方面,如果上述无线通信模式均能在D2D通信中被支持,那么无疑能够扩大D2D通信的应用范围;另一方面,上述三种通信模式各自具有不同的特点,因此D2D通信应用于各通信模式的最优方案可能会有所不同。然而,现有技术尚未给出针对上述问题的解决方案。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种设备到设备通信的方法、装置和计算机存储介质。
本发明实施例提供了一种设备到设备通信的方法,所述方法应用于第一用户设备,所述方法包括:
第一用户设备确定第一调度窗中配置为D2D通信接收的资源的位置;
所述第一用户设备在确定的资源中接收第二用户设备发送的D2D通信数据包。
作为一种实施方式,所述第一调度窗包括:混合自动重传请求(HARQ)调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
作为一种实施方式,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
作为一种实施方式,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
作为一种实施方式,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
作为一种实施方式,所述调度信息在所述第一调度窗中在时域重复传 输。
作为一种实施方式,当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
作为一种实施方式,当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
作为一种实施方式,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
作为一种实施方式,所述方法还包括:
所述第一用户设备对所述第一调度窗中数据包对应的反馈信息进行联合反馈。
作为一种实施方式,所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引确定。
作为一种实施方式,所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
作为一种实施方式,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序来确定。
作为一种实施方式,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息来确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
本发明实施例又提供了一种设备到设备通信的装置,应用于第一用户设备中,所述装置包括:
第一资源位置确定单元,配置为确定第一调度窗中配置为设备到设备D2D通信接收的资源的位置;
数据包接收单元,配置为在确定的资源中接收第二用户设备发送的D2D通信数据包。
作为一种实施方式,所述第一调度窗包括:HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
作为一种实施方式,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
作为一种实施方式,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
作为一种实施方式,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一 个调度信息。
作为一种实施方式,所述调度信息在所述第一调度窗中在时域重复传输。
作为一种实施方式,当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
作为一种实施方式,当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
作为一种实施方式,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
作为一种实施方式,所述装置还包括反馈单元,配置为对所述第一调度窗中数据包对应的反馈信息进行联合反馈。
作为一种实施方式,所述反馈单元配置为,根据所述第一调度窗中传输最后一个数据包的子帧索引来确定所述反馈信息的子帧索引。
作为一种实施方式,所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包 的子帧数量确定。
作为一种实施方式,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序来确定。
作为一种实施方式,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
本发明实施例又提供了一种设备到设备通信的方法,所述方法应用于第一传输节点,所述方法包括:
第一传输节点确定第二用户设备传输数据的第一用户设备的信息;
所述第一传输节点将所述第一用户设备的信息发送给所述第二用户设备;
其中,所述第一用户设备的信息承载在第一传输节点发送给第二用户设备的调度信息中;或者,所述第一用户设备的信息根据调度信息所在资源确定。
作为一种实施方式,所述第一传输节点发送信息告知第一用户设备配置为接收第二用户设备发送的调度信息和/或所述第二用户设备的标识信息。
本发明实施例又提供了一种设备到设备通信的装置,应用于第一传输节点中,所述节点包括:
信息确定单元,配置为确定第二用户设备传输数据的第一用户设备的信息;
信息发送单元,配置为将所述第一用户设备的信息发送给所述第二用户设备;
其中,所述第一用户设备的信息承载在第一传输节点发送给第二用户设备的调度信息中;或者,所述第一用户设备的信息根据调度信息所在资 源确定。
作为一种实施方式,所述信息发送单元配置为,发送信息告知第一用户设备配置为接收第二用户设备发送的调度信息和/或所述第二用户设备的标识信息。
本发明实施例又提供了一种设备到设备通信的方法,所述方法应用于第二用户设备,所述方法包括:
第二用户设备确定第一调度窗中配置为D2D通信的资源位置;
所述第二用户设备在确定的资源中发送D2D通信数据包。
作为一种实施方式,所述第一调度窗包括:HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
作为一种实施方式,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
作为一种实施方式,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
作为一种实施方式,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
作为一种实施方式,所述调度信息在所述第一调度窗中在时域重复传输。
作为一种实施方式,当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
作为一种实施方式,当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
作为一种实施方式,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
作为一种实施方式,所述方法还包括:
所述第二用户设备接收所述第一用户设备的反馈信息,其中,所述反馈信息包括所述第一调度窗中数据包对应的所有反馈信息。
作为一种实施方式,所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引来确定。
作为一种实施方式,所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
作为一种实施方式,所述反馈信息的位置根据所述数据包在所述第一 调度窗中的位置从前向后的排序确定。
作为一种实施方式,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
本发明实施例又提供了一种设备到设备通信的装置,应用于第二用户设备中,所述装置包括:
第二资源位置确定单元,配置为确定第一调度窗中配置为D2D通信的资源位置;
数据包发送单元,配置为在确定的资源中发送D2D通信数据包。
作为一种实施方式,所述第一调度窗包括:HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
作为一种实施方式,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
作为一种实施方式,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
作为一种实施方式,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
作为一种实施方式,所述调度信息在所述第一调度窗中在时域重复传 输。
作为一种实施方式,当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
作为一种实施方式,当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
作为一种实施方式,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
作为一种实施方式,所述装置还包括:
反馈接收单元,配置为接收所述第一用户设备的反馈信息,其中,所述反馈信息包括所述第一调度窗中数据包对应的所有反馈信息。
作为一种实施方式,所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引来确定。
作为一种实施方式,所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
作为一种实施方式,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序确定。
作为一种实施方式,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
本发明实施例又提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于第一用户设备中的设备到设备通信的方法。
本发明实施例又提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于第一传输节点中的设备到设备通信的方法。
本发明实施例又提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于第二用户设备中的设备到设备通信的方法。
本发明实施例所提供的一种设备到设备通信的方法、装置及计算机存储介质,解决了D2D通信时基于调度窗的HARQ传输的问题,本发明实施例在不显著增加终端实现复杂度及信令开销的前提下,实现了D2D单播通信。
附图说明
图1为相关技术中蜂窝网络部署示意图;
图2为相关技术中无线资源结构的示意图;
图3为本发明实施例的一种设备到设备通信的方法流程图;
图4为本发明实施例的另一种设备到设备通信的方法流程图;
图5为本发明实施例的再一种设备到设备通信的方法流程图;
图6为本发明实施例的一种设备到设备通信的装置结构示意图;
图7为本发明实施例的另一种设备到设备通信的装置结构示意图;
图8为本发明实施例的再一种设备到设备通信的装置结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。
本发明实施例适用于蜂窝无线通信***或网络,常见的蜂窝无线通信***可以基于码分多址(CDMA,Code Division Multiplexing Access)技术、频分多址(FDMA,Frequency Division Multiplexing Access)技术、正交频分多址(OFDMA,Orthogonal-FDMA)技术、单载波频分多址(SC-FDMA,Single Carrier-FDMA)技术等。例如,第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)的长期演进(LTE,Long Term Evolution)/高级长期演进(LTE-A,LTE-Advanced)蜂窝通信***的下行链路(或称为前向链路)基于OFDMA技术,上行链路(或称为反向链路)基于SC-FDMA多址技术。未来还有可能在一个链路上支持混合的多址技术。
在OFDMA/SC-FDMA***中,配置为通信的无线资源(Radio Resource)是时-频两维的形式。例如,对于LTE/LTE-A***来说,上行和下行链路的通信资源在时间方向上都是以无线帧(radio frame)为单位划分,每个无线帧长度为10ms,包含10个长度为1ms的子帧(sub-frame),每个子帧包括长度为0.5ms的两个时隙(slot)。而通常子帧在无线帧内的编号为0-9,无线帧的编号为0-1023。如图1所示。
在频率方向,资源以子载波(subcarrier)为单位划分,具体在通信中,频域资源分配的最小单位是资源块(RB,Resource Block),对应物理资源的一个物理资源块(PRB,Physical RB)。一个PRB在频域包含12个子载波(sub-carrier),对应于时域的一个时隙(slot)。子帧内时域相邻的两个PRB称为PRB对(PRB pair)。每个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)/单载波正交频分(SC-FDM,Single  Carrier-Orthogonal Frequency Division)符号上对应一个子载波的资源称为资源元素(RE,Resource Element)。
图2所示为蜂窝无线通信***的网络部署示意图。图中所示可以是3GPP LTE/LTE-A***,或者其它的蜂窝无线通信***。在蜂窝无线通信***的接入网中,网络设备一般包括一定数量的基站(base station,或者称为节点B、即NodeB,或者称为演进的节点B、即evolved NodeB,或者称为增强的节点B、即enhanced NodeB),以及其它的网络实体(network entity)或网络单元(network element)。或者,概括来说,在3GPP中也可以将其统称为网络侧(E-UTRAN,Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线接入网络)。这里所说的基站也包括网络中的低功率节点(LPN,Low Power Node),例如,毫微微小区或家庭基站(pico、Relay、femto、Home eNB等)等,也可统称其为小小区(small cell)。为描述简单,图2只示出了3个基站。基站提供一定的无线信号覆盖范围,在该覆盖范围内的终端(terminal,或者称为用户设备或者device)可以与该基站进行无线通信。一个基站的无线信号覆盖区域基于某些准则可以被划分为一个或者多个小区(cell)或扇区(sector),例如:一个基站的无线信号覆盖区域被划分为三个小区。
本发明实施例提供一种设备到设备通信的方法,如图3所示,所述方法主要包括:
步骤301,第一用户设备确定第一调度窗中配置为D2D通信接收的资源的位置;
步骤302,第一用户设备在所述确定的资源中接收第二用户设备发送的D2D通信数据包。
本发明实施例的方法可以与现有已经支持的基于调度窗的多播机制很好兼容,降低终端实现成本。
本发明实施例中,所述第一调度窗包括:支持混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)功能的D2D通信对应的调度窗,简称为HARQ调度窗,或者,D2D通信对应的调度资源分配SA(scheduled resource allocation)窗,或者,多个数据包联合调度窗;其中,HARQ调度窗可以更好的实现调度灵活性,提升数据传输效率;SA窗支持传输多播业务,重用已有SA窗的方法可以实现很好的兼容性,减少实现的复杂度,同时基于SA窗实现的调度也可以减少信令开销。
其中,所述第一调度窗之间具有预设的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系。
所述调度关系可以通过以下信息的至少之一确定:第一传输节点可以支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
假设有最大M个调度窗,预设的调度窗之间的关系为:
数据包仅能在相同虚拟调度窗索引对应的调度窗内传输,如:假设时域上有四个连续的调度窗,则第一个调度窗的重传调度窗为第三个调度窗,第二个调度窗的重传调度窗为第四个调度窗;
或者,采用紧邻调度窗的方式,当前调度窗的重传调度窗为最近的下一个调度窗;
或者,根据无线帧号对一个调度窗配置周期内的调度窗进行编号,k为当前调度窗索引,则,该调度窗对应的虚拟调度窗为k mod M;
或者,
最大支持M个调度窗,采用X比特表示当前调度窗对应的调度窗,如:最大支持4个调度窗,使用2比特表示当前调度窗对应的虚拟调度窗索引,可以表示当前调度窗重传的是之前哪个调度窗的数据包。
本发明实施例中,所述第一调度窗中的数据包传输包括:所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同,或者,所述数据包映射在所述第一调度窗中配置为传输数据包的每个子帧上;
如:在所述调度窗中,每个子帧对应一个数据包,不同子帧对应的数据包不同,或者,一个数据包映射在所述调度窗中所有可用子帧上。
本发明实施例中,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
而且,所述调度信息在所述第一调度窗中可以在时域重复传输。
另外,当所述第一用户设备和/或所述第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或所述第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量可以根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
本发明实施例中,所述数据包对应的调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型;
所述相应是指反馈信息对应调度窗和重传调度窗之间的对应;如:重传调度窗和前一次相应调度窗的反馈信息对应,根据前一次相应调度窗的反馈信息当前调度窗确定本次调度的数据包类型;
如:所述第一调度窗中传输数据包的子帧数量为4,所述第一用户设备在4个子帧上接收数据后分别产生反馈信息为ACK、NACK、ACK、NACK,如果所述第二用户设备接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型,如果调度窗中仍然在所述子帧上调度数据包括,或者,所述调度窗中调度的子帧数量仍然为4个,则所述子帧对应数据包为:新数据包、重传数据包、新数据包、重传数据包;如果所述第二用户没接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为不根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型,此时,第一用户设备需要根据所述调度窗对应的调度信息确定各数据包类型,或者,默认调度窗中的数据包都为新数据包;
该方式可以降低指示新旧数据包的开销,常规技术手段是每个数据包对应1比特,表示新数据包或重传数据包,该方法随着调度数据包的增加信令开销也在增加,如果按照最大数据包定义该信令,当调度少量数据包时会导致信令空闲,造成资源浪费,如果采用动态的比特数量,则导致下行控制信令格式对应的比特数量动态改变,不利于接收端检测,通过上述方法可以降低该信令的开销,同时,减少接收端检测的复杂度;
如上述例子中的1比特,也可以大于1比特,如:2比特,除了上述两个状态外,再增加两个或一个状态,如:与上次相应调度窗的数据包状态相同,或者,全部为重传包;
