WO2016143255A1 - Flying body and aerial video display system - Google Patents

Flying body and aerial video display system Download PDF

Info

Publication number
WO2016143255A1
WO2016143255A1 PCT/JP2016/000683 JP2016000683W WO2016143255A1 WO 2016143255 A1 WO2016143255 A1 WO 2016143255A1 JP 2016000683 W JP2016000683 W JP 2016000683W WO 2016143255 A1 WO2016143255 A1 WO 2016143255A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying object
image
video
command
flying
Prior art date
Application number
PCT/JP2016/000683
Other languages
French (fr)
Japanese (ja)
Inventor
堀ノ内 貴志
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016143255A1 publication Critical patent/WO2016143255A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F21/00Mobile visual advertising
    • G09F21/06Mobile visual advertising by aeroplanes, airships, balloons, or kites

Definitions

  • the present disclosure relates to a flying object flying in the air and an aerial image display system using the flying object.
  • Patent Document 1 discloses an information presentation system in which a plurality of flapping flying robot groups equipped with light emitting elements are suspended in the air and information such as characters and figures is presented. Specifically, the information presentation system of Patent Document 1 presents information such as characters and figures using a plurality of flapping flying robot groups floating in the air as a dot matrix. Each of the plurality of flapping flying robot groups of Patent Document 1 communicates with the base station and receives instruction signals related to various controls from the base station.
  • This disclosure provides an aircraft that can remotely receive control instructions without being affected by the shortage of communication channels, radio wave interference, and interference, and a video display system using such an aircraft.
  • an unmanned air vehicle capable of flying in the air.
  • a flying object is a light emitting unit that emits light, a propulsion unit that generates a propulsive force for flying in the air, and a shooting that generates a captured image by shooting a video displayed on a predetermined display surface during the flight.
  • a controller for controlling the operation of the propulsion unit and / or the light emitting unit. The controller analyzes the captured image, acquires a command for controlling the device itself, and controls the operation of the propulsion unit and / or the light emitting unit according to the acquired command.
  • the vehicle includes the above-described flying object, and a video display device that visually displays a predetermined video and invisibly displays a video indicating a command for controlling the flying body.
  • An aerial video display system is provided.
  • This disclosure can realize an aircraft that can receive control instructions remotely without being affected by the shortage of communication channels, radio wave interference, and interference, and a video display system using such an aircraft.
  • FIG. 1 is a diagram illustrating a configuration of an aerial video display system according to the first embodiment.
  • FIG. 2 is an external view of the flying object in the first embodiment.
  • FIG. 3 is a block diagram of the flying object in the first embodiment.
  • FIG. 4 is a block diagram of the video display device and the video control device according to the first embodiment.
  • FIG. 5 is a diagram illustrating a state in which the flying object in the first embodiment receives a command from the video display device.
  • FIG. 6 is a flowchart showing the operation of the aerial video display system in the first embodiment.
  • FIG. 7A is a diagram for explaining a situation in which the flying object in the first embodiment is shooting an image displayed in a region immediately below the flying object.
  • FIG. 7A is a diagram for explaining a situation in which the flying object in the first embodiment is shooting an image displayed in a region immediately below the flying object.
  • FIG. 7B is a diagram showing an image captured by the flying object in the first embodiment.
  • FIG. 8 is a diagram for explaining an operation in which the flying object in the second embodiment receives information related to the coordinates of the display area from the video display device.
  • FIG. 9 is a diagram illustrating a configuration of the aerial video display system according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an aerial video display system according to the present disclosure.
  • the aerial video display system 100 includes a plurality of unmanned flying vehicles 10 that are automatically piloted, a video display device 50 disposed on the ground, and a video control device 60 that controls the operation of the video display device 50.
  • the flying object 10 is a so-called drone.
  • the flying object 10 includes at least one light emitting element as will be described later. It is possible to display an image by suspending a plurality of flying objects 10 in the air, arranging them at predetermined positions, and emitting light. For example, in a large venue such as a stadium where sports competitions are held, several tens to several hundreds of flying objects 10 are suspended in the air at a height of 2 to 10 m, and the arrangement and light emission of the flying objects 10 are appropriately changed. Thus, various images can be displayed, and various light effects can be achieved.
  • the flying object 10 extracts a control command from the video displayed by the video display device 50 arranged on the ground, and performs light emission control and flight control according to the control command.
  • the flying object 10 receives the control command from the video generated by the video display device 50, there is no interference and interference, and problems such as a shortage of communication channels cannot occur.
  • FIG. 2 is an external view of the flying object 10 in the present embodiment.
  • FIG. 3 is a block diagram showing a functional configuration of the flying object 10 in the present embodiment.
  • the flying object 10 includes a main body 11 and a propulsion device 15 that generates a propulsive force of the flying object 10.
  • the propulsion device 15 is attached to the tip of the support portion 13 extending from each of the squares of the main body 11.
  • a camera 21, a battery 25, and a laser light source 23 are attached to the lower side of the main body 11.
  • An inertia measuring device 17 and a positioning device 19 are attached to the upper side of the main body 11.
  • a controller 16 is housed inside the main body 11.
  • the propulsion device 15 includes a propeller and a motor that rotates the propeller.
  • the flying object 10 includes four propulsion devices 15, but the number of propulsion devices is not limited to four, and may be five or more, for example.
  • a light emitter 24 is attached to the lower portion of the propulsion unit 15.
  • the light emitter 24 includes a plurality of light emitting elements that emit light of each color of R (red), G (green), and B (blue) and a drive circuit that drives them, and can emit light of various colors. .
  • the light emitting element is an LED (Light Emitting Diode).
  • the camera 21 includes an optical system and an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and shoots a subject to generate image data.
  • the generated image data is transmitted to the controller 16.
  • the camera 21 is attached to the lower side of the main body 11 of the flying object 10, and captures an image of the flying object 10 vertically below while the flying object 10 is flying.
  • the laser light source 23 includes a laser light emitting element and irradiates a laser beam vertically below the flying object 10 in flight.
  • the inertial measurement device 17 includes an acceleration sensor and a gyro sensor, and measures the acceleration and angular velocity of the flying object 10. Based on the output from the inertial measurement device 17, the behavior and posture of the flying object 10 are controlled.
  • the positioning device 19 receives a signal from a GPS (Global Positioning System) satellite and measures the current position of the flying object 10.
  • GPS Global Positioning System
  • the battery 25 supplies a power supply voltage to each element of the flying object 10.
  • the controller 16 extracts a command from the image captured by the camera 21, and controls the propulsion device 15 according to the extracted command. Accordingly, the light emitter 24 can be caused to emit light at a desired color, brightness, and light emission timing by moving to a desired position and controlling the light emitter 24 according to the extracted command.
  • FIG. 4 is a block diagram of the video display device 50 and the video control device 60.
  • the video display device 50 includes a light emitting element unit 51 and a light emitting element driving unit 53.
  • the light emitting element unit 51 is configured by arranging a plurality of LEDs as light emitting elements on a matrix.
  • the light emitting element driving unit 53 generates a desired image by controlling the light emitting operation of the light emitting element.
  • the video control device 60 controls a video signal indicating a video generated by the video display device 50.
  • the video control device 60 is configured by an information processing device such as a personal computer. Note that the video control device 60 can also be configured by an information processing device of another form such as a tablet computer or a smartphone.
  • the video control device 60 includes a control unit 61 that controls the overall operation of the video control device 60, a display unit 67 that displays information such as characters and images, an operation unit 69 that is operated by a user, and data and programs.
  • a data storage unit 63 for storing data and an interface unit 65 for communicating with external devices and networks are provided.
  • the display unit 67 includes, for example, a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the operation unit 69 includes a touch panel and buttons.
  • the operation unit 69 may further include a keyboard and a mouse.
  • the interface unit 65 is a means for connecting to an external device or a network.
  • the interface unit 65 conforms to predetermined standards such as USB (Universal Serial Bus), HDMI (Registered Trademark) (High-Definition Multimedia Interface), IEEE 1394, IEEE 802.11, and WiFi (Wireless Fidelity). It is.
  • the interface unit 65 may be a means for performing communication in conformity with a communication standard such as 3G (third generation mobile communication system) or LTE (Long Term Evolution).
  • the control unit 61 controls the overall operation of the video control device 60 in order to realize the functions described later.
  • the control unit 61 includes a microcomputer (microcomputer), a CPU (Central Processing Unit), an MPU (Micro Processing Unit), etc., and a predetermined control program (OS (Operating System) stored in the data storage unit 63, Various functions are realized by executing application programs.
  • the control program executed by the control unit 61 may be provided from a network through a communication line, or may be provided via a recording medium such as a CD-ROM (Compact Read Only Memory).
  • control unit 61 may be realized by cooperation of hardware and software, or may be realized only by dedicated hardware.
  • the data storage unit 63 is a means for storing data and programs, and stores a control program executed by the control unit 61 and data necessary for control.
  • the data storage unit 63 includes, for example, a semiconductor memory device, a hard disk (HDD: Hard Disk Drive), and a semiconductor storage device (SSD: Solid State Drive).
  • the flying object 10 receives commands related to light emission and flight from the video displayed by the video display device 50. Thereby, remote control of the flying body 10 is enabled.
