WO2016140067A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2016140067A1
WO2016140067A1 PCT/JP2016/054600 JP2016054600W WO2016140067A1 WO 2016140067 A1 WO2016140067 A1 WO 2016140067A1 JP 2016054600 W JP2016054600 W JP 2016054600W WO 2016140067 A1 WO2016140067 A1 WO 2016140067A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
speed reducer
motor
input shaft
wheel
Prior art date
Application number
PCT/JP2016/054600
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 稔
朋久 魚住
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016140067A1 publication Critical patent/WO2016140067A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
  • a conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example.
  • the in-wheel motor drive device of Patent Document 1 is disposed between a motor unit that generates a driving force, a wheel bearing unit connected to a wheel, and the motor unit and the wheel bearing unit, and the rotation of the motor unit. And a speed reducer part that decelerates and transmits the speed to the wheel bearing part.
  • the motor part and the reduction gear part are accommodated in the casing.
  • This in-wheel motor drive device is provided with a lubrication mechanism for supplying lubricating oil to the motor unit and the reduction gear unit.
  • the lubrication mechanism is provided in the motor unit, a rotary pump that pumps the lubricating oil, an oil tank that is provided in the lower part of the casing and temporarily stores the lubricating oil, and an oil passage provided in the motor unit and the speed reducer unit And an oil hole, and has a structure in which the lubricating oil circulates through the motor unit and the speed reducer unit.
  • This lubrication mechanism supplies the lubricating oil to the motor section from the oil passage of the casing through the oil passage of the motor rotation shaft by the rotary pump, and the oil passage of the reduction gear input shaft communicating with the oil passage of the motor rotation shaft.
  • the shaft center oil supply structure is used to supply lubricating oil to the speed reducer via.
  • the motor part is cooled by discharging the lubricating oil supplied via the oil passage of the motor rotation shaft by the pump pressure and centrifugal force accompanying the motor rotation. Further, the lubricant supplied through the oil passage of the reduction gear input shaft is discharged by the reduction gear portion, whereby the reduction gear portion is cooled and lubricated.
  • the lubrication mechanism of the above-described conventional in-wheel motor drive device supplies lubricating oil from the oil passage of the casing to the motor portion via the oil passage of the motor rotation shaft by the rotary pump, and the oil of the motor rotation shaft.
  • the shaft has a central oil supply structure that supplies lubricating oil to the speed reducer section via an oil path of a speed reducer input shaft communicating with the road.
  • the oil passage of the speed reducer input shaft for supplying lubricating oil to the speed reducer portion is formed along the axial direction inside the speed reducer input shaft.
  • Oil holes are formed at a plurality of locations from the upstream side to the downstream side of the oil passage. Each oil hole communicates with the aforementioned oil passage and opens to the outside of the speed reducer input shaft of the speed reducer section.
  • Lubricating oil supplied from the upstream side of the oil passage is discharged from oil holes formed at a plurality of locations toward the downstream side, thereby cooling and lubricating the speed reducer portion.
  • the lubrication mechanism has an axial oil supply structure in which oil holes are formed at a plurality of locations from the upstream side to the downstream side of the oil passage of the speed reducer input shaft, the downstream side of the oil passage during low-speed rotation of the motor As a result, the amount of the lubricating oil reaching the position decreases and the lubricating oil supplied to the speed reducer portion on the downstream side of the oil passage may be insufficient.
  • the lubricating oil supplied to the speed reducer portion is insufficient on the downstream side of the oil passage, it becomes difficult not only to suppress the heat generation of the speed reducer portion on the downstream side of the oil passage, but also rotation due to insufficient lubrication. Partial damage may occur early.
  • the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to improve the efficiency of the speed reducer and reduce the speed reducer by supplying lubricating oil to the speed reducer part without excess or deficiency.
  • An object of the present invention is to provide an in-wheel motor drive device capable of improving the cooling performance of the part.
  • the present invention provides a motor unit, a reduction gear unit, a wheel bearing unit, a casing for housing the motor unit and the reduction gear unit, and a casing oil by a rotary pump.
  • An in-wheel motor drive device comprising a lubrication mechanism having a central oil supply structure for supplying lubricating oil from a road to a reduction gear input shaft of a reduction gear portion via a motor rotation shaft of a motor portion, , An oil passage formed along the axial direction inside the reducer input shaft, and arranged at a plurality of locations from the upstream side to the downstream side of the oil passage, and communicates with the oil passage to the outside of the reducer input shaft. And an oil passage having an equivalent pipe diameter of each oil hole of 0.5 mm or more and 4 mm or less.
  • the applicant of the present application paid attention to the hole diameter of the oil hole formed in the speed reducer input shaft in order to supply the lubricating oil to the speed reducer part without excess or deficiency.
  • the opening shape of the oil hole in addition to a perfect circle shape, various shapes such as an elliptical shape and a rectangular shape are taken into consideration, whereby the hole diameter of the oil hole is defined by the equivalent pipe diameter.
  • the equivalent pipe diameter of the oil hole is set to ⁇ 0.5 mm or more and ⁇ 4 mm or less, the lubricating oil discharged from the oil hole does not become excessive at the time of high-speed rotation of the motor, and lubrication is performed by the reduction gear unit. An increase in stirring resistance due to oil can be suppressed and reduction gear efficiency can be improved.
  • the cooling performance of the speed reducer is improved to suppress heat generation of the speed reducer and damage to the rotating part due to sufficient lubrication Can be prevented.
  • the equivalent pipe diameter of each oil hole is ⁇ 1 mm or more and ⁇ 2.5 mm or less. If it prescribes
  • the equivalent pipe diameter of the oil hole is set to ⁇ 0.5 mm or more and ⁇ 4 mm or less, so that the lubricating oil discharged from the oil hole does not become excessive at the time of high-speed rotation of the motor. Therefore, the increase in the stirring resistance due to the lubricating oil can be suppressed, and the reduction gear efficiency can be improved.
  • the cooling performance of the speed reducer is improved to suppress heat generation of the speed reducer and damage to the rotating part due to sufficient lubrication Can be prevented.
  • the speed reducer efficiency is improved and the cooling performance and durability performance of the speed reducer part are improved.
  • FIG. 1 is a longitudinal sectional view showing an overall configuration of an in-wheel motor drive device in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. It is a principal part expanded sectional view which shows the reduction gear part of FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG. It is a cross-sectional view which shows the rotary pump of FIG. It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device.
  • FIG. 7 is a rear sectional view showing the electric vehicle of FIG. 6.
  • FIG. 6 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted
  • FIG. 7 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear.
  • the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14.
  • Equip As shown in FIG. 7, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms.
  • the suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
  • the electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
  • the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
  • the in-wheel motor drive device 21 of this embodiment has the following structure. 1 is a longitudinal sectional view showing a schematic configuration of an in-wheel motor drive device 21, FIG. 2 is a sectional view taken along line PP in FIG. 1, FIG. 3 is an enlarged sectional view showing a reduction gear section B, and FIG. FIG. 5 is a cross-sectional view showing the rotary pump 51. FIG. 5 is an explanatory view showing the load acting on the plate 26a. Before describing the characteristic configuration of this embodiment, the overall configuration of the in-wheel motor drive device 21 will be described.
  • the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and an output from the speed reducer part B.
  • a wheel bearing portion C that transmits to a rear wheel 14 (see FIGS. 6 and 7) serving as a drive wheel is provided.
  • the motor portion A and the speed reducer portion B are housed in a casing 22, and the wheel housing 12 a of the electric vehicle 11 is provided. (See FIG. 7).
  • the casing 22 is a divided structure including a motor housing in which the motor part A is accommodated and a speed reducer housing in which the speed reducer part B is accommodated, and is fastened and integrated by bolts.
  • the motor portion A is a stator 23a fixed to the casing 22, a rotor 23b disposed to face the inner side in the radial direction of the stator 23a with a gap, and a radial inner side of the rotor 23b so as to rotate integrally with the rotor 23b.
  • a radial gap motor including a motor rotating shaft 24.
  • the stator 23a is configured by winding a coil 23d around the outer periphery of a magnetic core 23c, and the rotor 23b is configured by a permanent magnet or a magnetic material.
  • the rotor 23b of the motor rotating shaft 24 is held by a holder portion 24d that extends integrally outward in the radial direction.
  • the holder portion 24d has a configuration in which a concave groove in which the rotor 23b is fitted and fixed is formed in an annular shape.
  • the motor rotating shaft 24 is rotatable with respect to the casing 22 by one end in the axial direction (right side in FIG. 1) on the rolling bearing 36a and the other end in the axial direction (left side in FIG. 1) by the rolling bearing 36b. It is supported by.
  • the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) as a rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) as a rolling bearing 37b. Is supported so as to be freely rotatable.
  • the reduction gear input shaft 25 has eccentric portions 25 a and 25 b in the reduction gear portion B.
  • the two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion.
  • the reduction gear input shaft 25 and the above-described motor rotation shaft 24 are connected by spline fitting (including serration fitting; hereinafter the same), and the driving force of the motor part A is transmitted to the reduction gear part B.
  • the reducer portion B includes curved plates 26a and 26b that are rotatably held by the eccentric portions 25a and 25b of the reducer input shaft 25, and a plurality of outer pins 27 that engage with the outer peripheral portions of the curved plates 26a and 26b.
  • a cycloid speed reduction provided with a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the speed reducer output shaft 28 and a counterweight 29 provided on the speed reducer input shaft 25 adjacent to the eccentric portions 25a, 25b. Machine.
  • the reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b.
  • a plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28.
  • the shaft portion 28b is connected to a hub wheel 33a as an inner member of the wheel bearing portion C so as to be able to transmit torque by spline fitting, and the output of the reduction gear portion B is transmitted to the rear wheel 14 (see FIGS. 6 and 7).
  • the reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46b.
  • the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plates 26a, 26b, and receive the inner pin 31 described above.
  • the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b.
  • the curved plates 26a and 26b are supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric portions 25a and 25b.
  • the outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25.
  • the outer pin 27 is rotatably held by the outer pin housing 60 by a needle roller bearing 27a.
  • the outer pin housing 60 is prevented from rotating around the casing 22, and is supported in a floating state.
  • the counterweight 29 is substantially fan-shaped and has a through hole that engages with the speed reducer input shaft 25.
  • the counterweights 29a and 25b The eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at adjacent positions. Assuming that the center point in the rotational axis direction between the two curved plates 26a and 26b is G (see FIG. 3), the distance between the central point G and the center of the curved plate 26a is L 1 on the right side of the central point G.
  • the motion conversion mechanism includes a plurality of inner pins 31 that are held by the speed reducer output shaft 28 and extend in the axial direction, and through holes 30a provided in the curved plates 26a and 26b.
  • the inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and one axial end thereof is fixed to the flange 28 a of the reduction gear output shaft 28. Yes. Further, in order to reduce the frictional resistance with the curved plates 26a, 26b, needle roller bearings 31a are provided at positions where they contact the inner wall surfaces of the through holes 30a of the curved plates 26a, 26b.
  • the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a) by a predetermined dimension. Is set.
  • the stabilizer 32 which comprises a part of reduction gear output shaft 28 is provided in the axial direction other side edge part of the inner pin 31.
  • the stabilizer 32 includes an annular portion 32a rotatably supported on the outer pin housing 60 by a rolling bearing 46a, and a cylindrical portion 32b extending in the axial direction from the inner peripheral surface of the annular portion 32a.
