WO2016140258A1 - Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same - Google Patents

Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same Download PDF

Info

Publication number
WO2016140258A1
WO2016140258A1 PCT/JP2016/056402 JP2016056402W WO2016140258A1 WO 2016140258 A1 WO2016140258 A1 WO 2016140258A1 JP 2016056402 W JP2016056402 W JP 2016056402W WO 2016140258 A1 WO2016140258 A1 WO 2016140258A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
dispersion strengthened
strengthened steel
aluminum
oxide dispersion
Prior art date
Application number
PCT/JP2016/056402
Other languages
French (fr)
Japanese (ja)
Inventor
鵜飼 重治
直子 大野
林 重成
大塚 智史
皆藤 威二
晃彦 木村
忠彦 鳥丸
Original Assignee
国立大学法人北海道大学
日本核燃料開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 日本核燃料開発株式会社 filed Critical 国立大学法人北海道大学
Publication of WO2016140258A1 publication Critical patent/WO2016140258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles

Definitions

  • the present invention is an iron-chromium-aluminum-based oxide dispersion strengthened steel excellent in oxidation resistance and high-temperature strength, and particularly suitable for a fuel cladding tube having high safety even in a light water reactor accident.
  • the present invention relates to an aluminum-based oxide dispersion strengthened steel and a method for producing the same.
  • Oxide Dispersion Strengthened (ODS) steel examples include PM2000 and MA956.
  • the chemical component of PM2000 is Fe-19Cr-5.5Al-0.5Ti-0.5Y 2 O 3 (wt%)
  • the chemical component of MA956 is Fe-20Cr-4.5Al-0.5Ti-0.5Y. 2 O 3 (wt%), both of which are ferritic steel.
  • These oxide dispersion strengthened steels are known to exhibit excellent oxidation resistance because a coating (scale) of aluminum oxide (alumina) is formed on the surface by the addition of aluminum.
  • the added aluminum separately reacts with yttrium oxide (Y 2 O 3 ) to form a composite oxide of yttrium and aluminum. For this reason, the oxide particles are coarsened, the number density is lowered, and the dispersion interval is increased, so that there is a problem that the high-temperature strength based on the dispersion strengthening action is lowered.
  • yttrium oxide Y 2 O 3
  • Patent Document 1 an oxide dispersion strengthened alloy steel in which 0.4 to 1.0 wt% zirconium is added in combination with aluminum.
  • yttrium oxide reacts with zirconium instead of aluminum to produce a composite oxide of yttrium and zirconium.
  • the oxide particle size is reduced, the number density is increased, the dispersion strengthening action is effectively exhibited, and the high temperature strength is improved.
  • aluminum that does not react with yttrium oxide forms an aluminum oxide film on the surface, and thus is said to exhibit an excellent effect on oxidation resistance.
  • Patent Document 1 only improves the high-temperature strength at about 700 ° C. at most. That is, Patent Document 1 assumes only the temperature during normal operation of the light water reactor, and does not improve the high-temperature strength at 1000 ° C. or higher that is assumed when a light water reactor accident occurs.
  • zirconium becomes particularly active at 1000 ° C. or higher.
  • the oxygen diffusion coefficient in zirconium oxide at 1200 ° C. is about 10 orders of magnitude greater than the oxygen diffusion coefficient in aluminum oxide, making it extremely easy to pass oxygen.
  • the added zirconium forms zirconium oxide at the grain boundary of aluminum oxide, and promotes inward diffusion of oxygen from the environment through the zirconium oxide. Thereby, oxidation resistance will fall.
  • zirconium oxide inhibits the growth of aluminum oxide crystal grains and makes them fine. Therefore, also from this point, since the grain boundary diffusion of oxygen in the aluminum oxide is promoted, the oxidation resistance is lowered.
  • the present invention has been made to solve such problems, and has an excellent high-temperature strength even at a high temperature of 1000 ° C. or higher, and can prevent deterioration in oxidation resistance.
  • An object is to provide a chromium-aluminum oxide dispersion strengthened steel and a method for producing the same.
  • the iron-chromium-aluminum-based oxide dispersion strengthened steel according to the present invention is an oxide dispersion strengthened steel in which a coating of aluminum oxide is formed on the surface and a composite oxide of yttrium and zirconium is dispersed inside And the excess oxygen which is oxygen which exists more than forming yttrium oxide in the oxide dispersion strengthened steel is contained in a molar ratio of 2 or more with respect to the zirconium.
  • the coating does not contain zirconium.
  • Cr is 12.0 to 23.0%
  • Al is 5.0 to 8.0%
  • Ti is 0.1 to 1.0%
  • Zr is 0.0% by mass.
  • Y 2 O 3 may be 0.3 to 1.0%
  • the balance may be Fe and inevitable impurities.
  • the content of the excess oxygen is preferably 4 or more in terms of a molar ratio to zirconium.
  • the increase in oxidation when oxidized at 1200 ° C. for 100 hours may be 2.0 mg / cm 2 or less.
  • the method for producing the iron-chromium-aluminum oxide dispersion strengthened steel according to the present invention is mass%, Cr is 12.0-23.0%, Al is 5.0-8.0%, Ti is 0.1-1.0%, Zr 0.2-1.0%, Y 2 O 3 0.3-1.0%, balance with raw material powder consisting of Fe and inevitable impurities, and oxide dispersion strengthening.
  • This is a method in which excess oxygen, which is oxygen present in excess of forming yttrium oxide in the mold steel, is added in a molar ratio of 2 or more to zirconium, and mechanical alloying treatment is performed.
  • the excess oxygen may be added as an oxide of the raw material powder composition.
  • the oxide is iron oxide and may be added in an amount of 0.24% or more by mass%.
  • the content of the excess oxygen is preferably 4 or more in terms of a molar ratio to zirconium.
  • the present invention even at a high temperature of 1000 ° C. or higher, it has excellent high-temperature strength and can prevent a decrease in oxidation resistance.
  • FIG. 1 is a conceptual diagram showing one embodiment of an iron-chromium-aluminum oxide dispersion strengthened steel according to the present invention.
  • FIG. 3 is a flowchart showing an embodiment of a method for producing an iron-chromium-aluminum oxide dispersion strengthened steel according to the present invention.
  • 2 is a table showing chemical components of each test piece in Example 1.
  • 2 is a graph showing the change over time in the increase in oxidation of each test piece in Example 1.
  • FIG. 2 is a graph showing an increase in oxidation of each test piece in Example 1. It is the result of having analyzed the cross section of test piece TP1 in Example 2 with the electron beam microanalyzer.
  • Example 3 it is a graph which shows the relationship between the molar ratio of the excess oxygen with respect to Zr, and oxidation weight.
  • Example 4 it is a graph which shows the measurement result of the Vickers hardness of each test piece.
  • Example 4 it is a graph which shows the measurement result of the tensile strength in 700 degreeC of each test piece.
  • Example 5 it is an aberration correction electron microscope image which shows element mapping of test piece TP1.
  • Example 5 is an aberration correction electron microscope image which shows element mapping of test piece TP4.
  • the iron-chromium-aluminum oxide dispersion strengthened steel is a concept including all oxide dispersion strengthened steels containing iron, chromium and aluminum.
  • an iron-chromium-aluminum-based oxide dispersion strengthened steel (hereinafter referred to as oxide dispersion strengthened steel) 1 of the present embodiment has an aluminum oxide coating 2 formed on the surface thereof,
  • a composite oxide 3 of yttrium and zirconium is dispersed.
  • the coating 2 (scale) of aluminum oxide (alumina: Al 2 O 3 ) plays a role of improving the oxidation resistance of the oxide dispersion strengthened steel 1.
  • the aluminum oxide is formed as the coating 2 when the aluminum in the oxide dispersion strengthened steel 1 is oxidized on the surface.
  • the composite oxide 3 of yttrium and zirconium plays a role of improving the high temperature strength of the oxide dispersion strengthened steel 1. Since the complex oxide 3 of yttrium and zirconium has a small oxide particle size and a large number density, it effectively acts the dispersion strengthening action and improves the high temperature strength.
  • the oxygen dispersion strengthened steel 1 contains 2 or more of excess oxygen, which is oxygen present beyond the formation of yttrium oxide (yttria: Y 2 O 3 ), in a molar ratio to zirconium. Therefore, almost all of the zirconium in the oxide dispersion strengthened steel 1 is oxidized to zirconium oxide (zirconia: ZrO 2 ), and the oxide dispersion strengthens as a composite oxide 3 (Y 2 Zr 2 O 7 ) with yttrium oxide. It is fixed inside the mold steel 1.
  • the concentration of zirconium in the oxide dispersion strengthened steel 1 is remarkably lowered, and it is difficult to be taken into the aluminum oxide coating 2.
  • This suppresses the generation of zirconium oxide that promotes the inward diffusion of oxygen from the environment, so that excellent oxidation resistance is maintained even at a high temperature of 1000 ° C. or higher. That is, as the amount of zirconium contained in the aluminum oxide coating 2 is smaller, the oxidation resistance is improved, and when it is not contained, the most excellent oxidation resistance is exhibited.
  • the composition of the oxide dispersion strengthened steel 1 according to the present invention includes, in addition to the above-described excess oxygen, mass%, Cr (chromium) 12.0 to 23.0%, and Al (aluminum) 5. 0 to 8.0%, Ti (titanium) 0.1 to 1.0%, Zr (zirconium) 0.2 to 1.0%, Y 2 O 3 (yttrium oxide) 0.3 to 1. 0%, the balance being Fe (iron) and inevitable impurities.
  • the target composition of these chemical components and the reason for limitation will be described.
  • a chemical component is described with the mass%.
  • Cr is an element for making steel a ferrite phase and simultaneously improving oxidation resistance.
  • the Cr content is preferably 10.0 to 23.0%.
  • Al is an element for improving the oxidation resistance at high temperatures.
  • the Al content is 5.0% or more, aluminum oxide can be stably generated even at a high temperature of 1000 ° C. or higher.
  • the Al content is preferably 5.0 to 8.0%.
  • Ti is an element that plays a role of refining oxide particles by forming a complex oxide with Y 2 O 3 in addition to fixing impurity carbon harmful to oxidation resistance as carbide (TiC). If the Ti content is 0.1% or more, the above-described refinement effect can be expected. On the other hand, if the Ti content is 1.0% or less, there is no risk of material deterioration due to excessive Ti. For this reason, the Ti content is preferably 0.1 to 1.0%.
  • Zr is an element that plays a role of forming oxide oxide particles by forming Y 2 O 3 and composite oxide 3 (Y 2 Zr 2 O 7 ).
  • the content of Zr corresponds to the amount necessary for making the total amount of Y 2 O 3 added (0.3 to 1.0%) into the composite oxide 3 described above, and is 0.2 to 1.0% is preferred. Note that if the Zr content exceeds 1.0%, oxidation at a high temperature is promoted.
  • Y 2 O 3 is indispensable for strengthening oxide dispersion and plays a role of improving high-temperature strength. If the content of Y 2 O 3 is 0.3% or more, sufficient high-temperature strength is ensured by the effect of dispersion strengthening. On the other hand, if the content of Y 2 O 3 is 1.0% or less, the Y 2 O 3 oxide particles are less likely to aggregate, and deterioration of the material due to excessive addition is suppressed. For this reason, the content of Y 2 O 3 is preferably 0.3 to 1.0%.
  • C carbon
  • C is mixed in the range of 0.01 to 0.05% as an impurity.
  • the element powder, alloy powder, and oxide powder of each chemical component described above are used as raw material powders so as to have the above target composition (step S1).
  • a powder of iron oxide (Fe 2 O 3 ) is prepared so that the excess oxygen in the oxide dispersion strengthened steel 1 is 2 or more in terms of the molar ratio with respect to zirconium.
  • iron oxide (Fe 2 O 3 ) necessary for oxidizing a mass% of zirconium to ZrO 2 is 1.18 ⁇ a mass%. Therefore, in this embodiment, since the minimum value of zirconium is 0.2% by mass, iron oxide is added by 0.24% or more by mass.
  • step S3 the mixed powder prepared by mixing iron oxide in step S2 is put into a ball mill, and mechanical alloying treatment (mechanical alloying) is performed (step S3).
  • mechanical alloying treatment mechanical alloying
  • step S3 the mixed powder is alloyed on the atomic order, and oxygen contained in the iron oxide is forcibly taken into the oxide dispersion strengthened steel 1 as excess oxygen.
  • iron oxide is added as a means for introducing excess oxygen into the oxide dispersion strengthened steel 1, but the present invention is not limited to this. Specifically, you may add as oxides, such as Cr, Al, and Ti which are the composition of the raw material powder mentioned above. Thereby, it is possible to take in a required amount of excess oxygen without greatly changing the properties of the oxide dispersion strengthened steel 1.
  • the amount of excess oxygen that converts all Zr to ZrO 2 is theoretically only required to be 2 or more in terms of the molar ratio to zirconium. However, not all of the added excess oxygen is converted to ZrO 2 . Therefore, in this embodiment, based on Example 3 described later, the content of excess oxygen is preferably 3 or more and more preferably 4 or more in terms of a molar ratio to zirconium.
  • the upper limit of the excess oxygen content is preferably about 6 in terms of molar ratio to zirconium.
  • step S4 the mixed powder alloyed through steps S2 to S3 is solidified by hot extrusion. Specifically, first, the mixed powder is filled into a mild steel capsule or the like and heated at 1150 ° C. for about 3 hours. During this heating, a composite oxide 3 of yttrium and zirconium is formed. Then, after reaching a uniform temperature, the mixed powder is solidified and formed into a rod-like molded body by extruding with a mold.
  • step S5 annealing heat treatment is applied to the molded body solidified and formed in step S4 (step S5). Thereby, the processing distortion (dislocation etc.) introduced into the compact by hot extrusion is eliminated, and the oxide dispersion strengthened steel 1 of this embodiment is manufactured.
  • the oxide dispersion strengthened steel 1 and the method for producing the same according to the present invention as described above the following effects can be obtained.
  • 1. By containing excess oxygen of 2 or more in a molar ratio with respect to zirconium, excellent oxidation resistance can be maintained even at a high temperature of 1000 ° C. or more.
  • Addition of zirconium produces fine oxide particles of fine and high density yttrium and zirconium, so that the high temperature strength at a high temperature of 1000 ° C. or higher is improved.
  • It can be used for thermal power generation materials that require oxidation resistance and high temperature strength at 1000 ° C or higher, high temperature heating furnace materials, light water reactor fuel cladding tubes that require safety in the event of an accident, and the like.
  • Example 1 an oxide dispersion strengthened steel 1 according to the present invention is manufactured, and the oxide dispersion strengthened steel 1 is confirmed to have high oxidation resistance at a high temperature of 1000 ° C. or higher. Went.
  • test pieces four types of test pieces TP1 to TP4 having different chemical components were prepared as shown in FIG.
  • the basic component of each test piece was Fe-15Cr-6Al-0.5Ti-0.5Y 2 O 3 (mass%), and Zr was not added to TP1 alone.
  • Zr was added and excess oxygen (Ex.O) was added so that the molar ratio to Zr was different.
  • the molar ratio of TP2 is set to 1.47 less than an excess amount of oxygen to convert all the Zr to ZrO 2
  • the molar ratio of TP3 is slightly than the excess amount of oxygen to convert all the Zr to ZrO 2
  • the molar ratio of TP4 was 3.39 corresponding to the amount of excess oxygen sufficient to convert all Zr to ZrO 2 .
  • Example 1 the alloy powder of each of the above test pieces TP1 to TP4 was mechanically alloyed (mechanical alloying: MA) for 48 hours in an Ar atmosphere by a ball mill (Attritor: Nippon Coke Industries, Ltd.). Was given. At this time, for TP3 and TP4, an appropriate amount of iron oxide (Fe 2 O 3 ) powder was added together with the alloy powder so as to have the above-described molar ratio, and the excess oxygen amount was forcibly increased.
  • the alloy powder that has been mechanically alloyed is filled into a mild steel capsule, heated in a vacuum atmosphere (10 ⁇ 3 Torr) at 1150 ° C. for about 3 hours, and then solidified and formed by hot extrusion. An annealing heat treatment was performed at 1150 ° C. for 1 hour.
  • the dimensions of the hot-extrusion rods were 24 mm outer diameter ⁇ length 580 mm, and test pieces TP1 to TP4 were cut out from these hot-extrusion rods.
  • test pieces TP1 to TP4 were oxidized in the atmosphere at 1200 ° C. for a maximum of 100 hours.
  • the time change of the weight increase at that time is shown in FIG.
  • the oxidation increase of each test piece after oxidizing at 1200 degreeC for 100 hours is shown in FIG.
  • TP1 did not contain Zr, which deteriorates the oxidation resistance at 1000 ° C. or higher, so that the increase in weight was the smallest and it had high oxidation resistance.
  • the oxide dispersion strengthened steel 1 obtained by the production method according to the present invention has an oxidation resistance comparable to that of the oxide dispersion strengthened steel not added with Zr, that is, 1000 ° C. It was shown to have high oxidation resistance even at the above high temperatures.
  • the oxide dispersion strengthened steel 1 having high oxidation resistance was shown to have an oxidation increase of 2.0 mg / cm 2 or less when oxidized at 1200 ° C. for 100 hours.
  • Example 2 an experiment was conducted to check whether zirconium was contained in the aluminum oxide coating 2 in the oxide dispersion strengthened steel 1 according to the present invention.
  • each of the test pieces TP1 to TP4 prepared and oxidized in Example 1 was cut and solidified with a resin, and then the cross section was subjected to elemental analysis using an electron beam microanalyzer (EPMA). went. The results are shown in FIGS.
  • the same aluminum oxide film 2 as that of the oxide dispersion strengthened steel without addition of Zr is formed.
  • zirconium was not contained in the coating 2.
  • Example 3 in the oxide dispersion strengthened steel 1 according to the present invention, when Zr was added and excess oxygen was increased, a calculation for examining the cause of improving the oxidation resistance was performed.
  • Fe-15Cr-7Al-0.5Ti-0.4Zr-0.5Y 2 O 3 (mass%) is a basic component and corresponds to 0.5Y 2 O 3 .
  • the calculation samples 1 to 4 having four kinds of chemical components with the Y and O concentrations set and the excess oxygen amount as a parameter were assumed.
  • the calculation sample 1 is not added with excess oxygen, and the calculation samples 2 to 4 are added with excess oxygen having molar ratios to Zr of 1.28, 2.13, and 3.13, respectively. It was supposed to be.
  • Y 2 Zr 2 O 7 which is a complex oxide.
  • This Y 2 Zr 2 O 7 corresponds to the composition of Y 2 O 3 ⁇ 2ZrO 2 , and no aluminum oxide is generated.
  • the matrix is a ferrite phase having a body-centered cubic (BCC) structure.
  • BCC body-centered cubic
  • the molar fraction of Y 2 Zr 2 O 7 is increased, but the molar ratio of excess oxygen to zirconium is 1.28 which is less than 2, so FIG.
  • the molar fraction of Zr dissolved in the matrix was relatively high at 7.82 ⁇ 10 ⁇ 4, and about 35% of the added Zr was dissolved in the matrix. .
  • the molar fraction of Zr dissolved in the matrix is about 1.6 ⁇ 10 ⁇ 4, which is about 7% of the calculation sample 1.
  • Most of Zr was fixed as Y 2 Zr 2 O 7 .
  • the activity of Zr in the matrix at this time was about 6.1 ⁇ 10 ⁇ 5 , which was also significantly reduced to about 7% of the calculation sample 1.
  • FIG. 13 shows a graph in which FIG. 5 of Example 1 is arranged by the molar ratio of excess oxygen to Zr.
  • the molar ratio of excess oxygen to added Zr is 2 or more corresponding to the theoretical value of zirconium oxide, the oxidation resistance of the same level as that of the oxide dispersion strengthened steel not added with Zr. was shown to maintain.
  • the molar ratio of excess oxygen to added Zr is preferably 3 or more, which corresponds to the amount of excess oxygen sufficient to convert all Zr to ZrO 2, and preferably 4 or more. For example, it was expected that the same level of oxidation resistance as that of the oxide dispersion strengthened steel to which Zr was not added was ensured.
  • the upper limit of the excess oxygen amount is preferably about 6 in terms of molar ratio to zirconium.
  • the oxide dispersion strengthened steel 1 according to the present invention when excess oxygen capable of making all the added Zr Y 2 Zr 2 O 7 is added, the oxidation resistance at a high temperature of 1000 ° C. or higher. It has been shown that the performance is improved. Further, the content of excess oxygen may be 2 or more in terms of molar ratio to zirconium, preferably 3 or more, and more preferably 4 or more.
  • Example 4 an experiment was conducted to confirm the Vickers hardness and tensile strength of the oxide dispersion strengthened steel 1 according to the present invention.
  • the Vickers hardness at room temperature and the tensile strength at 700 ° C. were measured for each of the test pieces TP1 to TP4 prepared in Example 1. The results are shown in FIGS. 14 and 15, respectively. As shown in FIGS. 14 and 15, both Vickers hardness and tensile strength were improved in TP2 to which Zr was added, compared to TP1 to which Zr was not added. Moreover, in TP3 and TP4 to which sufficient excess oxygen was added together with Zr, both Vickers hardness and tensile strength were further strengthened, and were strengthened as the excess oxygen increased.
  • Example 5 an experiment was conducted to confirm dispersed oxide particles in the oxide dispersion strengthened steel 1 according to the present invention.
  • elemental mapping of oxide particles was performed on the test pieces TP1 and TP4 created in Example 1 using an aberration correction electron microscope (Titan-Cubed-G2: FEI). The results are shown in FIG. 16 and FIG. As shown in FIG. 16, the oxide particles observed in TP1 to which Zr was not added were a composite oxide of yttrium and aluminum, and the average size thereof was coarsened to about 50 nm. Further, the small oxide particles did not contain aluminum.
  • the oxide particles observed in TP4 according to the present invention were the composite oxide 3 of yttrium and zirconium, and the average size thereof was refined to about 10 nm.
  • the refined oxide particles did not contain aluminum.
  • Example 5 it was shown that the oxide dispersion strengthened steel 1 according to the present invention is dispersed with the refined composite oxide 3 of yttrium and zirconium.
  • the iron-chromium-aluminum-based oxide dispersion strengthened steel 1 and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments and examples, and can be changed as appropriate.
  • the iron-chromium-aluminum oxide dispersion strengthened steel 1 according to the present invention can be used as a material that requires high-temperature strength and excellent oxidation resistance at a high temperature of 1000 ° C. or higher. For example, even in the event of a light water reactor accident It is a material suitable for highly safe fuel cladding tubes, fast breeder reactor fuel element materials, fusion reactor first wall materials, thermal power generation materials, high-temperature heating furnace materials, and the like.

Abstract

[Problem] To provide: an iron-chromium-aluminum-based oxide dispersion strengthened steel which can exhibit excellent high-temperature strength even at high temperatures of 1000°C or higher and which does not undergo the deterioration of oxidation resistance; and a method for producing the steel. [Solution] An oxide dispersion strengthened steel 1 which has an aluminum oxide coating film 2 formed on a surface thereof and in which a yttrium-zirconium composite oxide 3 is dispersed, wherein excess oxygen that is oxygen existing in the oxide dispersion strengthened steel 1 excessively more than the amount required for forming yttrium oxide is contained at a molar ratio of 2 or more relative to the amount of zirconium.

Description

鉄-クロム-アルミニウム系酸化物分散強化型鋼およびその製造方法Iron-chromium-aluminum oxide dispersion strengthened steel and method for producing the same
 本発明は、耐酸化性および高温強度に優れた鉄-クロム-アルミニウム系酸化物分散強化型鋼であって、特に軽水炉の事故時においても安全性の高い燃料被覆管等に好適な鉄-クロム-アルミニウム系酸化物分散強化型鋼およびその製造方法に関するものである。 The present invention is an iron-chromium-aluminum-based oxide dispersion strengthened steel excellent in oxidation resistance and high-temperature strength, and particularly suitable for a fuel cladding tube having high safety even in a light water reactor accident. The present invention relates to an aluminum-based oxide dispersion strengthened steel and a method for producing the same.
 酸化物分散強化型(ODS:Oxide Dispersion Strengthened)鋼には、PM2000やMA956がある。PM2000の化学成分はFe-19Cr-5.5Al-0.5Ti-0.5Y(wt%)であり、MA956の化学成分はFe-20Cr-4.5Al-0.5Ti-0.5Y(wt%)であり、いずれもフェライト鋼である。これらの酸化物分散強化型鋼は、アルミニウムの添加により酸化アルミニウム(アルミナ)の被膜(スケール)が表面に形成されるため、優れた耐酸化性を示すことが知られている。 Examples of Oxide Dispersion Strengthened (ODS) steel include PM2000 and MA956. The chemical component of PM2000 is Fe-19Cr-5.5Al-0.5Ti-0.5Y 2 O 3 (wt%), and the chemical component of MA956 is Fe-20Cr-4.5Al-0.5Ti-0.5Y. 2 O 3 (wt%), both of which are ferritic steel. These oxide dispersion strengthened steels are known to exhibit excellent oxidation resistance because a coating (scale) of aluminum oxide (alumina) is formed on the surface by the addition of aluminum.
 しかしながら、上述した酸化物分散強化型鋼においては、添加したアルミニウムが別途、酸化イットリウム(Y)と反応し、イットリウムとアルミニウムとの複合酸化物を形成する。このため、酸化物粒子が粗大化して数密度が低下し、分散間隔の増大を引き起こすため、分散強化作用に基づく高温強度が低下してしまうという問題がある。 However, in the above-described oxide dispersion strengthened steel, the added aluminum separately reacts with yttrium oxide (Y 2 O 3 ) to form a composite oxide of yttrium and aluminum. For this reason, the oxide particles are coarsened, the number density is lowered, and the dispersion interval is increased, so that there is a problem that the high-temperature strength based on the dispersion strengthening action is lowered.
 この問題を解決するため、本発明者らは、アルミニウムとともに0.4~1.0wt%のジルコニウムを複合添加させた酸化物分散強化型合金鋼を開発した(特許文献1)。この酸化物分散強化型合金鋼によれば、酸化イットリウムがアルミニウムとではなくジルコニウムと反応し、イットリウムとジルコニウムとの複合酸化物を生成する。このため、酸化物粒子サイズが縮小して数密度が増加し、分散強化作用が有効に発揮されて高温強度が向上するとされている。また、酸化イットリウムと反応しないアルミニウムは、表面に酸化アルミニウムの被膜を形成するため、耐酸化性にも優れた効果を発揮するとされている。 In order to solve this problem, the present inventors have developed an oxide dispersion strengthened alloy steel in which 0.4 to 1.0 wt% zirconium is added in combination with aluminum (Patent Document 1). According to this oxide dispersion strengthened alloy steel, yttrium oxide reacts with zirconium instead of aluminum to produce a composite oxide of yttrium and zirconium. For this reason, the oxide particle size is reduced, the number density is increased, the dispersion strengthening action is effectively exhibited, and the high temperature strength is improved. In addition, aluminum that does not react with yttrium oxide forms an aluminum oxide film on the surface, and thus is said to exhibit an excellent effect on oxidation resistance.
特開2010-65302号公報JP 2010-65302 A
 しかしながら、上記特許文献1に記載の酸化物分散強化型合金鋼は、せいぜい700℃程度における高温強度を向上させるものに過ぎない。すなわち、上記特許文献1は、軽水炉の通常運転時における温度までしか想定しておらず、軽水炉の事故時等に想定される1000℃以上での高温強度を向上するものではない。 However, the oxide dispersion strengthened alloy steel described in Patent Document 1 only improves the high-temperature strength at about 700 ° C. at most. That is, Patent Document 1 assumes only the temperature during normal operation of the light water reactor, and does not improve the high-temperature strength at 1000 ° C. or higher that is assumed when a light water reactor accident occurs.
 この点、従来、ジルコニウムの濃度が0.05wt%程度以下であれば、ジルコニウムの添加は、耐酸化性にも有効であることが知られている。しかしながら、発明者らが1000℃を超える温度下での状況について研究を進めたところ、上記特許文献1のように、酸化物粒子の微細化を促進するために、ジルコニウムを0.4~1.0wt%の濃度で添加すると、軽水炉の事故時等に想定される1000℃以上においては、耐酸化性を逆に悪化させてしまうおそれがあることがわかってきた。 In this regard, conventionally, it is known that addition of zirconium is also effective in oxidation resistance if the concentration of zirconium is about 0.05 wt% or less. However, when the inventors proceeded with research on the situation under a temperature exceeding 1000 ° C., as described in Patent Document 1, in order to promote the refinement of oxide particles, zirconium was added in an amount of 0.4 to 1. It has been found that when added at a concentration of 0 wt%, the oxidation resistance may be deteriorated conversely at 1000 ° C. or higher, which is assumed when a light water reactor accident occurs.
 これは、1000℃以上において、ジルコニウムの拡散が特に活発となるからである。例えば、1200℃における酸化ジルコニウム中の酸素拡散係数は、酸化アルミニウム中の酸素拡散係数に比べて約10桁も大きく、極めて酸素を通しやすくなる。このため、添加されたジルコニウムは、酸化アルミニウムの結晶粒界で酸化ジルコニウムを形成し、この酸化ジルコニウムを通して環境からの酸素の内方拡散を促進する。これにより、耐酸化性が低下することとなる。 This is because the diffusion of zirconium becomes particularly active at 1000 ° C. or higher. For example, the oxygen diffusion coefficient in zirconium oxide at 1200 ° C. is about 10 orders of magnitude greater than the oxygen diffusion coefficient in aluminum oxide, making it extremely easy to pass oxygen. For this reason, the added zirconium forms zirconium oxide at the grain boundary of aluminum oxide, and promotes inward diffusion of oxygen from the environment through the zirconium oxide. Thereby, oxidation resistance will fall.
 また、酸化ジルコニウムは、酸化アルミニウムの結晶粒の成長を阻害し微細粒にする。よって、この点からも、酸化アルミニウム中の酸素の粒界拡散が促進されるため、耐酸化性が低下することとなる。 Also, zirconium oxide inhibits the growth of aluminum oxide crystal grains and makes them fine. Therefore, also from this point, since the grain boundary diffusion of oxygen in the aluminum oxide is promoted, the oxidation resistance is lowered.
 本発明は、このような問題点を解決するためになされたものであって、1000℃以上の高温下においても、優れた高温強度を有するとともに、耐酸化性の低下を防止することができる鉄-クロム-アルミニウム系酸化物分散強化型鋼およびその製造方法を提供することを目的としている。 The present invention has been made to solve such problems, and has an excellent high-temperature strength even at a high temperature of 1000 ° C. or higher, and can prevent deterioration in oxidation resistance. An object is to provide a chromium-aluminum oxide dispersion strengthened steel and a method for producing the same.
 本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼は、表面に酸化アルミニウムの被膜が形成されているとともに、内部にイットリウムとジルコニウムとの複合酸化物が分散されている酸化物分散強化型鋼であって、前記酸化物分散強化型鋼中で酸化イットリウムを形成する以上に存在する酸素である過剰酸素が、前記ジルコニウムに対するモル比で2以上含有されている。 The iron-chromium-aluminum-based oxide dispersion strengthened steel according to the present invention is an oxide dispersion strengthened steel in which a coating of aluminum oxide is formed on the surface and a composite oxide of yttrium and zirconium is dispersed inside And the excess oxygen which is oxygen which exists more than forming yttrium oxide in the oxide dispersion strengthened steel is contained in a molar ratio of 2 or more with respect to the zirconium.
 また、本発明の一態様として、前記被膜にはジルコニウムが含有されていないことが好ましい。 Also, as one aspect of the present invention, it is preferable that the coating does not contain zirconium.
 さらに、本発明の一態様として、質量%で、Crが12.0~23.0%、Alが5.0~8.0%、Tiが0.1~1.0%、Zrが0.2~1.0%、Yが0.3~1.0%、残部がFeおよび不可避不純物からなるものであってもよい。 Furthermore, as one embodiment of the present invention, Cr is 12.0 to 23.0%, Al is 5.0 to 8.0%, Ti is 0.1 to 1.0%, and Zr is 0.0% by mass. 2 to 1.0%, Y 2 O 3 may be 0.3 to 1.0%, and the balance may be Fe and inevitable impurities.
 また、本発明の一態様として、前記過剰酸素の含有量は、ジルコニウムに対するモル比で4以上であることが好ましい。 Moreover, as one aspect of the present invention, the content of the excess oxygen is preferably 4 or more in terms of a molar ratio to zirconium.
 さらに、本発明の一態様として、1200℃で100時間酸化させたときの酸化増量が2.0mg/cm以下であってもよい。 Furthermore, as an aspect of the present invention, the increase in oxidation when oxidized at 1200 ° C. for 100 hours may be 2.0 mg / cm 2 or less.
 また、本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼の製造方法は、質量%で、Crが12.0~23.0%、Alが5.0~8.0%、Tiが0.1~1.0%、Zrが0.2~1.0%、Yが0.3~1.0%、残部がFeおよび不可避不純物からなる原料粉末とともに、酸化物分散強化型鋼中で酸化イットリウムを形成する以上に存在する酸素である過剰酸素をジルコニウムに対するモル比で2以上添加し、機械的合金化処理する方法である。 In addition, the method for producing the iron-chromium-aluminum oxide dispersion strengthened steel according to the present invention is mass%, Cr is 12.0-23.0%, Al is 5.0-8.0%, Ti is 0.1-1.0%, Zr 0.2-1.0%, Y 2 O 3 0.3-1.0%, balance with raw material powder consisting of Fe and inevitable impurities, and oxide dispersion strengthening This is a method in which excess oxygen, which is oxygen present in excess of forming yttrium oxide in the mold steel, is added in a molar ratio of 2 or more to zirconium, and mechanical alloying treatment is performed.
 また、本発明の一態様として、前記過剰酸素は、前記原料粉末の組成物の酸化物として添加されてもよい。 Also, as an aspect of the present invention, the excess oxygen may be added as an oxide of the raw material powder composition.
 さらに、本発明の一態様として、前記酸化物は酸化鉄であり、質量%で0.24%以上添加されてもよい。 Furthermore, as one aspect of the present invention, the oxide is iron oxide and may be added in an amount of 0.24% or more by mass%.
 さらに、本発明の一態様として、前記過剰酸素の含有量は、ジルコニウムに対するモル比で4以上であることが好ましい。 Furthermore, as one aspect of the present invention, the content of the excess oxygen is preferably 4 or more in terms of a molar ratio to zirconium.
 本発明によれば、1000℃以上の高温下においても、優れた高温強度を有するとともに、耐酸化性の低下を防止することができる。 According to the present invention, even at a high temperature of 1000 ° C. or higher, it has excellent high-temperature strength and can prevent a decrease in oxidation resistance.
本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼の一実施形態を示す概念図である。1 is a conceptual diagram showing one embodiment of an iron-chromium-aluminum oxide dispersion strengthened steel according to the present invention. FIG. 本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼の製造方法の一実施形態を示すフローチャートである。3 is a flowchart showing an embodiment of a method for producing an iron-chromium-aluminum oxide dispersion strengthened steel according to the present invention. 実施例1における各試験片の化学成分を示す表である。2 is a table showing chemical components of each test piece in Example 1. 実施例1における各試験片の酸化増量の経時変化を示すグラフである。2 is a graph showing the change over time in the increase in oxidation of each test piece in Example 1. FIG. 実施例1における各試験片の酸化増量を示すグラフである。2 is a graph showing an increase in oxidation of each test piece in Example 1. 実施例2における試験片TP1の断面について、電子線マイクロアナライザで分析した結果である。It is the result of having analyzed the cross section of test piece TP1 in Example 2 with the electron beam microanalyzer. 実施例2における試験片TP2の断面について、電子線マイクロアナライザで分析した結果である。It is the result of having analyzed the cross section of test piece TP2 in Example 2 with the electron beam microanalyzer. 実施例2における試験片TP3の断面について、電子線マイクロアナライザで分析した結果である。It is the result of having analyzed the cross section of test piece TP3 in Example 2 with the electron beam microanalyzer. 実施例2における試験片TP4の断面について、電子線マイクロアナライザで分析した結果である。It is the result of having analyzed the cross section of test piece TP4 in Example 2 with the electron beam microanalyzer. 実施例3における各計算試料の化学成分を示す表である。10 is a table showing chemical components of each calculation sample in Example 3. 実施例3における各計算試料で生成する相のモル分率を示す表である。10 is a table showing the molar fraction of phases generated in each calculation sample in Example 3. 実施例3における各計算試料について、マトリックス中の各元素のモル分率とZrの活量を示す表である。It is a table | surface which shows the molar fraction of each element in a matrix, and the activity of Zr about each calculation sample in Example 3. FIG. 実施例3において、Zrに対する過剰酸素のモル比と酸化重量との関係を示すグラフである。In Example 3, it is a graph which shows the relationship between the molar ratio of the excess oxygen with respect to Zr, and oxidation weight. 実施例4において、各試験片のビッカース硬さの測定結果を示すグラフである。In Example 4, it is a graph which shows the measurement result of the Vickers hardness of each test piece. 実施例4において、各試験片の700℃における引張強さの測定結果を示すグラフである。In Example 4, it is a graph which shows the measurement result of the tensile strength in 700 degreeC of each test piece. 実施例5において、試験片TP1の元素マッピングを示す収差補正電子顕微鏡像である。In Example 5, it is an aberration correction electron microscope image which shows element mapping of test piece TP1. 実施例5において、試験片TP4の元素マッピングを示す収差補正電子顕微鏡像である。In Example 5, it is an aberration correction electron microscope image which shows element mapping of test piece TP4.
 以下、本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼およびその製造方法の一実施形態について図面を用いて説明する。なお、本発明において、鉄-クロム-アルミニウム系酸化物分散強化型鋼とは、鉄、クロムおよびアルミニウムを含有する全ての酸化物分散強化型鋼を含む概念である。 Hereinafter, an embodiment of an iron-chromium-aluminum oxide dispersion strengthened steel and a method for producing the same according to the present invention will be described with reference to the drawings. In the present invention, the iron-chromium-aluminum oxide dispersion strengthened steel is a concept including all oxide dispersion strengthened steels containing iron, chromium and aluminum.
 本実施形態の鉄-クロム-アルミニウム系酸化物分散強化型鋼(以下、酸化物分散強化型鋼という)1は、図1に示すように、表面に酸化アルミニウムの被膜2が形成されているとともに、内部にイットリウムとジルコニウムとの複合酸化物3が分散されている。 As shown in FIG. 1, an iron-chromium-aluminum-based oxide dispersion strengthened steel (hereinafter referred to as oxide dispersion strengthened steel) 1 of the present embodiment has an aluminum oxide coating 2 formed on the surface thereof, In addition, a composite oxide 3 of yttrium and zirconium is dispersed.
 酸化アルミニウム(アルミナ:Al)の被膜2(スケール)は、酸化物分散強化型鋼1の耐酸化性を向上させる役割を果たすものである。酸化アルミニウムは、酸化物分散強化型鋼1中のアルミニウムが表面で酸化することにより、被膜2として形成されるようになっている。 The coating 2 (scale) of aluminum oxide (alumina: Al 2 O 3 ) plays a role of improving the oxidation resistance of the oxide dispersion strengthened steel 1. The aluminum oxide is formed as the coating 2 when the aluminum in the oxide dispersion strengthened steel 1 is oxidized on the surface.
 イットリウムとジルコニウムとの複合酸化物3は、酸化物分散強化型鋼1の高温強度を向上させる役割を果たすものである。イットリウムとジルコニウムとの複合酸化物3は、酸化物粒子サイズが小さく数密度が大きいため、分散強化作用を有効に作用させ高温強度を向上させるようになっている。 The composite oxide 3 of yttrium and zirconium plays a role of improving the high temperature strength of the oxide dispersion strengthened steel 1. Since the complex oxide 3 of yttrium and zirconium has a small oxide particle size and a large number density, it effectively acts the dispersion strengthening action and improves the high temperature strength.
 以上の構成において、酸化物分散強化型鋼1中で酸化イットリウム(イットリア:Y)を形成する以上に存在する酸素である過剰酸素が、ジルコニウムに対するモル比で2以上含有されている。このため、酸化物分散強化型鋼1中のジルコニウムは、ほとんど全て酸化して酸化ジルコニウム(ジルコニア:ZrO)となり、酸化イットリウムとの複合酸化物3(YZr)として酸化物分散強化型鋼1の内部に固定される。 In the above configuration, the oxygen dispersion strengthened steel 1 contains 2 or more of excess oxygen, which is oxygen present beyond the formation of yttrium oxide (yttria: Y 2 O 3 ), in a molar ratio to zirconium. Therefore, almost all of the zirconium in the oxide dispersion strengthened steel 1 is oxidized to zirconium oxide (zirconia: ZrO 2 ), and the oxide dispersion strengthens as a composite oxide 3 (Y 2 Zr 2 O 7 ) with yttrium oxide. It is fixed inside the mold steel 1.
 そうすると、酸化物分散強化型鋼1中のジルコニウムの濃度が著しく低下し、酸化アルミニウムの被膜2には取り込まれ難くなる。これにより、環境からの酸素の内方拡散を促進してしまう酸化ジルコニウムの生成が抑制されるため、1000℃以上の高温下においても優れた耐酸化性を維持するようになっている。すなわち、酸化アルミニウムの被膜2に含まれるジルコニウムが少ないほど耐酸化性が向上し、含まれていないときに最も優れた耐酸化性を示すこととなる。 In that case, the concentration of zirconium in the oxide dispersion strengthened steel 1 is remarkably lowered, and it is difficult to be taken into the aluminum oxide coating 2. This suppresses the generation of zirconium oxide that promotes the inward diffusion of oxygen from the environment, so that excellent oxidation resistance is maintained even at a high temperature of 1000 ° C. or higher. That is, as the amount of zirconium contained in the aluminum oxide coating 2 is smaller, the oxidation resistance is improved, and when it is not contained, the most excellent oxidation resistance is exhibited.
 つぎに、本発明に係る酸化物分散強化型鋼1の組成は、上述した過剰酸素の他に、質量%で、Cr(クロム)が12.0~23.0%、Al(アルミニウム)が5.0~8.0%、Ti(チタン)が0.1~1.0%、Zr(ジルコニウム)が0.2~1.0%、Y(酸化イットリウム)が0.3~1.0%、残部がFe(鉄)および不可避不純物からなるものである。以下、これら化学成分の目標組成と、その限定理由について説明する。なお、本明細書において、化学成分は質量%で表記する。 Next, the composition of the oxide dispersion strengthened steel 1 according to the present invention includes, in addition to the above-described excess oxygen, mass%, Cr (chromium) 12.0 to 23.0%, and Al (aluminum) 5. 0 to 8.0%, Ti (titanium) 0.1 to 1.0%, Zr (zirconium) 0.2 to 1.0%, Y 2 O 3 (yttrium oxide) 0.3 to 1. 0%, the balance being Fe (iron) and inevitable impurities. Hereinafter, the target composition of these chemical components and the reason for limitation will be described. In addition, in this specification, a chemical component is described with the mass%.
 Crは、鋼をフェライト相とし、同時に耐酸化性を向上させるための元素である。Crの含有量を12.0~23.0%とすることにより、鋼の基本相がフェライトとなり、かつ酸化アルミニウムの生成が促進され、耐酸化性が向上する。Crの含有量を12.0以上とすることにより、フェライト相が安定する。したがって、Crの含有量は10.0~23.0%が好ましい。 Cr is an element for making steel a ferrite phase and simultaneously improving oxidation resistance. By setting the Cr content to 12.0 to 23.0%, the basic phase of the steel becomes ferrite, the formation of aluminum oxide is promoted, and the oxidation resistance is improved. By setting the Cr content to 12.0 or more, the ferrite phase is stabilized. Therefore, the Cr content is preferably 10.0 to 23.0%.
 Alは、高温下における耐酸化性を向上するための元素である。Alの含有量が5.0%以上であれば、1000℃以上の高温下においても酸化アルミニウムを安定に生成させることができる。一方、8.0%以下であれば、FeAlを生成することがなく、脆化してしまうことがない。よって、Alの含有量は、5.0~8.0%が好ましい。 Al is an element for improving the oxidation resistance at high temperatures. When the Al content is 5.0% or more, aluminum oxide can be stably generated even at a high temperature of 1000 ° C. or higher. On the other hand, if it is 8.0% or less, Fe 3 Al will not be generated and embrittlement will not occur. Therefore, the Al content is preferably 5.0 to 8.0%.
 Tiは、耐酸化性に有害な不純物炭素を炭化物(TiC)として固定する他、Yとの複合酸化物を形成して酸化物粒子を微細化する役割を果たす元素である。Tiの含有量が0.1%以上であれば、上述した微細化作用が期待できる。一方、Tiの含有量が1.0%以下であれば、Tiの過多による材料劣化のおそれがない。この理由から、Tiの含有量は0.1~1.0%が好ましい。 Ti is an element that plays a role of refining oxide particles by forming a complex oxide with Y 2 O 3 in addition to fixing impurity carbon harmful to oxidation resistance as carbide (TiC). If the Ti content is 0.1% or more, the above-described refinement effect can be expected. On the other hand, if the Ti content is 1.0% or less, there is no risk of material deterioration due to excessive Ti. For this reason, the Ti content is preferably 0.1 to 1.0%.
 Zrは、Yと複合酸化物3(YZr)を形成して酸化物粒子を微細化する役割を果たす元素である。Zrの含有量は、添加されるYの全量(0.3~1.0%)を上記の複合酸化物3にするために必要な量に相当するものであり、0.2~1.0%が好ましい。Zrの含有量が1.0%を超えると、高温における酸化が促進されるため留意が必要である。 Zr is an element that plays a role of forming oxide oxide particles by forming Y 2 O 3 and composite oxide 3 (Y 2 Zr 2 O 7 ). The content of Zr corresponds to the amount necessary for making the total amount of Y 2 O 3 added (0.3 to 1.0%) into the composite oxide 3 described above, and is 0.2 to 1.0% is preferred. Note that if the Zr content exceeds 1.0%, oxidation at a high temperature is promoted.
 Yは、酸化物分散強化に不可欠であって高温強度を向上させる役割を果たすものである。Yの含有量が0.3%以上であれば、分散強化の効果により十分な高温強度が確保される。一方、Yの含有量が1.0%以下であれば、Yの酸化物粒子が凝集しにくくなり、過度の添加による材料の劣化が抑制される。この理由から、Yの含有量は0.3~1.0%が好ましい。 Y 2 O 3 is indispensable for strengthening oxide dispersion and plays a role of improving high-temperature strength. If the content of Y 2 O 3 is 0.3% or more, sufficient high-temperature strength is ensured by the effect of dispersion strengthening. On the other hand, if the content of Y 2 O 3 is 1.0% or less, the Y 2 O 3 oxide particles are less likely to aggregate, and deterioration of the material due to excessive addition is suppressed. For this reason, the content of Y 2 O 3 is preferably 0.3 to 1.0%.
 上記成分以外の残部としては、鋼の主成分であるFeの他、混入が避けられない不可避不純物を含有する。なお、本実施形態では、不純物としてC(炭素)が、0.01~0.05%の範囲内で混入されている。 The remainder other than the above components contains inevitable impurities that cannot be avoided in addition to Fe, which is the main component of steel. In this embodiment, C (carbon) is mixed in the range of 0.01 to 0.05% as an impurity.
 つぎに、本発明に係る酸化物分散強化型鋼1の製造方法の一実施形態について、図2を用いて説明する。 Next, an embodiment of a method for producing the oxide dispersion strengthened steel 1 according to the present invention will be described with reference to FIG.
 まず、本実施形態では、上記した各化学成分の元素粉末、合金粉末および酸化物粉末を原料粉末として、上記の目標組成となるように調合する(ステップS1)。つぎに、本実施形態では、酸化物分散強化型鋼1中の過剰酸素が、ジルコニウムに対するモル比で2以上となるように、酸化鉄(Fe)の粉末を用意し、原料粉末に調合する(ステップS2)。なお、a質量%のジルコニウムをZrOに酸化させるために必要な酸化鉄(Fe)は、1.18×a質量%である。よって、本実施形態では、ジルコニウムの最小値が0.2質量%であるため、酸化鉄は、質量%で0.24%以上添加されることとなる。 First, in the present embodiment, the element powder, alloy powder, and oxide powder of each chemical component described above are used as raw material powders so as to have the above target composition (step S1). Next, in this embodiment, a powder of iron oxide (Fe 2 O 3 ) is prepared so that the excess oxygen in the oxide dispersion strengthened steel 1 is 2 or more in terms of the molar ratio with respect to zirconium. (Step S2). Note that iron oxide (Fe 2 O 3 ) necessary for oxidizing a mass% of zirconium to ZrO 2 is 1.18 × a mass%. Therefore, in this embodiment, since the minimum value of zirconium is 0.2% by mass, iron oxide is added by 0.24% or more by mass.
 つづいて、ステップS2で酸化鉄を調合した混合粉末をボールミルに投入し、機械的合金化処理(メカニカルアロイング)を行う(ステップS3)。これにより、混合粉末が原子オーダーで合金化されるとともに、酸化鉄に含まれる酸素が過剰酸素として強制的に酸化物分散強化型鋼1中に取り込まれる。 Subsequently, the mixed powder prepared by mixing iron oxide in step S2 is put into a ball mill, and mechanical alloying treatment (mechanical alloying) is performed (step S3). Thereby, the mixed powder is alloyed on the atomic order, and oxygen contained in the iron oxide is forcibly taken into the oxide dispersion strengthened steel 1 as excess oxygen.
 このような過剰酸素が存在すると、Zrが酸化してZrOを生成し、Yとの複合酸化物3であるYZr(Y・2ZrO)が形成される。よって、添加したZrが全てZrOに変換する以上の過剰酸素を添加すれば、添加したZrは上記の複合酸化物3(YZr)として酸化物分散強化型鋼1中に固定されるため、酸化物分散強化型鋼1中の固溶Zr濃度が著しく低下する。 If such excess oxygen is present, Zr generates a ZrO 2 was oxidized, Y 2 Zr 2 O 7 is a composite oxide 3 and Y 2 O 3 (Y 2 O 3 · 2ZrO 2) is formed The Therefore, if excess oxygen is added that converts all of the added Zr to ZrO 2 , the added Zr is fixed in the oxide dispersion strengthened steel 1 as the composite oxide 3 (Y 2 Zr 2 O 7 ). Therefore, the solid solution Zr concentration in the oxide dispersion strengthened steel 1 is significantly reduced.
 これにより、Zrの拡散が活発になる1000℃以上の高温下においても、酸化アルミニウムの被膜2中に取り込まれるZrが存在しなくなるため、酸化アルミニウムの結晶粒界で酸化ジルコニウムを形成することもない。このため、環境からの酸素の内方拡散を抑制する酸化アルミニウムの被膜2が有効に作用し、1000℃以上の高温下における耐酸化性が維持される。また、酸化アルミニウムの結晶粒の成長を阻害して微細化する酸化ジルコニウムが形成されないことで、酸化アルミニウム中の酸素の粒界拡散が抑制されるため、耐酸化性の低下が防止される。 Thus, even at a high temperature of 1000 ° C. or higher at which Zr diffusion becomes active, Zr taken into the aluminum oxide film 2 does not exist, so that zirconium oxide is not formed at the crystal grain boundaries of aluminum oxide. . For this reason, the aluminum oxide film 2 that suppresses the inward diffusion of oxygen from the environment acts effectively, and the oxidation resistance at a high temperature of 1000 ° C. or higher is maintained. In addition, since the zirconium oxide that inhibits the growth of crystal grains of aluminum oxide and is not refined is formed, diffusion of oxygen in the aluminum oxide in the grain boundary is suppressed, so that a reduction in oxidation resistance is prevented.
 なお、本実施形態では、酸化物分散強化型鋼1中に過剰酸素を導入するための手段として、酸化鉄を添加しているが、これに限定されるものではない。具体的には、上述した原料粉末の組成物であるCr、AlおよびTi等の酸化物として添加してもよい。これにより、酸化物分散強化型鋼1の性質を大きく変えてしまうことなく、所要量の過剰酸素を取り込ませることが可能である。 In this embodiment, iron oxide is added as a means for introducing excess oxygen into the oxide dispersion strengthened steel 1, but the present invention is not limited to this. Specifically, you may add as oxides, such as Cr, Al, and Ti which are the composition of the raw material powder mentioned above. Thereby, it is possible to take in a required amount of excess oxygen without greatly changing the properties of the oxide dispersion strengthened steel 1.
 また、Zrを全てZrOに変換する過剰酸素の量としては、理論上、ジルコニウムに対するモル比で2以上あればよい。ただし、添加した過剰酸素が全てZrOに変換されるとは限らない。よって、本実施形態では、後述する実施例3に基づき、過剰酸素の含有量は、ジルコニウムに対するモル比で3以上であることが好ましく、4以上であることがより好ましい。一方、標準生成自由エネルギーにおいては、ZrOの次にAlが安定である。このため、過剰酸素を添加し過ぎると、添加したアルミニウムがAlとして酸化され、酸化物分散強化型鋼1の性質が変化してしまうおそれがある。よって、過剰酸素の含有量の上限値としては、ジルコニウムに対するモル比で6程度とすることが好ましい。 The amount of excess oxygen that converts all Zr to ZrO 2 is theoretically only required to be 2 or more in terms of the molar ratio to zirconium. However, not all of the added excess oxygen is converted to ZrO 2 . Therefore, in this embodiment, based on Example 3 described later, the content of excess oxygen is preferably 3 or more and more preferably 4 or more in terms of a molar ratio to zirconium. On the other hand, in the standard free energy of formation, Al 2 O 3 is stable next to ZrO 2 . For this reason, when excessive oxygen is added too much, the added aluminum is oxidized as Al 2 O 3 , and the properties of the oxide dispersion strengthened steel 1 may be changed. Therefore, the upper limit of the excess oxygen content is preferably about 6 in terms of molar ratio to zirconium.
 つづいて、上記ステップS2~ステップS3を経て合金化された混合粉末を熱間押出しによって固化成形する(ステップS4)。具体的には、まず、混合粉末を軟鋼性カプセル等に充填し、1150℃で3時間程度加熱する。この加熱中に、イットリウムとジルコニウムとの複合酸化物3が形成される。そして、均一温度になった後、金型で押出しすることにより、混合粉末が棒状等の成形体に固化成形される。 Subsequently, the mixed powder alloyed through steps S2 to S3 is solidified by hot extrusion (step S4). Specifically, first, the mixed powder is filled into a mild steel capsule or the like and heated at 1150 ° C. for about 3 hours. During this heating, a composite oxide 3 of yttrium and zirconium is formed. Then, after reaching a uniform temperature, the mixed powder is solidified and formed into a rod-like molded body by extruding with a mold.
 最後に、ステップS4で固化成形された成型体に対し、焼なまし熱処理を施す(ステップS5)。これにより、熱間押出しによって成形体に導入された加工歪(転位等)が解消され、本実施形態の酸化物分散強化型鋼1が製造される。 Finally, annealing heat treatment is applied to the molded body solidified and formed in step S4 (step S5). Thereby, the processing distortion (dislocation etc.) introduced into the compact by hot extrusion is eliminated, and the oxide dispersion strengthened steel 1 of this embodiment is manufactured.
 以上のような本発明に係る酸化物分散強化型鋼1およびその製造方法によれば、以下のような効果を奏する。
1.ジルコニウムに対するモル比で2以上の過剰酸素を含有させることで、1000℃以上の高温下においても、優れた耐酸化性を維持することができる。
2.ジルコニウムの添加により、微細高密度のイットリウムとジルコニウムとの複合酸化物粒子が生成するため、1000℃以上の高温下における高温強度が向上する。
3.1000℃以上での耐酸化性と高温強度が求められる火力発電用材料、高温加熱炉材料、事故時に安全性が要求される軽水炉燃料被覆管等に利用することができる。
According to the oxide dispersion strengthened steel 1 and the method for producing the same according to the present invention as described above, the following effects can be obtained.
1. By containing excess oxygen of 2 or more in a molar ratio with respect to zirconium, excellent oxidation resistance can be maintained even at a high temperature of 1000 ° C. or more.
2. Addition of zirconium produces fine oxide particles of fine and high density yttrium and zirconium, so that the high temperature strength at a high temperature of 1000 ° C. or higher is improved.
3. It can be used for thermal power generation materials that require oxidation resistance and high temperature strength at 1000 ° C or higher, high temperature heating furnace materials, light water reactor fuel cladding tubes that require safety in the event of an accident, and the like.
 つぎに、本発明に係る酸化物分散強化型鋼1およびその製造方法の実施例について説明する。なお、本発明の技術的範囲は、以下の実施例によって示される特徴に限定されるものではない。 Next, examples of the oxide dispersion strengthened steel 1 and its manufacturing method according to the present invention will be described. The technical scope of the present invention is not limited to the features shown by the following examples.
