WO2016145383A1 - Inhibiteurs de mth1 pour le traitement de maladies - Google Patents

Inhibiteurs de mth1 pour le traitement de maladies Download PDF

Info

Publication number
WO2016145383A1
WO2016145383A1 PCT/US2016/022138 US2016022138W WO2016145383A1 WO 2016145383 A1 WO2016145383 A1 WO 2016145383A1 US 2016022138 W US2016022138 W US 2016022138W WO 2016145383 A1 WO2016145383 A1 WO 2016145383A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
carcinoma
cancers
diseases
term
Prior art date
Application number
PCT/US2016/022138
Other languages
English (en)
Inventor
Richard Thomas Lewis
Philip Jones
Alessia Petrocchi
Naphtali REYNA
Matthew Michael Hamilton
Elisabetta LEO
Original Assignee
Board Of Regents, University Of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Board Of Regents, University Of Texas System filed Critical Board Of Regents, University Of Texas System
Publication of WO2016145383A1 publication Critical patent/WO2016145383A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/061,2,4-Triazines
    • C07D253/0651,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members
    • C07D253/071,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members with hetero atoms, or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D253/075Two hetero atoms, in positions 3 and 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered

Definitions

  • the present disclosure relates to new heterocyclic compounds and compositions, and their application as pharmaceuticals for the treatment of disease.
  • Methods of inhibition of MTH1 activity in a human or animal subject are also provided for the treatment of diseases such as cancer.
  • ROS reactive oxygen species
  • Exposure of nucleic acids to ROS can create more than 20 oxidatively modified nucleotides, of which 7,8-dihydro-8- oxo- 2'deoxyguanosine (8-oxo-dG) is most abundant. 8-oxo-dG plays a pivotal role in mutagenesis (Sekiguchi and Tsuzuki., Oncogene 21 (58)2002:8895-906).
  • mammalian cells are armed with a set of repair enzymes to remove the oxidized nucleotides to maintain genome integrity.
  • MTH1 MotT homologue 1, 8-oxo- dGTPase, NUDTl
  • MTH1 is upregulated in various cancer forms, suggesting that the cancer cells rely on MTH1 function to survive the increased DNA damage (Human Proteinatlas, Koketsu et al., Hepatogastroenterology, 51(57)2004:638- 41). Suppression of MTH1 level and activity by using RNAi technology, leads to reduced cancer cell survival, premature senescence and DNA strand breaks (Rai et al, PNAS, 106(1)2009: 169- 174).
  • MTH1 inhibitors that enhance sensitivity of tumors to radiation therapy or chemotherapy.
  • Compounds described herein could also be used to treat tumors that have acquired resistance to other forms of chemotherapy, and may prove effective, for example in combination with standard of care drugs to treat chemotherapy -resistant cancers.
  • R 1 is chosen from R 5 R 6 , H, alkyl, halo, OH, and OR 5
  • R 2 is chosen from R 7 R 8 , OR 7 , H, alkyl, and cycloalkyl
  • R 3 is chosen from R 10 R U , H, alkyl, cycloalkyl, halogen, OR 10 , SR 10 , S(0) 2 R 10
  • a method of inhibiting MTH1 activity in a biological sample comprising contacting the biological sample with a compound of Formula I.
  • a method of treating a MTH1 -mediated disorder in a subject in need thereof comprising the step of administering to the subject a compound of Formula I.
  • a method of treating a MTH1 -mediated disorder in a subject in need thereof comprising the sequential or co-administration of a compound of Formula I or a pharmaceutically acceptable salt thereof, and another therapeutic agent.
  • micromolar (micromolar)," which is intended to include 1 ⁇ , 3 ⁇ , and everything in between to any number of significant figures (e.g., 1.255 ⁇ , 2.1 ⁇ , 2.9999 ⁇ , etc.).
  • acyl refers to a carbonyl attached to an alkenyl, alkyl, aryl, cycloalkyl, heteroaryl, heterocycle, or any other moiety were the atom attached to the carbonyl is carbon.
  • An “acetyl” group refers to a -C(0)CH 3 group.
  • alkylcarbonyl or “alkanoyl” group refers to an alkyl group attached to the parent molecular moiety through a carbonyl group. Examples of such groups include methylcarbonyl and ethyl carbonyl. Examples of acyl groups include formyl, alkanoyl and aroyl.
  • alkenyl refers to a straight-chain or branched-chain hydrocarbon radical having one or more double bonds and containing from 2 to 20 carbon atoms. In certain embodiments, the alkenyl will comprise from 2 to 6 carbon atoms.
  • alkoxy refers to an alkyl ether radical, wherein the term alkyl is as defined below.
  • suitable alkyl ether radicals include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, and the like.
  • alkyl refers to a straight-chain or branched-chain alkyl radical containing from 1 to 20 carbon atoms. In certain embodiments, the alkyl will comprise from 1 to 10 carbon atoms. In further embodiments, the alkyl will comprise from 1 to 6 carbon atoms. Alkyl groups may be optionally substituted as defined herein.
  • alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl, noyl and the like.
  • alkylene refers to a saturated aliphatic group derived from a straight or branched chain saturated hydrocarbon attached at two or more positions, such as methylene (- CH2-). Unless otherwise specified, the term “alkyl” may include “alkylene” groups.
  • alkylamino refers to an alkyl group attached to the parent molecular moiety through an amino group. Suitable alkylamino groups may be mono- or dialkylated, forming groups such as, for example, N-methylamino, N- ethylamino, N,N-dimethylamino, ⁇ , ⁇ -ethylmethylamino and the like.
  • alkylidene refers to an alkenyl group in which one carbon atom of the carbon-carbon double bond belongs to the moiety to which the alkenyl group is attached.
  • alkylthio refers to an alkyl thioether (R-S-) radical wherein the term alkyl is as defined above and wherein the sulfur may be singly or doubly oxidized.
  • suitable alkyl thioether radicals include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, iso-butylthio, sec-butylthio, tert-butylthio, methanesulfonyl, ethanesulfinyl, and the like.
  • alkynyl refers to a straight-chain or branched chain hydrocarbon radical having one or more triple bonds and containing from 2 to 20 carbon atoms. In certain embodiments, the alkynyl comprises from 2 to 6 carbon atoms. In further embodiments, the alkynyl comprises from 2 to 4 carbon atoms.
  • alkynylene refers to a carbon-carbon triple bond attached at two positions such as ethynylene (-C: ::C- - C ⁇ C-).
  • alkynyl radicals include ethynyl, propynyl, hydroxypropynyl, butyn-l-yl, butyn-2-yl, pentyn-l-yl, 3-methylbutyn-l-yl, hexyn-2-yl, and the like.
  • alkynyl may include "alkynylene” groups.
  • acylamino as used herein, alone or in combination, embraces an acyl group attached to the parent moiety through an amino group.
  • An example of an “acylamino” group is acetylamino (CH3C(0) H-).
  • amino refers to— RR', wherein R and R' are independently selected from the group consisting of hydrogen, alkyl, acyl, heteroalkyl, aryl, cycloalkyl, heteroaryl, and heterocycloalkyl, any of which may themselves be optionally substituted. Additionally, R and R' may combine to form heterocycloalkyl, either of which may be optionally substituted.
  • aryl as used herein, alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such polycyclic ring systems are fused together.
  • aryl embraces aromatic groups such as phenyl, naphthyl, anthracenyl, and phenanthryl.
  • arylalkenyl or “aralkenyl,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkenyl group.
  • arylalkoxy or “aralkoxy,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkoxy group.
  • arylalkyl or “aralkyl,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkyl group.
  • arylalkynyl or “aralkynyl,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkynyl group.
  • arylalkanoyl or “aralkanoyl” or “aroyl,” as used herein, alone or in combination, refers to an acyl radical derived from an aryl -substituted alkanecarboxylic acid such as benzoyl, napthoyl, phenylacetyl, 3-phenylpropionyl (hydrocinnamoyl), 4-phenylbutyryl,
  • aryloxy refers to an aryl group attached to the parent molecular moiety through an oxy.
  • carbamate refers to an ester of carbamic acid (- HCOO-) which may be attached to the parent molecular moiety from either the nitrogen or acid end, and which may be optionally substituted as defined herein.
  • N-carbamyl as used herein, alone or in combination, refers to a
  • carbonyl when alone includes formyl [-C(0)H] and in combination is a -C(O)- group.
  • carboxyl or “carboxy,” as used herein, refers to -C(0)OH or the corresponding “carboxylate” anion, such as is in a carboxylic acid salt.
  • An "O-carboxy” group refers to a RC(0)0- group, where R is as defined herein.
  • a “C-carboxy” group refers to a - C(0)OR groups where R is as defined herein.
  • cyano as used herein, alone or in combination, refers to -CN.
  • cycloalkyl or, alternatively, “carbocycle,” as used herein, alone or in combination, refers to a saturated or partially saturated monocyclic, bicyclic or tricyclic alkyl group wherein each cyclic moiety contains from 3 to 12 carbon atom ring members and which may optionally be a benzo fused ring system which is optionally substituted as defined herein.
  • the cycloalkyl will comprise from 5 to 7 carbon atoms.
  • cycloalkyl groups examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, tetrahydronapthyl, indanyl, octahydronaphthyl, 2,3-dihydro-lH-indenyl, adamantyl and the like.
  • "Bicyclic” and "tricyclic” as used herein are intended to include both fused ring systems, such as decahydronaphthalene, octahydronaphthalene as well as the multicyclic (multi centered) saturated or partially unsaturated type. The latter type of isomer is exemplified in general by,
  • esters refers to a carboxy group bridging two moieties linked at carbon atoms.
  • ether refers to an oxy group bridging two moieties linked at carbon atoms.
  • halo or halogen
  • haloalkoxy refers to a haloalkyl group attached to the parent molecular moiety through an oxygen atom.
  • haloalkyl refers to an alkyl radical having the meaning as defined above wherein one or more hydrogens are replaced with a halogen. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals.
  • a monohaloalkyl radical for one example, may have an iodo, bromo, chloro or fluoro atom within the radical.
  • Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals. Examples of haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl,
  • Haloalkylene refers to a haloalkyl group attached at two or more positions. Examples include fluoromethylene
  • heteroalkyl refers to a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, fully saturated or containing from 1 to 3 degrees of unsaturation, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • the heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group. Up to two heteroatoms may be consecutive, such as, for example, -CH2- H-OCH3.
  • heteroaryl refers to a 3 to 15 membered unsaturated heteromonocyclic ring, or a fused monocyclic, bicyclic, or tricyclic ring system in which at least one of the fused rings is aromatic, which contains at least one atom selected from the group consisting of O, S, and N.
  • the heteroaryl will comprise from 5 to 7 carbon atoms.
  • heterocyclic rings are fused with aryl rings, wherein heteroaryl rings are fused with other heteroaryl rings, wherein heteroaryl rings are fused with heterocycloalkyl rings, or wherein heteroaryl rings are fused with cycloalkyl rings.
  • heteroaryl groups include pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl, pyranyl, furyl, thienyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, isothiazolyl, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, indazolyl, benzotriazolyl, benzodioxolyl, benzopyranyl, benzoxazolyl, benzoxadiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, benzothienyl, chromonyl,
  • thienopyridinyl furopyridinyl, pyrrolopyridinyl and the like.
  • exemplary tricyclic heterocyclic groups include carbazolyl, benzidolyl, phenanthrolinyl, dibenzofuranyl, acridinyl,
  • heterocycloalkyl and, interchangeably, “heterocycle,” as used herein, alone or in combination, each refer to a saturated, partially unsaturated, or fully unsaturated monocyclic, bicyclic, or tricyclic heterocyclic group containing at least one heteroatom as a ring member, wherein each the heteroatom may be independently selected from the group consisting of nitrogen, oxygen, and sulfur
  • the hetercycloalkyl will comprise from 1 to 4 heteroatoms as ring members.
  • the hetercycloalkyl will comprise from 1 to 2 heteroatoms as ring members.
  • the hetercycloalkyl will comprise from 3 to 8 ring members in each ring.
  • the hetercycloalkyl will comprise from 3 to 7 ring members in each ring. In yet further embodiments, the hetercycloalkyl will comprise from 5 to 6 ring members in each ring.
  • "Heterocycloalkyl” and “heterocycle” are intended to include sulfones, sulfoxides, N-oxides of tertiary nitrogen ring members, and carbocyclic fused and benzo fused ring systems; additionally, both terms also include systems where a heterocycle ring is fused to an aryl group, as defined herein, or an additional heterocycle group.
  • heterocycle groups include aziridinyl, azetidinyl, 1,3- benzodioxolyl, dihydroisoindolyl, dihydroisoquinolinyl, dihydrocinnolinyl,
  • dihydrobenzodioxinyl dihydro[l,3]oxazolo[4,5-b]pyridinyl
  • benzothiazolyl dihydroindolyl, dihy-dropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanyl, isoindolinyl, morpholinyl, piperazinyl, pyrrolidinyl, tetrahydropyridinyl, piperidinyl, thiomorpholinyl, and the like.
  • the heterocycle groups may be optionally substituted unless specifically prohibited.
  • hydrazinyl as used herein, alone or in combination, refers to two amino groups joined by a single bond, i.e., -N-N-.
  • hydroxyalkyl refers to a hydroxy group attached to the parent molecular moiety through an alkyl group.
  • isocyanato refers to a -NCO group.
  • isothiocyanato refers to a -NCS group.
  • linear chain of atoms refers to the longest straight chain of atoms independently selected from carbon, nitrogen, oxygen and sulfur.
  • lower aryl as used herein, alone or in combination, means phenyl or naphthyl, either of which may be optionally substituted as provided.
  • lower heteroaryl means either 1) monocyclic heteroaryl comprising five or six ring members, of which between one and four the members may be heteroatoms selected from the group consisting of O, S, and N, or 2) bicyclic heteroaryl, wherein each of the fused rings comprises five or six ring members, comprising between them one to four heteroatoms selected from the group consisting of O, S, and N.
  • lower cycloalkyl as used herein, alone or in combination, means a monocyclic cycloalkyl having between three and six ring members. Lower cycloalkyls may be unsaturated. Examples of lower cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • lower heterocycloalkyl as used herein, alone or in combination, means a monocyclic heterocycloalkyl having between three and six ring members, of which between one and four may be heteroatoms selected from the group consisting of O, S, and N.
  • lower heterocycloalkyls include pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, piperazinyl, and morpholinyl.
  • Lower heterocycloalkyls may be unsaturated.
  • lower amino refers to— RR', wherein R and R' are independently selected from the group consisting of hydrogen, alkyl, and lower heteroalkyl, any of which may be optionally substituted. Additionally, the R and R' of a lower amino group may combine to form a five- or six-membered heterocycloalkyl, either of which may be optionally substituted.
  • mercaptyl as used herein, alone or in combination, refers to an RS- group, where R is as defined herein.
  • nitro refers to -NO2.
  • perhaloalkoxy refers to an alkoxy group where all of the hydrogen atoms are replaced by halogen atoms.
  • perhaloalkyl refers to an alkyl group where all of the hydrogen atoms are replaced by halogen atoms.
  • sulfonate refers the -SO3H group and its anion as the sulfonic acid is used in salt formation.
  • thia and thio refer to a -S- group or an ether wherein the oxygen is replaced with sulfur.
  • the oxidized derivatives of the thio group namely sulfinyl and sulfonyl, are included in the definition of thia and thio.
  • thiol as used herein, alone or in combination, refers to an -SH group.
  • thiocarbonyl when alone includes thioformyl -C(S)H and in combination is a -C(S)- group.
  • N-thiocarbamyl refers to an ROC(S) R'- group, with R and R' as defined herein.
  • O-thiocarbamyl refers to a -OC(S) RR', group with R and R'as defined herein.
  • thiocyanato refers to a -CNS group.
  • trihalomethanesulfonamido refers to a X3CS(0)2 R- group with X is a halogen and R as defined herein.
  • trihalomethanesulfonyl refers to a X 3 CS(0)2- group where X is a halogen.
  • trimethoxy refers to a X3CO- group where X is a halogen.
  • trimethysilyl as used herein, alone or in combination, refers to a silicone group substituted at its three free valences with groups as listed herein under the definition of substituted amino. Examples include trimethysilyl, tert-butyldimethylsilyl, triphenyl silyl and the like.
  • any definition herein may be used in combination with any other definition to describe a composite structural group.
  • the trailing element of any such definition is that which attaches to the parent moiety.
  • the composite group alkylamido would represent an alkyl group attached to the parent molecule through an amido group
  • the term alkoxyalkyl would represent an alkoxy group attached to the parent molecule through an alkyl group.
  • the term "optionally substituted” means the anteceding group may be substituted or unsubstituted.
  • the substituents of an "optionally substituted” group may include, without limitation, one or more substituents independently selected from the following groups or a particular designated set of groups, alone or in combination: alkyl, lower alkenyl, lower alkynyl, lower alkanoyl, lower heteroalkyl, lower heterocycloalkyl, lower haloalkyl, lower haloalkenyl, lower haloalkynyl, lower perhaloalkyl, lower perhaloalkoxy, lower cycloalkyl, phenyl, aryl, aryloxy, lower alkoxy, lower haloalkoxy, oxo, lower acyloxy, carbonyl, carboxyl, alkylcarbonyl, lower carboxyester, lower carboxamido, cyano, hydrogen, halogen, hydroxy, amino, alkylamin
  • Two substituents may be joined together to form a fused five-, six-, or seven-membered carbocyclic or heterocyclic ring consisting of zero to three heteroatoms, for example forming methyl enedioxy or ethyl enedioxy.
  • An optionally substituted group may be unsubstituted (e.g., -CH2CH3), fully substituted (e.g., -CF2CF3), monosubstituted (e.g., -CH2CH2F) or substituted at a level anywhere in-between fully substituted and monosubstituted (e.g., -CH2CF3).
  • R or the term R' refers to a moiety selected from the group consisting of hydrogen, alkyl, cycloalkyl, heteroalkyl, aryl, heteroaryl and heterocycloalkyl, any of which may be optionally substituted.
  • aryl, heterocycle, R, etc. occur more than one time in a formula or generic structure, its definition at each occurrence is independent of the definition at every other occurrence.
  • certain groups may be attached to a parent molecule or may occupy a position in a chain of elements from either end as written.
  • an unsymmetrical group such as -C(0)N(R)- may be attached to the parent moiety at either the carbon or the nitrogen.
  • bond refers to a covalent linkage between two atoms, or two moieties when the atoms joined by the bond are considered part of larger substructure.
  • a bond may be single, double, or triple unless otherwise specified.
  • a dashed line between two atoms in a drawing of a molecule indicates that an additional bond may be present or absent at that position.
  • disease as used herein is intended to be generally synonymous, and is used interchangeably with, the terms “disorder,” “syndrome,” and “condition” (as in medical condition), in that all reflect an abnormal condition of the human or animal body or of one of its parts that impairs normal functioning, is typically manifested by distinguishing signs and symptoms, and causes the human or animal to have a reduced duration or quality of life.
  • combination therapy means the administration of two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure. Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each active ingredient. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the conditions or disorders described herein.
  • MTHl inhibitor is used herein to refer to a compound that exhibits an IC50 with respect to MTHl activity of no more than about 100 ⁇ and more typically not more than about 50 ⁇ , as measured in the MTHl enzyme assay described generally herein below.
  • IC50 is that concentration of inhibitor that reduces the activity of an enzyme (e.g., MTHl) to half-maximal level. Certain compounds disclosed herein have been discovered to exhibit inhibition against MTHl .
  • compounds will exhibit an IC50 with respect to MTHl of no more than about 10 ⁇ ; in further embodiments, compounds will exhibit an IC50 with respect to MTH1 of no more than about 5 ⁇ ; in yet further embodiments, compounds will exhibit an IC50 with respect to MTH1 of not more than about 1 ⁇ ; in yet further embodiments, compounds will exhibit an IC50 with respect to MTH1 of not more than about 200 nM, as measured in the MTH1 binding assay described herein.
  • terapéuticaally effective is intended to qualify the amount of active ingredients used in the treatment of a disease or disorder or on the effecting of a clinical endpoint.
  • terapéuticaally acceptable refers to those compounds (or salts, prodrugs, tautomers, zwitterionic forms, etc.) which are suitable for use in contact with the tissues of patients without undue toxicity, irritation, and allergic response, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • treatment of a patient is intended to include prophylaxis. Treatment may also be preemptive in nature, i.e., it may include prevention of disease. Prevention of a disease may involve complete protection from disease, for example as in the case of prevention of infection with a pathogen, or may involve prevention of disease progression. For example, prevention of a disease may not mean complete foreclosure of any effect related to the diseases at any level, but instead may mean prevention of the symptoms of a disease to a clinically significant or detectable level. Prevention of diseases may also mean prevention of progression of a disease to a later stage of the disease.
  • the term "radiation” means ionizing radiation comprising particles or photons that have sufficient energy or can produce sufficient energy via nuclear interactions to produce ionization (gain or loss of electrons).
  • An exemplary and preferred ionizing radiation is an x-radiation.
  • Means for delivering x-radiation to a target tissue or cell are well known in the art. The amount of ionizing radiation needed in a given cell generally depends on the nature of that cell. Means for determining an effective amount of radiation are well known in the art. Used herein, the term "an effective dose" of ionizing radiation means a dose of ionizing radiation that produces an increase in cell damage or death.
  • radiation therapy refers to the use of electromagnetic or particulate radiation in the treatment of neoplasia and includes the use of ionizing and non-ionizing radiation.
  • patient is generally synonymous with the term “subject” and includes all mammals including humans. Examples of patients include humans, livestock (farm animals) such as cows, goats, sheep, pigs, and rabbits, and companion animals such as dogs, cats, rabbits, and horses. Preferably, the patient is a human.
  • livestock farm animals
  • companion animals such as dogs, cats, rabbits, and horses.
  • the patient is a human.
  • prodrug refers to a compound that is made more active in vivo. Certain compounds disclosed herein may also exist as prodrugs, as described in Hydrolysis in Drug and Prodrug Metabolism : Chemistry, Biochemistry, and Enzymology (Testa, Bernard and Mayer, Joachim M. Wiley-VHCA, Zurich, Switzerland 2003). Prodrugs of the compounds described herein are structurally modified forms of the compound that readily undergo chemical changes under physiological conditions to provide the compound. Additionally, prodrugs can be converted to the compound by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to a compound when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
  • Prodrugs are often useful because, in some situations, they may be easier to administer than the compound, or parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug.
  • a wide variety of prodrug derivatives are known in the art, such as those that rely on hydrolytic cleavage or oxidative activation of the prodrug.
  • An example, without limitation, of a prodrug would be a compound which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound.
  • the compounds disclosed herein can exist as therapeutically acceptable salts.
  • the present disclosure includes compounds listed above in the form of salts, including acid addition salts. Suitable salts include those formed with both organic and inorganic acids. Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non- pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question. Basic addition salts may also be formed and be pharmaceutically acceptable.
  • Pharmaceutical Salts Properties, Selection, and Use (Stahl, P. Heinrich. Wiley-VCHA, Zurich, Switzerland, 2002).
  • terapéuticaally acceptable salt represents salts or zwitterionic forms of the compounds disclosed herein which are water or oil-soluble or dispersible and therapeutically acceptable as defined herein.
  • the salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid.
  • Representative acid addition salts include acetate, adipate, alginate, L-ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bi sulfate, butyrate, camphorate, camphorsulfonate, citrate, di gluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methanesulfonate, naphthylenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-
  • basic groups in the compounds disclosed herein can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides.
  • acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric. Salts can also be formed by coordination of the compounds with an alkali metal or alkaline earth ion.
  • the present disclosure contemplates sodium, potassium, magnesium, and calcium salts of the compounds disclosed herein, and the like.
  • Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine.
  • a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine.
  • the cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N- dimethylaniline, N-methylpiperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, ⁇ , ⁇ -dibenzylphenethylamine, 1-ephenamine, and N,N'- dibenzylethylenediamine.
  • Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
  • a salt of a compound can be made by reacting the appropriate compound in the form of the free base with the appropriate acid.
  • Q is chosen from C and N;
  • R 1 is chosen from R 5 R 6 , H, alkyl, halo, OH, and OR 5 ;
  • R 2 is chosen from R 7 R 8 , OR 7 , H, alkyl, and cycloalkyl;
  • R 3 is chosen from
  • R 10 R U H, alkyl, cycloalkyl, halogen, OR 10 , SR 10 , S(0) 2 R 10 ;
  • R 4 is chosen from NR 12 R 13 , H, alkyl, halogen, OR 12 , SR 12 , S(0) 2 R 12 , wherein R 4 is null when Q is N;
  • each of R 5 - R 13 are independently chosen from alkoxy, alkyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, H, haloalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl, and hydroxyl, wherein each of R 1 - R 13 may be optionally substituted with between 0 and 3 R z groups chosen from alkoxy, alkyl, alkylsulfonyl, aryl, cycloalkyl, cycloalkylalkyl, halo, hal
  • R 2 and R 3 together with the atoms to which they attach, may optionally form a cycloalkyl, aryl, heterocycloalkyl, or heteroaryl ring, which may be optionally substituted with between 0 and 3 halogens;
  • R 3 and R 4 together with the atoms to which they attach, may optionally form a cycloalkyl, aryl, heterocycloalkyl, or heteroaryl ring, which may be optionally substituted with between 0 and 3 halogens;
  • R 7 and R 8 together with the atoms to which they attach, may optionally form a heterocycloalkyl or heteroaryl ring: and R 12 and R 13 , together with the atoms to which they attach, may optionally form a heterocycloalkyl or heteroaryl ring, with the proviso
  • Example 54 N H 2
  • Example 60 H 2 N N °
  • Example 63 N Cl
  • Example 75 3 ⁇ 4N N as described herein
  • Q is C.
  • R 1 is R 5 R 6 ; R 5 is H; and R 6 is H.
  • R 2 is H.
  • R 3 is alkyl
  • R 4 is R 12 R 13 .
  • R 4 is OR 12 .
  • the compound is chosen from Examples 1-59, 61, 62, 65-
  • compositions which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, esters, prodrugs, amides, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients.
  • the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen.
  • compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee- making, levigating, emulsifying, encapsulating, entrapping or compression processes.
  • the formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous, intraarticular, and intramedullary), intraperitoneal, transmucosal, transdermal, rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Typically, these methods include the step of bringing into association a compound of the subject disclosure or a pharmaceutically acceptable salt, ester, amide, prodrug or solvate thereof ("active ingredient”) with the carrier which constitutes one or more accessory ingredients.
  • active ingredient a pharmaceutically acceptable salt, ester, amide, prodrug or solvate thereof
  • the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
  • the compounds of the present invention may be administered orally, including swallowing, so the compound enters the gastrointestinal tract, or is absorbed into the blood stream directly from the mouth, including sublingual or buccal administration.
  • compositions for oral administration include solid formulations such as tablets, pills, cachets, lozenges and hard or soft capsules, which can contain liquids, gels, powders, or granules.
  • the amount of drug present may be from about 0.05% to about 95% by weight, more typically from about 2% to about 50% by weight of the dosage form.
  • tablets or capsules may contain a disintegrant, comprising from about 0.5% to about 35%) by weight, more typically from about 2% to about 25% of the dosage form.
  • disintegrants include methyl cellulose, sodium or calcium carboxymethyl cellulose, croscarmellose sodium, polyvinylpyrrolidone, hydroxypropyl cellulose, starch and the like.
  • Suitable binders for use in a tablet, include gelatin, polyethylene glycol, sugars, gums, starch, hydroxypropyl cellulose and the like.
  • Suitable diluents for use in a tablet, include mannitol, xylitol, lactose, dextrose, sucrose, sorbitol and starch.
  • Suitable surface active agents and glidants for use in a tablet or capsule, may be present in amounts from about 0.1% to about 3% by weight, and include polysorbate 80, sodium dodecyl sulfate, talc and silicon dioxide.
  • Suitable lubricants for use in a tablet or capsule, may be present in amounts from about 0.1% to about 5% by weight, and include calcium, zinc or magnesium stearate, sodium stearyl fumarate and the like.
  • Tablets may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with binders, inert diluents, or lubricating, surface active or dispersing agents.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with a liquid diluent. Dyes or pigments may be added to tablets for identification or to characterize different combinations of active compound doses.
  • Liquid formulations can include emulsions, solutions, syrups, elixirs and suspensions, which can be used in soft or hard capsules.
  • Such formulations may include a pharmaceutically acceptable carrier, for example, water, ethanol, polyethylene glycol, cellulose, or an oil.
  • the formulation may also include one or more emulsifying agents and/or suspending agents.
  • compositions for oral administration may be formulated as immediate or modified release, including delayed or sustained release, optionally with enteric coating.
  • a pharmaceutical composition comprises a therapeutically effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • Compounds of the present invention may be administered directly into the blood stream, muscle, or internal organs by injection, e.g., by bolus injection or continuous infusion.
  • Suitable means for parenteral administration include intravenous, intra-muscular, subcutaneous intraarterial, intraperitoneal, intrathecal, intracranial, and the like.
  • Suitable devices for parenteral administration include injectors (including needle and needle-free injectors) and infusion methods.
  • the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials.
  • parenteral formulations are aqueous solutions containing excipients, including salts, buffering, suspending, stabilizing and/or dispersing agents, antioxidants, bacteriostats, preservatives, and solutes which render the formulation isotonic with the blood of the intended recipient, and carbohydrates.
  • Parenteral formulations may also be prepared in a dehydrated form (e.g., by lyophilization) or as sterile non-aqueous solutions. These formulations can be used with a suitable vehicle, such as sterile water. Solubility-enhancing agents may also be used in preparation of parenteral solutions.
  • compositions for parenteral administration may be formulated as immediate or modified release, including delayed or sustained release.
  • Compounds may also be formulated as depot preparations. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • Compounds of the present invention may be administered topically (for example to the skin, mucous membranes, ear, nose, or eye) or transdermally.
  • Formulations for topical administration can include, but are not limited to, lotions, solutions, creams, gels, hydrogels, ointments, foams, implants, patches and the like.
  • Carriers that are pharmaceutically acceptable for topical administration formulations can include water, alcohol, mineral oil, glycerin, polyethylene glycol and the like. Topical administration can also be performed by, for example, electroporation, iontophoresis, phonophoresis and the like.
  • the active ingredient for topical administration may comprise from 0.001% to 10% w/w (by weight) of the formulation.
  • the active ingredient may comprise as much as 10% w/w; less than 5% w/w; from 2% w/w to 5% w/w; or from 0.1% to 1%) w/w of the formulation.
  • compositions for topical administration may be formulated as immediate or modified release, including delayed or sustained release. Rectal, Buccal, and Sublingual Administration
  • Suppositories for rectal administration of the compounds of the present invention can be prepared by mixing the active agent with a suitable non-irritating excipient such as cocoa butter, synthetic mono-, di-, or triglycerides, fatty acids, or polyethylene glycols which are solid at ordinary temperatures but liquid at the rectal temperature, and which will therefore melt in the rectum and release the drug.
  • a suitable non-irritating excipient such as cocoa butter, synthetic mono-, di-, or triglycerides, fatty acids, or polyethylene glycols which are solid at ordinary temperatures but liquid at the rectal temperature, and which will therefore melt in the rectum and release the drug.
  • compositions may take the form of tablets, lozenges, pastilles, or gels formulated in conventional manner.
  • Such compositions may comprise the active ingredient in a flavored basis such as sucrose and acacia or tragacanth.
  • compounds may be conveniently delivered from an insufflator, nebulizer pressurized packs or other convenient means of delivering an aerosol spray or powder.
  • Pressurized packs may comprise a suitable propellant such as
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • the compounds according to the disclosure may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch.
  • the powder composition may be presented in unit dosage form, in for example, capsules, cartridges, gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.
  • compositions of the invention may be prepared by any of the well-known techniques of pharmacy, such as effective formulation and administration procedures.