  • the other axial side ends of the plurality of inner pins 31 are fixed to the annular portion 32a. Since the load applied to a part of the inner pins 31 from the curved plates 26a and 26b is supported by all the inner pins 31 via the flange portion 28a and the stabilizer 32, the stress acting on the inner pins 31 is reduced and durability is improved. Can be improved.
  • Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25.
  • the outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated concave portions 26c that are depressed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 26c are arranged in the circumferential direction around the axis O.
  • the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2.
  • An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through hole 30a is larger than the outer diameter of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a), the inner pin 31 does not hinder the revolving motion of the curved plate 26a.
  • the inner pin 31 takes out the rotation of the curved plate 26a and rotates the speed reducer output shaft 28.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. .
  • the resultant force Fs of the plurality of loads Fi and Fj is applied to the speed reducer input shaft 25.
  • the direction of the resultant force Fs changes depending on geometrical conditions such as the corrugated shape of the curved plate 26a, the number of concave portions 26c, and the influence of centrifugal force.
  • the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. It fluctuates with.
  • the directions and magnitudes of the loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25.
  • the resultant force Fs acting on the speed reducer input shaft 25 is also different from the direction of the load.
  • the size varies.
  • the wheel bearing 33 of the wheel bearing portion C includes a hub wheel 33a connected to the reduction gear output shaft 28 so that torque can be transmitted, and an inner ring 33b fitted to the outer peripheral surface of the hub wheel 33a. And an outer ring 33c fitted and fixed to the casing 22, a plurality of balls 33d disposed between the hub wheel 33a, the inner ring 33b and the outer ring 33c, and a cage 33e for holding the plurality of balls 33d. Double-row angular contact ball bearing. Seal members 33f are provided at both ends in the axial direction of the wheel bearing 33 to prevent intrusion of muddy water or the like.
  • the rear wheel 14 (see FIGS. 6 and 7) is connected to the hub wheel 33a of the wheel bearing 33 by a bolt 34.
  • This lubrication mechanism supplies lubricating oil to the motor part A to cool the motor part A, and supplies lubricating oil to cool and lubricate the speed reducer part B.
  • the lubrication mechanism includes a rotary pump 51, an oil passage 22 a disposed in the casing 22, oil passages 24 a and 24 b and an oil hole 24 c disposed in the motor rotation shaft 24, and a speed reducer.
  • An oil passage 25c and oil holes 25d, 25e, 25f disposed on the input shaft 25 and an oil tank 22d disposed below the casing 22 are mainly configured.
  • the suction port 55 and the discharge port 56 of the rotary pump 51 are provided in the motor housing of the casing 22.
  • an oil tank 22 d is integrally provided in the reduction gear housing of the casing 22.
  • the oil passage 22a extends from the rotary pump 51 outward in the radial direction, bends and extends in the axial direction, and further bends and extends radially inward to be connected to the oil passage 24a.
  • the oil passage 24a extends along the axial direction inside the motor rotating shaft 24 and is connected to the oil passage 25c.
  • the oil passage 24b communicates with the oil passage 24a extending along the axial direction, extends toward the holder portion 24d located on the radially outer side, and communicates with the oil hole 24c.
  • the oil hole 24c opens at the end face on the inboard side and the outboard side of the holder portion 24d.
  • the oil passage 25c communicating with the oil passage 24a of the motor rotating shaft 24 extends along the axial direction inside the reduction gear input shaft 25.
  • An oil hole 25 d communicating with the oil passage 25 c of the speed reducer input shaft 25 extends outward in the radial direction and opens at the outer peripheral surface of the speed reducer input shaft 25.
  • Oil holes 25e provided in the eccentric portions 25a and 25b of the speed reducer input shaft 25 communicate with the oil passage 25c and extend radially outward, and open at the outer peripheral surface of the speed reducer input shaft 25.
  • An oil hole 41a (see FIG. 3) communicating with the oil hole 25e of the speed reducer input shaft 25 is provided in the inner ring of the rolling bearing 41 that supports the curved plates 26a and 26b.
  • an oil hole 25 f provided at the tip of the speed reducer input shaft 25 communicates with the oil passage 25 c and extends in the axial direction, and opens at the shaft end surface of the speed reducer input shaft 25.
  • the bottom of the casing 22 of the motor part A is provided with an oil drain hole 22b for discharging the lubricating oil to the oil tank 22d, and the lubricating oil is discharged to the oil tank 22d at the bottom of the casing 22 of the speed reducer part B.
  • An oil drain hole 22f is provided.
  • an oil passage 22 e for returning the lubricating oil from the oil tank 22 d to the rotary pump 51 is provided in the casing 22.
  • the rotary pump 51 for forcibly circulating the lubricating oil is provided between the oil passage 22e and the oil passage 22a of the casing 22.
  • the rotary pump 51 includes an inner rotor 52 that rotates in synchronization with the rotation of the speed reducer output shaft 28 (see FIG. 1), an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber. 54, a cycloid pump including a suction port 55 communicating with the oil passage 22e and a discharge port 56 communicating with the oil passage 22a.
  • the inner rotor 52 has a tooth profile composed of a cycloid curve on the outer peripheral surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve.
  • the inner rotor 52 is fitted to the outer peripheral surface of the cylindrical portion 32 b (see FIGS. 1 and 3) of the stabilizer 32 and rotates integrally with the speed reducer output shaft 28.
  • the outer rotor 53 has a tooth profile formed of a cycloid curve on the inner peripheral surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve.
  • the outer rotor 53 is rotatably supported by the casing 22.
  • Inner rotor 52 rotates around a rotation center c 1
  • the white arrow given in the lubrication mechanism indicates the flow of the lubricating oil.
  • the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a and 24a, and a part of the lubricating oil passes through the oil passage 24b by the centrifugal force and the pump pressure accompanying the rotation of the motor rotating shaft 24. 23b is cooled.
  • lubricating oil is discharged from the oil holes 24c of the holder portion 24d to cool the stator 23a. In this way, the motor part A is cooled.
  • the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a, 24a, 25c, and a part thereof is centrifugal force and pump accompanying the rotation of the speed reducer input shaft 25.
  • the oil holes 25d, 25e, and 25f are discharged by pressure.
  • the lubricating oil discharged from the oil hole 25d is supplied to a rolling bearing 37a that supports the reduction gear input shaft 25.
  • the lubricating oil discharged from the oil hole 25e is supplied to the rolling bearing 41 that supports the curved plates 26a and 26b.
  • the lubricating oil discharged from the oil hole 25f is supplied to the rolling bearing 37b that supports the reduction gear input shaft 25.
  • the lubricating oil that has cooled the motor part A, cooled the speed reducer part B, and lubricated moves along the inner wall surface of the casing 22 and moves downward by gravity.
  • the lubricating oil that has moved to the lower part of the motor part A is discharged from the oil discharge hole 22b and is temporarily stored in the oil tank 22d.
  • the lubricating oil that has moved to the lower part of the reduction gear part B is discharged from the oil discharge hole 22f via the oil hole 60a provided in the outer pin housing 60 and temporarily stored in the oil tank 22d.
  • the overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
  • the lubrication mechanism of the in-wheel motor drive device 21 supplies lubricating oil to the motor portion A from the oil passage 22a of the casing 22 via the oil passage 24a of the motor rotation shaft 24 by the rotary pump 51, and the motor rotation shaft 24.
  • the shaft center oil supply structure supplies lubricating oil to the speed reducer part B via the oil path 25c of the speed reducer input shaft 25 communicating with the oil path 24a.
  • the oil passage 25c of the speed reducer input shaft 25 for supplying lubricating oil to the speed reducer portion B is formed along the axial direction inside the speed reducer input shaft 25.
  • oil holes 25d to 25f are formed at a plurality of locations (four locations) from the upstream side to the downstream side of the oil passage 25c (see FIGS. 1 and 3).
  • one oil hole 25d that opens at the outer peripheral surface of the speed reducer input shaft 25 and supplies lubricating oil to one rolling bearing 37a is disposed.
  • two oil holes 25e that open at the outer peripheral surfaces of the eccentric portions 25a and 25b of the speed reducer input shaft 25 and supply lubricating oil to one rolling bearing 41 are formed in the midstream portion of the oil passage 25c. It is arranged.
  • one oil hole 25f that opens at the shaft end surface of the reduction gear input shaft 25 and supplies lubricating oil to one rolling bearing 37b is disposed.
  • the rotary pump 51 built in the in-wheel motor drive device 21 rotates in synchronization with the speed reducer output shaft 28 of the speed reducer part B. Accordingly, when the motor rotates at a high speed, the rotary pump 51 also rotates at a high speed, so that the amount of lubricating oil discharged from the rotary pump 51 is large. On the other hand, when the motor rotates at a low speed, the rotary pump 51 also rotates at a low speed, so that the amount of lubricating oil discharged from the rotary pump 51 is small.
  • the plurality of oil holes 25d to 25f form an axial oil supply structure formed from the upstream side to the downstream side of the oil passage 25c, the lubricating oil that reaches the downstream side of the oil passage 25c at the time of low-speed rotation of the motor. Is even less.
  • the diameter of each of the oil holes 25d to 25f in the speed reducer input shaft 25 is such that the lubricating oil can be supplied to the speed reducer portion B without excess or deficiency in the lubrication mechanism having the shaft center oil supply structure.
  • the equivalent pipe diameter of each of the oil holes 25d to 25f is ⁇ 0.5 mm or more and ⁇ 4 mm or less, preferably ⁇ 1 mm or more and ⁇ 2.5 mm or less.
  • the opening shapes of the oil holes 25d to 25f in addition to a perfect circle shape, various shapes such as an elliptical shape and a rectangular shape are taken into consideration, so that the hole diameters of the oil holes 25d to 25f are defined by equivalent pipe diameters.
  • the lubricating oil discharged from the oil holes 25d to 25f is not excessive when the motor rotates at high speed.
  • the increase in the stirring resistance due to the lubricating oil can be suppressed in the reduction gear part B, and the reduction gear efficiency can be improved.
  • the motor rotates at low speed there is no shortage of lubricating oil discharged from the oil holes 25d to 25f, and the cooling performance and durability performance of the speed reducer part B are improved to suppress the heat generation of the speed reducer part B. Sufficient lubrication can prevent damage to rotating parts.
  • the equivalent pipe diameter of each of the oil holes 25d to 25f is set to ⁇ 1 mm or more and ⁇ 2.5 mm or less, an increase in the agitation resistance due to the lubricating oil can be further suppressed at the reduction gear part B when the motor rotates at high speed. Efficiency is definitely improved.
  • the cooling performance of the speed reducer part B can be reliably improved and the heat generation of the speed reducer part B can be further suppressed, and damage to the rotating part can be effectively prevented. .
  • the lubrication mechanism since the lubrication mechanism has an axial oil supply structure, when the motor rotates at a low speed, the lubricating oil supplied to the speed reducer part B is insufficient on the downstream side of the oil passage 25c, so that the speed is reduced on the downstream side of the oil passage 25c. It becomes difficult to suppress the heat generation of the machine part B, and the rotating part may be damaged.
  • the equivalent pipe diameter of each of the oil holes 25d to 25f is larger than 4 mm, the lubricating oil discharged from the oil holes 25d to 25f becomes excessive. Due to the excessive amount of the lubricating oil, the agitation resistance due to the lubricating oil is increased in the reduction gear part B, and the reduction gear efficiency is lowered.
  • the equivalent pipe diameter of each of the oil holes 25d to 25f in the speed reducer input shaft 25 is ⁇ 0.5 mm or more and ⁇ 4 mm or less, preferably ⁇ 1 mm or more and ⁇ 2.5 mm or less.