 本実施例1では、本発明に係る酸化物分散強化型鋼1を製造し、当該酸化物分散強化型鋼1が、1000℃以上の高温下において高い耐酸化性を有していることを確認する実験を行った。 In Example 1, an oxide dispersion strengthened steel 1 according to the present invention is manufactured, and the oxide dispersion strengthened steel 1 is confirmed to have high oxidation resistance at a high temperature of 1000 ° C. or higher. Went.
 試験片としては、図3に示すように、化学成分の異なる4種類の試験片TP1~TP4を用意した。各試験片の基本成分は、Fe-15Cr-6Al-0.5Ti-0.5Y(質量%)とし、TP1のみZrを無添加とした。一方、TP2~TP4についてはZrを添加するとともに、当該Zrに対するモル比が異なるように過剰酸素(Ex.O)を添加した。 As test pieces, four types of test pieces TP1 to TP4 having different chemical components were prepared as shown in FIG. The basic component of each test piece was Fe-15Cr-6Al-0.5Ti-0.5Y 2 O 3 (mass%), and Zr was not added to TP1 alone. On the other hand, for TP2 to TP4, Zr was added and excess oxygen (Ex.O) was added so that the molar ratio to Zr was different.
 具体的には、TP2のモル比は、Zrを全てZrOに変換する過剰酸素量よりも少ない1.47とし、TP3のモル比は、Zrを全てZrOに変換する過剰酸素量よりも少し多い2.38とし、TP4のモル比は、Zrを全てZrOに変換するのに十分な過剰酸素量に相当する3.39とした。 Specifically, the molar ratio of TP2 is set to 1.47 less than an excess amount of oxygen to convert all the Zr to ZrO 2, the molar ratio of TP3 is slightly than the excess amount of oxygen to convert all the Zr to ZrO 2 The molar ratio of TP4 was 3.39 corresponding to the amount of excess oxygen sufficient to convert all Zr to ZrO 2 .
 本実施例1では、まず、上述した各試験片TP1~TP4の合金粉末をボールミル(アトライタ:日本コークス工業株式会社)によりAr雰囲気中で48時間の機械的合金化(メカニカルアロイング:MA)処理を施した。この際、TP3およびTP4については、合金粉末とともに、上述したモル比となるように適量の酸化鉄(Fe)粉末を添加して過剰酸素量を強制的に増加させた。 In Example 1, first, the alloy powder of each of the above test pieces TP1 to TP4 was mechanically alloyed (mechanical alloying: MA) for 48 hours in an Ar atmosphere by a ball mill (Attritor: Nippon Coke Industries, Ltd.). Was given. At this time, for TP3 and TP4, an appropriate amount of iron oxide (Fe 2 O 3 ) powder was added together with the alloy powder so as to have the above-described molar ratio, and the excess oxygen amount was forcibly increased.
 つぎに、機械的合金化処理した合金粉末を軟鋼製カプセルに充填し、真空雰囲気下(10-3Torr)において1150℃で3時間程度加熱した後、熱間押出しにより固化成形し、最終的に1150℃で1時間の焼きなまし熱処理を行った。熱間押出棒の寸法は外径24mm×長さ580mmであり、これらの熱間押出棒から各試験片TP1~TP4を切り出した。 Next, the alloy powder that has been mechanically alloyed is filled into a mild steel capsule, heated in a vacuum atmosphere (10 −3 Torr) at 1150 ° C. for about 3 hours, and then solidified and formed by hot extrusion. An annealing heat treatment was performed at 1150 ° C. for 1 hour. The dimensions of the hot-extrusion rods were 24 mm outer diameter × length 580 mm, and test pieces TP1 to TP4 were cut out from these hot-extrusion rods.
 そして、各試験片TP1~TP4を大気中において1200℃で最長100時間まで酸化させた。その際の重量増加の計時変化を図4に示す。また、1200℃で100時間酸化させた後の各試験片の酸化増量を図5に示す。図4および図5に示すように、TP1については、1000℃以上での耐酸化性を悪化させるZrが無添加であるため、重量増加が最も小さく、高い耐酸化性を有していた。 The test pieces TP1 to TP4 were oxidized in the atmosphere at 1200 ° C. for a maximum of 100 hours. The time change of the weight increase at that time is shown in FIG. Moreover, the oxidation increase of each test piece after oxidizing at 1200 degreeC for 100 hours is shown in FIG. As shown in FIG. 4 and FIG. 5, TP1 did not contain Zr, which deteriorates the oxidation resistance at 1000 ° C. or higher, so that the increase in weight was the smallest and it had high oxidation resistance.
 一方、TP2~TP4については、Zrが添加されているため、TP1と比較すると酸化による増量が大きい。特に、TP2については、過剰酸素がZrに対するモル比で2未満しか添加されていないため、酸化による増量が顕著に大きかった。しかしながら、TP3およびTP4については、Zrとともに、Zrに対するモル比で2以上の過剰酸素が添加されているため、酸化による増量がTP1とほぼ同程度の2.0mg/cm以下にまで抑えられていた。 On the other hand, for TP2 to TP4, since Zr is added, the increase due to oxidation is larger than that of TP1. In particular, for TP2, since the excess oxygen was added in a molar ratio with respect to Zr of less than 2, the increase due to oxidation was significantly large. However, for TP3 and TP4, excess oxygen of 2 or more in molar ratio to Zr is added together with Zr, so that the increase due to oxidation is suppressed to 2.0 mg / cm 2 or less, which is almost the same as TP1. It was.
 以上の本実施例1によれば、本発明に係る製造方法により得られた酸化物分散強化型鋼1は、Zrが添加されていない酸化物分散強化型鋼に匹敵する耐酸化性、すなわち、1000℃以上の高温下においても高い耐酸化性を有することが示された。また、当該高い耐酸化性を有する酸化物分散強化型鋼1は、1200℃で100時間酸化させたときの酸化増量が2.0mg/cm以下であることが示された。 According to the above Example 1, the oxide dispersion strengthened steel 1 obtained by the production method according to the present invention has an oxidation resistance comparable to that of the oxide dispersion strengthened steel not added with Zr, that is, 1000 ° C. It was shown to have high oxidation resistance even at the above high temperatures. The oxide dispersion strengthened steel 1 having high oxidation resistance was shown to have an oxidation increase of 2.0 mg / cm 2 or less when oxidized at 1200 ° C. for 100 hours.
 本実施例2では、本発明に係る酸化物分散強化型鋼1において、酸化アルミニウムの被膜2中にジルコニウムが含有されているか否かを確認する実験を行った。 In Example 2, an experiment was conducted to check whether zirconium was contained in the aluminum oxide coating 2 in the oxide dispersion strengthened steel 1 according to the present invention.
 具体的には、実施例1において作製し酸化された各試験片TP1~TP4を切断し、樹脂で固めた後、その断面を電子線マイクロアナライザ(EPMA:Electron Probe MicroAnalyser)を用いて元素分析を行った。その結果を図6~図9に示す。 Specifically, each of the test pieces TP1 to TP4 prepared and oxidized in Example 1 was cut and solidified with a resin, and then the cross section was subjected to elemental analysis using an electron beam microanalyzer (EPMA). went. The results are shown in FIGS.
 図6に示すように、Zrが無添加のTP1においては、その表面に平滑で厚さが比較的薄い酸化アルミニウムの被膜2が形成されていた。一方、Zrを添加したにも関わらず、過剰酸素量が少ないTP2においては、図7に示すように、酸化アルミニウムの被膜2は凹凸が著しくなり、当該被膜2にはZrが含まれていた。ここで、Zrの方がAlよりも酸化物の標準生成自由エネルギーが低く酸化物になりやすいこと、および酸化ジルコニウムと酸化アルミニウムは互いに固溶しないことを考えると、酸化アルミニウム中のZrは酸化ジルコニウムとして結晶粒界に存在しているものと考えられる。 As shown in FIG. 6, in TP1 to which Zr was not added, a smooth and relatively thin aluminum oxide film 2 was formed on the surface thereof. On the other hand, despite the addition of Zr, in TP2 having a small excess oxygen amount, as shown in FIG. 7, the aluminum oxide film 2 was significantly uneven, and the film 2 contained Zr. Here, considering that Zr has a lower standard free energy of formation of oxide than Al and is likely to be an oxide, and that zirconium oxide and aluminum oxide do not form a solid solution with each other, Zr in aluminum oxide is zirconium oxide. It is thought that it exists in the crystal grain boundary.
 一方、添加されたZrに対するモル比で2以上の過剰酸素を添加したTP3およびTP4については、図8および図9に示すように、TP1と同様、平滑で厚さが比較的薄い酸化アルミニウムの被膜2が形成されていた。また、当該被膜2中には、Zrが含有されていなかった。 On the other hand, for TP3 and TP4 to which excess oxygen of 2 or more was added in a molar ratio to the added Zr, as shown in FIGS. 8 and 9, a smooth and relatively thin aluminum oxide film as in TP1 2 was formed. Further, Zr was not contained in the coating 2.
 以上の本実施例2によれば、本発明に係る製造方法により得られた酸化物分散強化型鋼1においては、Zrが無添加の酸化物分散強化型鋼と同様の酸化アルミニウムの被膜2が形成されるとともに、当該被膜2中にジルコニウムが含有されていないことが示された。 According to the above Example 2, in the oxide dispersion strengthened steel 1 obtained by the manufacturing method according to the present invention, the same aluminum oxide film 2 as that of the oxide dispersion strengthened steel without addition of Zr is formed. In addition, it was shown that zirconium was not contained in the coating 2.
 本実施例3では、本発明に係る酸化物分散強化型鋼1において、Zrを添加するとともに過剰酸素を増加させると、耐酸化性が向上する原因を検討する計算を行った。 In Example 3, in the oxide dispersion strengthened steel 1 according to the present invention, when Zr was added and excess oxygen was increased, a calculation for examining the cause of improving the oxidation resistance was performed.
 具体的には、図10に示すように、Fe-15Cr-7Al-0.5Ti-0.4Zr-0.5Y(質量%)を基本成分とし、0.5Yに相当するYとOの濃度を設定するとともに、過剰酸素量をパラメータとした4種類の化学成分を有する計算試料1~4を想定した。なお、計算試料1は、過剰酸素が添加されておらず、計算試料2~4は、ぞれぞれZrに対するモル比が、1.28、2.13および3.13となる過剰酸素が添加されるものとした。 Specifically, as shown in FIG. 10, Fe-15Cr-7Al-0.5Ti-0.4Zr-0.5Y 2 O 3 (mass%) is a basic component and corresponds to 0.5Y 2 O 3 . The calculation samples 1 to 4 having four kinds of chemical components with the Y and O concentrations set and the excess oxygen amount as a parameter were assumed. In addition, the calculation sample 1 is not added with excess oxygen, and the calculation samples 2 to 4 are added with excess oxygen having molar ratios to Zr of 1.28, 2.13, and 3.13, respectively. It was supposed to be.
 そして、上記各計算試料1~4について、多成分系の熱力学的平衡状態を予測する熱力学計算プログラム(FactSage:計算力学研究センター社)を用いて、生成される相のモル分率、およびマトリックス(母相)中に固溶している各元素のモル分率とその活量を1200℃にて試算した。それらの結果を図11および図12に示す。 For each of the above calculation samples 1 to 4, using the thermodynamic calculation program (FactSage: Computational Mechanics Research Center) that predicts the thermodynamic equilibrium state of the multi-component system, The molar fraction and activity of each element dissolved in the matrix (matrix) were estimated at 1200 ° C. The results are shown in FIG. 11 and FIG.
 図11に示すように、計算試料1では過剰酸素は存在しないが、添加したZrはYと反応して複合酸化物であるYZrを生成している。このYZrはY・2ZrOの組成に相当し、酸化アルミニウムは生成されない。マトリックスは体心立方格子構造(BCC:body-centered cubic)からなるフェライト相である。図12に示すように、Zrのモル分率は2.23×10-3であり、活量は8.49×10-4と高い値であった。 As shown in FIG. 11, although excess oxygen does not exist in the calculation sample 1, the added Zr reacts with Y to produce Y 2 Zr 2 O 7 which is a complex oxide. This Y 2 Zr 2 O 7 corresponds to the composition of Y 2 O 3 · 2ZrO 2 , and no aluminum oxide is generated. The matrix is a ferrite phase having a body-centered cubic (BCC) structure. As shown in FIG. 12, the molar fraction of Zr was 2.23 × 10 −3 and the activity was as high as 8.49 × 10 −4 .
 計算試料2では、図11に示すように、YZrのモル分率が増加しているが、過剰酸素のジルコニウムに対するモル比は2に満たない1.28であるため、図12に示すように、マトリックスに固溶しているZrのモル分率は7.82×10-4と比較的高く、添加したZrのうちの約35%ものZrがマトリックス中に固溶されていた。 In the calculation sample 2, as shown in FIG. 11, the molar fraction of Y 2 Zr 2 O 7 is increased, but the molar ratio of excess oxygen to zirconium is 1.28 which is less than 2, so FIG. As shown in FIG. 4 , the molar fraction of Zr dissolved in the matrix was relatively high at 7.82 × 10 −4, and about 35% of the added Zr was dissolved in the matrix. .
 しかしながら、計算試料3,4においては、図11に示すように、酸化アルミニウムも生成していた。このため、標準生成自由エネルギーの関係からすると、添加したZrのほとんどが過剰酸素によってYZrを生成し、余った過剰酸素によって酸化アルミニウムが生成されたものと思われる。 However, in the calculation samples 3 and 4, aluminum oxide was also generated as shown in FIG. For this reason, it is considered that most of the added Zr produced Y 2 Zr 2 O 7 by excess oxygen, and aluminum oxide was produced by the excess excess oxygen, from the viewpoint of the standard free energy of formation.
 また、計算試料3,4においては、図12に示すように、マトリックスに固溶しているZrのモル分率は約1.6×10-4と、計算試料1の7%程度にまで低下しており、ZrのほとんどがYZrとして固定されていた。また、このときのマトリックス中のZrの活量は6.1×10-5程度であり、こちらも計算試料1の7%程度にまで著しく低下していた。 In the calculation samples 3 and 4, as shown in FIG. 12, the molar fraction of Zr dissolved in the matrix is about 1.6 × 10 −4, which is about 7% of the calculation sample 1. Most of Zr was fixed as Y 2 Zr 2 O 7 . Further, the activity of Zr in the matrix at this time was about 6.1 × 10 −5 , which was also significantly reduced to about 7% of the calculation sample 1.
 以上より、Zrの添加とともに過剰酸素量を増大させた場合、添加したZrのほとんどがYZrとして固定されるため、マトリックス中のZrの活量が著しく低下する。このため、Zrが酸化アルミニウムの被膜2に取り込まれて、環境からの酸素の内方拡散を促進する酸化ジルコニウムを形成することがないため、Zrが添加されていない酸化物分散強化型鋼と同様、1000℃以上の高温下においても優れた耐酸化性を示すものと考えられる。 From the above, when the amount of excess oxygen is increased with the addition of Zr, most of the added Zr is fixed as Y 2 Zr 2 O 7 , so that the activity of Zr in the matrix is significantly reduced. For this reason, since Zr is not taken into the aluminum oxide coating 2 to form zirconium oxide that promotes inward diffusion of oxygen from the environment, like the oxide dispersion strengthened steel to which Zr is not added, It is considered that excellent oxidation resistance is exhibited even at a high temperature of 1000 ° C. or higher.
 なお、以上の結果より、実施例1の図5をZrに対する過剰酸素のモル比で整理したグラフを図13に示す。図13に示すように、添加したZrに対する過剰酸素のモル比が、酸化ジルコニウムの理論値に相当する2以上であれば、Zrが添加されていない酸化物分散強化型鋼と同等レベルの耐酸化性を維持することが示された。また、図13に示すように、添加したZrに対する過剰酸素のモル比が、Zrを全てZrOに変換するのに十分な過剰酸素量に相当する3以上であることが好ましく、4以上であれば、より確実に、Zrが添加されていない酸化物分散強化型鋼と同等レベルの耐酸化性が確保されることが予想された。 From the above results, FIG. 13 shows a graph in which FIG. 5 of Example 1 is arranged by the molar ratio of excess oxygen to Zr. As shown in FIG. 13, if the molar ratio of excess oxygen to added Zr is 2 or more corresponding to the theoretical value of zirconium oxide, the oxidation resistance of the same level as that of the oxide dispersion strengthened steel not added with Zr. Was shown to maintain. Further, as shown in FIG. 13, the molar ratio of excess oxygen to added Zr is preferably 3 or more, which corresponds to the amount of excess oxygen sufficient to convert all Zr to ZrO 2, and preferably 4 or more. For example, it was expected that the same level of oxidation resistance as that of the oxide dispersion strengthened steel to which Zr was not added was ensured.
 ただし、過剰酸素を添加し過ぎると、添加したアルミニウムがYZrの次に安定なAlとして酸化され、酸化物分散強化型鋼1を変性させるおそれがある。よって、過剰酸素量の上限値としては、ジルコニウムに対するモル比で6程度とすることが好ましい。 However, if excessive oxygen is added excessively, the added aluminum is oxidized as Y 2 Zr 2 O 7 , the next stable Al 2 O 3 , and the oxide dispersion strengthened steel 1 may be modified. Therefore, the upper limit of the excess oxygen amount is preferably about 6 in terms of molar ratio to zirconium.
 以上の本実施例3によれば、本発明に係る酸化物分散強化型鋼1において、添加したZrを全てYZrにしうる過剰酸素を添加すると、1000℃以上の高温下における耐酸化性が向上することが示された。また、過剰酸素の含有量としては、ジルコニウムに対するモル比で2以上であればよく、好ましくは3以上であり、より好ましくは4以上であることが示された。 According to the above Example 3, in the oxide dispersion strengthened steel 1 according to the present invention, when excess oxygen capable of making all the added Zr Y 2 Zr 2 O 7 is added, the oxidation resistance at a high temperature of 1000 ° C. or higher. It has been shown that the performance is improved. Further, the content of excess oxygen may be 2 or more in terms of molar ratio to zirconium, preferably 3 or more, and more preferably 4 or more.
 本実施例4では、本発明に係る酸化物分散強化型鋼1について、ビッカース硬さおよび引張強さを確認する実験を行った。 In Example 4, an experiment was conducted to confirm the Vickers hardness and tensile strength of the oxide dispersion strengthened steel 1 according to the present invention.
 具体的には、実施例1で作製した試験片TP1~TP4のそれぞれについて、室温におけるビッカース硬さと、700℃における引張強さを測定した。その結果をそれぞれ図14および図15に示す。図14および図15に示すように、Zrが無添加のTP1に比べて、Zrを添加したTP2では、ビッカース硬さおよび引張強さの双方が向上していた。また、Zrとともに十分な過剰酸素を添加したTP3およびTP4では、ビッカース硬さおよび引張強さの双方がさらに強化され、過剰酸素の増加に従って強化されていた。 Specifically, the Vickers hardness at room temperature and the tensile strength at 700 ° C. were measured for each of the test pieces TP1 to TP4 prepared in Example 1. The results are shown in FIGS. 14 and 15, respectively. As shown in FIGS. 14 and 15, both Vickers hardness and tensile strength were improved in TP2 to which Zr was added, compared to TP1 to which Zr was not added. Moreover, in TP3 and TP4 to which sufficient excess oxygen was added together with Zr, both Vickers hardness and tensile strength were further strengthened, and were strengthened as the excess oxygen increased.
 以上の本実施例4によれば、本発明に係る酸化物分散強化型鋼1においては、Zrとともに十分な過剰酸素を添加することにより、Zrの分散強化作用が有効に作用し、高温強度を向上させることが示された。 According to the above Example 4, in the oxide dispersion strengthened steel 1 according to the present invention, by adding sufficient excess oxygen together with Zr, the dispersion strengthening action of Zr works effectively, and the high temperature strength is improved. It was shown that
 本実施例5では、本発明に係る酸化物分散強化型鋼1において、分散されている酸化物粒子を確認する実験を行った。 In Example 5, an experiment was conducted to confirm dispersed oxide particles in the oxide dispersion strengthened steel 1 according to the present invention.
 具体的には、実施例1で作成した試験片のTP1とTP4について、収差補正電子顕微鏡(Titan Cubed G2:FEI社)を用いて酸化物粒子の元素マッピングを行った。その結果を図16および図17に示す。図16に示すように、Zrが無添加のTP1において観察された酸化物粒子は、イットリウムとアルミニウムとの複合酸化物であり、その平均サイズは50nm程度にまで粗大化していた。また、小さな酸化物粒子にはアルミニウムが含有されていなかった。 Specifically, elemental mapping of oxide particles was performed on the test pieces TP1 and TP4 created in Example 1 using an aberration correction electron microscope (Titan-Cubed-G2: FEI). The results are shown in FIG. 16 and FIG. As shown in FIG. 16, the oxide particles observed in TP1 to which Zr was not added were a composite oxide of yttrium and aluminum, and the average size thereof was coarsened to about 50 nm. Further, the small oxide particles did not contain aluminum.
 一方、図17に示すように、本発明に係るTP4において観察された酸化物粒子は、イットリウムとジルコニウムとの複合酸化物3であり、その平均サイズは10nm程度に微細化していた。そして、当該微細化した酸化物粒子にアルミニウムは含まれていなかった。 On the other hand, as shown in FIG. 17, the oxide particles observed in TP4 according to the present invention were the composite oxide 3 of yttrium and zirconium, and the average size thereof was refined to about 10 nm. The refined oxide particles did not contain aluminum.
 以上のとおり、TP1とTP4における酸化物粒子の数密度を比較すると、TP4におけるイットリウムとジルコニウムとの酸化物粒子の方が、TP1におけるイットリウムとアルミニウムとの酸化物粒子よりも明らかに増加している。よって、高い数密度を有するイットリウムとジルコニウムとの酸化物粒子の形成が、実施例4で示されたとおり、TP4におけるビッカース硬さと700℃での引張強さの増大を引き起こしたものと考えられる。 As described above, when the number density of oxide particles in TP1 and TP4 is compared, the oxide particles of yttrium and zirconium in TP4 are clearly increased than the oxide particles of yttrium and aluminum in TP1. . Therefore, it is considered that the formation of oxide particles of yttrium and zirconium having a high number density caused an increase in the Vickers hardness at TP4 and the tensile strength at 700 ° C. as shown in Example 4.
 以上の本実施例5によれば、本発明に係る酸化物分散強化型鋼1は、イットリウムとジルコニウムとの微細化した複合酸化物3が分散されていることが示された。 According to the above Example 5, it was shown that the oxide dispersion strengthened steel 1 according to the present invention is dispersed with the refined composite oxide 3 of yttrium and zirconium.
 なお、本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼1およびその製造方法は、前述した実施形態および実施例に限定されるものではなく、適宜変更することができる。 The iron-chromium-aluminum-based oxide dispersion strengthened steel 1 and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments and examples, and can be changed as appropriate.
 本発明に係る鉄-クロム-アルミニウム系酸化物分散強化型鋼1は、1000℃以上の高温下において、高温強度および優れた耐酸化性が求められる材料として利用でき、例えば、軽水炉の事故時においても安全性の高い燃料被覆管、高速増殖炉燃料要素用材料、核融合炉第一壁材料、火力発電用材料、高温加熱炉材料等に好適な材料である。 The iron-chromium-aluminum oxide dispersion strengthened steel 1 according to the present invention can be used as a material that requires high-temperature strength and excellent oxidation resistance at a high temperature of 1000 ° C. or higher. For example, even in the event of a light water reactor accident It is a material suitable for highly safe fuel cladding tubes, fast breeder reactor fuel element materials, fusion reactor first wall materials, thermal power generation materials, high-temperature heating furnace materials, and the like.
 1 鉄-クロム-アルミニウム系酸化物分散強化型鋼
 2 被膜
 3 イットリウムとジルコニウムとの複合酸化物
1 Iron-chromium-aluminum oxide dispersion strengthened steel 2 Coating 3 Composite oxide of yttrium and zirconium

Claims (9)

  1.  表面に酸化アルミニウムの被膜が形成されているとともに、内部にイットリウムとジルコニウムとの複合酸化物が分散されている酸化物分散強化型鋼であって、前記酸化物分散強化型鋼中で酸化イットリウムを形成する以上に存在する酸素である過剰酸素が、前記ジルコニウムに対するモル比で2以上含有されている、鉄-クロム-アルミニウム系酸化物分散強化型鋼。 An oxide dispersion strengthened steel having an aluminum oxide film formed on the surface and a composite oxide of yttrium and zirconium dispersed therein, and forming yttrium oxide in the oxide dispersion strengthened steel An iron-chromium-aluminum oxide dispersion-strengthened steel containing excess oxygen, which is oxygen present as described above, in a molar ratio of 2 or more with respect to zirconium.
  2.  前記被膜にはジルコニウムが含有されていない、請求項1に記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼。 The iron-chromium-aluminum oxide dispersion strengthened steel according to claim 1, wherein the coating does not contain zirconium.
  3.  質量%で、Crが12.0~23.0%、Alが5.0~8.0%、Tiが0.1~1.0%、Zrが0.2~1.0%、Yが0.3~1.0%、残部がFeおよび不可避不純物からなる、請求項1または請求項2に記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼。 % By mass, Cr is 12.0 to 23.0%, Al is 5.0 to 8.0%, Ti is 0.1 to 1.0%, Zr is 0.2 to 1.0%, Y 2 The iron-chromium-aluminum-based oxide dispersion strengthened steel according to claim 1 or 2, wherein O 3 is 0.3 to 1.0%, and the balance is Fe and inevitable impurities.
  4.  前記過剰酸素の含有量は、ジルコニウムに対するモル比で4以上である、請求項1から請求項3のいずれかに記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼。 The iron-chromium-aluminum-based oxide dispersion strengthened steel according to any one of claims 1 to 3, wherein the excess oxygen content is 4 or more in terms of a molar ratio to zirconium.
  5.  1200℃で100時間酸化させたときの酸化増量が2.0mg/cm以下である、請求項1から請求項4のいずれかに記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼。 The iron-chromium-aluminum-based oxide dispersion strengthened steel according to any one of claims 1 to 4, wherein an oxidation increase when oxidized at 1200 ° C for 100 hours is 2.0 mg / cm 2 or less.
  6.  質量%で、Crが12.0~23.0%、Alが5.0~8.0%、Tiが0.1~1.0%、Zrが0.2~1.0%、Yが0.3~1.0%、残部がFeおよび不可避不純物からなる原料粉末とともに、酸化物分散強化型鋼中で酸化イットリウムを形成する以上に存在する酸素である過剰酸素をジルコニウムに対するモル比で2以上添加し、機械的合金化処理する、鉄-クロム-アルミニウム系酸化物分散強化型鋼の製造方法。 % By mass, Cr is 12.0 to 23.0%, Al is 5.0 to 8.0%, Ti is 0.1 to 1.0%, Zr is 0.2 to 1.0%, Y 2 Excess oxygen, which is oxygen present in excess of forming yttrium oxide in the oxide dispersion strengthened steel, together with the raw material powder consisting of 0.3 to 1.0% of O 3 and the balance of Fe and inevitable impurities, the molar ratio to zirconium A method for producing an iron-chromium-aluminum oxide dispersion strengthened steel, wherein two or more of the above are added and mechanically alloyed.
  7.  前記過剰酸素は、前記原料粉末の組成物の酸化物として添加される、請求項6に記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼の製造方法。 The method for producing iron-chromium-aluminum oxide dispersion strengthened steel according to claim 6, wherein the excess oxygen is added as an oxide of the composition of the raw material powder.
  8.  前記酸化物は酸化鉄であり、質量%で0.24%以上添加される、請求項7に記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼の製造方法。 The method for producing an iron-chromium-aluminum-based oxide dispersion strengthened steel according to claim 7, wherein the oxide is iron oxide and is added in an amount of 0.24% or more by mass.
  9.  前記過剰酸素の含有量は、ジルコニウムに対するモル比で4以上である、請求項6から請求項8のいずれかに記載の鉄-クロム-アルミニウム系酸化物分散強化型鋼の製造方法。 The method for producing an iron-chromium-aluminum oxide dispersion strengthened steel according to any one of claims 6 to 8, wherein the excess oxygen content is 4 or more in terms of a molar ratio to zirconium.
PCT/JP2016/056402 2015-03-02 2016-03-02 Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same WO2016140258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039891A JP2018070897A (en) 2015-03-02 2015-03-02 Iron-chromium-aluminum oxide-dispersed strengthened steel and method for producing the same
JP2015-039891 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140258A1 true WO2016140258A1 (en) 2016-09-09

Family

ID=56849003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056402 WO2016140258A1 (en) 2015-03-02 2016-03-02 Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same

Country Status (2)

Country Link
JP (1) JP2018070897A (en)
WO (1) WO2016140258A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182882A (en) * 2018-09-30 2019-01-11 中国科学院金属研究所 A kind of preparation method of high intensity oxide dispersion intensifying Fe based alloy
CN110629128A (en) * 2019-10-15 2019-12-31 哈尔滨工程大学 FeCrAlZr cladding material and preparation method thereof
CN111057958A (en) * 2019-12-22 2020-04-24 中国科学院金属研究所 Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof
CN111574223A (en) * 2020-05-29 2020-08-25 Oppo广东移动通信有限公司 Reinforced zirconia ceramic and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090613A1 (en) * 2018-10-30 2020-05-07 京セラ株式会社 Porous ceramic, member for semiconductor manufacturing apparatus, shower plate, and plug
CN109594017A (en) * 2018-11-27 2019-04-09 中国科学院金属研究所 A kind of preparation method of oxide dispersion intensifying FeCrAl alloy pipe
CN111748762B (en) * 2020-06-16 2022-09-23 北京首钢吉泰安新材料有限公司 Iron-chromium-aluminum alloy wire with oxide film, and preparation method, application and preparation device thereof
SE545338C2 (en) * 2021-11-11 2023-07-11 Kanthal Ab A wire of a Fe-Cr-AI alloy powder and use of said powder
WO2023086005A1 (en) * 2021-11-11 2023-05-19 Kanthal Ab A tube of a fe-cr-al alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232920A (en) * 1990-02-06 1991-10-16 Daido Steel Co Ltd Skid rail using dispersively reinforced iron-chrome alloy
JPH0734179A (en) * 1993-07-21 1995-02-03 Sumitomo Metal Ind Ltd Production of high rigidity material
JPH09269198A (en) * 1996-03-29 1997-10-14 Daido Steel Co Ltd Gas permeable solid
JP2004131816A (en) * 2002-10-11 2004-04-30 Japan Nuclear Cycle Development Inst States Of Projects Method for producing oxide dispersion-strengthened ferritic steel tube
JP2010065302A (en) * 2008-09-12 2010-03-25 Kyoto Univ Super ods steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232920A (en) * 1990-02-06 1991-10-16 Daido Steel Co Ltd Skid rail using dispersively reinforced iron-chrome alloy
JPH0734179A (en) * 1993-07-21 1995-02-03 Sumitomo Metal Ind Ltd Production of high rigidity material
JPH09269198A (en) * 1996-03-29 1997-10-14 Daido Steel Co Ltd Gas permeable solid
JP2004131816A (en) * 2002-10-11 2004-04-30 Japan Nuclear Cycle Development Inst States Of Projects Method for producing oxide dispersion-strengthened ferritic steel tube
JP2010065302A (en) * 2008-09-12 2010-03-25 Kyoto Univ Super ods steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182882A (en) * 2018-09-30 2019-01-11 中国科学院金属研究所 A kind of preparation method of high intensity oxide dispersion intensifying Fe based alloy
CN110629128A (en) * 2019-10-15 2019-12-31 哈尔滨工程大学 FeCrAlZr cladding material and preparation method thereof
CN111057958A (en) * 2019-12-22 2020-04-24 中国科学院金属研究所 Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof
CN111057958B (en) * 2019-12-22 2022-01-14 中国科学院金属研究所 Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof
CN111574223A (en) * 2020-05-29 2020-08-25 Oppo广东移动通信有限公司 Reinforced zirconia ceramic and preparation method thereof
CN111574223B (en) * 2020-05-29 2022-07-26 Oppo广东移动通信有限公司 Reinforced zirconia ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2018070897A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2016140258A1 (en) Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same
Holcomb et al. Oxidation of CoCrFeMnNi high entropy alloys
Jablonski et al. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application
KR101871590B1 (en) Stress-induced phase transformable dual-phase high entropy alloy and manufacturing method for the same
KR101884442B1 (en) High entropy alloy overcoming strength-ductility trade-off
Yoshihara et al. Effects of Nb addition on oxidation behavior of TiAl
Waseem et al. A combinatorial approach for the synthesis and analysis of AlxCryMozNbTiZr high-entropy alloys: Oxidation behavior
Azim et al. Creep resistance and oxidation behavior of novel Mo-Si-B-Ti alloys
FR2632659A1 (en) FERRITIC STEEL REINFORCED BY DISPERSION FOR HIGH TEMPERATURE STRUCTURES
KR102626462B1 (en) A ferritic alloy
CA2833693C (en) Steel for solid oxide fuel cells having excellent oxidation resistance, and member for solid oxide fuel cells using same
Pan et al. High-temperature oxidation behaviour of TiAl alloys with Co addition
Zhao et al. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition
Weigelt et al. Ceramic Processing for TRIP‐Steel/Mg‐PSZ Composite Materials for Mechanical Applications
Naumenko et al. Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements
Vilémová et al. Thermal and oxidation behavior of CoCrFeMnNi alloy with and without yttrium oxide particle dispersion
JP4413549B2 (en) Method for producing martensitic oxide dispersion strengthened steel with excellent high temperature strength
Hinrichs et al. A novel nitridation-and pesting-resistant Cr-Si-Mo alloy
Gong et al. UN and U3Si2 composites densified by spark plasma sintering for accident-tolerant fuels
KR101691916B1 (en) Cr-Al binary alloy having excellent corrosion resistance and the method for manufacturing thereof
Kommineni et al. Mechanical and high temperature oxidation response of Nb-18.7 Si–5Ti–5Zr alloy
Gang et al. Influence of vanadium on the oxidation resistance of the intermetallic phase Nb 5 Si 3
Guo et al. Relative strength of β phase stabilization by transition metals in titanium alloys: The Mo equivalent from a first principles study
KR20190109004A (en) Complex concentrated refractory metal-silicide composite with high strength and ductility and manufacturing method for the same
Kumar et al. Effect of nanocrystalline structure on the oxidation behavior of Fe–20Cr–3Al alloy at high temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758951

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP