WO2016145648A1 - Epoxy molding compound for high power soic semiconductor package application - Google Patents

Epoxy molding compound for high power soic semiconductor package application Download PDF

Info

Publication number
WO2016145648A1
WO2016145648A1 PCT/CN2015/074567 CN2015074567W WO2016145648A1 WO 2016145648 A1 WO2016145648 A1 WO 2016145648A1 CN 2015074567 W CN2015074567 W CN 2015074567W WO 2016145648 A1 WO2016145648 A1 WO 2016145648A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding compound
epoxy
epoxy molding
compound according
group
Prior art date
Application number
PCT/CN2015/074567
Other languages
French (fr)
Inventor
Dong DING
Song Jin
Bo Chen
Ying Qian
Lufang JIA
Wangxiang QIN
Original Assignee
Ablestik (Shanghai) Ltd.
Henkel Huawei Electronics Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablestik (Shanghai) Ltd., Henkel Huawei Electronics Co. Ltd. filed Critical Ablestik (Shanghai) Ltd.
Priority to CN201580079851.2A priority Critical patent/CN108140620B/en
Priority to PCT/CN2015/074567 priority patent/WO2016145648A1/en
Publication of WO2016145648A1 publication Critical patent/WO2016145648A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic

Definitions

  • the present invention relates to an epoxy molding compound, particularly used for high power SOIC (Small Outline Integrated Circuit) semiconductor package application, and to a preparation process and use of the epoxy molding compound.
  • SOIC Small Outline Integrated Circuit
  • Molded epoxy resin products are widely used as component parts in electrical and electronic devices, such as transistors and integrated circuit boards, because epoxy resin has well balanced properties including molding property, electrical property, moisture resistance, heat resistance, mechanical property and adhesion to component inserted therein, etc.
  • Molded epoxy resin products are produced from epoxy molding compounds.
  • a typical epoxy molding compound comprises an epoxy resin, a curing agent (hardener) , a curing accelerator (catalyst) , and optionally fillers and additives.
  • An epoxy molding compound can be molded and cured to a solid shaped article in a mold at elevated temperature and for a certain time. Afterwards, the demolded article is usually post-cured at elevated temperatures to complete the curing reaction and obtain a resin article with the ultimate desired properties.
  • US7291684B2 disclose epoxy resin compositions for semiconductor packaging. However, they are not suitable for high voltage applications.
  • the object of the present invention is to develop a new epoxy molding compound (EMC) to be used on high power SOIC semiconductor package (> 500 volts) with electrical leakage less than 30 ⁇ a at 180°C, meanwhile it can pass JEDEC (Joint Electron Device Engineering Council) standards for reliability, lead-free reflow requirements at 260°C.
  • EMC epoxy molding compound
  • the present invention provides an epoxy molding compound, comprising
  • the low stress modifier is one or more selected from the group consisting of a silicone resin containing an epoxy group, a silicone resin containing an amino group, a silicone resin containing an epoxy group and a polyether group, epoxidized polybutadiene rubber and silicone rubber with a core-shell structure
  • the ion trapping agent is one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium
  • the curing accelerator is one or more selected from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
  • the present invention provides a process for preparing the epoxy molding compound of the present invention, comprising steps of:
  • the present invention provides the use of the epoxy molding compound of the present invention for high power SOIC semiconductor package application.
  • the present invention is directed to a low stress and highly reliable epoxy resin compound, its preparation method as well its application on high Voltage (> 500 voltage) SOIC semiconductor packages. It is used for surface package of a high-voltage device, such as SOP8, SOP14, SOP16, SOP20, SOP28.
  • the package employing the epoxy resin compound of the present invention has less than 30 ⁇ a leakage under 180°C and satisfy other reliability requirements under JEDEC MSL3.
  • the inventors carried out intensive research to optimize the type and content of the epoxy resin, the curing accelerator, the low stress modifier, the flame retardant, the ion trapping agent, and the like.
  • the low stress modifier is one or more selected from the group consisting of a silicone resin containing an epoxy group, a silicone resin containing an amino group, a silicone resin containing an epoxy group and a polyether group, epoxidized polybutadiene rubber and silicone rubber with a core-shell structure
  • the ion trapping agent is one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium
  • the curing accelerator is one or more selected from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
  • the epoxy resin used in the present invention contains two or more epoxy groups.
  • the epoxy resin is selected from the group consisting of o-cresol type epoxy resin, dicyclopentadiene type epoxy resin, polyaromatic type epoxy resin, biphenylene aralkyl type epoxy resin and biphenyl type epoxy resin. These epoxy resins may be used alone or as a mixture of two or more.
  • the epoxy resin is preferably one or more resins selected from dicyclopentadiene type epoxy resin, biphenylene aralkyl type epoxy resin and biphenyl type epoxy resin. From the same viewpoint, the content of the epoxy resin is preferably 2wt%to 10wt%with respect to the total weight of the epoxy molding compound.
  • the phenolic resin used in the present invention contains two or more hydroxyl groups.
  • the phenolic resin is one or more resins selected from the group consisting of phenol novolac resin, cresol novolac resin, biphenylene aralkyl type resin, polyaromatic type phenol resin and trisphenolmethane type phenol resin.
  • the phenolic resin is preferably one or more resins selected from biphenylene aralkyl type resin and trisphenolmethane type phenol resin. From the same viewpoint, the content of phenolic resin is preferably 2wt%to 10wt%with respect to the total weight of the epoxy molding compound.
  • the molar ratio of number of hydroxyl groups in the phenolic resin and the number of epoxy groups in the epoxy resin is 0.5 to 1.5.
  • the low stress modifier used in the present invention can be one or more from the group consisting of epoxy group silicone resin, amino group silicone resin, epoxy and polyether group silicon resin, oxidation polybutadiene rubber or core-shell structure of silicon oxide rubber.
  • the low stress modifier is preferably one or more from the group consisting of epoxy group silicon resin, oxide polybutadiene rubber and silicon oxide rubber of a core-shell structure. From the above same point, the content of the low stress modifier is preferably 0.2wt%to 2wt%with respect to the total weight of the epoxy molding compound
  • the ion trapping agent used in the present invention can be one or more from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium.
  • the ion trapping agent can be one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum and bismuth. From the same viewpoint, the content of the trapping agent is preferably 0.2wt%to 2wt%with respect to the total weight of the epoxy molding compound.
  • curing accelerator has the same meaning as “catalyst” , which catalyzes or accelerates the curing reaction between the epoxy resin and the hardener.
  • the curing accelerator used in the present invention can be one or more from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
  • the curing accelerator is preferably one or more from the group consisting of triphenyl phosphine, triphenylphosphine and quinone compound, 2, 4-diamino-6- [2'-methyl imidazole- (1) ] ethyl triazine or dimethyl benzylamine.
  • the content of the curing accelerator is preferably 0.1wt%-0.5wt%with respect to the total weight of the epoxy molding compound.
  • a wide range of fillers may be used in the epoxy molding compound of the present invention to improve certain properties of the molded product, such as abrasion resistance, moisture resistance, thermal conductivity or electrical properties.
  • the filler used in the present invention can be one or more from the group consisting of crystalline silica, fused silica, spherical silica, titanium dioxide, aluminum hydroxide, magnesium hydroxide, zirconium dioxide, calcium carbonate, calcium silicate, carbon fibers and glass fibers. Any of the above listed fillers can be used alone or in a combination of two or more.
  • the filler is preferably spherical silica.
  • the content of the filler is preferably 80wt%-90wt%with respect to the total weight of the epoxy molding compound.
  • additives may be used in the epoxy molding compound of the present invention.
  • additives include a filler, a flame retardant, a release agent, a coupling agent, a pigment, etc.
  • the flame retardant used in the present invention can be one or more from the group consisting of brominated epoxy flame retardant, antimony oxide, organic phosphorus compounds, melamine type flame retardants, aluminum hydroxide, magnesium hydroxide, zinc borate, titanium oxide.
  • the flame retardant is preferably one or more selected from of the group consisting of an organic phosphorus compounds, melamine, aluminum hydroxide, magnesium hydroxide, zinc borate, titanium oxide.
  • the flame retardant can be one or more from the group consisting of an organic phosphorus compounds, magnesium hydroxide, zinc borate. From the same viewpoint, the content of flame retardant is 0.2wt%to 2wt%with respect to the total weight of the epoxy molding compound.
  • the release agent used in the present invention is one or more selected from natural or synthetic waxes.
  • the coupling agent used in the present invention is one or more selected from the group consisting of epoxysilanes, aminosilanes, methacryloyl silanes, and mercapto silanes.
  • the pigment is carbon black.
  • an epoxy molding compound comprises:
  • weight percentages are based on the total weight of the epoxy molding compound.
  • the other components of the epoxy molding compound may be as follows:
  • weight percentages are based on the total weight of the epoxy molding compound.
  • the epoxy molding compound is manufactured by a process comprising steps of:
  • the epoxy molding compound of the present invention may be used for encapsulating IC devices.
  • the epoxy molding compound used for an IC device could be cured by conventional molding methods, such as transfer molding method, compression molding and the like.
  • the epoxy molding compound was placed on a hot plate which was controlled at a specified temperature of 175 ⁇ 2°C.
  • the compound was stroked (with a spatula) in a back-and-forth motion until it becomes stiff.
  • a stopwatch was used in the test. The stopwatch was started immediately after the compound was placed on the hot plate and stopped when gelling was complete
  • the spiral flow of an epoxy molding compound is a measure of the combined characteristics of fusion under pressure, melt viscosity, and gelation rate under specific conditions.
  • the test uses a standard spiral flow mold in a transfer molding press under specified conditions of applied temperature and pressure with a controlled charge mass.
  • the spiral flow test was done according to the method EMI-1-66. The test conditions were set as follows:
  • Mold temperature 175 ⁇ 2°C or 150 ⁇ 2°C
  • Moisture absorption rate test method was carried out in accordance with the method of “PCT24” ; in which the sample piece size was set as ⁇ 50*3mm; and the test condition was 121°C/100RH%/2atm/24hrs; the moisture absorption rate can be calculated as:
  • the Tg of the molded product was tested.
  • the sample from the extruder was made to be a sheet by a molding machine at a molding temperature of 180°C for 150s. After molding, the sheet was put into an oven at a temperature of 180°C for 6 hours. The dimension of the sheet is 5cm*1 cm*0.4cm.
  • Tg of the sheet was measured using DMA (Dynamic thermo-mechanical analysis) , where the sample was placed in the DMA machine, the heating was carried out until 300°C at a rate of 3°C/min with a frequency of 5Hz. The value of Tg was the peak of tan ⁇ figure.
  • the ⁇ 1 (CTE1) and ⁇ 2 (CTE2) are tested by TMA.
  • the Thermomechanical Analyzer measures linear changes in the dimension of a sample as temperature rises in a controlled rate, and the dimension change-temperature curve is recorded.
  • the ⁇ 1 is calculated over a range of temperatures below the Tg and the ⁇ 2 is calculated over a range of temperatures above the Tg.