数据包指示信息包括三个状态从按照反馈信息确定、按照上次相应调度窗的数据包状态确定、全部为新数据包、全部为重传数据包中任意选择三个状态,如:按照反馈信息确定、按照上次相应调度窗的数据包状态确定、全部为新数据包,或者,按照反馈信息确定、按照上次相应调度窗的 数据包状态确定、全部为重传数据包等;
数据包指示信息包括两个状态从按照反馈信息确定、按照上次相应调度窗的数据包状态确定、全部为新数据包、全部为重传数据包中任意选择两个状态,如:按照反馈信息确定、全部为新数据包,或者,按照反馈信息确定、全部为重传数据包,或者,按照反馈信息确定、按照上次相应调度窗的数据包状态确定等;
数据包指示信息包括四个状态,如:按照反馈信息确定、按照上次相应调度窗的数据包状态确定、全部为新数据包、全部为重传数据包;
该数据包指示方法,也可以配置为其他数据通讯,如:用户设备和基站之间数据通讯,或者,基站和基站之间通讯,或者,基站和relay之间通讯。
其中,所述调度窗中传输数据的子帧根据所述数据包指示信息确定,包括:当所述数据包指示信息指示根据所述第一用户设备反馈信息确认数据包信息时,所述调度窗对应的调度信息指示的子帧位置为所述新数据包传输的位置,重传数据包对应子帧位置与所述反馈信息对应的数据包在调度窗中的传输位置相同。
在一实施方式中,本发明实施例还可包括步骤303,第一用户设备对所述第一调度窗中数据包对应的反馈信息进行联合反馈。
所述第一用户设备接收到所述第二个用户设备在所述第一调度窗中传输的数据包后,将同一个所述第一调度窗中对应调度信息的数据包的反馈信息整体反馈。
所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引来确定;
如:最后一个数据包的子帧索引为y,则反馈的子帧索引为y+h,h为预定义值,TDD***根据当前上下行配比和所述调度窗周期配置信息确定。
本发明实施例中,所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,所述反馈信息的比特数量跟据所述调度窗配置的最大传输数据包的子帧数量确定。
本发明实施例中,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序来确定。
所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息来确定,或者,根据第一用户设备对应的第一传输节点(eNB)的配置信息确定。
本发明实施例又提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于第一用户设备中的设备到设备通信的方法。
下面再介绍本发明实施例的第一传输节点,本发明实施例的第一传输节点是覆盖所述第一用户设备和/或第二用户设备的节点。
应用于第一传输节点的设备到设备通信的方法,如图4所示,包括:
步骤401,第一传输节点确定第二用户设备传输数据的第一用户设备的信息。
步骤402,第一传输节点将所述第一用户设备的信息发送给所述第二用户设备。也就是说,第一传输节点发送信息告知第二用户设备传输数据的对象为第一用户设备。
其中,所述第一用户设备的信息承载在第一传输节点发送给第二用户设备的调度信息中;或者,所述第一用户设备的信息根据调度信息所在资源确定。如:第一传输节点预先配置不同第二用户设备对应不同的资源,不同第二用户设备对应不同的资源区域,第一用户设备在哪个区域检测到所述调度信息,则,第一用户设备获知数据传输对象为相应的第二用户设 备信息。
此外,所述第一用户设备获知所述第二用户设备信息后,利用该信息对SA和/或SA调度的数据包进行加扰;具体加扰方式包括:CRC加扰、比特级加扰等多种加扰方式。
第一传输节点可以发送信息告知第一用户设备配置为接收第二用户设备发送的调度信息和/或所述第二用户设备的标识信息。
所述第一用户设备将反馈信息发送给第一传输节点,第一传输节点在向第二用户设备传输调度信息时,所述调度信息中包括接收到的所述第一用户设备的反馈信息。
本发明实施例又提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于第一传输节点中的设备到设备通信的方法。
下面再介绍本发明实施例的第二用户设备,应用于第二用户设备的设备到设备通信的方法,如图5所示,包括:
步骤501,第二用户设备确定第一调度窗中配置为D2D通信的资源位置。
步骤502,第二用户设备在确定的资源中发送D2D通信数据包。
其中,第一调度窗包括:混合自动重传请求HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一来确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
所述调度信息在所述第一调度窗中在时域重复传输。
当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
所述方法还可包括步骤503,所述第二用户设备接收所述第一用户设备的反馈信息,其中,所述反馈信息包括所述第一调度窗中数据包对应的所有反馈信息。
所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引确定。
所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序确定。
所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息来确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
本发明实施例又提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于第二用户设备中的设备到设备通信的方法。
对应本发明实施例所述的设备到设备通信的方法,本发明实施例还提供了一种设备到设备通信的装置,应用于第一用户设备中,如图6所示,所述装置包括:
第一资源位置确定单元10,配置为确定第一调度窗中配置为D2D通信接收的资源的位置;
数据包接收单元20,配置为在确定的资源中接收第二用户设备发送的D2D通信数据包。
其中,所述第一调度窗包括:HARQ调度窗,或者,D2D通信中对应的SA窗,或者,多个数据包联合调度窗。
所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度中所有可用子帧上。
所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
所述调度信息可以在所述第一调度窗中在时域重复传输。
其中,当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
在一实施方式中,本发明实施例的装置还可包括反馈单元30,配置为对所述第一调度窗中数据包对应的反馈信息进行联合反馈。
所述反馈单元30进一步配置为,根据所述第一调度窗中传输最后一个数据包的子帧索引来确定所述反馈信息的子帧索引。
其中,所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数 量来确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量来确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量来确定。
所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序来确定。
所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息来确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息来确定。
在本实施例中,所述设备到设备通信的装置中的第一资源位置确定单元10和反馈单元30,在实际应用中可由所述装置中的中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现;所述装置中的数据包接收单元20,在实际应用中可由所述装置中的接收机或接收天线实现。
对应本发明实施例所述的设备到设备通信的方法,本发明实施例还提供了一种设备到设备通信的装置,应用于第一传输节点中,如图7所示,该装置包括:
信息确定单元40,配置为确定第二用户设备传输数据的第一用户设备的信息;
信息发送单元50,配置为将所述第一用户设备的信息发送给所述第二用户设备;
其中,所述第一用户设备的信息承载在第一传输节点发送给第二用户设备的调度信息中;或者,所述第一用户设备的信息根据调度信息所在资 源确定。
进一步地,所述信息发送单元50配置为,发送信息告知第一用户设备配置为接收第二用户设备发送的调度信息和/或所述第二用户设备的标识信息。
在本实施例中,所述设备到设备通信的装置中的信息确定单元40,在实际应用中可由所述装置中的CPU、DSP或FPGA实现;所述装置中的信息发送单元50,在实际应用中可由所述装置中的发射机或发送天线实现。
对应本发明实施例所述的设备到设备通信的方法,本发明实施例还提供了一种设备到设备通信的装置,应用于第二用户设备中,如图8所示,该装置包括:
第二资源位置确定单元60,配置为确定第一调度窗中配置为D2D通信的资源位置;
数据包发送单元70,配置为在确定的资源中发送D2D通信数据包。
其中,所述第一调度窗包括:HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
其中,所述调度关系通过以下信息的至少之一确定:
所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中 的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
所述调度信息在所述第一调度窗中在时域重复传输。
当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
所述装置还可包括:反馈接收单元80,配置为接收所述第一用户设备的反馈信息,其中,所述反馈信息包括所述第一调度窗中数据包对应的所有反馈信息。
