WO2016143999A1 - Thin film, method of manufacturing same, and device for manufacturing same - Google Patents

Thin film, method of manufacturing same, and device for manufacturing same Download PDF

Info

Publication number
WO2016143999A1
WO2016143999A1 PCT/KR2016/000768 KR2016000768W WO2016143999A1 WO 2016143999 A1 WO2016143999 A1 WO 2016143999A1 KR 2016000768 W KR2016000768 W KR 2016000768W WO 2016143999 A1 WO2016143999 A1 WO 2016143999A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
thin film
graphene layer
heater
tube
Prior art date
Application number
PCT/KR2016/000768
Other languages
French (fr)
Korean (ko)
Inventor
김은규
박창수
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150049020A external-priority patent/KR101696539B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2016143999A1 publication Critical patent/WO2016143999A1/en
Priority to US15/700,691 priority Critical patent/US10510534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Definitions

  • the present invention relates to a thin film, a method for manufacturing the same, and a manufacturing apparatus thereof, and more particularly, to a thin film doped with a metal, a method for manufacturing the same, and a manufacturing apparatus thereof.
  • Graphene is a two-dimensional material made of carbon atoms and has a honeycomb structure.
  • a single layer of graphene is a very thin material having a thickness of 3 ⁇ and is semi-metallic.
  • Graphene is very stable structurally and chemically and has very good electrical properties due to its quantum mechanical properties. Graphene not only moves electrons about 100 times faster than single-crystal silicon, but can also flow about 100 times as much current as copper. Due to these characteristics, graphene is attracting attention as a next-generation material to replace existing materials.
  • Graphene may be applied to various technical fields, such as transparent electrodes, transparent displays, secondary electrode materials, and memory devices. Accordingly, various researches and developments for controlling or improving the electrical, physical, chemical, and mechanical properties of graphene are being conducted according to the application technology of graphene.
  • Korean Patent Laid-Open Publication No. 10-2010-0103124 (Application No. 10-2009-0021574, Applicant: Korea Research Institute of Standards and Science) generates structural defects in graphene using an oxygen plasma, thereby forming the overall shape of graphene.
  • Techniques for controlling the electrical properties of graphene without changing silver are disclosed.
  • One technical problem to be solved by the present invention is to provide a thin film including a graphene layer doped with a metal, a method for manufacturing the same, and a device for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a thin film including a graphene layer having magnetic properties, a method for manufacturing the same, and a device for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a thin film including a graphene layer having a band gap, a method for manufacturing the same, and a device for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a thin film, a method for manufacturing the same, and an apparatus for manufacturing the same, which are simultaneously performed by doping metal and synthesizing graphene.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a thin film manufacturing apparatus.
  • the apparatus for manufacturing a thin film may include a tube including one end and the other end, a first heater supplying heat to a first region adjacent to the one end of the tube, and the tube of the tube. Supplying heat to a second region adjacent to the other end, a second heater disposed alongside the first heater along the tube, a gas inlet through which a source gas is supplied to the one end of the tube, and the tube It may include a gas outlet for discharging the source gas from the other end.
  • a metal source is disposed in the first region, the metal is evaporated by heat supplied from the first heater, and a substrate is disposed in the second region.
  • the evaporated metal gas and the source gas may be simultaneously provided on the substrate to form a thin film doped with the metal on the substrate.
  • the source gas may include carbon, and a graphene layer doped with the metal may be formed on the substrate.
  • the source metal may include a transition metal oxide.
  • internal temperatures of the first region and the second region may be independently controlled by the first heater and the second heater.
  • the first heater and the second heater may surround the first area and the second area, respectively.
  • the present invention provides a method for producing a thin film.
  • the method of manufacturing the thin film may include preparing a substrate, evaporating a metal source, and simultaneously providing a source gas containing carbon and the evaporated metal gas on the substrate. It may include the step of forming a graphene layer doped with the metal.
  • the metal may be covalently bonded with carbons included in the graphene layer to form a honeycomb lattice.
  • evaporating the metal source, and forming the graphene layer doped with the metal may be performed in the same tube.
  • evaporating the metal source may include supplying heat to the metal source, and adjusting the heat supplied to the metal source to adjust the doping concentration of the metal.
  • the present invention provides a thin film.
  • the thin film may include a graphene layer doped with a metal covalently bonded with carbons to form a honeycomb lattice.
  • the resistance of the graphene layer doped with the metal may decrease.
  • the graphene layer doped with the metal may have ferromagnetic properties at room temperature.
  • the vaporized metal gas and the source gas may be simultaneously provided on the substrate. Accordingly, a metal doped thin film may be formed on the substrate.
  • a graphene layer doped with the metal may be formed on the substrate. In this case, the metal may be covalently bonded with carbon of the graphene layer to form a honeycomb lattice.
  • a thin film, a method of manufacturing the same, and a device for manufacturing the same which simplify the manufacturing process, reduce the manufacturing cost, and allow easy control of electrical and magnetic properties.
  • FIG. 1 is a view for explaining a thin film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a thin film according to an embodiment of the present invention.
  • FIG 3 is a view for explaining a thin film according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the Raman spectrum of a thin film according to an embodiment of the present invention.
  • FIG. 5 is a graph measuring a change in magnetization according to a magnetic field of a thin film according to an exemplary embodiment of the present invention.
  • FIG. 6 is a graph measuring the change in magnetization degree according to the temperature of the thin film according to the embodiment of the present invention.
  • FIG. 7 is a graph measuring resistance change according to temperature of a thin film according to an exemplary embodiment of the present invention.
  • FIG. 8 is a graph measuring current voltage characteristics of a transistor including a thin film according to an exemplary embodiment of the present invention.
  • FIG. 9 is a graph measuring on / off current ratio of a transistor including a thin film according to an exemplary embodiment of the present invention.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
  • first component in one embodiment may be referred to as a second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • the term 'and / or' is used herein to include at least one of the components listed before and after.
  • connection is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
  • FIG. 1 is a view for explaining a thin film manufacturing apparatus according to an embodiment of the present invention
  • Figure 2 is a flow chart for explaining a manufacturing method of a thin film according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention It is a figure for demonstrating the thin film which followed.
  • the tube (tube) 100, the first heater (H1), the second heater (H2), the gas inlet 140, and gas It may include an outlet 170.
  • the tube 100 may include one end and the other end.
  • the tube 100 may be in the form of a line extending in one direction.
  • the tube 100 may be a quartz tube.
  • the tube 100 may include a first region 110 and a second region 120.
  • the first region 110 may be adjacent to the one end of the tube 100, and the second region 120 may be adjacent to the other end of the tube 100.
  • the first heater H1 may surround the first region 110 of the tube 100. In other words, one region of the tube 100 surrounded by the first heater H1 may be defined as the first region 110. The first heater H1 may supply heat to the first region 110.
  • the second heater H2 may surround the second region 120 of the tube 100. In other words, one region of the tube 100 surrounded by the second heater H2 may be defined as the second region 120. The second heater H2 may supply heat to the second region 120.
  • the first heater H1 and the second heater H2 may be operated independently of each other.
  • the temperature inside the first region 110 and the temperature inside the second region 120 are independently controlled by heat supplied from the first heater H1 and the second heater H2. Can be.
  • the gas inlet 160 may be located at one end of the tube 100, and the gas outlet 170 may be located at the other end of the tube 100. Accordingly, the gas inlet 160, the first region 110, the second region 120, and the gas outlet 170 may be arranged side by side.
  • a metal source 130 may be disposed in the first region 110 of the tube 100.
  • the metal source 130 may include a transition metal oxide.
  • the metal source 130 may include molybdenum oxide, titanium oxide, cobalt oxide, nickel oxide, tungsten oxide, or the like.
  • a substrate SUB may be prepared in the second region 120 of the tube 100 (S100).
  • the substrate SUB may be a copper film.
  • the substrate SUB may be any one of a silicon semiconductor substrate, a compound semiconductor substrate, a glass substrate, a plastic substrate, and a metal substrate.
  • the metal source 130 in the first region 110 may be evaporated by the heat supplied from the first heater H1 to the first region 110 (S200).
  • the source gas 140 may be supplied from the gas injection hole 160 to the one end of the tube 100.
  • the source gas 140 may include a methane (CH 4 ) gas, a hydrogen (H 2 ) gas, and a carrier gas.
  • the metal gas 130G evaporated by the first heater H1 is moved to the second region 120 together with the source gas 140.
  • the thin film 150 provided on the substrate SUB in the region 120 and doped with the metal may be formed on the substrate SUB (S130).
  • the evaporated metal gas 130G and the source gas 140 may be simultaneously provided on the substrate SUB to form the thin film 150 doped with the metal on the substrate SUB. have.
  • the source gas 140 includes carbon
  • a graphene layer doped with the metal may be formed on the substrate SUB.
  • the graphene layer may be synthesized and the metal may be doped at the same time.
  • the remaining source gas 140 and the evaporated metal gas 130G may be discharged to the outside through the gas outlet 170.
  • the metal source 130 and the substrate SUB are disposed in the first region 110 and the second region 120 of the tube 100, respectively.
  • the step 130 is evaporated to generate the evaporated metal gas 130G, and the step of forming the metal doped thin film 150 (the metal doped graphene layer) on the substrate SUB is the same. It may be performed in the tube 100.
  • a manufacturing method and apparatus for manufacturing a thin film which simplifies the manufacturing process and reduces the manufacturing cost, can be provided.
  • the source gas 140 and the evaporated metal 130G including carbon are simultaneously provided on the substrate SUB, thereby providing the substrate SUB.
  • the metal layer doped graphene layer may be formed on). Accordingly, as shown in FIG. 3, the metal 220 in the graphene layer doped with the metal is covalently bonded with the carbons 210 in the graphene layer to form a honeycomb lattice 230. can do. As a result, the electrical and magnetic properties of the metal doped graphene layer may be improved.
  • the graphene layer doped with molybdenum may have ferromagnetic properties at room temperature. It can exhibit reduced semiconductor characteristics.
  • the metal is doped after the graphene layer is formed, unlike the above-described embodiment of the present invention, the metal does not form a honeycomb lattice with the carbons in the graphene layer and is adsorbed on the surface of the graphene layer. Accordingly, it is not easy to control the electrical and magnetic properties of the graphene layer using the doping of the metal.
  • the source gas 140 and the evaporated metal gas 130G including carbon are simultaneously provided on the substrate SUB, thereby synthesizing the graphene layer. And doping of the metal may be performed simultaneously. Accordingly, a graphene layer doped covalently with carbon to form a honeycomb lattice may be formed on the substrate SUB, and thus, the electrical and magnetic properties of the graphene layer may be easily improved. .
  • the doping concentration of the metal may be adjusted by adjusting the heat supplied from the first heater H1 to the metal source 130. For example, as the heat supplied from the first heater H1 increases, the doping concentration of the metal may increase. Accordingly, a thin film, a method of manufacturing the same, and a device for manufacturing the same, which can easily adjust the electrical and magnetic characteristics may be provided.
  • the first heater H1 and the second region (H1) which supply heat to the first region 110 to evaporate the metal source 130.
  • Each of the second heaters H2 that supply heat to 120 may operate independently.
  • the inside of the first region 110 may have a temperature at which the metal source 130 is easily evaporated
  • the inside of the second region 120 may be a thin film 150 doped with the metal (eg, For example, the graphene layer doped with metal) may have a temperature at which it is easy to deposit.
  • the metal source 130 has improved evaporation efficiency and deposition efficiency of the metal-doped thin film 150, thereby providing a highly reliable thin film having a reduced manufacturing cost, a manufacturing method thereof, and a manufacturing apparatus thereof. Can be.
  • the thin film manufacturing apparatus which has the 1st heater which surrounds the 1st area
  • a manganese oxide powder is disposed in the first region, and a 25 ⁇ m thick copper film is disposed in the second region. Thereafter, the first region was raised to 1,000 ° C. for 40 minutes, and 20 sccm of hydrogen gas and 1,000 sccm of argon gas were supplied while maintaining for 30 minutes.
  • the manganese-doped graphene layer was transferred to PMMA, and finally, to a P-type silicon substrate having a 300 nm thick silicon oxide.
  • FIG. 4 is a graph showing the Raman spectrum of a thin film according to an embodiment of the present invention.
  • the Raman spectrum of the manganese-doped graphene layer prepared by the above-described method was measured. Measurement results, the peak in the 2D G peak (peak), and 2,702cm -1 were observed at 1,569cm -1. The intensities of the G peak and the 2D peak were measured to be substantially similar, and it was confirmed that the full widths at half-maximum of the 2D peak had a value of 60 or less. Accordingly, it can be seen that the graphene layer doped with manganese is composed of a bilayer.
  • FIG. 5 is a graph measuring a change in magnetization according to a magnetic field of a thin film according to an exemplary embodiment of the present invention.
  • the manganese-doped graphene layer prepared by the above-described method was measured the magnetization (magnetization) according to the magnetic field (magnetic field) at the absolute temperature 10K and 300K.
  • the coercive field value was 188Oe and the residual magnetization value was 102 emu / cm 3 at 10K.
  • the graphene layer not doped with manganese it does not have a ferromagnetic hysteresis curve at room temperature (see the internal graph of FIG. 5), but in the case of the manganese doped graphene layer according to an embodiment of the present invention, the ferromagnetic hysteresis curve at room temperature (ferromagnetic hysteresis) can be confirmed.
  • FIG. 6 is a graph measuring the change in magnetization degree according to the temperature of the thin film according to the embodiment of the present invention.
  • the magnetization degree according to the temperature of the manganese-doped graphene layer prepared by the above-described method was measured. As can be seen in Figure 6, it can be seen that the magnetization degree is reduced with increasing temperature. In addition, it can be seen that another manganese-doped graphene layer has an Curie temperature of about 350K or more.
  • FIG. 7 is a graph measuring resistance change according to temperature of a thin film according to an exemplary embodiment of the present invention.
  • the resistance increases with increasing temperature (see the internal graph of FIG. 7), but as shown in FIG. 7, the graphene layer doped with manganese according to an embodiment of the present invention is shown. As the temperature increases, the resistance decreases.
  • the electrical conductivity of the manganese-doped graphene layer according to the embodiment of the present invention is closer to the semiconductor property of increasing electrical conductivity as temperature increases.
  • the resistance change of the manganese-doped graphene layer can be seen that the fitting (fitting) below ⁇ Equation 1> associated with the electrical conductivity value of the semiconductor.
  • the bandgap energy of the manganese-doped graphene layer was calculated to be 165 meV.
  • FIG. 8 is a graph measuring current voltage characteristics of a transistor including a thin film according to an exemplary embodiment of the present invention.
  • a manganese-doped graphene layer prepared by the above-described method is used as an active layer, and a 50 nm-thick gold electrode prepared by E beam evaporation is used as a source and drain electrode.
  • a field effect transistor having a channel length and a channel width of 100 ⁇ m was prepared. The current-voltage characteristics of the field effect transistor were evaluated.
  • the field effect transistor having the manganese doped graphene layer exhibits the characteristics of the p-type transistor.
  • the mobility of the graphene layer channel doped with manganese was calculated based on the current voltage value of the field effect transistor.
  • the mobility of the manganese-doped graphene layer was calculated to be 2,543 cm 2 V ⁇ 1 S ⁇ 1 .
  • FIG. 9 is a graph measuring on / off current ratio of a transistor including a thin film according to an exemplary embodiment of the present invention.
  • the on / off current ratio was measured to be substantially maintained at about 2.1, and above about 165mV it was measured that the on / off current ratio is rapidly reduced.
  • the bandgap energy was calculated to be 165 meV.
  • a thin film doped with a metal or a graphene layer doped with a transition metal may include a spin field effect transistor and a spin valve. It can be used in various electronic devices such as STT-MRAM.