  • FIG. 5 is a diagram for explaining how the flying object 10 receives a command from the video display device 50.
  • the video display device 50 displays a video for controlling the flying object 10 on a region 52 of the display surface corresponding to the position of the flying object 10. This video is a video including the command 55.
  • the video display device 50 displays a video for production in a visible manner for a person, and at the same time, displays a video showing a command 55 for controlling the flying object 10 in a visible manner for the human.
  • the video display device 50 superimposes and displays a visible video for production and an invisible video for controlling the flying object. Thereby, the audience around the video display device 50 can enjoy the video for the presentation presented by the video display device 50. On the other hand, since the video for controlling the flying object 10 is not visually recognized by the audience, the production is not disturbed.
  • a video display method for controlling the flying object 10 for example, visible light communication technology can be applied. That is, by blinking a certain color of light at a high frequency that cannot be perceived by human eyes, a command 55 for controlling the flying object 10 can be transmitted invisible.
  • the flying object 10 determines whether or not it has received a flight start instruction, that is, power on, pressing of a flight start button, reception of a flight start instruction, or the like. If a flight start instruction has been received (in the case of Y), the process proceeds to step S12. If a flight start instruction has not been received (in the case of N), the process returns to step S11.
  • a flight start instruction that is, power on, pressing of a flight start button, reception of a flight start instruction, or the like. If a flight start instruction has been received (in the case of Y), the process proceeds to step S12. If a flight start instruction has not been received (in the case of N), the process returns to step S11.
  • the flying object 10 flies to the initial target position above the video display device 50. When the flying object 10 reaches the initial target position, it performs hovering at that position.
  • the initial target position is set in advance for each flying object 10, and the flying object 10 stores information on the initial target position in a built-in memory.
  • the flying object 10 reads the initial target position from the memory, and moves to the initial target position while checking the position of the aircraft by the positioning device 19.
  • the flying object 10 captures an image displayed on the display surface of the video display device 50 vertically below the flying object 10 with the camera 21 at the initial target position.
  • the controller 16 extracts a command from the image photographed by the camera 21.
  • the controller 16 analyzes the extracted command and determines the control content according to the command.
  • the controller 16 determines the content of light emission control, for example, the light emitting device to be controlled, the luminance of each RGB color, the light emission time, and the like. If the extracted command is a flight control command, the contents of the flight control, for example, the flight path, the movement position, etc. are determined. Examples of each command are shown below.
  • MOVE D ( ⁇ x, ⁇ y, ⁇ z), t This command instructs to move by ⁇ x, ⁇ y, ⁇ z from the current position in the x, y, z directions, respectively, after t seconds.
  • controller 16 performs control according to the determined control content, that is, performs light emission control and flight control.
  • the flying vehicle 10 of the present embodiment can be remotely operated by the video displayed on the video display device 50.
  • FIG. 7A is a diagram for explaining a situation in which the flying object 10 in the present embodiment is shooting an image displayed in an area immediately below
  • FIG. 7B is a photograph taken by the flying object 10 in the present embodiment. It is a figure which shows an image.
  • FIG. 7A While the flying object 10 is hovering over the video display device 50, as shown in FIG. 7A, the camera 21 captures an area 54 on the display surface of the video display device 50 that is vertically downward.
  • FIG. 7B shows an image 54 b of the area 54 on the display surface of the video display device 50 taken by the camera 21.
  • the controller 16 extracts a command 55 by analyzing the moving image that is the image 52b of the central region 52 in the image 54b of the region below the photographed flying object 10.
  • the flying object 10 receives a command from an image displayed in the vertically lower region 52 and performs light emission control according to the command. For this reason, even when the flying object 10 moves to another position due to disturbance such as strong wind, the flying object 10 receives the command 55 according to the position of the movement destination and performs light emission control according to the command 55. . For this reason, even if the flying object 10 arranged in the sky changes, a correct image corresponding to the position is displayed.
  • the flying object 10 of the present embodiment is an unmanned flying object capable of flying in the air, and the light emitter 24 (an example of a light emitting unit) that emits light and the air to fly in the air.
  • a propulsion unit 15 (an example of a propulsion unit) that generates a propulsive force
  • a camera 21 that captures a video displayed on a predetermined display surface during flight and generates a captured image
  • a controller 16 for controlling the operation of the device 24.
  • the controller 16 analyzes the captured image, acquires a command for controlling the device itself, and controls the operation of the propulsion unit 15 and / or the light emitter 24 according to the acquired command.
  • the flying object 10 receives commands related to flight control and light emission control from the image displayed on the ground. As described above, since the command can be transmitted to the flying object 10 without using the wireless communication, it is not affected by the shortage of communication channels, radio wave interference, and interference problems.
  • the flying object 10 grasps the current position of the aircraft by the positioning device 19.
  • a configuration will be described in which the flying object 10 recognizes its current position, specifically, the coordinates on the display surface of the video display device 50 without using the measurement result of the positioning device 19.
  • the basic configuration and operation of the aerial video display system of this embodiment are the same as those of the first embodiment.
  • FIG. 8 is a diagram illustrating an operation in which the flying object 10 according to the present embodiment receives information related to the coordinates of the display area from the video display device 50.
  • the flying vehicle 10 according to the present embodiment acquires coordinates on the display surface of the video display device 50 from the video display device 50. For this reason, as shown in FIG. 8, in the video display device 50, the area of the display surface is divided into a plurality of areas and managed, and the xy coordinates are set for each divided area.
  • the video display device 50 embeds information indicating xy coordinates in an image in an invisible manner in addition to a command for controlling the flying object 10 from each divided region.
  • the flying object 10 acquires the current xy coordinates from the image captured by the camera 21 in addition to the command.
  • the flying object 10 moves over the display surface of the image display device 50 while acquiring the xy coordinates that are the current position of the flying object 10 from the image displayed below, thereby displaying the display surface of the image display device 50. It is possible to move to a desired position above.
  • FIG. 9 is a diagram showing a configuration of the aerial video display system in the present embodiment.
  • the aerial video display system 300 of the present embodiment further includes a voltage detection unit 70 that detects the voltage of each LED of the video display device 50.
  • the voltage detection unit 70 outputs the detection result to the video control device 60.
  • the flying object 10 of the present embodiment irradiates a laser beam vertically by a laser light source 23 during flight.
  • the LED which is a light emitting element of the light emitting element unit 51 of the image display device 50, receives laser light, it generates power according to the principle of the photovoltaic effect of the semiconductor elements constituting the LED. At this time, the LED functions as a laser light receiving circuit.
  • the voltage detection unit 70 detects the voltage change of the LED and outputs the detection result to the video control device 60.
  • the video control device 60 receives the output from the voltage detection unit 70 and identifies the LED that has received the laser light from the flying object 10. That is, the video control device 60 can recognize the position of the flying object 10, that is, the xy coordinates on the display surface of the video display device 50.
  • the laser beam may be modulated and irradiated with a signal indicating identification information for identifying the flying object 10.
  • the flying object 10 may include a modulation circuit for modulating the laser beam with a signal indicating identification information.
  • the video control device 60 can identify the flying object 10 and can grasp the identification information of the flying object 10 and the position of the flying object, that is, the reception position of the laser light in association with each other. It becomes. Thereby, it becomes possible to remotely control the flying object 10 individually.
  • the video control device 60 indicates a command for performing control according to the flying object 10 in an area immediately below the flying object 10 specified by the identification information, that is, an area including the LED that has received the laser light.
  • the video display device 50 is controlled to display the video.
  • Embodiments 1 to 3 have been described as examples of the technology of the present disclosure.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a command for flight control or light emission control is transmitted to the flying object 10 via the displayed video, but the type of command is not limited to these, and other control contents May be transmitted to the flying object 10 through the displayed video.
  • a display device having a plurality of LEDs is shown as the video display device 50.
  • any other display device can be used as long as it can display video.
  • a liquid crystal display or an organic EL display can be used.
  • a projection-type image display device that projects an image on a projection surface can be used.
  • a signal cannot be received by receiving laser light from the flying object 10 like an LED.
  • the video providing the command for the flying object 10 is displayed on the ground, that is, on the horizontal plane, but it is not always necessary to display on the ground.
  • An image providing a command for the flying object 10 can be displayed at an arbitrary location as long as the image can be captured by the camera 21 of the flying object 10.
  • the video display device 50 displays the video indicating the command 55 invisible and displays the video for production visually, but does not display the video for production. May be.
  • the flying object of the present disclosure can be remotely operated without performing wireless communication, it is useful for a display system that displays a desired image by floating a large number of flying objects in the air.

Abstract

This flying body is an unpiloted flying body capable of flying through the air and comprises: a light-emitting device that emits light; a propulsion device that generates propulsive force for flying through the air; an imaging device that captures a video displayed on a prescribed display screen and generates a captured image; and a controller that controls the operation of the propulsion device and/or the light-emitting device. The controller also analyses the captured image, obtains commands for device control; and controls the operation of the propulsion device and/or the light-emitting device in accordance with the obtained commands.

Description

飛行体及び空中映像表示システムAircraft and aerial image display system
 本開示は、空中を飛行する飛行体及び飛行体を用いる空中映像表示システムに関する。 The present disclosure relates to a flying object flying in the air and an aerial image display system using the flying object.
 特許文献1は、発光素子を搭載した複数の羽ばたき飛行ロボット群を空中に浮遊させ、文字や図形などの情報を提示する情報提示システムを開示する。具体的には、特許文献1の情報提示システムは、空中に浮遊する複数の羽ばたき飛行ロボット群をドットマトリクスとして用いて、文字や図形などの情報を提示する。特許文献1の複数の羽ばたき飛行ロボット群のそれぞれは、ベースステーションと通信を行い、ベースステーションから種々の制御に関する指示信号を受信している。 Patent Document 1 discloses an information presentation system in which a plurality of flapping flying robot groups equipped with light emitting elements are suspended in the air and information such as characters and figures is presented. Specifically, the information presentation system of Patent Document 1 presents information such as characters and figures using a plurality of flapping flying robot groups floating in the air as a dot matrix. Each of the plurality of flapping flying robot groups of Patent Document 1 communicates with the base station and receives instruction signals related to various controls from the base station.
特開2003-341599号公報JP 2003-341599 A
 特許文献1のように、飛行ロボットに対して無線通信により遠隔操作を行う場合、飛行ロボットの数が多くなると、通信チャンネルの数の不足や、電波の混信や干渉の問題が発生し得る。 As in Patent Document 1, when performing a remote operation with respect to a flying robot by wireless communication, if the number of flying robots increases, problems such as an insufficient number of communication channels, radio wave interference, and interference may occur.
 本開示は、通信チャンネル数の不足や電波の混信、干渉の問題の影響を受けずに遠隔で制御指示を受信できる飛行体およびそのような飛行体を用いた映像表示システムを提供する。 This disclosure provides an aircraft that can remotely receive control instructions without being affected by the shortage of communication channels, radio wave interference, and interference, and a video display system using such an aircraft.
 本開示の第一の態様において、空中を飛行可能な無人の飛行体が提供される。飛行体は、光を発光する発光部と、空中を飛行するための推進力を発生する推進部と、飛行中に、所定の表示面に表示された映像を撮影して撮影画像を生成する撮影部と、推進部及び/または発光部の動作を制御するコントローラと、を備える。コントローラは、撮影画像を解析して、自装置を制御するためのコマンドを取得し、取得したコマンドにしたがい推進部及び/または発光部の動作を制御する。 In a first aspect of the present disclosure, an unmanned air vehicle capable of flying in the air is provided. A flying object is a light emitting unit that emits light, a propulsion unit that generates a propulsive force for flying in the air, and a shooting that generates a captured image by shooting a video displayed on a predetermined display surface during the flight. And a controller for controlling the operation of the propulsion unit and / or the light emitting unit. The controller analyzes the captured image, acquires a command for controlling the device itself, and controls the operation of the propulsion unit and / or the light emitting unit according to the acquired command.
 本開示の第二の態様において、上記の飛行体と、所定の映像を可視的に表示するとともに、飛行体を制御するためのコマンドを示す映像を不可視的に表示する映像表示装置と、を備えた空中映像表示システムが提供される。 In a second aspect of the present disclosure, the vehicle includes the above-described flying object, and a video display device that visually displays a predetermined video and invisibly displays a video indicating a command for controlling the flying body. An aerial video display system is provided.
 本開示は、通信チャンネル数の不足や電波の混信、干渉の問題の影響を受けずに遠隔で制御指示を受信できる飛行体およびそのような飛行体を用いた映像表示システムを実現できる。 This disclosure can realize an aircraft that can receive control instructions remotely without being affected by the shortage of communication channels, radio wave interference, and interference, and a video display system using such an aircraft.
図1は、実施の形態1における空中映像表示システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an aerial video display system according to the first embodiment. 図2は、実施の形態1における飛行体の外観図である。FIG. 2 is an external view of the flying object in the first embodiment. 図3は、実施の形態1における飛行体のブロック図である。FIG. 3 is a block diagram of the flying object in the first embodiment. 図4は、実施の形態1における映像表示装置及び映像制御装置のブロック図である。FIG. 4 is a block diagram of the video display device and the video control device according to the first embodiment. 図5は、実施の形態1における飛行体が映像表示装置からコマンドを受信する様子を説明する図である。FIG. 5 is a diagram illustrating a state in which the flying object in the first embodiment receives a command from the video display device. 図6は、実施の形態1における空中映像表示システムの動作を示すフローチャートである。FIG. 6 is a flowchart showing the operation of the aerial video display system in the first embodiment. 図7Aは、実施の形態1における飛行体がその直下の領域に表示された映像を撮影している状況を説明する図である。FIG. 7A is a diagram for explaining a situation in which the flying object in the first embodiment is shooting an image displayed in a region immediately below the flying object. 図7Bは、実施の形態1における飛行体が撮影した画像を示す図である。FIG. 7B is a diagram showing an image captured by the flying object in the first embodiment. 図8は、実施の形態2における飛行体が映像表示装置から表示領域の座標に関する情報を受信する動作を説明する図である。FIG. 8 is a diagram for explaining an operation in which the flying object in the second embodiment receives information related to the coordinates of the display area from the video display device. 図9は、実施の形態3の空中映像表示システムの構成を示す図である。FIG. 9 is a diagram illustrating a configuration of the aerial video display system according to the third embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (実施の形態1)
 以下、添付の図面を用いて、実施の形態1を説明する。
(Embodiment 1)
The first embodiment will be described below with reference to the accompanying drawings.
 1.空中映像表示システムの構成
 図1は、本開示における空中映像表示システムの構成を示す図である。空中映像表示システム100は、自動操縦される無人の複数の飛行体10と、地上に配置された映像表示装置50と、映像表示装置50の動作を制御する映像制御装置60とを備える。飛行体10は、いわゆるドローンである。
1. Configuration of Aerial Video Display System FIG. 1 is a diagram illustrating a configuration of an aerial video display system according to the present disclosure. The aerial video display system 100 includes a plurality of unmanned flying vehicles 10 that are automatically piloted, a video display device 50 disposed on the ground, and a video control device 60 that controls the operation of the video display device 50. The flying object 10 is a so-called drone.
 飛行体10は、後述するように少なくとも1つの発光素子を備える。複数の飛行体10を空中に浮遊させ、所定の位置に配置させ、発光させることで映像を表示させることが可能となる。例えば、スポーツの競技大会を行うスタジアムのような大きな会場において、数十から数百の飛行体10を2~10mの高さで空中に浮遊させ、飛行体10の配置や発光を適宜変化させることで、様々な映像を表示することができ、様々な光による演出が可能となる。 The flying object 10 includes at least one light emitting element as will be described later. It is possible to display an image by suspending a plurality of flying objects 10 in the air, arranging them at predetermined positions, and emitting light. For example, in a large venue such as a stadium where sports competitions are held, several tens to several hundreds of flying objects 10 are suspended in the air at a height of 2 to 10 m, and the arrangement and light emission of the flying objects 10 are appropriately changed. Thus, various images can be displayed, and various light effects can be achieved.
 飛行体10は、地上に配置された映像表示装置50が表示する映像から制御コマンドを抽出し、その制御コマンドにしたがい発光制御や飛行制御を行う。このように、飛行体10は、映像表示装置50が生成する映像から制御コマンドを受信することから、混信や干渉がなく、また、通信チャンネル不足などの問題も生じ得ない。 The flying object 10 extracts a control command from the video displayed by the video display device 50 arranged on the ground, and performs light emission control and flight control according to the control command. Thus, since the flying object 10 receives the control command from the video generated by the video display device 50, there is no interference and interference, and problems such as a shortage of communication channels cannot occur.
 1.1 飛行体の構成
 図2は、本実施の形態における飛行体10の外観図である。図3は、本実施の形態における飛行体10の機能的な構成を示すブロック図である。飛行体10は、本体11と、飛行体10の推進力を発生させる推進器15とを備える。推進器15は、本体11の四角の各々から延在する支持部13の先端に取り付けられる。本体11の下側には、カメラ21と、電池25と、レーザ光源23とが取り付けられている。また、本体11の上側には、慣性計測装置17と、測位装置19とが取り付けられている。また、本体11の内部にはコントローラ16が収納されている。
1.1 Configuration of Flying Object FIG. 2 is an external view of the flying object 10 in the present embodiment. FIG. 3 is a block diagram showing a functional configuration of the flying object 10 in the present embodiment. The flying object 10 includes a main body 11 and a propulsion device 15 that generates a propulsive force of the flying object 10. The propulsion device 15 is attached to the tip of the support portion 13 extending from each of the squares of the main body 11. A camera 21, a battery 25, and a laser light source 23 are attached to the lower side of the main body 11. An inertia measuring device 17 and a positioning device 19 are attached to the upper side of the main body 11. A controller 16 is housed inside the main body 11.