  • the cooling performance of the speed reducer part B is improved to suppress heat generation of the speed reducer part B, and sufficient lubrication
  • the required durability can be provided.
  • the workability of the speed reducer input shaft 25 is good, the oil holes 25d to 25f can be easily manufactured, and the foreign matter can be prevented from being caught in the oil holes 25d to 25f.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates. .
  • the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates
  • the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25.
  • the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer portion B and transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the rear wheel 14 The necessary torque can be transmitted.
  • the reduction ratio of the reduction gear B is calculated as (Z A ⁇ Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b.
  • a very large reduction ratio of 1/11 can be obtained.
  • the reduction gear unit B that can obtain a large reduction ratio without using a multistage configuration, a compact and high reduction ratio in-wheel motor drive device 21 can be obtained.
  • the needle roller bearings 27a and 31a are provided on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced. Transmission efficiency is improved.
  • the oil passage 24b is provided in the motor rotating shaft 24, the oil hole 25e is provided in the eccentric portions 25a and 25b, and the oil hole 25f is provided in the shaft end of the speed reducer input shaft 25. It can be provided at any position of the motor rotating shaft 24 or the speed reducer input shaft 25.
  • the example of the cycloid pump was shown as the rotary pump 51, all the rotary pumps driven using the rotation of the reduction gear output shaft 28 are employable.
  • a motor having an arbitrary configuration can be applied.
  • it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
  • the electric vehicle 11 shown in FIGS. 6 and 7 shows an example in which the rear wheel 14 is a drive wheel
  • the front wheel 13 may be a drive wheel or a four-wheel drive vehicle.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

An in-wheel motor drive device is provided with: a motor section A; a speed reducer section B; a bearing section C for a wheel; a casing 22 for accommodating the motor section A and the speed reducer section B; and a lubricating mechanism having an axial oil feed structure for feeding lubricating oil using a rotary pump 51 from an oil passage 22a in the casing 22 to the speed reducer input shaft 25 of the speed reducer section B through the motor rotation shaft 24 of the motor section A. The lubricating mechanism is provided with: an oil passage 25c axially formed in the speed reducer input shaft 25; and oil holes 25d-25f which are arranged at a plurality of locations from the upstream side to the downstream side of the oil passage 25c, are in communication with the oil passage 25c, and are open to the outside of the speed reducer input shaft 25. The equivalent conduit diameter of each of the oil holes 25d-25f is set in the range from 0.5 mm to 4 mm, inclusive.

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、例えば、電動モータの出力軸と車輪用軸受とを減速機を介して連結したインホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
 従来のインホイールモータ駆動装置は、例えば、特許文献1に開示された構造のものがある。この特許文献1のインホイールモータ駆動装置は、駆動力を発生させるモータ部と、車輪に接続される車輪用軸受部と、モータ部と車輪用軸受部との間に配置され、モータ部の回転を減速して車輪用軸受部に伝達する減速機部とを備えている。モータ部および減速機部はケーシングに収容されている。 A conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example. The in-wheel motor drive device of Patent Document 1 is disposed between a motor unit that generates a driving force, a wheel bearing unit connected to a wheel, and the motor unit and the wheel bearing unit, and the rotation of the motor unit. And a speed reducer part that decelerates and transmits the speed to the wheel bearing part. The motor part and the reduction gear part are accommodated in the casing.
 前述の構成からなるインホイールモータ駆動装置において、装置のコンパクト化の観点から、モータ部には低トルクで高回転の小型モータが採用されている。一方、車輪用軸受部で車輪を駆動するために大きなトルクが必要となることから、減速機部には、コンパクトで高い減速比が得られるサイクロイド減速機が採用されている。 In the in-wheel motor drive device having the above-described configuration, a small motor with a low torque and a high rotation is adopted for the motor unit from the viewpoint of making the device compact. On the other hand, since a large torque is required to drive the wheel by the wheel bearing portion, a cycloid reduction gear that is compact and obtains a high reduction ratio is employed for the reduction gear portion.
 このインホイールモータ駆動装置では、モータ部および減速機部に潤滑油を供給する潤滑機構が設けられている。潤滑機構は、モータ部に設けられ、潤滑油を圧送する回転ポンプと、ケーシングの下部に設けられ、潤滑油を一時的に貯溜する油タンクと、モータ部および減速機部に設けられた油路および油孔とを備え、潤滑油がモータ部および減速機部を循環する構造を有する。 This in-wheel motor drive device is provided with a lubrication mechanism for supplying lubricating oil to the motor unit and the reduction gear unit. The lubrication mechanism is provided in the motor unit, a rotary pump that pumps the lubricating oil, an oil tank that is provided in the lower part of the casing and temporarily stores the lubricating oil, and an oil passage provided in the motor unit and the speed reducer unit And an oil hole, and has a structure in which the lubricating oil circulates through the motor unit and the speed reducer unit.
 この潤滑機構は、回転ポンプによりケーシングの油路からモータ回転軸の油路を経由してモータ部に潤滑油を供給すると共に、モータ回転軸の油路と連通する減速機入力軸の油路を経由して減速機部に潤滑油を供給する軸心給油構造を採用している。 This lubrication mechanism supplies the lubricating oil to the motor section from the oil passage of the casing through the oil passage of the motor rotation shaft by the rotary pump, and the oil passage of the reduction gear input shaft communicating with the oil passage of the motor rotation shaft. The shaft center oil supply structure is used to supply lubricating oil to the speed reducer via.
 この軸心給油構造では、モータ回転に伴うポンプ圧力および遠心力によって、モータ回転軸の油路を経由して供給された潤滑油をモータ部で吐出させることにより、モータ部の冷却が行われる。また、減速機入力軸の油路を経由して供給された潤滑油を減速機部で吐出させることにより、減速機部の冷却および潤滑が行われる。 In this axial center oil supply structure, the motor part is cooled by discharging the lubricating oil supplied via the oil passage of the motor rotation shaft by the pump pressure and centrifugal force accompanying the motor rotation. Further, the lubricant supplied through the oil passage of the reduction gear input shaft is discharged by the reduction gear portion, whereby the reduction gear portion is cooled and lubricated.
特開2011-189919号公報JP2011-189919A
 ところで、前述した従来のインホイールモータ駆動装置の潤滑機構は、回転ポンプによりケーシングの油路からモータ回転軸の油路を経由してモータ部に潤滑油を供給すると共に、そのモータ回転軸の油路と連通する減速機入力軸の油路を経由して減速機部に潤滑油を供給する軸心給油構造となっている。 By the way, the lubrication mechanism of the above-described conventional in-wheel motor drive device supplies lubricating oil from the oil passage of the casing to the motor portion via the oil passage of the motor rotation shaft by the rotary pump, and the oil of the motor rotation shaft. The shaft has a central oil supply structure that supplies lubricating oil to the speed reducer section via an oil path of a speed reducer input shaft communicating with the road.
 この軸心給油構造において、減速機部に潤滑油を供給する減速機入力軸の油路は、その減速機入力軸の内部に軸方向に沿って形成されている。また、その油路の上流側から下流側へ向かって複数箇所に油孔が形成されている。各油孔は、前述の油路と連通して減速機部の減速機入力軸の外部に開口している。油路の上流側から供給された潤滑油は、下流側に向かって複数箇所に形成された油孔から吐出されることにより、減速機部を冷却および潤滑する。 In this axial center oil supply structure, the oil passage of the speed reducer input shaft for supplying lubricating oil to the speed reducer portion is formed along the axial direction inside the speed reducer input shaft. Oil holes are formed at a plurality of locations from the upstream side to the downstream side of the oil passage. Each oil hole communicates with the aforementioned oil passage and opens to the outside of the speed reducer input shaft of the speed reducer section. Lubricating oil supplied from the upstream side of the oil passage is discharged from oil holes formed at a plurality of locations toward the downstream side, thereby cooling and lubricating the speed reducer portion.
 ここで、給油量がモータ回転数に比例する回転ポンプを採用していることから、減速機入力軸の油孔が大き過ぎると、回転ポンプからの給油量が多いモータ高速回転時、その油孔から吐出される潤滑油が過多となる。このように、減速機入力軸の油孔から吐出する潤滑油が過多になると、減速機部で潤滑油による撹拌抵抗が増加して減速機効率が低下することになる。 Here, since a rotary pump in which the oil supply amount is proportional to the motor speed is adopted, if the oil hole of the reducer input shaft is too large, the oil hole from the rotary pump has a large oil supply amount during high-speed rotation of the motor. Excessive lubricating oil is discharged from As described above, when the amount of lubricating oil discharged from the oil hole of the speed reducer input shaft becomes excessive, the stirring resistance due to the lubricating oil increases in the speed reducer portion, and the speed reducer efficiency decreases.
 逆に、減速機入力軸の油孔が小さ過ぎると、回転モータからの供給量が少ないモータ低速回転時、その油孔から吐出される潤滑油が不足する。このように、減速機入力軸の油孔から吐出される潤滑油が不足すると、減速機部の冷却性能が低下して減速機部の発熱を抑制することが困難となる。 Conversely, if the oil hole of the reducer input shaft is too small, the amount of lubricating oil discharged from the oil hole is insufficient during low-speed rotation of the motor with a small supply amount from the rotary motor. Thus, when the lubricating oil discharged from the oil hole of the speed reducer input shaft is insufficient, the cooling performance of the speed reducer portion is lowered and it is difficult to suppress the heat generation of the speed reducer portion.
 また、潤滑機構が、減速機入力軸の油路の上流側から下流側へ向かって複数箇所に油孔が形成された軸心給油構造をなすことから、モータ低速回転時、油路の下流側まで到達する潤滑油が少なくなって油路の下流側で減速機部に供給される潤滑油が不足することがある。このように、油路の下流側で減速機部に供給される潤滑油が不足すると、油路の下流側で減速機部の発熱を抑制することが困難となるだけでなく、潤滑不足により回転部分の損傷が早期に発生することもある。 In addition, since the lubrication mechanism has an axial oil supply structure in which oil holes are formed at a plurality of locations from the upstream side to the downstream side of the oil passage of the speed reducer input shaft, the downstream side of the oil passage during low-speed rotation of the motor As a result, the amount of the lubricating oil reaching the position decreases and the lubricating oil supplied to the speed reducer portion on the downstream side of the oil passage may be insufficient. As described above, when the lubricating oil supplied to the speed reducer portion is insufficient on the downstream side of the oil passage, it becomes difficult not only to suppress the heat generation of the speed reducer portion on the downstream side of the oil passage, but also rotation due to insufficient lubrication. Partial damage may occur early.
 そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、潤滑油を減速機部に過不足なく供給することにより、減速機効率の向上を図ると共に減速機部の冷却性能の向上を図り得るインホイールモータ駆動装置を提供することにある。 Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to improve the efficiency of the speed reducer and reduce the speed reducer by supplying lubricating oil to the speed reducer part without excess or deficiency. An object of the present invention is to provide an in-wheel motor drive device capable of improving the cooling performance of the part.
 前述の目的を達成するための技術的手段として、本発明は、モータ部と、減速機部と、車輪用軸受部と、モータ部および減速機部を収容するケーシングと、回転ポンプによりケーシングの油路からモータ部のモータ回転軸を経由して減速機部の減速機入力軸へ潤滑油を供給する軸心給油構造をなす潤滑機構とを備えたインホイールモータ駆動装置であって、潤滑機構は、減速機入力軸の内部に軸方向に沿って形成された油路と、その油路の上流側から下流側へ向かって複数箇所に配置され、油路と連通して減速機入力軸の外部に開口する油孔とを備え、各油孔の等価管路径を、φ0.5mm以上でφ4mm以下としたことを特徴とする。 As technical means for achieving the above-described object, the present invention provides a motor unit, a reduction gear unit, a wheel bearing unit, a casing for housing the motor unit and the reduction gear unit, and a casing oil by a rotary pump. An in-wheel motor drive device comprising a lubrication mechanism having a central oil supply structure for supplying lubricating oil from a road to a reduction gear input shaft of a reduction gear portion via a motor rotation shaft of a motor portion, , An oil passage formed along the axial direction inside the reducer input shaft, and arranged at a plurality of locations from the upstream side to the downstream side of the oil passage, and communicates with the oil passage to the outside of the reducer input shaft. And an oil passage having an equivalent pipe diameter of each oil hole of 0.5 mm or more and 4 mm or less.
 本出願人は、潤滑油を減速機部に過不足なく供給するため、減速機入力軸に形成された油孔の孔径に着目した。ここで、油孔の開口形状として、真円形状の他、楕円形状や矩形状など種々の形状を考慮することにより、油孔の孔径を等価管路径で規定する。この等価管路径Deは、油孔断面の流路面積をA、油孔断面の周長をWとした場合、De=4A/Wで定義される。 The applicant of the present application paid attention to the hole diameter of the oil hole formed in the speed reducer input shaft in order to supply the lubricating oil to the speed reducer part without excess or deficiency. Here, as the opening shape of the oil hole, in addition to a perfect circle shape, various shapes such as an elliptical shape and a rectangular shape are taken into consideration, whereby the hole diameter of the oil hole is defined by the equivalent pipe diameter. The equivalent pipe diameter De is defined as De = 4 A / W, where A is the flow channel area of the oil hole cross section and W is the circumference of the oil hole cross section.
 本発明では、油孔の等価管路径を、φ0.5mm以上でφ4mm以下としたことにより、モータ高速回転時、油孔から吐出される潤滑油が過多となることはなく、減速機部で潤滑油による撹拌抵抗の増加を抑制できて減速機効率の向上が図れる。また、モータ低速回転時、油孔から吐出される潤滑油が不足することはなく、減速機部の冷却性能が向上して減速機部の発熱を抑制すると共に、十分な潤滑により回転部分の損傷を防止することができる。 In the present invention, since the equivalent pipe diameter of the oil hole is set to φ0.5 mm or more and φ4 mm or less, the lubricating oil discharged from the oil hole does not become excessive at the time of high-speed rotation of the motor, and lubrication is performed by the reduction gear unit. An increase in stirring resistance due to oil can be suppressed and reduction gear efficiency can be improved. In addition, when the motor rotates at low speed, there is no shortage of lubricating oil discharged from the oil hole, and the cooling performance of the speed reducer is improved to suppress heat generation of the speed reducer and damage to the rotating part due to sufficient lubrication Can be prevented.
 本発明において、各油孔の等価管路径を、φ1mm以上でφ2.5mm以下とすることが望ましい。このような範囲に規定すれば、モータ高速回転時、減速機部で潤滑油による撹拌抵抗の増加をより一層抑制できて減速機効率が確実に向上する。また、モータ低速回転時、減速機部の冷却性能が確実に向上して減速機部の発熱をより一層抑制することができるだけでなく、回転部分の損傷を効果的に抑止することができる。 In the present invention, it is desirable that the equivalent pipe diameter of each oil hole is φ1 mm or more and φ2.5 mm or less. If it prescribes | regulates in such a range, at the time of high-speed rotation of a motor, the increase in the stirring resistance by lubricating oil can further be suppressed in a reduction gear part, and reduction gear efficiency improves reliably. In addition, when the motor rotates at a low speed, not only can the cooling performance of the speed reducer part be reliably improved to further suppress the heat generation of the speed reducer part, but also damage to the rotating part can be effectively suppressed.
 本発明によれば、油孔の等価管路径を、φ0.5mm以上でφ4mm以下としたことにより、モータ高速回転時、油孔から吐出される潤滑油が過多となることはなく、減速機部で潤滑油による撹拌抵抗の増加を抑制できて減速機効率の向上が図れる。また、モータ低速回転時、油孔から吐出される潤滑油が不足することはなく、減速機部の冷却性能が向上して減速機部の発熱を抑制すると共に、十分な潤滑により回転部分の損傷を防止することができる。このように、潤滑油を減速機部に過不足なく供給することにより、減速機効率が向上すると共に減速機部の冷却性能および耐久性能が向上する。 According to the present invention, the equivalent pipe diameter of the oil hole is set to φ0.5 mm or more and φ4 mm or less, so that the lubricating oil discharged from the oil hole does not become excessive at the time of high-speed rotation of the motor. Therefore, the increase in the stirring resistance due to the lubricating oil can be suppressed, and the reduction gear efficiency can be improved. In addition, when the motor rotates at low speed, there is no shortage of lubricating oil discharged from the oil hole, and the cooling performance of the speed reducer is improved to suppress heat generation of the speed reducer and damage to the rotating part due to sufficient lubrication Can be prevented. Thus, by supplying the lubricating oil to the speed reducer part without excess or deficiency, the speed reducer efficiency is improved and the cooling performance and durability performance of the speed reducer part are improved.
本発明の実施形態で、インホイールモータ駆動装置の全体構成を示す縦断面図である。1 is a longitudinal sectional view showing an overall configuration of an in-wheel motor drive device in an embodiment of the present invention. 図1のP-P線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. 図1の減速機部を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the reduction gear part of FIG. 図1の曲線板に作用する荷重を示す説明図である。It is explanatory drawing which shows the load which acts on the curve board of FIG. 図1の回転ポンプを示す横断面図である。It is a cross-sectional view which shows the rotary pump of FIG. インホイールモータ駆動装置を搭載した電気自動車の概略構成を示す平面図である。It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device. 図6の電気自動車を示す後方断面図である。FIG. 7 is a rear sectional view showing the electric vehicle of FIG. 6.
 本発明に係るインホイールモータ駆動装置の実施形態を図面に基づいて詳述する。 Embodiments of an in-wheel motor drive device according to the present invention will be described in detail with reference to the drawings.
 図6は、インホイールモータ駆動装置21を搭載した電気自動車11の概略平面図、図7は、電気自動車11を後方から見た概略断面図である。図6に示すように、電気自動車11は、シャシー12と、操舵輪としての前輪13と、駆動輪としての後輪14と、後輪14に駆動力を伝達するインホイールモータ駆動装置21とを装備する。図7に示すように、後輪14は、シャシー12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャシー12の下部に固定されている。 FIG. 6 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted, and FIG. 7 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear. As shown in FIG. 6, the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14. Equip. As shown in FIG. 7, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が地面から受ける振動を吸収してシャシー12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時などの車体の傾きを抑制するスタビライザが設けられている。懸架装置12bは、路面の凹凸に対する追従性を向上させ、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式としている。 The suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms. The suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
 電気自動車11は、ホイールハウジング12aの内部に、左右それぞれの後輪14を駆動するインホイールモータ駆動装置21を設けることによって、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構などを設ける必要がなくなるので、客室スペースを広く確保でき、かつ、左右の後輪14の回転をそれぞれ制御することができるという利点を有する。電気自動車11の走行安定性およびNVH特性を向上させるためにばね下重量を抑える必要があり、さらに、広い客室スペースを確保するためにインホイールモータ駆動装置21の小型化が求められる。 The electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled. In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight, and further, the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
 そこで、この実施形態のインホイールモータ駆動装置21は、以下の構造を具備する。図1はインホイールモータ駆動装置21の概略構成を示す縦断面図、図2は図1のP-P線に沿う断面図、図3は減速機部Bを示す拡大断面図、図4は曲線板26aに作用する荷重を示す説明図、図5は回転ポンプ51を示す横断面図である。なお、この実施形態の特徴的な構成を説明する前にインホイールモータ駆動装置21の全体構成を説明する。 Therefore, the in-wheel motor drive device 21 of this embodiment has the following structure. 1 is a longitudinal sectional view showing a schematic configuration of an in-wheel motor drive device 21, FIG. 2 is a sectional view taken along line PP in FIG. 1, FIG. 3 is an enlarged sectional view showing a reduction gear section B, and FIG. FIG. 5 is a cross-sectional view showing the rotary pump 51. FIG. 5 is an explanatory view showing the load acting on the plate 26a. Before describing the characteristic configuration of this embodiment, the overall configuration of the in-wheel motor drive device 21 will be described.
 図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速機部Bと、減速機部Bからの出力を駆動輪としての後輪14(図6および図7参照)に伝達する車輪用軸受部Cとを備え、モータ部Aと減速機部Bはケーシング22に収納されて、電気自動車11のホイールハウジング12a(図7参照)内に取り付けられる。ケーシング22は、モータ部Aが収容されたモータハウジングと減速機部Bが収容された減速機ハウジングとからなる分割構造で、ボルトにより締結一体化されている。 As shown in FIG. 1, the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and an output from the speed reducer part B. A wheel bearing portion C that transmits to a rear wheel 14 (see FIGS. 6 and 7) serving as a drive wheel is provided. The motor portion A and the speed reducer portion B are housed in a casing 22, and the wheel housing 12 a of the electric vehicle 11 is provided. (See FIG. 7). The casing 22 is a divided structure including a motor housing in which the motor part A is accommodated and a speed reducer housing in which the speed reducer part B is accommodated, and is fastened and integrated by bolts.
 モータ部Aは、ケーシング22に固定されたステータ23aと、ステータ23aの径方向内側に隙間をもって対向するように配置されたロータ23bと、ロータ23bの径方向内側に配置されてロータ23bと一体回転するモータ回転軸24とを備えたラジアルギャップモータである。ステータ23aは磁性体コア23cの外周にコイル23dを巻回することによって構成され、ロータ23bは永久磁石または磁性体で構成されている。 The motor portion A is a stator 23a fixed to the casing 22, a rotor 23b disposed to face the inner side in the radial direction of the stator 23a with a gap, and a radial inner side of the rotor 23b so as to rotate integrally with the rotor 23b. A radial gap motor including a motor rotating shaft 24. The stator 23a is configured by winding a coil 23d around the outer periphery of a magnetic core 23c, and the rotor 23b is configured by a permanent magnet or a magnetic material.
 モータ回転軸24は、径方向外側へ一体的に延びるホルダ部24dによりロータ23bが保持されている。このホルダ部24dは、ロータ23bが嵌め込み固定された凹溝を環状に形成した構成としている。モータ回転軸24は、その軸方向一方側端部(図1の右側)が転がり軸受36aに、軸方向他方側端部(図1の左側)が転がり軸受36bによって、ケーシング22に対して回転自在に支持されている。 The rotor 23b of the motor rotating shaft 24 is held by a holder portion 24d that extends integrally outward in the radial direction. The holder portion 24d has a configuration in which a concave groove in which the rotor 23b is fitted and fixed is formed in an annular shape. The motor rotating shaft 24 is rotatable with respect to the casing 22 by one end in the axial direction (right side in FIG. 1) on the rolling bearing 36a and the other end in the axial direction (left side in FIG. 1) by the rolling bearing 36b. It is supported by.
 減速機入力軸25は、その軸方向一方側略中央部(図1の右側)が転がり軸受37aに、軸方向他方側端部(図1の左側)が転がり軸受37bによって、減速機出力軸28に対して回転自在に支持されている。この減速機入力軸25は、減速機部B内に偏心部25a,25bを有する。2つの偏心部25a,25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相をずらして設けられている。減速機入力軸25と前述のモータ回転軸24とは、スプライン嵌合(セレーション嵌合も含む。以下、同じ)によって連結されてモータ部Aの駆動力が減速機部Bに伝達される。 The reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) as a rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) as a rolling bearing 37b. Is supported so as to be freely rotatable. The reduction gear input shaft 25 has eccentric portions 25 a and 25 b in the reduction gear portion B. The two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion. The reduction gear input shaft 25 and the above-described motor rotation shaft 24 are connected by spline fitting (including serration fitting; hereinafter the same), and the driving force of the motor part A is transmitted to the reduction gear part B.
 減速機部Bは、減速機入力軸25の偏心部25a,25bに回転自在に保持される曲線板26a,26bと、その曲線板26a,26bの外周部に係合する複数の外ピン27と、曲線板26a,26bの自転運動を減速機出力軸28に伝達する運動変換機構と、偏心部25a,25bに隣接して減速機入力軸25に設けられたカウンタウェイト29とを備えたサイクロイド減速機である。 The reducer portion B includes curved plates 26a and 26b that are rotatably held by the eccentric portions 25a and 25b of the reducer input shaft 25, and a plurality of outer pins 27 that engage with the outer peripheral portions of the curved plates 26a and 26b. A cycloid speed reduction provided with a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the speed reducer output shaft 28 and a counterweight 29 provided on the speed reducer input shaft 25 adjacent to the eccentric portions 25a, 25b. Machine.
 減速機出力軸28は、フランジ部28aと軸部28bとを有する。フランジ部28aには、減速機出力軸28の回転軸心を中心とする円周上に複数の内ピン31が等間隔に固定されている。また、軸部28bは車輪用軸受部Cの内方部材としてのハブ輪33aにスプライン嵌合によってトルク伝達可能に連結され、減速機部Bの出力を後輪14(図6および図7参照)に伝達する。この減速機出力軸28は、転がり軸受46bによって外ピンハウジング60に回転自在に支持されている。 The reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b. A plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28. The shaft portion 28b is connected to a hub wheel 33a as an inner member of the wheel bearing portion C so as to be able to transmit torque by spline fitting, and the output of the reduction gear portion B is transmitted to the rear wheel 14 (see FIGS. 6 and 7). To communicate. The reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46b.
 図2および図3に示すように、曲線板26a,26bは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する貫通孔30a,30bを有する。貫通孔30aは、曲線板26a,26bの自転軸心を中心とする円周上に等間隔に複数個設けられており、前述の内ピン31を受け入れる。また、貫通孔30bは、曲線板26a,26bの中心に設けられており、偏心部25a,25bに嵌合する。曲線板26a,26bは、転がり軸受41によって偏心部25a,25bに対して回転自在に支持されている。 As shown in FIGS. 2 and 3, the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b. A plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plates 26a, 26b, and receive the inner pin 31 described above. Further, the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b. The curved plates 26a and 26b are supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric portions 25a and 25b.
 外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に設けられている。曲線板26a,26bが公転運動すると、曲線形状の波形と外ピン27とが係合して、曲線板26a,26bに自転運動を生じさせる。外ピン27は、針状ころ軸受27aによって外ピンハウジング60に回転自在に保持され、この外ピンハウジング60がケーシング22に回り止めされ、フローティング状態で支持されている。 The outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25. When the curved plates 26a and 26b revolve, the curved waveform and the outer pin 27 are engaged to cause the curved plates 26a and 26b to rotate. The outer pin 27 is rotatably held by the outer pin housing 60 by a needle roller bearing 27a. The outer pin housing 60 is prevented from rotating around the casing 22, and is supported in a floating state.
 カウンタウェイト29は、略扇形状で、減速機入力軸25と嵌合する貫通孔を有し、曲線板26a,26bの回転によって生じる不釣合い慣性偶力を打ち消すために、偏心部25a,25bと隣接する位置に偏心部25a,25bと180°位相をずらして配置される。2枚の曲線板26a,26b間の回転軸心方向の中心点をG(図3参照)とすると、その中心点Gの右側について、中心点Gと曲線板26aの中心との距離をL、曲線板26a、転がり軸受41および偏心部25aの質量の和をm、曲線板26aの重心の回転軸心からの偏心量をεとし、中心点Gとカウンタウェイト29との距離をL、カウンタウェイト29の質量をm、カウンタウェイト29の重心の回転軸心からの偏心量をεとすると、L×m×ε=L×m×εを満たす関係となっている。L×m×ε=L×m×εの関係は、不可避的に生じる誤差を許容する。中心点Gの左側の曲線板26bとカウンタウェイト29との間にも同様の関係が成立する。 The counterweight 29 is substantially fan-shaped and has a through hole that engages with the speed reducer input shaft 25. In order to counteract the unbalanced inertia couple generated by the rotation of the curved plates 26a and 26b, the counterweights 29a and 25b The eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at adjacent positions. Assuming that the center point in the rotational axis direction between the two curved plates 26a and 26b is G (see FIG. 3), the distance between the central point G and the center of the curved plate 26a is L 1 on the right side of the central point G. , The sum of the mass of the curved plate 26a, the rolling bearing 41 and the eccentric portion 25a is m 1 , the amount of eccentricity of the center of gravity of the curved plate 26a from the rotational axis is ε 1 , and the distance between the center point G and the counterweight 29 is L 2. The relationship satisfying L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2 , where m 2 is the mass of the counter weight 29 and ε 2 is the amount of eccentricity of the center of gravity of the counter weight 29 from the rotational axis. It has become. The relationship of L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2 allows errors that inevitably occur. A similar relationship is established between the curved plate 26 b on the left side of the center point G and the counterweight 29.
 運動変換機構は、減速機出力軸28に保持されて軸方向に延びる複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成されている。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に設けられており、その軸方向一方側端部が減速機出力軸28のフランジ28aに固定されている。また、曲線板26a,26bとの摩擦抵抗を低減するために、曲線板26a,26bの貫通孔30aの内壁面に当接する位置に針状ころ軸受31aが設けられている。貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(針状ころ軸受31aを含む最大外径)より所定寸法大きく設定されている。 The motion conversion mechanism includes a plurality of inner pins 31 that are held by the speed reducer output shaft 28 and extend in the axial direction, and through holes 30a provided in the curved plates 26a and 26b. The inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and one axial end thereof is fixed to the flange 28 a of the reduction gear output shaft 28. Yes. Further, in order to reduce the frictional resistance with the curved plates 26a, 26b, needle roller bearings 31a are provided at positions where they contact the inner wall surfaces of the through holes 30a of the curved plates 26a, 26b. The through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a) by a predetermined dimension. Is set.
 内ピン31の軸方向他方側端部には、減速機出力軸28の一部を構成するスタビライザ32が設けられている。スタビライザ32は、外ピンハウジング60に転がり軸受46aによって回転自在に支持された円環部32aと、その円環部32aの内周面から軸方向に延びる円筒部32bとからなる。複数の内ピン31の軸方向他方側端部は、円環部32aに固定されている。曲線板26a,26bから一部の内ピン31に負荷される荷重はフランジ部28aおよびスタビライザ32を介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ、耐久性を向上させることができる。 The stabilizer 32 which comprises a part of reduction gear output shaft 28 is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG. The stabilizer 32 includes an annular portion 32a rotatably supported on the outer pin housing 60 by a rolling bearing 46a, and a cylindrical portion 32b extending in the axial direction from the inner peripheral surface of the annular portion 32a. The other axial side ends of the plurality of inner pins 31 are fixed to the annular portion 32a. Since the load applied to a part of the inner pins 31 from the curved plates 26a and 26b is supported by all the inner pins 31 via the flange portion 28a and the stabilizer 32, the stress acting on the inner pins 31 is reduced and durability is improved. Can be improved.
 曲線板26a,26bに作用する荷重の状態を図4に基づいて説明する。偏心部25aの軸心Oは減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aの外周には、曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、径方向に窪んだ波形の凹部26cを周方向等間隔に有する。曲線板26aの周囲には、凹部26cと係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。 The state of the load acting on the curved plates 26a and 26b will be described with reference to FIG. Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25. The outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a. The outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated concave portions 26c that are depressed in the radial direction at equal intervals in the circumferential direction. Around the curved plate 26a, a plurality of outer pins 27 that engage with the recesses 26c are arranged in the circumferential direction around the axis O.
 図4において、減速機入力軸25と共に偏心部25aが紙面上で反時計周りに回転すると、偏心部25aは軸心Oを中心とする公転運動を行うので、曲線板26aの凹部26cが、外ピン27と周方向に順次当接する。この結果、矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。 In FIG. 4, when the eccentric part 25a rotates counterclockwise on the paper surface together with the speed reducer input shaft 25, the eccentric part 25a performs a revolving motion around the axis O, so that the concave part 26c of the curved plate 26a The pin 27 is sequentially brought into contact with the circumferential direction. As a result, as indicated by the arrow, the curved plate 26a receives the load Fi from the plurality of outer pins 27 and rotates clockwise.
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されている。各貫通孔30aには、軸心Oと同軸に配置された減速機出力軸28と結合する内ピン31が挿通する。貫通孔30aの内径寸法は、内ピン31の外径寸法(針状ころ軸受31aを含む最大外径)よりも所定寸法大きいため、内ピン31は曲線板26aの公転運動の障害とはならず、内ピン31は曲線板26aの自転運動を取り出して減速機出力軸28を回転させる。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、図4に矢印で示すように、曲線板26aは、複数の内ピン31から荷重Fjを受ける。これら複数の荷重Fi,Fjの合力Fsが減速機入力軸25にかかる。 Further, the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2. An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through hole 30a is larger than the outer diameter of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a), the inner pin 31 does not hinder the revolving motion of the curved plate 26a. The inner pin 31 takes out the rotation of the curved plate 26a and rotates the speed reducer output shaft 28. At this time, the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. . The resultant force Fs of the plurality of loads Fi and Fj is applied to the speed reducer input shaft 25.
 合力Fsの方向は、曲線板26aの波形形状、凹部26cの数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直角であって自転軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。複数の荷重Fi、Fjは、減速機入力軸25が1回転(360°)する間に荷重の方向や大きさが変り、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。減速機入力軸25が反時計周りに1回転すると、曲線板26aの波形の凹部26cが減速されて1ピッチ時計回りに回転して図4の状態になり、これを繰り返す。 The direction of the resultant force Fs changes depending on geometrical conditions such as the corrugated shape of the curved plate 26a, the number of concave portions 26c, and the influence of centrifugal force. Specifically, the angle α between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. It fluctuates with. The directions and magnitudes of the loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also different from the direction of the load. The size varies. When the speed reducer input shaft 25 rotates once counterclockwise, the corrugated concave portion 26c of the curved plate 26a is decelerated and rotated clockwise by one pitch to the state shown in FIG. 4, and this is repeated.
 図1に示すように、車輪用軸受部Cの車輪用軸受33は、減速機出力軸28にトルク伝達可能に連結されたハブ輪33aと、ハブ輪33aの外周面に嵌合された内輪33bと、ケーシング22に嵌合固定された外輪33cと、ハブ輪33aおよび内輪33bと外輪33cとの間に配置された複数の玉33dと、複数の玉33dを保持する保持器33eとを備えた複列アンギュラ玉軸受である。車輪用軸受33の軸方向両端部には、泥水などの侵入防止のためにシール部材33fが設けられている。この車輪用軸受33のハブ輪33aにボルト34で後輪14(図6および図7参照)が連結される。 As shown in FIG. 1, the wheel bearing 33 of the wheel bearing portion C includes a hub wheel 33a connected to the reduction gear output shaft 28 so that torque can be transmitted, and an inner ring 33b fitted to the outer peripheral surface of the hub wheel 33a. And an outer ring 33c fitted and fixed to the casing 22, a plurality of balls 33d disposed between the hub wheel 33a, the inner ring 33b and the outer ring 33c, and a cage 33e for holding the plurality of balls 33d. Double-row angular contact ball bearing. Seal members 33f are provided at both ends in the axial direction of the wheel bearing 33 to prevent intrusion of muddy water or the like. The rear wheel 14 (see FIGS. 6 and 7) is connected to the hub wheel 33a of the wheel bearing 33 by a bolt 34.
 次に、全体的な潤滑機構を説明する。この潤滑機構は、モータ部Aを冷却するためにモータ部Aに潤滑油を供給すると共に、減速機部Bを冷却および潤滑するために潤滑油を供給するものである。 Next, the overall lubrication mechanism will be described. This lubrication mechanism supplies lubricating oil to the motor part A to cool the motor part A, and supplies lubricating oil to cool and lubricate the speed reducer part B.
 潤滑機構は、図1に示すように、回転ポンプ51と、ケーシング22に配設された油路22aと、モータ回転軸24に配設された油路24a,24bおよび油孔24cと、減速機入力軸25に配設された油路25cおよび油孔25d,25e,25fと、ケーシング22の下方に配置された油タンク22dとを主な構成としている。回転ポンプ51の吸入口55および吐出口56は、ケーシング22のモータハウジングに設けられている。また、ケーシング22の減速機ハウジングに油タンク22dが一体的に設けられている。 As shown in FIG. 1, the lubrication mechanism includes a rotary pump 51, an oil passage 22 a disposed in the casing 22, oil passages 24 a and 24 b and an oil hole 24 c disposed in the motor rotation shaft 24, and a speed reducer. An oil passage 25c and oil holes 25d, 25e, 25f disposed on the input shaft 25 and an oil tank 22d disposed below the casing 22 are mainly configured. The suction port 55 and the discharge port 56 of the rotary pump 51 are provided in the motor housing of the casing 22. Further, an oil tank 22 d is integrally provided in the reduction gear housing of the casing 22.
 油路22aは、回転ポンプ51から径方向外側へ延びて屈曲した上で軸方向に延び、さらに屈曲した上で径方向内側へ延びて油路24aに接続される。油路24aは、モータ回転軸24の内部を軸線方向に沿って延びて油路25cに接続される。油路24bは、軸線方向に沿って延びる油路24aと連通し、径方向外側に位置するホルダ部24dに向かって延びて油孔24cと連通する。油孔24cは、ホルダ部24dのインボード側およびアウトボード側の端面で開口する。 The oil passage 22a extends from the rotary pump 51 outward in the radial direction, bends and extends in the axial direction, and further bends and extends radially inward to be connected to the oil passage 24a. The oil passage 24a extends along the axial direction inside the motor rotating shaft 24 and is connected to the oil passage 25c. The oil passage 24b communicates with the oil passage 24a extending along the axial direction, extends toward the holder portion 24d located on the radially outer side, and communicates with the oil hole 24c. The oil hole 24c opens at the end face on the inboard side and the outboard side of the holder portion 24d.
 モータ回転軸24の油路24aと連通する油路25cは、減速機入力軸25の内部を軸線方向に沿って延びている。また、減速機入力軸25の油路25cと連通する油孔25dは、径方向外側へ延びて減速機入力軸25の外周面で開口する。減速機入力軸25の偏心部25a,25bに設けられた油孔25eは、油路25cと連通して径方向外側へ延び、減速機入力軸25の外周面で開口する。曲線板26a,26bを支持する転がり軸受41の内輪には、減速機入力軸25の油孔25eと連通する油孔41a(図3参照)が設けられている。さらに、減速機入力軸25の先端部に設けられた油孔25fは、油路25cと連通して軸方向に延び、減速機入力軸25の軸端面で開口する。 The oil passage 25c communicating with the oil passage 24a of the motor rotating shaft 24 extends along the axial direction inside the reduction gear input shaft 25. An oil hole 25 d communicating with the oil passage 25 c of the speed reducer input shaft 25 extends outward in the radial direction and opens at the outer peripheral surface of the speed reducer input shaft 25. Oil holes 25e provided in the eccentric portions 25a and 25b of the speed reducer input shaft 25 communicate with the oil passage 25c and extend radially outward, and open at the outer peripheral surface of the speed reducer input shaft 25. An oil hole 41a (see FIG. 3) communicating with the oil hole 25e of the speed reducer input shaft 25 is provided in the inner ring of the rolling bearing 41 that supports the curved plates 26a and 26b. Further, an oil hole 25 f provided at the tip of the speed reducer input shaft 25 communicates with the oil passage 25 c and extends in the axial direction, and opens at the shaft end surface of the speed reducer input shaft 25.
 モータ部Aのケーシング22の底部には、潤滑油を油タンク22dに排出するための排油孔22bが設けられ、減速機部Bのケーシング22の底部には、潤滑油を油タンク22dに排出するための排油孔22fが設けられている。また、油タンク22dから回転ポンプ51へ潤滑油を還流させるための油路22eがケーシング22に設けられている。潤滑油を強制的に循環させるための回転ポンプ51は、ケーシング22の油路22eと油路22aとの間に設けられている。 The bottom of the casing 22 of the motor part A is provided with an oil drain hole 22b for discharging the lubricating oil to the oil tank 22d, and the lubricating oil is discharged to the oil tank 22d at the bottom of the casing 22 of the speed reducer part B. An oil drain hole 22f is provided. Further, an oil passage 22 e for returning the lubricating oil from the oil tank 22 d to the rotary pump 51 is provided in the casing 22. The rotary pump 51 for forcibly circulating the lubricating oil is provided between the oil passage 22e and the oil passage 22a of the casing 22.
 図5に示すように、回転ポンプ51は、減速機出力軸28(図1参照)の回転と同期して回転するインナロータ52と、インナロータ52の回転に伴って従動回転するアウタロータ53と、ポンプ室54と、油路22eに連通する吸入口55と、油路22aに連通する吐出口56とを備えるサイクロイドポンプである。この回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21の大型化を防止することができる。 As shown in FIG. 5, the rotary pump 51 includes an inner rotor 52 that rotates in synchronization with the rotation of the speed reducer output shaft 28 (see FIG. 1), an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber. 54, a cycloid pump including a suction port 55 communicating with the oil passage 22e and a discharge port 56 communicating with the oil passage 22a. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from becoming large.
 インナロータ52は、外周面にサイクロイド曲線で構成された歯形を有する。具体的には、歯先部分52aの形状がエピサイクロイド曲線、歯溝部分52bの形状がハイポサイクロイド曲線となっている。インナロータ52は、スタビライザ32の円筒部32b(図1および図3参照)の外周面に嵌合して減速機出力軸28と一体回転する。アウタロータ53は、内周面にサイクロイド曲線で構成された歯形を有する。具体的には、歯先部分53aの形状がハイポサイクロイド曲線、歯溝部分53bの形状がエピサイクロイド曲線となっている。アウタロータ53は、ケーシング22に回転自在に支持されている。 The inner rotor 52 has a tooth profile composed of a cycloid curve on the outer peripheral surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve. The inner rotor 52 is fitted to the outer peripheral surface of the cylindrical portion 32 b (see FIGS. 1 and 3) of the stabilizer 32 and rotates integrally with the speed reducer output shaft 28. The outer rotor 53 has a tooth profile formed of a cycloid curve on the inner peripheral surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve. The outer rotor 53 is rotatably supported by the casing 22.
 インナロータ52は、回転中心cを中心として回転し、一方、アウタロータ53は、回転中心cを中心として回転する。インナロータ52およびアウタロータ53はそれぞれ異なる回転中心c,cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55から流入した潤滑油が吐出口56から油路22aに圧送される。また、インナロータ52の歯数をnとすると、アウタロータ53の歯数は(n+1)となる。なお、この実施形態においては、n=5としている。 Inner rotor 52 rotates around a rotation center c 1, whereas, the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the oil passage 22a. If the number of teeth of the inner rotor 52 is n, the number of teeth of the outer rotor 53 is (n + 1). In this embodiment, n = 5.
 前述した構成の潤滑機構による潤滑油の流れを説明する。図1において、潤滑機構内に付した白抜き矢印は潤滑油の流れを示す。モータ部Aの冷却として、回転ポンプ51から圧送された潤滑油は油路22a,24aを経由し、その一部がモータ回転軸24の回転に伴う遠心力およびポンプ圧力によって油路24bを経てロータ23bを冷却する。さらに、ホルダ部24dの油孔24cから潤滑油が吐出されてステータ23aを冷却する。このようにして、モータ部Aの冷却が行われる。 The flow of lubricating oil by the lubricating mechanism having the above-described configuration will be described. In FIG. 1, the white arrow given in the lubrication mechanism indicates the flow of the lubricating oil. As the cooling of the motor part A, the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a and 24a, and a part of the lubricating oil passes through the oil passage 24b by the centrifugal force and the pump pressure accompanying the rotation of the motor rotating shaft 24. 23b is cooled. Furthermore, lubricating oil is discharged from the oil holes 24c of the holder portion 24d to cool the stator 23a. In this way, the motor part A is cooled.
 一方、減速機部Bの冷却および潤滑として、回転ポンプ51から圧送された潤滑油は油路22a,24a,25cを経由し、その一部が減速機入力軸25の回転に伴う遠心力およびポンプ圧力によって油孔25d,25e,25fから吐出する。油孔25dから吐出した潤滑油は、減速機入力軸25を支持する転がり軸受37aに供給される。また、油孔25eから吐出した潤滑油は、曲線板26a,26bを支持する転がり軸受41に供給される。さらに、油孔25fから吐出した潤滑油は、減速機入力軸25を支持する転がり軸受37bに供給される。これらの潤滑油は、内ピン31の針状ころ軸受31aおよび外ピン27の針状ころ軸受27aに供給されながら、外ピンハウジング60内を径方向外側へ移動する。このようにして、減速機部Bの冷却および潤滑が行われる。 On the other hand, as cooling and lubrication of the speed reducer part B, the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a, 24a, 25c, and a part thereof is centrifugal force and pump accompanying the rotation of the speed reducer input shaft 25. The oil holes 25d, 25e, and 25f are discharged by pressure. The lubricating oil discharged from the oil hole 25d is supplied to a rolling bearing 37a that supports the reduction gear input shaft 25. The lubricating oil discharged from the oil hole 25e is supplied to the rolling bearing 41 that supports the curved plates 26a and 26b. Further, the lubricating oil discharged from the oil hole 25f is supplied to the rolling bearing 37b that supports the reduction gear input shaft 25. These lubricants move radially outward in the outer pin housing 60 while being supplied to the needle roller bearing 31a of the inner pin 31 and the needle roller bearing 27a of the outer pin 27. In this way, the speed reducer B is cooled and lubricated.
 モータ部Aの冷却、減速機部Bの冷却および潤滑を行った潤滑油は、ケーシング22の内壁面を伝って重力により下部へ移動する。モータ部Aの下部へ移動した潤滑油は、排油孔22bから排出されて油タンク22dに一時的に貯溜される。減速機部Bの下部へ移動した潤滑油は、外ピンハウジング60に設けられた油孔60aを経由して排油孔22fから排出されて油タンク22dに一時的に貯溜される。このように、油タンク22dが設けられているので、回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、油タンク22dに貯溜しておくことができる。 The lubricating oil that has cooled the motor part A, cooled the speed reducer part B, and lubricated moves along the inner wall surface of the casing 22 and moves downward by gravity. The lubricating oil that has moved to the lower part of the motor part A is discharged from the oil discharge hole 22b and is temporarily stored in the oil tank 22d. The lubricating oil that has moved to the lower part of the reduction gear part B is discharged from the oil discharge hole 22f via the oil hole 60a provided in the outer pin housing 60 and temporarily stored in the oil tank 22d. Thus, since the oil tank 22d is provided, even if lubricating oil that cannot be completely discharged by the rotary pump 51 is temporarily generated, it can be stored in the oil tank 22d.
 この実施形態におけるインホイールモータ駆動装置21の全体構成は、前述のとおりであるが、その特徴的な構成を以下に詳述する。 The overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
 インホイールモータ駆動装置21の潤滑機構は、回転ポンプ51によりケーシング22の油路22aからモータ回転軸24の油路24aを経由してモータ部Aに潤滑油を供給すると共に、そのモータ回転軸24の油路24aと連通する減速機入力軸25の油路25cを経由して減速機部Bに潤滑油を供給する軸心給油構造となっている。 The lubrication mechanism of the in-wheel motor drive device 21 supplies lubricating oil to the motor portion A from the oil passage 22a of the casing 22 via the oil passage 24a of the motor rotation shaft 24 by the rotary pump 51, and the motor rotation shaft 24. The shaft center oil supply structure supplies lubricating oil to the speed reducer part B via the oil path 25c of the speed reducer input shaft 25 communicating with the oil path 24a.
 この軸心給油構造において、減速機部Bに潤滑油を供給する減速機入力軸25の油路25cは、その減速機入力軸25の内部に軸方向に沿って形成されている。また、その油路25cの上流側から下流側へ向かって複数箇所(4箇所)に油孔25d~25fが形成されている(図1および図3参照)。 In this axial center oil supply structure, the oil passage 25c of the speed reducer input shaft 25 for supplying lubricating oil to the speed reducer portion B is formed along the axial direction inside the speed reducer input shaft 25. In addition, oil holes 25d to 25f are formed at a plurality of locations (four locations) from the upstream side to the downstream side of the oil passage 25c (see FIGS. 1 and 3).
 つまり、油路25cの上流部には、減速機入力軸25の外周面で開口して1個の転がり軸受37aに対して潤滑油を供給する1個の油孔25dが配設されている。また、油路25cの中流部には、減速機入力軸25の偏心部25a,25bの外周面で開口して1個の転がり軸受41に対して潤滑油を供給する2個の油孔25eが配設されている。さらに、油路25cの下流部には、減速機入力軸25の軸端面で開口して1個の転がり軸受37bに対して潤滑油を供給する1個の油孔25fが配設されている。 That is, in the upstream portion of the oil passage 25c, one oil hole 25d that opens at the outer peripheral surface of the speed reducer input shaft 25 and supplies lubricating oil to one rolling bearing 37a is disposed. In addition, two oil holes 25e that open at the outer peripheral surfaces of the eccentric portions 25a and 25b of the speed reducer input shaft 25 and supply lubricating oil to one rolling bearing 41 are formed in the midstream portion of the oil passage 25c. It is arranged. Further, in the downstream portion of the oil passage 25c, one oil hole 25f that opens at the shaft end surface of the reduction gear input shaft 25 and supplies lubricating oil to one rolling bearing 37b is disposed.
 ここで、インホイールモータ駆動装置21に内蔵された回転ポンプ51は、減速機部Bの減速機出力軸28と同期して回転する。従って、モータ高速回転時には、回転ポンプ51も高速で回転するためにその回転ポンプ51から吐出する潤滑油量が多い。一方、モータ低速回転時には、回転ポンプ51も低速で回転するためにその回転ポンプ51から吐出する潤滑油量が少ない。特に、複数の油孔25d~25fが油路25cの上流側から下流側に向けて形成された軸心給油構造をなすことから、モータ低速回転時、油路25cの下流側まで到達する潤滑油がより一層少なくなる。 Here, the rotary pump 51 built in the in-wheel motor drive device 21 rotates in synchronization with the speed reducer output shaft 28 of the speed reducer part B. Accordingly, when the motor rotates at a high speed, the rotary pump 51 also rotates at a high speed, so that the amount of lubricating oil discharged from the rotary pump 51 is large. On the other hand, when the motor rotates at a low speed, the rotary pump 51 also rotates at a low speed, so that the amount of lubricating oil discharged from the rotary pump 51 is small. In particular, since the plurality of oil holes 25d to 25f form an axial oil supply structure formed from the upstream side to the downstream side of the oil passage 25c, the lubricating oil that reaches the downstream side of the oil passage 25c at the time of low-speed rotation of the motor. Is even less.
 モータ低速回転時、潤滑油の不足による減速機部Bの冷却性能が低下することを未然に防止すると共に、モータ高速回転時、潤滑油の過多による減速機効率が低下することを未然に防止するため、この実施形態では、軸心給油構造をなす潤滑機構において、潤滑油を減速機部Bに過不足なく供給することができるように、減速機入力軸25における各油孔25d~25fの孔径を以下のように規定した。 When the motor rotates at a low speed, the cooling performance of the speed reducer part B due to lack of lubricating oil is prevented in advance, and at the time of the motor rotating at a high speed, the speed reducer efficiency is prevented from decreasing due to excessive lubricating oil. Therefore, in this embodiment, the diameter of each of the oil holes 25d to 25f in the speed reducer input shaft 25 is such that the lubricating oil can be supplied to the speed reducer portion B without excess or deficiency in the lubrication mechanism having the shaft center oil supply structure. Was defined as follows.
 つまり、各油孔25d~25fの等価管路径を、φ0.5mm以上でφ4mm以下、好ましくは、φ1mm以上でφ2.5mm以下とする。ここで、油孔25d~25fの開口形状として、真円形状の他、楕円形状や矩形状など種々の形状を考慮することにより、油孔25d~25fの孔径を等価管路径で規定する。この等価管路径Deは、油孔断面の流路面積をA、油孔断面の周長をWとした場合、De=4A/Wで求められる。 That is, the equivalent pipe diameter of each of the oil holes 25d to 25f is φ0.5 mm or more and φ4 mm or less, preferably φ1 mm or more and φ2.5 mm or less. Here, as the opening shapes of the oil holes 25d to 25f, in addition to a perfect circle shape, various shapes such as an elliptical shape and a rectangular shape are taken into consideration, so that the hole diameters of the oil holes 25d to 25f are defined by equivalent pipe diameters. The equivalent pipe diameter De is obtained by De = 4 A / W, where A is the channel area of the oil hole cross section and W is the circumference of the oil hole cross section.
 このように、油孔25d~25fの等価管路径を、φ0.5mm以上でφ4mm以下としたことにより、モータ高速回転時、油孔25d~25fから吐出される潤滑油が過多となることはなく、減速機部Bで潤滑油による撹拌抵抗の増加を抑制できて減速機効率の向上が図れる。また、モータ低速回転時、油孔25d~25fから吐出される潤滑油が不足することはなく、減速機部Bの冷却性能および耐久性能が向上して減速機部Bの発熱を抑制すると共に、十分な潤滑により回転部分の損傷を防止することができる。 As described above, by setting the equivalent pipe diameter of the oil holes 25d to 25f to be not less than φ0.5 mm and not more than φ4 mm, the lubricating oil discharged from the oil holes 25d to 25f is not excessive when the motor rotates at high speed. The increase in the stirring resistance due to the lubricating oil can be suppressed in the reduction gear part B, and the reduction gear efficiency can be improved. In addition, when the motor rotates at low speed, there is no shortage of lubricating oil discharged from the oil holes 25d to 25f, and the cooling performance and durability performance of the speed reducer part B are improved to suppress the heat generation of the speed reducer part B. Sufficient lubrication can prevent damage to rotating parts.
 特に、各油孔25d~25fの等価管路径を、φ1mm以上でφ2.5mm以下とすれば、モータ高速回転時、減速機部Bで潤滑油による撹拌抵抗の増加をより一層抑制できて減速機効率が確実に向上する。また、モータ低速回転時、減速機部Bの冷却性能が確実に向上して減速機部Bの発熱をより一層抑制することができるだけでなく、回転部分の損傷を効果的に防止することができる。 In particular, if the equivalent pipe diameter of each of the oil holes 25d to 25f is set to φ1 mm or more and φ2.5 mm or less, an increase in the agitation resistance due to the lubricating oil can be further suppressed at the reduction gear part B when the motor rotates at high speed. Efficiency is definitely improved. In addition, when the motor rotates at a low speed, the cooling performance of the speed reducer part B can be reliably improved and the heat generation of the speed reducer part B can be further suppressed, and damage to the rotating part can be effectively prevented. .
 ここで、各油孔25d~25fの等価管路径がφ0.5mmよりも小さいと、モータ低速回転時、その油孔25d~25fから吐出される潤滑油が不足する。この潤滑油の不足により、減速機部Bの冷却性能が低下して減速機部Bの発熱を抑制することが困難となり、潤滑不足により回転部分の損傷が早期に発生するおそれがある。特に、潤滑機構が軸心給油構造をなすことから、モータ低速回転時、油路25cの下流側で減速機部Bに供給される潤滑油が不足することにより、油路25cの下流側で減速機部Bの発熱を抑制することが困難となり、回転部分の損傷が発生するおそれがある。一方、各油孔25d~25fの等価管路径がφ4mmよりも大きいと、その油孔25d~25fから吐出される潤滑油が過多となる。この潤滑油の過多により、減速機部Bで潤滑油による撹拌抵抗が増加して減速機効率が低下する。 Here, if the equivalent pipe diameter of each of the oil holes 25d to 25f is smaller than φ0.5 mm, the lubricating oil discharged from the oil holes 25d to 25f becomes insufficient during low-speed rotation of the motor. Due to this lack of lubricating oil, the cooling performance of the speed reducer part B is lowered, making it difficult to suppress the heat generation of the speed reducer part B, and there is a risk that damage to the rotating part will occur early due to insufficient lubrication. In particular, since the lubrication mechanism has an axial oil supply structure, when the motor rotates at a low speed, the lubricating oil supplied to the speed reducer part B is insufficient on the downstream side of the oil passage 25c, so that the speed is reduced on the downstream side of the oil passage 25c. It becomes difficult to suppress the heat generation of the machine part B, and the rotating part may be damaged. On the other hand, when the equivalent pipe diameter of each of the oil holes 25d to 25f is larger than 4 mm, the lubricating oil discharged from the oil holes 25d to 25f becomes excessive. Due to the excessive amount of the lubricating oil, the agitation resistance due to the lubricating oil is increased in the reduction gear part B, and the reduction gear efficiency is lowered.
 この実施形態の減速機入力軸25における各油孔25d~25fの等価管路径について、潤滑油を減速機部Bに過不足なく供給することができる範囲を追求するために、実験して評価した。その実験結果を表1に示す。表1中の○は問題なし、△は条件により問題なし、×は問題の起きる可能性大である。
Figure JPOXMLDOC01-appb-T000001
The equivalent pipe diameters of the oil holes 25d to 25f in the speed reducer input shaft 25 of this embodiment were experimentally evaluated in order to pursue a range in which lubricating oil can be supplied to the speed reducer part B without excess or deficiency. . The experimental results are shown in Table 1. In Table 1, “◯” indicates no problem, “Δ” indicates no problem depending on conditions, and “×” indicates the possibility of a problem.
Figure JPOXMLDOC01-appb-T000001
 以上の実験結果より、減速機入力軸25における各油孔25d~25fの等価管路径は、φ0.5mm以上でφ4mm以下、好ましくは、φ1mm以上でφ2.5mm以下とすることが有効である。このような範囲に規定することにより、モータ高速回転時、油孔25d~25fから吐出される潤滑油が過多となることはなく、減速機部Bで潤滑油による撹拌抵抗の増加を抑制できて減速機効率の向上が図れる。また、モータ低速回転時、油孔25d~25fから吐出される潤滑油が不足することはなく、減速機部Bの冷却性能が向上して減速機部Bの発熱を抑制すると共に、十分な潤滑により必要な耐久性を持たせることができる。さらに、減速機入力軸25の加工性が良好で油孔25d~25fの製作が容易で、その油孔25d~25fへの異物噛み込みも防止することができる。 From the above experimental results, it is effective that the equivalent pipe diameter of each of the oil holes 25d to 25f in the speed reducer input shaft 25 is φ0.5 mm or more and φ4 mm or less, preferably φ1 mm or more and φ2.5 mm or less. By defining in such a range, the lubricating oil discharged from the oil holes 25d to 25f does not become excessive at the time of high-speed rotation of the motor, and the reduction of the stirring resistance by the lubricating oil can be suppressed in the reduction gear section B. Reduction gear efficiency can be improved. Further, when the motor rotates at a low speed, there is no shortage of lubricating oil discharged from the oil holes 25d to 25f, the cooling performance of the speed reducer part B is improved to suppress heat generation of the speed reducer part B, and sufficient lubrication Thus, the required durability can be provided. Further, the workability of the speed reducer input shaft 25 is good, the oil holes 25d to 25f can be easily manufactured, and the foreign matter can be prevented from being caught in the oil holes 25d to 25f.
 最後に、この実施形態におけるインホイールモータ駆動装置21の全体的な作動原理を説明する。 Finally, the overall operation principle of the in-wheel motor drive device 21 in this embodiment will be described.
 図1~図3に示すように、モータ部Aは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これにより、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a,26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と係合して、曲線板26a,26bを減速機入力軸25の回転とは逆向きに自転回転させる。 As shown in FIGS. 1 to 3, the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates. . Thereby, when the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25. At this time, the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
 貫通孔30aに挿通する内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。このとき、減速機入力軸25の回転が減速機部Bによって減速されて減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、後輪14に必要なトルクを伝達することが可能となる。 The inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28. At this time, since the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer portion B and transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the rear wheel 14 The necessary torque can be transmitted.
 この減速機部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの波形の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。このように、多段構成とすることなく大きな減速比を得ることができる減速機部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31に針状ころ軸受27a,31a(図3参照)を設けたことにより、曲線板26a,26bとの間の摩擦抵抗が低減されるので、減速機部Bの伝達効率が向上する。 The reduction ratio of the reduction gear B is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b. In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, a very large reduction ratio of 1/11 can be obtained. Thus, by adopting the reduction gear unit B that can obtain a large reduction ratio without using a multistage configuration, a compact and high reduction ratio in-wheel motor drive device 21 can be obtained. Further, since the needle roller bearings 27a and 31a (see FIG. 3) are provided on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced. Transmission efficiency is improved.
 この実施形態においては、油路24bをモータ回転軸24に設け、油孔25eを偏心部25a,25bに設け、油孔25fを減速機入力軸25の軸端に設けた場合を例示したが、モータ回転軸24や減速機入力軸25の任意の位置に設けることができる。また、回転ポンプ51としてサイクロイドポンプの例を示したが、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。 In this embodiment, the oil passage 24b is provided in the motor rotating shaft 24, the oil hole 25e is provided in the eccentric portions 25a and 25b, and the oil hole 25f is provided in the shaft end of the speed reducer input shaft 25. It can be provided at any position of the motor rotating shaft 24 or the speed reducer input shaft 25. Moreover, although the example of the cycloid pump was shown as the rotary pump 51, all the rotary pumps driven using the rotation of the reduction gear output shaft 28 are employable.
 減速機部Bの曲線板26a,26bを180°位相をずらして2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相をずらして設けるとよい。運動変換機構は、減速機出力軸28に固定された内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成された例を示したが、減速機部Bの回転をハブ輪33aに伝達可能な任意の構成とすることができる。例えば、曲線板26a,26bに固定された内ピンと減速機出力軸28に形成された穴とで構成される運動変換機構であってもよい。この実施形態のインホイールモータ駆動装置21においては、サイクロイド式の減速機を採用した例を示したが、遊星減速機、2軸並行減速機、その他の減速機であってもよい。 The example in which two curved plates 26a and 26b of the speed reducer part B are provided with a 180 ° phase shift has been shown. However, the number of curved plates can be arbitrarily set. For example, when three curved plates are provided. May be provided with a 120 ° phase shift. Although the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve boards 26a and 26b, rotation of the reduction gear part B is a hub. Any configuration that can be transmitted to the wheel 33a can be adopted. For example, it may be a motion conversion mechanism constituted by an inner pin fixed to the curved plates 26a and 26b and a hole formed in the reduction gear output shaft 28. In the in-wheel motor drive device 21 of this embodiment, the example which employ | adopted the cycloid type reduction gear was shown, However, A planetary reduction gear, a 2 axis | shaft parallel reduction gear, and other reduction gears may be sufficient.
 この実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから後輪14に伝達される。従って、前述のように減速された動力は高トルクに変換されたものとなっている。また、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を後輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、後輪14側からの動力を減速機部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器などの作動に用いてもよい。 The description of the operation in this embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor part A to the rear wheel 14. Therefore, the power decelerated as described above is converted to high torque. Also, the case where power is supplied to the motor unit A to drive the motor unit and the power from the motor unit A is transmitted to the rear wheels 14 is shown. On the contrary, the vehicle decelerates or goes down the hill. In such a case, the power from the rear wheel 14 side may be converted into high-rotation low-torque rotation by the reduction gear part B and transmitted to the motor part A, and the motor part A may generate power. Furthermore, the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
 この実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、任意の構成のモータを適用可能である。例えば、ケーシングに固定されるステータと、ステータの内側の軸方向の隙間を開けて対向する位置に配置されるロータとを備えるアキシャルギャップモータであってもよい。さらに、図6および図7に示した電気自動車11は、後輪14を駆動輪とした例を示したが、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等も含むものである。 In this embodiment, an example in which a radial gap motor is adopted as the motor part A has been shown, but a motor having an arbitrary configuration can be applied. For example, it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator. Further, although the electric vehicle 11 shown in FIGS. 6 and 7 shows an example in which the rear wheel 14 is a drive wheel, the front wheel 13 may be a drive wheel or a four-wheel drive vehicle. In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

Claims (2)

  1.  モータ部と、減速機部と、車輪用軸受部と、前記モータ部および減速機部を収容するケーシングと、回転ポンプにより前記ケーシングの油路からモータ部のモータ回転軸を経由して減速機部の減速機入力軸へ潤滑油を供給する軸心給油構造をなす潤滑機構とを備えたインホイールモータ駆動装置であって、
     前記潤滑機構は、減速機入力軸の内部に軸方向に沿って形成された油路と、前記油路の上流側から下流側へ向かって複数箇所に配置され、前記油路と連通して前記減速機入力軸の外部に開口する油孔とを備え、前記各油孔の等価管路径を、φ0.5mm以上でφ4mm以下としたことを特徴とするインホイールモータ駆動装置。
    A motor part, a reduction gear part, a wheel bearing part, a casing for housing the motor part and the reduction gear part, and a reduction gear part from the oil passage of the casing by a rotary pump via a motor rotation shaft of the motor part An in-wheel motor drive device comprising a lubrication mechanism that forms an axial oil supply structure that supplies lubricating oil to the speed reducer input shaft of
    The lubrication mechanism is disposed in an oil passage formed along the axial direction inside the speed reducer input shaft, and is disposed at a plurality of locations from the upstream side to the downstream side of the oil passage, and communicates with the oil passage to An in-wheel motor drive device comprising: an oil hole that opens to the outside of the speed reducer input shaft; and an equivalent pipe diameter of each oil hole is set to be not less than φ0.5 mm and not more than φ4 mm.
  2.  前記各油孔の等価管路径を、φ1mm以上でφ2.5mm以下とした請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein an equivalent pipe diameter of each oil hole is set to φ1 mm or more and φ2.5 mm or less.
PCT/JP2016/054600 2015-03-03 2016-02-17 In-wheel motor drive device WO2016140067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041552A JP2016161074A (en) 2015-03-03 2015-03-03 In-wheel motor drive device
JP2015-041552 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140067A1 true WO2016140067A1 (en) 2016-09-09

Family

ID=56846659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054600 WO2016140067A1 (en) 2015-03-03 2016-02-17 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP2016161074A (en)
WO (1) WO2016140067A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024234A (en) * 2005-07-19 2007-02-01 Jatco Ltd Lubricating device for transmission
JP2009197821A (en) * 2008-02-19 2009-09-03 Nsk Ltd Planetary gear mechanism
JP2015034557A (en) * 2013-08-07 2015-02-19 Ntn株式会社 Motor driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024234A (en) * 2005-07-19 2007-02-01 Jatco Ltd Lubricating device for transmission
JP2009197821A (en) * 2008-02-19 2009-09-03 Nsk Ltd Planetary gear mechanism
JP2015034557A (en) * 2013-08-07 2015-02-19 Ntn株式会社 Motor driving device

Also Published As

Publication number Publication date
JP2016161074A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
WO2015186466A1 (en) In-wheel motor drive device
WO2015186467A1 (en) In-wheel motor drive device
JP5374215B2 (en) Cycloid reducer, in-wheel motor drive device, and vehicle motor drive device
WO2015141387A1 (en) In-wheel motor drive device
JP2016114184A (en) Cycloid speed reducer and in-wheel motor drive with cycloid speed reducer
JP5687839B2 (en) In-wheel motor drive device
WO2016002571A1 (en) In-wheel motor drive device
WO2012111411A1 (en) Device for driving in-wheel motor
JP2009262616A (en) Motor driving device and in-wheel motor driving device
WO2016047442A1 (en) In-wheel motor drive apparatus
JP5176183B2 (en) In-wheel motor drive device
JP2016179799A (en) Motor drive unit for vehicle
WO2015060135A1 (en) In-wheel motor driving device
JP2016160980A (en) Vehicular motor drive device
WO2016140067A1 (en) In-wheel motor drive device
JP2016151321A (en) In-wheel motor drive device
WO2015137088A1 (en) In-wheel motor drive device
JP2016164429A (en) In-wheel motor drive device
JP6333579B2 (en) In-wheel motor drive device
WO2015141389A1 (en) In-wheel motor drive device
JP2016097771A (en) In-wheel motor drive unit
WO2016052040A1 (en) In-wheel motor drive device
JP2016150611A (en) In-wheel motor drive device
JP6396173B2 (en) In-wheel motor drive device
JP2016137790A (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758761

Country of ref document: EP

Kind code of ref document: A1