  • Preferred unit dosage formulations are those containing an effective dose, as herein recited, or an appropriate fraction thereof, of the active ingredient.
  • the precise amount of compound administered to a patient will be the responsibility of the attendant physician.
  • the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diets, time of administration, route of administration, rate of excretion, drug combination, the precise disorder being treated, and the severity of the indication or condition being treated.
  • the route of administration may vary depending on the condition and its severity.
  • the present disclosure provides compounds and pharmaceutical compositions that inhibit MTH1 activity and are thus useful in the treatment or prevention of disorders associated with MTH1.
  • Compounds and pharmaceutical compositions of the present disclosure selectively modulate MTH1 and are thus useful in the treatment or prevention of a range of disorders associated with MTH1 and include, but are not limited to cancer.
  • the compounds and pharmaceutical compositions of the present disclosure may be useful in the treatment or prevention of cancer.
  • the cancer is chosen from Soft Tissue Cancers: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma; Lung cancers/diseases: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar) carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hamartoma, mesothelioma; Gastrointestinal cancers/diseases: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pan
  • hepatoma hepatocellular carcinoma
  • Bone cancers/diseases osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple myeloma, malignant giant cell tumor chordoma, osteochronfroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors; Nervous system cancers/diseases: skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningiom
  • cervix cervical carcinoma, pre-tumor cervical dysplasia
  • ovaries ovarian carcinoma [serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma], granulosa-thecal cell tumors, Sertoli- Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), vagina (clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma (embryonal rhabdomyosarcoma], fallopian tubes (carcinoma); and Hematologic cancers/diseases: blood and bone marrow (myeloid leukemia [acute and chronic], acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases,
  • the compounds of the present invention can be used, alone or in combination with other pharmaceutically active compounds, to treat conditions such as those previously described hereinabove.
  • the compound(s) of the present invention and other pharmaceutically active compound(s) can be administered simultaneously (either in the same dosage form or in separate dosage forms) or sequentially.
  • the present invention comprises methods for treating a condition by administering to the subject a therapeutically- effective amount of one or more compounds of the present invention and one or more additional pharmaceutically active compounds.
  • composition comprising one or more compounds of the present invention, one or more additional pharmaceutically active compounds, and a pharmaceutically acceptable carrier.
  • the one or more additional pharmaceutically active compounds is selected from the group consisting of anti-cancer drugs, anti-proliferative drugs, and anti-inflammatory drugs.
  • MTHl inhibitor compositions described herein are also optionally used in
  • the compounds described herein and, in embodiments where combination therapy is employed do not have to be administered in the same pharmaceutical composition and, because of different physical and chemical characteristics, are optionally administered by different routes.
  • the initial administration is generally made according to established protocols and then, based upon the observed effects, the dosage, modes of administration and times of administration subsequently modified.
  • the therapeutic effectiveness of a MTHl inhibitor is enhanced by administration of another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit.
  • the overall benefit experienced by the patient is either simply additive of the two therapeutic agents or the patient experiences an enhanced (i.e., synergistic) benefit.
  • a compound disclosed herein may be appropriate to administer an agent to reduce the side effect; or the therapeutic effectiveness of a compound described herein may be enhanced by administration of an adjuvant.
  • Therapeutically effective dosages vary when the drugs are used in treatment combinations. Methods for experimentally determining therapeutically effective dosages of drugs and other agents for use in combination treatment regimens are documented
  • Combination treatment further includes periodic treatments that start and stop at various times to assist with the clinical management of the patient.
  • the multiple therapeutic agents one of which is a MTHl inhibitor as described herein
  • one of the therapeutic agents is given in multiple doses, or both are given as multiple doses. If not simultaneous, the timing between the multiple doses optionally varies from more than zero weeks to less than twelve weeks.
  • the combination methods, compositions and formulations are not to be limited to the use of only two agents, the use of multiple therapeutic combinations are also envisioned. It is understood that the dosage regimen to treat, prevent, or ameliorate the condition(s) for which relief is sought, is optionally modified in accordance with a variety of factors. These factors include the disorder from which the subject suffers, as well as the age, weight, sex, diet, and medical condition of the subject. Thus, the dosage regimen actually employed varies widely, in some embodiments, and therefore deviates from the dosage regimens set forth herein.
  • the pharmaceutical agents which make up the combination therapy disclosed herein are optionally a combined dosage form or in separate dosage forms intended for substantially simultaneous administration.
  • the pharmaceutical agents that make up the combination therapy are optionally also administered sequentially, with either agent being administered by a regimen calling for two-step administration.
  • the two-step administration regimen optionally calls for sequential administration of the active agents or spaced-apart administration of the separate active agents.
  • the time between the multiple administration steps ranges from a few minutes to several hours, depending upon the properties of each pharmaceutical agent, such as potency, solubility, bioavailability, plasma half-life and kinetic profile of the pharmaceutical agent.
  • a MTHl inhibitor is optionally used in combination with procedures that provide additional benefit to the patient.
  • a MTHl inhibitor and any additional therapies are optionally administered before, during or after the occurrence of a disease or condition, and the timing of administering the composition containing a MTHl inhibitor varies in some embodiments.
  • a MTHl inhibitor is used as a prophylactic and is administered continuously to subjects with a propensity to develop conditions or diseases in order to prevent the occurrence of the disease or condition.
  • a MTH1 inhibitor and compositions are optionally administered to a subject during or as soon as possible after the onset of the symptoms.
  • a MTH1 inhibitor can be used in combination with anti-cancer drugs, including but not limited to the following classes: alkylating agents, anti -metabolites, plant alkaloids and terpenoids, topoisomerase inhibitors, cytotoxic antibiotics, angiogenesis inhibitors and tyrosine kinase inhibitors.
  • the compounds disclosed herein, including compounds of Formula I, are also useful as chemo- and radio-sensitizers for cancer treatment. They are useful for the treatment of mammals who have previously undergone or are presently undergoing or will be undergoing treatment for cancer. Such other treatments include chemotherapy, radiation therapy, surgery or immunotherapy, such as cancer vaccines.
  • the instant compounds are particularly useful in combination with therapeutic, anticancer and/or radiotherapeutic agents.
  • the present disclosuredisclosure provides a combination of the presently compounds of Formula I with therapeutic, anti-cancer and/or radiotherapeutic agents for simultaneous, separate or sequential administration.
  • the compounds of this disclosure and the other anticancer agent can act additively or synergistically.
  • a synergistic combination of the present compounds and another anticancer agent might allow the use of lower dosages of one or both of these agents and/or less frequent dosages of one or both of the instant compounds and other anticancer agents and/or to administer the agents less frequently can reduce any toxicity associated with the administration of the agents to a subject without reducing the efficacy of the agents in the treatment of cancer.
  • a synergistic effect might result in the improved efficacy of these agents in the treatment of cancer and/or the reduction of any adverse or unwanted side effects associated with the use of either agent alone.
  • the therapeutic agent, anti-cancer agent and/or radiation therapy can be administered according to therapeutic protocols well known in the art. It will be apparent to those skilled in the art that the administration of the therapeutic agent, anti-cancer agent and/or radiation therapy can be varied depending on the disease being treated and the known effects of the anti-cancer agent and/or radiation therapy on that disease. Also, in accordance with the knowledge of the skilled clinician, the therapeutic protocols (e.g., dosage amounts and times of administration) can be varied in view of the observed effects of the administered therapeutic agents (i.e., anti-neoplastic agent or radiation) on the patient, and in view of the observed responses of the disease to the administered therapeutic agents, and observed adverse affects.
  • the administered therapeutic agents i.e., anti-neoplastic agent or radiation
  • Dosage ranges for x-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens.
  • Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.
  • any suitable means for delivering radiation to a tissue may be employed in the present disclosure.
  • Common means of delivering radiation to a tissue is by an ionizing radiation source external to the body being treated.
  • Alternative methods for delivering radiation to a tissue include, for example, first delivering in vivo a radiolabeled antibody that immunoreacts with an antigen of the tumor, followed by delivering in vivo an effective amount of the radio labeled antibody to the tumor.
  • radioisotopes may be used to deliver ionizing radiation to a tissue or cell.
  • the radiation may be delivered by means of a radiomimetic agent.
  • a "radiomimetic agent” is a chemotherapeutic agent, for example melphalan, that causes the same type of cellular damage as radiation therapy, but without the application of radiation.
  • a MTH1 inhibitor may be optimally used together with one or more of the following non-limiting examples of anti-cancer agents: (1) alkylating agents, including but not limited to cisplatin (PLATIN), carboplatin (PARAPLATIN), oxaliplatin (ELOXATIN), streptozocin (ZANOSAR), busulfan (MYLERAN) and
  • alkylating agents including but not limited to cisplatin (PLATIN), carboplatin (PARAPLATIN), oxaliplatin (ELOXATIN), streptozocin (ZANOSAR), busulfan (MYLERAN) and
  • cyclophosphamide ENDOXAN
  • anti -metabolites including but not limited to
  • mercaptopurine PURINETHOL
  • thioguanine pentostatin
  • NIPENT cytosine arabinoside
  • ARA-C cytosine arabinoside
  • GEMZAR gemcitabine
  • fluorouracil CARAC
  • FUSILEV fluorouracil
  • FUSILEV fluorouracil
  • methotrexate RHEUMATREX
  • plant alkaloids and terpenoids including but not limited to vincristine (ONCOVIN), vinblastine and paclitaxel
  • TAXOL paclitaxel
  • topoisomerase inhibitors including but not limited to irinotecan (CAMPTOSAR), topotecan (HYCAMTIN) and etoposide (EPOSIN)
  • cytotoxic antibiotics including but not limited to actinomycin D (COSMEGEN), doxorubicin (ADRIAMYCIN), bleomycin (BLENOXANE) and mitomycin (MITOSOL)
  • GLEEVEC GLEEVEC
  • TARCEVA erlotinib
  • TYKERB lapatininb
  • axitinib axitinib
  • a MTH1 inhibitor compound described herein is optionally used together with one or more agents or methods for treating an inflammatory condition in any combination.
  • Therapeutic agents/treatments for treating an autoimmune and/or inflammatory condition include, but are not limited to any of the following examples: (1) corticosteroids, including but not limited to cortisone, dexamethasone, and methylprednisolone; (2) nonsteroidal anti-inflammatory drugs (NSAIDs), including but not limited to ibuprofen, naproxen, acetaminophen, aspirin, fenoprofen (NALFON), flurbiprofen (ANSAID), ketoprofen, oxaprozin (DAYPRO), diclofenac sodium (VOLTAREN), diclofenac potassium (CATAFLAM), etodolac (LODINE), indomethacin (INDOCIN), ketorolac (TORADOL), sulindac
  • corticosteroids including but not limited to cortisone, dex
  • DMAP 4-dimethylaminopyridine
  • DMF N,N- dimethylformamide
  • DMSO-d 6 deuterated dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • DPP A diphenylphosphoryl azide
  • Et 2 0 diethyl ether
  • EtOAc ethyl acetate
  • EtOH ethanol
  • h hour
  • HATU 2-(lH-7-azabenzotriazol-l-yl)-l, 1,3,3- tetramethyl uronium hexafluorophosphate methanaminium
  • TFA trifluoroacetic acid
  • TFAA trifluoroacetic anhydride
  • THF tetrahydrofuran
  • Tol toluene
  • TsCl tosyl chloride
  • XPhos 2- dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl.
  • Example 43 3-((2-Amino-5-methylpyrimidin-4-yl)oxy)-2,2-dimethylpropan-l-ol [0176] To a solution of 4-chloro-5-methylpyrimidin-2-amine (25 mg, 0.17 mmol) in Dioxane (0.5 ml) were added 2,2-dimethylpropane-l,3-diol (19.95 mg, 0.19 mmol) and NaH 60% dispersion in mineral oil (13.93 mg, 0.34 mmol) and the resulting mixture was stirred at 60 °C overnight. The mixture was quenched with 6N HCl (0.058 ml, 0.34 mmol) and the volatiles were removed under reduced pressure.
  • Example 90 4-(3 , 3 -Dimethylbut- 1 -yn- 1 -yl)-5 -methylpyrimidin-2-amine
  • MTH1 activity assay conditions were: 0.2 nM His-tagged MTH1
  • the screening assay was performed as following: compounds were first serially diluted in DMSO in a 1 :3 dilution series and then further diluted in assay buffer generating 10 different compound concentrations, giving a final DMSO
  • Non-limiting examples include the following compounds and pharmaceutically acceptable salts thereof. “ND” indicates no data.

Abstract

La présente invention concerne des composés et des compositions de structure correspondant à la formule I, qui sont utiles pour traiter des maladies, telles que le cancer, dans lesquelles l'inhibition de MTH1 est susceptible d'être bénéfique à un patient. L'invention concerne également des procédés d'inhibition de l'activité de MTH1 chez un sujet humain ou animal.
PCT/US2016/022138 2015-03-11 2016-03-11 Inhibiteurs de mth1 pour le traitement de maladies WO2016145383A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562131667P 2015-03-11 2015-03-11
US62/131,667 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016145383A1 true WO2016145383A1 (fr) 2016-09-15

Family

ID=56879856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/022138 WO2016145383A1 (fr) 2015-03-11 2016-03-11 Inhibiteurs de mth1 pour le traitement de maladies

Country Status (1)

Country Link
WO (1) WO2016145383A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111760071A (zh) * 2020-07-01 2020-10-13 童艳梅 脱细胞真皮基质的新用途
US10894797B2 (en) 2018-09-18 2021-01-19 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphatase inhibitors
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof
CN116948852A (zh) * 2023-07-20 2023-10-27 江南大学 一种低乙醇合成量、高乙酰辅酶a合成量的酿酒酵母及其应用
CN116948852B (zh) * 2023-07-20 2024-04-26 江南大学 一种低乙醇合成量、高乙酰辅酶a合成量的酿酒酵母及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060128724A1 (en) * 2004-08-26 2006-06-15 Agouron Pharmaceuticals, Inc. Pyrazole-substituted aminoheteroaryl compounds as protein kinase inhibitors
US20110152519A1 (en) * 2008-03-31 2011-06-23 Zenyaku Kogyo Kabushikikaisha Pyrimidine derivative having cell protecting effect and uses thereof
WO2014084778A1 (fr) * 2012-11-27 2014-06-05 Thomas Helledays Stiftelse För Medicinsk Forskning Dérivés de pyrimidine-2,4-diamine utilisables en vue du traitement du cancer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060128724A1 (en) * 2004-08-26 2006-06-15 Agouron Pharmaceuticals, Inc. Pyrazole-substituted aminoheteroaryl compounds as protein kinase inhibitors
US20110152519A1 (en) * 2008-03-31 2011-06-23 Zenyaku Kogyo Kabushikikaisha Pyrimidine derivative having cell protecting effect and uses thereof
WO2014084778A1 (fr) * 2012-11-27 2014-06-05 Thomas Helledays Stiftelse För Medicinsk Forskning Dérivés de pyrimidine-2,4-diamine utilisables en vue du traitement du cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE PUBCHEM 22 May 2013 (2013-05-22), "2-amino-5-methylpyrimidine.", XP055309053, Database accession no. 163090910 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10894797B2 (en) 2018-09-18 2021-01-19 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphatase inhibitors
US11034705B2 (en) 2018-09-18 2021-06-15 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as Src homology-2 phosphate inhibitors
US11459340B2 (en) 2018-09-18 2022-10-04 Nikang Therapeutics, Inc. Tri-substituted heteroaryl derivatives as Src homology-2 phosphatase inhibitors
US11518772B2 (en) 2018-09-18 2022-12-06 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as Src homology-2 phosphate inhibitors
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof
CN111760071A (zh) * 2020-07-01 2020-10-13 童艳梅 脱细胞真皮基质的新用途
CN116948852A (zh) * 2023-07-20 2023-10-27 江南大学 一种低乙醇合成量、高乙酰辅酶a合成量的酿酒酵母及其应用
CN116948852B (zh) * 2023-07-20 2024-04-26 江南大学 一种低乙醇合成量、高乙酰辅酶a合成量的酿酒酵母及其应用

Similar Documents

Publication Publication Date Title
AU2019263294B2 (en) Substituted heterocyclic inhibitors of PTPN11
US11713313B2 (en) GLS1 inhibitors for treating disease
EP3164394B1 (fr) Inhibiteurs de gls1 pour le traitement de maladies
EP3773587A1 (fr) Inhibiteurs d'imidazopipérazine de protéines d'activation de la transcription
WO2016004417A1 (fr) Inhibiteurs de la gls1 pour le traitement de maladies
WO2016004413A2 (fr) Inhibiteurs de la gls1 pour le traitement de maladies
CA3137901A1 (fr) Inhibiteurs heterocycliques de tyrosine kinase
WO2020018670A1 (fr) Composés utiles en tant qu'inhibiteurs de l'indoléamine 2,3-dioxygénase et/ou de la tryptophane dioxygénase
WO2019195846A1 (fr) Inhibiteurs d'imidazopipérazinone de protéines d'activation de la transcription
WO2016033416A1 (fr) Inhibiteurs de bromodomaine pour le traitement de maladies
WO2015112847A1 (fr) Inhibiteurs d'itk à base d'arylpyridinone permettant de traiter une inflammation et un cancer
WO2016145383A1 (fr) Inhibiteurs de mth1 pour le traitement de maladies
WO2018213777A1 (fr) Inhibiteurs hétérocycliques de kdm5 pour le traitement de maladies
US20230312588A1 (en) Imidazopiperazine inhibitors of transcription activating proteins
BR112017028309B1 (pt) Composto e composição

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16762654

Country of ref document: EP

Kind code of ref document: A1