  • the ⁇ s, an average of the expansion coefficients are usually over a linear portion of the curve.
  • the CTE1&2 values were determined using a thermomechanical analyzer Q-400 from TA Instruments, and test conditions were as follows: heating the sample piece from room temperature to 280°C at a rate of 10°C/min, and the load was 0.1 N.
  • the storage module is determined by Dynamic Mechanical Analysis (DMA) to measure the changes in the viscoelastic properties of a material as a function of temperature. A sample is oscillated at a fixed amplitude at a specified heating rate.
  • DMA profile provides information on plasticizer effectiveness, molecular motion, stress relaxation, rigidity or stiffness, etc.
  • the sample from extruder was made to be a sheet by a molding machine at the molding temperature of 180°C for 150s, after molding, the sheet was put into an oven with a temperature of 180°C for 6 hours.
  • the dimension of the sheet is 5cm*1 cm*0.4cm.
  • the sample was placed in the DMA machine, where the sample was heated to 300°C at a heating rate of 3°C/min with a frequency of 5Hz.
  • the test method is designed by Henkel to determine the adhesion strength between epoxy molding compound and the lead frame surface with different plating including bars Cu, Ni, Ag and Ni/Pd/Au. Firstly, the material was molded with the tap pull LF at certain temperature (175 ⁇ 2°C) , then a reliability test was carried out for the package (as PMC, MSL test) , finally a pull force test was carried out to determine the EMC adhesion with different plating type LF.
  • the material was molded with QFP44 LF at certain temperature (175 ⁇ 2°C) . Subsequently, a delamination test was carried out for the QFP44 package, MSL3 and MSL2A tests were carried out according to JEDEC JESD22-A113D standard.
  • test piece solid polymer plate/film
  • Measurement temperature room temperature to 350°C (if equipped with liquid nitrogen, the temperature can drop further to -190°C)
  • the raw materials used for the epoxy molding compound of each example were weighed up. All the raw materials were added into a high speed mixture, and were mixed for 15 minutes at 300r/min under room temperature to get a premixed powder. The premixed powder was then put into the feeding bucket of an extruder, and was extruded at about 100°C with the rotation speed of the paddle being 120rpm. The obtained extruded material was crushed into powder.
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • Metal hydroxides flame retardant 1%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • Metal oxide flame retardant 1%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized silicone glycidyl resin type low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Epoxidized polybutadiene low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Silicone rubber low stress modifier 0.5%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • TPP Triphenyl phosphine curing accelerator
  • Multi aromatic epoxy resin (MAR) , 5.2%
  • Silicone rubber low stress modifier 0.5%
  • Multi aromatic epoxy resin (MAR) , 3.4%
  • Silicone rubber low stress modifier 0.5%
  • Triphenyl phosphine derivative 0.2%.
  • Examples 1 and 2 changed the catalyst type to improve high temperature leakage and delamination performance. From the above test result, it can be seen that high temperature ionic conductivity performance of Example 1 and Example 2 are better than the Reference example. The delamination performance of example 1 is better than the Reference example, but Example 2 is worse than the Reference example.
  • Examples 3, 4 and 5 changed the ion trapping system and content to improve high temperature leakage and delamination performance. From the above test result, it can be seen that high temperature ionic conductivity performance of Example 4 and Example 5 are better than the Reference example. The delamination performances of Example 3, 4, 5 are similar with the Reference example.
  • Examples 6, 7 and 8 changed the flame retardant system and content to improve high temperature leakage and delamination performance. From the test result, it can be seen that the delamination performance of Example 8 is better than the Reference example and Examples 6 and 7 are similar with the Reference example. From the high temperature ionic conductivity test results, it can be seen that example 7 and 8 are better than the Reference example and Example8 is obviously better than the Reference example.
  • Examples 9 , 10 and 11 changed the low stress modifier system and content to improve high temperature leakage and delamination performance. From the test result, it can be seen that the delamination of Examples 9, 10 and 11 are better than the Reference example. From the high temperature ionic conductivity test results, it can be seen that Examples 9, 10 and 11 are better than the Reference example and Example10 is obviously better than the Reference example.
  • Example 12 changes the catalyst type, the ion trapping system, the flame retardant system and optimizes the content to improve high temperature leakage and delamination performance. From the test results, it can be seen that the delamination performance of Example 12 is similar with the Reference example, but the high temperature ionic conductivity result is obviously better than the Reference example.
  • Example 13 changes the resin type, the catalyst type, the ion trapping system, the flame retardant systems, the low stress modifier type and optimizes the content to improve high temperature leakage and delamination performance. From the test results, it can be seen that the delamination performance of Example 13 after MSL2A is obviously better than Reference example. Meanwhile, the high temperature ionic conductivity is also obviously better than the Reference example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An epoxy molding compound and a preparation process and use of the epoxy molding compound are provided. The epoxy molding compound comprises an epoxy resin, a phenolic resin, a low stress modifier, an ion trapping agent, a curing accelerator and a filler. The epoxy molding compound can be used on high power SOIC semiconductor package with electrical leakage less than 30 μA at 180℃, meanwhile it can pass JEDEC standards for reliability and lead-free reflow requirements at 260℃.

Description

Epoxy Molding Compound for High Power SOIC Semiconductor Package Application Technical Field
The present invention relates to an epoxy molding compound, particularly used for high power SOIC (Small Outline Integrated Circuit) semiconductor package application, and to a preparation process and use of the epoxy molding compound. 
Background Art
Molded epoxy resin products are widely used as component parts in electrical and electronic devices, such as transistors and integrated circuit boards, because epoxy resin has well balanced properties including molding property, electrical property, moisture resistance, heat resistance, mechanical property and adhesion to component inserted therein, etc.
Molded epoxy resin products are produced from epoxy molding compounds. A typical epoxy molding compound comprises an epoxy resin, a curing agent (hardener) , a curing accelerator (catalyst) , and optionally fillers and additives. An epoxy molding compound can be molded and cured to a solid shaped article in a mold at elevated temperature and for a certain time. Afterwards, the demolded article is usually post-cured at elevated temperatures to complete the curing reaction and obtain a resin article with the ultimate desired properties.
The current voltage of mainstream logic SOP (small Out-Line package) and SOIC package voltage is only tens of volts (typically about 30 volts) . With the development of technology, for example in the LED lighting industry, more and more chip design companies incorporate high-voltage chips (voltage > 500V) into logic SOIC semiconductor packages, in order to achieve a better life and reduce energy consumption. However, if conventional logic SOP epoxy molding compounds are used in high voltage SOP products, a high temperature (180℃) leakage issue may occur and result in product failure.
US7291684B2, US20130062790A1 and US2013062748A1 disclose epoxy resin compositions for semiconductor packaging. However, they are not suitable for high voltage applications.
Heretofore, there is no systematic research on epoxy molding compounds suitable for high power SOIC semiconductor package application.
Summary of the Invention
The object of the present invention is to develop a new epoxy molding compound (EMC) to be used on high power SOIC semiconductor package (> 500 volts) with electrical leakage less than 30 μa at 180℃, meanwhile it can pass JEDEC (Joint Electron Device Engineering Council) standards for reliability, lead-free reflow requirements at 260℃.
In one aspect, the present invention provides an epoxy molding compound, comprising
(a) an epoxy resin,
(b) a phenolic resin,
(c) a low stress modifier,
(d) an ion trapping agent,
(e) a curing accelerator,
(f) a filler,
characterized in that the low stress modifier is one or more selected from the group consisting of a silicone resin containing an epoxy group, a silicone resin containing an amino group, a silicone resin containing an epoxy group and a polyether group, epoxidized polybutadiene rubber and silicone rubber with a core-shell structure, the ion trapping agent is one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium, and the curing accelerator is one or more selected from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
In another aspect the present invention provides a process for preparing the epoxy molding compound of the present invention, comprising steps of:
(1) weighing up each component accurately and mixing them in a high speed blender preferably for 20-30 minutes;
(2) adding liquid additives to the blender and continue mixing preferably for 15-20 minutes,
(3) passing the mixed material through a twin screw extruder and the extruded material is kneaded preferably at 90-110℃,
(4) finally the material is cooled and grinded.
Yet in another aspect, the present invention provides the use of the epoxy molding compound of the present invention for high power SOIC semiconductor package application.
Other features and aspects of the subject matter are set forth in greater detail below.
Detailed description
In the following passages the present invention is described in more detail. Each aspect so described may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
In the context of the present invention, the terms used are to be construed in accordance with the following definitions, unless a context dictates otherwise. As used herein, the singular forms “a” , “an” and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The terms “comprising” , “comprises” and “comprised of” as used herein are synonymous with “including” , “includes” or “containing” , “contains” , and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps.
The recitation of numerical end points includes all numbers and fractions subsumed within the respective ranges, as well as the recited end points.
When an amount, a concentration or other values or parameters is/are expressed in form of a range, a preferable range, or a preferable upper limit value and a preferable lower limit value, it should be understood as that any ranges obtained by combining any upper limit or preferable value with any lower limit or preferable value are specifically disclosed, without considering whether the obtained ranges are clearly mentioned in the context.
All references cited in the present specification are hereby incorporated by reference in their entirety.
Unless otherwise defined, all terms used in the disclosure of the invention, including technical and scientific terms, have the meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs to. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
The present invention is directed to a low stress and highly reliable epoxy resin compound, its preparation method as well its application on high Voltage (> 500 voltage) SOIC semiconductor packages. It is used for surface package of a high-voltage device, such as SOP8, SOP14, SOP16, SOP20, SOP28. The package employing the epoxy resin compound of the present invention has less than 30μa leakage under 180℃ and satisfy other reliability requirements under JEDEC MSL3.
In order to improve the high temperature leakage performance and other standard reliability performance of the epoxy molding compound, the inventors carried out intensive research to optimize the type and content of the epoxy resin, the curing accelerator, the low stress modifier, the flame retardant, the ion trapping agent, and the like.
Finally, the inventors obtained an epoxy molding compound, comprising
a) an epoxy resin,
b) a phenolic resin,
c) a low stress modifier,
d) an ion trapping agent,
e) a curing accelerator,
(f) a filler,
characterized in that the low stress modifier is one or more selected from the group consisting of a silicone resin containing an epoxy group, a silicone resin containing an amino group, a silicone resin containing an epoxy group and a polyether group, epoxidized polybutadiene rubber and silicone rubber with a core-shell structure, the ion trapping agent is one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium, and the curing accelerator is one or more selected from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
(a) Epoxy resin
The epoxy resin used in the present invention contains two or more epoxy groups. The epoxy resin is selected from the group consisting of o-cresol type epoxy resin, dicyclopentadiene type epoxy resin, polyaromatic type epoxy resin, biphenylene aralkyl type epoxy resin and biphenyl type epoxy resin. These epoxy resins may be used alone or as a mixture of two or more.
Considering the requirements of low moisture content and flowability of the product, the epoxy resin is preferably one or more resins selected from dicyclopentadiene type epoxy resin, biphenylene aralkyl type epoxy resin and biphenyl type epoxy resin. From the same viewpoint, the content of the epoxy resin is preferably 2wt%to 10wt%with respect to the total weight of the epoxy molding compound.
(b) Phenolic resin
The phenolic resin used in the present invention contains two or more hydroxyl groups. The phenolic resin is one or more resins selected from the group consisting of phenol novolac resin, cresol novolac resin, biphenylene aralkyl type resin, polyaromatic type phenol resin and trisphenolmethane type phenol resin.
Considering the requirements of low moisture content and flowability of the product, the phenolic resin is preferably one or more resins selected from biphenylene aralkyl type resin and trisphenolmethane type phenol resin. From the same viewpoint, the content of phenolic resin is preferably 2wt%to 10wt%with respect to the total weight of the epoxy molding compound.
The molar ratio of number of hydroxyl groups in the phenolic resin and the number of epoxy groups in the epoxy resin is 0.5 to 1.5.
(c) Low stress modifier
The low stress modifier used in the present invention can be one or more from the group consisting of epoxy group silicone resin, amino group silicone resin, epoxy and polyether group silicon resin, oxidation polybutadiene rubber or core-shell structure of silicon oxide rubber.
From the point of moisture resistance and flowability, the low stress modifier is preferably one or more from the group consisting of epoxy group silicon resin, oxide polybutadiene rubber and silicon oxide rubber of a core-shell structure. From the  above same point, the content of the low stress modifier is preferably 0.2wt%to 2wt%with respect to the total weight of the epoxy molding compound
(d) Ion trapping agent
The ion trapping agent used in the present invention can be one or more from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium.
From the point of improved semiconductor IC corrosion resistance and high-temperature storage properties, the ion trapping agent can be one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum and bismuth. From the same viewpoint, the content of the trapping agent is preferably 0.2wt%to 2wt%with respect to the total weight of the epoxy molding compound.
(e) Curing accelerator
As used herein, the term “curing accelerator” has the same meaning as “catalyst” , which catalyzes or accelerates the curing reaction between the epoxy resin and the hardener.
The curing accelerator used in the present invention can be one or more from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
Considering the requirements on flowability and reliability, the curing accelerator is preferably one or more from the group consisting of triphenyl phosphine, triphenylphosphine and quinone compound, 2, 4-diamino-6- [2'-methyl imidazole- (1) ] ethyl triazine or dimethyl benzylamine. From the same viewpoint, the content of the curing accelerator is preferably 0.1wt%-0.5wt%with respect to the total weight of the epoxy molding compound.
(f) Filler
A wide range of fillers may be used in the epoxy molding compound of the present invention to improve certain properties of the molded product, such as abrasion resistance, moisture resistance, thermal conductivity or electrical properties.
The filler used in the present invention can be one or more from the group consisting of crystalline silica, fused silica, spherical silica, titanium dioxide, aluminum hydroxide, magnesium hydroxide, zirconium dioxide, calcium carbonate, calcium silicate, carbon fibers and glass fibers. Any of the above listed fillers can be used alone or in a combination of two or more.
From the point of low wire seep and low stress requirements in IC, the filler is preferably spherical silica. From the same viewpoint, the content of the filler is preferably 80wt%-90wt%with respect to the total weight of the epoxy molding compound.
To improve performances of the epoxy molding compound, one or more additives may be used in the epoxy molding compound of the present invention. Examples of additives include a filler, a flame retardant, a release agent, a coupling agent, a pigment, etc.
Flame retardant
The flame retardant used in the present invention can be one or more from the group consisting of brominated epoxy flame retardant, antimony oxide, organic phosphorus compounds, melamine type flame retardants, aluminum hydroxide, magnesium hydroxide, zinc borate, titanium oxide.
Considering the requirements of environmental protection, the flame retardant is preferably one or more selected from of the group consisting of an organic phosphorus compounds, melamine, aluminum hydroxide, magnesium hydroxide, zinc borate, titanium oxide.
Considering the requirements on reliability and flowability, the flame retardant can be one or more from the group consisting of an organic phosphorus compounds, magnesium hydroxide, zinc borate. From the same viewpoint, the content of flame retardant is 0.2wt%to 2wt%with respect to the total weight of the epoxy molding compound.
Release agent
The release agent used in the present invention is one or more selected from natural or synthetic waxes.
Coupling agent
The coupling agent used in the present invention is one or more selected from the group consisting of epoxysilanes, aminosilanes, methacryloyl silanes, and mercapto silanes.
Pigment
Various kinds of pigments can be used in the present invention. For example, the pigment is carbon black.
In a preferred embodiment of the present invention, an epoxy molding compound comprises:
(a) 2 to 10wt. %of an epoxy resin,
(b) 2 to 10wt. %of a phenolic resin,
(c) 0.2 to 2wt%of a low stress modifier,
(d) 0.2 to 2wt%of an ion trapping agent,
(e) 0.1 to 0.5wt%of a curing accelerator,
(f) 80 to 90wt%of a filler,
wherein the weight percentages are based on the total weight of the epoxy molding compound.
The other components of the epoxy molding compound may be as follows:
(g) 0 to 15wt%of a flame retardant,
(h) 0.1 to 3wt%of a coupling agent,
(i) 0.2 to 3wt%of a release agent,
(j) 0.1 to 1wt%of a pigment,
wherein the weight percentages are based on the total weight of the epoxy molding compound.
There is no special limit for the preparation method of the epoxy molding compound of the present invention. In a preferred embodiment, the epoxy molding compound is manufactured by a process comprising steps of:
(1) weighing up each component accurately and mixing them in a high speed blender for 20-30 minutes;
(2) adding liquid additives to the blender and continue mixing for 15-20 minutes,
(3) passing the mixed material through a twin screw extruder and the extruded material is kneaded at 90-110℃,
(4) finally the material is cooled and grinded.
The epoxy molding compound of the present invention may be used for encapsulating IC devices.
The epoxy molding compound used for an IC device could be cured by conventional molding methods, such as transfer molding method, compression molding and the like.
The present disclosure may be better understood with reference to the following examples.
Examples
The present invention will be illustrated in details by means of examples below.
However, it is to be understood by one of ordinary skills in the art that this part is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention.
The parameters as measured and the target ranges are specified in Table 1.
Table 1
  Parameter Target Range
1 Gel Time, s 25-45
2 Spiral flow (inch) 35-55
3 Moisture absorption (%) 0.2-0.35
4 Tg (℃) 100-120
5 CTE1 (ppm) 6-10
6 CTE2 (ppm) 25-40
7 Storage module, RM 20000-30000
8 Storage module, 175℃ 500-1200
9 Storage module, 260℃ 600-900
10 Adhesion on Ag LF (N) (after MSL3) 200-400
11 Delamination performance on QFP44 after MSL3 0
12 Delamination performance on QFP44 after MSL2A 0
13 high temperature ionic conductivity (180℃) <4.000×10-8
Test methods
The test methods of the above parameters are described as below.
1.Gel Time (GT)
The epoxy molding compound was placed on a hot plate which was controlled at a specified temperature of 175±2℃. The compound was stroked (with a spatula) in a back-and-forth motion until it becomes stiff. A stopwatch was used in the test. The stopwatch was started immediately after the compound was placed on the hot plate and stopped when gelling was complete
2.SF (Spiral Flow) ,
The spiral flow of an epoxy molding compound is a measure of the combined characteristics of fusion under pressure, melt viscosity, and gelation rate under specific conditions. The test uses a standard spiral flow mold in a transfer molding press under specified conditions of applied temperature and pressure with a controlled charge mass. The spiral flow test was done according to the method EMI-1-66. The test conditions were set as follows:
Transfer pressure: 6.9 MPa (1000 psi) 
Mold temperature: 175 ±2℃ or 150 ±2℃
Cure Time: 90s.
3.Moisture absorption (%) 
Moisture absorption rate test method was carried out in accordance with the method of “PCT24” ; in which the sample piece size was set asΦ50*3mm; and the test condition was 121℃/100RH%/2atm/24hrs; the moisture absorption rate can be calculated as:
Weight increment of sample piece after PCT24hrs/Weight of sample piece*100%. 
4.Tg
In the glass transition temperature test, the Tg of the molded product was tested. In the test, the sample from the extruder was made to be a sheet by a molding machine at a molding temperature of 180℃ for 150s. After molding, the sheet was put into an oven at a temperature of 180℃ for 6 hours. The dimension of the sheet is 5cm*1 cm*0.4cm. Tg of the sheet was measured using DMA (Dynamic thermo-mechanical analysis) , where the sample was placed in the DMA machine, the heating was carried out until 300℃ at a rate of 3℃/min with a frequency of 5Hz. The value of Tg was the peak of tan δ figure.
5.CTE1
6.CTE2
The α1 (CTE1) and α2 (CTE2) are tested by TMA.
The Thermomechanical Analyzer measures linear changes in the dimension of a sample as temperature rises in a controlled rate, and the dimension change-temperature curve is recorded. The α1 is calculated over a range of temperatures below the Tg and the α2 is calculated over a range of temperatures above the Tg. The αs, an average of the expansion coefficients are usually over a linear portion of the curve.
The CTE1&2 values were determined using a thermomechanical analyzer Q-400 from TA Instruments, and test conditions were as follows: heating the sample piece from room temperature to 280℃ at a rate of 10℃/min, and the load was 0.1 N.
7.Storage module (RM)
8.Storage module (175℃)
9.Storage module (260℃)
The storage module is determined by Dynamic Mechanical Analysis (DMA) to measure the changes in the viscoelastic properties of a material as a function of temperature. A sample is oscillated at a fixed amplitude at a specified heating rate. The DMA profile provides information on plasticizer effectiveness, molecular motion, stress relaxation, rigidity or stiffness, etc.
In the test, the sample from extruder was made to be a sheet by a molding machine at the molding temperature of 180℃ for 150s, after molding, the sheet was put into an oven with a temperature of 180℃ for 6 hours. The dimension of the sheet is 5cm*1 cm*0.4cm. The sample was placed in the DMA machine, where the sample was heated to 300℃ at a heating rate of 3℃/min with a frequency of 5Hz.
10. Adhesion on silver Ag LF
The test method is designed by Henkel to determine the adhesion strength between epoxy molding compound and the lead frame surface with different plating including bars Cu, Ni, Ag and Ni/Pd/Au. Firstly, the material was molded with the tap pull LF at certain temperature (175±2℃) , then a reliability test was carried out for the package (as PMC, MSL test) , finally a pull force test was carried out to determine the EMC adhesion with different plating type LF.
11. Delamination performance on QFP44 after MSL3
12. Delamination performance on QFP44 after MSL2A
Firstly, the material was molded with QFP44 LF at certain temperature (175±2℃) . Subsequently, a delamination test was carried out for the QFP44 package, MSL3 and MSL2A tests were carried out according to JEDEC JESD22-A113D standard. 
13.High temperature ionic conductivity (180℃)
In a typical test, the sample was placed in contact with two electrodes (the dielectric sensor) and a sinusoidal voltage (the excitation) was applied to one electrode. The resulting sinusoidal current (the response) was measured at the second electrode. Test piece: solid polymer plate/film
Measurement temperature: room temperature to 350℃ (if equipped with liquid nitrogen, the temperature can drop further to -190℃)
Measurement frequency: 12Hz~100KHz
Raw materials:
The raw materials used in the examples and their sources are specified in Table 2.
Table 2
Figure PCTCN2015074567-appb-000001
Figure PCTCN2015074567-appb-000002
The raw materials used for the epoxy molding compound of each example were weighed up. All the raw materials were added into a high speed mixture, and were mixed for 15 minutes at 300r/min under room temperature to get a premixed powder. The premixed powder was then put into the feeding bucket of an extruder, and was extruded at about 100℃ with the rotation speed of the paddle being 120rpm. The obtained extruded material was crushed into powder.
Reference example:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 1:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine derivative, 0.2%
Example 2:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
2-phenyl-4-methyl imidazole curing accelerator, 0.2%
Example 3:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 86.7%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 1%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 4:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 86.7%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%, Cation ion trapping agent 0.5%
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 5:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 86.7%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Zirconium and Bismuth Oxide type trapping agent, 1%
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 6:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Metal hydroxides flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 7:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Metal oxide flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 8:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized silicone glycidyl resin type low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 9:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Epoxidized polybutadiene low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 10:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Silicone rubber low stress modifier, 0.5%
Anion ion trapping agent, 0.5%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 11:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Reactive Liquid Polymer rubber CTBN, 0.5%
Anion ion trapping agent, 0.5%,
Organic phosphorus flame retardant, 1%
Carbon pigment, 0.3%
Triphenyl phosphine curing accelerator (TPP) , 0.2%
Example 12:
Multi aromatic epoxy resin (MAR) , 5.2%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Silicone rubber low stress modifier, 0.5%
Zirconium and Bismuth Oxide type trapping agent, 1%,
Carbon pigment, 0.3%
Triphenyl phosphine derivative, 0.2%
Example 13:
Multi aromatic epoxy resin (MAR) , 3.4%
Biphenyl type epoxy resin (BP) , 1.8%
Phenol biphenylaralkyl resin, 3.8%
Spherical silica, 87.2%
gamma glycidoxytrimethoxy and Mercaptopropyltrimethoxy type silane, 0.7%
Release agent, 0.6%
Silicone rubber low stress modifier, 0.5%
Zirconium and Bismuth Oxide type trapping agent, 1%,
Carbon pigment, 0.3%
Triphenyl phosphine derivative, 0.2%.
Figure PCTCN2015074567-appb-000003
Figure PCTCN2015074567-appb-000004
Figure PCTCN2015074567-appb-000005
Figure PCTCN2015074567-appb-000006
Figure PCTCN2015074567-appb-000007
Compared with the Reference example, Examples 1 and 2 changed the catalyst type to improve high temperature leakage and delamination performance. From the above test result, it can be seen that high temperature ionic conductivity performance of Example 1 and Example 2 are better than the Reference example. The delamination performance of example 1 is better than the Reference example, but Example 2 is worse than the Reference example.
Compared with the Reference example, Examples 3, 4 and 5 changed the ion trapping system and content to improve high temperature leakage and delamination performance. From the above test result, it can be seen that high temperature ionic conductivity performance of Example 4 and Example 5 are better than the Reference example. The delamination performances of Example 3, 4, 5 are similar with the Reference example.
Compared with the Reference example, Examples 6, 7 and 8 changed the flame retardant system and content to improve high temperature leakage and delamination performance. From the test result, it can be seen that the delamination performance of Example 8 is better than the Reference example and Examples 6 and 7 are similar with the Reference example. From the high temperature ionic conductivity test results, it can be seen that example 7 and 8 are better than the Reference example and Example8 is obviously better than the Reference example.
Compared with the Reference example, Examples 9 , 10 and 11 changed the low stress modifier system and content to improve high temperature leakage and delamination performance. From the test result, it can be seen that the delamination of Examples 9, 10 and 11 are better than the Reference example. From the high temperature ionic conductivity test results, it can be seen that Examples 9, 10 and 11 are better than the Reference example and Example10 is obviously better than the Reference example.
Compared with the Reference example, Example 12 changes the catalyst type, the ion trapping system, the flame retardant system and optimizes the content to improve high temperature leakage and delamination performance. From the test results, it can be seen that the delamination performance of Example 12 is similar with the Reference example, but the high temperature ionic conductivity result is obviously better than the Reference example.
Compared with the Reference example, Example 13 changes the resin type, the catalyst type, the ion trapping system, the flame retardant systems, the low stress modifier type and optimizes the content to improve high temperature leakage and delamination performance. From the test results, it can be seen that the delamination performance of Example 13 after MSL2A is obviously better than Reference example. Meanwhile, the high temperature ionic conductivity is also obviously better than the Reference example.
These and other modifications and variations of the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole and in component. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.

Claims (13)

  1. An epoxy molding compound, comprising:
    (a) an epoxy resin,
    (b) a phenolic resin,
    (c) a low stress modifier,
    (d) an ion trapping agent,
    (e) a curing accelerator,
    (f) a filler,
    characterized in that the low stress modifier is one or more selected from the group consisting of a silicone resin containing an epoxy group, a silicone resin containing an amino group, a silicone resin containing an epoxy group and a polyether group, epoxidized polybutadiene rubber and silicone rubber with a core-shell structure, the ion trapping agent is one or more selected from the group consisting of hydrotalcite, hydroxides or oxides of magnesium, zirconium, aluminum, bismuth, antimony and titanium, and
    the curing accelerator is one or more selected from the group consisting of amine compounds, organic phosphorus compounds, triphenyl phosphine and its derivatives and imidazole type compounds.
  2. The epoxy molding compound according to claim 1, wherein the low stress modifier comprises silicone rubber with a core-shell structure.
  3. The epoxy molding compound according to claim 1, wherein the ion trapping agent comprises zirconium oxide and bismuth oxide.
  4. The epoxy molding compound according to claim 1, wherein the curing accelerator comprises triphenylphosphine-1, 4-benzoquinone adduct.
  5. The epoxy molding compound according to claim 1, wherein the molar ratio of the number of hydroxyl groups in the phenolic resin and the number of epoxy groups in the epoxy resin is 0.5 to 1.5.
  6. The epoxy molding compound according to claim 1, wherein the filler is one or more selected from the group consisting of crystalline silica, fused silica, spherical silica, titanium dioxide, aluminum hydroxide, magnesium hydroxide, zirconium dioxide, calcium carbonate, calcium silicate, carbon fibers and glass fibers.
  7. The epoxy molding compound according to claim 1, wherein it further comprises a flame retardant, which is one or more selected from the group consisting of brominated epoxy flame retardant, antimony oxide, organic phosphorus compounds, melamine, aluminum hydroxide, magnesium hydroxide, zinc borate, and titanium oxide.
  8. The epoxy molding compound according to claim 1, wherein it further comprises a coupling agent.
  9. The epoxy molding compound according to claim 1, wherein it further comprises a release agent.
  10. The epoxy molding compound according to claim 1, wherein it further comprises a pigment.
  11. An epoxy molding compound according to any one of claims 1 to 10, wherein the compound comprises:
    (a) 2 to 10 wt. %of the epoxy resin,
    (b) 2 to 10 wt. %of the phenolic resin,
    (c) 0.2 to 2 wt. %of the low stress modifier,
    (d) 0.2 to 2 wt. %of the ion trapping agent,
    (e) 0.1 to 0.5 wt. %of the curing accelerator,
    (f) 80-90 wt%of the filler.
    wherein the weight percentages are based on the total weight of the epoxy molding compound.
  12. A method for preparing the epoxy molding compound according to any one of claims 1-10, comprising steps of:
    (1) weighing up each component accurately and mixing them in a high speed blender;
    (2) adding liquid additives to the blender and continue mixing,
    (3) passing the mixed material through a twin screw extruder and the extruded material is kneaded,
    (4) finally the material is cooled and grinded.
  13. Use of the epoxy molding compound according to any one of claims 1 to 10 for high power SOIC semiconductor package application.
PCT/CN2015/074567 2015-03-19 2015-03-19 Epoxy molding compound for high power soic semiconductor package application WO2016145648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580079851.2A CN108140620B (en) 2015-03-19 2015-03-19 Epoxy molding compounds for high power SOIC semiconductor packaging applications
PCT/CN2015/074567 WO2016145648A1 (en) 2015-03-19 2015-03-19 Epoxy molding compound for high power soic semiconductor package application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074567 WO2016145648A1 (en) 2015-03-19 2015-03-19 Epoxy molding compound for high power soic semiconductor package application

Publications (1)

Publication Number Publication Date
WO2016145648A1 true WO2016145648A1 (en) 2016-09-22

Family

ID=56920381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074567 WO2016145648A1 (en) 2015-03-19 2015-03-19 Epoxy molding compound for high power soic semiconductor package application

Country Status (2)

Country Link
CN (1) CN108140620B (en)
WO (1) WO2016145648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109486100A (en) * 2018-11-27 2019-03-19 江苏中鹏新材料股份有限公司 Epoxy resin for electronic packaging composition and preparation method thereof
CN113817291A (en) * 2021-09-30 2021-12-21 广东博汇新材料科技股份有限公司 Carbon fiber vacuum infusion epoxy resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980137B (en) * 2019-12-17 2024-02-02 衡所华威电子有限公司 Epoxy molding compound and preparation method and application thereof
CN114644810B (en) * 2020-12-18 2024-03-01 衡所华威电子有限公司 High-temperature fast-curing low-stress epoxy resin composition and preparation method thereof
CN114940805A (en) * 2022-05-09 2022-08-26 衡所华威电子有限公司 Low-stress low-water-absorption epoxy plastic packaging material for semiconductor packaging and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN102311612A (en) * 2011-04-03 2012-01-11 广东生益科技股份有限公司 Resin composition and resin coated copper foil made of same
CN102675601A (en) * 2012-05-17 2012-09-19 江苏华海诚科新材料有限公司 Low-warpage epoxy resin composite used for QFN (Quad Flat No Lead)
CN103421272A (en) * 2012-05-22 2013-12-04 汉高华威电子有限公司 Epoxy resin composition used for electronic packaging and preparation method thereof
CN103450632A (en) * 2012-05-28 2013-12-18 汉高华威电子有限公司 Epoxy resin composition for electronic packaging and preparation method thereof
CN104277417A (en) * 2013-07-01 2015-01-14 北京首科化微电子有限公司 Epoxy resin composition containing composite flame retardant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014214A (en) * 2013-07-29 2015-02-06 삼성전기주식회사 Molding composition for semiconductor package and semiconductor package using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN102311612A (en) * 2011-04-03 2012-01-11 广东生益科技股份有限公司 Resin composition and resin coated copper foil made of same
CN102675601A (en) * 2012-05-17 2012-09-19 江苏华海诚科新材料有限公司 Low-warpage epoxy resin composite used for QFN (Quad Flat No Lead)
CN103421272A (en) * 2012-05-22 2013-12-04 汉高华威电子有限公司 Epoxy resin composition used for electronic packaging and preparation method thereof
CN103450632A (en) * 2012-05-28 2013-12-18 汉高华威电子有限公司 Epoxy resin composition for electronic packaging and preparation method thereof
CN104277417A (en) * 2013-07-01 2015-01-14 北京首科化微电子有限公司 Epoxy resin composition containing composite flame retardant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109486100A (en) * 2018-11-27 2019-03-19 江苏中鹏新材料股份有限公司 Epoxy resin for electronic packaging composition and preparation method thereof
CN113817291A (en) * 2021-09-30 2021-12-21 广东博汇新材料科技股份有限公司 Carbon fiber vacuum infusion epoxy resin

Also Published As

Publication number Publication date
CN108140620B (en) 2021-10-29
CN108140620A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
CN107636071B (en) Epoxy molding compounds having high adhesion to nickel surfaces, method for the production thereof and use thereof
KR101872556B1 (en) Semiconductor device, and process for manufacturing semiconductor device
WO2016145648A1 (en) Epoxy molding compound for high power soic semiconductor package application
CN113201204B (en) High Tg and low warp MUF epoxy resin composition and preparation method thereof
JP2008127577A (en) Epoxy resin composition for sealing multi-chip package and multi-chip package using the same
CN114644810B (en) High-temperature fast-curing low-stress epoxy resin composition and preparation method thereof
JP2012062448A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
WO2016145661A1 (en) Epoxy molding compound, its manufacturing process and use, and transistor outline package product containing molded product thereof
JP2020123670A (en) Semiconductor package and sealing epoxy resin composition used for the same
EP2602289A2 (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
CN1469890A (en) Die-attaching paste and semiconductor device
CN117795002A (en) Epoxy resin composition, liquid compression molding material, top encapsulation material, and semiconductor device
EP3242321A1 (en) Method for encapsulating a base material with a large-area semiconductor element
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2005089486A (en) Epoxy resin composition and semiconductor device
JPH07118366A (en) Epoxy resin composition
JP2010053164A (en) Resin composition for encapsulation and resin-encapsulated semiconductor device
JP7501116B2 (en) Flame-retardant resin composition and structure
KR20180123976A (en) Epoxy resin composition and semiconductor device
JP7390995B2 (en) Power module manufacturing method
JP7367766B2 (en) Thermosetting resin composition, cured product thereof, and structure containing the cured product
KR102587322B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JPH04198211A (en) Resin composition
KR0185210B1 (en) Encapsulating epoxy resin composition for semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885031

Country of ref document: EP

Kind code of ref document: A1