Abstract

Provided is a device for manufacturing a thin film. The device for manufacturing a thin film comprises: a tube including one end and the other end; a first heater for supplying heat to a first region adjacent to the one end of the tube; a second heater for supplying heat to a second region adjacent to the other end of the tube, and disposed alongside the first heater along the tube; a gas injection hole through which a source gas is supplied to the one end of the tube; and a gas discharge hole through which the source gas is discharged from the other end of the tube.

Description

박막, 그 제조 방법, 및 그 제조 장치Thin film, its manufacturing method, and its manufacturing apparatus
본 발명은 박막, 그 제조 방법, 및 그 제조 장치에 관련된 것으로, 보다 상세하게는, 금속이 도핑된 박막, 그 제조 방법, 및 그 제조 장치에 관련된 것이다.The present invention relates to a thin film, a method for manufacturing the same, and a manufacturing apparatus thereof, and more particularly, to a thin film doped with a metal, a method for manufacturing the same, and a manufacturing apparatus thereof.
그래핀은 탄소 원자로 만들어진 2차원 물질로 벌집 모양의 구조를 가지고 있으며, 단층의 그래핀은 3Å의 두께로 매우 얇은 물질이며 반금속성(Semi-metallic)을 갖는다. Graphene is a two-dimensional material made of carbon atoms and has a honeycomb structure. A single layer of graphene is a very thin material having a thickness of 3Å and is semi-metallic.
그래핀은 구조적, 화학적으로 매우 안정적이며, 양자역학적 특성으로 인해 매우 뛰어난 전기적 특성을 가지고 있다. 그래핀은 단결정 실리콘에 비해 약 100배 이상 빠르게 전자가 이동할 뿐만 아니라 구리에 비해 약 100배 많은 전류가 흐를 수 있다. 이러한 특성으로 인해 그래핀은 기존 물질을 대체할 차세대 소재로 주목 받고 있다.Graphene is very stable structurally and chemically and has very good electrical properties due to its quantum mechanical properties. Graphene not only moves electrons about 100 times faster than single-crystal silicon, but can also flow about 100 times as much current as copper. Due to these characteristics, graphene is attracting attention as a next-generation material to replace existing materials.
그래핀은 투명 전극, 투명 디스플레이, 이차 전극 재료, 메모리 소자 등 다양한 기술 분야에 적용될 수 있다. 이에 따라, 그래핀의 적용 기술 분야에 따라서, 그래핀의 전기적, 물리적, 화학적, 기계적 특성을 제어하거나, 향상시키기 위한 다양한 연구 개발이 진행되고 있다. Graphene may be applied to various technical fields, such as transparent electrodes, transparent displays, secondary electrode materials, and memory devices. Accordingly, various researches and developments for controlling or improving the electrical, physical, chemical, and mechanical properties of graphene are being conducted according to the application technology of graphene.
예를 들어, 대한민국 특허 공개 공보 10-2010-0103124(출원번호 10-2009-0021574, 출원인: 한국표준과학연구원)에는, 산소 플라즈마를 이용하여 그래핀에 구조적 결함을 생성하여, 그래핀의 전체적인 모양은 변화시키기 않으면서, 그래핀의 전기적 특성을 제어하는 기술이 개시되어 있다. For example, Korean Patent Laid-Open Publication No. 10-2010-0103124 (Application No. 10-2009-0021574, Applicant: Korea Research Institute of Standards and Science) generates structural defects in graphene using an oxygen plasma, thereby forming the overall shape of graphene. Techniques for controlling the electrical properties of graphene without changing silver are disclosed.
본 발명이 해결하고자 하는 일 기술적 과제는, 금속이 도핑된 그래핀층을 포함하는 박막, 그 제조 방법, 및 그 제조 장치를 제공하는 데 있다. One technical problem to be solved by the present invention is to provide a thin film including a graphene layer doped with a metal, a method for manufacturing the same, and a device for manufacturing the same.
본 발명이 해결하고자 하는 다른 기술적 과제는, 자기적 특성을 갖는 그래핀층을 포함하는 박막, 그 제조 방법, 및 그 제조 장치를 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a thin film including a graphene layer having magnetic properties, a method for manufacturing the same, and a device for manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 밴드갭(band gap)을 갖는 그래핀층을 포함하는 박막, 그 제조 방법, 및 그 제조 장치를 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a thin film including a graphene layer having a band gap, a method for manufacturing the same, and a device for manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 금속의 도핑 및 그래핀의 합성을 동시에 수행하여 제조된 박막, 그 제조 방법, 및 그 제조 장치를 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a thin film, a method for manufacturing the same, and an apparatus for manufacturing the same, which are simultaneously performed by doping metal and synthesizing graphene.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다. The technical problem to be solved by the present invention is not limited to the above.
상기 기술적 과제를 해결하기 위해, 본 발명은 박막의 제조 장치를 제공한다. In order to solve the above technical problem, the present invention provides a thin film manufacturing apparatus.
일 실시 예에 따르면, 상기 박막의 제조 장치는, 일단 및 타단을 포함하는 튜브(tube), 상기 튜브의 상기 일단에 인접한 제1 영역으로 열을 공급하는 제1 히터(heater), 상기 튜브의 상기 타단에 인접한 제2 영역으로 열을 공급하고, 상기 튜브를 따라 상기 제1 히터와 나란히 배치된 제2 히터, 상기 튜브의 상기 일단으로 소스 가스(source gas)가 공급되는 가스 주입구, 및 상기 튜브의 상기 타단으로부터 상기 소스 가스가 배출되는 가스 배출구를 포함할 수 있다. According to an embodiment, the apparatus for manufacturing a thin film may include a tube including one end and the other end, a first heater supplying heat to a first region adjacent to the one end of the tube, and the tube of the tube. Supplying heat to a second region adjacent to the other end, a second heater disposed alongside the first heater along the tube, a gas inlet through which a source gas is supplied to the one end of the tube, and the tube It may include a gas outlet for discharging the source gas from the other end.
일 실시 예에 따르면, 상기 제1 영역 내에는 금속 소스(metal source)가 배치되어, 상기 제1 히터에서 공급되는 열에 의해, 금속이 증발(evaporate)되고, 상기 제2 영역 내에는 기판이 배치되고, 상기 증발된 금속 가스 및 상기 소스 가스가 상기 기판 상에 동시에 제공되어, 상기 기판 상에 상기 금속이 도핑된 박막이 형성될 수 있다. According to one embodiment, a metal source is disposed in the first region, the metal is evaporated by heat supplied from the first heater, and a substrate is disposed in the second region. The evaporated metal gas and the source gas may be simultaneously provided on the substrate to form a thin film doped with the metal on the substrate.
일 실시 예에 따르면, 상기 소스 가스는 탄소를 포함하고, 상기 기판 상에 상기 금속이 도핑된 그래핀층이 형성될 수 있다. In example embodiments, the source gas may include carbon, and a graphene layer doped with the metal may be formed on the substrate.
일 실시 예에 따르면, 상기 소스 금속은 전이 금속 산화물을 포함할 수 있다. According to an embodiment, the source metal may include a transition metal oxide.
일 실시 예에 따르면, 상기 제1 영역 및 상기 제2 영역의 내부 온도는, 상기 제1 히터 및 상기 제2 히터에 의해, 각각 독립적으로 조절될 수 있다. According to an embodiment of the present disclosure, internal temperatures of the first region and the second region may be independently controlled by the first heater and the second heater.
일 실시 예에 따르면, 상기 제1 히터 및 상기 제2 히터는 상기 제1 영역 및 상기 제2 영역을 각각 둘러쌀 수 있다. According to an embodiment, the first heater and the second heater may surround the first area and the second area, respectively.
상기 기술적 과제를 해결하기 위해, 본 발명은 박막의 제조 방법을 제공한다. In order to solve the above technical problem, the present invention provides a method for producing a thin film.
일 실시 예에 따르면, 상기 박막의 제조 방법은, 기판을 준비하는 단계, 금속 소스를 증발시키는 단계, 및 상기 기판 상에, 탄소를 포함하는 소스 가스, 및 상기 증발된 금속 가스를 동시에 제공하여, 상기 금속이 도핑된 그래핀층을 형성하는 단계를 포함할 수 있다. According to an embodiment, the method of manufacturing the thin film may include preparing a substrate, evaporating a metal source, and simultaneously providing a source gas containing carbon and the evaporated metal gas on the substrate. It may include the step of forming a graphene layer doped with the metal.
일 실시 예에 따르면, 상기 금속은, 상기 그래핀층에 포함된 탄소들과 공유 결합되어, 벌집 격자(honeycomb lattice)를 이룰 수 있다. According to an embodiment, the metal may be covalently bonded with carbons included in the graphene layer to form a honeycomb lattice.
일 실시 예에 따르면, 상기 금속 소스를 증발시키는 단계, 및 상기 금속이 도핑된 그래핀층을 형성하는 단계는, 동일한 튜브 내에서 수행될 수 있다. According to one embodiment, evaporating the metal source, and forming the graphene layer doped with the metal, may be performed in the same tube.
일 실시 예에 따르면, 상기 금속 소스를 증발시키는 단계는, 상기 금속 소스에 열을 공급하는 것을 포함하고, 상기 금속 소스에 공급되는 열을 조절하여, 상기 금속의 도핑 농도가 조절될 수 있다. According to an embodiment, evaporating the metal source may include supplying heat to the metal source, and adjusting the heat supplied to the metal source to adjust the doping concentration of the metal.
상기 기술적 과제를 해결하기 위해, 본 발명은 박막을 제공한다. In order to solve the above technical problem, the present invention provides a thin film.
상기 박막은, 탄소들과 공유 결합되어 벌집 격자를 이루는 금속이 도핑된 그래핀층을 포함할 수 있다. The thin film may include a graphene layer doped with a metal covalently bonded with carbons to form a honeycomb lattice.
일 실시 예에 따르면, 온도가 증가될수록, 상기 금속이 도핑된 그래핀층의 저항이 감소될 수 있다. According to an embodiment, as the temperature increases, the resistance of the graphene layer doped with the metal may decrease.
일 실시 예에 따르면, 상기 금속이 도핑된 그래핀층은, 상온에서 강자성을 가질 수 있다.According to an embodiment, the graphene layer doped with the metal may have ferromagnetic properties at room temperature.
본 발명의 실시 예에 따르면, 증발된 금속 가스 및 소스 가스가 기판 상에 동시에 제공될 수 있다. 이에 따라, 금속이 도핑된 박막이 상기 기판 상에 형성될 수 있다. 또한, 상기 소스 가스가 탄소를 포함하는 경우, 상기 기판 상에 상기 금속이 도핑된 그래핀층이 형성될 수 있다. 이 경우, 상기 금속은 상기 그래핀층의 탄소와 공유 결합되어, 벌집 격자를 구성할 수 있다. According to an embodiment of the present invention, the vaporized metal gas and the source gas may be simultaneously provided on the substrate. Accordingly, a metal doped thin film may be formed on the substrate. In addition, when the source gas contains carbon, a graphene layer doped with the metal may be formed on the substrate. In this case, the metal may be covalently bonded with carbon of the graphene layer to form a honeycomb lattice.
이에 따라, 제조 공정이 간소화되고, 제조 비용이 감소되고, 전기적, 자기적 특성 조절이 용이한 박막, 그 제조 방법, 및 그 제조 장치가 제공될 수 있다. Accordingly, a thin film, a method of manufacturing the same, and a device for manufacturing the same, which simplify the manufacturing process, reduce the manufacturing cost, and allow easy control of electrical and magnetic properties.
도 1은 본 발명의 실시 예에 따른 박막 제조 장치를 설명하기 위한 도면이다. 1 is a view for explaining a thin film manufacturing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 박막의 제조 방법을 설명하기 위한 순서도이다. 2 is a flowchart illustrating a method of manufacturing a thin film according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 박막을 설명하기 위한 도면이다. 3 is a view for explaining a thin film according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 박막의 라만 스펙트럼을 도시한 그래프이다. 4 is a graph showing the Raman spectrum of a thin film according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 박막의 자기장에 따른 자화도 변화를 측정한 그래프이다. 5 is a graph measuring a change in magnetization according to a magnetic field of a thin film according to an exemplary embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 박막의 온도에 따른 자화도 변화를 측정한 그래프이다. 6 is a graph measuring the change in magnetization degree according to the temperature of the thin film according to the embodiment of the present invention.
도 7은 본 발명의 실시 예에 따른 박막의 온도에 따른 저항 변화를 측정한 그래프이다. 7 is a graph measuring resistance change according to temperature of a thin film according to an exemplary embodiment of the present invention.
도 8은 본 발명의 실시 예에 따른 박막을 포함하는 트래지스터의 전류 전압 특성을 측정한 그래프이다. 8 is a graph measuring current voltage characteristics of a transistor including a thin film according to an exemplary embodiment of the present invention.
도 9는 본 발명의 실시 예에 따른 박막을 포함하는 트랜지스터의 on/off 전류비를 측정한 그래프이다. 9 is a graph measuring on / off current ratio of a transistor including a thin film according to an exemplary embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical idea of the present invention is not limited to the exemplary embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete, and that the spirit of the present invention can be sufficiently delivered to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is mentioned to be on another component, it means that it may be formed directly on the other component or a third component may be interposed therebetween. In addition, in the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical contents.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, the term 'and / or' is used herein to include at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다. In the specification, the singular encompasses the plural unless the context clearly indicates otherwise. In addition, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, element, or combination thereof described in the specification, and one or more other features or numbers, steps, configurations It should not be understood to exclude the possibility of the presence or the addition of elements or combinations thereof. In addition, the term "connection" is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 1 내지 도 3을 참조하여 본 발명의 실시 예에 따른 박막, 그 제조 장치 및 그 제조 방법이 설명된다. 1 to 3, a thin film, a manufacturing apparatus thereof, and a manufacturing method thereof according to an exemplary embodiment of the present invention will be described.
도 1은 본 발명의 실시 예에 따른 박막 제조 장치를 설명하기 위한 도면이고, 도 2는 본 발명의 실시 예에 따른 박막의 제조 방법을 설명하기 위한 순서도이고, 도 3은 본 발명의 실시 예에 따른 박막을 설명하기 위한 도면이다. 1 is a view for explaining a thin film manufacturing apparatus according to an embodiment of the present invention, Figure 2 is a flow chart for explaining a manufacturing method of a thin film according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention It is a figure for demonstrating the thin film which followed.
도 1 및 도 2를 참조하면, 본 발명의 실시 예에 따른 박막 제조 장치는, 튜브(tube, 100), 제1 히터(H1), 제2 히터(H2), 가스 주입구(140), 및 가스 배출구(170)를 포함할 수 있다. 1 and 2, a thin film manufacturing apparatus according to an embodiment of the present invention, the tube (tube) 100, the first heater (H1), the second heater (H2), the gas inlet 140, and gas It may include an outlet 170.
상기 튜브(100)는 일단 및 타단을 포함할 수 있다. 상기 튜브(100)는 일 방향으로 연장하는 라인(line) 형태일 수 있다. 일 실시 예에 따르면, 상기 튜브(100)는 석영 튜브일 수 있다. The tube 100 may include one end and the other end. The tube 100 may be in the form of a line extending in one direction. According to one embodiment, the tube 100 may be a quartz tube.
상기 튜브(100)는 제1 영역(110) 및 제2 영역(120)을 포함할 수 있다. 상기 제1 영역(110)은 상기 튜브(100)의 상기 일단에 인접할 수 있고, 상기 제2 영역(120)은 상기 튜브(100)이 상기 타단에 인접할 수 있다. The tube 100 may include a first region 110 and a second region 120. The first region 110 may be adjacent to the one end of the tube 100, and the second region 120 may be adjacent to the other end of the tube 100.
상기 제1 히터(H1)는 상기 튜브(100)의 상기 제1 영역(110)을 둘러쌀 수 있다. 다시 말하면, 상기 제1 히터(H1)로 둘러싸인 상기 튜브(100)의 일 영역이 상기 제1 영역(110)으로 정의될 수 있다. 상기 제1 히터(H1)는 상기 제1 영역(110)으로 열을 공급할 수 있다. The first heater H1 may surround the first region 110 of the tube 100. In other words, one region of the tube 100 surrounded by the first heater H1 may be defined as the first region 110. The first heater H1 may supply heat to the first region 110.
상기 제2 히터(H2)는 상기 튜브(100)의 상기 제2 영역(120)을 둘러쌀 수 있다. 다시 말하면, 상기 제2 히터(H2)로 둘러싸인 상기 튜브(100)의 일 영역이 상기 제2 영역(120)으로 정의될 수 있다. 상기 제2 히터(H2)는 상기 제2 영역(120)으로 열을 공급할 수 있다. The second heater H2 may surround the second region 120 of the tube 100. In other words, one region of the tube 100 surrounded by the second heater H2 may be defined as the second region 120. The second heater H2 may supply heat to the second region 120.
상기 제1 히터(H1) 및 상기 제2 히터(H2)는 서로 독립적으로 동작될 수 있다. 다시 말하면, 상기 제1 히터(H1) 및 상기 제2 히터(H2)에서 공급되는 열에 의해, 상기 제1 영역(110) 내부의 온도 및 상기 제2 영역(120) 내부의 온도는 서로 독립적으로 조절될 수 있다. The first heater H1 and the second heater H2 may be operated independently of each other. In other words, the temperature inside the first region 110 and the temperature inside the second region 120 are independently controlled by heat supplied from the first heater H1 and the second heater H2. Can be.
상기 가스 주입구(160)는 상기 튜브(100)의 상기 일단에 위치하고, 상기 가스 배출구(170)는 상기 튜브(100)의 상기 타단에 위치할 수 있다. 이에 따라, 상기 가스 주입구(160), 상기 제1 영역(110), 상기 제2 영역(120), 및 상기 가스 배출구(170)가 나란히 배열될 수 있다. The gas inlet 160 may be located at one end of the tube 100, and the gas outlet 170 may be located at the other end of the tube 100. Accordingly, the gas inlet 160, the first region 110, the second region 120, and the gas outlet 170 may be arranged side by side.
상기 튜브(100)의 상기 제1 영역(110) 내에 금속 소스(metal source, 130)가 배치될 수 있다. 일 실시 예에 따르면, 상기 금속 소스(130)는 전이 금속 산화물(transition metal oxide)을 포함할 수 있다. 예를 들어, 상기 금속 소스(130)는, 몰리브덴 산화물, 티타늄 산화물, 코발트 산화물, 니켈 산화물, 또는 텅스텐 산화물 등을 포함할 수 있다.A metal source 130 may be disposed in the first region 110 of the tube 100. According to an embodiment, the metal source 130 may include a transition metal oxide. For example, the metal source 130 may include molybdenum oxide, titanium oxide, cobalt oxide, nickel oxide, tungsten oxide, or the like.
상기 튜브(100)의 상기 제2 영역(120) 내에 기판(SUB)이 준비될 수 있다(S100). 일 실시 예에 따르면, 상기 기판(SUB)은 구리 필름(Cu film)일 수 있다. 이와는 달리, 다른 실시 예에 따르면, 상기 기판(SUB)은, 실리콘 반도체 기판, 화합물 반도체 기판, 유리 기판, 플라스틱 기판, 또는 금속 기판 중에서 어느 하나일 수 있다. A substrate SUB may be prepared in the second region 120 of the tube 100 (S100). According to an embodiment, the substrate SUB may be a copper film. Unlike this, according to another embodiment, the substrate SUB may be any one of a silicon semiconductor substrate, a compound semiconductor substrate, a glass substrate, a plastic substrate, and a metal substrate.
상기 제1 히터(H1)에서 상기 제1 영역(110)으로 공급된 열에 의해, 상기 제1 영역(110) 내의 상기 금속 소스(130)가 증발될 수 있다(S200). 또한, 상기 가스 주입구(160)에서 상기 튜브(100)의 상기 일단으로 소스 가스(140)가 공급될 수 있다. 일 실시 예에 따르면, 상기 소스 가스(140)는 메탄(CH4) 가스, 수소(H2) 가스, 및 캐리어 가스(carrier gas)를 포함할 수 있다. The metal source 130 in the first region 110 may be evaporated by the heat supplied from the first heater H1 to the first region 110 (S200). In addition, the source gas 140 may be supplied from the gas injection hole 160 to the one end of the tube 100. According to an embodiment, the source gas 140 may include a methane (CH 4 ) gas, a hydrogen (H 2 ) gas, and a carrier gas.
상기 제1 영역(110)에서 상기 제1 히터(H1)에 의해 상기 증발된 금속 가스(130G)는, 상기 소스 가스(140)와 함께, 상기 제2 영역(120)으로 이동되고, 상기 제2 영역(120) 내의 상기 기판(SUB) 상에 제공되어, 상기 기판(SUB) 상에 상기 금속이 도핑된 박막(150)이 형성될 수 있다(S130). 다시 말하면, 상기 증발된 금속 가스(130G) 및 상기 소스 가스(140)는 상기 기판(SUB) 상에 동시에 제공되어, 상기 기판(SUB) 상에 상기 금속이 도핑된 박막(150)이 형성될 수 있다. In the first region 110, the metal gas 130G evaporated by the first heater H1 is moved to the second region 120 together with the source gas 140. The thin film 150 provided on the substrate SUB in the region 120 and doped with the metal may be formed on the substrate SUB (S130). In other words, the evaporated metal gas 130G and the source gas 140 may be simultaneously provided on the substrate SUB to form the thin film 150 doped with the metal on the substrate SUB. have.
상기 소스 가스(140)가 탄소를 포함하는 경우, 예를 들어, CH4 가스를 포함하는 경우, 상기 기판(SUB) 상에 상기 금속이 도핑된 그래핀층이 형성될 수 있다. 다시 말하면, 상기 그래핀층이 합성되는 동시에 상기 금속이 도핑될 수 있다. When the source gas 140 includes carbon, for example, when it includes a CH 4 gas, a graphene layer doped with the metal may be formed on the substrate SUB. In other words, the graphene layer may be synthesized and the metal may be doped at the same time.
상기 금속이 도핑된 박막(150)이 형성된 후 잔존된 상기 소스 가스(140) 및 상기 증발된 금속 가스(130G)은, 상기 가스 배출구(170)를 통해 외부로 배출될 수 있다.After the metal-doped thin film 150 is formed, the remaining source gas 140 and the evaporated metal gas 130G may be discharged to the outside through the gas outlet 170.
본 발명의 실시 예에 따르면, 상기 금속 소스(130) 및 상기 기판(SUB)은 상기 튜브(100)의 상기 제1 영역(110) 및 상기 제2 영역(120) 내에 각각 배치되어, 상기 금속 소스(130)가 증발되어 상기 증발된 금속 가스(130G)가 생성되는 단계, 및 상기 기판(SUB) 상에 상기 금속이 도핑된 박막(150, 금속이 도핑된 그래핀층)이 형성되는 단계는, 동일한 상기 튜브(100) 내에서 수행될 수 있다. 이로 인해, 제조 공정이 간소화되고, 제조 비용이 감소된 박막의 제조 방법 및 제조 장치가 제공될 수 있다.According to an embodiment of the present disclosure, the metal source 130 and the substrate SUB are disposed in the first region 110 and the second region 120 of the tube 100, respectively. The step 130 is evaporated to generate the evaporated metal gas 130G, and the step of forming the metal doped thin film 150 (the metal doped graphene layer) on the substrate SUB is the same. It may be performed in the tube 100. As a result, a manufacturing method and apparatus for manufacturing a thin film, which simplifies the manufacturing process and reduces the manufacturing cost, can be provided.
또한, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 상기 기판(SUB) 상에, 탄소를 포함하는 상기 소스 가스(140) 및 상기 증발된 금속(130G)이 동시에 제공되어, 상기 기판(SUB) 상에 상기 금속이 도핑된 그래핀층이 형성될 수 있다. 이에 따라, 도 3에 도시된 것과 같이, 상기 금속이 도핑된 그래핀층 내의 상기 금속(220)은, 상기 그래핀층 내의 탄소들(210)과 공유 결합되어, 벌집 격자(honeycomb lattice, 230)를 구성할 수 있다. 이로 인해, 상기 금속이 도핑된 그래핀층의 전기적, 자기적 특성이 향상될 수 있다. 예를 들어, 상기 금속이 몰리브덴이고, 상기 기판(SUB) 상에 몰리브덴이 도핑된 그래핀층이 형성되는 경우, 상기 몰리브덴이 도핑된 그래핀층은 상온에서 강자성을 가질 수 있고, 온도가 증가될수록 저항이 감소되는 반도체 특성을 나타낼 수 있다. In addition, as described above, according to an embodiment of the present invention, the source gas 140 and the evaporated metal 130G including carbon are simultaneously provided on the substrate SUB, thereby providing the substrate SUB. The metal layer doped graphene layer may be formed on). Accordingly, as shown in FIG. 3, the metal 220 in the graphene layer doped with the metal is covalently bonded with the carbons 210 in the graphene layer to form a honeycomb lattice 230. can do. As a result, the electrical and magnetic properties of the metal doped graphene layer may be improved. For example, when the metal is molybdenum and a graphene layer doped with molybdenum is formed on the substrate SUB, the graphene layer doped with molybdenum may have ferromagnetic properties at room temperature. It can exhibit reduced semiconductor characteristics.
만약, 상술된 본 발명의 실시 예와 달리, 그래핀층이 형성된 후, 금속이 도핑되는 경우, 상기 금속은 상기 그래핀층 내의 탄소들과 벌집 격자를 구성하지 못하고, 상기 그래핀층의 표면에 흡착된다. 이에 따라, 상기 금속의 도핑을 이용하여 상기 그래핀층의 전기적, 자기적 특성을 조절하는 것이 용이하지 않다. If the metal is doped after the graphene layer is formed, unlike the above-described embodiment of the present invention, the metal does not form a honeycomb lattice with the carbons in the graphene layer and is adsorbed on the surface of the graphene layer. Accordingly, it is not easy to control the electrical and magnetic properties of the graphene layer using the doping of the metal.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 상기 기판(SUB) 상에 탄소를 포함하는 상기 소스 가스(140) 및 상기 증발된 금속 가스(130G)가 동시에 제공되어, 그래핀층의 합성 및 상기 금속의 도핑이 동시에 수행될 수 있다. 이에 따라, 탄소들과 공유 결합되어 벌집 격자를 이루는 금속이 도핑된 그래핀층이 상기 기판(SUB) 상에 형성될 수 있고, 이로 인해, 그래핀층의 전기적, 자기적 특성이 용이하게 향상될 수 있다. However, as described above, according to an embodiment of the present invention, the source gas 140 and the evaporated metal gas 130G including carbon are simultaneously provided on the substrate SUB, thereby synthesizing the graphene layer. And doping of the metal may be performed simultaneously. Accordingly, a graphene layer doped covalently with carbon to form a honeycomb lattice may be formed on the substrate SUB, and thus, the electrical and magnetic properties of the graphene layer may be easily improved. .
또한, 본 발명의 실시 예에 따르면, 상기 제1 히터(H1)에서 상기 금속 소스(130)로 공급되는 열을 조절하여, 상기 금속의 도핑 농도가 조절될 수 있다. 예를 들어, 상기 제1 히터(H1)에서 공급되는 열이 증가될수록, 상기 금속의 도핑 농도가 증가될 수 있다. 이에 따라, 전기적, 자기적 특성을 용이하게 조절할 수 있는 박막, 그 제조 방법, 및 그 제조 장치가 제공될 수 있다. In addition, according to an embodiment of the present disclosure, the doping concentration of the metal may be adjusted by adjusting the heat supplied from the first heater H1 to the metal source 130. For example, as the heat supplied from the first heater H1 increases, the doping concentration of the metal may increase. Accordingly, a thin film, a method of manufacturing the same, and a device for manufacturing the same, which can easily adjust the electrical and magnetic characteristics may be provided.
또한, 본 발명의 실시 예에 따르면, 상술된 바와 같이, 상기 제1 영역(110)으로 열을 공급하여 상기 금속 소스(130)를 증발시키는 상기 제1 히터(H1), 및 상기 제2 영역(120)으로 열을 공급하는 상기 제2 히터(H2)는 각각 독립적으로 동작할 수 있다. 이로 인해, 상기 제1 영역(110)의 내부는 상기 금속 소스(130)가 증발되기 용이한 온도를 가질 수 있고, 상기 제2 영역(120)의 내부는 상기 금속이 도핑된 박막(150, 예를 들어, 금속이 도핑된 그래핀층)이 증착되기 용이한 온도를 가질 수 있다. 이에 따라, 상기 금속 소스(130)이 증발 효율 및 상기 금속이 도핑된 박막(150)의 증착 효율이 향상되어, 제조 비용이 감소된 고신뢰성의 박막, 그 제조 방법, 및 그 제조 장치가 제공될 수 있다. In addition, according to an embodiment of the present invention, as described above, the first heater H1 and the second region (H1) which supply heat to the first region 110 to evaporate the metal source 130. Each of the second heaters H2 that supply heat to 120 may operate independently. Thus, the inside of the first region 110 may have a temperature at which the metal source 130 is easily evaporated, and the inside of the second region 120 may be a thin film 150 doped with the metal (eg, For example, the graphene layer doped with metal) may have a temperature at which it is easy to deposit. Accordingly, the metal source 130 has improved evaporation efficiency and deposition efficiency of the metal-doped thin film 150, thereby providing a highly reliable thin film having a reduced manufacturing cost, a manufacturing method thereof, and a manufacturing apparatus thereof. Can be.
이하, 상술된 본 발명의 실시 예에 따라 제조된 박막의 특성 평가 결과가 설명된다. Hereinafter, the property evaluation results of the thin film manufactured according to the embodiment of the present invention described above will be described.
본 발명의 실시 예에 따른 망간이 도핑된 그래핀층 제조Manganese-doped graphene layer manufacturing according to an embodiment of the present invention
석영 튜브의 제1 영역을 둘러싸는 제1 히터, 및 상기 석영 튜브의 제2 영역을 둘러싸는 제2 히터를 갖는 박막 제조 장치가 준비된다. 상기 제1 영역 내에 망간 산화물 분말이 배치되고, 상기 제2 영역 내에 25μm 두께의 구리 막이 배치된다. 이후, 40분 동안 상기 제1 영역을 1,000℃로 상승시키고, 30분동안 유지하면서 수소 가스 20sccm, 아르곤 가스 1,000sccm가 공급되었다. 망간 산화물이 증발되기 시작한 후, 수소 가스 20sccm 및 메탄 가스 3sccm을 10분 동안 공급하여, 구리 막 상에 망간이 도핑된 그래핀층을 증착하고, 30분 동안 1,000℃에서 50℃로 감온하였다. The thin film manufacturing apparatus which has the 1st heater which surrounds the 1st area | region of a quartz tube, and the 2nd heater which surrounds the 2nd area | region of the said quartz tube is prepared. A manganese oxide powder is disposed in the first region, and a 25 μm thick copper film is disposed in the second region. Thereafter, the first region was raised to 1,000 ° C. for 40 minutes, and 20 sccm of hydrogen gas and 1,000 sccm of argon gas were supplied while maintaining for 30 minutes. After the manganese oxide started to evaporate, 20 sccm of hydrogen gas and 3 sccm of methane gas were supplied for 10 minutes to deposit a manganese-doped graphene layer on the copper film, and the temperature was reduced from 1,000 ° C. to 50 ° C. for 30 minutes.
이후, 망간이 도핑된 그래핀층을 PMMA로 전사하고, 최종적으로, 300nm두께의 실리콘 산화물을 갖는 P 형 실리콘 기판으로 전사하였다. Thereafter, the manganese-doped graphene layer was transferred to PMMA, and finally, to a P-type silicon substrate having a 300 nm thick silicon oxide.
라만 스펙트럼 결과 분석Raman spectral results analysis
도 4는 본 발명의 실시 예에 따른 박막의 라만 스펙트럼을 도시한 그래프이다. 4 is a graph showing the Raman spectrum of a thin film according to an embodiment of the present invention.
도 4를 참조하면, 상술된 방법으로 제조된 망간이 도핑된 그래핀층에 대해서 라만 스펙트럼을 측정하였다. 측정 결과, 1,569cm-1에서 G 피크(peak), 및 2,702cm-1에서 2D 피크가 관찰되었다. G 피크 및 2D 피크의 강도는 실질적으로 유사한 것으로 측정되었으며, 2D 피크의 반치폭(full widths at half-maximum)이 60 이하의 값을 갖는 것으로 확인되었다. 이에 따라, 상기 망간이 도핑된 그래핀층이 이중층(bilayer)로 구성된 것을 확인할 수 있다. 4, the Raman spectrum of the manganese-doped graphene layer prepared by the above-described method was measured. Measurement results, the peak in the 2D G peak (peak), and 2,702cm -1 were observed at 1,569cm -1. The intensities of the G peak and the 2D peak were measured to be substantially similar, and it was confirmed that the full widths at half-maximum of the 2D peak had a value of 60 or less. Accordingly, it can be seen that the graphene layer doped with manganese is composed of a bilayer.
자화도 측정 및 분석Magnetization Measurement and Analysis
도 5는 본 발명의 실시 예에 따른 박막의 자기장에 따른 자화도 변화를 측정한 그래프이다. 5 is a graph measuring a change in magnetization according to a magnetic field of a thin film according to an exemplary embodiment of the present invention.
도 5를 참조하면, 상술된 방법으로 제조된 망간이 도핑된 그래핀층을 절대온도 10K 및 300K에서 자기장(magnetic field)에 따른 자화도(magnetization)를 측정하였다. 도 5에서 알 수 있듯이, 10K 조건에서 항전계(coercive field) 값은 188Oe이고, 잔류 자화도(remanent magnetization) 값은 102 emu/cm3으로 측정되었다. 망간이 도핑되지 않은 그래핀층의 경우, 상온에서 강자성 자기 이력 곡선을 갖지 못하지만(도 5의 내부 그래프 참조), 본 발명의 실시 예에 따라 망간이 도핑된 그래핀층의 경우, 상온에서 강자성 자기 이력 곡선(ferromagnetic hysteresis)을 갖는 것을 확인할 수 있다.Referring to Figure 5, the manganese-doped graphene layer prepared by the above-described method was measured the magnetization (magnetization) according to the magnetic field (magnetic field) at the absolute temperature 10K and 300K. As can be seen in FIG. 5, the coercive field value was 188Oe and the residual magnetization value was 102 emu / cm 3 at 10K. In the case of the graphene layer not doped with manganese, it does not have a ferromagnetic hysteresis curve at room temperature (see the internal graph of FIG. 5), but in the case of the manganese doped graphene layer according to an embodiment of the present invention, the ferromagnetic hysteresis curve at room temperature (ferromagnetic hysteresis) can be confirmed.
도 6은 본 발명의 실시 예에 따른 박막의 온도에 따른 자화도 변화를 측정한 그래프이다. 6 is a graph measuring the change in magnetization degree according to the temperature of the thin film according to the embodiment of the present invention.
도 6을 참조하면, 상술된 방법으로 제조된 망간이 도핑된 그래핀층의 온도에 따른 자화도를 측정하였다. 도 6에서 알 수 있듯이, 온도가 증가됨에 따라 자화도가 감소되는 것을 확인할 수 있다. 또한, 본 발명의 실시 예에 다른 망간이 도핑된 그래핀층이 약 350K 이상의 큐리 온도(curie temperature)를 갖는 것을 확인할 수 있다. Referring to Figure 6, the magnetization degree according to the temperature of the manganese-doped graphene layer prepared by the above-described method was measured. As can be seen in Figure 6, it can be seen that the magnetization degree is reduced with increasing temperature. In addition, it can be seen that another manganese-doped graphene layer has an Curie temperature of about 350K or more.
저항 측정 및 분석 Resistance measurement and analysis
도 7은 본 발명의 실시 예에 따른 박막의 온도에 따른 저항 변화를 측정한 그래프이다. 7 is a graph measuring resistance change according to temperature of a thin film according to an exemplary embodiment of the present invention.
도 7을 참조하면, 150K~300K 온도 조건에서, 상술된 방법으로 제조된 망간이 도핑된 그래핀층의 저항 값을 측정하였다. Referring to Figure 7, at 150K ~ 300K temperature conditions, the resistance value of the manganese-doped graphene layer prepared by the above-described method was measured.
망간이 도핑되지 않은 그래핀층의 경우 온도가 증가됨에 따라서 저항이 증가되지만(도 7의 내부 그래프 참조), 도 7에 도시된 것과 같이, 본 발명의 실시 예에 따라 망간이 도핑된 그래핀층의 경우, 온도가 증가될수록, 저항이 감소되는 것을 확인할 수 있다.In the case of the graphene layer not doped with manganese, the resistance increases with increasing temperature (see the internal graph of FIG. 7), but as shown in FIG. 7, the graphene layer doped with manganese according to an embodiment of the present invention is shown. As the temperature increases, the resistance decreases.
다시 말하면, 본 발명의 실시 예에 따른 망간이 도핑된 그래핀층의 전기 전도도 특성은, 온도가 증가될수록 전기 전도도가 증가되는 반도체 특성에 가까운 것을 확인할 수 있다. 상기 망간이 도핑된 그래핀층의 저항 변화는, 반도체의 전기 전도도 값과 관련된 아래의 <식 1>에 피팅(fitting)되는 것을 확인할 수 있다. 또한, 상기 망간이 도핑된 그래핀층의 밴드갭 에너지는 165 meV로 계산되었다.  In other words, it can be seen that the electrical conductivity of the manganese-doped graphene layer according to the embodiment of the present invention is closer to the semiconductor property of increasing electrical conductivity as temperature increases. The resistance change of the manganese-doped graphene layer can be seen that the fitting (fitting) below <Equation 1> associated with the electrical conductivity value of the semiconductor. In addition, the bandgap energy of the manganese-doped graphene layer was calculated to be 165 meV.
<식 1><Equation 1>
σ = σ0 exp(-Eg/2kT)σ = σ 0 exp (-E g / 2kT)
전류 전압 특성 분석Current voltage characterization
도 8은 본 발명의 실시 예에 따른 박막을 포함하는 트래지스터의 전류 전압 특성을 측정한 그래프이다. 8 is a graph measuring current voltage characteristics of a transistor including a thin film according to an exemplary embodiment of the present invention.
도 8을 참조하면, 상술된 방법으로 제조된 망간이 도핑된 그래핀층을 활성층(active layer)로 이용하고, E beam evaporation으로 제조된 50nm 두께의 금 전극을 소스 및 드레인 전극으로 이용하여, 10μm의 채널 길이 및 100μm의 채널 폭을 갖는 전계 효과 트랜지스터를 제조하였다. 상기 전계 효과 트랜지스터의 전류-전압 특성을 평가하였다. Referring to FIG. 8, a manganese-doped graphene layer prepared by the above-described method is used as an active layer, and a 50 nm-thick gold electrode prepared by E beam evaporation is used as a source and drain electrode. A field effect transistor having a channel length and a channel width of 100 μm was prepared. The current-voltage characteristics of the field effect transistor were evaluated.
도 8에서 알 수 있듯이, 상기 망간이 도핑된 그래핀층을 갖는 전계 효과 트랜지스터가 p 타입 트랜지스터의 특성을 보이는 것을 확인할 수 있다. 또한, 상기 전계 효과 트랜지스터의 전류 전압 값에 기초하여, 상기 망간이 도핑된 그래핀층 채널의 이동도를 계산하였다. 그 결과, 상기 망간이 도핑된 그래핀층의 이동도는 2,543 cm2V-1S-1인 것으로 계산되었다. As can be seen in Figure 8, it can be seen that the field effect transistor having the manganese doped graphene layer exhibits the characteristics of the p-type transistor. In addition, the mobility of the graphene layer channel doped with manganese was calculated based on the current voltage value of the field effect transistor. As a result, the mobility of the manganese-doped graphene layer was calculated to be 2,543 cm 2 V −1 S −1 .
도 9는 본 발명의 실시 예에 따른 박막을 포함하는 트랜지스터의 on/off 전류비를 측정한 그래프이다. 9 is a graph measuring on / off current ratio of a transistor including a thin film according to an exemplary embodiment of the present invention.
도 9를 참조하면, 도 8을 참조하여 설명된 방법으로 제조된 전계 효과 트랜지스터의 on/off 전류비를 측정하였다. Referring to FIG. 9, the on / off current ratio of the field effect transistor manufactured by the method described with reference to FIG. 8 was measured.
도 9에서 알 수 있듯이, 약 165mV 까지, on/off 전류비가 약 2.1로 실질적으로 유지되는 것으로 측정되었고, 약 165mV 이상에서는 on/off 전류비가 급격하게 감소되는 것으로 측정되었다. 또한, 밴드갭 에너지는 165meV로 계산되었다. As can be seen in Figure 9, up to about 165mV, the on / off current ratio was measured to be substantially maintained at about 2.1, and above about 165mV it was measured that the on / off current ratio is rapidly reduced. In addition, the bandgap energy was calculated to be 165 meV.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although this invention was demonstrated in detail using the preferable embodiment, the scope of the present invention is not limited to a specific embodiment, Comprising: It should be interpreted by the attached Claim. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
발명의 실시 예에 따른 금속이 도핑된 박막, 또는 전이 금속이 도핑된 그래핀층은, 스핀 전계 효과 트랜지스터, 스핀 밸브. STT-MRAM 등 다양한 전자 소자에 사용될 수 있다.According to an embodiment of the present invention, a thin film doped with a metal or a graphene layer doped with a transition metal may include a spin field effect transistor and a spin valve. It can be used in various electronic devices such as STT-MRAM.

Claims (13)

  1. 일단 및 타단을 포함하는 튜브(tube);A tube including one end and the other end;
    상기 튜브의 상기 일단에 인접한 제1 영역으로 열을 공급하는 제1 히터(heater);A first heater supplying heat to a first region adjacent said one end of said tube;
    상기 튜브의 상기 타단에 인접한 제2 영역으로 열을 공급하고, 상기 튜브를 따라 상기 제1 히터와 나란히 배치된 제2 히터;A second heater configured to supply heat to a second region adjacent to the other end of the tube, and arranged alongside the first heater along the tube;
    상기 튜브의 상기 일단으로 소스 가스(source gas)가 공급되는 가스 주입구; 및A gas inlet for supplying a source gas to the one end of the tube; And
    상기 튜브의 상기 타단으로부터 상기 소스 가스가 배출되는 가스 배출구를 포함하는 박막 제조 장치. And a gas outlet through which the source gas is discharged from the other end of the tube.
  2. 제1 항에 있어서, According to claim 1,
    상기 제1 영역 내에는 금속 소스(metal source)가 배치되어, 상기 제1 히터에서 공급되는 열에 의해, 금속이 증발(evaporate)되고, A metal source is disposed in the first region so that the metal is evaporated by the heat supplied from the first heater,
    상기 제2 영역 내에는 기판이 배치되고, 상기 증발된 금속 가스 및 상기 소스 가스가 상기 기판 상에 동시에 제공되어, 상기 기판 상에 상기 금속이 도핑된 박막이 형성되는 것을 포함하는 박막 제조 장치. And a substrate is disposed in the second region, and the evaporated metal gas and the source gas are simultaneously provided on the substrate to form a thin film doped with the metal on the substrate.
  3. 제2 항에 있어서, The method of claim 2,
    상기 소스 가스는 탄소를 포함하고, The source gas comprises carbon,
    상기 기판 상에 상기 금속이 도핑된 그래핀층이 형성되는 것을 포함하는 박막 제조 장치. And a graphene layer doped with the metal on the substrate.
  4. 제2 항에 있어서, The method of claim 2,
    상기 소스 금속은 전이 금속 산화물을 포함하는 박막 제조 장치. The source metal thin film manufacturing apparatus comprising a transition metal oxide.
  5. 제1 항에 있어서, According to claim 1,
    상기 제1 영역 및 상기 제2 영역의 내부 온도는, 상기 제1 히터 및 상기 제2 히터에 의해, 각각 독립적으로 조절되는 것을 포함하는 박막 제조 장치. The internal temperature of the said 1st area | region and the said 2nd area | region is each thin film manufacturing apparatus containing the independently controlled by the said 1st heater and the said 2nd heater.
  6. 제1 항에 있어서, According to claim 1,
    상기 제1 히터 및 상기 제2 히터는 상기 제1 영역 및 상기 제2 영역을 각각 둘러싸는 것을 포함하는 박막 제조 장치. The first heater and the second heater is thin film manufacturing apparatus comprising each surrounding the first region and the second region.
  7. 기판을 준비하는 단계;Preparing a substrate;
    금속 소스를 증발시키는 단계; 및Evaporating the metal source; And
    상기 기판 상에, 탄소를 포함하는 소스 가스, 및 상기 증발된 금속 가스를 동시에 제공하여, 상기 금속이 도핑된 그래핀층을 형성하는 단계를 포함하는 박막의 제조 방법. Simultaneously providing a source gas containing carbon and the evaporated metal gas on the substrate to form a graphene layer doped with the metal.
  8. 제7 항에 있어서, The method of claim 7, wherein
    상기 금속은, 상기 그래핀층에 포함된 탄소들과 공유 결합되어, 벌집 격자(honeycomb lattice)를 이루는 것을 포함하는 박막의 제조 방법. The metal is a method of producing a thin film comprising covalently bonded to the carbon contained in the graphene layer, to form a honeycomb lattice (honeycomb lattice).
  9. 제7 항에 있어서, The method of claim 7, wherein
    상기 금속 소스를 증발시키는 단계, 및 상기 금속이 도핑된 그래핀층을 형성하는 단계는, 동일한 튜브 내에서 수행되는 것을 포함하는 박막의 제조 방법. Evaporating the metal source, and forming the metal-doped graphene layer, performed in the same tube.
  10. 제7 항에 있어서, The method of claim 7, wherein
    상기 금속 소스를 증발시키는 단계는, 상기 금속 소스에 열을 공급하는 것을 포함하고, Evaporating the metal source comprises supplying heat to the metal source,
    상기 금속 소스에 공급되는 열을 조절하여, 상기 금속의 도핑 농도가 조절되는 것을 포함하는 박막의 제조 방법. Controlling the heat supplied to the metal source, thereby controlling the doping concentration of the metal.
  11. 탄소들과 공유 결합되어 벌집 격자를 이루는 금속이 도핑된 그래핀층을 포함하는 박막. A thin film comprising a graphene layer doped with metal covalently bonded with carbon to form a honeycomb lattice.
  12. 제11 항에 있어서, The method of claim 11, wherein
    온도가 증가될수록, 상기 금속이 도핑된 그래핀층의 저항이 감소되는 것을 포함하는 박막. The thin film comprising increasing the resistance of the graphene layer doped with the metal as the temperature is increased.
  13. 제11 항에 있어서, The method of claim 11, wherein
    상기 금속이 도핑된 그래핀층은, 상온에서 강자성을 갖는 것을 포함하는 박막. The graphene layer doped with the metal, the thin film comprising a ferromagnetic at room temperature.
PCT/KR2016/000768 2015-03-09 2016-01-25 Thin film, method of manufacturing same, and device for manufacturing same WO2016143999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/700,691 US10510534B2 (en) 2015-03-09 2017-09-11 Thin film, method of fabricating the same, and apparatus for fabricating the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0032615 2015-03-09
KR20150032615 2015-03-09
KR10-2015-0049020 2015-04-07
KR1020150049020A KR101696539B1 (en) 2015-03-09 2015-04-07 Thin film, method of fabricating the same, apparatus for fabricating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/700,691 Continuation US10510534B2 (en) 2015-03-09 2017-09-11 Thin film, method of fabricating the same, and apparatus for fabricating the same

Publications (1)

Publication Number Publication Date
WO2016143999A1 true WO2016143999A1 (en) 2016-09-15

Family

ID=56880349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000768 WO2016143999A1 (en) 2015-03-09 2016-01-25 Thin film, method of manufacturing same, and device for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016143999A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183710A (en) * 1991-09-05 1994-07-05 Semiconductor Energy Lab Co Ltd Carbon based compound element
JP2002338220A (en) * 2001-03-15 2002-11-27 Osaka Gas Co Ltd Carbon composite including iron compound and method for producing the same
JP2015024937A (en) * 2013-07-26 2015-02-05 住友電気工業株式会社 Method of producing graphite film and graphite structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183710A (en) * 1991-09-05 1994-07-05 Semiconductor Energy Lab Co Ltd Carbon based compound element
JP2002338220A (en) * 2001-03-15 2002-11-27 Osaka Gas Co Ltd Carbon composite including iron compound and method for producing the same
JP2015024937A (en) * 2013-07-26 2015-02-05 住友電気工業株式会社 Method of producing graphite film and graphite structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AO, Z. M. ET AL.: "Enhancement of CO Detection in A1 doped Graphene", CHEMICAL PHYSICS LETTERS, vol. 461, no. 4, pages 276 - 279, XP023783620 *
DAI, JIAYU ET AL.: "Gas Adsorption on Graphene doped with B, N, Al, and S: A Theoretical Study", APPLIED PHYSICS LETTERS, vol. 95, no. 232105, pages 1 - 3, XP012126733 *

Similar Documents

Publication Publication Date Title
WO2011025216A2 (en) Photodetector using a graphene thin film and nanoparticles, and method for producing same
CN105336791B (en) Oxide semiconductor film and semiconductor device
WO2016122082A1 (en) Metal chalcogenide element and production method therefor
WO2012008789A9 (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
Yamagishi et al. Free-electron-like Hall effect in high-mobility organic thin-film transistors
WO2015190807A1 (en) Graphene structure and method for producing same
Yi et al. Vacuum Lamination Approach to Fabrication of High‐Performance Single‐Crystal Organic Field‐Effect Transistors
Yang et al. Free‐standing 2D hexagonal aluminum nitride dielectric crystals for high‐performance organic field‐effect transistors
WO2015008905A1 (en) Graphene/silicon nanowire molecular sensor or method for manufacturing same and method for identifying molecule using same
Nénon et al. Shelf-life time test of p-and n-channel organic thin film transistors using copper phthalocyanines
WO2018236121A1 (en) Magnetic tunnel junction device having magnetic layer in easy-cone state
Xia et al. Low-Voltage Operating Field-Effect Transistors and Inverters Based on In₂O₃ Nanofiber Networks
Krupskaya et al. Charge transfer, band-like transport, and magnetic ions at F16CoPc/rubrene interfaces
US20150345010A1 (en) Methods of magnetically enhanced physical vapor deposition
TW200929537A (en) Backplane structures for solution processed electronic devices
WO2016143999A1 (en) Thin film, method of manufacturing same, and device for manufacturing same
WO2017069549A1 (en) Functionalized graphene structure and preparation method therefor
WO2016027925A1 (en) Tunneling diode using graphene-silicon quantum dot hybrid structure and method for preparing same
Tian et al. Low‐Temperature Fabrication of Cold Cathode WO2 Nanowire Arrays on Glass Substrate and Improvement of their Working Performance
US20180219044A1 (en) Three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circuit
US10510534B2 (en) Thin film, method of fabricating the same, and apparatus for fabricating the same
JP5000516B2 (en) Transistor having a dust electrode for tunneling
US9718251B2 (en) Laminate having porous organic semicoductor thin film and chemical sensor comprising same
KR101065961B1 (en) Method for manufacturing field effect semiconductor device
WO2016017871A1 (en) Memory element organic doping material, nonvolatile memory element comprising same and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761886

Country of ref document: EP

Kind code of ref document: A1