WO2016143344A1 - Slurry composition for electrochemical capacitor electrode, electrode for electrochemical capacitor, and electrochemical capacitor - Google Patents

Slurry composition for electrochemical capacitor electrode, electrode for electrochemical capacitor, and electrochemical capacitor Download PDF

Info

Publication number
WO2016143344A1
WO2016143344A1 PCT/JP2016/001310 JP2016001310W WO2016143344A1 WO 2016143344 A1 WO2016143344 A1 WO 2016143344A1 JP 2016001310 W JP2016001310 W JP 2016001310W WO 2016143344 A1 WO2016143344 A1 WO 2016143344A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical capacitor
copolymer
slurry composition
mass
Prior art date
Application number
PCT/JP2016/001310
Other languages
French (fr)
Japanese (ja)
Inventor
康博 一色
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020177024333A priority Critical patent/KR20170126885A/en
Priority to JP2017504875A priority patent/JP6904248B2/en
Priority to CN201680008059.2A priority patent/CN107210143B/en
Publication of WO2016143344A1 publication Critical patent/WO2016143344A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a slurry composition for an electrochemical capacitor electrode, an electrode for an electrochemical capacitor, and an electrochemical capacitor.
  • electrochemical capacitors such as electric double layer capacitors and lithium ion capacitors have been used for a wide range of applications.
  • the electrochemical capacitor generally includes a plurality of electrodes and a separator that isolates these electrodes to prevent a short circuit.
  • an electrode for electrochemical capacitors for example, an electrode comprising a current collector and an electrode mixture layer formed on the current collector is used, and the electrode mixture layer of the electrode is usually In addition, it is formed by binding constituent components such as an electrode active material through a binder.
  • the electrode mixture layer of the electrode for an electrochemical capacitor is, for example, an electrode slurry in which an electrode active material and a binder, and a conductive material blended as necessary are dispersed in a dispersion medium. After the composition is applied on the current collector, the applied electrode slurry composition is dried. Therefore, in recent years, attempts have been made to improve the binder in the electrode slurry composition used for forming the electrode mixture layer in order to further improve the performance of the electrochemical capacitor.
  • the electrode slurry composition described in the above-mentioned patent document it has been difficult for the electrode slurry composition described in the above-mentioned patent document to impart sufficiently excellent cycle characteristics to the electrochemical capacitor. Further, when an electrode formed using the electrode slurry composition was used, it was not possible to suppress a decrease in capacity due to long-time application of voltage, and it was not possible to ensure the float characteristics of the electrochemical capacitor. . Therefore, the conventional slurry composition for an electrode has room for further improvement in that the electrochemical capacitor exhibits excellent cycle characteristics and float characteristics.
  • an object of this invention is to provide the slurry composition for electrochemical capacitor electrodes which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor.
  • Another object of the present invention is to provide an electrode for an electrochemical capacitor that can exhibit excellent cycle characteristics and float characteristics of the electrochemical capacitor.
  • An object of the present invention is to provide an electrochemical capacitor having excellent cycle characteristics and float characteristics.
  • the present inventor has intensively studied for the purpose of solving the above problems. And this inventor has an ethylenically unsaturated bond which contains ethylenically unsaturated carboxylic acid and / or its salt in a predetermined ratio as a binder, and the solubility with respect to 100 g of water in 20 degreeC is 7 g or more.
  • a slurry composition comprising a copolymer obtained by copolymerizing a monomer composition containing a copolymerizable compound and having a degree of electrolyte swelling within a specific range is used for forming an electrode.
  • the present inventors have found that the cycle characteristics and float characteristics of an electrochemical capacitor provided with the electrodes are improved.
  • the slurry composition for an electrochemical capacitor electrode of the present invention is an electrochemical capacitor comprising an electrode active material, a copolymer and a dispersion medium.
  • the electrode slurry composition, wherein the copolymer has an ethylenically unsaturated carboxylic acid compound (A) composed of at least one of an ethylenically unsaturated carboxylic acid and a salt thereof, and a solubility of 7 g in 100 g of water at 20 ° C.
  • the monomer composition contains the ethylene in all monomers.
  • the ratio of the unsaturated carboxylic acid compound (A) is 20.0% by mass or more and 99.9% by mass or less, and the electrolyte solution swelling degree of the copolymer is less than 120% by mass.
  • the monomer composition containing the ethylenically unsaturated carboxylic acid compound (A) and the compound (B) and having a content ratio of the ethylenically unsaturated carboxylic acid compound (A) within the above range is polymerized.
  • a slurry composition containing a copolymer having a degree of swelling of an electrolyte solution of less than 120% by weight as a binder is used for forming an electrode, cycle characteristics and float excellent in an electrochemical capacitor including the electrode The characteristics can be exhibited.
  • the monomer composition has a ratio of the compound (B) in the total monomers of 0.1% by mass or more and 80.0% by mass or less. It is preferable that If a copolymer is prepared using a monomer composition containing the compound (B) in the above proportion, the cycle characteristics of the electrochemical capacitor are further improved while improving the adhesion between the electrode mixture layer and the current collector. It is because it can be made.
  • the monomer composition further includes a polyfunctional compound (C) having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds
  • the ratio of the polyfunctional compound (C) in the monomer is preferably 0.1% by mass or more and 10.0% by mass or less. This is because if the copolymer is prepared using the monomer composition containing the polyfunctional compound (C) in the above-described ratio, the cycle characteristics and float characteristics of the electrochemical capacitor can be further improved. Moreover, it is because it becomes possible to raise solid content concentration of a slurry composition and to improve productivity of an electrode by including a polyfunctional compound (C) in a monomer composition.
  • the slurry composition for an electrochemical capacitor electrode of the present invention preferably contains 1 to 10 parts by mass of the copolymer per 100 parts by mass of the electrode active material. If an electrode is prepared using the slurry composition containing the copolymer in the above-mentioned blending amount, the adhesion between the electrode mixture layer and the current collector is improved, and the internal resistance of the electrochemical capacitor is reduced, while the cycle characteristics are increased. This is because the float characteristics can be further improved.
  • the specific surface area of the electrode active material is preferably 500 m 2 / g or more and 2500 m 2 / g or less. This is because if the electrode active material having the above specific surface area is used, cycle characteristics and float characteristics can be further improved while reducing the internal resistance of the electrochemical capacitor.
  • the electrode for electrochemical capacitors of this invention was prepared using the slurry composition for any one of the above-mentioned electrochemical capacitors.
  • An electrode mixture layer is provided on the current collector.
  • the electrode mixture layer is formed using any of the slurry compositions described above, an electrochemical capacitor electrode capable of exhibiting excellent cycle characteristics and float characteristics of the electrochemical capacitor is obtained. .
  • the present invention aims to advantageously solve the above-mentioned problems, and the electrochemical capacitor of the present invention is characterized by comprising the above-described electrochemical capacitor electrode.
  • the electrode for electrochemical capacitors described above is used, an electrochemical capacitor having excellent cycle characteristics and float characteristics can be provided.
  • the slurry composition for electrochemical capacitor electrodes which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the electrode for electrochemical capacitors which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
  • an electrochemical capacitor having excellent cycle characteristics and float characteristics can be provided.
  • the slurry composition for an electrochemical capacitor electrode of the present invention is used for forming an electrode of an electrochemical capacitor.
  • the electrode for electrochemical capacitors of this invention can be manufactured using the slurry composition for electrochemical capacitor electrodes of this invention.
  • the electrochemical capacitor of the present invention is characterized by using the electrode for an electrochemical capacitor of the present invention.
  • the slurry composition for an electrochemical capacitor electrode of the present invention includes a copolymer as a binder, an electrode active material, and a dispersion medium. And a copolymer contains the ethylenically unsaturated carboxylic acid compound (A) which consists of at least one of ethylenically unsaturated carboxylic acid and its salt in a predetermined ratio, and the solubility with respect to 100 g of water in 20 degreeC is 7 g or more. It is obtained by polymerizing a monomer composition containing a copolymerizable compound (B) having an ethylenically unsaturated bond, and has an electrolyte solution swelling degree of less than 120% by mass.
  • A ethylenically unsaturated carboxylic acid compound
  • B copolymerizable compound having an ethylenically unsaturated bond
  • the binder is an electrode manufactured by forming an electrode mixture layer on a current collector using the slurry composition for an electrochemical capacitor electrode of the present invention. It is a component that can be held so as not to be detached from the material layer.
  • the binder used for the slurry composition for electrochemical capacitor electrodes of the present invention contains the ethylenically unsaturated carboxylic acid compound (A) and the compound (B), and contains the ethylenically unsaturated carboxylic acid compound (A). It is necessary to contain a copolymer obtained by polymerizing a monomer composition having a ratio within a predetermined range and having an electrolyte solution swelling degree of less than 120% by mass.
  • the slurry composition for electrochemical capacitor electrodes of the present invention may optionally further contain a polymer other than the copolymer as a binder.
  • the slurry composition for an electrochemical capacitor electrode of the present invention contains an ethylenically unsaturated carboxylic acid compound (A) and a compound (B), and the content ratio of the ethylenically unsaturated carboxylic acid compound (A) is predetermined. It contains a copolymer obtained by polymerizing a monomer composition within the range and having an electrolyte solution swelling degree of less than 120% by mass. Therefore, by using the slurry composition for the production of an electrode, it is possible to exhibit excellent cycle characteristics and float characteristics for an electrochemical capacitor.
  • the copolymer suitably covers the electrode active material due to the contribution of the carboxyl group of the ethylenically unsaturated carboxylic acid compound (A), and the decomposition of the electrolytic solution on the surface of the electrode active material is suppressed. Thereby, it is surmised that the float characteristics can be improved because gas generation is suppressed.
  • the compound (B) used for the preparation of the copolymer is a highly polar monomer having high solubility in water.
  • the obtained copolymer has low affinity for the non-aqueous electrolyte solution usually used in electrochemical capacitors, and the resulting copolymer has moderate swelling (less than 120% by mass) in the electrolyte solution. It is suppressed. Therefore, it is assumed that the strength of the electrode plate is increased, the structure is maintained, and the cycle characteristics are improved. In addition, it is assumed that the coating layer of the copolymer formed on the surface of the electrode active material is very thin, but by using the copolymer, the internal resistance of the electrochemical capacitor is not excessively increased. In addition, the above-described improvement in cycle characteristics and float characteristics can be achieved.
  • the copolymer used as a binder for the slurry composition for an electrochemical capacitor electrode of the present invention is obtained by polymerizing a monomer composition described in detail below. And this copolymer usually has a structural unit derived from a monomer contained in the monomer composition at a ratio similar to the abundance ratio of each monomer in the monomer composition. Contains.
  • the monomer composition used for preparing the copolymer contains, for example, a monomer, an additive such as a polymerization initiator, and a polymerization solvent.
  • the monomer composition has an ethylenically unsaturated carboxylic acid of 20.0% by mass or more and 99.9% by mass or less when the amount of all monomers in the monomer composition is 100% by mass.
  • a compound (A) and a compound (B) are contained.
  • the monomer composition may be composed of a monofunctional unsaturated carboxylic acid compound (A) and a polyfunctional compound (C) that can be copolymerized with the compound (B), and other compounds other than these. You may contain as a mer.
  • ethylenically unsaturated carboxylic acid compound (A)- As the ethylenically unsaturated carboxylic acid compound (A), at least one of an ethylenically unsaturated carboxylic acid and a salt thereof can be used.
  • the ethylenically unsaturated carboxylic acid include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • the ethylenically unsaturated carboxylate include sodium salts, potassium salts and lithium salts of ethylenically unsaturated carboxylic acids.
  • ethylenically unsaturated carboxylic acid and its salt may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic. Acid, ⁇ -diaminoacrylic acid and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid derivative include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
  • an ethylenically unsaturated carboxylate preferably a lithium salt of ethylenically unsaturated carboxylic acid is used.
  • an ethylenically unsaturated carboxylate is used, the water solubility of the resulting copolymer can be increased, so when preparing the copolymer using water as the polymerization solvent, the monomer composition contains Even when the monomer concentration is high, it is possible to prevent inhomogeneous progress of polymerization due to precipitation of the copolymer.
  • the polymerization can be progressed uniformly while increasing the productivity by using the monomer composition having a high monomer concentration.
  • lithium carboxylate base —COOLi
  • the cycle characteristics and float characteristics of the electrochemical capacitor can be further improved, and the internal resistance can be reduced.
  • the ethylenically unsaturated carboxylic acid compound includes acrylic acid, methacrylic acid or a salt thereof. It is preferable to use acrylic acid or acrylate.
  • the monomer which the monomer composition used for preparation of a copolymer has the ratio for which the ethylenically unsaturated carboxylic acid compound (A) accounts is 20.0 mass% or more and 99.9 mass% or less.
  • the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is preferably 21.0% by mass or more, more preferably 22.0% by mass or more, It is more preferably 26.0% by mass or more, preferably 80.0% by mass or less, more preferably 79.9% by mass or less, and further preferably 72.0% by mass or less. It is particularly preferably 50.0% by mass or less.
  • the electrode active material When the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is less than 20.0% by mass, the electrode active material is not sufficiently covered with the copolymer, and the float characteristics of the electrochemical capacitor deteriorate. To do. On the other hand, when the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer exceeds 99.9% by mass, the electrode active material is excessively covered with the copolymer, and the internal resistance of the electrochemical capacitor is reduced. descend.
  • a compound having an ethylenically unsaturated bond and having a solubility in 100 g of water at 20 ° C. of 7 g or more can be used. This is because the structural unit derived from the compound (B) having such solubility has low swellability with respect to the electrolytic solution and high polymerizability when water is used as a polymerization solvent.
  • the ethylenically unsaturated carboxylic acid and the salt thereof are not included in the compound (B) but are included in the ethylenically unsaturated carboxylic acid compound (A) even when the above-described solubility is satisfied.
  • Examples of the compound (B) include 2-hydroxypropyl methacrylate (100 or more), 2-hydroxypropyl acrylate (100 or more), 2-hydroxyethyl methacrylate (100 or more), 2-hydroxyethyl acrylate (100 or more), 2- (methacryloyloxy) ethyl phosphate (100 or more), acrylamide (204), methacrylamide (100 or more), N-methylolacrylamide (100 or more), acrylonitrile (7.3), sodium styrenesulfonate (22), etc.
  • the compound (B) includes 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, Hydroxyl group-containing ethylenically unsaturated carboxylic acid ester compounds such as -hydroxyethyl methacrylate and 2-hydroxyethyl acrylate, and amide group-containing compounds such as acrylamide, methacrylamide, and N-methylolacrylamide are preferred, and acrylamide is more preferred.
  • the monomer which the monomer composition used for preparation of a copolymer accounts for the ratio for which the above-mentioned compound (B) accounts is preferably 0.1 mass% or more, and 20.0 mass% or more. Is more preferably 25.0% by mass or more, particularly preferably 50.0% by mass or more, most preferably 60.0% by mass or more, and 80.0% by mass. % Or less, more preferably 79.9% by mass or less, still more preferably 75.0% by mass or less, and particularly preferably 73.0% by mass or less.
  • the proportion of the compound (B) in the monomer is 0.1% by mass or more, the cycle characteristics of the electrochemical capacitor can be further improved.
  • the proportion of the compound (B) in the monomer is 80.0% by mass or less, the adhesion between the electrode mixture layer and the current collector can be ensured.
  • divided the ratio of the ethylenically unsaturated carboxylic acid compound (A) in all the monomers by the ratio of the said compound (B) in all the monomers is 0.2 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, preferably 2.5 or less, more preferably 0.8 or less, and More preferably, it is 7 or less.
  • a / B is within the above range, the cycle characteristics and float characteristics of the electrochemical capacitor can be improved in a balanced manner.
  • the monomer composition preferably includes a polyfunctional compound (C) having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds as a monomer.
  • a polyfunctional compound (C) for the polymerization of the copolymer, it is possible to impart moderately high rigidity and flexibility to the copolymer. Therefore, it is possible to suppress the deterioration of the cycle characteristics by suppressing the swelling of the electrode due to charge / discharge.
  • the polymerization of the copolymer is facilitated by the contribution of the ethylene oxide chain having a high affinity with water.
  • the polyfunctional compound (C) in the monomer composition, it is possible to increase the solid content concentration of the slurry composition prepared using the binder composition of the present invention, thereby improving the productivity of the electrode. Can be made.
  • an electrolytic solution containing a lithium salt such as LiPF 6 is used as the electrolyte, lithium ion conductivity is ensured and the internal resistance of the lithium ion capacitor can be reduced.
  • the polyfunctional compound (C) is represented by the general formula: — (C m H 2m O) n — [wherein m is an integer of 1 or more and n is an integer of 2 or more].
  • a compound having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds can be used.
  • the compound having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds one type may be used alone, or two or more types may be used in combination at any ratio.
  • a compound corresponding to the polyfunctional compound (C) is not included in the compound (B).
  • the polyfunctional compound (C) is not particularly limited, and includes the following compounds (I) to (V).
  • “(meth) acrylate” means acrylate And / or methacrylate.
  • (I) The following general formula: [Wherein n is an integer of 2 or more] polyethylene glycol diacrylate represented by (II)
  • the ethylenic property of the polyfunctional compound (C) is preferably 2 or more and 6 or less, and more preferably 2 or more and 4 or less.
  • the polyfunctional compound (C) is preferably a bi- to hexa-functional polyacrylate, more preferably a bi- to tetra-functional polyacrylate.
  • the polyoxyalkylene structure (— (C m H 2m O) n —) of the polyfunctional compound (C) is preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less, and preferably 2 or more. This is because if the integer m is too large, the stability of the slurry composition may decrease. Moreover, when the integer m is too small, the rigidity of the copolymer becomes high, and the cycle characteristics of the electrochemical capacitor may be deteriorated.
  • the integer n of the polyoxyalkylene structure (— (C m H 2m O) n —) of the polyfunctional compound (C) is preferably 20 or less, and preferably 15 or less. More preferably, it is particularly preferably 10 or less, more preferably 2 or more, further preferably 3 or more, and particularly preferably 4 or more. This is because if the integer n is too large, the stability of the slurry composition may decrease. Moreover, when the integer n is too small, the rigidity of the copolymer becomes high, and the cycle characteristics of the electrochemical capacitor may be deteriorated.
  • the average value of integers n of the plurality of polyoxyalkylene structures is It is preferable to be included in the range, and it is more preferable that the integer n of all the polyoxyalkylene structures is included in the above range.
  • the monomer contained in the monomer composition used for the preparation of the copolymer preferably has a ratio of the above-mentioned polyfunctional compound (C) of 0.1% by mass or more, and is 0.2% by mass. More preferably, it is more preferably 0.5% by mass or more, more preferably 10.0% by mass or less, more preferably 8.0% by mass or less, and 5.0% by mass. % Or less is more preferable.
  • the proportion of the polyfunctional compound (C) in the monomer is 0.1% by mass or more, the cycle characteristics of the electrochemical capacitor can be further improved.
  • the monomer composition used for the preparation of the copolymer includes known compounds copolymerizable with the above-mentioned ethylenically unsaturated carboxylic acid compound (A), compound (B) and polyfunctional compound (C). It may be.
  • the monomer contained in the monomer composition used for preparing the copolymer preferably has a ratio of other compounds other than (A) to (C) of 20.0% by mass or less. It is more preferable that it is 10.0 mass% or less.
  • Acrylic acid esters such as decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate, perfluoroalkyl ethyl acrylate, phenyl acrylate, etc .; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate Methacrylic
  • additives to be added to the monomer composition used for preparing the copolymer known additives that can be used for polymerization reactions such as polymerization initiators such as potassium persulfate and polymerization accelerators such as tetramethylethylenediamine Is mentioned.
  • polymerization initiators such as potassium persulfate
  • polymerization accelerators such as tetramethylethylenediamine Is mentioned.
  • the kind and compounding quantity of an additive can be arbitrarily selected according to a polymerization method etc.
  • polymerization solvent As the polymerization solvent to be blended in the monomer composition used for preparing the copolymer, a known solvent capable of dissolving or dispersing the above-described monomer can be used depending on the polymerization method and the like. Among these, water is preferably used as the polymerization solvent. As the polymerization solvent, an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
  • the copolymer used as the binder of the slurry composition of the present invention is obtained by, for example, radical polymerization of a monomer composition obtained by mixing the above-described monomer, additive and polymerization solvent by a known method. Can be obtained.
  • the solution containing the copolymer and the polymerization solvent obtained by polymerizing the monomer composition may be used as it is for the preparation of the slurry composition, solvent substitution, addition of optional components, etc. May be used to prepare a slurry composition.
  • examples of the polymerization method include known polymerization methods such as aqueous solution polymerization, slurry polymerization, suspension polymerization, and emulsion polymerization.
  • aqueous solution polymerization using water as a polymerization solvent is preferable.
  • the monomer composition is adjusted to a predetermined concentration, and the dissolved oxygen in the reaction system is sufficiently replaced with an inert gas.
  • a radical polymerization initiator is added, and if necessary, heating or ultraviolet rays are added. It is a method of performing a polymerization reaction by irradiating light.
  • the pH of the aqueous solution should be adjusted to 8 or more and 9 or less after polymerization. Is preferred. If the resulting aqueous solution is neutralized and the pH is adjusted to 8-9, thixotropy is imparted to the slurry composition, and the stability of the slurry composition is enhanced. In addition, the cycle characteristics of the electrochemical capacitor can be further enhanced.
  • a basic lithium compound is used when neutralizing the aqueous solution. It is preferable to use it. If a basic lithium compound is used, the carboxylic acid group in the copolymer becomes a lithium carboxylate base (—COOLi), which further improves the thixotropy and stability of the slurry composition, and the internal resistance of the electrochemical capacitor. This is because the cycle characteristics and float characteristics are improved.
  • the basic lithium compound lithium carbonate (Li 2 CO 3 ) or lithium hydroxide (LiOH) can be used, and lithium hydroxide is preferably used.
  • the copolymer prepared as described above needs to have an electrolyte swelling degree of less than 120% by mass, preferably less than 118% by mass, and more preferably less than 115% by mass. Moreover, it is preferable that it is more than 100 mass%, and it is more preferable that it is more than 105 mass%.
  • the degree of swelling of the electrolyte in the copolymer is 120% by mass or more, the copolymer is excessively swollen in the electrolyte and the electrode plate structure cannot be maintained. Therefore, the float characteristic of the electrochemical capacitor is deteriorated and the cycle characteristic is also deteriorated.
  • the degree of swelling of the electrolyte in the copolymer exceeds 100% by mass, the internal resistance of the electrochemical capacitor can be reduced.
  • the electrolyte solution swelling degree of a copolymer can be measured by the method as described in the Example of this specification.
  • the electrolyte solution swelling degree of a copolymer can be adjusted by changing the kind and quantity of the ethylenically unsaturated carboxylic acid compound (A) and compound (B) in a monomer composition, for example.
  • the copolymer is preferably a water-soluble polymer.
  • the polymer is “water soluble” means that a mixture obtained by adding 1 part by weight of polymer (corresponding to a solid content) and stirring with respect to 100 parts by weight of ion-exchanged water has a temperature of 20 ° C. or higher. Adjust to at least one of the conditions within the range of 70 ° C. or less and within the range of pH 3 to 12 (using NaOH aqueous solution and / or HCl aqueous solution for pH adjustment), and pass through a 250 mesh screen. This means that the solid content of the residue remaining on the screen without passing through the screen does not exceed 50 mass% with respect to the solid content of the added polymer.
  • the amount of the copolymer described above is preferably 1 part by mass or more, more preferably 4 parts by mass or more, per 100 parts by mass of the electrode active material. Or less, and more preferably 6 parts by mass or less. If the blending amount of the copolymer in the slurry composition is 1 part by mass or more per 100 parts by mass of the electrode active material, the adhesion between the electrode mixture layer and the current collector can be secured, and the electrochemical capacitor Cycle characteristics and float characteristics can be further improved. On the other hand, if the blending amount of the copolymer in the slurry composition is 10 parts by mass or less, the internal resistance will not increase excessively.
  • the slurry composition of the present invention containing the above-described copolymer as a binder may further contain a polymer other than the above-described copolymer as a binder.
  • polymers other than the copolymer mentioned above known polymers, such as a particulate polymer dispersible in the dispersion medium of a slurry composition, are mentioned.
  • the particulate polymer include diene polymers such as styrene-butadiene copolymer and acrylonitrile-butadiene copolymer, acrylic polymers, fluorine polymers, and silicon polymers.
  • diene polymers such as styrene-butadiene copolymer and acrylonitrile-butadiene copolymer
  • acrylic polymers fluorine polymers
  • silicon polymers silicon polymers.
  • styrene-butadiene copolymers and acrylic polymers are preferable from the viewpoint of improving the adhesion between the electrode mixture layer and the current collector.
  • these polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the blending amount of the polymer is 0.1 parts by mass or more per 100 parts by mass of the electrode active material. It is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 10 parts by mass or less, and more preferably 5 parts by mass or less. More preferably, it is 3 parts by mass or less. If the blending amount of the polymer (binder) other than the copolymer in the slurry composition is 0.1 parts by mass or more per 100 parts by mass of the electrode active material, the adhesion between the electrode mixture layer and the current collector is improved. Can be secured.
  • the blending amount of the polymer (binder) other than the copolymer in the slurry composition is 10 parts by mass or less per 100 parts by mass of the electrode active material, the slurry composition is prepared due to excessive thickening. Will not be difficult. Further, the increase in internal resistance is suppressed, and the cycle characteristics of the electrochemical capacitor can be ensured.
  • Electrode active material What is necessary is just to select the electrode active material used for the slurry composition for electrochemical capacitor electrodes of this invention according to the kind of electrochemical capacitor in which the electrode produced using the said slurry composition is used.
  • an electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Electrode active material of electric double layer capacitor For example, as an electrode active material used for an electrode of an electric double layer capacitor, an allotrope of carbon can be cited.
  • the carbon allotrope include activated carbon, polyacene, carbon whisker, and graphite.
  • activated carbon is preferable, and specific examples include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like.
  • the activated carbon is particularly preferably activated carbon activated with water vapor (water vapor activated activated carbon).
  • the steam activated activated carbon can be obtained by repeatedly washing, filtering, and drying the activated carbon and steam gas as raw materials after heat treatment.
  • non-porous carbon having a microcrystalline carbon similar to graphite and having an increased interlayer distance of the microcrystalline carbon can also be used.
  • Such non-porous carbon is obtained by carbonizing graphitized carbon with microcrystals of a multilayer graphite structure developed at about 700 to 850 ° C., then heat-treating with caustic at about 800 to 900 ° C., and if necessary It can be obtained by removing residual alkali components with heated steam.
  • Electrode active material of lithium ion capacitor [[Negative electrode active material]]
  • Examples of the electrode active material (negative electrode active material) used for the negative electrode of the lithium ion capacitor include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”).
  • Examples of the carbon-based negative electrode active material include carbonaceous materials and graphite materials. Is mentioned.
  • the carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
  • the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more.
  • the carbonaceous material examples include graphitizable carbon (e.g., coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, and pyrolytic vapor grown carbon fiber) that easily changes the carbon structure depending on the heat treatment temperature.
  • graphitizable carbon e.g., coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, and pyrolytic vapor grown carbon fiber
  • non-graphitizable carbon having a structure close to an amorphous structure (phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), hard carbon, etc.).
  • the graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more.
  • the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
  • Electrode active material of an electric double layer capacitor can be used as an electrode active material (positive electrode active material) used for the positive electrode of a lithium ion capacitor.
  • the specific surface area of the electrode active material is preferably 500 m 2 / g or more, more preferably 800 m 2 / g or more, still more preferably 1000 m 2 / g or more, and 1300 m 2 / g. It is especially preferable that it is above, and it is preferable that it is 2500 m ⁇ 2 > / g or less.
  • the specific surface area of the electrode active material is 500 m 2 / g or more, an electrode in which the electrode active material is suitably dispersed can be formed. Therefore, the cycle characteristics can be further improved while reducing the internal resistance of the electrochemical capacitor.
  • the “specific surface area” of the electrode active material is a BET specific surface area determined by a nitrogen adsorption method and can be measured according to ASTM D3037-81.
  • the shape and particle size of the electrode active material are not particularly limited and can be the same as those of conventionally used electrode active materials.
  • the dispersion medium of the slurry composition of the present invention is not particularly limited, and a known dispersion medium can be used. Among these, water is preferably used as the dispersion medium. In addition, at least a part of the dispersion medium of the slurry composition is not particularly limited, and can be a polymerization solvent contained in the monomer composition used when preparing the copolymer.
  • the slurry composition of this invention may contain the known component which can be mix
  • known components include thickeners such as carboxymethylcellulose, conductive materials, reinforcing materials, leveling agents, and electrolyte additives.
  • the slurry composition of this invention can be prepared by mixing said each component. Specifically, at least the electrode active material and the copolymer are mixed using a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, or the like.
  • a slurry composition can be prepared by dissolving and / or dispersing in the dispersion medium.
  • the electrode for an electrochemical capacitor of the present invention has an electrode mixture layer obtained by using the slurry composition of the present invention (for example, the electrode mixture layer is made of a dried product of the slurry composition of the present invention). More specifically, the electrode for an electrochemical capacitor of the present invention includes a current collector and an electrode mixture layer formed on the current collector, and the electrode mixture layer includes at least an electrode mixture layer. In addition, a copolymer as an electrode active material and a binder is included. Each component contained in the electrode mixture layer was contained in the slurry composition for an electrochemical capacitor electrode, and a suitable abundance ratio of each component was for an electrochemical capacitor electrode. It is the same as the suitable abundance ratio of each component in the slurry composition. And since the said electrode for electrochemical capacitors is prepared using the slurry composition for electrochemical capacitor electrodes of this invention, the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be exhibited.
  • the electrode for an electrochemical capacitor is, for example, a process for applying the above-described slurry composition for an electrochemical capacitor electrode on a current collector (application process), and an electrode for an electrochemical capacitor electrode coated on the current collector.
  • the slurry composition is dried to produce an electrode mixture layer on the current collector (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • an electrically conductive and electrochemically durable material is used as the current collector to which the slurry composition is applied.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • an aluminum foil is particularly preferable as the current collector used for the electrode of the electric double layer capacitor and the positive electrode of the lithium ion capacitor.
  • a collector used for the negative electrode of a lithium ion capacitor copper foil is particularly preferable.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. A drying method is mentioned. By drying the slurry composition on the current collector in this way, an electrode composite material layer is formed on the current collector, and an electrochemical capacitor electrode comprising the current collector and the electrode composite material layer can be obtained. it can.
  • the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. By the pressure treatment, the adhesion between the electrode mixture layer and the current collector can be improved. Furthermore, when the electrode mixture layer includes a curable polymer, it is preferable to cure the polymer after the electrode mixture layer is formed.
  • the electrochemical capacitor of the present invention includes the electrode for an electrochemical capacitor of the present invention.
  • the electrochemical capacitor of the present invention includes a plurality of electrodes, an electrolytic solution, and a separator, and the electrochemical capacitor electrode of the present invention is used as at least one of the plurality of electrodes. It is. And since the said electrochemical capacitor uses the electrode for electrochemical capacitors of this invention, it is excellent in cycling characteristics and a float characteristic.
  • the electrodes other than the above-described electrochemical capacitor electrodes that can be used in the electrochemical capacitor of the present invention are not particularly limited, and known electrodes used in the production of electrochemical capacitors may be used. it can. Specifically, as an electrode other than the electrode for an electrochemical capacitor described above, an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method can be used.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
  • Solvents include organic solvents such as carbonates such as propylene boat, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile; Can be mentioned. Of these, carbonates are preferred.
  • These solvents can be used alone or as a mixed solvent of two or more.
  • the separator is not particularly limited, and a known separator used for manufacturing an electrochemical capacitor can be used.
  • the electrochemical capacitor can be manufactured, for example, by stacking electrodes via a separator, winding the electrode as necessary, folding it into a container, and pouring the electrolyte into the container and sealing it. .
  • an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the electrochemical capacitor may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ Electrolytic solution swelling> The aqueous solution containing the copolymer was dried in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 1 ⁇ 0.3 mm.
  • the film formed was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours, then cut and weighed approximately 1 g.
  • the mass of the obtained film piece is defined as W0.
  • Electrolyte swelling degree (mass%) W1 / W0 ⁇ 100
  • the electrolytic solution used for the measurement of the degree of swelling of the electrolytic solution is mainly used for a lithium ion capacitor, but is an electrolytic solution for an electric double layer capacitor (composition: concentration of 1.0 M (C 2 Even when measured using H 5 ) 4 NBF 4 solution (solvent is propylene carbonate), it was confirmed that the values of the degree of swelling of the electrolyte solution had the same tendency.
  • ⁇ Adhesion between electrode mixture layer and current collector> The prepared electrode having an electrode mixture layer on both sides was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece.
  • the surface by the side of one electrode compound-material layer side of a test piece was fixed on the stand, and the cellophane tape was affixed on the surface by the side of the other electrode compound-material layer side of a test piece.
  • the cellophane tape defined in JIS Z1522 was used.
  • the stress was measured when the cellophane tape was peeled from the one end of the test piece in the 180 ° direction (the other end side of the test piece) at a speed of 50 mm / min. The measurement was performed 10 times, the average value of the stress was determined, and this was regarded as the peel strength (N / m), and evaluated according to the following criteria.
  • the discharge rate (current density) was set to 0.3 mA / cm 2 and the battery was discharged to the lower limit voltage (electric double layer capacitor: 0.0 V, lithium ion capacitor: 2.2 V). At this time, the voltage drop 0.1 seconds after the start of discharge is assumed to be ⁇ V. Further, these discharge rates (current density) were changed in the same manner except that the discharge rate (current density) was changed to 0.3, 1.0, 5.0, 20.0, 50.0, and 100 mA / cm 2. The voltage drop ⁇ V at was measured.
  • the current value I (A) calculated from the current density of the discharge rate is plotted on the horizontal axis
  • the measured voltage drop ⁇ V (V) is plotted on the vertical axis
  • the slope of the obtained straight line is taken as the internal resistance, and evaluated according to the following criteria: did.
  • a smaller internal resistance indicates an excellent electrochemical capacitor with excellent output.
  • the produced electrochemical capacitor was held at a rated voltage (electric double layer capacitor: 2.7 V, lithium ion capacitor: 3.8 V) for 1000 hours (float) in an environment of 60 ° C., and then a constant current (current density: 0). Discharge was performed until the lower limit voltage (electric double layer capacitor: 0.0 V, lithium ion capacitor: 2.2 V) was reached at 3 mA / cm 2 .
  • the evaluation was based on the following criteria.
  • the capacitance before the float is measured in an environment of 25 ° C. It shows that an electrochemical capacitor is excellent in a withstand voltage, so that the capacity
  • Capacity maintenance ratio is 95% or more
  • the produced electrochemical capacitor was charged to a rated voltage (electric double layer capacitor: 2.7 V, lithium ion capacitor: 3.8 V) at a constant current at 25 ° C. and a charge rate (current density) of 3 mA / cm 2 , 10,000 charge / discharge cycles were carried out at 25 ° C.
  • Capacity maintenance ratio is 95% or more
  • B: Capacity maintenance ratio is 92% or more and less than 95%
  • Example 1 ⁇ Preparation of aqueous solution containing copolymer> 720 g of ion-exchanged water was charged into a 1 L flask with a septum, heated to a temperature of 40 ° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL / min.
  • the slurry composition for electric double layer capacitors was applied with a comma coater to the surface of an aluminum foil having a thickness of 20 ⁇ m as a current collector so that the amount applied was 8.0 mg / cm 2 .
  • the obtained electrode original fabric was pressed with a roll press machine so that a density might be 0.59 g / cm ⁇ 3 >, and also the double-sided electrode was obtained by vacuum-drying for 12 hours at the temperature of 200 degreeC.
  • the adhesion between the electrode mixture layer and the current collector was evaluated. The results are shown in Table 1.
  • ⁇ Manufacture of electric double layer capacitors> In the double-sided electrode produced above, the portion where the electrode mixture layer is not formed remains 2 cm long ⁇ 2 cm wide, and the portion where the electrode mixture layer is formed is 5 cm long ⁇ 5 cm wide. Cut out (at this time, the portion where the electrode mixture layer is not formed is formed so as to extend one side of the square of the portion where the electrode mixture layer is formed).
  • a cellulose separator manufactured by Nippon Kogyo Paper Industries Co., Ltd., TF4035 was cut out so as to have a length of 5.3 cm and a width of 5.3 cm.
  • the 9 electrodes (4 positive electrodes and 5 negative electrodes) and 10 separators cut out in this way are overlapped by the portions of the positive electrode current collector and the negative electrode current collector where the electrode mixture layer is not formed.
  • the positive electrode and the negative electrode were alternately arranged and the separators were arranged so as to be positioned between the positive electrode and the negative electrode. Further, the four sides of the uppermost layer and the lowermost layer were taped to obtain a laminate.
  • an electrode laminate was prepared by ultrasonically welding a tab material made of aluminum having a length of 7 cm, a width of 1 cm, and a thickness of 0.02 cm to a portion where the electrode mixture layer of each of the positive and negative electrodes was not formed.
  • the electrode laminate is placed inside a deep-drawn exterior film, and three sides are fused, and then an electrolytic solution (composition: (C 2 H 5 ) 4 NBF 4 solution having a concentration of 1.0 M (solvent is propylene carbonate), After impregnating with Kishida Chemical Co., Ltd.), the remaining side was fused under reduced pressure to produce an electric double layer capacitor. Using this electric double layer capacitor, internal resistance, float characteristics and cycle characteristics were evaluated. The results are shown in Table 1.
  • Examples 2 to 7, 12 to 14 Copolymers were prepared in the same manner as copolymer A, except that the monomers shown in Table 1 were used in the proportions shown in the table. And except having used those copolymers instead of the copolymer A, it carried out similarly to Example 1, and carried out the slurry composition for electric double layer capacitor electrodes, the electrode for electric double layer capacitors, and the electric double layer capacitor. Manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. In the preparation of the copolymer, in Examples 12 and 13, acrylamide was not used as the compound (B), but 2-hydroxyethyl acrylate and acrylonitrile were used, respectively.
  • Example 8 A slurry composition for an electric double layer capacitor electrode, an electrode for an electric double layer capacitor, and an electric double layer capacitor were produced in the same manner as in Example 1 except that the copolymer A was used in the amounts shown in Table 1, respectively. .
  • Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 ⁇ Preparation of aqueous solution containing copolymer> A copolymer was prepared in the same manner as copolymer A except that the monomers shown in Table 1 were used in the proportions shown in the table, and the degree of swelling of the electrolyte was measured. The results are shown in Table 1.
  • the aqueous dispersion containing the acrylic polymer thus obtained was adjusted to pH 7 by adding a 5% aqueous sodium hydroxide solution. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled to the temperature of 30 degrees C or less after that, and obtained the water dispersion containing the particulate polymer which consists of an acrylic polymer.
  • Example 11 An aqueous solution containing a copolymer, a slurry composition for an electric double layer capacitor electrode, an electric double layer, in the same manner as in Example 10, except that the amount of the particulate polymer made of the acrylic polymer was changed to 5.0 parts. Capacitor electrodes and electric double layer capacitors were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 15 Manufacture of positive electrode for lithium ion capacitor>
  • activated carbon Y alkaline activated carbon using phenol resin as a raw material, manufactured by Kansai Thermochemical Co., Ltd., MSP-20S, specific surface area: 2300 m 2 / g
  • the adhesion between the electrode mixture layer and the current collector was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the obtained negative electrode original fabric was pressed with the roll press machine so that a density might be set to 0.95 g / cm ⁇ 3 >, and also the double-sided negative electrode was obtained by vacuum-drying at 200 degreeC for 12 hours.
  • the portion where the electrode mixture layer is not formed remains 2 cm long ⁇ 2 cm wide, and the portion where the electrode mixture layer is formed is 5.2 cm long ⁇ 5.2 cm wide. (At this time, the portion where the electrode mixture layer is not formed is formed so as to extend one side of the square of the portion where the electrode mixture layer is formed).
  • An electrode laminate was prepared in the same manner as in Example 1 except that the negative electrode thus cut out was used and a tab material made of nickel was used as the tab material of the negative electrode.
  • a tab material having a length of 7 cm, a width of 1 cm, and a thickness of 0.01 cm made of nickel was ultrasonically welded to the tab forming portion to prepare a lithium electrode for pre-doping.
  • the obtained lithium electrode for pre-doping is opposed to the outermost separator (one side) of the electrode laminate, and the tab material of the lithium electrode for pre-doping protrudes on the opposite side of the positive electrode and negative electrode tab materials. Arranged to be.
  • Example 16 ⁇ Preparation of aqueous solution containing copolymer> A copolymer was prepared in the same manner as copolymer A except that the monomers shown in Table 1 were used in the proportions shown in the table, and the degree of swelling of the electrolyte was measured. The results are shown in Table 1. ⁇ Preparation of slurry composition for positive electrode of lithium ion capacitor> Instead of copolymer A, 2.0 parts of the above-mentioned copolymer was added in an amount corresponding to the solid content, and then a particulate polymer made of an acrylic polymer (prepared in the same manner as in Example 10) was equivalent to the solid content.
  • a slurry composition (slurry composition for a lithium ion capacitor positive electrode) was prepared in the same manner as in Example 15 except that 3.0 parts was added.
  • Various evaluations were performed in the same manner as in Example 15. The results are shown in Table 1.
  • Copolymers were prepared in the same manner as copolymer A, except that the monomers shown in Table 1 were used in the proportions shown in the table. And except having used those copolymers instead of the copolymer A, it carried out similarly to Example 1, and carried out the slurry composition for electric double layer capacitor electrodes, the electrode for electric double layer capacitors, and the electric double layer capacitor. Manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. In the preparation of the copolymer, in Comparative Example 3, methyl acrylate was used as the other compound.
  • EDLC indicates an electric double layer capacitor
  • LIC indicates a lithium ion capacitor
  • AA indicates acrylic acid
  • AAm indicates acrylamide
  • 2-HEA represents 2-hydroxyethyl acrylate
  • AN stands for acrylonitrile
  • PEGDA indicates polyethylene glycol diacrylate
  • MA represents methyl acrylate
  • ACL indicates an acrylic polymer.
  • the slurry composition for electrochemical capacitor electrodes which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the electrode for electrochemical capacitors which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
  • an electrochemical capacitor having excellent cycle characteristics and float characteristics can be provided.

Abstract

The purpose of the present invention is to provide a slurry composition for an electrochemical capacitor electrode with which it is possible to realize exceptional cycle characteristics and float characteristics in an electrochemical capacitor. This slurry composition includes an electrode active material, a copolymer, and a dispersion medium. The degree of electrolyte swelling of the copolymer is less than 120 mass%. Furthermore, the copolymer is obtained by polymerizing a monomer composition that contains: (A) an ethylenically unsaturated carboxylic acid compound, which is formed from an ethylenically unsaturated carboxylic acid and/or a salt thereof, in an amount of 20.0-99.9 mass% of the total monomer content; and (B) a copolymerizable compound that has a solubility of 7 g or more with respect to 100 g of water at 20°C and has ethylenically unsaturated bonds.

Description

電気化学キャパシタ電極用スラリー組成物、電気化学キャパシタ用電極および電気化学キャパシタSlurry composition for electrochemical capacitor electrode, electrode for electrochemical capacitor and electrochemical capacitor
 本発明は、電気化学キャパシタ電極用スラリー組成物、電気化学キャパシタ用電極および電気化学キャパシタに関するものである。 The present invention relates to a slurry composition for an electrochemical capacitor electrode, an electrode for an electrochemical capacitor, and an electrochemical capacitor.
 従来、電気二重層キャパシタおよびリチウムイオンキャパシタなどの電気化学キャパシタが幅広い用途に使用されている。 Conventionally, electrochemical capacitors such as electric double layer capacitors and lithium ion capacitors have been used for a wide range of applications.
 ここで、電気化学キャパシタは、一般に、複数の電極と、これら電極を隔離して短絡を防止するセパレータとを備えている。そして、電気化学キャパシタ用の電極としては、例えば、集電体と、集電体上に形成された電極合材層とを備える電極が用いられており、当該電極の電極合材層は、通常、電極活物質などの構成成分同士を結着材を介して結着して形成されている。 Here, the electrochemical capacitor generally includes a plurality of electrodes and a separator that isolates these electrodes to prevent a short circuit. And as an electrode for electrochemical capacitors, for example, an electrode comprising a current collector and an electrode mixture layer formed on the current collector is used, and the electrode mixture layer of the electrode is usually In addition, it is formed by binding constituent components such as an electrode active material through a binder.
 具体的には、電気化学キャパシタ用電極の電極合材層は、例えば、電極活物質および結着材と、必要に応じて配合される導電材などとを分散媒に分散させてなる電極用スラリー組成物を集電体上に塗布した後、塗布した電極用スラリー組成物を乾燥させることにより形成されている。そこで、近年では、電気化学キャパシタの性能の更なる向上を達成すべく、電極合材層の形成に用いられる電極用スラリー組成物中の結着材の改良が試みられている。 Specifically, the electrode mixture layer of the electrode for an electrochemical capacitor is, for example, an electrode slurry in which an electrode active material and a binder, and a conductive material blended as necessary are dispersed in a dispersion medium. After the composition is applied on the current collector, the applied electrode slurry composition is dried. Therefore, in recent years, attempts have been made to improve the binder in the electrode slurry composition used for forming the electrode mixture layer in order to further improve the performance of the electrochemical capacitor.
 例えば特許文献1では、電極活物質としての活性炭粉末と、アクリル酸共重合体などの水溶性高分子および可塑剤からなる結着材と、導電材とを含む電極用スラリー組成物を用いて作製した電極を用いることにより、電気二重層キャパシタの内部抵抗を低減しつつ、サイクル特性を高める技術が提案されている。 For example, in patent document 1, it produces using the slurry composition for electrodes containing the activated carbon powder as an electrode active material, the binder which consists of water-soluble polymers, such as an acrylic acid copolymer, and a plasticizer, and a electrically conductive material. A technique for improving cycle characteristics while reducing the internal resistance of the electric double layer capacitor has been proposed.
特開2004-111719号公報JP 2004-117719 A
 しかし、上記特許文献に記載された電極用スラリー組成物は、電気化学キャパシタに十分に優れたサイクル特性を付与することが困難であった。また、当該電極用スラリー組成物を用いて形成される電極を用いた場合、電圧の長時間印加による容量低下を抑制することができず、電気化学キャパシタのフロート特性を確保することができなかった。
 したがって、上記従来の電極用スラリー組成物には、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させるという点において、更なる改善の余地があった。
However, it has been difficult for the electrode slurry composition described in the above-mentioned patent document to impart sufficiently excellent cycle characteristics to the electrochemical capacitor. Further, when an electrode formed using the electrode slurry composition was used, it was not possible to suppress a decrease in capacity due to long-time application of voltage, and it was not possible to ensure the float characteristics of the electrochemical capacitor. .
Therefore, the conventional slurry composition for an electrode has room for further improvement in that the electrochemical capacitor exhibits excellent cycle characteristics and float characteristics.
 そこで、本発明は、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させ得る電気化学キャパシタ電極用スラリー組成物を提供することを目的とする。
 また、本発明は、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させ得る電気化学キャパシタ用電極を提供することを目的とする。
 そして、本発明は、サイクル特性およびフロート特性に優れる電気化学キャパシタを提供することを目的とする。
Then, an object of this invention is to provide the slurry composition for electrochemical capacitor electrodes which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor.
Another object of the present invention is to provide an electrode for an electrochemical capacitor that can exhibit excellent cycle characteristics and float characteristics of the electrochemical capacitor.
An object of the present invention is to provide an electrochemical capacitor having excellent cycle characteristics and float characteristics.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、結着材として、エチレン性不飽和カルボン酸および/またはその塩を所定の割合で含み、かつ20℃における水100gに対する溶解度が7g以上であるエチレン性不飽和結合を有する共重合可能な化合物を含む単量体組成物を共重合させて得られ、そして特定の範囲内の電解液膨潤度を有する共重合体を含むスラリー組成物を電極の形成に使用することで、当該電極を備える電気化学キャパシタのサイクル特性およびフロート特性が向上することを見出し、本発明を完成させた。 The present inventor has intensively studied for the purpose of solving the above problems. And this inventor has an ethylenically unsaturated bond which contains ethylenically unsaturated carboxylic acid and / or its salt in a predetermined ratio as a binder, and the solubility with respect to 100 g of water in 20 degreeC is 7 g or more. A slurry composition comprising a copolymer obtained by copolymerizing a monomer composition containing a copolymerizable compound and having a degree of electrolyte swelling within a specific range is used for forming an electrode. The present inventors have found that the cycle characteristics and float characteristics of an electrochemical capacitor provided with the electrodes are improved.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学キャパシタ電極用スラリー組成物は、電極活物質、共重合体および分散媒を含む電気化学キャパシタ電極用スラリー組成物であって、前記共重合体は、エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物(A)と、20℃における水100gに対する溶解度が7g以上であるエチレン性不飽和結合を有する共重合可能な化合物(B)と、を含む単量体組成物を重合して得られ、前記単量体組成物は、全単量体中の前記エチレン性不飽和カルボン酸化合物(A)の割合が20.0質量%以上99.9質量%以下であり、そして前記共重合体の電解液膨潤度が120質量%未満であることを特徴とする。このように、エチレン性不飽和カルボン酸化合物(A)および化合物(B)を含み、エチレン性不飽和カルボン酸化合物(A)の含有割合が上述の範囲内である単量体組成物を重合して得られ、かつ120質量%未満の電解液膨潤度を有する共重合体を結着材として含むスラリー組成物を電極の形成に用いれば、当該電極を備える電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させることができる。 That is, this invention aims to solve the above-mentioned problem advantageously, and the slurry composition for an electrochemical capacitor electrode of the present invention is an electrochemical capacitor comprising an electrode active material, a copolymer and a dispersion medium. The electrode slurry composition, wherein the copolymer has an ethylenically unsaturated carboxylic acid compound (A) composed of at least one of an ethylenically unsaturated carboxylic acid and a salt thereof, and a solubility of 7 g in 100 g of water at 20 ° C. It is obtained by polymerizing a monomer composition containing a copolymerizable compound (B) having an ethylenically unsaturated bond, and the monomer composition contains the ethylene in all monomers. The ratio of the unsaturated carboxylic acid compound (A) is 20.0% by mass or more and 99.9% by mass or less, and the electrolyte solution swelling degree of the copolymer is less than 120% by mass. To. Thus, the monomer composition containing the ethylenically unsaturated carboxylic acid compound (A) and the compound (B) and having a content ratio of the ethylenically unsaturated carboxylic acid compound (A) within the above range is polymerized. If a slurry composition containing a copolymer having a degree of swelling of an electrolyte solution of less than 120% by weight as a binder is used for forming an electrode, cycle characteristics and float excellent in an electrochemical capacitor including the electrode The characteristics can be exhibited.
 ここで、本発明の電気化学キャパシタ電極用スラリー組成物において、前記単量体組成物は、全単量体中の前記化合物(B)の割合が0.1質量%以上80.0質量%以下であることが好ましい。化合物(B)を上述の割合で含む単量体組成物を用いて共重合体を調製すれば、電極合材層と集電体の密着性を高めつつ、電気化学キャパシタのサイクル特性を更に向上させることができるからである。 Here, in the slurry composition for an electrochemical capacitor electrode of the present invention, the monomer composition has a ratio of the compound (B) in the total monomers of 0.1% by mass or more and 80.0% by mass or less. It is preferable that If a copolymer is prepared using a monomer composition containing the compound (B) in the above proportion, the cycle characteristics of the electrochemical capacitor are further improved while improving the adhesion between the electrode mixture layer and the current collector. It is because it can be made.
 そして、本発明の電気化学キャパシタ電極用スラリー組成物において、前記単量体組成物は、ポリオキシアルキレン構造および2つ以上のエチレン性不飽和結合を有する多官能化合物(C)をさらに含み、全単量体中の前記多官能化合物(C)の割合が0.1質量%以上10.0質量%以下であることが好ましい。多官能化合物(C)を上述の割合で含む単量体組成物を用いて共重合体を調製すれば、電気化学キャパシタのサイクル特性およびフロート特性を更に向上させることができるからである。また、多官能化合物(C)を単量体組成物に含めることで、スラリー組成物の固形分濃度を高めることが可能となり、電極の生産性を向上させることができるからである。 In the slurry composition for an electrochemical capacitor electrode of the present invention, the monomer composition further includes a polyfunctional compound (C) having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds, The ratio of the polyfunctional compound (C) in the monomer is preferably 0.1% by mass or more and 10.0% by mass or less. This is because if the copolymer is prepared using the monomer composition containing the polyfunctional compound (C) in the above-described ratio, the cycle characteristics and float characteristics of the electrochemical capacitor can be further improved. Moreover, it is because it becomes possible to raise solid content concentration of a slurry composition and to improve productivity of an electrode by including a polyfunctional compound (C) in a monomer composition.
 加えて、本発明の電気化学キャパシタ電極用スラリー組成物は、前記電極活物質100質量部当たり、前記共重合体を1質量部以上10質量部以下含むことが好ましい。共重合体を上述の配合量で含むスラリー組成物を用いて電極を作製すれば、電極合材層と集電体の密着性を高め、そして電気化学キャパシタの内部抵抗を低減しつつ、サイクル特性およびフロート特性を更に向上させることができるからである。 In addition, the slurry composition for an electrochemical capacitor electrode of the present invention preferably contains 1 to 10 parts by mass of the copolymer per 100 parts by mass of the electrode active material. If an electrode is prepared using the slurry composition containing the copolymer in the above-mentioned blending amount, the adhesion between the electrode mixture layer and the current collector is improved, and the internal resistance of the electrochemical capacitor is reduced, while the cycle characteristics are increased. This is because the float characteristics can be further improved.
 更に、本発明の電気化学キャパシタ電極用スラリー組成物は、前記電極活物質の比表面積が500m/g以上2500m/g以下であることが好ましい。上述の比表面積を有する電極活物質を用いれば、電気化学キャパシタの内部抵抗を低減しつつ、サイクル特性およびフロート特性を更に向上させることができるからである。 Furthermore, in the slurry composition for an electrochemical capacitor electrode of the present invention, the specific surface area of the electrode active material is preferably 500 m 2 / g or more and 2500 m 2 / g or less. This is because if the electrode active material having the above specific surface area is used, cycle characteristics and float characteristics can be further improved while reducing the internal resistance of the electrochemical capacitor.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学キャパシタ用電極は、上述の何れかの電気化学キャパシタ電極用スラリー組成物を用いて調製した電極合材層を、集電体上に備えることを特徴とする。このように、上述した何れかのスラリー組成物を用いて電極合材層を形成すれば、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させることが可能な電気化学キャパシタ用電極が得られる。 Moreover, this invention aims to solve the said subject advantageously, The electrode for electrochemical capacitors of this invention was prepared using the slurry composition for any one of the above-mentioned electrochemical capacitors. An electrode mixture layer is provided on the current collector. Thus, if the electrode mixture layer is formed using any of the slurry compositions described above, an electrochemical capacitor electrode capable of exhibiting excellent cycle characteristics and float characteristics of the electrochemical capacitor is obtained. .
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学キャパシタは、上述の電気化学キャパシタ用電極を備えることを特徴とする。このように、上述した電気化学キャパシタ用電極を用いれば、サイクル特性およびフロート特性に優れる電気化学キャパシタを提供することができる。 Also, the present invention aims to advantageously solve the above-mentioned problems, and the electrochemical capacitor of the present invention is characterized by comprising the above-described electrochemical capacitor electrode. Thus, if the electrode for electrochemical capacitors described above is used, an electrochemical capacitor having excellent cycle characteristics and float characteristics can be provided.
 本発明によれば、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させ得る電気化学キャパシタ電極用スラリー組成物を提供することができる。
 本発明によれば、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させ得る電気化学キャパシタ用電極を提供することができる。
 本発明によれば、サイクル特性およびフロート特性に優れる電気化学キャパシタを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the slurry composition for electrochemical capacitor electrodes which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
ADVANTAGE OF THE INVENTION According to this invention, the electrode for electrochemical capacitors which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
According to the present invention, an electrochemical capacitor having excellent cycle characteristics and float characteristics can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学キャパシタ電極用スラリー組成物は、電気化学キャパシタの電極の形成に用いる。そして、本発明の電気化学キャパシタ用電極は、本発明の電気化学キャパシタ電極用スラリー組成物を用いて製造することができる。また、本発明の電気化学キャパシタは、本発明の電気化学キャパシタ用電極を用いたことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the slurry composition for an electrochemical capacitor electrode of the present invention is used for forming an electrode of an electrochemical capacitor. And the electrode for electrochemical capacitors of this invention can be manufactured using the slurry composition for electrochemical capacitor electrodes of this invention. The electrochemical capacitor of the present invention is characterized by using the electrode for an electrochemical capacitor of the present invention.
(電気化学キャパシタ電極用スラリー組成物)
 本発明の電気化学キャパシタ電極用スラリー組成物は、結着材としての共重合体と、電極活物質と、分散媒とを含む。そして、共重合体が、エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物(A)を所定の割合で含み、かつ20℃における水100gに対する溶解度が7g以上であるエチレン性不飽和結合を有する共重合可能な化合物(B)を含む単量体組成物を重合して得られ、そして電解液膨潤度が120質量%未満であることを特徴とする。
(Slurry composition for electrochemical capacitor electrode)
The slurry composition for an electrochemical capacitor electrode of the present invention includes a copolymer as a binder, an electrode active material, and a dispersion medium. And a copolymer contains the ethylenically unsaturated carboxylic acid compound (A) which consists of at least one of ethylenically unsaturated carboxylic acid and its salt in a predetermined ratio, and the solubility with respect to 100 g of water in 20 degreeC is 7 g or more. It is obtained by polymerizing a monomer composition containing a copolymerizable compound (B) having an ethylenically unsaturated bond, and has an electrolyte solution swelling degree of less than 120% by mass.
<結着材>
 結着材は、本発明の電気化学キャパシタ電極用スラリー組成物を使用して集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持し得る成分である。
<Binder>
The binder is an electrode manufactured by forming an electrode mixture layer on a current collector using the slurry composition for an electrochemical capacitor electrode of the present invention. It is a component that can be held so as not to be detached from the material layer.
 そして、本発明の電気化学キャパシタ電極用スラリー組成物に用いる結着材は、エチレン性不飽和カルボン酸化合物(A)および化合物(B)を含み、エチレン性不飽和カルボン酸化合物(A)の含有割合が所定の範囲内である単量体組成物を重合して得られ、かつ電解液膨潤度が120質量%未満である共重合体を含有することを必要とする。
 なお、本発明の電気化学キャパシタ電極用スラリー組成物は、任意に、上記共重合体以外の重合体を結着材として更に含有していてもよい。
And the binder used for the slurry composition for electrochemical capacitor electrodes of the present invention contains the ethylenically unsaturated carboxylic acid compound (A) and the compound (B), and contains the ethylenically unsaturated carboxylic acid compound (A). It is necessary to contain a copolymer obtained by polymerizing a monomer composition having a ratio within a predetermined range and having an electrolyte solution swelling degree of less than 120% by mass.
In addition, the slurry composition for electrochemical capacitor electrodes of the present invention may optionally further contain a polymer other than the copolymer as a binder.
 ここで、本発明の電気化学キャパシタ電極用スラリー組成物は、エチレン性不飽和カルボン酸化合物(A)および化合物(B)を含み、エチレン性不飽和カルボン酸化合物(A)の含有割合が所定の範囲内である単量体組成物を重合して得られ、かつ電解液膨潤度が120質量%未満である共重合体を含有している。従って、当該スラリー組成物を電極の作製に用いることにより、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させることができる。 Here, the slurry composition for an electrochemical capacitor electrode of the present invention contains an ethylenically unsaturated carboxylic acid compound (A) and a compound (B), and the content ratio of the ethylenically unsaturated carboxylic acid compound (A) is predetermined. It contains a copolymer obtained by polymerizing a monomer composition within the range and having an electrolyte solution swelling degree of less than 120% by mass. Therefore, by using the slurry composition for the production of an electrode, it is possible to exhibit excellent cycle characteristics and float characteristics for an electrochemical capacitor.
 なお、結着材として上記共重合体を使用することで、電気化学キャパシタのサイクル特性およびフロート特性が向上する理由は、明らかではないが、以下の理由によるものであると推察される。
 まず、エチレン性不飽和カルボン酸化合物(A)のカルボキシル基の寄与により共重合体が電極活物質を好適に被覆し、電極活物質表面での電解液の分解が抑制される。それにより、ガス発生が抑制されるためフロート特性を向上させることできると推察される。一方、共重合体の調製に用いられる化合物(B)は水への溶解性が高い、すなわち極性の高い単量体である。よって、得られる共重合体は電気化学キャパシタで通常使用される非水系電解液に対する親和性が低く、結果として得られる共重合体の電解液中での膨潤が適度に(120質量%未満に)抑制される。そのため極板の強度が高まりその構造が維持され、サイクル特性が向上すると推察される。
 なお、電極活物質表面に形成される共重合体の被覆層が非常に薄いためであると推察されるが、上記共重合体を用いることにより、電気化学キャパシタの内部抵抗を過度に上昇させずに、上述したサイクル特性およびフロート特性の向上を達成することができる。
The reason why the cycle characteristics and float characteristics of the electrochemical capacitor are improved by using the copolymer as a binder is not clear, but is presumed to be due to the following reasons.
First, the copolymer suitably covers the electrode active material due to the contribution of the carboxyl group of the ethylenically unsaturated carboxylic acid compound (A), and the decomposition of the electrolytic solution on the surface of the electrode active material is suppressed. Thereby, it is surmised that the float characteristics can be improved because gas generation is suppressed. On the other hand, the compound (B) used for the preparation of the copolymer is a highly polar monomer having high solubility in water. Therefore, the obtained copolymer has low affinity for the non-aqueous electrolyte solution usually used in electrochemical capacitors, and the resulting copolymer has moderate swelling (less than 120% by mass) in the electrolyte solution. It is suppressed. Therefore, it is assumed that the strength of the electrode plate is increased, the structure is maintained, and the cycle characteristics are improved.
In addition, it is assumed that the coating layer of the copolymer formed on the surface of the electrode active material is very thin, but by using the copolymer, the internal resistance of the electrochemical capacitor is not excessively increased. In addition, the above-described improvement in cycle characteristics and float characteristics can be achieved.
[共重合体]
 本発明の電気化学キャパシタ電極用スラリー組成物の結着材として用いられる共重合体は、以下に詳細に説明する単量体組成物を重合して得られる。そして、通常、この共重合体は、単量体組成物中に含まれていた単量体に由来する構造単位を当該単量体組成物中の各単量体の存在比率と同様の比率で含有している。
[Copolymer]
The copolymer used as a binder for the slurry composition for an electrochemical capacitor electrode of the present invention is obtained by polymerizing a monomer composition described in detail below. And this copolymer usually has a structural unit derived from a monomer contained in the monomer composition at a ratio similar to the abundance ratio of each monomer in the monomer composition. Contains.
[[単量体組成物]]
 共重合体の調製に用いる単量体組成物は、例えば、単量体と、重合開始剤などの添加剤と、重合溶媒とを含有する。そして、単量体組成物は、単量体組成物中の全単量体の量を100質量%とした際に、20.0質量%以上99.9質量%以下のエチレン性不飽和カルボン酸化合物(A)と、化合物(B)とを含有する。なお、単量体組成物は、任意に、エチレン性不飽和カルボン酸化合物(A)および化合物(B)と共重合可能な多官能化合物(C)や、更にこれらを除いたその他の化合物を単量体として含有していてもよい。
[[Monomer composition]]
The monomer composition used for preparing the copolymer contains, for example, a monomer, an additive such as a polymerization initiator, and a polymerization solvent. The monomer composition has an ethylenically unsaturated carboxylic acid of 20.0% by mass or more and 99.9% by mass or less when the amount of all monomers in the monomer composition is 100% by mass. A compound (A) and a compound (B) are contained. In addition, the monomer composition may be composed of a monofunctional unsaturated carboxylic acid compound (A) and a polyfunctional compound (C) that can be copolymerized with the compound (B), and other compounds other than these. You may contain as a mer.
-エチレン性不飽和カルボン酸化合物(A)-
 エチレン性不飽和カルボン酸化合物(A)としては、エチレン性不飽和カルボン酸およびその塩の少なくとも一方を用いることができる。そして、エチレン性不飽和カルボン酸としては、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。また、エチレン性不飽和カルボン酸塩としては、エチレン性不飽和カルボン酸のナトリウム塩、カリウム塩、リチウム塩などが挙げられる。
 なお、エチレン性不飽和カルボン酸およびその塩は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
-Ethylenically unsaturated carboxylic acid compound (A)-
As the ethylenically unsaturated carboxylic acid compound (A), at least one of an ethylenically unsaturated carboxylic acid and a salt thereof can be used. Examples of the ethylenically unsaturated carboxylic acid include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof. Examples of the ethylenically unsaturated carboxylate include sodium salts, potassium salts and lithium salts of ethylenically unsaturated carboxylic acids.
In addition, ethylenically unsaturated carboxylic acid and its salt may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ここで、エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、などが挙げられる。
Here, examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid. Examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic. Acid, β-diaminoacrylic acid and the like.
Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like. Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like. Furthermore, examples of the ethylenically unsaturated dicarboxylic acid derivative include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
 なお、本発明の電気化学キャパシタ電極用スラリー組成物において、エチレン性不飽和カルボン酸化合物(A)としては、エチレン性不飽和カルボン酸塩、好ましくはエチレン性不飽和カルボン酸のリチウム塩を用いることができる。エチレン性不飽和カルボン酸塩を使用すれば、得られる共重合体の水溶性を高めることができるので、重合溶媒として水を使用して共重合体を調製する際に、単量体組成物中の単量体濃度を高濃度としても、共重合体の析出による重合の不均質な進行を防止することができる。従って、高単量体濃度の単量体組成物を使用して生産性を高めつつ、重合を均一に進行させることができる。また、エチレン性不飽和カルボン酸のリチウム塩を使用すれば、得られる共重合体中にカルボン酸リチウム塩基(-COOLi)が導入され、スラリー組成物の安定性が向上する。そのため、電気化学キャパシタのサイクル特性およびフロート特性が更に向上すると共に、内部抵抗を低減することができる。
 また、本発明のスラリー組成物を用いて作製した電極を備える電気化学キャパシタのフロート特性を更に向上させる観点からは、エチレン性不飽和カルボン酸化合物としては、アクリル酸、メタクリル酸またはそれらの塩を用いることが好ましく、アクリル酸またはアクリル酸塩を用いることがより好ましい。
In the slurry composition for electrochemical capacitor electrodes of the present invention, as the ethylenically unsaturated carboxylic acid compound (A), an ethylenically unsaturated carboxylate, preferably a lithium salt of ethylenically unsaturated carboxylic acid is used. Can do. If an ethylenically unsaturated carboxylate is used, the water solubility of the resulting copolymer can be increased, so when preparing the copolymer using water as the polymerization solvent, the monomer composition contains Even when the monomer concentration is high, it is possible to prevent inhomogeneous progress of polymerization due to precipitation of the copolymer. Accordingly, the polymerization can be progressed uniformly while increasing the productivity by using the monomer composition having a high monomer concentration. Further, when the lithium salt of ethylenically unsaturated carboxylic acid is used, lithium carboxylate base (—COOLi) is introduced into the resulting copolymer, and the stability of the slurry composition is improved. Therefore, the cycle characteristics and float characteristics of the electrochemical capacitor can be further improved, and the internal resistance can be reduced.
In addition, from the viewpoint of further improving the float characteristics of an electrochemical capacitor including an electrode prepared using the slurry composition of the present invention, the ethylenically unsaturated carboxylic acid compound includes acrylic acid, methacrylic acid or a salt thereof. It is preferable to use acrylic acid or acrylate.
 そして、共重合体の調製に用いる単量体組成物が含む単量体は、上述したエチレン性不飽和カルボン酸化合物(A)が占める割合が20.0質量%以上99.9質量%以下である必要があり、単量体中でエチレン性不飽和カルボン酸化合物(A)が占める割合は、21.0質量%以上であることが好ましく、22.0質量%以上であることがより好ましく、26.0質量%以上であることが更に好ましく、80.0質量%以下であることが好ましく、79.9質量%以下であることがより好ましく、72.0質量%以下であることが更に好ましく、50.0質量%以下であることが特に好ましい。単量体中でエチレン性不飽和カルボン酸化合物(A)が占める割合が20.0質量%未満の場合、共重合体による電極活物質の被覆が不十分となり、電気化学キャパシタのフロート特性が低下する。一方、単量体中でエチレン性不飽和カルボン酸化合物(A)が占める割合が99.9質量%超の場合、電極活物質が共重合体により過度に被覆され、電気化学キャパシタの内部抵抗が低下する。 And the monomer which the monomer composition used for preparation of a copolymer has the ratio for which the ethylenically unsaturated carboxylic acid compound (A) accounts is 20.0 mass% or more and 99.9 mass% or less. The proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is preferably 21.0% by mass or more, more preferably 22.0% by mass or more, It is more preferably 26.0% by mass or more, preferably 80.0% by mass or less, more preferably 79.9% by mass or less, and further preferably 72.0% by mass or less. It is particularly preferably 50.0% by mass or less. When the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is less than 20.0% by mass, the electrode active material is not sufficiently covered with the copolymer, and the float characteristics of the electrochemical capacitor deteriorate. To do. On the other hand, when the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer exceeds 99.9% by mass, the electrode active material is excessively covered with the copolymer, and the internal resistance of the electrochemical capacitor is reduced. descend.
-化合物(B)-
 化合物(B)としては、エチレン性不飽和結合を有する共重合可能な化合物であって、20℃における水100gに対する溶解度が、7g以上の化合物を用いることができる。このような溶解度を有する化合物(B)に由来する構造単位は、電解液に対する膨潤性が低いと共に、水を重合溶媒とした際の重合性が高いからである。なお、本発明においてエチレン性不飽和カルボン酸およびその塩は、前述の溶解度を満たす場合であっても、化合物(B)には含まれず、エチレン性不飽和カルボン酸化合物(A)に含まれるものとする。
 そして化合物(B)としては、例えば、2-ヒドロキシプロピルメタクリレート(100以上)、2-ヒドロキシプロピルアクリレート(100以上)、2-ヒドロキシエチルメタクリレート(100以上)、2-ヒドロキシエチルアクリレート(100以上)、リン酸2-(メタクリロイルオキシ)エチル(100以上)、アクリルアミド(204)、メタクリルアミド(100以上)、N-メチロールアクリルアミド(100以上)、アクリロニトリル(7.3)、スチレンスルホン酸ナトリウム(22)などの、エチレン性不飽和結合を有し、かつ極性の高い官能基(水酸基、アミド基、ニトリル基、リン酸基、アミノ基など)を有する化合物や、エチレングリコールジメタクリレート(100以上)を挙げることができる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ここで、上記の括弧中の数値は、温度20℃における水溶解度(単位:g/100g)を示す。なお、温度20℃における水溶解度は、EPA法(EPA Chemical Fate testing Guideline CG-1500 Water Solubility)で測定することができる。
 なお、上記化合物(B)に替えて、メチルアクリレート(6)、エチルアクリレート(2)、ブチルアクリレート(2)等の20℃における水溶解度が7g未満の化合物を用いて共重合体を調製すると、当該共重合体が電解液中において過度に膨潤し、極板の強度が低下し構造が維持できない。そのため、電気化学キャパシタのサイクル特性を確保することができない。
-Compound (B)-
As the compound (B), a compound having an ethylenically unsaturated bond and having a solubility in 100 g of water at 20 ° C. of 7 g or more can be used. This is because the structural unit derived from the compound (B) having such solubility has low swellability with respect to the electrolytic solution and high polymerizability when water is used as a polymerization solvent. In the present invention, the ethylenically unsaturated carboxylic acid and the salt thereof are not included in the compound (B) but are included in the ethylenically unsaturated carboxylic acid compound (A) even when the above-described solubility is satisfied. And
Examples of the compound (B) include 2-hydroxypropyl methacrylate (100 or more), 2-hydroxypropyl acrylate (100 or more), 2-hydroxyethyl methacrylate (100 or more), 2-hydroxyethyl acrylate (100 or more), 2- (methacryloyloxy) ethyl phosphate (100 or more), acrylamide (204), methacrylamide (100 or more), N-methylolacrylamide (100 or more), acrylonitrile (7.3), sodium styrenesulfonate (22), etc. And compounds having an ethylenically unsaturated bond and having a highly polar functional group (hydroxyl group, amide group, nitrile group, phosphoric acid group, amino group, etc.) or ethylene glycol dimethacrylate (100 or more) Can do. One of these may be used alone, or two or more of these may be used in combination at any ratio. Here, the numerical value in the parenthesis indicates water solubility (unit: g / 100 g) at a temperature of 20 ° C. The water solubility at 20 ° C. can be measured by the EPA method (EPA Chemical Fate testing Guideline CG-1500 Water Solubility).
In addition, instead of the compound (B), when a copolymer is prepared using a compound having a water solubility at 20 ° C. of less than 7 g, such as methyl acrylate (6), ethyl acrylate (2), butyl acrylate (2), The copolymer is excessively swollen in the electrolytic solution, the strength of the electrode plate is lowered, and the structure cannot be maintained. Therefore, the cycle characteristics of the electrochemical capacitor cannot be ensured.
 そして、電極合材層と集電体の密着性を高め、電気化学キャパシタのサイクル特性を更に向上させる観点からは、化合物(B)としては、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート等の水酸基含有エチレン性不飽和カルボン酸エステル化合物や、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド等のアミド基含有化合物が好ましく、アクリルアミドがより好ましい。 From the viewpoint of improving the adhesion between the electrode mixture layer and the current collector and further improving the cycle characteristics of the electrochemical capacitor, the compound (B) includes 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, Hydroxyl group-containing ethylenically unsaturated carboxylic acid ester compounds such as -hydroxyethyl methacrylate and 2-hydroxyethyl acrylate, and amide group-containing compounds such as acrylamide, methacrylamide, and N-methylolacrylamide are preferred, and acrylamide is more preferred.
 そして、共重合体の調製に用いる単量体組成物が含む単量体は、上述した化合物(B)が占める割合は、0.1質量%以上であることが好ましく、20.0質量%以上であることがより好ましく、25.0質量%以上であることが更に好ましく、50.0質量%以上であることが特に好ましく、60.0質量%以上であることが最も好ましく、80.0質量%以下であることが好ましく、79.9質量%以下であることがより好ましく、75.0質量%以下であることが更に好ましく、73.0質量%以下であることが特に好ましい。単量体中で化合物(B)が占める割合が0.1質量%以上であることで、電気化学キャパシタのサイクル特性を更に向上させることができる。一方、単量体中で化合物(B)が占める割合が80.0質量%以下であることで、電極合材層と集電体の密着性を確保することができる。 And the monomer which the monomer composition used for preparation of a copolymer accounts for the ratio for which the above-mentioned compound (B) accounts is preferably 0.1 mass% or more, and 20.0 mass% or more. Is more preferably 25.0% by mass or more, particularly preferably 50.0% by mass or more, most preferably 60.0% by mass or more, and 80.0% by mass. % Or less, more preferably 79.9% by mass or less, still more preferably 75.0% by mass or less, and particularly preferably 73.0% by mass or less. When the proportion of the compound (B) in the monomer is 0.1% by mass or more, the cycle characteristics of the electrochemical capacitor can be further improved. On the other hand, when the proportion of the compound (B) in the monomer is 80.0% by mass or less, the adhesion between the electrode mixture layer and the current collector can be ensured.
 また、全単量体中のエチレン性不飽和カルボン酸化合物(A)の割合を全単量体中の前記化合物(B)の割合で除した値(A/B)が、0.2以上であることが好ましく、0.3以上であることがより好ましく、0.35以上であることが更に好ましく、2.5以下であることが好ましく、0.8以下であることがより好ましく、0.7以下であることが更に好ましい。A/Bが上述の範囲内であることで、電気化学キャパシタのサイクル特性およびフロート特性をバランスよく向上させることができる。 Moreover, the value (A / B) which remove | divided the ratio of the ethylenically unsaturated carboxylic acid compound (A) in all the monomers by the ratio of the said compound (B) in all the monomers is 0.2 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, preferably 2.5 or less, more preferably 0.8 or less, and More preferably, it is 7 or less. When A / B is within the above range, the cycle characteristics and float characteristics of the electrochemical capacitor can be improved in a balanced manner.
-多官能化合物(C)-
 単量体組成物は、単量体として、ポリオキシアルキレン構造および2つ以上のエチレン性不飽和結合を有する多官能化合物(C)を含むことが好ましい。このような多官能化合物(C)を共重合体の重合に用いることで、共重合体に適度に高い剛性と柔軟性とを付与することができる。従って、充放電による電極の膨れを抑制する等によりサイクル特性の低下を抑制することができる。また、水との親和性が高いエチレンオキシド鎖の寄与により、共重合体の重合が容易となる。また、多官能化合物(C)を単量体組成物に含めることで、本発明のバインダー組成物を用いて調製したスラリー組成物の固形分濃度を高めることが可能となり、電極の生産性を向上させることができる。加えて、電解質としてLiPFなどのリチウム塩を含む電解液を使用した場合には、リチウムイオン伝導性が確保され、リチウムイオンキャパシタの内部抵抗を低減することができる。ここで、多官能化合物(C)としては、一般式:-(C2mO)-[式中、mは1以上の整数であり、nは2以上の整数である]で表されるポリオキシアルキレン構造と、2つ以上のエチレン性不飽和結合とを有する化合物を用いることができる。
 ポリオキシアルキレン構造と2つ以上のエチレン性不飽和結合とを有する化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、多官能化合物(C)に該当する化合物は、化合物(B)に含まれないものとする。
-Polyfunctional compound (C)-
The monomer composition preferably includes a polyfunctional compound (C) having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds as a monomer. By using such a polyfunctional compound (C) for the polymerization of the copolymer, it is possible to impart moderately high rigidity and flexibility to the copolymer. Therefore, it is possible to suppress the deterioration of the cycle characteristics by suppressing the swelling of the electrode due to charge / discharge. Moreover, the polymerization of the copolymer is facilitated by the contribution of the ethylene oxide chain having a high affinity with water. In addition, by including the polyfunctional compound (C) in the monomer composition, it is possible to increase the solid content concentration of the slurry composition prepared using the binder composition of the present invention, thereby improving the productivity of the electrode. Can be made. In addition, when an electrolytic solution containing a lithium salt such as LiPF 6 is used as the electrolyte, lithium ion conductivity is ensured and the internal resistance of the lithium ion capacitor can be reduced. Here, the polyfunctional compound (C) is represented by the general formula: — (C m H 2m O) n — [wherein m is an integer of 1 or more and n is an integer of 2 or more]. A compound having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds can be used.
As the compound having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds, one type may be used alone, or two or more types may be used in combination at any ratio.
In the present invention, a compound corresponding to the polyfunctional compound (C) is not included in the compound (B).
 ここで、多官能化合物(C)としては、例えば、ポリオキシアルキレン構造を有するポリオールのポリ(メタ)アクリレートなどが挙げられる。具体的には、多官能化合物(C)としては、特に限定されることなく、下記の化合物(I)~(V)が挙げられる
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを指す。
(I)下記一般式:
Figure JPOXMLDOC01-appb-C000001
[式中、nは2以上の整数である]で表されるポリエチレングリコールジアクリレート。
(II)下記一般式:
Figure JPOXMLDOC01-appb-C000002
[式中、nは2以上の整数である]で表されるポリテトラメチレングリコールジアクリレート。
(III)下記一般式:
Figure JPOXMLDOC01-appb-C000003
[式中、n1およびn2は、2以上の整数であり、互いに同一でも、異なっていても良い]で表されるエトキシ化ビスフェノールAジアクリレート。
(IV)下記一般式:
Figure JPOXMLDOC01-appb-C000004
[式中、n1、n2およびn3は、2以上の整数であり、互いに同一でも、異なっていても良い]で表されるエトキシ化グリセリントリアクリレート。
(V)下記一般式:
Figure JPOXMLDOC01-appb-C000005
[式中、n1、n2、n3およびn4は、2以上の整数であり、互いに同一でも、異なっていても良い]で表されるエトキシ化ペンタエリスリトールテトラアクリレート。
Here, as a polyfunctional compound (C), the poly (meth) acrylate of the polyol which has a polyoxyalkylene structure etc. are mentioned, for example. Specifically, the polyfunctional compound (C) is not particularly limited, and includes the following compounds (I) to (V). In the present invention, “(meth) acrylate” means acrylate And / or methacrylate.
(I) The following general formula:
Figure JPOXMLDOC01-appb-C000001
[Wherein n is an integer of 2 or more] polyethylene glycol diacrylate represented by
(II) The following general formula:
Figure JPOXMLDOC01-appb-C000002
[Wherein n is an integer of 2 or more] polytetramethylene glycol diacrylate.
(III) The following general formula:
Figure JPOXMLDOC01-appb-C000003
[Wherein, n1 and n2 are integers of 2 or more, and may be the same or different from each other].
(IV) The following general formula:
Figure JPOXMLDOC01-appb-C000004
[Wherein n1, n2 and n3 are integers of 2 or more, and may be the same or different from each other].
(V) The following general formula:
Figure JPOXMLDOC01-appb-C000005
[Wherein n1, n2, n3 and n4 are integers of 2 or more and may be the same or different from each other], and ethoxylated pentaerythritol tetraacrylate.
 なお、共重合体の重合を容易にし、そして、本発明のスラリー組成物の固形分濃度を高めることを可能にして電極の生産性を向上させる観点からは、多官能化合物(C)のエチレン性不飽和結合の数(官能数)は、2以上6以下であることが好ましく、2以上4以下であることが更に好ましい。
 また、電極の生産性を更に高める観点からは、多官能化合物(C)は、2~6官能のポリアクリレートであることが好ましく、2~4官能のポリアクリレートであることが更に好ましい。
From the viewpoint of facilitating the polymerization of the copolymer and improving the productivity of the electrode by making it possible to increase the solid content concentration of the slurry composition of the present invention, the ethylenic property of the polyfunctional compound (C) The number of unsaturated bonds (functional number) is preferably 2 or more and 6 or less, and more preferably 2 or more and 4 or less.
From the viewpoint of further increasing the productivity of the electrode, the polyfunctional compound (C) is preferably a bi- to hexa-functional polyacrylate, more preferably a bi- to tetra-functional polyacrylate.
 更に、本発明のスラリー組成物の安定性および電気化学キャパシタのサイクル特性を向上させる観点からは、多官能化合物(C)が有するポリオキシアルキレン構造(-(C2mO)-)の整数mは、20以下であることが好ましく、15以下であることが更に好ましく、10以下であることが特に好ましく、2以上であることが好ましい。整数mが大きすぎる場合には、スラリー組成物の安定性が低下する虞があるからである。また、整数mが小さすぎる場合には、共重合体の剛性が高くなり、電気化学キャパシタのサイクル特性が低下する虞があるからである。
 また、同様の理由により、多官能化合物(C)が有するポリオキシアルキレン構造(-(C2mO)-)の整数nは、20以下であることが好ましく、15以下であることが更に好ましく、10以下であることが特に好ましく、2以上であることが好ましく、3以上であることが更に好ましく、4以上であることが特に好ましい。整数nが大きすぎる場合には、スラリー組成物の安定性が低下する虞があるからである。また、整数nが小さすぎる場合には、共重合体の剛性が高くなり、電気化学キャパシタのサイクル特性が低下する虞があるからである。なお、多官能化合物(C)が分子内に複数のポリオキシアルキレン構造(-(C2mO)-)を有する場合には、複数のポリオキシアルキレン構造の整数nの平均値が上記範囲内に含まれることが好ましく、全てのポリオキシアルキレン構造の整数nが上記範囲内に含まれることが更に好ましい。
Furthermore, from the viewpoint of improving the stability of the slurry composition of the present invention and the cycle characteristics of the electrochemical capacitor, the polyoxyalkylene structure (— (C m H 2m O) n —) of the polyfunctional compound (C) The integer m is preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less, and preferably 2 or more. This is because if the integer m is too large, the stability of the slurry composition may decrease. Moreover, when the integer m is too small, the rigidity of the copolymer becomes high, and the cycle characteristics of the electrochemical capacitor may be deteriorated.
For the same reason, the integer n of the polyoxyalkylene structure (— (C m H 2m O) n —) of the polyfunctional compound (C) is preferably 20 or less, and preferably 15 or less. More preferably, it is particularly preferably 10 or less, more preferably 2 or more, further preferably 3 or more, and particularly preferably 4 or more. This is because if the integer n is too large, the stability of the slurry composition may decrease. Moreover, when the integer n is too small, the rigidity of the copolymer becomes high, and the cycle characteristics of the electrochemical capacitor may be deteriorated. When the polyfunctional compound (C) has a plurality of polyoxyalkylene structures (— (C m H 2m O) n —) in the molecule, the average value of integers n of the plurality of polyoxyalkylene structures is It is preferable to be included in the range, and it is more preferable that the integer n of all the polyoxyalkylene structures is included in the above range.
 そして、共重合体の調製に用いる単量体組成物が含む単量体は、上述した多官能化合物(C)が占める割合が0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましく、10.0質量%以下であることが好ましく、8.0質量%以下であることがより好ましく、5.0質量%以下であることが更に好ましい。単量体中で多官能化合物(C)が占める割合が0.1質量%以上であることで、電気化学キャパシタのサイクル特性を更に向上させることができる。一方、単量体中で多官能化合物(C)が占める割合が20.0質量%以下であることで、共重合体中の架橋点の過度な増加が抑制され、共重合体による電極活物質の均一な被覆が可能となる。そのため、電気化学キャパシタのフロート特性およびサイクル特性の低下を抑制することができる。 The monomer contained in the monomer composition used for the preparation of the copolymer preferably has a ratio of the above-mentioned polyfunctional compound (C) of 0.1% by mass or more, and is 0.2% by mass. More preferably, it is more preferably 0.5% by mass or more, more preferably 10.0% by mass or less, more preferably 8.0% by mass or less, and 5.0% by mass. % Or less is more preferable. When the proportion of the polyfunctional compound (C) in the monomer is 0.1% by mass or more, the cycle characteristics of the electrochemical capacitor can be further improved. On the other hand, when the proportion of the polyfunctional compound (C) in the monomer is 20.0% by mass or less, an excessive increase in the crosslinking points in the copolymer is suppressed, and the electrode active material by the copolymer Can be uniformly coated. Therefore, it is possible to suppress a decrease in float characteristics and cycle characteristics of the electrochemical capacitor.
-その他の化合物-
 共重合体の調製に用いる単量体組成物には、上述したエチレン性不飽和カルボン酸化合物(A)、化合物(B)および多官能化合物(C)と共重合可能な既知の化合物が含まれていてもよい。そして、共重合体の調製に用いる単量体組成物が含む単量体は、これら(A)~(C)を除くその他の化合物が占める割合が20.0質量%以下であることが好ましく、10.0質量%以下であることがより好ましい。
 より具体的には、その他の化合物としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、パーフルオロアルキルエチルアクリレート、フェニルアクリレート、などのアクリル酸エステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、パーフルオロアルキルエチルメタクリレート、フェニルメタクリレート、などのメタクリル酸エステル;その他、酢酸ビニル、グリシジルメタクリレート、2-ビニルピリジン、等が挙げられる。
-Other compounds-
The monomer composition used for the preparation of the copolymer includes known compounds copolymerizable with the above-mentioned ethylenically unsaturated carboxylic acid compound (A), compound (B) and polyfunctional compound (C). It may be. The monomer contained in the monomer composition used for preparing the copolymer preferably has a ratio of other compounds other than (A) to (C) of 20.0% by mass or less. It is more preferable that it is 10.0 mass% or less.
More specifically, as other compounds, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, nonyl acrylate Acrylic acid esters such as decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate, perfluoroalkyl ethyl acrylate, phenyl acrylate, etc .; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate Methacrylic acid esters such as vinyl acetate, glycidyl methacrylate, 2; heptyl methacrylate, octyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, stearyl methacrylate, perfluoroalkylethyl methacrylate, phenyl methacrylate -Vinylpyridine, etc.
-添加剤-
 共重合体の調製に用いる単量体組成物に配合する添加剤としては、過硫酸カリウム等の重合開始剤や、テトラメチルエチレンジアミン等の重合促進剤などの重合反応に使用し得る既知の添加剤が挙げられる。なお、添加剤の種類および配合量は、重合方法等に応じて任意に選択することができる。
-Additive-
As additives to be added to the monomer composition used for preparing the copolymer, known additives that can be used for polymerization reactions such as polymerization initiators such as potassium persulfate and polymerization accelerators such as tetramethylethylenediamine Is mentioned. In addition, the kind and compounding quantity of an additive can be arbitrarily selected according to a polymerization method etc.
-重合溶媒-
 共重合体の調製に用いる単量体組成物に配合する重合溶媒としては、重合方法等に応じて、前述した単量体を溶解または分散可能な既知の溶媒を用いることができる。中でも、重合溶媒としては、水を用いることが好ましい。なお、重合溶媒としては、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。
-Polymerization solvent-
As the polymerization solvent to be blended in the monomer composition used for preparing the copolymer, a known solvent capable of dissolving or dispersing the above-described monomer can be used depending on the polymerization method and the like. Among these, water is preferably used as the polymerization solvent. As the polymerization solvent, an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
[[共重合体の調製]]
 本発明のスラリー組成物の結着材として用いられる共重合体は、上述した単量体、添加剤および重合溶媒を既知の方法で混合して得た単量体組成物を、例えばラジカル重合させることで得られる。なお、上記単量体組成物を重合して得られる、共重合体と重合溶媒とを含む溶液は、そのままスラリー組成物の調製に使用してもよいし、溶媒置換や任意の成分の添加などを行なった後にスラリー組成物の調製に使用してもよい。
[[Preparation of copolymer]]
The copolymer used as the binder of the slurry composition of the present invention is obtained by, for example, radical polymerization of a monomer composition obtained by mixing the above-described monomer, additive and polymerization solvent by a known method. Can be obtained. In addition, the solution containing the copolymer and the polymerization solvent obtained by polymerizing the monomer composition may be used as it is for the preparation of the slurry composition, solvent substitution, addition of optional components, etc. May be used to prepare a slurry composition.
 ここで、重合方法としては、水溶液重合、スラリー重合、懸濁重合、乳化重合などの公知の重合法が挙げられるが、溶媒の除去操作が不要であり、溶媒の安全性が高く、かつ、界面活性剤の混入の問題が無いことから、重合溶媒として水を使用した水溶液重合が好ましい。なお、水溶液重合は、単量体組成物を所定の濃度に調整し、反応系内の溶存酸素を不活性ガスで十分に置換した後、ラジカル重合開始剤を添加し、必要により、加熱や紫外線などの光照射をすることによって重合反応を行う方法である。 Here, examples of the polymerization method include known polymerization methods such as aqueous solution polymerization, slurry polymerization, suspension polymerization, and emulsion polymerization. However, the operation for removing the solvent is unnecessary, the safety of the solvent is high, and the interface Since there is no problem of mixing of the activator, aqueous solution polymerization using water as a polymerization solvent is preferable. In aqueous solution polymerization, the monomer composition is adjusted to a predetermined concentration, and the dissolved oxygen in the reaction system is sufficiently replaced with an inert gas. Then, a radical polymerization initiator is added, and if necessary, heating or ultraviolet rays are added. It is a method of performing a polymerization reaction by irradiating light.
 なお、重合溶媒として水を使用し、上述した単量体組成物を水中で重合して共重合体を含む水溶液を調製する場合には、重合後に水溶液のpHを8以上9以下に調整することが好ましい。得られる水溶液を中和してpHを8~9に調整すれば、スラリー組成物にチクソ性が付与され、そしてスラリー組成物の安定性が高まる。また、電気化学キャパシタのサイクル特性を更に高めることができる。
 ここで、エチレン性不飽和カルボン酸化合物(A)としてエチレン性不飽和カルボン酸を含む単量体組成物を使用した場合には、上記水溶液の中和を行なう際に、塩基性のリチウム化合物を使用することが好ましい。塩基性のリチウム化合物を使用すれば、共重合体中のカルボン酸基がカルボン酸リチウム塩基(-COOLi)となり、スラリー組成物のチクソ性および安定性が更に向上すると共に、電気化学キャパシタの内部抵抗が低減され、加えてサイクル特性およびフロート特性が向上するからである。なお、塩基性のリチウム化合物としては、炭酸リチウム(LiCO)や水酸化リチウム(LiOH)を用いることができ、水酸化リチウムを用いることが好ましい。
In addition, when using water as a polymerization solvent and polymerizing the monomer composition described above in water to prepare an aqueous solution containing a copolymer, the pH of the aqueous solution should be adjusted to 8 or more and 9 or less after polymerization. Is preferred. If the resulting aqueous solution is neutralized and the pH is adjusted to 8-9, thixotropy is imparted to the slurry composition, and the stability of the slurry composition is enhanced. In addition, the cycle characteristics of the electrochemical capacitor can be further enhanced.
Here, when a monomer composition containing an ethylenically unsaturated carboxylic acid is used as the ethylenically unsaturated carboxylic acid compound (A), a basic lithium compound is used when neutralizing the aqueous solution. It is preferable to use it. If a basic lithium compound is used, the carboxylic acid group in the copolymer becomes a lithium carboxylate base (—COOLi), which further improves the thixotropy and stability of the slurry composition, and the internal resistance of the electrochemical capacitor. This is because the cycle characteristics and float characteristics are improved. As the basic lithium compound, lithium carbonate (Li 2 CO 3 ) or lithium hydroxide (LiOH) can be used, and lithium hydroxide is preferably used.
[[共重合体の性状]]
 そして、上述のようにして調製した共重合体は、電解液膨潤度が120質量%未満であることが必要であり、118質量%未満であることが好ましく、115質量%未満であることがより好ましく、また、100質量%超であることが好ましく、105質量%超であることがより好ましい。共重合体の電解液膨潤度が120質量%以上であると、共重合体が電解液中で過度に膨潤して極板構造が維持できない。そのため電気化学キャパシタのフロート特性が低下し、またサイクル特性が低下する。一方、共重合体の電解液膨潤度が100質量%超であれば、電気化学キャパシタの内部抵抗を低減することができる。
 なお、共重合体の電解液膨潤度は、本明細書の実施例に記載の方法で測定することができる。また、共重合体の電解液膨潤度は、例えば単量体組成物中のエチレン性不飽和カルボン酸化合物(A)や化合物(B)の種類や量を変更することにより調整することができる。
[[Properties of copolymer]]
The copolymer prepared as described above needs to have an electrolyte swelling degree of less than 120% by mass, preferably less than 118% by mass, and more preferably less than 115% by mass. Moreover, it is preferable that it is more than 100 mass%, and it is more preferable that it is more than 105 mass%. When the degree of swelling of the electrolyte in the copolymer is 120% by mass or more, the copolymer is excessively swollen in the electrolyte and the electrode plate structure cannot be maintained. Therefore, the float characteristic of the electrochemical capacitor is deteriorated and the cycle characteristic is also deteriorated. On the other hand, if the degree of swelling of the electrolyte in the copolymer exceeds 100% by mass, the internal resistance of the electrochemical capacitor can be reduced.
In addition, the electrolyte solution swelling degree of a copolymer can be measured by the method as described in the Example of this specification. Moreover, the electrolyte solution swelling degree of a copolymer can be adjusted by changing the kind and quantity of the ethylenically unsaturated carboxylic acid compound (A) and compound (B) in a monomer composition, for example.
 また、共重合体は、水溶性の重合体であることが好ましい。ここで、本発明において重合体が「水溶性」であるとは、イオン交換水100質量部当たり重合体1質量部(固形分相当)を添加し攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつ、pH3以上12以下(pH調整にはNaOH水溶液及び/またはHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整し、250メッシュのスクリーンを通過させた際に、スクリーンを通過せずにスクリーン上に残る残渣の固形分の質量が、添加した重合体の固形分に対して50質量%を超えないことをいう。 The copolymer is preferably a water-soluble polymer. Here, in the present invention, the polymer is “water soluble” means that a mixture obtained by adding 1 part by weight of polymer (corresponding to a solid content) and stirring with respect to 100 parts by weight of ion-exchanged water has a temperature of 20 ° C. or higher. Adjust to at least one of the conditions within the range of 70 ° C. or less and within the range of pH 3 to 12 (using NaOH aqueous solution and / or HCl aqueous solution for pH adjustment), and pass through a 250 mesh screen. This means that the solid content of the residue remaining on the screen without passing through the screen does not exceed 50 mass% with respect to the solid content of the added polymer.
[[共重合体の配合量]]
 本発明のスラリー組成物において、上述した共重合体の配合量は、電極活物質100質量部当たり、1質量部以上であることが好ましく、4質量部以上であることがより好ましく、10質量部以下であることが好ましく、6質量部以下であることがより好ましい。スラリー組成物中の共重合体の配合量が電極活物質100質量部当たり1質量部以上であれば、電極合材層と集電体の密着性を確保することができ、また電気化学キャパシタのサイクル特性およびフロート特性を更に向上させることができる。一方、スラリー組成物中の共重合体の配合量が10質量部以下であれば、内部抵抗が過度に上昇することもない。
[[Blend amount of copolymer]]
In the slurry composition of the present invention, the amount of the copolymer described above is preferably 1 part by mass or more, more preferably 4 parts by mass or more, per 100 parts by mass of the electrode active material. Or less, and more preferably 6 parts by mass or less. If the blending amount of the copolymer in the slurry composition is 1 part by mass or more per 100 parts by mass of the electrode active material, the adhesion between the electrode mixture layer and the current collector can be secured, and the electrochemical capacitor Cycle characteristics and float characteristics can be further improved. On the other hand, if the blending amount of the copolymer in the slurry composition is 10 parts by mass or less, the internal resistance will not increase excessively.
[その他の重合体]
 上述した共重合体を結着材として含有する本発明のスラリー組成物は、上述した共重合体以外の重合体を結着材として更に含有していてもよい。
[Other polymers]
The slurry composition of the present invention containing the above-described copolymer as a binder may further contain a polymer other than the above-described copolymer as a binder.
 そして、上述した共重合体以外の重合体としては、スラリー組成物の分散媒に分散可能な粒子状重合体などの既知の重合体が挙げられる。具体的には、粒子状重合体としては、例えば、スチレン-ブタジエン共重合体やアクリロニトリル-ブタジエン共重合体等のジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体などが挙げられる。これらの中でも、電極合材層と集電体の密着性を高める観点からは、スチレン-ブタジエン共重合体、アクリル重合体が好ましい。
 なお、これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
And as polymers other than the copolymer mentioned above, known polymers, such as a particulate polymer dispersible in the dispersion medium of a slurry composition, are mentioned. Specifically, examples of the particulate polymer include diene polymers such as styrene-butadiene copolymer and acrylonitrile-butadiene copolymer, acrylic polymers, fluorine polymers, and silicon polymers. Among these, styrene-butadiene copolymers and acrylic polymers are preferable from the viewpoint of improving the adhesion between the electrode mixture layer and the current collector.
In addition, these polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ここで、本発明のスラリー組成物が上述した共重合体以外の重合体を結着材として含有する場合、当該重合体の配合量は、電極活物質100質量部当たり、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが更に好ましい。スラリー組成物中の共重合体以外の重合体(結着材)の配合量が電極活物質100質量部当たり0.1質量部以上であれば、電極合材層と集電体の密着性を確保することができる。またスラリー組成物中の共重合体以外の重合体(結着材)の配合量が電極活物質100質量部当たり10質量部以下であれば、過度な増粘に起因してスラリー組成物の調製が困難となることもない。また内部抵抗の上昇が抑制され、電気化学キャパシタのサイクル特性を確保することができる。 Here, when the slurry composition of the present invention contains a polymer other than the above-described copolymer as a binder, the blending amount of the polymer is 0.1 parts by mass or more per 100 parts by mass of the electrode active material. It is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 10 parts by mass or less, and more preferably 5 parts by mass or less. More preferably, it is 3 parts by mass or less. If the blending amount of the polymer (binder) other than the copolymer in the slurry composition is 0.1 parts by mass or more per 100 parts by mass of the electrode active material, the adhesion between the electrode mixture layer and the current collector is improved. Can be secured. If the blending amount of the polymer (binder) other than the copolymer in the slurry composition is 10 parts by mass or less per 100 parts by mass of the electrode active material, the slurry composition is prepared due to excessive thickening. Will not be difficult. Further, the increase in internal resistance is suppressed, and the cycle characteristics of the electrochemical capacitor can be ensured.
<電極活物質>
 本発明の電気化学キャパシタ電極用スラリー組成物に用いる電極活物質は、当該スラリー組成物を用いて作製される電極が使用される電気化学キャパシタの種類に応じて選択すればよい。なお、電極活物質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Electrode active material>
What is necessary is just to select the electrode active material used for the slurry composition for electrochemical capacitor electrodes of this invention according to the kind of electrochemical capacitor in which the electrode produced using the said slurry composition is used. In addition, an electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
[電気二重層キャパシタの電極活物質]
 例えば電気二重層キャパシタの電極に用いる電極活物質としては、炭素の同素体が挙げられる。そして炭素の同素体としては、活性炭、ポリアセン、カーボンウィスカおよびグラファイト等が挙げられる。これらの中でも好ましくは活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。そして活性炭は、水蒸気で賦活した活性炭(水蒸気賦活活性炭)であることが特に好ましい。水蒸気賦活活性炭は、原料としての活性炭と水蒸気ガスとを加熱処理後に洗浄、ろ過、および乾燥を繰り返す等して得ることができる。
[Electrode active material of electric double layer capacitor]
For example, as an electrode active material used for an electrode of an electric double layer capacitor, an allotrope of carbon can be cited. Examples of the carbon allotrope include activated carbon, polyacene, carbon whisker, and graphite. Among these, activated carbon is preferable, and specific examples include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like. The activated carbon is particularly preferably activated carbon activated with water vapor (water vapor activated activated carbon). The steam activated activated carbon can be obtained by repeatedly washing, filtering, and drying the activated carbon and steam gas as raw materials after heat treatment.
 そして電気二重層キャパシタの電極に用いる電極活物質としては、黒鉛類似の微結晶炭素を有し、その微結晶炭素の層間距離が拡大された非多孔性炭素を用いることもできる。このような非多孔性炭素は、多層グラファイト構造の微結晶が発達した易黒鉛化炭を、700~850℃程度で乾留し、次いで苛性アルカリと共に800~900℃程度で熱処理し、さらに必要に応じ加熱水蒸気により残存アルカリ成分を除く等して得ることができる。 As the electrode active material used for the electrode of the electric double layer capacitor, non-porous carbon having a microcrystalline carbon similar to graphite and having an increased interlayer distance of the microcrystalline carbon can also be used. Such non-porous carbon is obtained by carbonizing graphitized carbon with microcrystals of a multilayer graphite structure developed at about 700 to 850 ° C., then heat-treating with caustic at about 800 to 900 ° C., and if necessary It can be obtained by removing residual alkali components with heated steam.
[リチウムイオンキャパシタの電極活物質]
[[負極活物質]]
 また例えばリチウムイオンキャパシタの負極に用いる電極活物質(負極活物質)としては、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
[Electrode active material of lithium ion capacitor]
[[Negative electrode active material]]
Examples of the electrode active material (negative electrode active material) used for the negative electrode of the lithium ion capacitor include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these.
 炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(即ち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素(コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維など)、非晶質構造に近い構造を持つ難黒鉛性炭素(フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなど)が挙げられる。
 黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
The carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”). Examples of the carbon-based negative electrode active material include carbonaceous materials and graphite materials. Is mentioned.
The carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower. In addition, although the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more. Examples of the carbonaceous material include graphitizable carbon (e.g., coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, and pyrolytic vapor grown carbon fiber) that easily changes the carbon structure depending on the heat treatment temperature. And non-graphitizable carbon having a structure close to an amorphous structure (phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), hard carbon, etc.).
The graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher. In addition, although the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less. Examples of the graphite material include natural graphite and artificial graphite.
 金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。 The metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more. Is an active material. Examples of the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
[[正極活物質]]
 そして、リチウムイオンキャパシタの正極に用いる電極活物質(正極活物質)としては、「電気二重層キャパシタの電極活物質」として上述したものを使用することができる。
[[Positive electrode active material]]
And what was mentioned above as an "electrode active material of an electric double layer capacitor" can be used as an electrode active material (positive electrode active material) used for the positive electrode of a lithium ion capacitor.
[電極活物質の性状]
 ここで、電極活物質の比表面積は、500m/g以上であることが好ましく、800m/g以上であることがより好ましく、1000m/g以上であることが更に好ましく、1300m/g以上であることが特に好ましく、2500m/g以下であることが好ましい。電極活物質の比表面積が500m/g以上であれば、電極活物質が好適に分散した電極を形成可能となる。したがって、電気化学キャパシタの内部抵抗を低減しつつ、サイクル特性を更に向上させることができる。また電極活物質の比表面積が2500m/g以下であれば、共重合体による電極活物質の均一な被覆が容易となり、フロート特性を更に向上させることができる。
 なお、電極活物質の「比表面積」は、窒素吸着法によるBET比表面積のことであり、ASTM D3037-81に準拠して測定することができる。
[Properties of electrode active material]
Here, the specific surface area of the electrode active material is preferably 500 m 2 / g or more, more preferably 800 m 2 / g or more, still more preferably 1000 m 2 / g or more, and 1300 m 2 / g. It is especially preferable that it is above, and it is preferable that it is 2500 m < 2 > / g or less. When the specific surface area of the electrode active material is 500 m 2 / g or more, an electrode in which the electrode active material is suitably dispersed can be formed. Therefore, the cycle characteristics can be further improved while reducing the internal resistance of the electrochemical capacitor. If the specific surface area of the electrode active material is 2500 m 2 / g or less, uniform coating of the electrode active material with the copolymer is facilitated, and the float characteristics can be further improved.
The “specific surface area” of the electrode active material is a BET specific surface area determined by a nitrogen adsorption method and can be measured according to ASTM D3037-81.
 電極活物質の形状や粒径は、特に限定されることなく、従来使用されている電極活物質と同様とすることができる。 The shape and particle size of the electrode active material are not particularly limited and can be the same as those of conventionally used electrode active materials.
<分散媒>
 本発明のスラリー組成物の分散媒としては、特に限定されることなく、既知の分散媒を用いることができる。中でも、分散媒としては、水を用いることが好ましい。なお、スラリー組成物の分散媒の少なくとも一部は、特に限定されることなく、共重合体を調製する際に使用した単量体組成物に含まれていた重合溶媒とすることができる。
<Dispersion medium>
The dispersion medium of the slurry composition of the present invention is not particularly limited, and a known dispersion medium can be used. Among these, water is preferably used as the dispersion medium. In addition, at least a part of the dispersion medium of the slurry composition is not particularly limited, and can be a polymerization solvent contained in the monomer composition used when preparing the copolymer.
<その他の成分>
 本発明のスラリー組成物は、上述した成分に加え、任意に配合し得る既知の成分を含有していても良い。そのような既知の成分としてはカルボキシメチルセルロース等の増粘剤、導電材、補強材、レベリング剤、電解液添加剤などが挙げられる。
<Other ingredients>
The slurry composition of this invention may contain the known component which can be mix | blended arbitrarily in addition to the component mentioned above. Examples of such known components include thickeners such as carboxymethylcellulose, conductive materials, reinforcing materials, leveling agents, and electrolyte additives.
<スラリー組成物の調製>
 本発明のスラリー組成物は、上記各成分を混合することにより調製することができる。具体的には、少なくとも電極活物質および上記共重合体を、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記分散媒に溶解および/または分散させることにより、スラリー組成物を調製することができる。
<Preparation of slurry composition>
The slurry composition of this invention can be prepared by mixing said each component. Specifically, at least the electrode active material and the copolymer are mixed using a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, or the like. A slurry composition can be prepared by dissolving and / or dispersing in the dispersion medium.
(電気化学キャパシタ用電極)
 本発明の電気化学キャパシタ用電極は、本発明のスラリー組成物を用いて得られる電極合材層を有する(例えば、電極合材層は、本発明のスラリー組成物の乾燥物よりなる)。より具体的には、本発明の電気化学キャパシタ用電極は、集電体と、集電体上に形成された電極合材層とを備え、電極合材層は電極合材層には、少なくとも、電極活物質および結着材としての共重合体が含まれている。なお、電極合材層中に含まれている各成分は、上記電気化学キャパシタ電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、電気化学キャパシタ電極用スラリー組成物中の各成分の好適な存在比と同じである。
 そして、上記電気化学キャパシタ用電極は、本発明の電気化学キャパシタ電極用スラリー組成物を使用して調製しているので、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させることができる。
(Electrochemical capacitor electrode)
The electrode for an electrochemical capacitor of the present invention has an electrode mixture layer obtained by using the slurry composition of the present invention (for example, the electrode mixture layer is made of a dried product of the slurry composition of the present invention). More specifically, the electrode for an electrochemical capacitor of the present invention includes a current collector and an electrode mixture layer formed on the current collector, and the electrode mixture layer includes at least an electrode mixture layer. In addition, a copolymer as an electrode active material and a binder is included. Each component contained in the electrode mixture layer was contained in the slurry composition for an electrochemical capacitor electrode, and a suitable abundance ratio of each component was for an electrochemical capacitor electrode. It is the same as the suitable abundance ratio of each component in the slurry composition.
And since the said electrode for electrochemical capacitors is prepared using the slurry composition for electrochemical capacitor electrodes of this invention, the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be exhibited.
<電気化学キャパシタ用電極の製造>
 なお、上記電気化学キャパシタ用電極は、例えば、上述した電気化学キャパシタ電極用スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布された電気化学キャパシタ電極用スラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを経て製造される。
<Manufacture of electrodes for electrochemical capacitors>
The electrode for an electrochemical capacitor is, for example, a process for applying the above-described slurry composition for an electrochemical capacitor electrode on a current collector (application process), and an electrode for an electrochemical capacitor electrode coated on the current collector. The slurry composition is dried to produce an electrode mixture layer on the current collector (drying step).
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
[Coating process]
The method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、電気二重層キャパシタの電極およびリチウムイオンキャパシタの正極に用いる集電体としては、アルミニウム箔が特に好ましい。また、リチウムイオンキャパシタの負極に用いる集電体としては、銅箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Here, as the current collector to which the slurry composition is applied, an electrically conductive and electrochemically durable material is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used. Among these, an aluminum foil is particularly preferable as the current collector used for the electrode of the electric double layer capacitor and the positive electrode of the lithium ion capacitor. Moreover, as a collector used for the negative electrode of a lithium ion capacitor, copper foil is particularly preferable. In addition, the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える電気化学キャパシタ用電極を得ることができる。
[Drying process]
A method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. A drying method is mentioned. By drying the slurry composition on the current collector in this way, an electrode composite material layer is formed on the current collector, and an electrochemical capacitor electrode comprising the current collector and the electrode composite material layer can be obtained. it can.
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体の密着性を向上させることができる。
 さらに、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
Note that after the drying step, the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. By the pressure treatment, the adhesion between the electrode mixture layer and the current collector can be improved.
Furthermore, when the electrode mixture layer includes a curable polymer, it is preferable to cure the polymer after the electrode mixture layer is formed.
(電気化学キャパシタ)
 本発明の電気化学キャパシタは、本発明の電気化学キャパシタ用電極を備える。具体的には、本発明の電気化学キャパシタは、複数の電極と、電解液と、セパレータとを備え、前記複数の電極のうち少なくとも1つとして、本発明の電気化学キャパシタ用電極を用いたものである。そして、上記電気化学キャパシタは、本発明の電気化学キャパシタ用電極を用いているので、サイクル特性およびフロート特性に優れている。
(Electrochemical capacitor)
The electrochemical capacitor of the present invention includes the electrode for an electrochemical capacitor of the present invention. Specifically, the electrochemical capacitor of the present invention includes a plurality of electrodes, an electrolytic solution, and a separator, and the electrochemical capacitor electrode of the present invention is used as at least one of the plurality of electrodes. It is. And since the said electrochemical capacitor uses the electrode for electrochemical capacitors of this invention, it is excellent in cycling characteristics and a float characteristic.
 なお、本発明の電気化学キャパシタに使用し得る、上述した電気化学キャパシタ用電極以外の電極としては、特に限定されることなく、電気化学キャパシタの製造に用いられている既知の電極を用いることができる。具体的には、上述した電気化学キャパシタ用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。 The electrodes other than the above-described electrochemical capacitor electrodes that can be used in the electrochemical capacitor of the present invention are not particularly limited, and known electrodes used in the production of electrochemical capacitors may be used. it can. Specifically, as an electrode other than the electrode for an electrochemical capacitor described above, an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method can be used.
 電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
 溶媒としては、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;などの有機溶媒が挙げられる。中でも、カーボネート類が好ましい。またこれらの溶媒は単独または二種以上の混合溶媒として使用することができる。
 電解質としては、(CNBF、(C(CH)NBF、(CNPF、LiClO、LiAsF、LiBF、LiPF、LiN(CSO、LiN(CFSO等の塩が挙げられる。
As the electrolytic solution, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
Solvents include organic solvents such as carbonates such as propylene boat, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile; Can be mentioned. Of these, carbonates are preferred. These solvents can be used alone or as a mixed solvent of two or more.
As the electrolyte, (C 2 H 5) 4 NBF 4, (C 2 H 5) 3 (CH 3) NBF 4, (C 2 H 5) 4 NPF 6, LiClO 4, LiAsF 6, LiBF 4, LiPF 6, Examples of the salt include LiN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 .
 また、セパレータとしては、特に限定されることなく、電気化学キャパシタの製造に用いられている既知のセパレータを用いることができる。 In addition, the separator is not particularly limited, and a known separator used for manufacturing an electrochemical capacitor can be used.
 そして、電気化学キャパシタは例えば、セパレータを介して電極を重ね合わせ、これを必要に応じて巻く、折るなどして容器に入れ、容器に電解液を注入して封口することにより製造することができる。電気化学キャパシタの内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。電気化学キャパシタの形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。 The electrochemical capacitor can be manufactured, for example, by stacking electrodes via a separator, winding the electrode as necessary, folding it into a container, and pouring the electrolyte into the container and sealing it. . In order to prevent an increase in pressure inside the electrochemical capacitor, occurrence of overcharge / discharge, etc., an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary. The shape of the electrochemical capacitor may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、共重合体の電解液膨潤度、電極合材層と集電体の密着性、並びに、電気化学キャパシタの内部抵抗、フロート特性およびサイクル特性は、それぞれ以下の方法を使用して評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the following methods are used for the electrolyte swelling degree of the copolymer, the adhesion between the electrode mixture layer and the current collector, and the internal resistance, float characteristics, and cycle characteristics of the electrochemical capacitor, respectively. And evaluated.
<電解液膨潤度>
 共重合体を含む水溶液を、湿度50%、温度23~25℃の環境下で乾燥させて、厚み1±0.3mmに成膜した。成膜したフィルムを、温度60℃の真空乾燥機で10時間乾燥させた後、裁断して約1gを精秤した。得られたフィルム片の質量をW0とする。このフィルム片を、温度60℃の環境下で、電解液(組成:濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(重量比)の混合溶媒))に3日間浸漬し、膨潤させた。その後、フィルム片を引き上げ、表面の電解液をキムワイプで拭いた後、質量を測定した。膨潤後のフィルム片の質量をW1とする。
 そして、以下の計算式を用いて電解液膨潤度を算出した。
 電解液膨潤度(質量%)=W1/W0×100
 なお、本発明において上記電解液膨潤度の測定に用いる電解液は、主としてリチウムイオンキャパシタに使用されるものであるが、電気二重層キャパシタ用の電解液(組成:濃度1.0Mの(CNBF溶液(溶媒はプロピレンカーボネート))を用いて測定した場合でも、電解液膨潤度の値の大小が同一傾向であることを確認した。
<電極合材層と集電体の密着性>
 作製した両面に電極合材層を有する電極を、幅1.0cm×長さ10cmの矩形に切って試験片とした。そして、試験片の一方の電極合材層側の表面を台上に固定し、試験片の他方の電極合材層側の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、試験片の一端からセロハンテープを50mm/分の速度で180°方向(試験片の他端側)に引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とし、下記の基準で評価した。ピール強度が大きいほど、電極合材層と集電体の密着性が優れていることを示す。
 A:ピール強度が12N/m以上
 B:ピール強度が9N/m以上12N/m未満
 C:ピール強度が9N/m未満
<電気化学キャパシタの内部抵抗>
 作製した電気化学キャパシタを、25℃で充電レート(電流密度)を0.3mA/cmとし、定電流定電圧充電法にて、定格電圧(電気二重層キャパシタ:2.7V、リチウムイオンキャパシタ:3.8V)になるまで充電した。その後、25℃で放電レート(電流密度)を0.3mA/cmとし下限電圧(電気二重層キャパシタ:0.0V、リチウムイオンキャパシタ:2.2V)まで放電した。この際に放電開始0.1秒後の電圧降下をΔVとする。更に、放電レート(電流密度)を0.3、1.0、5.0、20.0、50.0、および100mA/cmと変化させた以外は同様の操作により、これら複数の放電レートにおける電圧降下ΔVを測定した。そして放電レートの電流密度から算出される電流値I(A)を横軸、測定した電圧降下ΔV(V)を縦軸としてプロットし、得られる直線の傾きを内部抵抗とし、下記の基準で評価した。内部抵抗が小さいほど、出力に優れる優れた電気化学キャパシタであることを示す。
A:内部抵抗が30mΩ未満
B:内部抵抗が30mΩ以上35mΩ未満
C:内部抵抗が35mΩ以上40mΩ未満
D:内部抵抗が40mΩ以上45mΩ未満
E:内部抵抗が45mΩ以上
<電気化学キャパシタのフロート特性>
 作製した電気化学キャパシタを、60℃の環境下、定格電圧(電気二重層キャパシタ:2.7V、リチウムイオンキャパシタ:3.8V)で1000時間保持した(フロート)後に、定電流(電流密度:0.3mA/cm)で下限電圧(電気二重層キャパシタ:0.0V、リチウムイオンキャパシタ:2.2V)に達するまで放電を行った。そして、フロート後の静電容量を算出し、フロート前の静電容量との変化から、容量維持率(%)(=フロート後の静電容量/フロート前の静電容量×100)を算出し、下記の基準で評価した。ここで、フロート前の静電容量は25℃の環境下で測定している。フロート特性評価における容量維持率が大きいほど、電気化学キャパシタが耐電圧に優れることを示す。
A:容量維持率が95%以上
B:容量維持率が90%以上95%未満
C:容量維持率が85%以上90%未満
D:容量維持率が80%以上85%未満
E:容量維持率が80%未満
<電気化学キャパシタのサイクル特性>
 作製した電気化学キャパシタを、25℃で充電レート(電流密度)を3mA/cmとした定電流で定格電圧(電気二重層キャパシタ:2.7V、リチウムイオンキャパシタ:3.8V)まで充電し、25℃で放電レート(電流密度)を3mA/cmとした定電流で下限電圧(電気二重層キャパシタ:0.0V、リチウムイオンキャパシタ:2.2V)まで放電する充放電サイクルを10000サイクル実施した。そして、初期放電容量(1サイクル目の放電容量)と10000サイクル目の放電容量から、容量維持率(%)(=10000サイクル目の放電容量/初期放電容量×100)を算出し、下記の基準で評価した。サイクル特性評価における容量維持率が大きいほど、繰り返し充放電による電気化学キャパシタの容量減が少ないことを示す。
A:容量維持率が95%以上
B:容量維持率が92%以上95%未満
C:容量維持率が89%以上92%未満
D:容量維持率が89%未満
<Electrolytic solution swelling>
The aqueous solution containing the copolymer was dried in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 1 ± 0.3 mm. The film formed was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours, then cut and weighed approximately 1 g. The mass of the obtained film piece is defined as W0. The film piece was subjected to an electrolyte solution (composition: LiPF 6 solution having a concentration of 1.0 M (solvent: ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (weight ratio)) in an environment at a temperature of 60 ° C. It was immersed in a mixed solvent)) for 3 days to swell. Thereafter, the film piece was pulled up and the surface electrolyte was wiped with Kimwipe, and then the mass was measured. Let the mass of the film piece after swelling be W1.
And electrolyte solution swelling degree was computed using the following formulas.
Electrolyte swelling degree (mass%) = W1 / W0 × 100
In the present invention, the electrolytic solution used for the measurement of the degree of swelling of the electrolytic solution is mainly used for a lithium ion capacitor, but is an electrolytic solution for an electric double layer capacitor (composition: concentration of 1.0 M (C 2 Even when measured using H 5 ) 4 NBF 4 solution (solvent is propylene carbonate), it was confirmed that the values of the degree of swelling of the electrolyte solution had the same tendency.
<Adhesion between electrode mixture layer and current collector>
The prepared electrode having an electrode mixture layer on both sides was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. And the surface by the side of one electrode compound-material layer side of a test piece was fixed on the stand, and the cellophane tape was affixed on the surface by the side of the other electrode compound-material layer side of a test piece. At this time, the cellophane tape defined in JIS Z1522 was used. Thereafter, the stress was measured when the cellophane tape was peeled from the one end of the test piece in the 180 ° direction (the other end side of the test piece) at a speed of 50 mm / min. The measurement was performed 10 times, the average value of the stress was determined, and this was regarded as the peel strength (N / m), and evaluated according to the following criteria. It shows that the adhesiveness of an electrode compound-material layer and a collector is excellent, so that peel strength is large.
A: Peel strength is 12 N / m or more B: Peel strength is 9 N / m or more and less than 12 N / m C: Peel strength is less than 9 N / m <Internal resistance of electrochemical capacitor>
The manufactured electrochemical capacitor was charged at a charge rate (current density) of 0.3 mA / cm 2 at 25 ° C., and rated voltage (electric double layer capacitor: 2.7 V, lithium ion capacitor: The battery was charged until 3.8V). Then, at 25 ° C., the discharge rate (current density) was set to 0.3 mA / cm 2 and the battery was discharged to the lower limit voltage (electric double layer capacitor: 0.0 V, lithium ion capacitor: 2.2 V). At this time, the voltage drop 0.1 seconds after the start of discharge is assumed to be ΔV. Further, these discharge rates (current density) were changed in the same manner except that the discharge rate (current density) was changed to 0.3, 1.0, 5.0, 20.0, 50.0, and 100 mA / cm 2. The voltage drop ΔV at was measured. Then, the current value I (A) calculated from the current density of the discharge rate is plotted on the horizontal axis, the measured voltage drop ΔV (V) is plotted on the vertical axis, and the slope of the obtained straight line is taken as the internal resistance, and evaluated according to the following criteria: did. A smaller internal resistance indicates an excellent electrochemical capacitor with excellent output.
A: Internal resistance of less than 30 mΩ B: Internal resistance of 30 mΩ to less than 35 mΩ C: Internal resistance of 35 mΩ to less than 40 mΩ D: Internal resistance of 40 mΩ to less than 45 mΩ E: Internal resistance of 45 mΩ or more <Float characteristics of electrochemical capacitor>
The produced electrochemical capacitor was held at a rated voltage (electric double layer capacitor: 2.7 V, lithium ion capacitor: 3.8 V) for 1000 hours (float) in an environment of 60 ° C., and then a constant current (current density: 0). Discharge was performed until the lower limit voltage (electric double layer capacitor: 0.0 V, lithium ion capacitor: 2.2 V) was reached at 3 mA / cm 2 . Then, the capacitance after the float is calculated, and the capacity maintenance ratio (%) (= capacitance after the float / capacitance before the float × 100) is calculated from the change from the capacitance before the float. The evaluation was based on the following criteria. Here, the capacitance before the float is measured in an environment of 25 ° C. It shows that an electrochemical capacitor is excellent in a withstand voltage, so that the capacity | capacitance maintenance factor in float characteristic evaluation is large.
A: Capacity maintenance ratio is 95% or more B: Capacity maintenance ratio is 90% or more and less than 95% C: Capacity maintenance ratio is 85% or more and less than 90% D: Capacity maintenance ratio is 80% or more and less than 85% E: Capacity maintenance ratio <80% <Cycle characteristics of electrochemical capacitors>
The produced electrochemical capacitor was charged to a rated voltage (electric double layer capacitor: 2.7 V, lithium ion capacitor: 3.8 V) at a constant current at 25 ° C. and a charge rate (current density) of 3 mA / cm 2 , 10,000 charge / discharge cycles were carried out at 25 ° C. for discharging to a lower limit voltage (electric double layer capacitor: 0.0 V, lithium ion capacitor: 2.2 V) at a constant current with a discharge rate (current density) of 3 mA / cm 2 . . Then, from the initial discharge capacity (discharge capacity at the first cycle) and the discharge capacity at the 10000th cycle, the capacity retention rate (%) (= discharge capacity at the 10000th cycle / initial discharge capacity × 100) is calculated, It was evaluated with. It shows that the capacity | capacitance reduction of an electrochemical capacitor by repeated charging / discharging is so small that the capacity | capacitance maintenance factor in cycling characteristics evaluation is large.
A: Capacity maintenance ratio is 95% or more B: Capacity maintenance ratio is 92% or more and less than 95% C: Capacity maintenance ratio is 89% or more and less than 92% D: Capacity maintenance ratio is less than 89%
(実施例1)
<共重合体を含む水溶液の調製>
 セプタム付き1Lフラスコに、イオン交換水720gを投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、イオン交換水10gと、エチレン性不飽和カルボン酸化合物(A)としてのアクリル酸11.0g(29.0%)と、化合物(B)としてのアクリルアミド26.6g(70.0%)と、多官能化合物(C)としてのポリエチレングリコールジアクリレート(共栄社化学(株)製、ライトアクリレート9EG-A、n=9の化合物(I)に相当、官能数=2)0.38g(1.0%)とを混合して、シリンジでフラスコ内に注入した。その後、重合開始剤としての過硫酸カリウムの2.5%水溶液8.0gをシリンジでフラスコ内に追加した。更に、その15分後に、重合促進剤としてのテトラメチルエチレンジアミンの2.0%水溶液40gをシリンジで追加した。4時間後、重合開始剤としての過硫酸カリウムの2.5%水溶液4.0gをフラスコ内に追加し、更に重合促進剤としてのテトラメチルエチレンジアミンの2.0%水溶液20gを追加して、温度を60℃に昇温し、重合反応を進めた。3時間後、フラスコを空気中に開放して重合反応を停止させ、生成物を温度80℃で脱臭し、残留モノマーを除去した。
 その後、水酸化リチウムの10%水溶液を用いて生成物のpHを8に調整して、共重合体Aを含む水溶液を得た。そして、共重合体Aの電解液膨潤度を測定した。結果を表1に示す。
<電気二重層キャパシタ電極用スラリー組成物の調製>
 プラネタリーミキサーに、電極活物質としての活性炭X(やしがらを原料とする水蒸気賦活活性炭、クラレケミカル社製、YP-50F、比表面積:1600m/g)100部と、導電材としてのケッチェンブラック(ライオン社製、ECP)5部と、結着材としての共重合体Aを含む水溶液(固形分濃度:4.5%)を固形分相当で5.0部とを投入し、次いでイオン交換水にて固形分濃度が38%となるように希釈した。その後、回転速度40rpmで60分混練して、ペースト状のスラリーを得た。さらに、粘度が5000±500mPa・s(B型粘度計、60rpmで測定)となるようにイオン交換水を加え、電気二重層キャパシタ電極用スラリー組成物を調製した。
<電気二重層キャパシタ用電極の製造>
 上記電気二重層キャパシタ用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の表面に、塗付量が8.0mg/cmとなるように塗布した。なおこの塗布は、乾燥後のアルミ箔上に電極合材層が形成されていない部分を確保すべく、スラリー組成物が塗布されない箇所を残すようにして実施した。この電気二重層キャパシタ電極用スラリー組成物が塗布されたアルミ箔を、0.3m/分の速度で、温度80℃のオーブン内を2分間、さらに温度110℃のオーブン内を2分間かけて搬送することにより、アルミ箔上のスラリー組成物を乾燥させた。その後、アルミ箔の裏側にも同様にしてスラリー組成物を塗布し、乾燥させて、電極原反を得た。
 そして、得られた電極原反をロールプレス機にて密度が0.59g/cmとなるようプレスし、さらに、温度200℃、12時間真空乾燥することで両面電極を得た。この両面電極を用いて電極合材層と集電体の密着性を評価した。結果を表1に示す。
<電気二重層キャパシタの製造>
 上記で作製された両面電極を、電極合材層が形成されていない部分が縦2cm×横2cm残るように、かつ電極合材層が形成されている部分が縦5cm×横5cmとなるように切り抜いた(この際、電極合材層が形成されていない部分は電極合材層が形成されている部分の正方形の一辺をそのまま延長するように形成される。)。また、セルロース製セパレータ(ニッポン高度紙工業社製、TF4035)を縦5.3cm×横5.3cmとなるように切り抜いた。このようにして切り抜かれた電極9枚(正極4枚および負極5枚とする)およびセパレータ10枚を、正極集電体、負極集電体の電極合材層が形成されていない部分がそれぞれ重なり合わないよう同方向に配置し、そして正極、負極が交互に配置されかつセパレータは正極と負極の間に位置するように配置してすべて積層した。さらに最上層と最下層の4辺をテープ留めし、積層体を得た。この際、得られた積層体の最上層と最下層(最外層)には何れもセパレータが配置されることとなり、最上層と最下層のセパレータには、何れも積層体内側から負極が接することとなる。次いでアルミからなる縦7cm×横1cm×厚み0.02cmのタブ材を、正負極それぞれの電極合材層が形成されていない部分に超音波溶接することで、電極積層体を作成した。
 上記電極積層体を、深絞り外装フィルムの内部に配置し、三辺を融着後、電解液(組成:濃度1.0Mの(CNBF溶液(溶媒はプロピレンカーボネート)、キシダ化学社製)を真空含浸させた後、残り一辺を減圧下で融着させ、電気二重層キャパシタを作製した。この電気二重層キャパシタを用いて、内部抵抗、フロート特性およびサイクル特性を評価した。結果を表1に示す。
(Example 1)
<Preparation of aqueous solution containing copolymer>
720 g of ion-exchanged water was charged into a 1 L flask with a septum, heated to a temperature of 40 ° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL / min. Next, 10 g of ion-exchanged water, 11.0 g (29.0%) of acrylic acid as the ethylenically unsaturated carboxylic acid compound (A), and 26.6 g (70.0%) of acrylamide as the compound (B) Polyethylene glycol diacrylate as a polyfunctional compound (C) (Kyoeisha Chemical Co., Ltd., light acrylate 9EG-A, equivalent to compound (I) of n = 9, functional number = 2) 0.38 g (1. 0%) and injected into the flask with a syringe. Thereafter, 8.0 g of a 2.5% aqueous solution of potassium persulfate as a polymerization initiator was added to the flask with a syringe. Further, 15 minutes later, 40 g of a 2.0% aqueous solution of tetramethylethylenediamine as a polymerization accelerator was added by a syringe. After 4 hours, 4.0 g of a 2.5% aqueous solution of potassium persulfate as a polymerization initiator was added to the flask, and 20 g of a 2.0% aqueous solution of tetramethylethylenediamine as a polymerization accelerator was further added. The temperature was raised to 60 ° C. to advance the polymerization reaction. After 3 hours, the polymerization reaction was stopped by opening the flask to the air, and the product was deodorized at a temperature of 80 ° C. to remove residual monomers.
Thereafter, the pH of the product was adjusted to 8 using a 10% aqueous solution of lithium hydroxide to obtain an aqueous solution containing the copolymer A. And the electrolyte solution swelling degree of the copolymer A was measured. The results are shown in Table 1.
<Preparation of slurry composition for electric double layer capacitor electrode>
In a planetary mixer, 100 parts of activated carbon X as an electrode active material (water vapor activated activated carbon made from coconut palm, Kuraray Chemical Co., Ltd., YP-50F, specific surface area: 1600 m 2 / g) and kettle as a conductive material First, 5 parts of Chain Black (manufactured by Lion Corporation, ECP) and 5.0 parts of an aqueous solution containing the copolymer A as a binder (solid content concentration: 4.5%) corresponding to the solid content were added. It diluted with ion-exchange water so that solid content concentration might be 38%. Thereafter, the mixture was kneaded for 60 minutes at a rotation speed of 40 rpm to obtain a paste-like slurry. Further, ion-exchanged water was added so that the viscosity was 5000 ± 500 mPa · s (B-type viscometer, measured at 60 rpm) to prepare a slurry composition for an electric double layer capacitor electrode.
<Manufacture of electrode for electric double layer capacitor>
The slurry composition for electric double layer capacitors was applied with a comma coater to the surface of an aluminum foil having a thickness of 20 μm as a current collector so that the amount applied was 8.0 mg / cm 2 . In addition, this application | coating was implemented leaving the location where a slurry composition is not apply | coated, in order to ensure the part in which the electrode compound-material layer is not formed on the aluminum foil after drying. The aluminum foil coated with the slurry composition for an electric double layer capacitor electrode is conveyed at a speed of 0.3 m / min in an oven at a temperature of 80 ° C. for 2 minutes and further in an oven at a temperature of 110 ° C. for 2 minutes. As a result, the slurry composition on the aluminum foil was dried. Thereafter, the slurry composition was similarly applied to the back side of the aluminum foil and dried to obtain an electrode raw material.
And the obtained electrode original fabric was pressed with a roll press machine so that a density might be 0.59 g / cm < 3 >, and also the double-sided electrode was obtained by vacuum-drying for 12 hours at the temperature of 200 degreeC. Using this double-sided electrode, the adhesion between the electrode mixture layer and the current collector was evaluated. The results are shown in Table 1.
<Manufacture of electric double layer capacitors>
In the double-sided electrode produced above, the portion where the electrode mixture layer is not formed remains 2 cm long × 2 cm wide, and the portion where the electrode mixture layer is formed is 5 cm long × 5 cm wide. Cut out (at this time, the portion where the electrode mixture layer is not formed is formed so as to extend one side of the square of the portion where the electrode mixture layer is formed). Further, a cellulose separator (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TF4035) was cut out so as to have a length of 5.3 cm and a width of 5.3 cm. The 9 electrodes (4 positive electrodes and 5 negative electrodes) and 10 separators cut out in this way are overlapped by the portions of the positive electrode current collector and the negative electrode current collector where the electrode mixture layer is not formed. The positive electrode and the negative electrode were alternately arranged and the separators were arranged so as to be positioned between the positive electrode and the negative electrode. Further, the four sides of the uppermost layer and the lowermost layer were taped to obtain a laminate. At this time, separators are arranged in the uppermost layer and the lowermost layer (outermost layer) of the obtained laminate, and the negative electrode is in contact with the uppermost layer and the lowermost separator from the inside of the laminate. It becomes. Next, an electrode laminate was prepared by ultrasonically welding a tab material made of aluminum having a length of 7 cm, a width of 1 cm, and a thickness of 0.02 cm to a portion where the electrode mixture layer of each of the positive and negative electrodes was not formed.
The electrode laminate is placed inside a deep-drawn exterior film, and three sides are fused, and then an electrolytic solution (composition: (C 2 H 5 ) 4 NBF 4 solution having a concentration of 1.0 M (solvent is propylene carbonate), After impregnating with Kishida Chemical Co., Ltd.), the remaining side was fused under reduced pressure to produce an electric double layer capacitor. Using this electric double layer capacitor, internal resistance, float characteristics and cycle characteristics were evaluated. The results are shown in Table 1.
(実施例2~7、12~14)
 表1に示す単量体を当該表に示す割合で使用した以外は共重合体Aと同様にして、それぞれ共重合体を調製した。そしてそれらの共重合体を共重合体Aに替えて使用した以外は、実施例1と同様にして、電気二重層キャパシタ電極用スラリー組成物、電気二重層キャパシタ用電極、および電気二重層キャパシタを製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
 なお、共重合体の調製において、実施例12および13では、化合物(B)としてアクリルアミドを使用せず、それぞれ2-ヒドロキシエチルアクリレート、アクリロニトリルを使用した。
(Examples 2 to 7, 12 to 14)
Copolymers were prepared in the same manner as copolymer A, except that the monomers shown in Table 1 were used in the proportions shown in the table. And except having used those copolymers instead of the copolymer A, it carried out similarly to Example 1, and carried out the slurry composition for electric double layer capacitor electrodes, the electrode for electric double layer capacitors, and the electric double layer capacitor. Manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
In the preparation of the copolymer, in Examples 12 and 13, acrylamide was not used as the compound (B), but 2-hydroxyethyl acrylate and acrylonitrile were used, respectively.
(実施例8、9)
 それぞれ表1に示す量で共重合体Aを使用した以外は、実施例1と同様にして、電気二重層キャパシタ電極用スラリー組成物、電気二重層キャパシタ用電極、および電気二重層キャパシタを製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Examples 8 and 9)
A slurry composition for an electric double layer capacitor electrode, an electrode for an electric double layer capacitor, and an electric double layer capacitor were produced in the same manner as in Example 1 except that the copolymer A was used in the amounts shown in Table 1, respectively. . Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例10)
<共重合体を含む水溶液の調製>
 表1に示す単量体を当該表に示す割合で使用した以外は共重合体Aと同様にして、共重合体を調製し、電解液膨潤度を測定した。結果を表1に示す。
<アクリル重合体よりなる粒子状重合体を含む水分散液の調製>
 攪拌機付き5MPa耐圧容器に、2-エチルヘキシルアクリレート80部、アクリロニトリル16部、イタコン酸4部、乳化剤としてのラウリル硫酸ナトリウム4部、溶媒としてのイオン交換水150部、および、重合開始剤としての過硫酸アンモニウム0.5部を投入し、十分に攪拌した後、温度80℃に加温して重合を開始した。
 モノマー消費量が96.0%になった時点で冷却し、反応を停止した。こうして得られたアクリル重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pHを7に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、温度30℃以下まで冷却し、アクリル重合体よりなる粒子状重合体を含む水分散液を得た。
<電気二重層キャパシタ電極用スラリー組成物の調製>
 共重合体Aに替えて、上述した共重合体を固形分相当で2.0部添加し、さらにその後アクリル重合体よりなる粒子状重合体を固形分相当で3.0部添加した以外は、実施例1と同様にして電気二重層キャパシタ電極用スラリー組成物を調製した。
<電気二重層キャパシタ用電極および電気二重層キャパシタの製造>
 上記得られたスラリー組成物を使用した以外は、実施例1と同様にして、電気二重層キャパシタ用電極および電気二重層キャパシタを製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Example 10)
<Preparation of aqueous solution containing copolymer>
A copolymer was prepared in the same manner as copolymer A except that the monomers shown in Table 1 were used in the proportions shown in the table, and the degree of swelling of the electrolyte was measured. The results are shown in Table 1.
<Preparation of aqueous dispersion containing particulate polymer made of acrylic polymer>
In a 5 MPa pressure vessel equipped with a stirrer, 80 parts of 2-ethylhexyl acrylate, 16 parts of acrylonitrile, 4 parts of itaconic acid, 4 parts of sodium lauryl sulfate as an emulsifier, 150 parts of ion-exchanged water as a solvent, and ammonium persulfate as a polymerization initiator After 0.5 part was added and sufficiently stirred, the temperature was raised to 80 ° C. to initiate polymerization.
When the monomer consumption reached 96.0%, the reaction was stopped by cooling. The aqueous dispersion containing the acrylic polymer thus obtained was adjusted to pH 7 by adding a 5% aqueous sodium hydroxide solution. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled to the temperature of 30 degrees C or less after that, and obtained the water dispersion containing the particulate polymer which consists of an acrylic polymer.
<Preparation of slurry composition for electric double layer capacitor electrode>
Instead of copolymer A, the above-mentioned copolymer was added in an amount of 2.0 parts corresponding to the solid content, and then a particulate polymer consisting of an acrylic polymer was added in an amount of 3.0 parts equivalent to the solid content, A slurry composition for an electric double layer capacitor electrode was prepared in the same manner as in Example 1.
<Production of electrode for electric double layer capacitor and electric double layer capacitor>
An electrode for an electric double layer capacitor and an electric double layer capacitor were produced in the same manner as in Example 1 except that the above-obtained slurry composition was used. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例11)
 アクリル重合体よりなる粒子状重合体の量を5.0部に変更した以外は、実施例10と同様にして、共重合体を含む水溶液、電気二重層キャパシタ電極用スラリー組成物、電気二重層キャパシタ用電極、および電気二重層キャパシタを製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Example 11)
An aqueous solution containing a copolymer, a slurry composition for an electric double layer capacitor electrode, an electric double layer, in the same manner as in Example 10, except that the amount of the particulate polymer made of the acrylic polymer was changed to 5.0 parts. Capacitor electrodes and electric double layer capacitors were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例15)
<リチウムイオンキャパシタ用正極の製造>
 電極活物質(正極活物質)として、活性炭Xに替えて活性炭Y(フェノール樹脂を原料とするアルカリ賦活炭、関西熱化学社製、MSP-20S、比表面積:2300m/g)を使用した以外は、実施例1と同様にして両面電極を製造し、これをリチウムイオンキャパシタ用正極として用いた。そして、実施例1と同様にして電極合材層と集電体の密着性を評価した。結果を表1に示す。
<リチウムイオンキャパシタ用負極の製造>
 プラネタリーミキサーに、負極活物質としてのハードカーボン(クレハ・バッテリー・マテリアルズ・ジャパン社製、カーボトロンP)100部と、導電材としてのアセチレンブラック(電気化学工業社製、「デンカブラック)3部と、増粘材としてのカルボキシメチルセルロース(日本製紙ケミカル社製、MAC200HC)1部と、実施例10と同様にして調製した結着材としてのアクリル重合体よりなる粒子状重合体3部(固形分相当)とを投入し、次いでイオン交換水にて固形分濃度が65%となるように希釈した。その後、回転速度40rpmで60分混練して、ペースト状のスラリーを得た。さらに、粘度が2000±200mPa・s(B型粘度計、60rpmで測定)となるようにイオン交換水を加え、リチウムイオンキャパシタ負極用スラリー組成物を調整した。
 上記リチウムイオンキャパシタ負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の表面に、塗付量が7.0mg/cmとなるように塗布した。なおこの塗布は、乾燥後のアルミ箔上に電極合材層が形成されていない部分を確保すべく、スラリー組成物が塗布されない箇所を残すようにして実施した。このリチウムイオンキャパシタ負極用スラリー組成物が塗布された銅箔を、0.3m/分の速度で、温度80℃のオーブン内を2分間、さらに温度110℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させた。その後、銅箔の裏側も同様にしてスラリー組成物を塗布し、乾燥させて、負極原反を得た。
 そして、得られた負極原反をロールプレス機にて密度が0.95g/cmとなるようプレスし、さらに、温度200℃、12時間真空乾燥することで両面負極を得た。
<リチウムイオンキャパシタの製造>
 上記で作製された両面負極を、電極合材層が形成されていない部分が縦2cm×横2cm残るように、かつ電極合材層が形成されている部分が縦5.2cm×横5.2cmとなるように切り抜いた(この際、電極合材層が形成されていない部分は電極合材層が形成されている部分の正方形の一辺をそのまま延長するように形成される。)。このようにして切り抜いた負極を用い、そして負極のタブ材としてニッケルからなるタブ材を用いた以外は、実施例1と同様にして電極積層体を作成した。
 次いで、リチウム貼り付け部が縦5cm×横5cm、タブ形成部が縦2cm×横2cmとなるように切り抜かれた厚さ100μmのステンレス網と、リチウム金属箔(厚み82μm、縦5cm×横5cm)を、リチウム金属箔がステンレス網のリチウム貼り付け部に配置されるように圧着した。さらにタブ形成部にはニッケルからなる縦7cm×横1cm×厚み0.01cmのタブ材を超音波溶接して、プレドープ用のリチウム極を作製した。得られたプレドープ用のリチウム極を、上記電極積層体の最外層のセパレータ(片側)と対向するように、かつ、プレドープ用のリチウム極のタブ材が、正極および負極タブ材の反対側に突出するように配置した。
 得られたリチウム極付き電極積層体を、深絞り外装フィルムの内部に配置し、三辺を融着後、電解液(組成:濃度1.0MのLiPF溶液(溶媒はEC/EMC=3/7(重量比)の混合溶媒)、キシダ化学社製)を真空含浸させた後、残り一辺を減圧下で融着させ、リチウムイオンキャパシタを作製した。このリチウムイオンキャパシタを用いて、内部抵抗、フロート特性およびサイクル特性を評価した。結果を表1に示す。
(Example 15)
<Manufacture of positive electrode for lithium ion capacitor>
As an electrode active material (positive electrode active material), activated carbon Y (alkaline activated carbon using phenol resin as a raw material, manufactured by Kansai Thermochemical Co., Ltd., MSP-20S, specific surface area: 2300 m 2 / g) was used instead of activated carbon X. Produced a double-sided electrode in the same manner as in Example 1, and used this as a positive electrode for a lithium ion capacitor. Then, the adhesion between the electrode mixture layer and the current collector was evaluated in the same manner as in Example 1. The results are shown in Table 1.
<Manufacture of negative electrode for lithium ion capacitor>
Planetary mixer, 100 parts of hard carbon (Kureha Battery Materials Japan, Carbotron P) as the negative electrode active material, 3 parts of acetylene black (Denka Black, Denka Black) as the conductive material 1 part of carboxymethyl cellulose (manufactured by Nippon Paper Chemical Co., Ltd., MAC200HC) as a thickener and 3 parts of a particulate polymer (solid content) made of an acrylic polymer as a binder prepared in the same manner as in Example 10. And then diluted with ion-exchanged water to a solid content concentration of 65%, and then kneaded at a rotational speed of 40 rpm for 60 minutes to obtain a paste-like slurry. Add ion-exchanged water so that it becomes 2000 ± 200 mPa · s (B-type viscometer, measured at 60 rpm). Sita was adjusted negative electrode slurry composition.
The slurry composition for a lithium ion capacitor negative electrode was applied to a surface of a copper foil having a thickness of 15 μm, which is a current collector, with a comma coater so that the amount applied was 7.0 mg / cm 2 . In addition, this application | coating was implemented leaving the location where a slurry composition is not apply | coated, in order to ensure the part in which the electrode compound-material layer is not formed on the aluminum foil after drying. The copper foil coated with the slurry composition for a lithium ion capacitor negative electrode is conveyed at a speed of 0.3 m / min in an oven at a temperature of 80 ° C. for 2 minutes and further in an oven at a temperature of 110 ° C. for 2 minutes. As a result, the slurry composition on the copper foil was dried. Then, the slurry composition was similarly applied to the back side of the copper foil and dried to obtain a negative electrode raw material.
And the obtained negative electrode original fabric was pressed with the roll press machine so that a density might be set to 0.95 g / cm < 3 >, and also the double-sided negative electrode was obtained by vacuum-drying at 200 degreeC for 12 hours.
<Manufacture of lithium ion capacitors>
In the double-sided negative electrode produced above, the portion where the electrode mixture layer is not formed remains 2 cm long × 2 cm wide, and the portion where the electrode mixture layer is formed is 5.2 cm long × 5.2 cm wide. (At this time, the portion where the electrode mixture layer is not formed is formed so as to extend one side of the square of the portion where the electrode mixture layer is formed). An electrode laminate was prepared in the same manner as in Example 1 except that the negative electrode thus cut out was used and a tab material made of nickel was used as the tab material of the negative electrode.
Next, a stainless steel net with a thickness of 100 μm cut out so that the lithium attachment portion is 5 cm long × 5 cm wide and the tab forming portion is 2 cm long × 2 cm wide, and a lithium metal foil (82 μm thick, 5 cm long × 5 cm wide) Was crimped so that the lithium metal foil was placed on the lithium affixed portion of the stainless steel mesh. Further, a tab material having a length of 7 cm, a width of 1 cm, and a thickness of 0.01 cm made of nickel was ultrasonically welded to the tab forming portion to prepare a lithium electrode for pre-doping. The obtained lithium electrode for pre-doping is opposed to the outermost separator (one side) of the electrode laminate, and the tab material of the lithium electrode for pre-doping protrudes on the opposite side of the positive electrode and negative electrode tab materials. Arranged to be.
The obtained electrode laminate with a lithium electrode was placed inside a deep-drawn exterior film, fused on three sides, and then an electrolyte (composition: 1.0M LiPF 6 solution (the solvent was EC / EMC = 3 / 7 (weight ratio) mixed solvent), manufactured by Kishida Chemical Co., Ltd.) was vacuum impregnated, and the remaining side was fused under reduced pressure to produce a lithium ion capacitor. Using this lithium ion capacitor, internal resistance, float characteristics, and cycle characteristics were evaluated. The results are shown in Table 1.
(実施例16)
<共重合体を含む水溶液の調製>
 表1に示す単量体を当該表に示す割合で使用した以外は共重合体Aと同様にして、共重合体を調製し、電解液膨潤度を測定した。結果を表1に示す。
<リチウムイオンキャパシタ正極用スラリー組成物の調製>
 共重合体Aに替えて、上述した共重合体を固形分相当で2.0部添加し、さらにその後アクリル重合体よりなる粒子状重合体(実施例10と同様にして調製)を固形分相当で3.0部添加した以外は、実施例15と同様にしてスラリー組成物(リチウムイオンキャパシタ正極用スラリー組成物)を調製した。
<リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタの製造>
 上記得られたリチウムイオンキャパシタ正極用スラリー組成物を使用した以外は、実施例15と同様にして、リチウムイオンキャパシタ用正極、リチウムイオンキャパシタ用負極、およびリチウムイオンキャパシタを製造した。そして、実施例15と同様にして各種評価を行った。結果を表1に示す。
(Example 16)
<Preparation of aqueous solution containing copolymer>
A copolymer was prepared in the same manner as copolymer A except that the monomers shown in Table 1 were used in the proportions shown in the table, and the degree of swelling of the electrolyte was measured. The results are shown in Table 1.
<Preparation of slurry composition for positive electrode of lithium ion capacitor>
Instead of copolymer A, 2.0 parts of the above-mentioned copolymer was added in an amount corresponding to the solid content, and then a particulate polymer made of an acrylic polymer (prepared in the same manner as in Example 10) was equivalent to the solid content. A slurry composition (slurry composition for a lithium ion capacitor positive electrode) was prepared in the same manner as in Example 15 except that 3.0 parts was added.
<Manufacture of electrodes for lithium ion capacitors and lithium ion capacitors>
A positive electrode for a lithium ion capacitor, a negative electrode for a lithium ion capacitor, and a lithium ion capacitor were produced in the same manner as in Example 15 except that the obtained slurry composition for a lithium ion capacitor positive electrode was used. Various evaluations were performed in the same manner as in Example 15. The results are shown in Table 1.
(比較例1~3)
 表1に示す単量体を当該表に示す割合で使用した以外は共重合体Aと同様にして、それぞれ共重合体を調製した。そしてそれらの共重合体を共重合体Aに替えて使用した以外は、実施例1と同様にして、電気二重層キャパシタ電極用スラリー組成物、電気二重層キャパシタ用電極、および電気二重層キャパシタを製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
 なお、共重合体の調製において、比較例3では、その他の化合物としてメチルアクリレートを使用した。
(Comparative Examples 1 to 3)
Copolymers were prepared in the same manner as copolymer A, except that the monomers shown in Table 1 were used in the proportions shown in the table. And except having used those copolymers instead of the copolymer A, it carried out similarly to Example 1, and carried out the slurry composition for electric double layer capacitor electrodes, the electrode for electric double layer capacitors, and the electric double layer capacitor. Manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
In the preparation of the copolymer, in Comparative Example 3, methyl acrylate was used as the other compound.
(比較例4)
 表1に示す単量体を当該表に示す割合で使用した以外は共重合体Aと同様にして、共重合体を調製した。そして当該共重合体を使用した以外は、実施例14と同様にして、リチウムイオンキャパシタ正極用スラリー組成物、リチウムイオンキャパシタ用正極、リチウムイオンキャパシタ用負極、およびリチウムイオンキャパシタを製造した。そして、実施例14と同様にして各種評価を行った。結果を表1に示す。
(Comparative Example 4)
Copolymers were prepared in the same manner as Copolymer A except that the monomers shown in Table 1 were used in the proportions shown in the table. And the slurry composition for lithium ion capacitor positive electrodes, the positive electrode for lithium ion capacitors, the negative electrode for lithium ion capacitors, and the lithium ion capacitor were manufactured like Example 14 except having used the said copolymer. Various evaluations were performed in the same manner as in Example 14. The results are shown in Table 1.
 なお、以下に示す表1中、
「EDLC」は電気二重層キャパシタを示し、
「LIC」はリチウムイオンキャパシタを示し、
「AA」は、アクリル酸を示し、
「AAm」は、アクリルアミドを示し、
「2-HEA」は、2-ヒドロキシエチルアクリレートを示し、
「AN」はアクリロニトリルを示し、
「PEGDA」はポリエチレングリコールジアクリレートを示し、
「MA」はメチルアクリレートを示し、
「ACL」はアクリル重合体を示す。
In Table 1 shown below,
“EDLC” indicates an electric double layer capacitor,
“LIC” indicates a lithium ion capacitor,
“AA” indicates acrylic acid;
“AAm” indicates acrylamide,
“2-HEA” represents 2-hydroxyethyl acrylate,
“AN” stands for acrylonitrile,
“PEGDA” indicates polyethylene glycol diacrylate,
“MA” represents methyl acrylate,
“ACL” indicates an acrylic polymer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述の表1の実施例1~16および比較例1~4より、実施例1~14では電気二重層キャパシタが、実施例15~16ではリチウムイオンキャパシタがそれぞれ優れたサイクル特性およびフロート特性を発揮できていることがわかる。
 また、上述の表1の実施例1~7、12~14より、共重合体を調製する際の単量体の種類や配合割合を変更することにより、電極合材層と集電体の密着性を高め、そして電気二重層キャパシタの内部抵抗を低減しつつサイクル特性およびフロート特性を更に向上させうることがわかる。
 そして、上述の表1の実施例8、9より、共重合体の配合量を調節することで、電極合材層と集電体の密着性を高め、そして電気二重層キャパシタの内部抵抗を低減し、またサイクル特性およびフロート特性を更に向上させうることがわかる。
 加えて、上述の表1の実施例10、11より、結着材としてのアクリル重合体(粒子状重合体)の配合量を調節することで、電極合材層と集電体の密着性を高め、そして電気二重層キャパシタの内部抵抗を低減し、またサイクル特性を更に向上させうることがわかる。
From Examples 1 to 16 and Comparative Examples 1 to 4 in Table 1 above, the electric double layer capacitors in Examples 1 to 14 and the lithium ion capacitors in Examples 15 to 16 exhibit excellent cycle characteristics and float characteristics, respectively. You can see that it is made.
Further, from Examples 1 to 7 and 12 to 14 in Table 1 above, by changing the type and blending ratio of the monomers in preparing the copolymer, the adhesion between the electrode mixture layer and the current collector is changed. It can be seen that the cycle characteristics and float characteristics can be further improved while improving the performance and reducing the internal resistance of the electric double layer capacitor.
Then, from Examples 8 and 9 in Table 1 above, by adjusting the blending amount of the copolymer, the adhesion between the electrode mixture layer and the current collector is improved, and the internal resistance of the electric double layer capacitor is reduced. It can also be seen that the cycle characteristics and float characteristics can be further improved.
In addition, from Examples 10 and 11 in Table 1 above, by adjusting the blending amount of the acrylic polymer (particulate polymer) as the binder, the adhesion between the electrode mixture layer and the current collector can be improved. It can be seen that the internal resistance of the electric double layer capacitor can be increased and the cycle characteristics can be further improved.
 本発明によれば、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させ得る電気化学キャパシタ電極用スラリー組成物を提供することができる。
 本発明によれば、電気化学キャパシタに優れたサイクル特性およびフロート特性を発揮させ得る電気化学キャパシタ用電極を提供することができる。
 本発明によれば、サイクル特性およびフロート特性に優れる電気化学キャパシタを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the slurry composition for electrochemical capacitor electrodes which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
ADVANTAGE OF THE INVENTION According to this invention, the electrode for electrochemical capacitors which can exhibit the cycling characteristics and the float characteristic which were excellent in the electrochemical capacitor can be provided.
According to the present invention, an electrochemical capacitor having excellent cycle characteristics and float characteristics can be provided.

Claims (7)

  1.  電極活物質、共重合体および分散媒を含む電気化学キャパシタ電極用スラリー組成物であって、
     前記共重合体は、
     エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物(A)と、
     20℃における水100gに対する溶解度が7g以上であるエチレン性不飽和結合を有する共重合可能な化合物(B)と、
    を含む単量体組成物を重合して得られ、
     前記単量体組成物は、全単量体中の前記エチレン性不飽和カルボン酸化合物(A)の割合が20.0質量%以上99.9質量%以下であり、
     そして前記共重合体の電解液膨潤度が120質量%未満である、
     電気化学キャパシタ電極用スラリー組成物。
    A slurry composition for an electrochemical capacitor electrode comprising an electrode active material, a copolymer and a dispersion medium,
    The copolymer is
    An ethylenically unsaturated carboxylic acid compound (A) comprising at least one of an ethylenically unsaturated carboxylic acid and a salt thereof;
    A copolymerizable compound (B) having an ethylenically unsaturated bond having a solubility in 100 g of water at 20 ° C. of 7 g or more;
    Obtained by polymerizing a monomer composition containing
    The monomer composition has a ratio of the ethylenically unsaturated carboxylic acid compound (A) in all monomers of 20.0% by mass or more and 99.9% by mass or less,
    And the electrolyte solution swelling degree of the copolymer is less than 120% by mass,
    A slurry composition for an electrochemical capacitor electrode.
  2.  前記単量体組成物は、全単量体中の前記化合物(B)の割合が0.1質量%以上80.0質量%以下である、請求項1に記載の電気化学キャパシタ電極用スラリー組成物。 2. The slurry composition for an electrochemical capacitor electrode according to claim 1, wherein the monomer composition has a ratio of the compound (B) in all monomers of 0.1% by mass or more and 80.0% by mass or less. object.
  3.  前記単量体組成物は、ポリオキシアルキレン構造および2つ以上のエチレン性不飽和結合を有する多官能化合物(C)をさらに含み、全単量体中の前記多官能化合物(C)の割合が0.1質量%以上10.0質量%以下である、請求項1または2に記載の電気化学キャパシタ電極用スラリー組成物。 The monomer composition further includes a polyfunctional compound (C) having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds, and the ratio of the polyfunctional compound (C) in all monomers is The slurry composition for an electrochemical capacitor electrode according to claim 1 or 2, wherein the slurry composition is 0.1 mass% or more and 10.0 mass% or less.
  4.  前記電極活物質100質量部当たり、前記共重合体を1質量部以上10質量部以下含む、請求項1~3の何れかに記載の電気化学キャパシタ電極用スラリー組成物。 The slurry composition for an electrochemical capacitor electrode according to any one of claims 1 to 3, comprising 1 to 10 parts by mass of the copolymer per 100 parts by mass of the electrode active material.
  5.  前記電極活物質の比表面積が、500m/g以上2500m/g以下である、請求項1~4の何れかに記載の電気化学キャパシタ電極用スラリー組成物。 The slurry composition for an electrochemical capacitor electrode according to any one of Claims 1 to 4, wherein the electrode active material has a specific surface area of 500 m 2 / g or more and 2500 m 2 / g or less.
  6.  請求項1~5の何れかに記載の電気化学キャパシタ電極用スラリー組成物を用いて調製した電極合材層を、集電体上に備える、電気化学キャパシタ用電極。 An electrode for an electrochemical capacitor comprising an electrode mixture layer prepared by using the slurry composition for an electrochemical capacitor electrode according to any one of claims 1 to 5 on a current collector.
  7.  請求項6に記載の電気化学キャパシタ用電極を備える、電気化学キャパシタ。 An electrochemical capacitor comprising the electrode for an electrochemical capacitor according to claim 6.
PCT/JP2016/001310 2015-03-10 2016-03-09 Slurry composition for electrochemical capacitor electrode, electrode for electrochemical capacitor, and electrochemical capacitor WO2016143344A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177024333A KR20170126885A (en) 2015-03-10 2016-03-09 Slurry compositions for electrochemical capacitor electrodes, electrodes for electrochemical capacitors, and electrochemical capacitors
JP2017504875A JP6904248B2 (en) 2015-03-10 2016-03-09 Slurry composition for electrochemical capacitor electrodes, electrodes for electrochemical capacitors and electrochemical capacitors
CN201680008059.2A CN107210143B (en) 2015-03-10 2016-03-09 Electrochemical capacitor electrode paste compound, electrode for electrochemical capacitor and electrochemical capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015047295 2015-03-10
JP2015-047295 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143344A1 true WO2016143344A1 (en) 2016-09-15

Family

ID=56880422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001310 WO2016143344A1 (en) 2015-03-10 2016-03-09 Slurry composition for electrochemical capacitor electrode, electrode for electrochemical capacitor, and electrochemical capacitor

Country Status (4)

Country Link
JP (1) JP6904248B2 (en)
KR (1) KR20170126885A (en)
CN (1) CN107210143B (en)
WO (1) WO2016143344A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135529A1 (en) * 2017-01-20 2018-07-26 株式会社Gsユアサ Power storage element
JP2019160690A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode and energy device
JP2019160691A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode, and energy device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076824A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Method and apparatus for manufacturing electrode for electrochemical element, and electrochemical element
JP2011076916A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Binder for secondary battery electrode, secondary battery electrode, and secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195036C (en) * 2001-06-08 2005-03-30 成都茵地乐电源科技有限公司 Water adhesive for electrode material of secondary lithium ion battery and its preparing process
JP2003268053A (en) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd Binder resin for battery and electrode and battery comprising the same
JP5232353B2 (en) * 2004-10-06 2013-07-10 日本ゼオン株式会社 Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
KR20130042558A (en) * 2010-07-16 2013-04-26 가부시키가이샤 닛폰 쇼쿠바이 Aqueous electrode binder for secondary battery
JP5943602B2 (en) * 2010-12-28 2016-07-05 三井化学株式会社 Acrylic aqueous dispersion and aqueous paste for electrochemical cell, and method for producing electrode / battery comprising the same
JP2012234703A (en) * 2011-04-28 2012-11-29 Nippon Shokubai Co Ltd Metal salt-containing binder
JP5689769B2 (en) * 2011-09-12 2015-03-25 株式会社日本触媒 Water dispersion for aqueous electrode composition
KR102057573B1 (en) * 2012-06-18 2019-12-19 제이에스알 가부시끼가이샤 Binder composition for electricity storage device electrodes, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
US10403896B2 (en) * 2014-09-08 2019-09-03 Jsr Corporation Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076824A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Method and apparatus for manufacturing electrode for electrochemical element, and electrochemical element
JP2011076916A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Binder for secondary battery electrode, secondary battery electrode, and secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135529A1 (en) * 2017-01-20 2018-07-26 株式会社Gsユアサ Power storage element
JPWO2018135529A1 (en) * 2017-01-20 2019-11-07 株式会社Gsユアサ Electricity storage element
JP7240625B2 (en) 2017-01-20 2023-03-16 株式会社Gsユアサ Storage element
JP2019160690A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode and energy device
JP2019160691A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode, and energy device
JP7192224B2 (en) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 Electrode binders, electrode mixtures, energy device electrodes and energy devices
JP7192223B2 (en) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 Electrode binders, electrode mixtures, energy device electrodes and energy devices

Also Published As

Publication number Publication date
JPWO2016143344A1 (en) 2017-12-21
CN107210143A (en) 2017-09-26
KR20170126885A (en) 2017-11-20
CN107210143B (en) 2019-04-30
JP6904248B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
US10044026B2 (en) Paste composition for lithium ion secondary battery negative electrode-use, composite particles for lithium ion secondary battery negative electrode-use, slurry composition for lithium ion secondary battery negative electrode-use, negative electrode for lithium ion secondary battery-use, and lithium ion secondary battery
JP6197863B2 (en) Secondary battery binder composition, secondary battery slurry composition, secondary battery negative electrode, and secondary battery
EP2953193B1 (en) Slurry for lithium ion secondary battery positive electrodes
JP6229290B2 (en) Electrode laminate for secondary battery and secondary battery
WO2015186363A1 (en) Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
JP7003936B2 (en) Non-aqueous secondary battery negative electrode slurry composition and its manufacturing method, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JPWO2018008555A1 (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6428342B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6760074B2 (en) Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2015098008A1 (en) Binder composition for negative electrode of lithium ion secondary cell, slurry composition for negative electrode of lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JP6398191B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015133154A1 (en) Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery porous membrane, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016171074A (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6696534B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JPWO2018180101A1 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode and non-aqueous secondary battery, and method for producing non-aqueous secondary battery electrode
WO2019159706A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6996504B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
KR20180021698A (en) Compositions for electrochemical device electrodes, electrodes and electrochemical devices for electrochemical devices, and methods for producing compositions for electrochemical device electrodes
JP7298592B2 (en) Slurry composition for lithium ion secondary battery and electrode for lithium ion secondary battery
JP6904248B2 (en) Slurry composition for electrochemical capacitor electrodes, electrodes for electrochemical capacitors and electrochemical capacitors
JP6996503B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
JP6759589B2 (en) Conductive composition for electrochemical element, composition for electrochemical element electrode, current collector with adhesive layer and electrode for electrochemical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504875

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761317

Country of ref document: EP

Kind code of ref document: A1