WO2016140458A1 - 개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법 - Google Patents

개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법 Download PDF

Info

Publication number
WO2016140458A1
WO2016140458A1 PCT/KR2016/001787 KR2016001787W WO2016140458A1 WO 2016140458 A1 WO2016140458 A1 WO 2016140458A1 KR 2016001787 W KR2016001787 W KR 2016001787W WO 2016140458 A1 WO2016140458 A1 WO 2016140458A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
improved portable
support rod
rod
prism
Prior art date
Application number
PCT/KR2016/001787
Other languages
English (en)
French (fr)
Inventor
이덕구
Original Assignee
주식회사 디컨스이엔지
이덕구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디컨스이엔지, 이덕구 filed Critical 주식회사 디컨스이엔지
Priority to JP2017562949A priority Critical patent/JP6431995B2/ja
Priority to CN201680010639.5A priority patent/CN107430000A/zh
Priority to US15/552,101 priority patent/US10514464B2/en
Publication of WO2016140458A1 publication Critical patent/WO2016140458A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • G01C1/02Theodolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • G01C15/08Plumbing or registering staffs or markers over ground marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention is to quickly and accurately survey the exact location in the construction and civil engineering site, easy to transport and storage in a simple structure and volume, and the unskilled workers can be mechanically accurate surveying in the construction site improved quality and economical efficiency
  • the present invention relates to a prism receiver, an improved portable GPS receiver, and a surveying method using the same.
  • FIGS. 1 and 2 are photographs taken of a conventional surveying method using a light wave and a survey pole
  • Figure 3 is a photograph taken a surveying method using a conventional GPS instrument.
  • the survey pole 1100 is installed at the point to be observed and the circular bubble is leveled using the tripod and the forceps attached to the top of the tripod, and the reference point (CP) coordinate is generated by measuring the azimuth and distance with an optical wave.
  • the reference level 1200 and the survey pole 1100 are installed at a point to be observed to generate reference point coordinates.
  • the precision is high, but after centering the center of the leveling point (CP) and the leveling level, use the legs of the tripod (1300) to level the leveling level using the legs of the tripod to minimize the movement of the leveling center.
  • the surveying speed is fast, but after setting up the pole at the point to be observed and using a tripod to fix the pole and the tongs attached to the top of the tripod, the bubble is attached to the pole. Create a reference point coordinate on the screen. At this time, the error of the height difference between the prism and the ground, the error caused by the proficiency of the surveying survey, and the error of the viewing angle of the circular bubble attached to the pole are generated.
  • GPS receiver's information on the point to be observed (center line, boundary line, etc.) on the controller (distance, direction, arrow) to view the pole with the GPS receiver attached to the top. Move nearby to fit.
  • the present invention is proposed to solve the conventional problems as described above.
  • the present invention is to quickly and accurately survey the exact location in the construction and civil engineering site, easy to transport and storage in a simple structure and volume, and even unskilled workers in the construction site can be precise surveying including mechanical center and leveling, quality and economical efficiency
  • An improved portable prism receiver and an improved portable GPS receiver and a surveying method using the same are provided.
  • the present invention provides a receiver 62 for receiving a signal from the optical wave receiver 1000;
  • a support rod (63) attached to a lower portion of the receiver (62) and having a tapered shape with a protruding rod (64) exposed on an outer circumferential surface thereof;
  • a support rod fixing rod 68 formed with a through hole through which the support rod 63 passes, and a slot 69 through which the protruding rod 64 moves up and down;
  • a support plate 67 attached to a lower portion of the support rod holder 68;
  • a plurality of position adjustment ports 65 installed at edges of the support plate 67 to enable vertical adjustment;
  • the receiver 62 receives a signal from the optical wave receiver 1000 in a state where the tip of the support rod 63 is in contact with the reference point CP,
  • the present invention is to quickly and accurately survey the exact location in the construction and civil engineering site, easy to transport and storage in a simple structure and volume, and even unskilled workers in the construction site can be precise surveying including mechanical center and leveling, quality and economical efficiency
  • the improved portable prism receiver and the improved portable GPS receiver and a surveying method using the same are provided.
  • 1 and 2 are photographs taken of a surveying method using a conventional light wave and a survey pole.
  • FIG. 3 is a photograph of a surveying method using a conventional GPS instrument.
  • FIG. 4 is an exploded perspective view of the improved portable prism receiver of the present invention.
  • FIG. 5 is an exploded perspective view of another embodiment of the improved portable prism receiver of the present invention.
  • FIG. 6 is a perspective view of the combination of FIG.
  • FIG. 7 is a perspective view of a measuring instrument used in the present invention.
  • FIG. 8 is an exploded perspective view of an improved portable GPS receiver of the present invention.
  • FIG. 9 is a perspective view of the combination of FIG.
  • 16 to 18 illustrate a surveying method using the improved portable GPS receiver of the present invention in order.
  • 20 to 21 are screenshots of the controller screen used in the survey method using the improved portable GPS receiver of the present invention.
  • the present invention includes a receiver 62 for receiving a signal from the optical wave receiver 1000;
  • a support rod (63) attached to a lower portion of the receiver (62) and having a tapered shape with a protruding rod (64) exposed on an outer circumferential surface thereof;
  • a support rod fixing rod 68 formed with a through hole through which the support rod 63 passes, and a slot 69 through which the protruding rod 64 moves up and down;
  • a support plate 67 attached to a lower portion of the support rod holder 68;
  • a plurality of position adjustment ports 65 installed at edges of the support plate 67 to enable vertical adjustment;
  • the receiver 62 receives a signal from the optical wave receiver 1000 in a state where the tip of the support rod 63 is in contact with the reference point CP,
  • FIG. 4 is an exploded perspective view of an improved portable prism receiver according to the present invention.
  • FIG. 5 is an exploded perspective view of another embodiment of the improved portable prism receiver of the present invention.
  • FIG. 6 is a perspective view of the combination of FIG.
  • the improved portable prism receiver 50 of the present invention includes a receiver 62 for receiving a signal from the optical wave receiver 1000;
  • a support rod (63) attached to a lower portion of the receiver (62) and having a tapered shape with a protruding rod (64) exposed on an outer circumferential surface thereof;
  • a support rod fixing rod 68 formed with a through hole through which the support rod 63 passes, and a slot 69 through which the protruding rod 64 moves up and down;
  • a support plate 67 attached to a lower portion of the support rod holder 68;
  • a plurality of position adjustment ports 65 installed at edges of the support plate 67 to enable vertical adjustment;
  • the receiver 62 receives a signal from the optical wave receiver 1000 in a state where the tip of the support rod 63 is in contact with the reference point CP,
  • a rotation means 70 capable of rotating the receiver 62 between the receiver 62 and the support rod 63.
  • the rotating means 70 may be composed of a bearing 74 and the receiving base 72, but may be a conventional means.
  • the rotating means 70 The rotating means 70;
  • the upper step portion 72 ⁇ and the lower step portion 74 ⁇ are respectively installed on the upper and lower portions of the support bar fixing portion 68 in which the slot 69 is omitted.
  • the support rod 63 can be rotated within the support rod holder 68, and the protruding rod 64 can be moved in a range in which it is caught by the upper end portion 72 ′ and the lower end portion 74 ′. Can be replaced.
  • FIG. 7 is a perspective view of a measuring instrument used in the present invention.
  • the present invention includes a measuring device (80) formed with a measuring rod (82) perpendicular to the slot (81), which is self-labeled on the surface and the tip of the supporting rod (63) can move.
  • the present invention includes a support plate 66 formed with a hole 66 ⁇ through which the tip of the support rod 63 passes;
  • the lower end of the position adjusting port 65 is not in direct contact with the ground, but in contact with the upper portion of the support plate 66, it is characterized in that the position adjustment is easy.
  • FIG. 8 is an exploded perspective view of an improved portable GPS receiver of the present invention.
  • FIG. 9 is a perspective view of the combination of FIG.
  • the improved portable GPS receiver 50 of the present invention includes a GPS receiver 51 for receiving a signal from a satellite (not shown);
  • a support rod 52 attached to a lower portion of the GPS receiver 51 and having a tapered shape and protruding rod 53 exposed on an outer circumferential surface thereof;
  • a support rod fixing unit 58 having a through hole through which the support rod 52 penetrates, and a slot 59 through which the protruding rod 53 moves up and down;
  • a support plate 57 attached to a lower portion of the support rod holder 58 and having a leveler 54 installed thereon;
  • a plurality of position adjustment ports 55 installed at corners of the support plate 57 to enable vertical position adjustment;
  • the GPS receiver 51 receives a signal from the satellite while the tip of the support rod 52 is in contact with the reference point CP,
  • a self-marked on the surface and the measuring device 80 is formed with a measuring rod 82 perpendicular to the slot 81, the tip of the support rod 52 can move; includes,
  • a support plate 56 having a hole 56 ⁇ through which a tip of the support rod 52 penetrates;
  • the lower end of the position adjustment port 55 is not in direct contact with the ground, but rather in contact with the upper portion of the support plate 56, characterized in that the position adjustment is easy.
  • Surveying method using the improved portable prism receiver of the present invention is to use the improved portable prism receiver 60,
  • the improved portable prism receiving obtained by rotating the measuring rod 82 toward the optical wave 1000 to align the gauge 80 with the collimation line VL and the tip of the supporting rod 63 to move the slot 81. And move along the ruler by the distance difference between the distance of the device 60 and the viewpoint P1.
  • the error range is preferably about + 15cm.
  • the measuring rod 82 is rotated toward the optical wave receiver 1000 so that the measuring instrument 80 is aligned with the collimation line VL, and the slot 81 is moved by the tip of the supporting rod 63.
  • the tip of the support rod 63 is positioned at the vicinity indicated by the zero point of the 30 cm ruler. It is preferable to move it based on the zero point of the ruler.
  • 20 to 21 are screenshots of the controller screen used in the survey method using the improved portable GPS receiver of the present invention.
  • Surveying method using the improved portable GPS receiver of the present invention is to use the improved portable GPS receiver 50,
  • the error range is preferably about + 15cm.
  • the present invention is to quickly and accurately survey the exact location in the construction and civil engineering site, easy to transport and storage in a simple structure and volume, and the unskilled workers can be mechanically accurate surveying in the construction site improved quality and economical efficiency
  • the present invention relates to a prism receiver, an improved portable GPS receiver, and a surveying method using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

본 발명은 건축공사 및 토목공사 현장에서 정확한 위치를 빠르게 측량하기 위한 것으로, 간단한 구조와 부피로 운반 및 보관이 간편하고 시공현장에서 미숙련공도 기계적으로 정확한 측량할 수 있어 품질 및 경제성이 향상되는 개량형 포터블 프리즘 수신장치와 개량형 포터블 GPS 수신장치 그리고 이를 이용한 측량방법에 관한 것이다.

Description

개량형 포터블 프리즘 수신장치와 개량형 포터블 GPS 수신장치 그리고 이를 이용한 측량방법
본 발명은 건축공사 및 토목공사 현장에서 정확한 위치를 빠르게 측량하기 위한 것으로, 간단한 구조와 부피로 운반 및 보관이 간편하고 시공현장에서 미숙련공도 기계적으로 정확한 측량할 수 있어 품질 및 경제성이 향상되는 개량형 포터블 프리즘 수신장치와 개량형 포터블 GPS 수신장치 그리고 이를 이용한 측량방법에 관한 것이다.
도 1 및 2는 종래의 광파기 및 측량폴을 이용한 측량방법을 촬영한 사진이고, 도 3은 종래의 GPS측량기를 이용한 측량방법을 촬영한 사진이다.
일반적으로 토목현장에서 측량은 후술하는 바와 같이, 광파기(1000)와 GPS수신기(51)를 이용하여 측량한다.
1. 광파기를 이용한 측량 방법
상기 광파기를 이용한 측량 방법은,
(1) 광파기(1000)를 설치할 기계점인 지상의 좌표점(기준점, CP)에 광파기(1000)의 중심점을 일치시키는 구심단계;
(2) 광파기의 수평을 맞추는 정준단계;
(3) 후시점을 시준하여 방위각을 설정하는 표정단계;
(4) 새로운 기준점(C.P)을 생성하기 위하여 임의의 점에 측량용 말뚝을 설치하는 단계;
(5) 프리즘과 원형기포(수준기)가 결합된 측량폴(1100)을 측량용 말뚝의 중심점에 삼각대와 삼각대에 부착된 집게를 이용하여 원형기포의 수평을 맞추는 단계;
(6) 광파기(1000)를 이용하여 방위각과 거리값을 생성하는 단계;
(7) 방위각과 거리값을 이용하여 기준점(CP)좌표를 생성하는 단계;로 이루어지며,
관측포인트(도로의 중심선, 경계석 선형, 맨홀의 중심등)측설은,
(1) 기계점에 광파기를 설치하고 관측포인트의 방위각을 설정하는 단계;
(2) 설정된 방위각으로 시준된 선에 측량폴의 중심을 맟추는 단계;
(3) 기포를 이용하여 정준하는 단계;
(4) 광파기를 이용하여 거리값을 구하는 단계;
(5) 반복적으로 거리값의 결과에 따라 시준선의 방향으로 측량폴을 반복적으로 앞뒤로 조정하여 맞추는 단계;로 이루어진다.
2. GPS측량기를 이용한 측량방법
상기 GPS측량기를 이용한 측량방법은,
(1) GPS수신기(51)를 측량폴(1100)에 결합하는 단계;
(2) 기준점(CP)을 생성하기 위하여 임의의 점에 측량용 말뚝을 설치하는 단계;
(3) 측량용 말뚝의 중심점에 GPS수신기(51)가 부착된 측량폴(1100)을 설치하는 단계;
(4) 삼각대와 삼각대에 부착된 집게를 이용하여 측량폴(1100)에 부착된 원형기포(수준기)의 수평을 맞추는 단계;
(5) GPS수신기로 좌표(기준점, CP)를 생성하는 단계;로 이루어지며,
관측할 포인트 측설은,
(1) 컨트롤러 화면에서 관측할 포인트(도로의 중심선, 경계석 선형등)선택하는 단계;
(2) 컨트롤러 화면에 목표점과의 거리 및 화살표 방향으로 이동하여 목표점에 근접하는 단계;
(3) GPS측량기를 정준하는 단계;
(4) GPS측량기를 반복적으로 화살표 방향인 목표점에 이동하여 관측 포인트를 결정하는 단계;로 이루어진다.
그러나 상기와 같은 방식의 측량은 다음과 같은 문제점이 있다.
기준점(CP)을 광파기(1000)로 측량하는 상기 종래방법은,
측량폴(1100)을 관측할 포인트에 설치하고 삼각대와 삼각대 상부에 부착된 집게를 이용하여 원형기포를 정준한 후 광파기로 방위각과 거리를 측정하여 기준점(CP)좌표를 생성한다.
이때 측량폴의 높이로 인하여 지면과 프리즘의 거리에 따른 오차와 보조측량사가 집게를 이용하여 원형기포를 정준하는 단계에서 생기는 인위적인 오차가 발생하며,
관측할 포인트 측정은 광파기로 관측할 포인트의 방위각을 시준하고 측량폴의 중심을 좌우로 이동하여 시준선에 정확히 일치시킨 후 관측한 거리값과 관측포인트의 거리값과의 차이값을 시준선을 따라 앞뒤로 이동하여 관측할 포인트(도로의 중심선, 경계석 선형등)를 맞추나,
관측점의 방위각과 거리가 고정되어 위 과정을 계속적으로 반복하여 측량하므로 측량시간이 많이 소요됨은 물론 프리즘과 지면과의 높이차에 대한 오차와 측량보조사의 숙련도에 따라서 생기는 오차 그리고 폴에 부착된 원형기포의 감도로 인한 오차 등으로 정확한 관측점을 찾기가 불가능하다.
기준점(CP)을 GPS수신기를 이용하여 측량하는 상기 종래방법은,
정준대(1200)와 측량폴(1100)을 관측할 포인트에 설치하여 기준점 좌표를 생성한다.
정준대를 이용할 시 정밀도는 높으나 지상의 기준점(CP)과 정준대의 중앙을 일치 시키는 구심 후, 구심의 이동을 최소화하기 위해 삼각대(1300)의 다리를 이용하여 정준대의 수평을 맞추고 이로 인하여 틀어진 구심을 삼각대(1300)와 정준대(1200)의 결합나사를 풀어 구심을 일치 시킨 후 정준대(1200)의 하부나사를 이용하여 정준하는 단계를 반복하여 맞추므로 측량 작업시간이 오래 소요된다.
GPS수신기가 부착된 폴을 사용할 시 측량속도는 빠르나, 관측할 포인트에 폴을 설치하고 폴을 고정할 수 있는 삼각대와 삼각대 상부에 부착된 집게를 이용하여 폴에 부착된 원형기포를 정준한 후 컨트롤러 화면에서 기준점좌표를 생성한다. 이때 프리즘과 지면과의 높이차에 대한오차와 측량보조사의 숙련도에 따라서 생기는 오차 그리고 폴에 부착된 원형기포의 보는 각도에 따른 오차 등이 생긴다.
GPS측량기를 이용한 관측할 포인트 측정은 GPS수신기를 콘트롤러에 나타난 관측할 포인트(도로의 중심선, 경계석 선형등)에 대한정보(거리, 방향, 화살표)를 이용하여 GPS수신기가 상부에 부착된 폴을 관측점 근처로 이동하여 맞춘다.
그러나 GPS수신기와 지면의 높이로 인한 오차로 인한 측량사의 숙련도에 따른 오차 등으로 정확한 관측 포인트를 측정하는 데는 기존의 측량장비(광파기, GPS측량기, 프리즘, 측량폴 등)로는 오차를 줄이는데 한계가 있다.
본 발명은 상기한 바와 같은 종래의 제반 문제점을 해소하기 위해서 제시되는 것이다.
본 발명은 건축공사 및 토목공사 현장에서 정확한 위치를 빠르게 측량하기 위한 것으로, 간단한 구조와 부피로 운반 및 보관이 간편하고 시공현장에서 미숙련공도 기계적으로 구심과 정준을 포함한 정확한 측량할 수 있어 품질 및 경제성이 향상되는 개량형 포터블 프리즘 수신장치와 개량형 포터블 GPS 수신장치 그리고 이를 이용한 측량방법을 제공하고자 한다.
상기한 기술적 과제를 해결하기 위해 본 발명은 광파기(1000)로부터 신호를 수신하는 수신부(62);
상기 수신부(62)에 부착된 수준기(61);
상기 수신부(62) 하부에 부착되고 선단은 테이퍼형상이며 외주면에 돌출봉(64)이 노출된 지지봉(63);
상기 지지봉(63)이 관통되는 통공이 형성되고 상기 돌출봉(64)이 상하이동하는 슬롯(69)이 형성된 지지봉고정대(68);
상기 지지봉고정대(68) 하부에 부착되는 받침판(67); 및,
상기 받침판(67) 모서리에 설치되어 상하 위치조절이 가능한 다수개의 위치조절구(65);
를 포함하여 구성되되,
상기 지지봉(63)의 선단을 기준점(CP)에 접촉한 상태에서 상기 수신부(62)가 상기 광파기(1000)로부터 신호를 수신하여,
상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치 및 이를 이용한 측량방법을 제공한다.
본 발명은 건축공사 및 토목공사 현장에서 정확한 위치를 빠르게 측량하기 위한 것으로, 간단한 구조와 부피로 운반 및 보관이 간편하고 시공현장에서 미숙련공도 기계적으로 구심과 정준을 포함한 정확한 측량할 수 있어 품질 및 경제성이 향상되는 개량형 포터블 프리즘 수신장치와 개량형 포터블 GPS 수신장치 그리고 이를 이용한 측량방법을 제공한다.
도 1 및 2는 종래의 광파기 및 측량폴을 이용한 측량방법을 촬영한 사진이다.
도 3은 종래의 GPS측량기를 이용한 측량방법을 촬영한 사진이다.
도 4는 본 발명의 개량형 포터블 프리즘 수신장치의 분해사시도이다.
도 5는 본 발명의 개량형 포터블 프리즘 수신장치의 다른 실시예의 분해사시도이다.
도 6은 도 4의 결합사시도이다.
도 7은 본 발명에 사용되는 계측자의 사시도이다.
도 8은 본 발명의 개량형 포터블 GPS 수신장치의 분해사시도이다.
도 9는 도 8의 결합사시도이다.
도 10 내지 14는 본 발명의 개량형 포터블 프리즘 수신장치를 이용한 측량방법을 순서대로 도시한 것이다.
도 15는 본 발명의 개량형 포터블 프리즘 수신장치를 이용한 측량방법으로 얻어진 결과를 도시한 것이다.
도 16 내지 18은 본 발명의 본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법을 순서대로 도시한 것이다.
도 19는 본 발명의 본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법으로 얻어진 결과를 도시한 것이다.
도 20 내지 21은 본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법에 사용되는 컨트롤러 화면을 캡쳐한 것이다.
본 발명은 광파기(1000)로부터 신호를 수신하는 수신부(62);
상기 수신부(62)에 부착된 수준기(61);
상기 수신부(62) 하부에 부착되고 선단은 테이퍼형상이며 외주면에 돌출봉(64)이 노출된 지지봉(63);
상기 지지봉(63)이 관통되는 통공이 형성되고 상기 돌출봉(64)이 상하이동하는 슬롯(69)이 형성된 지지봉고정대(68);
상기 지지봉고정대(68) 하부에 부착되는 받침판(67); 및,
상기 받침판(67) 모서리에 설치되어 상하 위치조절이 가능한 다수개의 위치조절구(65);
를 포함하여 구성되되,
상기 지지봉(63)의 선단을 기준점(CP)에 접촉한 상태에서 상기 수신부(62)가 상기 광파기(1000)로부터 신호를 수신하여,
상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치 및 이를 이용한 측량방법을 제공한다.
이하 첨부한 도면과 함께 상기와 같은 본 발명의 개념이 바람직하게 구현된 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.
1. 개량형 포터블 프리즘 수신장치
도 4는 본 발명의 개량형 포터블 프리즘 수신장치의 분해사시도이고,
도 5는 본 발명의 개량형 포터블 프리즘 수신장치의 다른 실시예의 분해사시도이며,
도 6은 도 4의 결합사시도이다.
본 발명의 개량형 포터블 프리즘 수신장치(50)는 광파기(1000)로부터 신호를 수신하는 수신부(62);
상기 수신부(62)에 부착된 수준기(61);
상기 수신부(62) 하부에 부착되고 선단은 테이퍼형상이며 외주면에 돌출봉(64)이 노출된 지지봉(63);
상기 지지봉(63)이 관통되는 통공이 형성되고 상기 돌출봉(64)이 상하이동하는 슬롯(69)이 형성된 지지봉고정대(68);
상기 지지봉고정대(68) 하부에 부착되는 받침판(67); 및,
상기 받침판(67) 모서리에 설치되어 상하 위치조절이 가능한 다수개의 위치조절구(65);
를 포함하여 구성되되,
상기 지지봉(63)의 선단을 기준점(CP)에 접촉한 상태에서 상기 수신부(62)가 상기 광파기(1000)로부터 신호를 수신하여,
상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 것을 특징으로 한다.
그리고 도 4에 도시된 바와 같이,
상기 수신부(62)와 상기 지지봉(63) 사이에는 상기 수신부(62)를 회전시킬 수 있는 회전수단(70);이 포함되는 것을 특징으로 한다.
상기 회전수단(70)은 베어링(74)과 수신부거치대(72) 등으로 구성될 수도 있으나 통상적인 수단도 가능하다.
또한 도 5에 도시된 바와 같이,
상기 회전수단(70);은,
상기 슬롯(69)이 생략된 지지봉고정대(68)의 상부와 하부에 각각 상부단턱부(72`) 및 하부단턱부(74`)가 설치되어,
상기 지지봉고정대(68) 내부에서 상기 지지봉(63)의 회전이 가능하고 상기 돌출봉(64)이 상기 상부단턱부(72`)과 상기 하부단턱부(74`)에 걸리는 범위에서 상하이동이 가능한 것으로 대체될 수 있다.
도 7은 본 발명에 사용되는 계측자의 사시도이다.
도 4 내지 7에 도시된 바와 같이,
본 발명은 표면에 자가 표기되고 상기 지지봉(63)의 선단이 이동할 수 있는 슬롯(81)과 수직으로 계측봉(82)이 형성된 계측자(80);가 포함되어,
상기 계측봉(82)을 상기 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 상기 자에 따라 정확한 계측장소로 이동할 수 있는 것을 특징으로 한다.
본 발명은 하부에 상기 지지봉(63)의 선단이 관통하는 구멍(66`)이 형성된 지지판(66);이 포함되어,
지면에 요철이 형성된 곳에서 상기 위치조절구(65)의 하단이 바로 상기 지면에 접촉하는 것이 아니라 상기 지지판(66) 상부에 접촉하므로 위치조절이 용이하게 하는 것을 특징으로 한다.
2. 개량형 포터블 GPS 수신장치
도 8은 본 발명의 개량형 포터블 GPS 수신장치의 분해사시도이고,
도 9는 도 8의 결합사시도이다.
본 발명의 개량형 포터블 GPS 수신장치(50)는 위성(미도시)으로부터 신호를 수신하는 GPS수신기(51);
상기 GPS수신기(51) 하부에 부착되고 선단은 테이퍼형상이며 외주면에 돌출봉(53)이 노출된 지지봉(52);
상기 지지봉(52)이 관통되는 통공이 형성되고 상기 돌출봉(53)이 상하이동하는 슬롯(59)이 형성된 지지봉고정대(58);
상기 지지봉고정대(58) 하부에 부착되며 상부에 수준기(54)가 설치된 받침판(57); 및,
상기 받침판(57) 모서리에 설치되어 상하 위치조절이 가능한 다수개의 위치조절구(55);
를 포함하여 구성되되,
상기 지지봉(52)의 선단을 기준점(CP)에 접촉한 상태에서 상기 GPS수신기(51)가 상기 위성으로부터 신호를 수신하여,
상기 수준기(54)로 수평을 유지하는 상태에서 상기 위치조절구(55)로 위치조절을 하는 것을 특징으로 한다.
그리고 표면에 자가 표기되고 상기 지지봉(52)의 선단이 이동할 수 있는 슬롯(81)과 수직으로 계측봉(82)이 형성된 계측자(80);가 포함되어,
상기 계측봉(82)을 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 상기 자에 따라 정확한 계측장소로 이동할 수 있는 것을 특징으로 한다.
또한,
하부에 상기 지지봉(52)의 선단이 관통하는 구멍(56`)이 형성된 지지판(56);이 포함되어,
지면에 요철이 형성된 곳에서 상기 위치조절구(55)의 하단이 바로 상기 지면에 접촉하는 것이 아니라 상기 지지판(56) 상부에 접촉하므로 위치조절이 용이하게 하는 것을 특징으로 한다.
3. 개량형 포터블 프리즘 수신장치를 이용한 측량방법
도 10 내지 14는 본 발명의 개량형 포터블 프리즘 수신장치를 이용한 측량방법을 순서대로 도시한 것이고,
도 15는 본 발명의 개량형 포터블 프리즘 수신장치를 이용한 측량방법으로 얻어진 결과를 도시한 것이다.
본 발명의 개량형 포터블 프리즘 수신장치를 이용한 측량방법은 상기 개량형 포터블 프리즘 수신장치(60)를 이용한 것으로,
(1) 기준점(CP)에 상기 개량형 포터블 프리즘 수신장치(60)의 상기 지지봉(63)의 선단을 위치시키는 포터블프리즘수신장치거치단계;
(2) 상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 정준단계;
(3) 상기 광파기(1000)로 상기 개량형 포터블 프리즘 수신장치(60)의 좌표를 획득하는 좌표획득단계;
(4) 계측할 방위각으로 상기 광파기(1000)를 새로이 시준하여 관측점(P1)이 위치할 관측시준선(VL`)을 설정하는 광파기시준단계;
(5) 상기 관측시준선(VL`) 상에 상기 개량형 포터블 프리즘 수신장치(60)의 상기 지지봉(63)의 선단을 위치시키는 포터블프리즘수신장치거치단계;
(6) 상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 정준단계;
(7) 상기 광파기(1000)로 상기 개량형 포터블 프리즘 수신장치(60)의 거리를 획득하는 거리획득단계;
(8) 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차를 구하고 상기 거리차에 맞추어 상기 관측시준선(VL`) 상에서 상기 관측점(P1)에 상기 개량형 포터블 프리즘 수신장치(60)를 소정의 오차범위로 근접시키는 관측점근접단계;
(9) 상기 광파기(1000)로 상기 개량형 포터블 프리즘 수신장치(60)의 거리를 획득하여 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차를 구하고 상기 거리차에 맞추어 상기 관측시준선(VL`) 상에서 상기 관측점(P1)에 상기 개량형 포터블 프리즘 수신장치(60)를 정확한 위치로 근접시키는 보정단계; 및,
(10) 상기 관측점(P1)을 지면에 표시하는 관측점표시단계;
를 포함하여 구성되되,
상기 (9) 보정단계;에서,
상기 계측봉(82)을 상기 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차만큼 상기 자를 따라 이동하는 것을 특징으로 한다.
상기 (8) 관측점근접단계;에서 상기 오차범위는 약 +15cm 정도가 바람직하다.
상기 (9) 보정단계;에서 상기 계측봉(82)을 상기 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차만큼 상기 자를 따라 이동시킬 때, 30cm자의 0점에 표시된 근처값에 위치하고 상기 지지봉(63)의 선단을 30cm자의 0점에 설치한 후 이를 기준으로 이동시키는 것이 바람직하다.
상술한 과정을 반복하여 얻어진 결과가 도 15이다.
4. 개량형 포터블 GPS 수신장치를 이용한 측량방법
도 16 내지 18은 본 발명의 본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법을 순서대로 도시한 것이고,
도 19는 본 발명의 본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법으로 얻어진 결과를 도시한 것이며,
도 20 내지 21은 본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법에 사용되는 컨트롤러 화면을 캡쳐한 것이다.
본 발명의 개량형 포터블 GPS 수신장치를 이용한 측량방법은 상기 개량형 포터블 GPS 수신장치(50)를 이용한 것으로,
(1) 기준점(CP)에 개량형 포터블 GPS 수신장치(50)의 상기 지지봉(63)의 선단을 위치시키는 포터블GPS수신장치거치단계;
(2) 상기 수준기(54)로 수평을 유지하는 상태에서 상기 위치조절구(55)로 위치조절을 하는 정준단계;
(3) 상기 개량형 포터블 GPS 수신장치(50)의 좌표를 컨트롤러로 획득하는 좌표획득단계;
(4) 상기 컨트롤러가 표시하는 새로운 관측점(P1)에 상기 개량형 포터블 GPS 수신장치(50)를 소정의 오차범위로 근접시키는 관측점근접단계;
(5) 상기 계측봉(82)을 상기 컨트롤러가 표시하는 화살표 방향으로 회전시키는 계측자정렬단계; 및,
(6) 상기 자를 이용하여 상기 슬롯(81) 상에서 상기 컨트롤러가 지시하는 정확한 관측점(P1)을 지면에 표시하는 관측점표시단계;
를 포함하여 구성되는 것을 특징으로 한다.
상기 (4) 관측점근접단계;에서 상기 오차범위는 약 +15cm 정도가 바람직하다.
상술한 과정을 반복하여 얻어진 결과가 도 19이다.
본 발명은 상기에서 언급한 바와 같이 바람직한 실시예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다.
따라서 본 발명의 청구범위는 이건 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.
본 발명은 건축공사 및 토목공사 현장에서 정확한 위치를 빠르게 측량하기 위한 것으로, 간단한 구조와 부피로 운반 및 보관이 간편하고 시공현장에서 미숙련공도 기계적으로 정확한 측량할 수 있어 품질 및 경제성이 향상되는 개량형 포터블 프리즘 수신장치와 개량형 포터블 GPS 수신장치 그리고 이를 이용한 측량방법에 관한 것이다.

Claims (10)

  1. 광파기(1000)로부터 신호를 수신하는 수신부(62);
    상기 수신부(62)에 부착된 수준기(61);
    상기 수신부(62) 하부에 부착되고 선단은 테이퍼형상이며 외주면에 돌출봉(64)이 노출된 지지봉(63);
    상기 지지봉(63)이 관통되는 통공이 형성되고 상기 돌출봉(64)이 상하이동하는 슬롯(69)이 형성된 지지봉고정대(68);
    상기 지지봉고정대(68) 하부에 부착되는 받침판(67); 및,
    상기 받침판(67) 모서리에 설치되어 상하 위치조절이 가능한 다수개의 위치조절구(65);
    를 포함하여 구성되되,
    상기 지지봉(63)의 선단을 기준점(CP)에 접촉한 상태에서 상기 수신부(62)가 상기 광파기(1000)로부터 신호를 수신하여,
    상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치(60).
  2. 제1항에서,
    상기 수신부(62)와 상기 지지봉(63) 사이에는 상기 수신부(62)를 회전시킬 수 있는 회전수단(70);이 포함되는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치(60).
  3. 제1항 또는 제2항에서,
    표면에 자가 표기되고 상기 지지봉(63)의 선단이 이동할 수 있는 슬롯(81)과 수직으로 계측봉(82)이 형성된 계측자(80);가 포함되어,
    상기 계측봉(82)을 상기 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 상기 자에 따라 정확한 계측장소로 이동할 수 있는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치(60).
  4. 제1항 또는 제2항에서,
    하부에 상기 지지봉(63)의 선단이 관통하는 구멍(66`)이 형성된 지지판(66);이 포함되어,
    지면에 요철이 형성된 곳에서 상기 위치조절구(65)의 하단이 바로 상기 지면에 접촉하는 것이 아니라 상기 지지판(66) 상부에 접촉하므로 위치조절이 용이하게 하는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치(60).
  5. 제2항에서,
    상기 회전수단(70);은,
    상기 슬롯(69)이 생략된 지지봉고정대(68)의 상부와 하부에 각각 상부단턱부(72`) 및 하부단턱부(74`)가 설치되어,
    상기 지지봉고정대(68) 내부에서 상기 지지봉(63)의 회전이 가능하고 상기 돌출봉(64)이 상기 상부단턱부(72`)과 상기 하부단턱부(74`)에 걸리는 범위에서 상하이동이 가능한 것으로 대체되는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치(60).
  6. 위성(미도시)으로부터 신호를 수신하는 GPS수신기(51);
    상기 GPS수신기(51) 하부에 부착되고 선단은 테이퍼형상이며 외주면에 돌출봉(53)이 노출된 지지봉(52);
    상기 지지봉(52)이 관통되는 통공이 형성되고 상기 돌출봉(53)이 상하이동하는 슬롯(59)이 형성된 지지봉고정대(58);
    상기 지지봉고정대(58) 하부에 부착되며 상부에 수준기(54)가 설치된 받침판(57); 및,
    상기 받침판(57) 모서리에 설치되어 상하 위치조절이 가능한 다수개의 위치조절구(55);
    를 포함하여 구성되되,
    상기 지지봉(52)의 선단을 기준점(CP)에 접촉한 상태에서 상기 GPS수신기(51)가 상기 위성으로부터 신호를 수신하여,
    상기 수준기(54)로 수평을 유지하는 상태에서 상기 위치조절구(55)로 위치조절을 하는 것을 특징으로 하는 개량형 포터블 GPS 수신장치(50).
  7. 제6항에서,
    표면에 자가 표기되고 상기 지지봉(52)의 선단이 이동할 수 있는 슬롯(81)과 수직으로 계측봉(82)이 형성된 계측자(80);가 포함되어,
    상기 계측봉(82)을 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 상기 자에 따라 정확한 계측장소로 이동할 수 있는 것을 특징으로 하는 개량형 포터블 GPS 수신장치(50).
  8. 제6항 또는 제7항에서,
    하부에 상기 지지봉(52)의 선단이 관통하는 구멍(56`)이 형성된 지지판(56);이 포함되어,
    지면에 요철이 형성된 곳에서 상기 위치조절구(55)의 하단이 바로 상기 지면에 접촉하는 것이 아니라 상기 지지판(56) 상부에 접촉하므로 위치조절이 용이하게 하는 것을 특징으로 하는 개량형 포터블 GPS 수신장치(50).
  9. 제3항의 개량형 포터블 프리즘 수신장치(60)를 이용한 것으로,
    (1) 기준점(CP)에 상기 개량형 포터블 프리즘 수신장치(60)의 상기 지지봉(63)의 선단을 위치시키는 포터블프리즘수신장치거치단계;
    (2) 상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 정준단계;
    (3) 상기 광파기(1000)로 상기 개량형 포터블 프리즘 수신장치(60)의 좌표를 획득하는 좌표획득단계;
    (4) 계측할 방위각으로 상기 광파기(1000)를 새로이 시준하여 관측점(P1)이 위치할 관측시준선(VL`)을 설정하는 광파기시준단계;
    (5) 상기 관측시준선(VL`) 상에 상기 개량형 포터블 프리즘 수신장치(60)의 상기 지지봉(63)의 선단을 위치시키는 포터블프리즘수신장치거치단계;
    (6) 상기 수준기(61)로 수평을 유지하는 상태에서 상기 위치조절구(65)로 위치조절을 하는 정준단계;
    (7) 상기 광파기(1000)로 상기 개량형 포터블 프리즘 수신장치(60)의 거리를 획득하는 거리획득단계;
    (8) 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차를 구하고 상기 거리차에 맞추어 상기 관측시준선(VL`) 상에서 상기 관측점(P1)에 상기 개량형 포터블 프리즘 수신장치(60)를 소정의 오차범위로 근접시키는 관측점근접단계;
    (9) 상기 광파기(1000)로 상기 개량형 포터블 프리즘 수신장치(60)의 거리를 획득하여 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차를 구하고 상기 거리차에 맞추어 상기 관측시준선(VL`) 상에서 상기 관측점(P1)에 상기 개량형 포터블 프리즘 수신장치(60)를 정확한 위치로 근접시키는 보정단계; 및,
    (10) 상기 관측점(P1)을 지면에 표시하는 관측점표시단계;
    를 포함하여 구성되되,
    상기 (9) 보정단계;에서,
    상기 계측봉(82)을 상기 광파기(1000) 쪽으로 회전시켜 상기 계측자(80)를 시준선(VL)에 맞추고 상기 슬롯(81)을 상기 지지봉(63)의 선단이 이동하여 획득된 상기 개량형 포터블 프리즘 수신장치(60)의 거리와 상기 관측점(P1)의 거리차만큼 상기 자를 따라 이동하는 것을 특징으로 하는 개량형 포터블 프리즘 수신장치를 이용한 측량방법.
  10. 제7항의 개량형 포터블 GPS 수신장치(50)를 이용한 것으로,
    (1) 기준점(CP)에 개량형 포터블 GPS 수신장치(50)의 상기 지지봉(63)의 선단을 위치시키는 포터블GPS수신장치거치단계;
    (2) 상기 수준기(54)로 수평을 유지하는 상태에서 상기 위치조절구(55)로 위치조절을 하는 정준단계;
    (3) 상기 개량형 포터블 GPS 수신장치(50)의 좌표를 컨트롤러로 획득하는 좌표획득단계;
    (4) 상기 컨트롤러가 표시하는 새로운 관측점(P1)에 상기 개량형 포터블 GPS 수신장치(50)를 소정의 오차범위로 근접시키는 관측점근접단계;
    (5) 상기 계측봉(82)을 상기 컨트롤러가 표시하는 화살표 방향으로 회전시키는 계측자정렬단계; 및,
    (6) 상기 자를 이용하여 상기 슬롯(81) 상에서 상기 컨트롤러가 지시하는 정확한 관측점(P1)을 지면에 표시하는 관측점표시단계;
    를 포함하여 구성되는 것을 특징으로 하는 개량형 포터블 GPS 수신장치를 이용한 측량방법.
PCT/KR2016/001787 2015-03-03 2016-02-24 개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법 WO2016140458A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017562949A JP6431995B2 (ja) 2015-03-03 2016-02-24 改良型ポータブルプリズム受信装置及び改良型ポータブルgps受信装置、並びに、これを用いた測量方法
CN201680010639.5A CN107430000A (zh) 2015-03-03 2016-02-24 改良型便携式棱镜接收装置和改良型便携式gps接收装置及利用其的测量方法
US15/552,101 US10514464B2 (en) 2015-03-03 2016-02-24 Portable prism receiver and improved portable GPS receiver and measurement method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150029911A KR101550403B1 (ko) 2015-03-03 2015-03-03 개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법
KR10-2015-0029911 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140458A1 true WO2016140458A1 (ko) 2016-09-09

Family

ID=54247367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001787 WO2016140458A1 (ko) 2015-03-03 2016-02-24 개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법

Country Status (5)

Country Link
US (1) US10514464B2 (ko)
JP (1) JP6431995B2 (ko)
KR (1) KR101550403B1 (ko)
CN (1) CN107430000A (ko)
WO (1) WO2016140458A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345932A (zh) * 2019-08-15 2019-10-18 中交一公局第四工程有限公司 一种全站仪棱镜对中杆快速移动装置及其快速定位方法
JP7438881B2 (ja) * 2020-07-29 2024-02-27 株式会社トプコン 整準台及び測量装置及び測量システム
FR3133231B1 (fr) * 2022-03-07 2024-05-03 Renault Instrument de mesure configuré pour déterminer des coordonnées d’un point d’intérêt

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186320A (ja) * 1992-03-28 1994-07-08 Mitsui Constr Co Ltd 測量装置
JPH06232615A (ja) * 1993-01-29 1994-08-19 Sokkia Co Ltd Gpsアンテナ支持装置及びgpsアンテナの配置方法
JPH0961510A (ja) * 1995-08-22 1997-03-07 Hitachi Zosen Corp Gpsによる位置検出装置
JP3114923B2 (ja) * 1996-04-15 2000-12-04 鹿島建設株式会社 地盤座標のリアルタイム測量装置
JP5372897B2 (ja) * 2010-12-10 2013-12-18 株式会社 ソキア・トプコン 測量システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245901A (en) * 1939-09-26 1941-06-17 Chaskin Harold Mounting for surveyor's targets
US2575245A (en) * 1948-06-16 1951-11-13 Evert W Carlson Engineer's point finder
US3685162A (en) * 1970-06-19 1972-08-22 Horace H Haun Surveyor sight
JPS5372897A (en) 1976-12-11 1978-06-28 Kirin Brewery Co Ltd Preparation of wort beer brewing
US4339880A (en) * 1978-10-23 1982-07-20 Beverly J. Hall Device for holding surveyor's instrument
US4803784A (en) * 1987-06-08 1989-02-14 Miller Donald P Portable stand for a surveyor's rod
US5419052A (en) * 1993-12-13 1995-05-30 Goller; Albert Field land survey light
US5614918A (en) * 1994-06-21 1997-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Global positioning system antenna fixed height tripod adapter
US5749549A (en) * 1995-12-29 1998-05-12 Javad Positioning, Llc Satellite positioning system antenna supporting tripod
US6834839B1 (en) * 2002-10-22 2004-12-28 Eldridge W. Wilson Prism pole stand with clamping device and assembly
JP3114923U (ja) 2005-07-20 2005-10-27 株式会社富士商 ゴミ収容バッグ
AU2007100847B4 (en) * 2007-08-06 2007-11-01 Steffco Pty Ltd Measuring staff
JP2011203196A (ja) * 2010-03-26 2011-10-13 Visuatool Inc 地上レーザスキャナ測量装置、測量装置及び測量方法
DE102010024014B4 (de) * 2010-06-16 2016-04-21 Trimble Jena Gmbh Ziel für ein geodätisches Gerät
EP2431708A1 (de) * 2010-09-16 2012-03-21 Leica Geosystems AG Geodätisches Vermessungssystem mit in einer Fernbedieneinheit integrierter Kamera
US9027895B2 (en) * 2012-04-13 2015-05-12 Seco Manufacturing Company, Inc. Portable support having extendable rod
EP2722647A1 (en) * 2012-10-18 2014-04-23 Leica Geosystems AG Surveying System and Method
US9255798B2 (en) * 2013-06-10 2016-02-09 Keith Kahlow Survey device
CN104121897B (zh) * 2014-07-04 2016-08-24 大连圣博尔测绘仪器科技有限公司 卫星定位测量杆
EP3182066B1 (en) * 2015-12-17 2018-07-04 Leica Geosystems AG Surveying pole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186320A (ja) * 1992-03-28 1994-07-08 Mitsui Constr Co Ltd 測量装置
JPH06232615A (ja) * 1993-01-29 1994-08-19 Sokkia Co Ltd Gpsアンテナ支持装置及びgpsアンテナの配置方法
JPH0961510A (ja) * 1995-08-22 1997-03-07 Hitachi Zosen Corp Gpsによる位置検出装置
JP3114923B2 (ja) * 1996-04-15 2000-12-04 鹿島建設株式会社 地盤座標のリアルタイム測量装置
JP5372897B2 (ja) * 2010-12-10 2013-12-18 株式会社 ソキア・トプコン 測量システム

Also Published As

Publication number Publication date
US10514464B2 (en) 2019-12-24
JP2018506049A (ja) 2018-03-01
US20180031710A1 (en) 2018-02-01
JP6431995B2 (ja) 2018-11-28
KR101550403B1 (ko) 2015-09-18
CN107430000A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2013187584A1 (ko) 클리노미터, 이를 이용한 주향 및 경사각 측정 방법
WO2016140458A1 (ko) 개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법
US6202312B1 (en) Laser tool for generating perpendicular lines of light on floor
US20180347980A1 (en) Geodetic surveying
US7987605B2 (en) Reflector target tripod for survey system with light emitter and pivoting bracket for enhanced ground marking accuracy
WO2011055978A2 (en) User terminal, method for providing position and method for guiding route thereof
WO2011065697A2 (ko) 레이저 거리측정기를 이용한 맥파측정로봇장치 및 이를 이용한 맥파측정방법
WO2014019288A1 (zh) 套夹式测量脚架
WO2019198909A1 (ko) 골프장그린 위치 기반형 스마트 골프퍼터
WO2014012301A1 (zh) 对偶式观测用尺仪合一复合水准仪
WO2017073924A1 (ko) 수중 구조물의 용접라인을 이용한 수중 작업 장치의 위치 파악 시스템 및 방법
CN114754738A (zh) 一种简易型桥梁墩柱垂直度测量装置及测量方法
CN101464146B (zh) 将地面水准点高程精确传递到高架桥上的测量方法及其装置
KR101984507B1 (ko) 개량형 포터블 프리즘 수신장치와 이를 이용한 측량방법
WO2016159512A1 (ko) 개량형 맨홀구조를 이용한 도로의 시공방법
US3667849A (en) Laser plummet level
RU2494346C1 (ru) Поверочный комплекс координатных приборов и измерительных систем
KR101974946B1 (ko) 개량형 포터블 프리즘 수신장치와 이를 이용한 측량방법
US4364175A (en) Grade Liner
CN104949650A (zh) 测距仪
WO2014046438A2 (ko) 거리측정용 조준장치
WO2018135701A1 (ko) 기준 위치 마커의 위치 보정 장치 및 방법
Szabó On the Centering Eccentricity of the MOM Gi-B3 gyrotheodolite
CN211651602U (zh) 一种像控点标志装置
CN214621211U (zh) 一种工程监理用垂直度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759094

Country of ref document: EP

Kind code of ref document: A1