所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引确定。
所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序确定。
所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
在本实施例中,所述设备到设备通信的装置中的第二资源位置确定单元60,在实际应用中可由所述装置中的CPU、DSP或FPGA实现;所述装置中的数据包发送单元70,在实际应用中可由所述装置中的发射机或发送天线实现;所述装置中的反馈接收单元80,在实际应用中可由所述装置中的接收机或接收天线实现。
下面再结合具体示例对上述D2D通信的方法和装置进一步详细说明。
示例一针对有覆盖场景下的基站侧描述。
基站确定第二用户设备传输数据的第一用户信息,并将该信息发送给所述第二用户设备,根据调度需求分配资源,或者,基站仅确定第二用户设备有数据传输的资源请求,不确定第二用户设备数据传输的对象,仅分配相应资源给第二用户设备,所述第二用户自主选择传输的第一用户设备,所述第二用户设备使用相应的第一用户设备信息对发送给第一用户设备的数据进行加扰;
当基站收到第一用户设备发送的反馈信息时,将该反馈信息连同调度信息一起传输给第二用户设备。
示例二针对有覆盖场景下的第一用户设备侧描述。
第一用户设备根据基站配置的资源和第二用户设备信息,进行SA检测;或者,第一用户设备在基站配置的或者预先配置的资源上使用第一用户设备ID进行SA检测,当检测到匹配的SA指示信息后,根据所述SA指示信息进行数据接收。
当第二用户设备数量大于1时,每个第二用户设备对应一个调度窗,或者,所有第二用户设备共享相同的资源(即共享一个调度窗),所述第一用户设备通过盲检测SA的方式进行数据接收。
所述第一调度窗包括:支持HARQ功能的D2D通信对应的调度窗,或者,D2D通信中对应SA窗。
HARQ调度窗为预先配置的专用于HARQ功能的调度窗,数据包在HARQ调度窗中不会重传,仅会在HARQ调度窗之间进行重传。
所述相邻调度窗之间可以存在间隔,也可以连续或者重叠。
进一步地,所述调度窗之间具有预定的调度关系,或者,通过信令指示所述调度窗之间的对应关系。
进一步地,所述调度窗关系可以通过以下信息的至少之一来确定:接收端可以支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置;
假设有最大M个调度窗,预设的调度窗之间的关系为:
数据包仅能在相同虚拟调度窗索引对应的调度窗内传输,如:假设时域上有6个连续的调度窗,则第一个调度窗的重传调度窗为第四个调度窗,第二个调度窗的重传调度窗为第五个调度窗,第三个调度窗的重传调度窗为第六个调度窗;或者,采用紧邻调度窗的方式,当前调度窗的重传调度窗为最近的下一个调度窗,此时,第一调度窗的最后一个数据包发送子帧和第二调度窗的SA发送子帧之间需要满足反馈发送和接收的时间限制;或者,根据无线帧号对一个调度窗配置周期内的调度窗进行编号,k为当前调度窗索引,则该调度窗对应虚拟调度窗为k mod M;或者,最大支持M个调度窗,采用X比特表示当前调度窗对应的调度窗,如:最大支持2个调度窗,使用1比特表示当前调度窗对应的虚拟调度窗索引,可以表示当前调度窗重传的是之前哪个调度窗的数据包。
进一步地,所述第一调度窗中的数据包传输包括:所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同,或者,所述数据包映射在所述SA窗中配置为传输数据包的每个子帧上;
如:在所述调度窗中,每个子帧对应一个数据包,不同子帧对应的数据包不同,假设,所述调度窗中有4个子帧传输数据包,4个子帧分别对应的数据包;或者,一个数据包映射在所述调度窗中所有可用子帧上,假设,所述调度窗中有2个子帧传输数据包,则,一个数据包可以在两个子帧上采用重复的方式传输,或,采用相同数据包的不同版本的方式传输。
进一步地,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述SA窗中每个数据包对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息;
如:一个调度窗中传输k个数据包,则,每个数据包对应一个调度信息;或者,k个数据包对应相同的调度信息,具有相同的频域带宽和MCS;或者,将SA调度窗中的数据包划分为2个数据包群,每个数据包群独立配置传输MCS,每个数据包群中数据包具有相同的MCS;不同数据包群可以位于相同频域,也可以位于不同频域。
所述第一用户设备根据预先约定的调度信息传输方式,检测所述调度信息,根据所述调度信息进行数据接收。
进一步地,当所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;
更进一步地,所述数据包对应的调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备最近的反馈信息确定数据包;
如:所述第一调度窗中传输数据包的子帧数量为2,所述第一用户设备在2个子帧上接收数据后分别产生反馈信息为ACK、NACK,如果所述第 二用户设备接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为根据所述第一用户设备最近的反馈信息确定的数据包,如果调度窗中仍然在所述子帧上调度数据包括,或者,所述调度窗中调度的子帧数量仍然为2个,则,所述子帧对应数据包为:新数据包、重传数据包;如果所述第二用户没接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为不根据最近所述第一用户设备反馈信息确定的数据包,此时,第一用户设备需要根据所述调度窗对应的调度信息确定各数据包类型,如:每个数据包独立配置是否重传数据包信息,或者,默认调度窗中的数据包都为新数据包;
如上述例子中的1比特,也可以大于1比特,如:2比特,除了上述两个状态外,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态,或者,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态中之一。
更进一步,所述调度窗中传输数据的子帧根据所述数据包指示信息确定,包括:当所述数据包指示信息指示根据所述第一用户设备反馈信息确认数据包信息时,所述调度窗对应的调度信息指示的子帧位置为所述新数据包传输的位置,重传数据包对应子帧位置与所述反馈信息对应的数据包在调度窗中的传输位置相同;
其中,重传频域可以相同,也可以不同。
示例三针对有覆盖场景下的第二用户设备侧描述。
所述第二用户设备根据基站配置的资源和第一用户设备信息,进行数据传输,所述第二用户设备根据第一用户设备的反馈信息和/或业务需求,基于第一调度窗进数据传输,第二用户设备在所述调度窗之间进行数据重传,
所述第一调度窗具体包括:支持HARQ功能的D2D通信对应的调度窗,或者,D2D通信中对应SA窗;
所述支持HARQ功能的D2D通信对应的调度窗,为预先配置的专配置为HARQ功能的调度窗,在该调度窗中数据包不会重传,仅会在调度窗之间进行重传;
进一步,所述相邻调度窗之间可以存在间隔,也可以连续;
进一步,所述调度窗之间具有预定的调度关系,或者,通过信令指示所述调度窗之间的对应关系;
所述调度窗关系可以通过以下信息的至少之一来确定:接收端可以支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
假设有最大M个调度窗,预设的调度窗之间的关系为:
数据包仅能在相同虚拟调度窗索引对应的调度窗内传输,如:假设时域上有6个连续的调度窗,则第一个调度窗的重传调度窗为第四个调度窗,第二个调度窗的重传调度窗为第五个调度窗,第三个调度窗的重传调度窗为第六个调度窗;或者,采用紧邻调度窗的方式,当前调度窗的重传调度窗为最近的下一个调度窗,此时,第一调度窗的最后一个数据包发送子帧和第二调度窗的SA发送子帧之间需要满足反馈发送和接收的时间限制;或者,根据无线帧号对一个调度窗配置周期内的调度窗进行编号,k为当前调度窗索引,则,该调度窗对应虚拟调度窗为k mod M;或者,最大支持M个调度窗,采用X比特表示当前调度窗对应的调度窗,如:最大支持2个调度窗,使用1比特表示当前调度窗对应的虚拟调度窗索引,可以表示当前调度窗重传的是之前哪个调度窗的数据包。
所述第一调度窗中的数据包传输包括:所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同,或者,所述数据包映射在所述SA 窗中配置为传输所述数据包的每个子帧上;
如:在所述调度窗中,每个子帧对应一个数据包,不同子帧对应的数据包不同,假设所述调度窗中有4个子帧传输数据包,4个子帧分别对应的数据包;或者,一个数据包映射在所述调度窗中所有可用子帧上,假设所述调度窗中有2个子帧传输数据包,则一个数据包可以在两个子帧上采用重复的方式传输,或采用相同数据包的不同版本的方式传输。
进一步地,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述SA窗中每个数据包对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息;
如:一个调度窗中传输k个数据包,则每个数据包对应一个调度信息;或者,k个数据包对应相同的调度信息,具有相同的频域带宽和MCS;或者,将SA调度窗中的数据包划分为2个数据包群,每个数据包群独立配置传输MCS,每个数据包群中数据包具有相同的MCS;不同数据包群可以位于相同频域,也可以位于不同频域。
更进一步地,所述调度信息在所述调度窗中可以在时域重复传输。
进一步地,当所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同。
更进一步地,所述数据包对应的调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备最近的反馈信息确定数据包;
如:所述第一调度窗中传输数据包的子帧数量为2,所述第二用户设备在2个子帧上接收数据后分别产生反馈信息为ACK、NACK,如果所述第二用户接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为根据最近所述第一用户设备反馈信息确定的数据包,如果调度窗中仍然在所述子帧上调度数据包;或者,所述调度 窗中调度的子帧数量仍然为2个,则所述子帧对应数据包为:新数据包、重传数据包;如果所述第二用户没接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为不根据最近所述第一用户设备反馈信息确定的数据包,此时,第一用户设备需要根据所述调度窗对应的调度信息确定各数据包类型,如:每个数据包独立配置是否重传数据包信息,或者,默认调度窗中的数据包都为新数据包;
如上述例子中的1比特,也可以大于1比特,如:2比特,除了上述两个状态外,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态,或者,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态中之一。
更进一步地,所述调度窗中传输数据的子帧根据所述数据包指示信息确定,包括:当所述数据包指示信息指示根据所述第一用户设备反馈信息确认数据包信息时,所述调度窗对应的调度信息指示的子帧位置为所述新数据包传输的位置,重传数据包对应子帧位置与所述反馈信息对应的数据包在调度窗中的传输位置相同;
其中,重传频域可以相同,也可以不同。
示例四针对无覆盖场景下的第一用户设备侧描述。
所述第一用户设备根据预先配置的资源和第二用户设备信息,进行SA检测;或者,所述第一用户设备在预先配置的资源上使用所述第一用户设备ID进行检测,当检测到匹配的SA信息后,根据SA指示进行数据接收。
当所述第二用户设备数量大于1时,每个第二用户设备对应一个专有调度窗资源,或者,所有第二用户设备共享相同的资源,所述第一用户设备通过盲检测SA的方式进行数据接收。
其中,所述第一调度窗包括:支持HARQ功能的D2D通信对应的调度窗,或者,D2D通信中对应的SA窗,或者,多个数据包联合调度窗。
所述支持HARQ功能的D2D通信对应的调度窗,为预先配置的专用于HARQ功能的调度窗,在该调度窗中数据包不会重传,仅会在调度窗之间进行重传。
进一步地,所述相邻调度窗之间可以存在间隔,也可以连续或者重叠。
进一步地,所述调度窗之间具有预定的调度关系,或者,通过信令指示所述调度窗之间的对应关系。
进一步地,所述调度窗关系可以通过以下信息的至少之一来确定:接收端可以支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置;
假设有最大M个调度窗,预设的调度窗之间的关系为:
数据包仅能在相同虚拟调度窗索引对应的调度窗内传输,如:假设时域上有6个连续的调度窗,则第一个调度窗的重传调度窗为第四个调度窗,第二个调度窗的重传调度窗为第五个调度窗,第三个调度窗的重传调度窗为第六个调度窗;或者,采用紧邻调度窗的方式,当前调度窗的重传调度窗为最近的下一个调度窗,此时,第一调度窗的最后一个数据包发送子帧和第二调度窗的SA发送子帧之间需要满足反馈发送和接收的时间限制;或者,根据无线帧号对一个调度窗配置周期内的调度窗进行编号,k为当前调度窗索引,则该调度窗对应虚拟调度窗为k mod M;或者,最大支持M个调度窗,采用X比特表示当前调度窗对应的调度窗,如:最大支持2个调度窗,使用1比特表示当前调度窗对应的虚拟调度窗索引,可以表示当前调度窗重传的是之前哪个调度窗的数据包。
进一步地,所述第一调度窗中数据包的传输包括:所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同,或者,所述数据包映射在所述SA窗中配置为传输数据包的每个子帧上;
如:在所述调度窗中,每个子帧对应一个数据包,不同子帧对应的数 据包不同,假设所述调度窗中有4个子帧传输数据包,4个子帧分别对应的数据包;或者,一个数据包映射在所述调度窗中所有可用子帧上,假设所述调度窗中有2个子帧传输数据包,则一个数据包可以在两个子帧上采用重复的方式传输,或,采用相同数据包的不同版本的方式传输。
进一步地,所述第一调度窗中的所有数据包对应同一个调度信息;或者,所述SA窗中每个数据包对应一个调度信息;或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息;
如:一个调度窗中传输k个数据包,则每个数据包对应一个调度信息;或者,k个数据包对应相同的调度信息,具有相同的频域带宽和MCS;或者,将SA调度窗中的数据包划分为2个数据包群,每个数据包群独立配置传输MCS,每个数据包群中数据包具有相同的MCS;不同数据包群可以位于相同频域,也可以位于不同频域;
另外,一种实施方式为:所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;所述频域位置根据预先约定的方式确定,所述预先约定方式包括:根据所述第一用户设备ID、所述第二用户设备ID、所述调度信息指示的偏移参数中至少之一随机产生各数据包对应的频域位置,如:根据调度信息确定第一个数据包的频域位置根据调度信息确定,其他位置根据约定的方式产生各自对应偏移量,根据第一数据包的初始位置和相应偏移量确定自身频域位置;
所述第一用户设备根据预先约定的调度信息传输方式,检测所述调度信息,根据所述调度信息进行数据接收。
进一步地,当所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的时域位置相同;或者,所述重传数据包和首传数据在第一调度窗中的时域位置采用预定义的偏移量,所述偏移量至少根据所述第一用户标识、所述第二用户标 识、所述调度信息指示的偏移参数中至少之一确定。
更进一步地,所述数据包对应的调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备最近的反馈信息确定数据包;
如:所述第一调度窗中传输数据包的子帧数量为2,所述第二用户设备在2个子帧上接收数据后分别产生反馈信息为ACK、NACK,如果所述第二用户接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为根据最近所述第一用户设备反馈信息确定的数据包,如果调度窗中仍然在所述子帧上调度数据包括;或者,所述调度窗中调度的子帧数量仍然为2个,则所述子帧对应数据包为:新数据包、重传数据包;如果所述第二用户没接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为不根据最近所述第一用户设备反馈信息确定的数据包,此时,第一用户设备需要根据所述调度窗对应的调度信息确定各数据包类型,如:每个数据包独立配置是否重传数据包信息,或者,默认调度窗中的数据包都为新数据包;
如上述例子中的1比特,也可以大于1比特,如:2比特,除了上述两个状态外,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态,或者,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态中之一。
更进一步地,所述调度窗中传输数据的子帧根据所述数据包指示信息确定,包括:当所述数据包指示信息指示根据所述第一用户设备反馈信息确认数据包信息时,所述调度窗对应的调度信息指示的子帧位置为所述新数据包传输的位置,重传数据包对应子帧位置与所述反馈信息对应的数据包在调度窗中传输位置相同;
其中,重传频域可以相同,也可以不同。
示例五针对无覆盖场景下的第二用户设备侧描述。
所述第二用户设备根据第一用户设备的反馈信息和或业务需求,基于第一调度窗进数据传输,第二用户设备在所述调度窗之间进行数据重传;
当所述第一用户设备数量大于1时,每个第二用户设备对应一个专有调度窗资源,或者,所有第一用户设备共享相同的资源;
对所述第一用户设备的数据采用对应ID进行加扰。
其中,所述第一调度窗具体包括:支持HARQ功能的D2D通信对应的调度窗,或者,D2D通信中对应SA窗;
所述支持HARQ功能的D2D通信对应的调度窗,为预先配置的专用于HARQ功能的调度窗,在该调度窗中数据包不会重传,仅会在调度窗之间进行重传。
进一步地,所述相邻调度窗之间可以存在间隔,也可以连续或者重叠。
进一步地,所述调度窗之间具有预定的调度关系,或者,通过信令指示所述调度窗之间的对应关系;
进一步地,所述调度窗关系可以通过以下信息的至少之一确定:接收端可以支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
假设有最大M个调度窗,预设的调度窗之间的关系为:
数据包仅能在相同虚拟调度窗索引对应的调度窗内传输,如:假设时域上有6个连续的调度窗,则第一个调度窗的重传调度窗为第四个调度窗,第二个调度窗的重传调度窗为第五个调度窗,第三个调度窗的重传调度窗为第六个调度窗;或者,采用紧邻调度窗的方式,当前调度窗的重传调度窗为最近的下一个调度窗,此时,第一调度窗的最后一个数据包发送子帧和第二调度窗的SA发送子帧之间需要满足反馈发送和接收的时间限制;或者,根据无线帧号对一个调度窗配置周期内的调度窗进行编号,k为当前调 度窗索引,则该调度窗对应虚拟调度窗为k mod M;或者,最大支持M个调度窗,采用X比特表示当前调度窗对应的调度窗,如:最大支持2个调度窗,使用1比特表示当前调度窗对应的虚拟调度窗索引,可以表示当前调度窗重传的是之前哪个调度窗的数据包。
进一步地,所述第一调度窗中所述数据包的传输包括:所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同,或者,所述数据包映射在所述SA窗中配置为传输数据包的每个子帧上;
如:在所述调度窗中,每个子帧对应一个数据包,不同子帧对应的数据包不同,假设所述调度窗中有4个子帧传输数据包,4个子帧分别对应的数据包;或者,一个数据包映射在所述调度窗中所有可用子帧上,假设所述调度窗中有2个子帧传输数据包,则一个数据包可以在两个子帧上采用重复的方式传输,或,采用相同数据包的不同版本的方式传输。
进一步地,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述SA窗中每个数据包对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息;
如:一个调度窗中传输k个数据包,则每个数据包对应一个调度信息;或者,k个数据包对应相同的调度信息,具有相同的频域带宽和MCS;或者,将SA调度窗中的数据包划分为2个数据包群,每个数据包群独立配置传输MCS,每个数据包群中数据包具有相同的MCS;不同数据包群可以位于相同频域,也可以位于不同频域;
另外,一种实施方式为:所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;所述频域位置根据预先约定的方式确定,所述预先约定方式包括:根据所述第一用户设备ID、所述第二用户设备ID、所述调度信息指示的偏移参数中至少之一随机产生各数据包对应的频域位置,如:根据调度信息确定第一个数据包的频域位置根据调度信息确定,其他位置 根据约定的方式产生各自对应偏移量,根据第一数据包的初始位置和相应偏移量确定自身频域位置;
所述第二用户设备根据预先约定的调度信息传输方式,传输所述调度信息和相应的数据包。
进一步地,当所述第一调度窗中传输所述数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的时域位置相同;或者,所述重传数据包和首传数据在第一调度窗中的时域位置采用预定义的偏移量,所述偏移量至少根据所述第一用户标识、所述第二用户标识、所述调度信息指示的偏移参数中至少之一确定。
更进一步地,所述数据包对应的调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备最近的反馈信息确定数据包;
如:所述第一调度窗中传输数据包的子帧数量为2,所述第二用户设备在2个子帧上接收数据后分别产生反馈信息为ACK、NACK,如果所述第二用户接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为根据最近所述第一用户设备反馈信息确定的数据包,如果调度窗中仍然在所述子帧上调度数据包括;或者,所述调度窗中调度的子帧数量仍然为2个,则所述子帧对应数据包为:新数据包、重传数据包;如果所述第二用户没接收到第一用户设备的反馈信息,则第一用户设备设置相应的重传调度窗对应的数据包指示信息为不根据最近所述第一用户设备反馈信息确定的数据包,此时,第一用户设备需要根据所述调度窗对应的调度信息确定各数据包类型,如:每个数据包独立配置是否重传数据包信息,或者,默认调度窗中的数据包都为新数据包;
如上述例子中的1比特,也可以大于1比特,如:2比特,除了上述两个状态外,再增加与上次相应调度窗的数据包状态相同和全部为重传包两 个状态,或者,再增加与上次相应调度窗的数据包状态相同和全部为重传包两个状态中之一。
更进一步地,所述调度窗中传输数据的子帧根据所述数据包指示信息确定,包括:当所述数据包指示信息指示根据所述第一用户设备反馈信息确认数据包信息时,所述调度窗对应的调度信息指示的子帧位置为所述新数据包传输的位置,重传数据包对应子帧位置与所述反馈信息对应的数据包在调度窗中传输位置相同;
其中,重传频域可以相同,也可以不同。
需要说明的是,上述提到的设备到设备通讯不限于终端之间通信,也可以应用于基站和基站之间通信、基站和终端之间通信、基站和中继之间通信、中继和终端之间通信等多种通信场景,所述用户设备可以是基站、终端、中继等传输节点。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例解决了D2D通信时基于调度窗的HARQ传输的问题,本发明实施例在不显著增加终端实现复杂度及信令开销的前提下,实现了D2D单播通信。

Claims (63)

  1. 一种设备到设备通信的方法,所述方法应用于第一用户设备,所述方法包括:
    第一用户设备确定第一调度窗中配置为设备到设备D2D通信接收的资源的位置;
    所述第一用户设备在确定的资源中接收第二用户设备发送的D2D通信数据包。
  2. 根据权利要求1所述设备到设备通信的方法,其中,所述第一调度窗包括:混合自动重传请求HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
  3. 根据权利要求1或2所述设备到设备通信的方法,其中,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
    其中,所述调度关系通过以下信息的至少之一确定:
    所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
  4. 根据权利要求1或2所述设备到设备通信的方法,其中,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
  5. 根据权利要求1或2所述设备到设备通信的方法,其中,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
  6. 根据权利要求5所述设备到设备通信的方法,其中,所述调度信息在所述第一调度窗中在时域重复传输。
  7. 根据权利要求5所述设备到设备通信的方法,其中,
    当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
    当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
  8. 根据权利要求4所述设备到设备通信的方法,其中,
    当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
  9. 根据权利要求5所述设备到设备通信的方法,其中,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
  10. 根据权利要求1所述设备到设备通信的方法,其中,所述方法还包括:
    所述第一用户设备对所述第一调度窗中数据包对应的反馈信息进行联合反馈。
  11. 根据权利要求10所述设备到设备通信的方法,其中,所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引确定。
  12. 根据权利要求10所述设备到设备通信的方法,其中,
    所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
    所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确 定,或者,
    所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
  13. 根据权利要求10所述设备到设备通信的方法,其中,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序确定。
  14. 根据权利要求10所述设备到设备通信的方法,其中,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息来确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息来确定。
  15. 一种设备到设备通信的装置,应用于第一用户设备中,所述装置包括:
    第一资源位置确定单元,配置为确定第一调度窗中配置为设备到设备D2D通信接收的资源的位置;
    数据包接收单元,配置为在确定的资源中接收第二用户设备发送的D2D通信数据包。
  16. 根据权利要求15所述设备到设备通信的装置,其中,所述第一调度窗包括:混合自动重传请求HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
  17. 根据权利要求15或16所述设备到设备通信的装置,其中,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
    其中,所述调度关系通过以下信息的至少之一确定:
    所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
  18. 根据权利要求15或16所述设备到设备通信的装置,其中,所述 第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
  19. 根据权利要求15或16所述设备到设备通信的装置,其中,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
  20. 根据权利要求19所述设备到设备通信的装置,其中,所述调度信息在所述第一调度窗中在时域重复传输。
  21. 根据权利要求19所述设备到设备通信的装置,其中,
    当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
    当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
  22. 根据权利要求18所述设备到设备通信的装置,其中,当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
  23. 根据权利要求19所述设备到设备通信的装置,其中,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
  24. 根据权利要求15所述设备到设备通信的装置,其中,所述装置还包括反馈单元,配置为对所述第一调度窗中数据包对应的反馈信息进行联合反馈。
  25. 根据权利要求24所述设备到设备通信的装置,其中,所述反馈单元配置为,根据所述第一调度窗中传输最后一个数据包的子帧索引来确定所述反馈信息的子帧索引。
  26. 根据权利要求24所述设备到设备通信的装置,其中,
    所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
    所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
    所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
  27. 根据权利要求24所述设备到设备通信的装置,其中,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序来确定。
  28. 根据权利要求24所述设备到设备通信的装置,其中,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
  29. 一种设备到设备通信的方法,所述方法应用于第一传输节点,所述方法包括:
    第一传输节点确定第二用户设备传输数据的第一用户设备的信息;
    所述第一传输节点将所述第一用户设备的信息发送给所述第二用户设备;
    其中,所述第一用户设备的信息承载在第一传输节点发送给第二用户设备的调度信息中;或者,所述第一用户设备的信息根据调度信息所在资源确定。
  30. 根据权利要求29所述设备到设备通信的方法,其中,所述第一传 输节点发送信息告知第一用户设备配置为接收第二用户设备发送的调度信息和/或所述第二用户设备的标识信息。
  31. 一种设备到设备通信的装置,应用于第一传输节点中,所述节点包括:
    信息确定单元,配置为确定第二用户设备传输数据的第一用户设备的信息;
    信息发送单元,配置为将所述第一用户设备的信息发送给所述第二用户设备;
    其中,所述第一用户设备的信息承载在第一传输节点发送给第二用户设备的调度信息中;或者,所述第一用户设备的信息根据调度信息所在资源确定。
  32. 根据权利要求31所述设备到设备通信的装置,其中,所述信息发送单元配置为,发送信息告知第一用户设备配置为接收第二用户设备发送的调度信息和/或所述第二用户设备的标识信息。
  33. 一种设备到设备通信的方法,所述方法应用于第二用户设备,所述方法包括:
    第二用户设备确定第一调度窗中配置为设备到设备D2D通信的资源位置;
    所述第二用户设备在确定的资源中发送D2D通信数据包。
  34. 根据权利要求33所述设备到设备通信的方法,其中,所述第一调度窗包括:混合自动重传请求HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
  35. 根据权利要求33或34所述设备到设备通信的方法,其中,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
    其中,所述调度关系通过以下信息的至少之一确定:
    所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
  36. 根据权利要求33或34所述设备到设备通信的方法,其中,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
  37. 根据权利要求33或34所述设备到设备通信的方法,其中,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
  38. 根据权利要求37所述设备到设备通信的方法,其中,所述调度信息在所述第一调度窗中在时域重复传输。
  39. 根据权利要求37所述设备到设备通信的方法,其中,
    当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
    当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
  40. 根据权利要求36所述设备到设备通信的方法,其中,
    当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
  41. 根据权利要求37所述设备到设备通信的方法,其中,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述 第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
  42. 根据权利要求33所述设备到设备通信的方法,其中,所述方法还包括:
    所述第二用户设备接收所述第一用户设备的反馈信息,其中,所述反馈信息包括所述第一调度窗中数据包对应的所有反馈信息。
  43. 根据权利要求42所述设备到设备通信的方法,其中,所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引来确定。
  44. 根据权利要求42所述设备到设备通信的方法,其中,
    所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
    所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
    所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
  45. 根据权利要求42所述设备到设备通信的方法,其中,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序确定。
  46. 根据权利要求42所述设备到设备通信的方法,其中,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
  47. 一种设备到设备通信的装置,应用于第二用户设备中,所述装置包括:
    第二资源位置确定单元,配置为确定第一调度窗中配置为设备到设备D2D通信的资源位置;
    数据包发送单元,配置为在确定的资源中发送D2D通信数据包。
  48. 根据权利要求47所述设备到设备通信的装置,其中,所述第一调度窗包括:混合自动重传请求HARQ调度窗,或者,D2D通信中对应的调度资源分配SA窗,或者,多个数据包联合调度窗。
  49. 根据权利要求47或48所述设备到设备通信的装置,其中,所述第一调度窗中预设有调度窗之间的调度关系,或者,根据覆盖所述第一用户设备的第一传输节点发送的信令指示所述第一调度窗之间的调度关系;
    其中,所述调度关系通过以下信息的至少之一确定:
    所述第一传输节点支持的最大调度窗数量、数据包调度定时、数据包反馈定时、数据包重传定时、调度窗周期、调度窗的时域位置。
  50. 根据权利要求47或48所述设备到设备通信的装置,其中,所述第一调度窗中的每个子帧对应的数据包互不相同,或者,所述第一调度窗中的一个数据包映射在所述第一调度窗中所有可用子帧上。
  51. 根据权利要求47或48所述设备到设备通信的装置,其中,所述第一调度窗中的所有数据包对应同一个调度信息,或者,所述第一调度窗中每个数据包分别对应一个调度信息,或者,所述第一调度窗中的所有数据包分为多个数据包群,每个数据包群对应一个调度信息。
  52. 根据权利要求51所述设备到设备通信的装置,其中,所述调度信息在所述第一调度窗中在时域重复传输。
  53. 根据权利要求51所述设备到设备通信的装置,其中,
    当所述第一用户设备和/或第二用户设备处于无覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置不同;
    当所述第一用户设备和/或第二用户设备处于有覆盖场景时,所述第一调度窗中一个调度信息对应的多个数据包频域位置相同。
  54. 根据权利要求50所述设备到设备通信的装置,其中,
    当所述第一调度窗中传输数据包的每个子帧对应的数据包互不相同时,重传数据包和首传数据包在第一调度窗中的位置相同;或者,在无覆盖场景,所述重传数据包和首传数据在第一调度窗中的位置采用预定义的偏移量,所述偏移量根据第一用户标识、第二用户标识、调度信息指示的偏移中的至少之一确定。
  55. 根据权利要求51所述设备到设备通信的装置,其中,所述调度信息中包括数据包指示信息,所述数据包指示信息配置为指示是否根据所述第一用户设备相应的反馈信息确定所述调度信息指示的数据包类型。
  56. 根据权利要求47所述设备到设备通信的装置,其中,所述装置还包括:
    反馈接收单元,配置为接收所述第一用户设备的反馈信息,其中,所述反馈信息包括所述第一调度窗中数据包对应的所有反馈信息。
  57. 根据权利要求56所述设备到设备通信的装置,其中,所述反馈信息的子帧索引根据所述第一调度窗中传输最后一个数据包的子帧索引来确定。
  58. 根据权利要求56所述设备到设备通信的装置,其中,
    所述反馈信息的比特数量跟据所述调度信息调度的最大子帧数量确定,或者,
    所述反馈信息的比特数量跟据所述调度信息调度的最大数据包数量确定,或者,
    所述反馈信息的比特数量跟据所述第一调度窗配置的最大传输数据包的子帧数量确定。
  59. 根据权利要求56所述设备到设备通信的装置,其中,所述反馈信息的位置根据所述数据包在所述第一调度窗中的位置从前向后的排序确定。
  60. 根据权利要求56所述设备到设备通信的装置,其中,所述反馈信息对应的反馈信道资源根据所述第一调度窗对应的调度信息确定,或者,根据所述第一用户设备对应的第一传输节点的配置信息确定。
  61. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至14任一项所述的设备到设备通信的方法。
  62. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求29或30所述的设备到设备通信的方法。
  63. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求33或46所述的设备到设备通信的方法。
PCT/CN2015/100323 2015-03-17 2015-12-31 一种设备到设备通信的方法、装置及计算机存储介质 WO2016145927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15885295.4A EP3258723B1 (en) 2015-03-17 2015-12-31 Device-to-device communication method for data packet retransmission
US15/558,200 US20180077716A1 (en) 2015-03-17 2015-12-31 Device-to-Device Communication Method, Device and Computer Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510117820.3 2015-03-17
CN201510117820.3A CN106034013B (zh) 2015-03-17 2015-03-17 一种用于设备到设备通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2016145927A1 true WO2016145927A1 (zh) 2016-09-22

Family

ID=56918233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100323 WO2016145927A1 (zh) 2015-03-17 2015-12-31 一种设备到设备通信的方法、装置及计算机存储介质

Country Status (4)

Country Link
US (1) US20180077716A1 (zh)
EP (1) EP3258723B1 (zh)
CN (1) CN106034013B (zh)
WO (1) WO2016145927A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3790261A1 (en) * 2017-02-10 2021-03-10 Huawei Technologies Co., Ltd. Data transmission method, related device, and system
CN114422090A (zh) 2017-11-10 2022-04-29 华为技术有限公司 一种应答信息的传输方法、通信设备和网络设备
CN111480308B (zh) * 2018-02-05 2021-12-31 Oppo广东移动通信有限公司 一种数据传输的方法、设备及计算机存储介质
WO2019156474A1 (ko) * 2018-02-11 2019-08-15 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 통신을 위한 피드백 신호를 설정하는 방법 및 장치
WO2020029279A1 (zh) * 2018-08-10 2020-02-13 北京小米移动软件有限公司 车联网设备之间的反馈信息传输方法、装置及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547871A (zh) * 2012-02-07 2012-07-04 华为技术有限公司 一种d2d通信中的资源协商方法及设备
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信***
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信***中自主设备发现方法
CN103686676A (zh) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 设备到设备通信***的通信方法、装置及***
WO2015021185A1 (en) * 2013-08-07 2015-02-12 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2742627B1 (en) * 2011-08-10 2021-03-03 Interdigital Patent Holdings, Inc. Uplink feedback for multi-site scheduling
US9209945B2 (en) * 2012-02-27 2015-12-08 Futurewei Technologies, Inc. System and method for hybrid automatic repeat request timing for device-to-device communication overlaid on a cellular network
KR101833187B1 (ko) * 2013-02-22 2018-02-27 인텔 아이피 코포레이션 액세스 네트워크 선택 및 트래픽 라우팅을 위한 시스템 및 방법
GB2522682B (en) * 2014-01-31 2016-07-13 Nec Corp Channel configuration in device-to-device communications
WO2015141728A1 (ja) * 2014-03-20 2015-09-24 京セラ株式会社 通信制御方法及びユーザ端末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信***
CN102547871A (zh) * 2012-02-07 2012-07-04 华为技术有限公司 一种d2d通信中的资源协商方法及设备
CN103686676A (zh) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 设备到设备通信***的通信方法、装置及***
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信***中自主设备发现方法
WO2015021185A1 (en) * 2013-08-07 2015-02-12 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication

Also Published As

Publication number Publication date
EP3258723A4 (en) 2018-02-28
CN106034013A (zh) 2016-10-19
US20180077716A1 (en) 2018-03-15
EP3258723A1 (en) 2017-12-20
CN106034013B (zh) 2019-07-12
EP3258723B1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US11804939B2 (en) System and method for sidelink feedback
CN110140408B (zh) 用于在无线通信***中执行副链路发送的方法及其装置
US10833829B2 (en) Method of transmitting ACK/NACK message in wireless communication system and terminal using same method
CN110583081B (zh) 用于在无线通信***中发送上行链路控制信道的方法和设备
CN105451211B (zh) 用于设备到设备通信的方法及装置
CN101785218B (zh) 在无线通信***中分配无线资源的方法
US9629125B2 (en) Network node and method for allocating uplink radio resources
WO2016131344A1 (zh) 一种设备到设备发送、接收、调度方法和相应装置
US11791937B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
JP6031518B2 (ja) 通信装置および通信方法。
US11026251B2 (en) Base station apparatus, terminal apparatus, and communication method therefor
JP6031517B2 (ja) 通信装置および通信方法。
WO2015115454A1 (ja) 端末装置、基地局装置、および、通信方法
WO2015115465A1 (ja) 端末装置、基地局装置、および、通信方法
WO2015043341A1 (zh) 一种设备到设备的通信方法、设备和***
WO2014176972A1 (zh) D2d通信中的数据发送方法和设备
CN109792331A (zh) 用户设备、基站和方法
EP2250851A1 (en) Method and devices for providing enhanced signaling
JP2020537403A (ja) 無線アクセス・ネットワークのための確認応答シグナリング処理
WO2016145927A1 (zh) 一种设备到设备通信的方法、装置及计算机存储介质
EP4054104A1 (en) Method and device for repeatedly transmitting uplink control channel in wireless cellular communication system
WO2012019486A1 (zh) 一种中继链路的上行harq进程识别方法及装置
KR20190115703A (ko) 무선 통신 시스템에서 상향제어채널의 전송자원 결정방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15558200

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015885295

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE