WO2016141674A1 - 智能天线下行、上行通道校准的方法和***、存储介质 - Google Patents

智能天线下行、上行通道校准的方法和***、存储介质 Download PDF

Info

Publication number
WO2016141674A1
WO2016141674A1 PCT/CN2015/086953 CN2015086953W WO2016141674A1 WO 2016141674 A1 WO2016141674 A1 WO 2016141674A1 CN 2015086953 W CN2015086953 W CN 2015086953W WO 2016141674 A1 WO2016141674 A1 WO 2016141674A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
channel
time domain
uplink
calibration
Prior art date
Application number
PCT/CN2015/086953
Other languages
English (en)
French (fr)
Inventor
林家军
王红展
贺小龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15884354.0A priority Critical patent/EP3291455B1/en
Publication of WO2016141674A1 publication Critical patent/WO2016141674A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a method and system for smart antenna downlink and uplink channel calibration, and a storage medium.
  • non-time-varying error can be accurately measured by off-line calibration and compensated in the baseband.
  • the time-varying error is mainly caused by the inconsistency of each channel, such as the amplitude and phase of each channel, so it is necessary to take online calibration and compensation for the amplitude and phase errors of each channel.
  • the method of correcting the antenna in the TDD system mainly adopts single antenna transmission, single antenna reception, and interference cancellation on the control channel or data channel of the same cell baseband board by multiple transmission and reception.
  • the existing antenna calibration method has a certain impact on the TDD service, and the efficiency is low.
  • the number of antennas to be calibrated is large, it takes a long time to complete the uplink and downlink channel calibration of the antenna.
  • the embodiments of the present invention provide a method and system for calibrating a downlink and uplink channel of a smart antenna, and a storage medium.
  • a corresponding downlink time domain calibration sequence is allocated for each downlink channel to be calibrated
  • the downlink time domain calibration sequence sends each acquired downlink time domain calibration sequence to the corresponding downlink channel until all the allocated downlink time domain calibration sequences are transmitted;
  • the time domain calibration sequence is sent to the downlink calibration channel; the downlink integrated time domain calibration sequence that passes through the downlink calibration channel is converted into a downlink integrated frequency domain calibration sequence, and the downlink integrated frequency domain calibration sequence is buffered;
  • the assigning a corresponding downlink time domain calibration sequence to each downlink channel to be calibrated according to the downlink calibration instruction further includes:
  • the downlink channels to be calibrated are divided into multiple groups, and each group includes multiple downlink channels;
  • the plurality of downlink time domain calibration sequences acquired during each subsequent downlink GAP gap is a downlink time domain calibration sequence corresponding to a group of downlink channels of the multiple groups of downlink channels.
  • the downlink channels to be calibrated are divided into multiple groups according to a preset policy, and each group includes multiple downlink channels, which are specifically:
  • the N downlink channels to be calibrated are divided into N/M groups, and each group includes M downlink channels.
  • the downlink channels to be calibrated are divided into multiple groups according to a preset policy, and each group includes multiple downlink channels, which are specifically:
  • the N downlink channels to be calibrated are divided into N/M+1 groups, each group includes M downlink channels, and each group includes one downlink reference channel.
  • each downlink time domain calibration sequence sent by the same downlink GAP gap carries a downlink channel identifier that is different from other downlink time domain calibration sequences sent by the downlink GAP gap.
  • an embodiment of the present invention further provides a storage medium including a set of instructions that, when executed, cause at least one processor to perform the operations described above.
  • an embodiment of the present invention further provides a system for calibrating a downlink channel of a smart antenna, where the system includes:
  • a downlink calibration sequence allocation module configured to allocate a corresponding downlink time domain calibration sequence for each downlink channel to be calibrated according to the downlink calibration instruction
  • the downlink calibration sequence sending module is configured to simultaneously acquire a downlink time domain calibration sequence corresponding to the downlink channels to be calibrated during each subsequent downlink GAP gap, and send each acquired downlink time domain calibration sequence to the corresponding downlink. Channel until all downlink time domain calibration sequences assigned are sent;
  • the downlink calibration sequence processing module is configured to collect a downlink time domain calibration sequence passing through each downlink channel in real time for each downlink GAP gap, and perform coupling processing on the collected downlink time domain calibration sequence to generate a downlink comprehensive time domain. a calibration sequence; transmitting the downlink integrated time domain calibration sequence to a downlink calibration channel; converting a downlink integrated time domain calibration sequence that passes through the downlink calibration channel into a downlink integrated frequency domain calibration sequence, and buffering the downlink integrated frequency domain calibration sequence;
  • the downlink channel calibration module is configured to calculate a compensation value of the downlink channel to be calibrated according to all the downlink integrated frequency domain calibration sequences that are buffered, and perform online calibration on each downlink channel to be calibrated according to the compensation value.
  • the smart antenna downlink channel calibration system further includes:
  • the downlink channel grouping module is configured to divide the downlink channels to be calibrated into multiple groups according to a preset policy, and each group includes multiple downlink channels;
  • the plurality of downlink time domain calibration sequences acquired during each subsequent downlink GAP gap is a downlink time domain calibration sequence corresponding to a group of downlink channels of the multiple groups of downlink channels.
  • the downlink channel grouping module is specifically configured to divide the N downlink channels to be calibrated into N/M groups according to a budget policy, and each group includes M downlink channels.
  • the downlink channel grouping module is further configured to divide the N downlink channels to be calibrated into N/M+1 groups according to a budget policy, each group includes M downlink channels, and each group includes one downlink reference. aisle.
  • each downlink time domain calibration sequence sent by the same downlink GAP gap carries a downlink channel identifier that is different from other downlink time domain calibration sequences sent by the downlink GAP gap.
  • an embodiment of the present invention further provides a method for calibrating an uplink channel of a smart antenna, where the method includes:
  • an uplink time domain calibration sequence that passes through the uplink calibration channel during the GAP gap, and perform one-to-multiple coupling processing on the uplink time domain calibration sequence according to the number K of uplink channels to be calibrated to generate K uplink time domains.
  • a calibration sequence respectively, transmitting one of the uplink time domain calibration sequences to the K uplink channels to be calibrated;
  • an embodiment of the present invention further provides a storage medium including a set of instructions that, when executed, cause at least one processor to perform the smart antenna uplink channel calibration.
  • an embodiment of the present invention further provides a system for calibrating an uplink channel of a smart antenna, where the system includes:
  • An uplink calibration sequence sending module configured to send a time domain calibration sequence to the upstream calibration channel during a subsequent GAP gap according to the uplink calibration instruction;
  • the uplink calibration sequence processing module is configured to acquire an uplink time domain calibration sequence that passes through the uplink calibration channel during the GAP gap, and perform one-to-multiple coupling on the uplink time domain calibration sequence according to the number K of uplink channels to be calibrated. Processing, generating K uplink time domain calibration sequences, and transmitting one of the uplink time domain calibration sequences to the K uplink channels to be calibrated;
  • An uplink calibration sequence conversion module configured to convert a time domain calibration sequence through each upstream channel into a corresponding frequency domain calibration sequence
  • the uplink channel calibration module is configured to calculate a compensation value of the corresponding uplink channel according to the frequency domain calibration sequence of each uplink channel, and perform online calibration on each uplink channel according to the compensation value.
  • the method and system for calibrating the downlink channel of the smart antenna provided by the embodiment of the present invention, and the storage medium, by assigning a corresponding downlink time domain calibration sequence to each downlink channel to be calibrated according to the downlink calibration instruction; in each subsequent downlink GAP gap During the process, the downlink time domain calibration sequence corresponding to the downlink channel to be calibrated is obtained at the same time, and each obtained downlink time domain calibration sequence is sent to the corresponding downlink channel until all the downlink time domain calibration sequences allocated are sent.
  • a downlink time domain calibration sequence passing through each downlink channel in real time performing coupling processing on the collected downlink time domain calibration sequence to generate a downlink integrated time domain calibration sequence;
  • the domain calibration sequence is sent to the downlink calibration channel; the downlink integrated time domain calibration sequence through the downlink calibration channel is converted into a downlink integrated frequency domain calibration sequence, and the downlink integrated frequency domain calibration sequence is buffered; and all downlink integrated frequency domain calibrations are buffered according to the buffer
  • the sequence calculates a compensation value of the downlink channel to be calibrated, according to the compensation value
  • the online calibration of each downlink channel to be calibrated can greatly shorten the calibration time of the downlink channel of the smart antenna and improve the downlink of the smart antenna without affecting the normal operation of the downlink channel. Channel calibration efficiency.
  • the method and system for accommodating the uplink channel of the smart antenna provided by the embodiment of the present invention, and the storage medium, send an uplink time domain calibration sequence to the upstream calibration channel during a subsequent GAP gap according to the uplink calibration instruction; Obtaining an upstream calibration during the gap
  • the uplink time domain calibration sequence of the channel performs one-to-multiple coupling processing on the uplink time domain calibration sequence according to the number K of uplink channels to be calibrated, and generates K uplink time domain calibration sequences to K uplink channels to be calibrated Transmitting one of the uplink time domain calibration sequences respectively; converting an uplink time domain calibration sequence that passes each uplink channel into a corresponding uplink frequency domain calibration sequence; and calculating a corresponding uplink channel according to an uplink frequency domain calibration sequence of each uplink channel
  • the compensation value of the uplink channel is calibrated according to the compensation value, and the calibration of the uplink channel of the smart antenna is greatly shortened compared to the single-channel uplink channel calibration without affecting the normal operation of the uplink
  • FIG. 1 is a schematic flow chart of a method for calibrating a downlink channel of a smart antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of functional modules of a system for calibrating a downlink channel of a smart antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of functional modules of another embodiment of a system for calibrating a downlink channel of a smart antenna according to the present invention.
  • FIG. 4 is a schematic flow chart of a method for calibrating an uplink channel of a smart antenna according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of functional modules of an embodiment of a system for calibrating an uplink channel of a smart antenna according to the present invention.
  • FIG. 1 is a schematic flowchart of a method for calibrating a downlink channel of a smart antenna according to an embodiment of the present invention.
  • the method includes:
  • Step S10 Allocating a corresponding downlink time domain calibration sequence for each downlink channel to be calibrated according to the downlink calibration instruction;
  • the number of downlink channels to be calibrated is first calculated, and then the corresponding number of downlink time domain calibration sequences are allocated according to the number of downlink channels to be calibrated.
  • step S20 during each subsequent downlink GAP interval, a plurality of downlink time domain calibration sequences corresponding to the downlink channels to be calibrated are simultaneously acquired, and each obtained downlink time domain calibration sequence is sent to the corresponding downlink channel until the allocated All downlink time domain calibration sequences are sent;
  • each downlink time domain calibration sequence sent by the same downlink GAP gap carries a downlink channel identifier that is different from other downlink time domain calibration sequences sent by the downlink GAP gap, so that the downlink channel identifier can be known according to the downlink channel identifier.
  • the downlink time domain calibration sequence sent by the same downlink GAP gap is allocated with different phases, and the phase is used as the downlink channel identifier of the other downlink time domain calibration sequence sent by the same downlink GAP gap, for example, the same downlink GAP gap is sent. Adjacent downlink time domain calibration sequences are sequentially phased by 2 ⁇ /M.
  • the corresponding downlink time domain calibration sequence is sent to the downlink channel during the subsequent downlink GAP gap, and During a downlink GAP gap, a corresponding downlink time domain calibration sequence is simultaneously sent to multiple downlink channels to be calibrated.
  • the downlink is to be calibrated If the number of channels is too large, it is not suitable to send the corresponding downlink time-domain calibration sequence to all downlink channels to be calibrated in the same downlink GAP gap.
  • the downlink channels to be calibrated need to be grouped, and the downlink calibration corresponding to all downlink channels to be calibrated is required.
  • the sequence is sent through multiple downlink GAP gaps, and each downlink GAP gap sends a downlink calibration sequence corresponding to a downlink channel. That is, when the number of downlink channels to be calibrated is too large, the downlink channels to be calibrated are divided into multiple groups according to a preset policy after step S10, wherein each group includes multiple downlink channels, and the number of downlink channels included in each group may be The same can also be different.
  • the downlink time domain calibration sequence corresponding to the channel After grouping the downlink channels to be calibrated, selecting a corresponding downlink time domain calibration sequence of a group of downlink channels from the downlink time domain calibration sequence corresponding to the multiple groups of downlink channels during each subsequent downlink GAP gap, and then transmitting Up to the corresponding downlink channel, until all the downlink time domain calibration sequences are transmitted, that is, the plurality of downlink time domain calibration sequences acquired during each subsequent downlink GAP gap are a group of downlinks of the multiple downlink channels The downlink time domain calibration sequence corresponding to the channel.
  • the multiple downlink channels may be divided according to a preset policy.
  • Group X each group includes multiple downlink channels; then, after receiving the downlink calibration command, the X downlink GAP gaps send corresponding downlink time domain calibration sequences, such as the first downlink GAP gap after receiving the downlink calibration command to the first
  • the downlink channel to be calibrated sends a corresponding domain calibration sequence, and the corresponding downlink time domain calibration sequence is sent to the second downlink channel to be calibrated in the second downlink GAP gap, ... in the Xth downlink GAP gap to the Xth
  • the downlink channel to be calibrated is sent to the corresponding downlink time domain calibration sequence.
  • Step S30 Collect, in each of the downlink GAP gaps, a downlink time domain calibration sequence that passes through each downlink channel, and perform coupling processing on the collected downlink time domain calibration sequence to generate a downlink comprehensive time domain calibration sequence.
  • Translating the downlink integrated time domain calibration sequence to the downlink calibration channel converting the downlink integrated time domain calibration sequence through the downlink calibration channel into a downlink integrated frequency domain calibration sequence, and buffering the downlink integrated frequency domain calibration sequence;
  • the downlink integrated time domain calibration sequence described in this step S30 includes each time domain school collected. Quasi-sequence information.
  • the downlink integrated frequency domain calibration sequence includes frequency domain calibration sequence information corresponding to each of the collected time domain calibration sequences.
  • the downlink integrated time domain calibration sequence is sent to the downlink calibration channel for the downlink calibration channel to process the downlink integrated time domain calibration sequence, wherein the downlink calibration channel processes the downlink integrated time domain calibration sequence.
  • the existing method is adopted and will not be described here.
  • Step S40 Calculate a compensation value of the downlink channel to be calibrated according to all the downlink integrated frequency domain calibration sequences that are buffered, and perform online calibration on each downlink channel to be calibrated according to the compensation value.
  • the downlink to be calibrated is calculated according to all the downlink integrated frequency domain calibration sequences that are buffered.
  • the compensation value of the channel that is, the corresponding downlink frequency domain calibration sequence is extracted from each downlink integrated frequency domain calibration sequence, and then the corresponding downlink channel compensation value is calculated according to each downlink frequency domain calibration sequence.
  • all the downlink channels to be calibrated are J
  • the buffer has two downlink integrated frequency domain calibration sequences, wherein the first downlink integrated frequency domain calibration sequence includes downlink frequency domain calibration sequences corresponding to the first to the first downlink channels.
  • the second downlink integrated frequency domain calibration sequence includes a downlink frequency domain calibration sequence corresponding to the first to the Jth downlink channels, and the first to the first downlink channels are extracted from the first downlink integrated frequency domain calibration sequence.
  • Corresponding downlink frequency domain calibration sequence extracting downlink frequency domain calibration sequences corresponding to the first to the Jth downlink channels from the second downlink integrated frequency domain calibration sequence, and then calculating according to each downlink frequency domain calibration sequence extracted The compensation value of the corresponding downstream channel (1st to Jth downlink channels).
  • the downlink channels to be calibrated are divided into multiple groups according to a preset policy.
  • the first method is: dividing the N downlink channels to be calibrated into N according to a budget policy. /M group, each group includes M downstream channels.
  • the online calibration time for N downlink channels is only required for N/M*HTDD frames, wherein the HTDD frame represents a TDD frame time, and the calibration time is shortened by M times compared to the single-single-antenna downlink channel online calibration. Since the compensation value for each downstream channel is calculated, the amplitude and phase of the following reference channel are used as reference bases. The time-varying characteristics of the quasi-downlink reference channel introduce errors.
  • the N downlink channels to be calibrated are divided into N/M+1 groups, each group includes M downlink channels, and each group includes one downlink reference channel.
  • the online calibration time for N downlink channels is only required to be (N/M+1)*HTDD frames, wherein the HTDD frame represents one TDD frame time, and one TDD frame time is used more than the first method, but Compared with the single-single-antenna downlink channel online calibration, the calibration time is greatly shortened; however, since each group includes a downlink reference channel, the error caused by the time-varying characteristics of the downlink reference channel can be minimized compared with the first method. The calibration accuracy of the downstream channel is greatly improved.
  • the method for calibrating the downlink channel of the smart antenna is to allocate a corresponding downlink time domain calibration sequence for each downlink channel to be calibrated according to the downlink calibration instruction; and acquire multiple at the same time during each subsequent downlink GAP gap.
  • a downlink time domain calibration sequence corresponding to the downlink channel to be calibrated and sending each acquired downlink time domain calibration sequence to the corresponding downlink channel until all the allocated downlink time domain calibration sequences are transmitted; for each downlink GAP a downlink, a downlink time domain calibration sequence passing through each downlink channel is collected in real time; the collected downlink time domain calibration sequence is coupled to generate a downlink integrated time domain calibration sequence; and the downlink integrated time domain calibration sequence is sent to the downlink Calibrating the channel; converting the downlink integrated time domain calibration sequence through the downlink calibration channel into a downlink integrated frequency domain calibration sequence, and buffering the downlink integrated frequency domain calibration sequence; calculating the downlink to be calibrated according to all downlink integrated frequency domain calibration sequences buffered
  • an embodiment of the present invention further provides a storage medium including a set of instructions that, when executed, cause at least one processor to perform the operations described above.
  • the embodiment of the invention further provides a system for downlink channel calibration of a smart antenna.
  • the figure 2 is a schematic diagram of functional modules of an embodiment of a system for calibrating a downlink channel of a smart antenna of the present invention.
  • the system 100 includes a downlink calibration sequence allocation module 110, a downlink calibration sequence sending module 120, a downlink calibration sequence processing module 130, and a downlink channel calibration module 140. among them,
  • the downlink calibration sequence allocating module 110 is configured to allocate a corresponding downlink time domain calibration sequence for each downlink channel to be calibrated according to the downlink calibration instruction;
  • the downlink calibration sequence sending module 120 is configured to simultaneously acquire a downlink time domain calibration sequence corresponding to multiple downlink channels to be calibrated during each subsequent downlink GAP gap, and send each acquired downlink time domain calibration sequence to Corresponding downlink channel, until all the downlink time domain calibration sequences allocated are sent;
  • the downlink calibration sequence processing module 130 is configured to collect a downlink time domain calibration sequence passing through each downlink channel in real time for each downlink GAP gap, and perform coupling processing on the collected downlink time domain calibration sequence to generate a downlink. Integrating a time domain calibration sequence; transmitting the downlink integrated time domain calibration sequence to a downlink calibration channel; converting a downlink integrated time domain calibration sequence through the downlink calibration channel into a downlink integrated frequency domain calibration sequence, and buffering the downlink integrated frequency domain Calibration sequence
  • the downlink channel calibration module 140 is configured to calculate a compensation value of the downlink channel to be calibrated according to all the downlink integrated frequency domain calibration sequences that are buffered, and perform online calibration on each downlink channel to be calibrated according to the compensation value.
  • the downlink calibration sequence allocating module 110 receives the downlink calibration command input by the user, first calculates the number of downlink channels to be calibrated, and then allocates a corresponding number of downlink time domains according to the number of downlink channels to be calibrated. Calibration sequence.
  • each downlink time domain calibration sequence sent by the same downlink GAP gap carries a downlink channel identifier that is different from other downlink time domain calibration sequences sent by the downlink GAP gap, so that the downlink channel identifier can be known according to the downlink channel identifier.
  • the downlink time domain calibration sequence allocated for the same downlink GAP gap may be allocated. Different phases, with the phase as the downlink channel identifier of the other downlink time domain calibration sequences sent by the same downlink GAP gap, for example, the adjacent downlink time domain calibration sequences transmitted by the same downlink GAP gap are sequentially different by 2 ⁇ /M phase.
  • the downlink calibration sequence sending module 120 sends corresponding downlinks to the downlink channel during the subsequent downlink GAP gap.
  • the number of downlink channels to be calibrated is too large, it is not suitable to send the corresponding downlink time domain calibration sequence to all the downlink channels to be calibrated in the same downlink GAP gap, and the downlink channels to be calibrated need to be grouped, and all the downlinks to be calibrated are to be calibrated.
  • FIG. 3 is a schematic diagram of functional modules of another embodiment of a system for downlink channel calibration of a smart antenna according to the present invention.
  • the smart antenna downlink channel calibration system 100 further includes a downlink channel grouping module 150.
  • the downlink channel grouping module 150 is configured to divide the downlink channels to be calibrated into multiple groups according to a preset policy, and each group includes multiple downlink channels.
  • the plurality of downlink time domain calibration sequences acquired during each subsequent downlink GAP gap is a downlink time domain calibration sequence corresponding to a group of downlink channels of the multiple groups of downlink channels. That is, after the downlink channels to be calibrated are grouped, a corresponding downlink time domain calibration sequence of a group of downlink channels is selected from the downlink time domain calibration sequences corresponding to the multiple groups of downlink channels during each subsequent downlink GAP gap, and then Send to the corresponding downstream channel until all downlink time domain calibration sequences have been sent.
  • the number of downlink channels included in each of the multiple sets of downlink channels may be the same or different.
  • the policy divides the multiple downlink channels into X groups, each group includes multiple downlink channels, and then sends a corresponding downlink time domain calibration sequence after receiving the downlink calibration command, such as after receiving the downlink calibration instruction.
  • the first downlink GAP gap sends a corresponding downlink time domain calibration sequence to the first group of downlink channels to be calibrated, and the corresponding downlink time domain calibration sequence is sent to the second group of downlink channels to be calibrated in the second downlink GAP gap, ... ... transmitting a corresponding downlink time domain calibration sequence to the Xth group of downlink channels to be calibrated in the Xth downlink GAP gap.
  • the downlink integrated time domain calibration sequence in this embodiment includes each time domain calibration sequence information collected.
  • the downlink integrated frequency domain calibration sequence includes frequency domain calibration sequence information corresponding to each of the collected time domain calibration sequences.
  • the downlink integrated time domain calibration sequence is sent to the downlink calibration channel, so that the downlink calibration channel performs correlation processing on the downlink integrated time domain calibration sequence, where the downlink calibration channel performs a downlink integrated time domain calibration sequence. The processing is in the existing manner and will not be described here.
  • the downlink channel calibration module 140 sends all the downlink time domain calibration sequences to the corresponding downlink channels, and all the downlink integrated frequency domain calibration sequences are buffered, and are calculated according to all downlink integrated frequency domain calibration sequences that are buffered.
  • the compensation value of the downlink channel to be calibrated is to extract a corresponding downlink frequency domain calibration sequence from each downlink integrated frequency domain calibration sequence, and then calculate a corresponding downlink channel compensation value according to each downlink frequency domain calibration sequence.
  • all the downlink channels to be calibrated are J
  • the buffer has two downlink integrated frequency domain calibration sequences, wherein the first downlink integrated frequency domain calibration sequence includes downlink frequency domain calibration sequences corresponding to the first to the first downlink channels.
  • the second downlink integrated frequency domain calibration sequence includes a downlink frequency domain calibration sequence corresponding to the first to the Jth downlink channels, and the first to the first downlink channels are extracted from the first downlink integrated frequency domain calibration sequence.
  • Corresponding downlink frequency domain calibration sequence extracting downlink frequency domain calibration sequences corresponding to the first to the Jth downlink channels from the second downlink integrated frequency domain calibration sequence, and then calculating according to each downlink frequency domain calibration sequence extracted The compensation value of the corresponding downstream channel (1st to Jth downlink channels).
  • the downlink channel grouping module 150 will be calibrated according to a preset policy.
  • the row channels are divided into multiple groups.
  • the two methods are used.
  • the first one is: dividing the N downlink channels to be calibrated into N/M groups according to a budget strategy, and each group includes M downlink channels.
  • the online calibration time for N downlink channels is only required for N/M*HTDD frames, wherein the HTDD frame represents a TDD frame time, and the calibration time is shortened by M times compared to the single-single-antenna downlink channel online calibration. Since the compensation value of each downlink channel is calculated as the reference and the phase of the reference channel, the time-varying characteristic of the downlink reference channel introduces an error.
  • the second type is: according to the budget strategy, the N downlink channels to be calibrated are divided into N/M+1 groups, each group includes M downlink channels, and each group includes one downlink reference channel.
  • the online calibration time for N downlink channels is only required to be (N/M+1)*HTDD frames, wherein the HTDD frame represents one TDD frame time, and one TDD frame time is used more than the first method, but Online calibration with respect to a single single-antenna downstream channel greatly reduces calibration time.
  • each group includes a downlink reference channel, the error caused by the time-varying characteristics of the downlink reference channel can be eliminated to the utmost extent, and the calibration accuracy of the downlink channel is greatly improved.
  • the system for calibrating the downlink channel of the smart antenna allocates a corresponding downlink time domain calibration sequence for each downlink channel to be calibrated according to the downlink calibration instruction; and acquires multiple simultaneously during each subsequent downlink GAP gap a downlink time domain calibration sequence corresponding to the downlink channel to be calibrated, and sending each acquired downlink time domain calibration sequence to the corresponding downlink channel until all the downlink time domain calibration sequences allocated are sent;
  • Downlink GAP gap collecting a downlink time domain calibration sequence passing through each downlink channel in real time; performing coupling processing on the collected downlink time domain calibration sequence to generate a downlink integrated time domain calibration sequence; sending the downlink integrated time domain calibration sequence Downstream calibration channel; converting the downlink integrated time domain calibration sequence through the downlink calibration channel into a downlink integrated frequency domain calibration sequence, and buffering the downlink integrated frequency domain calibration sequence; calculating the to be calibrated according to all downlink integrated frequency domain calibration sequences buffered
  • FIG. 4 is a schematic flowchart of a method for calibrating an uplink channel of a smart antenna according to an embodiment of the present invention.
  • the method includes:
  • Step S101 Send an uplink time domain calibration sequence to the uplink calibration channel during a subsequent GAP gap according to the uplink calibration instruction.
  • an uplink time domain calibration sequence is acquired in a subsequent GAP gap, and the uplink time domain calibration sequence is sent to the uplink calibration channel, so that the uplink calibration channel pair is
  • the uplink time domain calibration sequence is implemented for correlation processing.
  • the uplink calibration channel is processed in the existing manner, and is not described here.
  • Step S102 Obtain an uplink time domain calibration sequence that passes through the uplink calibration channel during the GAP gap, and perform one-point multi-coupling processing on the uplink time domain calibration sequence according to the number K of uplink channels to be calibrated to generate K Uplink time domain calibration sequence, sending one uplink time domain calibration sequence to each of the K uplink channels to be calibrated;
  • the K uplink time domain calibration sequences generated in this step S102 are the same, and no distinction is needed.
  • Step S103 Convert an uplink time domain calibration sequence that passes through each uplink channel into a corresponding uplink frequency domain calibration sequence.
  • the same uplink time domain calibration sequence changes after each uplink channel, and the changes may occur after different uplink channels may be the same or different.
  • the uplink time domain calibration sequence for each upstream channel may or may not be the same.
  • Step S104 Calculate a corresponding uplink according to an uplink frequency domain calibration sequence of each uplink channel.
  • the compensation value of the track is subjected to online calibration for each upstream channel according to the compensation value.
  • the amplitude and phase change amount of each uplink channel can be calculated according to the uplink frequency domain calibration sequence of each uplink channel, so that the compensation value of each uplink channel can be calculated.
  • the smart antenna uplink channel calibration method is configured to: send an uplink time domain calibration sequence to an uplink calibration channel during a subsequent GAP gap according to an uplink calibration instruction; and acquire an uplink calibration channel during the GAP gap
  • the uplink time domain calibration sequence performs one-to-multiple coupling processing on the uplink time domain calibration sequence according to the number K of uplink channels to be calibrated, and generates K uplink time domain calibration sequences, respectively, to K uplink channels to be calibrated Transmitting one of the uplink time domain calibration sequences; converting an uplink time domain calibration sequence that passes each uplink channel into a corresponding uplink frequency domain calibration sequence; and calculating an uplink channel according to an uplink frequency domain calibration sequence of each uplink channel
  • the compensation value is used to perform on-line calibration on each uplink channel according to the compensation value.
  • the calibration time of the smart antenna uplink channel is greatly shortened without affecting the normal operation of the uplink channel. , improve the calibration efficiency of
  • an embodiment of the present invention further provides a storage medium including a set of instructions that, when executed, cause at least one processor to perform the smart antenna uplink channel calibration.
  • FIG. 5 is a schematic diagram of functional modules of a system for calibrating an uplink channel of a smart antenna according to an embodiment of the present invention.
  • the smart antenna uplink channel calibration system 200 includes an uplink calibration sequence sending module 210, an uplink calibration sequence processing module 220, an uplink calibration sequence conversion module 230, and an uplink channel calibration module 240. among them,
  • the uplink calibration sequence sending module 210 is configured to send a time domain calibration sequence to the uplink calibration channel during a subsequent GAP gap according to the uplink calibration instruction;
  • the uplink calibration sequence processing module 220 is configured to acquire during the GAP gap After the time domain calibration sequence of the uplink calibration channel, the time domain calibration sequence is subjected to one-multiple coupling processing according to the number K of uplink channels to be calibrated, and K time domain calibration sequences are generated, and K uplink channels to be calibrated are generated. Transmitting one of the uplink time domain calibration sequences separately;
  • the uplink calibration sequence conversion module 230 is configured to convert a time domain calibration sequence that passes through each uplink channel into a corresponding frequency domain calibration sequence
  • the uplink channel calibration module 240 is configured to calculate a compensation value of the corresponding uplink channel according to the frequency domain calibration sequence of each uplink channel, and perform online calibration on each uplink channel according to the compensation value.
  • an uplink time domain calibration sequence is acquired in a subsequent GAP gap, and the uplink time domain calibration sequence is sent to the uplink calibration channel, so that the uplink calibration channel pair is
  • the uplink time domain calibration sequence is implemented for correlation processing.
  • the uplink calibration channel is processed in the existing manner, and is not described here.
  • the N uplink time domain calibration sequences generated in this embodiment are the same, and no distinction is needed. Since the current amplitude and phase of each uplink channel are different, the same uplink time domain calibration sequence changes after each uplink channel. The changes that occur through different uplink channels may be the same or different, so each uplink channel passes through each uplink channel. The uplink time domain calibration sequence may be the same or different.
  • the uplink channel calibration module 240 can calculate the amplitude and phase change of each uplink channel according to the uplink frequency domain calibration sequence of each uplink channel, so that the compensation value of each uplink channel can be calculated.
  • the smart antenna uplink channel calibration system sends an uplink time domain calibration sequence to the uplink calibration channel during a subsequent GAP gap according to the uplink calibration instruction; during the GAP gap, the uplink calibration channel is acquired.
  • Uplink time domain calibration sequence one-to-many coupling of the uplink time domain calibration sequence according to the number K of uplink channels to be calibrated Processing, generating K uplink time domain calibration sequences, respectively transmitting one of the uplink time domain calibration sequences to the K uplink channels to be calibrated; converting the uplink time domain calibration sequence passing each uplink channel into a corresponding uplink frequency domain a calibration sequence; calculating a compensation value of the corresponding uplink channel according to an uplink frequency domain calibration sequence of each uplink channel, and performing online calibration on each uplink channel according to the compensation value, without affecting the normal operation of the uplink channel, Compared with the single-channel single-channel uplink channel calibration, the calibration time of the smart antenna uplink channel is greatly shortened, and the calibration efficiency of the smart antenna uplink channel
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded into a computer or other programmable data processing device Having a series of operational steps performed on a computer or other programmable device to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing one or more processes in a flowchart and/or Or block diagram the steps of a function specified in a box or multiple boxes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了智能天线下行通道校准的方法和***,该方法包括:为待校准下行通道分配下行时域校准序列;在后续每个下行GAP间隙获取多个下行时域校准序列,发送至对应下行通道,直至发送完毕;针对每个下行GAP间隙收集经下行通道的下行时域校准序列,耦合处理成下行综合时域校准序列后发至下行校准通道;将经下行校准通道的下行综合时域校准序列进行时频转换后缓存,计算待校准下行通道的补偿值,根据补偿值对待校准的下行通道进行在线校准。本发明还公开了智能天线上行通道校准的方法和***。

Description

智能天线下行、上行通道校准的方法和***、存储介质 技术领域
本发明涉及移动通信技术领域,尤其涉及智能天线下行、上行通道校准的方法和***、存储介质。
背景技术
智能天线阵列中各通道存在两种误差:非时变误差和时变误差。其中非时变误差可以通过离线校正进行精确测量,并在基带中进行补偿。时变误差主要由各通道的不一致性,如各通道的幅度、相位等因素随时变化,因此需要对各通道的幅度、相位误差采取在线校准和补偿。
目前在TDD***中对天线校正的方式主要为采取单天线发送,单天线接收,通过多次发送和接收实现对同一个小区基带板内控制信道或者数据信道进行干扰消除。
现有的这种天线校准方式对TDD业务会产生一定的影响,且效率低下,当待校准天线数量很大,需要花费很长的时间完成天线上、下行通道校准。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种智能天线下行、上行通道校准的方法和***、存储介质。
本发明实施例提供的一种智能天线下行通道校准的方法,所述方法包括:
根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;
在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应 的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;
针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;
根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准。
一个实施例中,所述根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列之后还包括:
根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道;
所述后续每个下行GAP间隙期间所获取的多个下行时域校准序列为所述多组下行通道中的一组下行通道对应的下行时域校准序列。
一个实施例中,所述根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道具体为:
根据预算策略将待校准的N个下行通道分为N/M组,每组包括M个下行通道。
一个实施例中,所述根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道具体为:
根据预算策略将待校准的N个下行通道分为N/M+1组,每组包括M个下行通道,每组包括一个下行参考通道。
一个实施例中,所述的智能天线下行通道校准的方法,同一所述下行GAP间隙发送的每个下行时域校准序列携带有区别本下行GAP间隙发送的其他下行时域校准序列的下行通道标识。
此外,本发明实施例还提供一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上文所述的操作。
此外,本发明实施例还提供一种智能天线下行通道校准的***,所述***包括:
下行校准序列分配模块,配置为根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;
下行校准序列发送模块,配置为在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;
下行校准序列处理模块,配置为针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;
下行通道校准模块,配置为根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准。
一个实施例中,所述的智能天线下行通道校准的***,还包括:
下行通道分组模块,配置为根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道;
所述后续每个下行GAP间隙期间所获取的多个下行时域校准序列为所述多组下行通道中的一组下行通道对应的下行时域校准序列。
一个实施例中,所述下行通道分组模块,具体配置为根据预算策略将待校准的N个下行通道分为N/M组,每组包括M个下行通道。
一个实施例中,所述下行通道分组模块,具体还配置为根据预算策略将待校准的N个下行通道分为N/M+1组,每组包括M个下行通道,每组包括一个下行参考通道。
一个实施例中,所述的智能天线下行通道校准的***,同一所述下行GAP间隙发送的每个下行时域校准序列携带有区别本下行GAP间隙发送的其他下行时域校准序列的下行通道标识。
此外,为实现上述目的,本发明实施例还提供一种智能天线上行通道校准的方法,所述方法包括:
根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送上行时域校准序列;
在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;
将经过每个上行通道的上行时域校准序列转换为相应的上行频域校准序列;
根据每个上行通道的上行频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准。
此外,本发明实施例还提供一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行所述智能天线上行通道校准的方法。
此外,本发明实施例还提供一种智能天线上行通道校准的***,所述***包括:
上行校准序列发送模块,配置为根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送时域校准序列;
上行校准序列处理模块,配置为在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;
上行校准序列转换模块,配置为将经过每个上行通道的时域校准序列转换为相应的频域校准序列;
上行通道校准模块,配置为根据每个上行通道的频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准。
本发明实施例所提供的智能天线下行通道校准的方法和***、存储介质,通过根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准的方式,在不影响下行通道的正常工作前提下,相比单次单天线下行通道校准,大大缩短了智能天线下行通道的校准时间,提高了智能天线下行通道的校准效率。
另外,本发明实施例所提供的智能天线上行通道校准的方法和***、存储介质,通过根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送上行时域校准序列;在所述GAP间隙期间,获取经过上行校准 通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;将经过每个上行通道的上行时域校准序列转换为相应的上行频域校准序列;根据每个上行通道的上行频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准的方式,在不影响上行通道的正常工作前提下,相比单次单天线上行通道校准,大大缩短了智能天线上行通道的校准时间,提高了智能天线上行通道的校准效率。
附图说明
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本发明的智能天线下行通道校准的方法一实施例的流程示意图;
图2为本发明的智能天线下行通道校准的***一实施例的功能模块示意图;
图3为本发明的智能天线下行通道校准的***另一实施例的功能模块示意图;
图4为本发明的智能天线上行通道校准的方法一实施例的流程示意图;
图5为本发明的智能天线上行通道校准的***一实施例的功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种智能天线下行通道校准的方法。参照图1,图1为本发明的智能天线下行通道校准的方法一实施例的流程示意图。在该实施例中,该方法包括:
步骤S10、根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;
本实施例中在接收到用户输入的下行校准指令,首先会计算待校准的下行通道的个数,然后根据待校准的下行通道的个数分配相应个数的下行时域校准序列。
步骤S20、在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;
本实施例中,同一所述下行GAP间隙发送的每个下行时域校准序列携带有区别本下行GAP间隙发送的其他下行时域校准序列的下行通道标识,以使根据该下行通道标识即可知晓该下行时域校准序列对应哪个下行通道。其中,本实施例可以为同一下行GAP间隙发送的下行时域校准序列分配不同相位,以相位作为区别同一下行GAP间隙发送的其他下行时域校准序列的下行通道标识,例如同一下行GAP间隙发送的相邻的下行时域校准序列依次相差2π/M的相位。
本实施例中为了缩短对所有待校准的下行通道的校准时间以及不影响待校准的下行通道正常运行TDD业务,在后续的下行GAP间隙期间向下行通道发送相应的下行时域校准序列,且在一个下行GAP间隙期间同时向多个待校准的下行通道发送相应的下行时域校准序列。当待校准的下行通 道数量过多,不适宜在同一个下行GAP间隙向所有待校准的下行通道发送相应的下行时域校准序列时,需要对待校准的下行通道进行分组,将所有待校准的下行通道对应的下行校准序列通过多个下行GAP间隙发送,每个下行GAP间隙发送一组下行通道对应的下行校准序列。即:当待校准的下行通道数量过大,则在步骤S10之后根据预设策略将待校准的下行通道分为多组,其中每组包括多个下行通道,每组包括的下行通道个数可以相同也可以不同。对对待校准的下行通道进行分组之后,在后续的每个下行GAP间隙期间从所述多组下行通道对应的下行时域校准序列中选择一组下行通道的对应的下行时域校准序列,然后发送至相应的下行通道中,直至所有的下行时域校准序列发送完毕,即所述后续每个下行GAP间隙期间所获取的多个下行时域校准序列为所述多组下行通道中的一组下行通道对应的下行时域校准序列。例如:待校准的下行通道为多个,在一个下行GAP间隙无法实现向所有待校准的下行通道同时发送相应的下行时域校准序列,则可以根据预设策略将所述多个下行通道分为X组,每组包括多个下行通道;然后,在接收下行校准指令之后X个下行GAP间隙发送相应的下行时域校准序列,如在接收下行校准指令之后的第1个下行GAP间隙向第1组待校准的下行通道发送相应的域校准序列、在第2个下行GAP间隙向第2组待校准的下行通道发送相应的下行时域校准序列,……在第X个下行GAP间隙向第X组待校准的下行通道发送相应的下行时域校准序列。
步骤S30、针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;
本步骤S30中所述下行综合时域校准序列中包含有收集的每个时域校 准序列信息。所述下行综合频域校准序列包含有与所述收集的每个时域校准序列对应的频域校准序列信息。本步骤将所述下行综合时域校准序列发送至下行校准通道是为了使下行校准通道对所述下行综合时域校准序列进行相关处理,其中所述下行校准通道对下行综合时域校准序列进行处理采用的是现有方式,在此不再赘述。
步骤S40、根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准。
本实施例中,在所有的下行时域校准序列均发送到相应的下行通道,且所有的下行综合频域校准序列均已缓存后,根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,即从每个下行综合频域校准序列提取相应的下行频域校准序列,然后根据每个下行频域校准序列计算对应的下行通道的补偿值。例如所有待校准的下行通道为J个,缓存有2个下行综合频域校准序列,其中第1个下行综合频域校准序列包含有第1至第I个下行通道对应的下行频域校准序列,第2个下行综合频域校准序列包含有第I+1至第J个下行通道对应的下行频域校准序列,则从第1个下行综合频域校准序列中提取第1至第I个下行通道对应的下行频域校准序列,从第2个下行综合频域校准序列提取第I+1至第J个下行通道对应的下行频域校准序列,然后根据提取的每个下行频域校准序列,计算对应的下行通道(第1至第J个下行通道)的补偿值。
本实施例中,所述根据预设策略将待校准的下行通道分为多组较佳地可以采用两种方式,其中第一种为:根据预算策略将待校准的N个下行通道分为N/M组,每组包括M个下行通道。采用这种方式完成对N个下行通道的在线校准时间只需N/M*HTDD帧,其中HTDD帧代表一个TDD帧时间,相对单次单天线下行通道在线校准,校准时间缩短了M倍。由于对每个下行通道的补偿值计算均以下行参考通道的幅度和相位作为参考基 准,下行参考通道的时变特性会引入误差,在下行参考通道的时变特性不是很剧烈时,误差较小,可以采用这种方式。第二种为:根据预算策略将待校准的N个下行通道分为N/M+1组,每组包括M个下行通道,每组包括一个下行参考通道。采用这种方式完成对N个下行通道的在线校准时间只需(N/M+1)*HTDD帧,其中HTDD帧代表一个TDD帧时间,相比第一种方式多用了一个TDD帧时间,但相对单次单天线下行通道在线校准,大大地缩短了校准时间;但由于每组均包含下行参考通道,相比第一种方式可以最大限度地消除下行参考通道的时变特性带来的误差,大大地提高了下行通道的校准精度。
上述实施例所提供的智能天线下行通道校准的方法,通过根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准的方式,在不影响下行通道的正常工作前提下,相比单次单天线下行通道校准,大大缩短了智能天线下行通道的校准时间,提高了智能天线下行通道的校准效率。
此外,本发明实施例还提供一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上文所述的操作。
本发明实施例还提供一种智能天线下行通道校准的***。参照图2,图 2为本发明的智能天线下行通道校准的***一实施例的功能模块示意图。在该实施例中,所述***100包括:下行校准序列分配模块110、下行校准序列发送模块120、下行校准序列处理模块130、下行通道校准模块140。其中,
所述下行校准序列分配模块110,配置为根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;
所述下行校准序列发送模块120,配置为在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;
所述下行校准序列处理模块130,配置为针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;
所述下行通道校准模块140,配置为根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准。
本实施例中下行校准序列分配模块110在接收到用户输入的下行校准指令,首先会计算待校准的下行通道的个数,然后根据待校准的下行通道的个数分配相应个数的下行时域校准序列。
本实施例中,同一所述下行GAP间隙发送的每个下行时域校准序列携带有区别本下行GAP间隙发送的其他下行时域校准序列的下行通道标识,以使根据该下行通道标识即可知晓该下行时域校准序列对应哪个下行通道。其中本实施例可以为同一下行GAP间隙发送的下行时域校准序列分配 不同相位,以相位作为区别同一下行GAP间隙发送的其他下行时域校准序列的下行通道标识,例如同一下行GAP间隙发送的相邻的下行时域校准序列依次相差2π/M的相位。
本实施例中,为了缩短对所有待校准的下行通道的校准时间以及不影响待校准的下行通道正常运行TDD业务,通过下行校准序列发送模块120在后续的下行GAP间隙期间向下行通道发送相应的下行时域校准序列,且在一个下行GAP间隙期间同时向多个待校准的下行通道发送相应的下行时域校准序列。当待校准的下行通道数量过多,不适宜在同一个下行GAP间隙向所有待校准的下行通道发送相应的下行时域校准序列时,需要对待校准的下行通道进行分组,将所有待校准的下行通道对应的下行校准序列通过多个下行GAP间隙发送,每个下行GAP间隙发送一组下行通道对应的下行校准序列。即当待校准的下行通道数量过大,还需根据预设策略将待校准的下行通道分为多组。参见图3,图3为本发明的智能天线下行通道校准的***另一实施例的功能模块示意图。所述的智能天线下行通道校准的***100还包括:下行通道分组模块150。
所述下行通道分组模块150,配置为根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道。所述后续每个下行GAP间隙期间所获取的多个下行时域校准序列为所述多组下行通道中的一组下行通道对应的下行时域校准序列。即对待校准的下行通道进行分组后,则在后续的每个下行GAP间隙期间从所述多组下行通道对应的下行时域校准序列中选择一组下行通道的对应的下行时域校准序列,然后发送至相应的下行通道中,直至所有的下行时域校准序列发送完毕。所述多组下行通道中每组包括的下行通道个数可以相同也可以不同。
例如:待校准的下行通道为多个,在一个下行GAP间隙无法实现向所有待校准的下行通道同时发送相应的下行时域校准序列,则可以根据预设 策略将所述多个下行通道分为X组,每组包括多个下行通道,然后在接收下行校准指令之后X个下行GAP间隙发送相应的下行时域校准序列,如在接收下行校准指令之后的第1个下行GAP间隙向第1组待校准的下行通道发送相应的下行时域校准序列、在第2个下行GAP间隙向第2组待校准的下行通道发送相应的下行时域校准序列,……在第X个下行GAP间隙向第X组待校准的下行通道发送相应的下行时域校准序列。
本实施例中所述下行综合时域校准序列中包含有收集的每个时域校准序列信息。所述下行综合频域校准序列包含有与所述收集的每个时域校准序列对应的频域校准序列信息。本实施例将所述下行综合时域校准序列发送至下行校准通道是为了使下行校准通道对所述下行综合时域校准序列进行相关处理,其中所述下行校准通道对下行综合时域校准序列进行处理采用的是现有方式,在此不再赘述。
本实施例中下行通道校准模块140在所有的下行时域校准序列均发送到相应的下行通道,且所有的下行综合频域校准序列均已缓存后,根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,即从每个下行综合频域校准序列提取相应的下行频域校准序列,然后根据每个下行频域校准序列计算对应的下行通道的补偿值。例如所有待校准的下行通道为J个,缓存有2个下行综合频域校准序列,其中第1个下行综合频域校准序列包含有第1至第I个下行通道对应的下行频域校准序列,第2个下行综合频域校准序列包含有第I+1至第J个下行通道对应的下行频域校准序列,则从第1个下行综合频域校准序列中提取第1至第I个下行通道对应的下行频域校准序列,从第2个下行综合频域校准序列提取第I+1至第J个下行通道对应的下行频域校准序列,然后根据提取的每个下行频域校准序列,计算对应的下行通道(第1至第J个下行通道)的补偿值。
本实施例中,所述下行通道分组模块150根据预设策略将待校准的下 行通道分为多组较佳地可以采用两种方式,其中第一种为:根据预算策略将待校准的N个下行通道分为N/M组,每组包括M个下行通道。采用这种方式完成对N个下行通道的在线校准时间只需N/M*HTDD帧,其中HTDD帧代表一个TDD帧时间,相对单次单天线下行通道在线校准,校准时间缩短了M倍。由于对每个下行通道的补偿值计算均以下行参考通道的幅度和相位作为参考基准,下行参考通道的时变特性会引入误差,在下行参考通道的时变特性不是很剧烈时,误差较小,可以采用这种方式。第二种为:根据预算策略将待校准的N个下行通道分为N/M+1组,每组包括M个下行通道,每组包括一个下行参考通道。采用这种方式完成对N个下行通道的在线校准时间只需(N/M+1)*HTDD帧,其中HTDD帧代表一个TDD帧时间,相比第一种方式多用了一个TDD帧时间,但相对单次单天线下行通道在线校准,大大地缩短了校准时间。但由于每组均包含下行参考通道,相比第一种方式可以最大限度地消除下行参考通道的时变特性带来的误差,大大地提高了下行通道的校准精度。
上述实施例所提供的智能天线下行通道校准的***,通过根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至所述分配的所有下行时域校准序列发送完毕;针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准的方式,在 不影响下行通道的正常工作前提下,相比单次单天线下行通道校准,大大缩短了智能天线下行通道的校准时间,提高了智能天线下行通道的校准效率。
本发明实施例另提供一种智能天线上行通道校准的方法。参照图4,图4为本发明的智能天线上行通道校准的方法一实施例的流程示意图。在该实施例中,所述方法包括:
步骤S101、根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送上行时域校准序列;
本实施例中在接收到用户输入的上行校准指令后,会在后续的一个GAP间隙获取一个上行时域校准序列,并将该上行时域校准序列发送至上行校准通道,以使上行校准通道对实施上行时域校准序列进行相关处理,本实施例中所述上行校准通道采用现有的方式对上行时域校准序列进行处理,在此不再赘述。
步骤S102、在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;
本步骤S102中生成的K个上行时域校准序列相同,无需进行区分。
步骤S103、将经过每个上行通道的上行时域校准序列转换为相应的上行频域校准序列;
本实施例中由于每个上行通道当前的幅度、相位不同,因此相同的上行时域校准序列经过每个上行通道之后都会发生变化,经过不同的上行通道发生的变化可能相同也可能不同,因此经过每个上行通道的上行时域校准序列可能相同也可能不同。
步骤S104、根据每个上行通道的上行频域校准序列计算相应的上行通 道的补偿值,根据所述补偿值对每个上行通道进行在线校准。
本步骤S104根据每个上行通道的上行频域校准序列可计算出每个上行通道的幅度、相位的变化量,从而可以计算出每个上行通道的补偿值。
上述实施例所提供的智能天线上行通道校准的方法,通过根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送上行时域校准序列;在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;将经过每个上行通道的上行时域校准序列转换为相应的上行频域校准序列;根据每个上行通道的上行频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准的方式,在不影响上行通道的正常工作前提下,相比单次单天线上行通道校准,大大缩短了智能天线上行通道的校准时间,提高了智能天线上行通道的校准效率。
此外,本发明实施例还提供一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行所述智能天线上行通道校准的方法。
本发明实施例还提供一种智能天线上行通道校准的***。参照图5,图5为本发明的智能天线上行通道校准的***一实施例的功能模块示意图。在该实施例中,所述智能天线上行通道校准***200包括:上行校准序列发送模块210、上行校准序列处理模块220、上行校准序列转换模块230、上行通道校准模块240。其中,
所述上行校准序列发送模块210,配置为根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送时域校准序列;
所述上行校准序列处理模块220,配置为在所述GAP间隙期间,获取 经过上行校准通道的时域校准序列,根据待校准的上行通道的个数K对所述时域校准序列进行一分多耦合处理,生成K个时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;
所述上行校准序列转换模块230,配置为将经过每个上行通道的时域校准序列转换为相应的频域校准序列;
所述上行通道校准模块240,配置为根据每个上行通道的频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准。
本实施例中在接收到用户输入的上行校准指令后,会在后续的一个GAP间隙获取一个上行时域校准序列,并将该上行时域校准序列发送至上行校准通道,以使上行校准通道对实施上行时域校准序列进行相关处理,本实施例中所述上行校准通道采用现有的方式对上行时域校准序列进行处理,在此不再赘述。
本实施例中所述生成的N个上行时域校准序列相同,无需进行区分。由于每个上行通道当前的幅度、相位不同,因此相同的上行时域校准序列经过每个上行通道之后都会发生变化,经过不同的上行通道发生的变化可能相同也可能不同,因此经过每个上行通道的上行时域校准序列可能相同也可能不同。
本实施例中所述上行通道校准模块240根据每个上行通道的上行频域校准序列可计算出每个上行通道的幅度、相位的变化量,从而可以计算出每个上行通道的补偿值。
上述实施例所提供的智能天线上行通道校准的***,通过根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送上行时域校准序列;在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合 处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;将经过每个上行通道的上行时域校准序列转换为相应的上行频域校准序列;根据每个上行通道的上行频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准的方式,在不影响上行通道的正常工作前提下,相比单次单天线上行通道校准,大大缩短了智能天线上行通道的校准时间,提高了智能天线上行通道的校准效率。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (14)

  1. 一种智能天线下行通道校准的方法,该方法包括:
    根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;
    在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;
    针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;
    根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准。
  2. 根据权利要求1所述的智能天线下行通道校准的方法,其中,所述根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列之后,该方法还包括:
    根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道;
    所述后续每个下行GAP间隙期间所获取的多个下行时域校准序列为:所述多组下行通道中的一组下行通道对应的下行时域校准序列。
  3. 根据权利要求2所述的智能天线下行通道校准的方法,其中,所述根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道为:
    根据预算策略将待校准的N个下行通道分为N/M组,每组包括M个下行通道。
  4. 根据权利要求2所述的智能天线下行通道校准的方法,其中,所述 根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道为:
    根据预设策略将待校准的N个下行通道分为N/M+1组,每组包括M个下行通道,每组包括一个下行参考通道。
  5. 根据权利要求1至4任一项所述的智能天线下行通道校准的方法,其中,同一所述下行GAP间隙发送的每个下行时域校准序列携带有区别本下行GAP间隙发送的其他下行时域校准序列的下行通道标识。
  6. 一种智能天线下行通道校准的***,该***包括:
    下行校准序列分配模块,配置为根据下行校准指令,为每个待校准的下行通道分配相应的下行时域校准序列;
    下行校准序列发送模块,配置为在后续每个下行GAP间隙期间,同时获取多个待校准的下行通道对应的下行时域校准序列,将所获取的每个下行时域校准序列发送至对应的下行通道,直至分配的所有下行时域校准序列发送完毕;
    下行校准序列处理模块,配置为针对所述每个下行GAP间隙,实时收集经过每个下行通道的下行时域校准序列;对收集的所述下行时域校准序列进行耦合处理,生成下行综合时域校准序列;将所述下行综合时域校准序列发送至下行校准通道;将经过下行校准通道的下行综合时域校准序列转换为下行综合频域校准序列,并缓存所述下行综合频域校准序列;
    下行通道校准模块,配置为根据缓存的所有下行综合频域校准序列计算待校准的下行通道的补偿值,根据所述补偿值对每个待校准的下行通道进行在线校准。
  7. 根据权利要求6所述的智能天线下行通道校准的***,其中,该***还包括:
    下行通道分组模块,配置为根据预设策略将待校准的下行通道分为多组,每组包括多个下行通道;
    所述后续每个下行GAP间隙期间所获取的多个下行时域校准序列为:所述多组下行通道中的一组下行通道对应的下行时域校准序列。
  8. 根据权利要求7所述的智能天线下行通道校准的***,其中,
    所述下行通道分组模块,配置为根据预算策略将待校准的N个下行通道分为N/M组,每组包括M个下行通道。
  9. 根据权利要求7智能天线下行通道校准所述的智能天线下行通道校准的***,其中,
    所述下行通道分组模块,还配置为根据预设策略将待校准的N个下行通道分为N/M+1组,每组包括M个下行通道,每组包括一个下行参考通道。
  10. 根据权利要求6至9任一项所述的智能天线下行通道校准的***,其中,同一所述下行GAP间隙发送的每个下行时域校准序列携带有区别本下行GAP间隙发送的其他下行时域校准序列的下行通道标识。
  11. 一种智能天线上行通道校准的方法,该方法包括:
    根据上行校准指令,在后续的一个GAP间隙期间向上行校准通道发送上行时域校准序列;
    在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;
    将经过每个上行通道的上行时域校准序列转换为相应的上行频域校准序列;
    根据每个上行通道的上行频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准。
  12. 一种智能天线上行通道校准的***,该***包括:
    上行校准序列发送模块,配置为根据上行校准指令,在后续的一个GAP 间隙期间向上行校准通道发送时域校准序列;
    上行校准序列处理模块,配置为在所述GAP间隙期间,获取经过上行校准通道的上行时域校准序列,根据待校准的上行通道的个数K对所述上行时域校准序列进行一分多耦合处理,生成K个上行时域校准序列,向K个待校准的上行通道分别发送1个所述上行时域校准序列;
    上行校准序列转换模块,配置为将经过每个上行通道的时域校准序列转换为相应的频域校准序列;
    上行通道校准模块,配置为根据每个上行通道的频域校准序列计算相应的上行通道的补偿值,根据所述补偿值对每个上行通道进行在线校准。
  13. 一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行权利要求1-5所述的操作。
  14. 一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行权利要求11所述的操作。
PCT/CN2015/086953 2015-03-11 2015-08-14 智能天线下行、上行通道校准的方法和***、存储介质 WO2016141674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15884354.0A EP3291455B1 (en) 2015-03-11 2015-08-14 Method and system for calibrating downlink and uplink channels of smart antenna, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510106339.4 2015-03-11
CN201510106339.4A CN106033984B (zh) 2015-03-11 2015-03-11 智能天线下行通道、上行通道校准的方法和***

Publications (1)

Publication Number Publication Date
WO2016141674A1 true WO2016141674A1 (zh) 2016-09-15

Family

ID=56879955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086953 WO2016141674A1 (zh) 2015-03-11 2015-08-14 智能天线下行、上行通道校准的方法和***、存储介质

Country Status (3)

Country Link
EP (1) EP3291455B1 (zh)
CN (1) CN106033984B (zh)
WO (1) WO2016141674A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936522B (zh) * 2017-02-13 2020-08-28 京信通信***(中国)有限公司 一种智能天线通道校准方法及校准装置
CN113055058B (zh) * 2019-12-27 2023-09-08 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111864A1 (zh) * 2009-04-03 2010-10-07 中兴通讯股份有限公司 天线校准方法和***
CN102014094A (zh) * 2009-09-07 2011-04-13 大唐移动通信设备有限公司 智能天线发射通道及接收通道的校准方法及相关装置
CN102195695A (zh) * 2010-03-02 2011-09-21 电信科学技术研究院 天线校准的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170450C (zh) * 2002-09-13 2004-10-06 大唐移动通信设备有限公司 对智能天线阵进行实时校准的方法
CN102497223B (zh) * 2011-12-05 2014-01-15 北京北方烽火科技有限公司 一种td-lte天线阵列校准方法与装置
CN103166881B (zh) * 2011-12-16 2015-09-30 鼎桥通信技术有限公司 智能天线校准方法及***
CN102571668B (zh) * 2012-01-06 2014-09-03 合肥东芯通信股份有限公司 一种lte***中的相位补偿方法和***
WO2014205740A1 (zh) * 2013-06-27 2014-12-31 华为技术有限公司 基于天馈***的通道校准方法、装置及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111864A1 (zh) * 2009-04-03 2010-10-07 中兴通讯股份有限公司 天线校准方法和***
CN102014094A (zh) * 2009-09-07 2011-04-13 大唐移动通信设备有限公司 智能天线发射通道及接收通道的校准方法及相关装置
CN102195695A (zh) * 2010-03-02 2011-09-21 电信科学技术研究院 天线校准的方法及装置

Also Published As

Publication number Publication date
EP3291455B1 (en) 2019-11-06
CN106033984B (zh) 2020-12-18
CN106033984A (zh) 2016-10-19
EP3291455A4 (en) 2018-11-07
EP3291455A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
CN104202130B (zh) 使用基础码本和差分码本的波束成形
TWI580210B (zh) Method, system and equipment for channel status information measurement
US20170105223A1 (en) Interference coordination method and apparatus and communication system
EP2900008B1 (en) Method, base station and access point for configuring channel state information reference signal
CN103391126B (zh) 一种子带信道信息的周期反馈方法、装置及***
WO2012021018A3 (ko) 뮤팅 정보 전송 장치 및 방법과, 그를 이용한 채널 상태 획득 장치 및 방법
TW201534072A (zh) 通道狀態資訊測量方法以及裝置
CN106559365A (zh) 自干扰消除方法和设备
MX2019007896A (es) Metodo, aparato y sistema de seleccion de haz.
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
WO2016119596A1 (zh) 一种导频信号的发送、接收处理方法及装置
WO2016141674A1 (zh) 智能天线下行、上行通道校准的方法和***、存储介质
CN106712863B (zh) 用于蓝牙发射功率校准的方法及装置
CN104330778B (zh) 对有源相控阵雷达进行多通道校正的方法
CN105763269A (zh) 用于校准天线的方法、校准信号处理装置和***
CN107529691B (zh) 一种无线通信中的方法和装置
CN104796988B (zh) 一种资源分配方法及装置
CN105450433A (zh) 高速串行总线参数的配置方法、装置和***
MX2021001138A (es) Metodo para determinar informacion de control de enlace ascendente y dispositivo de comunicaciones.
WO2021083351A1 (zh) 一种信号处理的方法和相关装置
CN104951368A (zh) 资源动态分配装置和方法
WO2022206305A1 (zh) 增强的csi-rs传输、发送反馈信息的方法、装置、设备及介质
WO2018059482A1 (zh) 信道状态测量方法、发送方法、移动台以及基站
WO2012021047A3 (ko) 뮤팅 정보 전송 장치 및 방법과, 그를 이용한 채널 상태 획득 장치 및 방법
WO2016023410A1 (zh) 下行信道预编码方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015884354

Country of ref document: EP