 推進器15は、プロペラとプロペラを回転させるモータとからなる。図2の例では、飛行体10は4個の推進器15を有しているが、推進器の数は4個に限定されず、例えば5個以上であってもよい。推進器15のプロペラの回転数を適宜制御することで、飛行体10の移動方向や飛行状態を制御できる。推進器15の下部には、発光器24が取り付けられている。発光器24は、R(赤)、G(緑)、B(青)各色の光を発する複数の発光素子と、それらを駆動する駆動回路とを備え、様々な色の光を発することができる。本実施の形態では、発光素子は、LED(Light Emitting Diode:発光ダイオード)とする。 The propulsion device 15 includes a propeller and a motor that rotates the propeller. In the example of FIG. 2, the flying object 10 includes four propulsion devices 15, but the number of propulsion devices is not limited to four, and may be five or more, for example. By appropriately controlling the rotation speed of the propeller of the propulsion device 15, the moving direction and flight state of the flying object 10 can be controlled. A light emitter 24 is attached to the lower portion of the propulsion unit 15. The light emitter 24 includes a plurality of light emitting elements that emit light of each color of R (red), G (green), and B (blue) and a drive circuit that drives them, and can emit light of various colors. . In this embodiment mode, the light emitting element is an LED (Light Emitting Diode).
 カメラ21は、光学系と、CCD(Charge-Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの画像センサとを備え、被写体を撮影し画像データを生成する。生成された画像データはコントローラ16に送信される。本実施の形態では、カメラ21は、飛行体10の本体11の下側に取り付けられており、飛行体10の飛行中に、飛行体10の鉛直下方の画像を撮影する。 The camera 21 includes an optical system and an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and shoots a subject to generate image data. The generated image data is transmitted to the controller 16. In the present embodiment, the camera 21 is attached to the lower side of the main body 11 of the flying object 10, and captures an image of the flying object 10 vertically below while the flying object 10 is flying.
 レーザ光源23は、レーザ発光素子を備えており、飛行中の飛行体10の鉛直下方に向かってレーザ光を照射する。 The laser light source 23 includes a laser light emitting element and irradiates a laser beam vertically below the flying object 10 in flight.
 慣性計測装置17は、加速度センサやジャイロセンサを備え、飛行体10の加速度や角速度を計測する装置である。慣性計測装置17からの出力に基づき、飛行体10の挙動や姿勢が制御される。 The inertial measurement device 17 includes an acceleration sensor and a gyro sensor, and measures the acceleration and angular velocity of the flying object 10. Based on the output from the inertial measurement device 17, the behavior and posture of the flying object 10 are controlled.
 測位装置19は、GPS(Global Positioning System)衛星から信号を受信して、飛行体10の現在位置を計測する。 The positioning device 19 receives a signal from a GPS (Global Positioning System) satellite and measures the current position of the flying object 10.
 電池25は、飛行体10の各要素に電源電圧を供給する。 The battery 25 supplies a power supply voltage to each element of the flying object 10.
 以上のように構成される飛行体10は、コントローラ16が、カメラ21で撮影された画像からコマンドを抽出し、抽出したコマンドにしたがい推進器15を制御する。これにより、所望の位置に移動し、また、抽出したコマンドにしたがい発光器24を制御することで所望の色、輝度、発光タイミングで発光器24を発光させることができる。 In the flying object 10 configured as described above, the controller 16 extracts a command from the image captured by the camera 21, and controls the propulsion device 15 according to the extracted command. Accordingly, the light emitter 24 can be caused to emit light at a desired color, brightness, and light emission timing by moving to a desired position and controlling the light emitter 24 according to the extracted command.
 1.2 映像表示装置及び映像制御装置の構成
 図4は、映像表示装置50及び映像制御装置60のブロック図である。
1.2 Configuration of Video Display Device and Video Control Device FIG. 4 is a block diagram of the video display device 50 and the video control device 60.
 映像表示装置50は、発光素子部51と発光素子駆動部53とを備える。発光素子部51は、発光素子としてのLEDを複数個マトリクス上に配置して構成される。発光素子部51において、発光素子駆動部53は、発光素子の発光動作を制御して所望の映像を生成する。 The video display device 50 includes a light emitting element unit 51 and a light emitting element driving unit 53. The light emitting element unit 51 is configured by arranging a plurality of LEDs as light emitting elements on a matrix. In the light emitting element unit 51, the light emitting element driving unit 53 generates a desired image by controlling the light emitting operation of the light emitting element.
 映像制御装置60は、映像表示装置50により生成される映像を示す映像信号を制御する。映像制御装置60は、パーソナルコンピュータのような情報処理装置で構成される。なお、映像制御装置60は、タブレット型コンピュータ、スマートフォンのような他の形態の情報処理装置で構成することもできる。 The video control device 60 controls a video signal indicating a video generated by the video display device 50. The video control device 60 is configured by an information processing device such as a personal computer. Note that the video control device 60 can also be configured by an information processing device of another form such as a tablet computer or a smartphone.
 映像制御装置60は、映像制御装置60の全体の動作を制御する制御部61と、文字や画像等の情報を表示する表示部67と、ユーザが操作を行う操作部69と、データやプログラムを記憶するデータ記憶部63と、外部機器やネットワークを通信するためのインターフェース部65とを備える。 The video control device 60 includes a control unit 61 that controls the overall operation of the video control device 60, a display unit 67 that displays information such as characters and images, an operation unit 69 that is operated by a user, and data and programs. A data storage unit 63 for storing data and an interface unit 65 for communicating with external devices and networks are provided.
 表示部67は、例えば、液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイで構成される。操作部69は、タッチパネルやボタンを含む。操作部69は、さらにキーボードやマウス等を含んでもよい。 The display unit 67 includes, for example, a liquid crystal display or an organic EL (Electro Luminescence) display. The operation unit 69 includes a touch panel and buttons. The operation unit 69 may further include a keyboard and a mouse.
 インターフェース部65は、外部機器やネットワークに接続するための手段である。インターフェース部65は、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、IEEE1394、IEEE802.11、WiFi(Wireless Fidelity)等の所定の規格に準拠してデータ通信を行う手段である。また、インターフェース部65は、3G(第3世代移動通信システム)やLTE(Long Term Evolution)等の通信規格に準拠して通信を行う手段であってもよい。 The interface unit 65 is a means for connecting to an external device or a network. The interface unit 65 conforms to predetermined standards such as USB (Universal Serial Bus), HDMI (Registered Trademark) (High-Definition Multimedia Interface), IEEE 1394, IEEE 802.11, and WiFi (Wireless Fidelity). It is. The interface unit 65 may be a means for performing communication in conformity with a communication standard such as 3G (third generation mobile communication system) or LTE (Long Term Evolution).
 制御部61は、後述する機能を実現するため、映像制御装置60の全体の動作を制御する。制御部61は、マイコン(マイクロコンピュータ:microcomputer)、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等で構成され、データ記憶部63に記憶された所定の制御プログラム(OS(Operating System)、アプリケーションプログラム)を実行することで種々の機能を実現する。制御部61で実行される制御プログラムは通信回線を通じてネットワークから提供されてもよいし、またはCD-ROM(Compact Disc Read Only Memory)等の記録媒体を介して提供されてもよい。 The control unit 61 controls the overall operation of the video control device 60 in order to realize the functions described later. The control unit 61 includes a microcomputer (microcomputer), a CPU (Central Processing Unit), an MPU (Micro Processing Unit), etc., and a predetermined control program (OS (Operating System) stored in the data storage unit 63, Various functions are realized by executing application programs. The control program executed by the control unit 61 may be provided from a network through a communication line, or may be provided via a recording medium such as a CD-ROM (Compact Read Only Memory).
 なお、制御部61の機能はハードウェアとソフトウェアの協働により実現してもよいし、専用のハードウェアのみで実現してもよい。 The function of the control unit 61 may be realized by cooperation of hardware and software, or may be realized only by dedicated hardware.
 データ記憶部63は、データやプログラムを記憶する手段であり、制御部61で実行される制御プログラムや制御に必要なデータを格納する。データ記憶部63は例えば、半導体メモリ素子、ハードディスク(HDD:Hard Disk Drive)及び半導体記憶装置(SSD:Solid State Drive)で構成される。 The data storage unit 63 is a means for storing data and programs, and stores a control program executed by the control unit 61 and data necessary for control. The data storage unit 63 includes, for example, a semiconductor memory device, a hard disk (HDD: Hard Disk Drive), and a semiconductor storage device (SSD: Solid State Drive).
 2.飛行体の遠隔制御
 以上のように構成される空中映像表示システム100における飛行体10の遠隔制御の動作について説明する。本実施の形態の空中映像表示システム100において、飛行体10は、映像表示装置50により表示される映像から、発光や飛行に関するコマンドを受信する。これにより、飛行体10の遠隔操作を可能としている。
2. Remote Control of Flying Object The operation of remote control of the flying object 10 in the aerial image display system 100 configured as described above will be described. In the aerial video display system 100 according to the present embodiment, the flying object 10 receives commands related to light emission and flight from the video displayed by the video display device 50. Thereby, remote control of the flying body 10 is enabled.
 図5は、飛行体10が映像表示装置50からコマンドを受信する様子を説明する図である。映像表示装置50は、図5に示すように、飛行体10の位置に対応した表示面の領域52上に飛行体10を制御するための映像を表示する。この映像は、コマンド55を含んだ映像である。映像表示装置50は、演出のための映像を人にとって可視的に表示すると同時に、飛行体10を制御するためのコマンド55を示す映像を人にとって不可視的に表示する。 FIG. 5 is a diagram for explaining how the flying object 10 receives a command from the video display device 50. As shown in FIG. 5, the video display device 50 displays a video for controlling the flying object 10 on a region 52 of the display surface corresponding to the position of the flying object 10. This video is a video including the command 55. The video display device 50 displays a video for production in a visible manner for a person, and at the same time, displays a video showing a command 55 for controlling the flying object 10 in a visible manner for the human.
 すなわち、映像表示装置50は、演出のための可視的な映像と、飛行体の制御のための不可視的な映像とを重畳して表示する。これにより、映像表示装置50の周囲にいる観衆は、映像表示装置50により提示された演出のための映像を楽しむことができる。その一方で、飛行体10を制御するための映像は、観衆により視認されないため、演出が妨害されることがない。 That is, the video display device 50 superimposes and displays a visible video for production and an invisible video for controlling the flying object. Thereby, the audience around the video display device 50 can enjoy the video for the presentation presented by the video display device 50. On the other hand, since the video for controlling the flying object 10 is not visually recognized by the audience, the production is not disturbed.
 飛行体10を制御するための映像の表示方法として、例えば可視光通信の技術が適用できる。すなわち、ある色の光を人の眼に知覚できないような高い周波数で明滅させることにより、不可視的に、飛行体10を制御するためのコマンド55を伝送することができる。 As a video display method for controlling the flying object 10, for example, visible light communication technology can be applied. That is, by blinking a certain color of light at a high frequency that cannot be perceived by human eyes, a command 55 for controlling the flying object 10 can be transmitted invisible.
 次に、空中映像表示システム100の動作について図6のフローチャートを用いてより具体的に説明する。 Next, the operation of the aerial video display system 100 will be described more specifically with reference to the flowchart of FIG.
 (S11)飛行体10は、飛行開始指示、すなわち、電源オン、飛行開始ボタンの押下、飛行開始の指示の受信等を受信したか否かを判定する。飛行開始指示を受信した場合(Yの場合)、ステップS12へ処理を進め、飛行開始指示を受信していない場合(Nの場合)、ステップS11に処理を戻す。 (S11) The flying object 10 determines whether or not it has received a flight start instruction, that is, power on, pressing of a flight start button, reception of a flight start instruction, or the like. If a flight start instruction has been received (in the case of Y), the process proceeds to step S12. If a flight start instruction has not been received (in the case of N), the process returns to step S11.
 (S12)飛行体10は、映像表示装置50上空の初期目標位置まで飛行する。飛行体10は初期目標位置に達すると、その位置でホバリングを行う。初期目標位置は、飛行体10毎に事前に設定されており、飛行体10は、初期目標位置の情報を内蔵するメモリに記憶している。飛行体10は、メモリから初期目標位置を読み出し、測位装置19により自機の位置を確認しながら初期目標位置まで移動する。 (S12) The flying object 10 flies to the initial target position above the video display device 50. When the flying object 10 reaches the initial target position, it performs hovering at that position. The initial target position is set in advance for each flying object 10, and the flying object 10 stores information on the initial target position in a built-in memory. The flying object 10 reads the initial target position from the memory, and moves to the initial target position while checking the position of the aircraft by the positioning device 19.
 (S13)飛行体10は、初期目標位置において、カメラ21により、飛行体10の鉛直下方における映像表示装置50の表示面に表示されている画像を撮影する。 (S13) The flying object 10 captures an image displayed on the display surface of the video display device 50 vertically below the flying object 10 with the camera 21 at the initial target position.
 (S14)コントローラ16は、カメラ21により撮影された画像からコマンドを抽出する。 (S14) The controller 16 extracts a command from the image photographed by the camera 21.
 (S15)コントローラ16は、その抽出したコマンドを解析し、コマンドにしたがった制御内容を決定する。コントローラ16は、抽出したコマンドが発光制御のコマンドである場合、発光制御の内容、例えば、制御対象の発光器、RGB各色の輝度、発光時間、等を決定する。また、抽出したコマンドが飛行制御のコマンドである場合、飛行制御の内容、例えば、飛行経路、移動位置等を決定する。以下にそれぞれのコマンドの例を示す。 (S15) The controller 16 analyzes the extracted command and determines the control content according to the command. When the extracted command is a command for light emission control, the controller 16 determines the content of light emission control, for example, the light emitting device to be controlled, the luminance of each RGB color, the light emission time, and the like. If the extracted command is a flight control command, the contents of the flight control, for example, the flight path, the movement position, etc. are determined. Examples of each command are shown below.
 a)移動コマンドの例
 MOVE P(x,y,z),t
 このコマンドは、t秒後に、座標(x,y,z)まで移動することを指示する。
a) Example of move command MOVE P (x, y, z), t
This command instructs to move to the coordinates (x, y, z) after t seconds.
 MOVE D(Δx,Δy,Δz),t
 このコマンドは、t秒後に、現在位置からx、y、z方向にそれぞれΔx、Δy、Δzだけ移動することを指示する。
MOVE D (Δx, Δy, Δz), t
This command instructs to move by Δx, Δy, Δz from the current position in the x, y, z directions, respectively, after t seconds.
 b)発光コマンドの例
 BRIGHT(R1,G1,B1),発光時間,停止時間,繰り返し/発光回数,
       (R2,G2,B2),発光時間,停止時間,繰り返し/発光回数,
       (R3,G3,B3),発光時間,停止時間,繰り返し/発光回数,
       (R4,G4,B4),発光時間,停止時間,繰り返し/発光回数
 このコマンドは、4つの発光器それぞれに対して、RGB各色の輝度、発光時間、停止時間(点滅の場合は、0以外の値を設定し、点灯の場合は、0を設定する)、繰り返し回数または発光回数を指示する。
b) Example of light emission command BRIGHT (R1, G1, B1), light emission time, stop time, repetition / number of times of light emission,
(R2, G2, B2), light emission time, stop time, number of repetitions / light emission,
(R3, G3, B3), light emission time, stop time, number of repetitions / light emission,
(R4, G4, B4), light emission time, stop time, repetition / number of times of light emission This command is for each of the four light emitters, brightness of each RGB color, light emission time, stop time (in the case of blinking, other than 0) A value is set, and in the case of lighting, 0 is set), and the number of repetitions or the number of light emission is instructed.
 (S16)その後、コントローラ16は、決定した制御内容に従い制御を行う、すなわち、発光制御や飛行制御を行う。 (S16) Thereafter, the controller 16 performs control according to the determined control content, that is, performs light emission control and flight control.
 以上のように、本実施の形態の飛行体10は、映像表示装置50で表示された映像により遠隔操作することができる。 As described above, the flying vehicle 10 of the present embodiment can be remotely operated by the video displayed on the video display device 50.
 ここで、飛行体10による、映像表示装置50で表示された画像からのコマンド抽出動作について図を用いて説明する。図7Aは、本実施の形態における飛行体10がその直下の領域に表示された映像を撮影している状況を説明する図であり、図7Bは、本実施の形態における飛行体10が撮影した画像を示す図である。 Here, the command extraction operation from the image displayed on the video display device 50 by the flying object 10 will be described with reference to the drawings. FIG. 7A is a diagram for explaining a situation in which the flying object 10 in the present embodiment is shooting an image displayed in an area immediately below, and FIG. 7B is a photograph taken by the flying object 10 in the present embodiment. It is a figure which shows an image.
 飛行体10は映像表示装置50上空でホバリングを行っている間、図7Aに示すように、カメラ21により鉛直下方にある映像表示装置50の表示面上の領域54を撮影する。図7Bは、カメラ21により撮影された映像表示装置50の表示面の領域54の画像54bを示している。コントローラ16は、撮影された飛行体10の下方の領域の画像54bにおける中央の領域52の画像52bである動画を解析してコマンド55を抽出する。 While the flying object 10 is hovering over the video display device 50, as shown in FIG. 7A, the camera 21 captures an area 54 on the display surface of the video display device 50 that is vertically downward. FIG. 7B shows an image 54 b of the area 54 on the display surface of the video display device 50 taken by the camera 21. The controller 16 extracts a command 55 by analyzing the moving image that is the image 52b of the central region 52 in the image 54b of the region below the photographed flying object 10.
 本実施の形態では、飛行体10は、鉛直下方の領域52に表示された映像からコマンドを受信し、コマンドにしたがって発光制御を行う。このため、飛行体10が強風などの外乱によって他の位置へ移動した場合であっても、飛行体10は、移動先の位置に応じたコマンド55を受信し、コマンド55にしたがって発光制御を行う。このため、上空に配置される飛行体10が変わったとしても、その位置に応じた正しい映像が表示される。 In the present embodiment, the flying object 10 receives a command from an image displayed in the vertically lower region 52 and performs light emission control according to the command. For this reason, even when the flying object 10 moves to another position due to disturbance such as strong wind, the flying object 10 receives the command 55 according to the position of the movement destination and performs light emission control according to the command 55. . For this reason, even if the flying object 10 arranged in the sky changes, a correct image corresponding to the position is displayed.
 3.効果、等
 以上のように本実施の形態の飛行体10は、空中を飛行可能な無人の飛行体であって、光を発光させる発光器24(発光部の一例)と、空中を飛行するための推進力を発生する推進器15(推進部の一例)と、飛行中において、所定の表示面に表示された映像を撮影して撮影画像を生成するカメラ21と、推進器15及び/または発光器24の動作を制御するコントローラ16と、を備える。コントローラ16は、撮影画像を解析して、自装置を制御するためのコマンドを取得し、取得したコマンドにしたがい推進器15及び/または発光器24の動作を制御する。
3. Effects, etc. As described above, the flying object 10 of the present embodiment is an unmanned flying object capable of flying in the air, and the light emitter 24 (an example of a light emitting unit) that emits light and the air to fly in the air. A propulsion unit 15 (an example of a propulsion unit) that generates a propulsive force, a camera 21 that captures a video displayed on a predetermined display surface during flight and generates a captured image, and the propulsion unit 15 and / or light emission And a controller 16 for controlling the operation of the device 24. The controller 16 analyzes the captured image, acquires a command for controlling the device itself, and controls the operation of the propulsion unit 15 and / or the light emitter 24 according to the acquired command.
 以上のように、飛行体10は、地上に表示された映像から飛行制御や発光制御に関するコマンドを受信する。このように無線通信を使用せずに飛行体10にコマンドを送信できるため、通信チャンネル数の不足や電波の混信、干渉の問題の影響を受けることがない。 As described above, the flying object 10 receives commands related to flight control and light emission control from the image displayed on the ground. As described above, since the command can be transmitted to the flying object 10 without using the wireless communication, it is not affected by the shortage of communication channels, radio wave interference, and interference problems.
 (実施の形態2)
 実施の形態1では、飛行体10は測位装置19によって自機の現在位置を把握していた。本実施の形態では、測位装置19の測定結果を用いずに飛行体10が自機の現在位置、具体的には、映像表示装置50の表示面上の座標を認識する構成を説明する。なお、本実施の形態の空中映像表示システムの基本的な構成、動作は実施の形態1の構成と同様である。
(Embodiment 2)
In the first embodiment, the flying object 10 grasps the current position of the aircraft by the positioning device 19. In the present embodiment, a configuration will be described in which the flying object 10 recognizes its current position, specifically, the coordinates on the display surface of the video display device 50 without using the measurement result of the positioning device 19. The basic configuration and operation of the aerial video display system of this embodiment are the same as those of the first embodiment.
 図8は、本実施の形態の飛行体10が、映像表示装置50から表示領域の座標に関する情報を受信する動作を説明する図である。本実施の形態の飛行体10は、映像表示装置50から、映像表示装置50の表示面上の座標を取得する。このため、図8に示すように、映像表示装置50において、表示面の領域を複数の領域に分割して管理し、分割領域毎にxy座標を設定しておく。映像表示装置50は、それぞれの分割領域から、飛行体10を制御するためのコマンドに加えて、xy座標を示す情報をも画像に埋め込んで不可視的に表示する。飛行体10は、カメラ21により撮影した画像から、コマンドに加えて、現在のxy座標を取得する。飛行体10は、その下方に表示された映像から飛行体10の現在位置であるxy座標を取得しながら、映像表示装置50の表示面の上空を移動することで、映像表示装置50の表示面上の所望の位置に移動することが可能となる。 FIG. 8 is a diagram illustrating an operation in which the flying object 10 according to the present embodiment receives information related to the coordinates of the display area from the video display device 50. The flying vehicle 10 according to the present embodiment acquires coordinates on the display surface of the video display device 50 from the video display device 50. For this reason, as shown in FIG. 8, in the video display device 50, the area of the display surface is divided into a plurality of areas and managed, and the xy coordinates are set for each divided area. The video display device 50 embeds information indicating xy coordinates in an image in an invisible manner in addition to a command for controlling the flying object 10 from each divided region. The flying object 10 acquires the current xy coordinates from the image captured by the camera 21 in addition to the command. The flying object 10 moves over the display surface of the image display device 50 while acquiring the xy coordinates that are the current position of the flying object 10 from the image displayed below, thereby displaying the display surface of the image display device 50. It is possible to move to a desired position above.
 (実施の形態3)
 本実施の形態では、飛行体10の位置を特定する構成を説明する。
(Embodiment 3)
In the present embodiment, a configuration for specifying the position of the flying object 10 will be described.
 図9は、本実施の形態における空中映像表示システムの構成を示す図である。本実施の形態の空中映像表示システム300では、実施の形態1の空中映像表示システム100の構成に加えて、映像表示装置50の各LEDの電圧を検出する電圧検出部70をさらに備えている。電圧検出部70は、検出結果を映像制御装置60に出力する。 FIG. 9 is a diagram showing a configuration of the aerial video display system in the present embodiment. In addition to the configuration of the aerial video display system 100 of the first embodiment, the aerial video display system 300 of the present embodiment further includes a voltage detection unit 70 that detects the voltage of each LED of the video display device 50. The voltage detection unit 70 outputs the detection result to the video control device 60.
 本実施の形態の飛行体10は、飛行中において、鉛直下方にレーザ光源23によりレーザ光を照射する。映像表示装置50の発光素子部51の発光素子であるLEDはレーザ光を受けると、LEDを構成する半導体素子の光起電力効果(photovoltaic effect)の原理によって発電する。このとき、LEDはレーザ光の受信回路として機能する。このため、電圧検出部70はLEDの電圧変化を検出し、検出結果を映像制御装置60に出力する。映像制御装置60は、電圧検出部70からの出力を受けて、飛行体10からレーザ光を受けたLEDを特定する。すなわち、映像制御装置60は、飛行体10の位置、すなわち、映像表示装置50の表示面上のxy座標を認識することができる。 The flying object 10 of the present embodiment irradiates a laser beam vertically by a laser light source 23 during flight. When the LED, which is a light emitting element of the light emitting element unit 51 of the image display device 50, receives laser light, it generates power according to the principle of the photovoltaic effect of the semiconductor elements constituting the LED. At this time, the LED functions as a laser light receiving circuit. For this reason, the voltage detection unit 70 detects the voltage change of the LED and outputs the detection result to the video control device 60. The video control device 60 receives the output from the voltage detection unit 70 and identifies the LED that has received the laser light from the flying object 10. That is, the video control device 60 can recognize the position of the flying object 10, that is, the xy coordinates on the display surface of the video display device 50.
 このとき、飛行体10を識別する識別情報を示す信号でレーザ光を変調して照射してもよい。すなわち、飛行体10は識別情報を示す信号でレーザ光を変調するための変調回路を備えても良い。これにより、映像制御装置60は、飛行体10を特定することが可能となり、飛行体10の識別情報と、その飛行体の位置、すなわち、レーザ光の受信位置とを関連づけて把握することが可能となる。これにより、飛行体10を個別に遠隔操作することが可能となる。例えば、映像制御装置60は、識別情報により特定された飛行体10の直下の領域、すなわち、レーザ光を受信したLEDを含む領域に、その飛行体10に応じた制御を行うためのコマンドを示す映像を表示させるように映像表示装置50を制御する。 At this time, the laser beam may be modulated and irradiated with a signal indicating identification information for identifying the flying object 10. That is, the flying object 10 may include a modulation circuit for modulating the laser beam with a signal indicating identification information. As a result, the video control device 60 can identify the flying object 10 and can grasp the identification information of the flying object 10 and the position of the flying object, that is, the reception position of the laser light in association with each other. It becomes. Thereby, it becomes possible to remotely control the flying object 10 individually. For example, the video control device 60 indicates a command for performing control according to the flying object 10 in an area immediately below the flying object 10 specified by the identification information, that is, an area including the LED that has received the laser light. The video display device 50 is controlled to display the video.
 (他の実施の形態)
 以上のように、本開示の技術の例示として、実施の形態1~3を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1~3で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, Embodiments 1 to 3 have been described as examples of the technology of the present disclosure. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Also, it is possible to combine the components described in the first to third embodiments to form a new embodiment. Therefore, other embodiments will be exemplified below.
 上記の実施の形態では、飛行制御または発光制御のためのコマンドを、表示された映像を介して飛行体10に送信したが、コマンドの種類はこれらに限定されるものではなく、他の制御内容を指示するコマンド、例えば、音楽の出力を指示するコマンドを、表示された映像を介して飛行体10に送信してもよい。 In the above embodiment, a command for flight control or light emission control is transmitted to the flying object 10 via the displayed video, but the type of command is not limited to these, and other control contents May be transmitted to the flying object 10 through the displayed video.
 また、上記の実施の形態では、映像表示装置50として、複数のLEDを備える構成の表示装置を示したが、映像を表示できるものであれば、他の構成の表示装置を使用できる。例えば、液晶ディスプレイ、有機ELディスプレイを使用することもできる。または、映像を投影面に投影する投射型映像表示装置を使用することもできる。この場合も、地上に載置した表示装置から飛行体10へコマンドを伝達することは可能となる。但し、LEDのように飛行体10からのレーザ光を受けることにより信号を受信する、ということはできない。 In the above embodiment, a display device having a plurality of LEDs is shown as the video display device 50. However, any other display device can be used as long as it can display video. For example, a liquid crystal display or an organic EL display can be used. Alternatively, a projection-type image display device that projects an image on a projection surface can be used. Also in this case, it is possible to transmit a command to the flying object 10 from the display device placed on the ground. However, a signal cannot be received by receiving laser light from the flying object 10 like an LED.
 また、上記の実施の形態では、飛行体10に対するコマンドを提供する映像を地上、すなわち、水平面、に表示させたが、必ずしも、地上に表示させる必要はない。飛行体10に対するコマンドを提供する映像は、飛行体10のカメラ21が撮影できる範囲内であれば、任意の場所に表示させることができる。 Further, in the above embodiment, the video providing the command for the flying object 10 is displayed on the ground, that is, on the horizontal plane, but it is not always necessary to display on the ground. An image providing a command for the flying object 10 can be displayed at an arbitrary location as long as the image can be captured by the camera 21 of the flying object 10.
 また、上記の実施の形態では、映像表示装置50は、コマンド55を示す映像を不可視的に表示するとともに、演出のための映像を可視的に表示したが、演出のための映像は表示しなくてもよい。 Further, in the above embodiment, the video display device 50 displays the video indicating the command 55 invisible and displays the video for production visually, but does not display the video for production. May be.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示の飛行体は、無線通信を行わずに遠隔操作が可能であるため、多数の飛行体を空中に浮遊させて所望の映像を表示させる表示システムに有用である。 Since the flying object of the present disclosure can be remotely operated without performing wireless communication, it is useful for a display system that displays a desired image by floating a large number of flying objects in the air.
 10 飛行体
 11 本体
 13 支持部
 15 推進器
 16 コントローラ
 17 慣性計測装置
 19 測位装置
 21 カメラ
 23 レーザ光源
 24 発光器
 25 電池
 50 映像表示装置
 51 発光素子部
 52,54 領域
 52b,54b 画像
 53 発光素子駆動部
 55 コマンド
 60 映像制御装置
 61 制御部
 63 データ記憶部
 65 インターフェース部
 67 表示部
 69 操作部
 70 電圧検出部
 100,300 空中映像表示システム
DESCRIPTION OF SYMBOLS 10 Aircraft 11 Main body 13 Support part 15 Propulsion device 16 Controller 17 Inertial measurement device 19 Positioning device 21 Camera 23 Laser light source 24 Light emitter 25 Battery 50 Video display device 51 Light emitting element portion 52, 54 Area 52b, 54b Image 53 Light emitting element drive Unit 55 Command 60 Video control device 61 Control unit 63 Data storage unit 65 Interface unit 67 Display unit 69 Operation unit 70 Voltage detection unit 100, 300 Aerial video display system

Claims (12)

  1.  空中を飛行可能な無人の飛行体であって
     光を発光する発光部と、
     空中を飛行するための推進力を発生する推進部と、
     飛行中に所定の表示面に表示された映像を撮影して撮影画像を生成する撮影部と、
     前記推進部及び/または前記発光部の動作を制御するコントローラと、を備え、
     前記コントローラは、前記撮影画像を解析して、自装置を制御するためのコマンドを取得し、取得したコマンドにしたがい前記推進部及び/または前記発光部の動作を制御する、
    飛行体。
    An unmanned flying vehicle capable of flying in the air, and a light emitting unit that emits light;
    A propulsion unit that generates propulsive force for flying in the air,
    An imaging unit that captures an image displayed on a predetermined display surface during flight to generate a captured image;
    A controller for controlling the operation of the propulsion unit and / or the light emitting unit,
    The controller analyzes the captured image, acquires a command for controlling the device itself, and controls the operation of the propulsion unit and / or the light emitting unit according to the acquired command.
    Flying body.
  2.  前記撮影部は、前記飛行体の鉛直下方にある所定の表示面に表示された映像を撮影し、前記撮影画像を生成する、請求項1に記載の飛行体。 The flying object according to claim 1, wherein the photographing unit photographs an image displayed on a predetermined display surface vertically below the flying object to generate the photographed image.
  3.  前記映像は、複数のLED(Light Emitting Diode)で構成される映像表示装置により提示された映像である、請求項1に記載の飛行体。 The flying object according to claim 1, wherein the image is an image presented by an image display device including a plurality of LEDs (Light Emitting Diode).
  4.  前記映像は、投影面に映像を投影する投射型映像表示装置により提示された映像である、請求項1に記載の飛行体。 The flying object according to claim 1, wherein the image is an image presented by a projection-type image display device that projects an image on a projection surface.
  5.  前記コマンドは、前記所定の表示面において人にとって不可視的に表示される映像により提供される、請求項1に記載の飛行体。 The flying object according to claim 1, wherein the command is provided by an image displayed invisible to a person on the predetermined display surface.
  6.  レーザ光を照射するレーザ光源をさらに備えた、請求項1に記載の飛行体。 The flying object according to claim 1, further comprising a laser light source for irradiating laser light.
  7.  前記レーザ光源は、自装置を識別するための識別情報を示す信号で変調したレーザ光を照射する、請求項6に記載の飛行体。 The flying object according to claim 6, wherein the laser light source emits a laser beam modulated by a signal indicating identification information for identifying the device itself.
  8.  前記コマンドは、前記発光部による発光を制御するための指示である、請求項1に記載の飛行体。 The flying object according to claim 1, wherein the command is an instruction for controlling light emission by the light emitting unit.
  9.  前記コマンドは、飛行を制御するための指示である、請求項1に記載の飛行体。 The flying object according to claim 1, wherein the command is an instruction for controlling a flight.
  10.  請求項1に記載の飛行体と、
     所定の映像を可視的に表示するとともに、前記飛行体を制御するためのコマンドを示す映像を不可視的に表示する映像表示装置と、を備えた、
    空中映像表示システム。
    An air vehicle according to claim 1;
    A video display device that visibly displays a predetermined video and invisibly displays a video indicating a command for controlling the flying object,
    Aerial video display system.
  11.  請求項7に記載の飛行体と、
     所定の映像を人にとって可視的に表示するとともに、前記飛行体を制御するためのコマンドを示す映像を人にとって不可視的に表示する映像表示装置と、
     前記映像表示装置を制御する映像制御装置と、を備え、
     前記映像制御装置は、前記飛行体から受信したレーザ光の受信位置と、前記レーザ光を照射した飛行体の識別情報とを関連づける、
    空中映像表示システム。
    An air vehicle according to claim 7;
    A video display device that displays a predetermined video visibly for a person and also displays a video indicating a command for controlling the flying object invisibly for a person;
    A video control device for controlling the video display device,
    The video control device associates the reception position of the laser beam received from the flying object with the identification information of the flying object irradiated with the laser beam.
    Aerial video display system.
  12.  前記映像制御装置は、前記飛行体から受信したレーザ光の受信位置を含む領域に、前記飛行体の制御のためのコマンドを示す映像が表示されるように前記映像表示装置を制御する、請求項11記載の空中映像表示システム。 The image control device controls the image display device so that an image indicating a command for controlling the flying object is displayed in an area including a reception position of a laser beam received from the flying object. 11. The aerial video display system according to 11.
PCT/JP2016/000683 2015-03-12 2016-02-10 Flying body and aerial video display system WO2016143255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050022 2015-03-12
JP2015050022A JP2018069744A (en) 2015-03-12 2015-03-12 Unmanned flight vehicle and aerial image display system

Publications (1)

Publication Number Publication Date
WO2016143255A1 true WO2016143255A1 (en) 2016-09-15

Family

ID=56879433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000683 WO2016143255A1 (en) 2015-03-12 2016-02-10 Flying body and aerial video display system

Country Status (2)

Country Link
JP (1) JP2018069744A (en)
WO (1) WO2016143255A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107187598A (en) * 2017-06-22 2017-09-22 广州市科锐达光电技术有限公司 Performance unmanned plane equipped with laser
WO2020019193A1 (en) * 2018-07-25 2020-01-30 深圳市大疆创新科技有限公司 Unmanned aerial vehicle control method and system, and unmanned aerial vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071682A (en) * 2018-10-31 2020-05-07 日本電信電話株式会社 Space arrangement control device, method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338114A (en) * 2004-05-24 2005-12-08 Seiko Epson Corp Automatic movement type air floating image display device
JP2007155699A (en) * 2005-12-08 2007-06-21 Korea Electronics Telecommun Mobile robot positioning system, and method using camera and indicator
JP2011183824A (en) * 2010-03-04 2011-09-22 Chugoku Electric Power Co Inc:The Aerial photographing system
JP2012232654A (en) * 2011-04-28 2012-11-29 Topcon Corp Taking-off and landing target device, and automatic taking-off and landing system
JP2014119828A (en) * 2012-12-13 2014-06-30 Secom Co Ltd Autonomous aviation flight robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338114A (en) * 2004-05-24 2005-12-08 Seiko Epson Corp Automatic movement type air floating image display device
JP2007155699A (en) * 2005-12-08 2007-06-21 Korea Electronics Telecommun Mobile robot positioning system, and method using camera and indicator
JP2011183824A (en) * 2010-03-04 2011-09-22 Chugoku Electric Power Co Inc:The Aerial photographing system
JP2012232654A (en) * 2011-04-28 2012-11-29 Topcon Corp Taking-off and landing target device, and automatic taking-off and landing system
JP2014119828A (en) * 2012-12-13 2014-06-30 Secom Co Ltd Autonomous aviation flight robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107187598A (en) * 2017-06-22 2017-09-22 广州市科锐达光电技术有限公司 Performance unmanned plane equipped with laser
WO2020019193A1 (en) * 2018-07-25 2020-01-30 深圳市大疆创新科技有限公司 Unmanned aerial vehicle control method and system, and unmanned aerial vehicle

Also Published As

Publication number Publication date
JP2018069744A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US10972668B2 (en) Display device and control method for display device
US9865172B2 (en) Information processing device, information processing method, program, and imaging system
US10304345B2 (en) Unmanned aerial vehicle
US20190373173A1 (en) Multi-gimbal assembly
US20190144114A1 (en) Systems and methods for controlling movable object behavior
US10569901B2 (en) Light emission control apparatus, drone, and method for controlling emission of light
US10599142B2 (en) Display device and control method for display device
JP2016203978A (en) System for piloting a drone in immersed state
US20170293795A1 (en) Moving device, moving system, terminal device and method of controlling moving device
US10488654B2 (en) Control apparatus, head-mounted display, control system, control method, and program
US20200108914A1 (en) Unmanned aerial vehicle and method for controlling same
JP7152836B2 (en) UNMANNED AIRCRAFT ACTION PLAN CREATION SYSTEM, METHOD AND PROGRAM
KR20150134591A (en) The Apparatus and Method for Portable Device controlling Unmanned Aerial Vehicle
WO2016143255A1 (en) Flying body and aerial video display system
JP6515367B1 (en) Imaging system and imaging method
US20200209894A1 (en) Unmanned aerial vehicle control system, unmanned aerial vehicle control method, and program
US20200097026A1 (en) Method, device, and system for adjusting attitude of a device and computer-readable storage medium
WO2017166080A1 (en) Method and device for indicating execution state, and unmanned aerial vehicle
WO2020000384A1 (en) Aircraft night flight control method and apparatus, control apparatus, and aircraft
KR101502275B1 (en) Automatically Driven Control Apparatus for non people helicopters and Control Method the same
US20220187828A1 (en) Information processing device, information processing method, and program
WO2016143257A1 (en) Flying body
WO2022188151A1 (en) Image photographing method, control apparatus, movable platform, and computer storage medium
WO2018179402A1 (en) Information-processing device, information-processing method, and information-processing program
US10771749B2 (en) Electronic apparatus, display system, and control method of electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP