WO2016136075A1 - 電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備 - Google Patents

電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備 Download PDF

Info

Publication number
WO2016136075A1
WO2016136075A1 PCT/JP2015/084091 JP2015084091W WO2016136075A1 WO 2016136075 A1 WO2016136075 A1 WO 2016136075A1 JP 2015084091 W JP2015084091 W JP 2015084091W WO 2016136075 A1 WO2016136075 A1 WO 2016136075A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
resin
insulating resin
silica nanoparticles
mass
Prior art date
Application number
PCT/JP2015/084091
Other languages
English (en)
French (fr)
Inventor
小林 金也
大嶽 敦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016136075A1 publication Critical patent/WO2016136075A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle

Definitions

  • the present invention relates to an electrically insulating resin composition, an electrically insulating resin cured product using the same, and a power receiving / transforming facility.
  • an electrical insulating resin hereinafter also simply referred to as a resin
  • various additives in the resin has been taken.
  • various functional materials such as a high thermal conductivity material, a low linear expansion material, and nanoparticles are added to increase the thermal conductivity, lower linear expansion coefficient, fracture toughness, and insulation life of the resin.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-57121 discloses a cured product containing fine particles and a resin component, wherein the fine particles have a hydrophobic group on the surface and have a particle diameter of 200 nm or less.
  • a resin characterized in that the component has a hydrophilic group in a side chain, and the fine particles form a plurality of linear aggregates inside the resin to form a dendrite-like structure.
  • a material is disclosed. According to Patent Document 1, an insulating resin material having high strength and high withstand voltage can be formed, and it can be contributed to miniaturization of a high-voltage device using this resin material.
  • additive materials such as a high thermal conductivity material and a low linear expansion material
  • additive materials such as a high thermal conductivity material and a low linear expansion material
  • the additive may be precipitated (sedimented) in the resin before curing.
  • a means for suppressing the precipitation of the additive material such as increasing the temperature of the resin transportation means, is required, which increases equipment and maintenance costs.
  • Patent Document 1 by adding hydrophobic fine particles (silica nanoparticles), it is possible to form a dendrite network structure in the resin and to improve the fracture toughness of the resin and the dielectric breakdown lifetime.
  • hydrophobic fine particles silicon nanoparticles
  • the present invention provides an electrically insulating resin composition capable of suppressing the precipitation of a high thermal conductive material and a low linear expansion material in a resin and achieving both improvement in fracture toughness and dielectric breakdown life of the resin. It aims at providing the electrical insulation resin hardened
  • the present invention includes a resin, a high thermal conductivity material composed of silica, a low linear expansion material composed of silica, and silica nanoparticles, and the silica nanoparticles are composed of the high thermal conductivity material and the low thermal conductivity material.
  • an electrically insulating resin composition which is disposed around a linear expansion material.
  • the present invention also provides a cured electrical insulating resin obtained by curing the electrical insulating resin composition and a power receiving / transforming facility using the electrical insulating resin composition in a portion where insulation is required.
  • an electrically insulating resin composition capable of suppressing precipitation of a high thermal conductive material and a low linear expansion material in a resin and achieving both improvement in the fracture toughness and dielectric breakdown life of the resin, and the same are used.
  • An electrically insulated resin cured product and a power receiving / transforming facility can be provided.
  • electrically insulating resin composition (hereinafter also simply referred to as resin composition)” means a resin before curing, and “electrically insulated resin cured product (hereinafter also simply referred to as cured product)”. "" Is obtained by curing the above “electrical insulating resin composition”.
  • an electrically insulating resin composition 10 includes a resin 3, a high thermal conductive material (crushed silica) 1 made of silica (SiO 2 ), and a low linear expansion material (fused silica) made of silica. ) 2 and silica nanoparticles 4, and the silica nanoparticles 4 are arranged around the crushed silica 1 and the fused silica 2. Further, the silica nanoparticles 4 are characterized by forming a three-dimensional dendrite structure.
  • “a high thermal conductive material made of silica” means a high thermal conductive material made of a substance having silica as a main skeleton. The same applies to the low linear expansion material made of silica.
  • Crushed silica 1 is an additive that imparts high thermal conductivity to resin 3
  • fused silica 2 is an additive that reduces residual thermal stress in a high temperature difference environment and imparts crack resistance to resin 3.
  • the silica nanoparticles 4 are arranged around the crushed silica 1 and the fused silica 2, and the silica nanoparticles 4 undergo Brownian motion to polymerize the additive (crushed silica 1 and fused silica 2) in the resin. Is suppressed, and precipitation of the high thermal conductive material 1 and the low linear expansion material 2 can be suppressed.
  • silica nanoparticles increase the viscosity of the resin, it is unthinkable for those skilled in the art to add silica nanoparticles further after adding an additive to the resin.
  • silica nanoparticles are added while keeping a balance with the viscosity of the resin, and the effect (suppression of precipitation of the additive) is maximized. Is.
  • Both the electrically insulating resin composition and the electrically insulated resin cured product according to the present invention have a form as shown in FIG. About hardened
  • FIG. 2 is a diagram schematically showing part of the molecular structure of crushed silica, fused silica, and silica nanoparticles.
  • the main skeletons of crushed silica 1, fused silica 2 and silica nanoparticles 4 are all silica, and Si (silicon) having a positive polarity and O (oxygen) having a negative polarity. Attract each other with Coulomb attraction and bond strongly like hydrogen bonds (on the order of 10 kcal / mol). Thereby, superposition
  • FIG. 3 is a graph showing the relationship between the precipitation amount of the additive and the average particle diameter of the silica nanoparticles.
  • the amount of precipitation was evaluated from the weight of the precipitate from which the resin solvent was removed. As shown in FIG. 3, as the average particle size of the silica nanoparticles decreases, the amount of precipitation of the additive decreases, and when the average particle size of the silica nanoparticles is 200 nm or less, the additive precipitates compared to when 400 nm. It was found that the amount could be halved.
  • a high temperature facility is not required when the resin is stored for a long period of time, so that the cost can be reduced.
  • silica nanoparticles 4 are linearly aggregated in the resin 3 to form a three-dimensional dendrite structure 5, which can suppress the cracking of the resin and the progress of the electric tree 6, and the mechanical breakdown progress and electrical Destruction progress can be suppressed.
  • the content of the silica nanoparticles 4 in the resin composition (or cured product) is important in relation to the viscosity of the resin composition. It is preferable that it is 0.1 mass% or more and 5 mass% or less. If the content is less than 0.1% by mass, the effect of adding the silica nanoparticles 4 cannot be sufficiently obtained. Moreover, since the viscosity of a resin composition will become large too much when it exceeds 5 mass%, handling of resin will become easy, and it is preferable not to exceed 5 mass%.
  • Silica nanoparticles 4 are preferably hydrophobic. Silica particles have a hydroxyl group (—OH) on the surface and are hydrophilic. By modifying the surface of the silica nanoparticle 4 with a hydrophobic group, it binds to the hydroxyl group on the surface of the crushed silica 1 and the fused silica 2 to form a micelle structure (shell structure). In addition to the above-described bond of Si and O Further, the bond between the crushed silica 1 and the fused silica 2 and the silica nanoparticles 4 can be strengthened, and the silica nanoparticles 4 can be easily disposed around the crushed silica 1 and the fused silica 2. Even if the surface of the silica nanoparticles 4 has a hydrophobic group, the bulk forms Si—O—Si bonds due to the Coulomb attractive force.
  • —OH hydroxyl group
  • hydrophobic silica nanoparticles 4 form a three-dimensional dendrite structure in the resin 3 as shown in FIG.
  • hydrophilic silica nanoparticles are added instead of the hydrophobic silica nanoparticles 4, they are uniformly dispersed in the resin. Comparing resins having the same weight ratio of hydrophilic silica nanoparticles and hydrophobic silica nanoparticles added, the fracture toughness and dielectric breakdown lifetime of the resin added with hydrophobic silica nanoparticles are greater.
  • the fracture toughness and dielectric breakdown life of the resin can be evaluated by an impact test (Charpy impact test) and a V (voltage) -t (time) test, respectively.
  • hydrophobic group that modifies the surface of the silica nanoparticle 4 examples include a methyl group, a methoxy group, an alkyl group, and an alkoxy group. One of these may be used, or two or more of these may be combined. There may be.
  • the total content of crushed silica 1 and fused silica 2 is preferably 0.1% by mass or more and 70% by mass or less.
  • the content of the additive is more than 70% by mass, the viscosity becomes too high, which is not preferable.
  • the silica nanoparticles 4 cannot sufficiently suppress precipitation.
  • the fused silica 2 is preferably spherical silica having an average particle size of 10 ⁇ m or more.
  • the resin 3 is not particularly limited as long as it has thermosetting properties, and is an epoxy resin, unsaturated polyester resin, polyphenol resin, novolac resin, ABS (acrylonitrile-styrene-butadiene copolymer) resin, polyacetal resin and These composite materials are mentioned.
  • an epoxy resin the main skeleton of the prepolymer is preferably a bisphenol A type.
  • the resin composition (or cured product) according to the present invention may further contain an elastomer or a scaly filler.
  • Elastomers or scale-like fillers can be expected to significantly improve the toughness of the resin and inhibit crack propagation.
  • the elastomer preferably has an average particle size of 10 ⁇ m or less, and can be expected to have an effect of inhibiting the progress of cracks by increasing sedimentation or other number density. Similarly, the same effect can be expected for the scaly filler.
  • the resin 3 may contain polyoxyethylene or an ether compound containing polyoxyethylene and alkyls or phenols as an additive at a ratio of 1.5 mass% or less of the silica nanoparticles 4 at the maximum.
  • These substances are known as nonpolar surfactants, and have the effect of reducing surface energy and improving lubricity, and lowering the viscosity of the resin composition by improving lubrication between additives. It is possible.
  • the content of all the additives is 0.1% by mass or more and 70% by mass or less. Preferably there is. Moreover, it is preferable that the viscosity of the resin 3 is 5 Pa.s at 80 degrees C or less. When the viscosity of the resin 3 is greater than 5 Pa ⁇ s, workability during casting is deteriorated. It is preferable to adjust the content of the additive in the resin 3 and the silica nanoparticles 4 so that the viscosity of the resin 3 is 5 Pa ⁇ s.
  • crushed silica is used as an example of the high thermal conductive material 1 and fused silica is used as the low linear expansion material 2.
  • the high thermal conductive material 1 and the low linear expansion material 2 made of silica are limited to these. is not.
  • the high thermal conductive material 1, the low linear expansion material 2, and the silica nanoparticle which are additives are all using silica as a basic skeleton, a metal oxide such as alumina (Al 2 O 3 ) is used as the basic skeleton. Also good.
  • FIG. 6 is a sectional view schematically showing an example of a switchgear according to the present invention.
  • the above-described resin composition according to the present invention can be molded by molding, pressurizing, or injection, and applied to a portion where insulation of the power receiving / transforming equipment is required.
  • Examples of the power receiving / transforming equipment include various electrical devices such as a transformer, a generator and a converter in addition to the switch gear 23 shown in FIG. It is also applicable to other molding methods and products.
  • the resin composition and the cured product according to the present invention can achieve both the suppression of precipitation of the high thermal conductive material and the low linear expansion material in the resin and the improvement of the fracture toughness and dielectric breakdown life of the resin, There is no need to provide it, and a highly reliable power receiving / transforming facility can be obtained.
  • the resin composition shown in FIG. 1 was prepared and the dielectric breakdown lifetime of the resin was evaluated.
  • the epoxy resin 3 containing crushed silica 1 and fused silica 2 was allowed to contain 2.5 mass% of the hydrophobic silica nanoparticles 4 having an average particle diameter of 50 nm in the resin composition, and sufficiently stirred with a stirrer.
  • the crushed silica 7 can increase the thermal conductivity at a low cost and increase the linear expansion coefficient of the resin 3.
  • fused silica 2 is added to prevent cracks when the resin is sealed with aluminum or ceramic. In an environment where the temperature difference is large, a residual thermal stress is generated in the resin 3 due to the difference between the linear expansion coefficient of the resin 3 and another material such as aluminum or ceramic sealed by the resin 3. At this time, the residual thermal stress can be reduced by the fused silica 2 having a small linear expansion coefficient, and the crack resistance of the resin 3 can be improved.
  • the upper limit of the total sum of the crushed silica 1 and the fused silica 2 is set to 70% by mass, but a sufficient effect can be obtained even at about 30% by mass, particularly when the difference in linear expansion coefficient is not large. Since the viscosity of the resin 3 containing the crushed silica 1 before curing is sufficiently small, it is possible to add another additive having an increased viscosity, such as fused silica 2.
  • the hydrophobic silica nanoparticles 4 suppress the progress of mechanical breakdown generated in the gap between the crushed silica 1 and the fused silica 2 and also suppress the progress of electrical breakdown. It has been experimentally found that the addition of hydrophobic silica nanoparticles 4 having an average particle size of 50 nm increases the fracture toughness of the resin 3 by 25% compared to the case where no addition is made.
  • FIG. 4 is a graph showing the relationship between the dielectric breakdown lifetime of the resin and the particle size of the hydrophobic silica nanoparticles. As shown in FIG. 4, it was found that the dielectric breakdown lifetime of the resin 3 becomes longer as the particle size of the hydrophobic silica nanoparticles 5 is reduced, similarly to the effect of suppressing precipitation shown in FIG. 3.
  • FIG. 5A is a diagram schematically showing dry crushed silica
  • FIG. 5B is a diagram schematically showing wet crushed silica.
  • crushed silica there are crushed silica in particular in two methods, a wet method and a dry method.
  • the wet crushed silica 10 was used, but generally, the dry crushed silica 9 produced by the dry method has less OH groups and residual water on the surface, and the adverse effect of water in the resin production (curing inhibition and It is possible to avoid side reactions). In addition, this effect can further increase the thermal conductivity of the resin.
  • the surface of the wet crushed silica 10 produced by the wet method has adhesion of H 2 O and the like, and OH groups tend to increase, and H 2 O is hydrogenated by the OH groups.
  • H 2 O is hydrogenated by the OH groups.
  • Table 1 water is exothermically bonded with energy of 20 kJ / mol or more per molecule (calculated by molecular orbital calculation), and this water can be removed by drying at 100 ° C. or more for a whole day and night. Requires a process.
  • the presence of water can give an undesirable effect such as inhibiting the polymerization of the epoxy resin 3.
  • the viscosity of the resin 3 when using the dry crushed silica 9 is measured, it is 2 Pa ⁇ s (80 ° C.), and it is clear that it contributes to a lower viscosity than when the wet crushed silica 10 is used. became. Further, the thermal conductivity of the resin 3 increased from 1.4 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 to 1.5 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 when the wet crushed silica 10 was used. Moreover, the drying process of the resin 3 can also be performed in a shorter time. Furthermore, since the dry crushed silica 9 has no water molecules in the surroundings than the wet crushed silica 10, the silica nanoparticles 4 are easily arranged. For this reason, the dry crushed silica 9 is less likely to precipitate in the resin.
  • a resin composition containing elastomer particles or scaly fillers having an average particle size of 10 ⁇ m or less was prepared, and fracture toughness was evaluated.
  • mica powder longitudinal diameter 1 ⁇ m
  • the fracture toughness of 2.4 MPa ⁇ m could be improved to 4.0 MPa ⁇ m.
  • an electrically insulating resin capable of suppressing the precipitation of the high thermal conductive material and the low linear expansion material in the resin and achieving both the fracture toughness of the resin and the improvement of the dielectric breakdown lifetime. It has been shown that a composition, a cured electrical insulating resin using the composition, and a power receiving / transforming facility can be provided.

Abstract

 樹脂内での高熱伝導材及び低線膨張材の沈殿を抑制し、かつ樹脂の破壊靭性及び絶縁破壊寿命向上の両立を図ることができる電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備を提供することを目的とする。 樹脂と、シリカからなる高熱伝導材と、シリカからなる低線膨張材と、シリカナノ粒子と、を含み、前記シリカナノ粒子が、前記高熱伝導材及び前記低線膨張材の周囲に配置されていることを特徴とする電気絶縁樹脂組成物を提供する。

Description

電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備
 本発明は、電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備に関する。
 近年、電気絶縁樹脂(以下、単に樹脂とも称する)を活用する電気機器の小型化・高信頼化を目指し、多種の添加物を樹脂中に混在させる手法がとられている。特に、樹脂の高熱伝導率化、低線膨張係数化、破壊靭性向上及び絶縁寿命向上等のために、高熱伝導材、低線膨張材及びナノ粒子等の機能性材料が多種添加されている。
 特許文献1(特開2012‐57121号公報)には、微粒子と樹脂成分とを含む硬化物であって、上記微粒子は表面に疎水基を有し、粒子径が200nm以下であって、上記樹脂成分が側鎖に親水基を有するものであって、かつ、上記微粒子が上記樹脂内部で複数の線状の凝集体を形成して、デンドライト状の構造を形成していることを特徴とする樹脂材料が開示されている。特許文献1によれば、高強度かつ高耐圧な絶縁用樹脂材料を形成することができ、この樹脂材料を用いた高電圧機器の小型化に貢献することができるとされている。
特開2012‐57121号公報
 樹脂の高熱伝導率化及び低線膨張化等を目的に、高熱伝導材及び低線膨張材のような機能性材料(以下、添加材とも称する)を多種混在させている場合、樹脂内で上記添加材の比率が多くなると、上記添加材が硬化前の樹脂内にて沈殿(沈降)する可能性がある。樹脂内で添加材の沈殿が発生する場合、樹脂の輸送手段を高温化する等添加材の沈殿を抑える手段が必要となり、設備と維持管理コストが増大する。
 特許文献1においては、疎水性の微粒子(シリカナノ粒子)の添加により、デンドライト網目構造を樹脂内に形成し、樹脂の破壊靭性向上と絶縁破壊寿命向上を図ることが可能となる。しかしながら、特許文献1では樹脂内の添加材(高熱伝導材及び低線膨張材等)の沈殿抑制については、何ら検討がなされていない。
 本発明は、上記事情に鑑み、樹脂内での高熱伝導材及び低線膨張材の沈殿を抑制し、かつ樹脂の破壊靭性及び絶縁破壊寿命向上の両立を図ることができる電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備を提供することを目的とする。
 本発明は、上記目的を達成するため、樹脂と、シリカからなる高熱伝導材と、シリカからなる低線膨張材と、シリカナノ粒子と、を含み、上記シリカナノ粒子が、上記高熱伝導材及び前記低線膨張材の周囲に配置されていることを特徴とする電気絶縁樹脂組成物を提供する。
また、本発明は、上記電気絶縁樹脂組成物を硬化した電気絶縁樹脂硬化物及び上記電気絶縁樹脂組成物を絶縁性が要求される部分に用いた受変電設備を提供する。
 本発明によれば、樹脂内の高熱伝導材及び低線膨張材の沈殿を抑制し、かつ樹脂の破壊靭性及び絶縁破壊寿命向上の両立を図ることができる電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備を提供することができる。
本発明に係る電気絶縁樹脂組成物(又は電気絶縁樹脂硬化物)を模式的に示す図である。 破砕シリカ、溶融シリカ及びシリカナノ粒子の分子構造の一部を模式的に示す図である。 添加材の沈殿量と疎水性シリカナノ粒子の平均粒径の関係を示すグラフである。 樹脂の絶縁破壊寿命と疎水性シリカナノ粒子の平均粒径の関係を示すグラフである。 乾式破砕シリカを模式的に示す図である。 湿式破砕シリカを模式的に示す図である。 本発明に係るスイッチギヤを模式的に示す断面図である。
 以下、図面を用いて、本発明に係る電気絶縁樹脂組成物、電気絶縁樹脂硬化物及び受変電設備について詳細に説明する。ただし、本発明はこれらの実施形態に限定されることは無く、本発明の要旨を変更しない範囲で適宜改良や変更を加えることが可能である。なお、本発明において「電気絶縁樹脂組成物(以下、単に樹脂組成物とも称する)」は、硬化前の樹脂を意味するものであり、「電気絶縁樹脂硬化物(以下、単に硬化物とも称する)」は、上記「電気絶縁樹脂組成物」を硬化したものである。
[電気絶縁樹脂組成物及び電気絶縁樹脂硬化物]
 図1は本発明に係る電気絶縁樹脂組成物を模式的に示す断面図である。図1に示すように、本発明に係る電気絶縁樹脂組成物10は、樹脂3と、シリカ(SiO)からなる高熱伝導材(破砕シリカ)1と、シリカからなる低線膨張材(溶融シリカ)2と、シリカナノ粒子4とを含み、シリカナノ粒子4が、破砕シリカ1及び溶融シリカ2の周囲に配置されていることを特徴とする。また、シリカナノ粒子4が三次元デンドライト構造を形成していることを特徴とする。なお、本発明において「シリカからなる高熱伝導材」とは、シリカを主骨格とする物質からなる高熱伝導材を意味するものとする。シリカからなる低線膨張材についても、同様である。
 破砕シリカ1は樹脂3に高熱伝導性を付与する添加材であり、溶融シリカ2は高温度差環境での残留熱応力を低減し、樹脂3に耐クラック性を付与する添加材である。図1に示すように、シリカナノ粒子4が破砕シリカ1及び溶融シリカ2の周囲に配置し、かつシリカナノ粒子4がブラウン運動することによって樹脂内の添加材(破砕シリカ1及び溶融シリカ2)の重合が抑止されて高熱伝導材1及び低線膨張材2の沈殿を抑制することができる。なお、シリカナノ粒子4を破砕シリカ1及び溶融シリカ2の周囲に配置するためには、破砕シリカ1、溶融シリカ2及びシリカナノ粒子4を含有する樹脂3を十分に長い時間をかけて撹拌する必要がある。
 通常、シリカナノ粒子は樹脂の粘度を上昇させるので、樹脂に添加材を添加した上にさらにシリカナノ粒子を積極的に添加することは、当業者の間では考えられない。本発明は、樹脂の粘度とのバランスを取りつつシリカナノ粒子を添加し、その効果(添加材の沈殿抑制)を最大限に得るものであり、この技術的思想は従来技術には無く、新規なものである。
 本発明に係る電気絶縁樹脂組成物及び電気絶縁樹脂硬化物は、ともに図1に示すような形態を有する。硬化物については、断面SEM(Scanning Electron Microscope)写真の観察によって、図1に示す形態を確認することができる。
 次に、シリカナノ粒子4の配置と添加材の重合抑制について説明する。図2は、破砕シリカ、溶融シリカ及びシリカナノ粒子の分子構造の一部を模式的に示す図である。図2に示すように、本発明では破砕シリカ1、溶融シリカ2及びシリカナノ粒子4の主要骨格は全てシリカであり、プラスの極性をもつSi(シリコン)と、マイナスの極性を持つO(酸素)が互いにクーロン引力で引き合い、水素結合のように強く結合する(10kcal/molオーダー)。これにより、破砕シリカ1と溶融シリカ2の重合が抑えられ、樹脂3内での沈殿が抑止される。
 続いて、シリカナノ粒子のブラウン運動と添加材の重合抑制について説明する。溶液内の粒子のブラウン運動理論では、下記式1のように、粒子の拡散係数Dは、温度/(粒子半径×樹脂の粘性)に比例する。
 D(拡散係数)∝温度/(粒子半径×樹脂の粘性)…式1
 樹脂内のシリカナノ粒子4も、上記のように添加材と結合しながらも、樹脂内でブラウン運動を行っており、拡散係数は上記式1に従うと考えられる。このため、シリカナノ粒子4のサイズ(平均粒径)が小さいほど、式1から、拡散係数が大きくなり、樹脂内の破砕シリカ1と溶融シリカ2の周囲に配置されたシリカナノ粒子4の拡散性が大きくなる。これにより、添加材同士の重合が抑制され、沈殿を抑制することができる。
 図3は、添加材の沈殿量とシリカナノ粒子の平均粒径の関係を示すグラフである。沈殿量は、樹脂溶媒を取り除いた沈殿物の重量から評価した。図3に示すように、シリカナノ粒子の平均粒径が減少するほど添加材の沈殿量が小さくなり、シリカナノ粒子の平均粒径が200nm以下のときに、400nmのときと比較して添加材の沈殿量を半分に抑制できることがわかった。樹脂内の添加材の沈殿を抑制することにより、樹脂の長期間保管時に高温化設備が不要となるため、コスト低減を図ることができる。
 さらに、シリカナノ粒子4は樹脂3内で線状に凝集して三次元デンドライト構造5を形成し、樹脂のクラック及び電気トリー6の進展を抑止することができ、機械的な破壊進展と電気的な破壊進展を抑制することができる。
 樹脂組成物(又は硬化物)におけるシリカナノ粒子4の含有量は、樹脂組成物の粘度との関係において重要である。0.1質量%以上5質量%以下であることが好ましい。0.1質量%未満であると、シリカナノ粒子4の添加効果が十分に得られない。また、5質量%を超えると、樹脂組成物の粘度が大きくなり過ぎて、樹脂の取り扱いが容易ではなくなるため、5質量%を超えないことが好ましい。
 シリカナノ粒子4は、疎水性を示すものが好ましい。シリカ粒子は表面にヒドロキシル基(‐OH)を有し、親水性を示す。シリカナノ粒子4の表面を疎水基で修飾することにより、破砕シリカ1及び溶融シリカ2の表面のヒドロキシル基と結合してミセル構造(シェル構造)を形成し、上述したSiとOの結合に加えて、破砕シリカ1及び溶融シリカ2とシリカナノ粒子4との結合をより強固にし、シリカナノ粒子4が破砕シリカ1及び溶融シリカ2の周囲に配置されることを容易にすることができる。なお、シリカナノ粒子4の表面に疎水基がある場合であっても、バルクは、上記クーロン引力によるSi‐O‐Si結合を形成する。
 また、疎水性シリカナノ粒子4は、図1に示すように、樹脂3内で3次元デンドライト構造を形成する。一方、疎水性シリカナノ粒子4ではなく、親水性シリカナノ粒子を添加した場合、樹脂内で均一に分散する。同一重量比率の親水性シリカナノ粒子と疎水性シリカナノ粒子を添加した樹脂を比較すると、破壊靭性と絶縁破壊寿命は疎水性シリカナノ粒子を添加した樹脂の方が大きくなる。これは、シリカナノ粒子が均一分散ではなく、3次元デンドライト構造を形成する方が樹脂のクラック進展と電気トリー進展を抑止するので、機械的な破壊進展と電気的な破壊進展をより抑制できるためである。樹脂の破壊靭性と絶縁破壊寿命は、それぞれ、衝撃試験(シャルピー衝撃試験)及びV(電圧)-t(時間)試験で評価することができる。
 シリカナノ粒子4の表面を修飾する疎水基としては、メチル基、メトキシ基、アルキル基及びアルコキシ基等が挙げられ、この中から1種でもよいし、これらの中から2種以上を組み合わせたものであってもよい。
 破砕シリカ1及び溶融シリカ2の含有量の合計は、0.1質量%以上70質量%以下であることが好ましい。添加材の含有量が70質量%より多いと、粘度が高くなり過ぎて好ましくない。また、シリカナノ粒子4によって沈殿を十分に抑制することができなくなる。上記含有量の範囲において、樹脂3に付与したい熱伝導性及び耐クラック性の程度を考慮して添加材の含有量を決定することが好ましい。また、溶融シリカ2は平均粒径10μm以上の球状シリカが好ましい。球状シリカとすることで、線膨張係数の低減効果が等方的となり、線膨張係数の樹脂製造方向依存性が無くなる効果がある。
 樹脂3としては、熱硬化性を有するものであれば特に限定は無く、エポキシ系樹脂、不飽和ポリエステル樹脂、ポリフェノール樹脂、ノボラック樹脂、ABS(アクリロニトリル‐スチレン‐ブタジエン共重合体)樹脂、ポリアセタール樹脂及びこれらの複合材が挙げられる。エポキシ樹脂を用いる場合、プレポリマーの主骨格はビスフェノールA型が好ましい。
 本発明に係る樹脂組成物(又は硬化物)は、さらにエラストマー又は鱗片状フィラーを含有していてもよい。エラストマー又は鱗片状フィラーは、樹脂の靭性を大幅に向上させ、クラック進展を阻害することが期待できる。エラストマーは、平均粒径が10μm以下のものが好ましく、沈降やほかの数密度を上げることによるクラック進展阻害作用が期待できる。また同様に鱗片状フィラーにも同様の作用が期待できる。
 また、樹脂3に添加材としてポリオキシエチレンやポリオキシエチレンとアルキル類又はフェノール類を含むエーテル化合物を、最大でシリカナノ粒子4の1.5質量%以内の割合で含ませてもかまわない。これらの物質は非極性界面活性剤として知られているものであり、表面エネルギーを下げて潤滑性を向上させる効果があり、添加材間の潤滑を良くすることで、樹脂組成物の粘度を下げることが可能である。
 樹脂3に、上記エラストマー、鱗片状フィラー及びポリオキシエチレン等の破砕シリカ1及び溶融シリカ2以外の添加材を加える場合、全ての添加材の含有量が0.1質量%以上70質量%以下であることが好ましい。また、樹脂3の粘度は、80℃以下で5Pa・sであることが好ましい。樹脂3の粘度が5Pa・sよりも大きくなると、注型時の作業性が低下する。樹脂3の粘度が5Pa・sとなるよう、樹脂3内の添加材及びシリカナノ粒子4の含有量を調整することが好ましい。
 なお、図1では高熱伝導材1として破砕シリカを、低線膨張材2として溶融シリカを例にして説明したが、シリカからなる高熱伝導材1及び低線膨張材2はこれらに限定されるものではない。また、添加材である高熱伝導材1、低線膨張材2及びシリカナノ粒子は、全てシリカを基本骨格としているが、この基本骨格として、アルミナ(Al)等の金属酸化物を用いても良い。すなわち、高熱伝導材1、低線膨張材2及びこれらの沈殿を抑制するナノ粒子として、シリカに代えてアルミナを用いても本発明と同様の効果を示すものと考えられる。アルミナを用いることにより、樹脂3の熱伝導率を更に高める効果が期待される。
 [受変電設備]
 図6は本発明に係るスイッチギヤの一例を模式的に示す断面図である。上述した本発明に係る樹脂組成物をモールド、加圧又は射出によって成型し、受変電設備の絶縁性が要求される部分に適用することができる。受変電設備としては、図6に示すスイッチギヤ23の他、変圧器、発電機及び変換器等の各種電気機器が挙げられる。また、この他の成型法及び製品にも適用可能である。本発明に係る樹脂組成物及び硬化物は、樹脂内の高熱伝導材及び低線膨張材の沈殿の抑制と、樹脂の破壊靭性及び絶縁破壊寿命向上の両立を図ることができるため、加熱設備を設ける必要無く、信頼性の高い受変電設備を得ることができる。
 以下、実施例に基づいて、本発明について更に詳細に説明する。
 本実施例では、図1に示す樹脂組成物を作製し、樹脂の絶縁破壊寿命を評価した。破砕シリカ1及び溶融シリカ2を含有する硬化前のエポキシ樹脂3に、平均粒径が50nmの疎水性シリカナノ粒子4を樹脂組成物の2.5質量%含有させ、攪拌器で十分攪拌した。破砕シリカ7により、安価に熱伝導率を増大し、樹脂3の線膨脹係数を増大させることができる。また、樹脂をアルミ又はセラミック等を封止する際のクラック発生防止のために、溶融シリカ2を加える。温度差が大きな環境では、樹脂3と、樹脂3が封止するアルミ又はセラミック等の他材料との線膨係数との差により、樹脂3に残留熱応力が発生する。このとき、線膨張係数の小さい溶融シリカ2により、この残留熱応力を低減でき、樹脂3の耐クラック性を向上することができる。
 本発明では、破砕シリカ1と溶融シリカ2の総和の上限は70質量%としたが、特に線膨脹係数の差が大きくない場合は、30質量%程度においても十分な効果が得られる。破砕シリカ1を含有する樹脂3の硬化前の粘度が十分に小さくなるため、溶融シリカ2の様な粘度が増大する他の添加材を入れる事が可能となる。
 図1に示したように、疎水性シリカナノ粒子4は、破砕シリカ1と溶融シリカ2の間隙で発生する機械的な破壊の進展を抑止するとともに、電気的な破壊の進展を抑止する。平均粒径50nmの疎水性シリカナノ粒子4を添加した場合は、樹脂3の破壊靭性は添加しない場合に比べ25%増大することが実験的に分かった。図4は樹脂の絶縁破壊寿命と疎水性シリカナノ粒子の粒径の関係を示すグラフである。図4に示すように、図3に示した沈殿抑制の効果と同様に、樹脂3の絶縁破壊寿命も疎水性シリカナノ粒子5の粒径の低減に伴い、長期化することが分かった。
 本実施例では、破砕シリカの種類について検討した。図5Aは乾式破砕シリカを模式的に示す図であり、図5Bは湿式破砕シリカを模式的に示す図である。破砕シリカの中でも、特に湿式法と乾式法の2種の方法において破砕したものが存在する。上記実施例1では湿式破砕シリカ10を用いたが、一般的に、乾式法で作製した乾式破砕シリカ9の方が表面におけるOH基や残留水が少なく、樹脂製造における水の悪影響(硬化阻害及び副反応の誘発等)を避けることが可能となる。また、この効果により樹脂の熱伝導度を一層高めることができる。
 一方、図5Bに示すように、湿式法で作製した湿式破砕シリカ10の表面にはHO等の付着があるほか、OH基が多くなる傾向にあり、またOH基によってHOが水素結合を引き起こして表面に水が多くなっている可能性が高い。下記表1に示すように、水は1分子あたり20kJ/mol以上のエネルギーで発熱的に結合しており(分子軌道計算にて算出)、この水を除去するには100℃以上で一昼夜にわたる乾燥工程を必要とする。また、水の存在は、エポキシ樹脂3の重合を阻害する等、好ましくない効果を与え得る。
 乾式破砕シリカ9を用いた場合の樹脂3の粘度を測定したところ、2Pa・s(80℃)であり、湿式破砕シリカ10を用いた場合よりも粘度の低下に寄与していることが明らかになった。また、樹脂3の熱伝導率は、湿式破砕シリカ10を用いた場合の1.4W・m-1・K-1から1.5W・m-1・K-1に増大した。また、樹脂3の乾燥工程もより短い時間で行うことができる。さらには、乾式破砕シリカ9の方が湿式破砕シリカ10より、周囲に水分子がないため、シリカナノ粒子4が配置しやすい。このため、乾式破砕シリカ9の方が、樹脂内での沈殿が起こりにくい。
Figure JPOXMLDOC01-appb-T000001
 以下、本発明の第3の実施例を説明する。本実施例においては平均粒径10μm以下のエラストマー粒子又は鱗片状フィラーを含む樹脂組成物を作製し、破壊靭性を評価した。
 ここでは、エラストマーとして、アクリル基修飾スチレンブタジエンゴム(平均粒子径0.7μm)を添加した例についてまず説明する。含有量は、樹脂に対して8質量%とした。この結果、破壊靭性は添加前の2.4MPa√mから4.5MPa√mに向上させることができた。更に粒子径を増大させて効果を調べたが、徐々にその効果が落ちる減少が確認された。その理由として、同じ重量では数密度が小さくなり、進展したクラックと遭遇する確率が下がることが挙げられる。
 なお、同様に鱗片状フィラーとしてマイカパウダー(長手方向径1μm)でも同様の効果が得られた。具体的には、2.4MPa√mの破壊靭性を4.0MPa√mに改善することができた。
 以上説明したように、本発明によれば、樹脂内での高熱伝導材及び低線膨張材の沈殿を抑制し、かつ樹脂の破壊靭性及び絶縁破壊寿命向上の両立を図ることができる電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備を提供することができることが示された。
 なお、上記した実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
 1…高熱伝導材、2…低線膨張材、3…樹脂、4…シリカナノ粒子、5…3次元デンドライト構造、6…クラック及び電気トリー、7…クーロン引力、9…乾式破砕シリカ、10…湿式破砕シリカ、23…スイッチギヤ、61…真空バルブ、62A…固定側セラミックス絶縁筒、62B…可動側セラミックス絶縁筒、63A…固定側端板、63B…可動側端板、64A…固定側電界緩和シールド、64B…可動側電界緩和シールド、65…アークシールド、66A…固定側電極、66B…可動側電極、67A…固定側ホルダ、67B…可動側ホルダ、68…ベローズシールド、69…ベローズ、610…接地断路部、611…接地断路部ブッシング側固定電極、612…接地断路部可動電極、613…接地断路部中間固定電極、614…接地断路部接地側固定電極、615…フレキシブル導体、616…ばね接点、617…接続導体、620…真空バルブ用操作ロッド、621…接地断路部用操作ロッド、630…固体絶縁物(樹脂)、631…金属容器、640…母線用ブッ
シング、641…母線用ブッシング中心導体、642…ケーブル用ブッシング、643…ケーブル用ブッシング中心導体。

Claims (20)

  1.  樹脂と、シリカからなる高熱伝導材と、シリカからなる低線膨張材と、シリカナノ粒子と、を含み、
     前記シリカナノ粒子が、前記高熱伝導材及び前記低線膨張材の周囲に配置されていることを特徴とする電気絶縁樹脂組成物。
  2.  前記シリカナノ粒子が、線状に凝集して3次元デンドライト構造を形成していることを特徴とする請求項1記載の電気絶縁樹脂組成物。
  3.  前記シリカナノ粒子が表面に疎水基を有し、前記高熱伝導材及び前記低線膨張材と前記シリカナノ粒子とがミセル構造を形成していることを特徴とする請求項1又は2に記載の電気絶縁樹脂組成物。
  4.  前記シリカナノ粒子の含有量が、0.1質量%以上5質量%以下であることを特徴とする請求項1乃至3のいずれか1項に記載の電気絶縁樹脂組成物。
  5.  前記高熱伝導材及び前記低線膨張材の含有量の合計が、0.1質量%以上70質量%以下であることを特徴とする請求項1乃至4のいずれか1項に記載の電気絶縁樹脂組成物。
  6.  前記高熱伝導材が破砕シリカであり、前記低線膨張材が溶融シリカであることを特徴とする請求項1乃至5のいずれか1項に記載の電気絶縁樹脂組成物。
  7.  前記破砕シリカが、乾式破砕シリカであることを特徴とする請求項6記載の電気絶縁樹脂組成物。
  8.  さらに、エラストマー粒子、鱗片状フィラー、ポリオキシエチレン、ポリオキシエチレンとアルキル類又はフェノール類を含むエーテル化合物を、前記シリカナノ粒子に対して0質量%より多く1.5質量%以下含むことを特徴とする請求項1乃至7のいずれか1項に記載の電気絶縁樹脂組成物。
  9.  前記樹脂が、エポキシ系熱硬化性樹脂であることを特徴とする請求項1乃至8のいずれか1項に記載の電気絶縁樹脂組成物。
  10.  粘度が80℃以下で5Pa・s以下であることを特徴とする請求項1乃至9のいずれか1項に記載の電気絶縁樹脂組成物。
  11.  樹脂と、シリカからなる高熱伝導材と、シリカからなる低線膨張材と、シリカナノ粒子と、を含み、
     前記シリカナノ粒子が、前記高熱伝導材及び前記低線膨張材の周囲に配置されていることを特徴とする電気絶縁樹脂硬化物。
  12.  前記シリカナノ粒子が、線状に凝集して3次元デンドライト構造を形成していることを特徴とする請求項11記載の電気絶縁樹脂硬化物。
  13.  前記シリカナノ粒子が表面に疎水基を有し、前記高熱伝導材及び前記低線膨張材と前記シリカナノ粒子とがミセル構造を形成していることを特徴とする請求項11又は12に記載の電気絶縁樹脂硬化物。
  14.  前記シリカナノ粒子の含有量が、0.1質量%以上5質量%以下であることを特徴とする請求項11乃至13のいずれか1項に記載の電気絶縁樹脂硬化物。
  15.  前記高熱伝導材及び前記低線膨張材の含有量の合計が、0.1質量%以上70質量%以下であることを特徴とする請求項11乃至14のいずれか1項に記載の電気絶縁樹脂硬化物。
  16.  前記高熱伝導材が破砕シリカであり、前記低線膨張材が溶融シリカであることを特徴とする請求項11乃至15のいずれか1項に記載の電気絶縁樹脂硬化物。
  17.  前記破砕シリカが、乾式破砕シリカであることを特徴とする請求項16記載の電気絶縁樹脂硬化物。
  18.  さらに、エラストマー粒子、鱗片状フィラー、ポリオキシエチレン、ポリオキシエチレンとアルキル類又はフェノール類を含むエーテル化合物を、前記シリカナノ粒子に対して0質量%より多く1.5質量%以下含むことを特徴とする請求項11乃至17のいずれか1項に記載の電気絶縁樹脂硬化物。
  19.  前記樹脂が、エポキシ系熱硬化性樹脂であることを特徴とする請求項11乃至18のいずれか1項に記載の電気絶縁樹脂硬化物。
  20.  請求項1乃至10のいずれか1項に記載の電気絶縁樹脂組成物を、絶縁性が要求される部分に用いたことを特徴とする受変電設備。
PCT/JP2015/084091 2015-02-27 2015-12-04 電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備 WO2016136075A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-037632 2015-02-27
JP2015037632A JP2016162515A (ja) 2015-02-27 2015-02-27 電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備

Publications (1)

Publication Number Publication Date
WO2016136075A1 true WO2016136075A1 (ja) 2016-09-01

Family

ID=56789345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084091 WO2016136075A1 (ja) 2015-02-27 2015-12-04 電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備

Country Status (2)

Country Link
JP (1) JP2016162515A (ja)
WO (1) WO2016136075A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110089A (ja) * 2015-12-16 2017-06-22 株式会社日立産機システム 電気絶縁用樹脂組成物
JPWO2019077793A1 (ja) * 2017-10-18 2019-11-14 三菱電機株式会社 固定子コイルの絶縁被覆材およびそれを用いた回転機
JP2020045417A (ja) * 2018-09-19 2020-03-26 株式会社日立産機システム 電機機器
JP7267032B2 (ja) * 2019-02-26 2023-05-01 日本アエロジル株式会社 フィラー充填材及びその製造方法、並びに高熱伝導絶縁材及びその製造方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266152A (ja) * 1988-04-18 1989-10-24 Nippon Steel Chem Co Ltd 封止樹脂充填用シリカ
JPH02228354A (ja) * 1989-03-01 1990-09-11 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物
JPH02261856A (ja) * 1989-03-31 1990-10-24 Toshiba Corp 半導体封止用エポキシ樹脂組成物及び樹脂封止形半導体装置
JPH0372570A (ja) * 1988-09-09 1991-03-27 Mitsubishi Kasei Corp 樹脂組成物
JPH05230284A (ja) * 1992-02-19 1993-09-07 Hitachi Ltd 樹脂組成物その製造法並びに樹脂封止型半導体装置
JPH06132427A (ja) * 1992-09-03 1994-05-13 Matsushita Electric Works Ltd 封止用エポキシ樹脂成形材料
JPH07157543A (ja) * 1993-12-08 1995-06-20 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物
JPH07331087A (ja) * 1994-06-13 1995-12-19 Sumitomo Chem Co Ltd 成形用樹脂組成物
JPH083426A (ja) * 1994-06-17 1996-01-09 Sumitomo Chem Co Ltd 成形用エポキシ樹脂組成物
JPH083365A (ja) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd 成形用樹脂組成物
JPH0881542A (ja) * 1994-09-13 1996-03-26 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JPH0881543A (ja) * 1994-09-14 1996-03-26 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JP2004269763A (ja) * 2003-03-11 2004-09-30 Sumitomo Bakelite Co Ltd 電気絶縁被覆用組成物
JP2010100726A (ja) * 2008-10-23 2010-05-06 Kyocera Chemical Corp モールドコイル含浸注形用エポキシ樹脂組成物、モールドコイル装置及びモールドコイル装置の製造方法
JP2012057121A (ja) * 2010-09-13 2012-03-22 Hitachi Ltd 樹脂材料及びこれを用いた高電圧機器
WO2013121571A1 (ja) * 2012-02-17 2013-08-22 株式会社日立製作所 電気絶縁用樹脂組成物及びその硬化物並びにこれらの製造方法並びにこれらを用いた高電圧機器及び送配電機器
WO2013186872A1 (ja) * 2012-06-13 2013-12-19 株式会社日立製作所 絶縁材料並びにこれを用いた高電圧機器
WO2014115266A1 (ja) * 2013-01-23 2014-07-31 株式会社日立製作所 電気機器用絶縁材及びこれを用いた電気機器

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266152A (ja) * 1988-04-18 1989-10-24 Nippon Steel Chem Co Ltd 封止樹脂充填用シリカ
JPH0372570A (ja) * 1988-09-09 1991-03-27 Mitsubishi Kasei Corp 樹脂組成物
JPH02228354A (ja) * 1989-03-01 1990-09-11 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物
JPH02261856A (ja) * 1989-03-31 1990-10-24 Toshiba Corp 半導体封止用エポキシ樹脂組成物及び樹脂封止形半導体装置
JPH05230284A (ja) * 1992-02-19 1993-09-07 Hitachi Ltd 樹脂組成物その製造法並びに樹脂封止型半導体装置
JPH06132427A (ja) * 1992-09-03 1994-05-13 Matsushita Electric Works Ltd 封止用エポキシ樹脂成形材料
JPH07157543A (ja) * 1993-12-08 1995-06-20 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物
JPH07331087A (ja) * 1994-06-13 1995-12-19 Sumitomo Chem Co Ltd 成形用樹脂組成物
JPH083426A (ja) * 1994-06-17 1996-01-09 Sumitomo Chem Co Ltd 成形用エポキシ樹脂組成物
JPH083365A (ja) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd 成形用樹脂組成物
JPH0881542A (ja) * 1994-09-13 1996-03-26 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JPH0881543A (ja) * 1994-09-14 1996-03-26 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JP2004269763A (ja) * 2003-03-11 2004-09-30 Sumitomo Bakelite Co Ltd 電気絶縁被覆用組成物
JP2010100726A (ja) * 2008-10-23 2010-05-06 Kyocera Chemical Corp モールドコイル含浸注形用エポキシ樹脂組成物、モールドコイル装置及びモールドコイル装置の製造方法
JP2012057121A (ja) * 2010-09-13 2012-03-22 Hitachi Ltd 樹脂材料及びこれを用いた高電圧機器
WO2013121571A1 (ja) * 2012-02-17 2013-08-22 株式会社日立製作所 電気絶縁用樹脂組成物及びその硬化物並びにこれらの製造方法並びにこれらを用いた高電圧機器及び送配電機器
WO2013186872A1 (ja) * 2012-06-13 2013-12-19 株式会社日立製作所 絶縁材料並びにこれを用いた高電圧機器
WO2014115266A1 (ja) * 2013-01-23 2014-07-31 株式会社日立製作所 電気機器用絶縁材及びこれを用いた電気機器

Also Published As

Publication number Publication date
JP2016162515A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
Zhou et al. Polymeric insulation materials for HVDC cables: Development, challenges and future perspective
Liu et al. Core–shell Cu@ rGO hybrids filled in epoxy composites with high thermal conduction
KR101119945B1 (ko) 주형 수지 조성물 및 그것을 사용한 절연 재료, 절연 구조체
CN102656646B (zh) 具有非线性介电常数的电介质材料
Tomer et al. Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers
WO2016136075A1 (ja) 電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備
US9142331B2 (en) Elastomer composite with improved dielectric properties and production method thereof
Huang et al. Role of interface in highly filled epoxy/BaTiO 3 nanocomposites. Part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property
TWI468461B (zh) Insulating mold resins for electrical machines and high voltage electrical machines using them
WO2013121571A1 (ja) 電気絶縁用樹脂組成物及びその硬化物並びにこれらの製造方法並びにこれらを用いた高電圧機器及び送配電機器
WO2017098566A1 (ja) 高電圧機器用電気絶縁材料
CN101506301A (zh) 浇铸型树脂组合物及采用它的绝缘材料、绝缘结构体
Chen et al. Performance of silicone rubber composites using boron nitride to replace alumina tri‐hydrate
US20170301429A1 (en) Insulation System
US11043797B2 (en) Cable fitting for HVDC cables
CN105331046B (zh) 一种直流特高压绝缘子、制备方法及其用途
JP2020045417A (ja) 電機機器
Patel et al. Effect of different types of silica particles on dielectric and mechanical properties of epoxy nanocomposites
Imai et al. Approach by Nano-and Micro-filler Mixture toward Epoxy-based Nanocomposites as Industrial Insulating Materials
Strauchs et al. Effects of SiO 2 nanofiller on the properties of epoxy resin based syntactic foam
JP5986647B2 (ja) 電気機器用絶縁材及びこれを用いた電気機器
JP7191517B2 (ja) 電気機器
WO2013186872A1 (ja) 絶縁材料並びにこれを用いた高電圧機器
JP2007258015A (ja) 絶縁材用樹脂組成物及びその製造方法
EP3070115A1 (en) Epoxy resin composition with improved dielectric breakdown strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883365

Country of ref document: EP

Kind code of ref document: A1