WO2016134539A1 - 一种频带共享的方法、装置以及*** - Google Patents

一种频带共享的方法、装置以及*** Download PDF

Info

Publication number
WO2016134539A1
WO2016134539A1 PCT/CN2015/073405 CN2015073405W WO2016134539A1 WO 2016134539 A1 WO2016134539 A1 WO 2016134539A1 CN 2015073405 W CN2015073405 W CN 2015073405W WO 2016134539 A1 WO2016134539 A1 WO 2016134539A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
frequency band
shared frequency
transmitted
shared
Prior art date
Application number
PCT/CN2015/073405
Other languages
English (en)
French (fr)
Inventor
孙静原
薛丽霞
邵家枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/073405 priority Critical patent/WO2016134539A1/zh
Priority to EP15882977.0A priority patent/EP3255915B1/en
Priority to JP2017545243A priority patent/JP6526823B2/ja
Priority to CN201580002114.2A priority patent/CN106170998B/zh
Publication of WO2016134539A1 publication Critical patent/WO2016134539A1/zh
Priority to US15/686,669 priority patent/US10904767B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a system for band sharing.
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • Some frequency bands can be used for both UMTS and UMTS.
  • the LTE frequency band while the LTE service and the UMTS service are independent of each other.
  • the LTE traffic may be very high, even if the spectrum is not enough or the spectrum quality is limited and the quality of service is degraded.
  • the traffic volume of UMTS may be very high, even if the spectrum is not enough or the spectrum quality is limited and the quality of service is degraded.
  • LTE and UMTS can share one frequency band in a time sharing manner.
  • the shared frequency band is used by LTE or UMTS according to the measurement result of the UE and the service requirement.
  • the shared frequency band is used by the LTE, the shared frequency band is not used by the UMTS, and vice versa.
  • the shared frequency band is switched from the frequency band that is the original network to the frequency band of the other network. Since the UE in the original network still performs various measurements on the shared frequency band, switching the shared frequency band out may result in measurement errors and the UE is caused. The connection is interrupted.
  • the UE providing network service on the shared frequency band needs to be switched to another frequency band before the shared frequency band is switched out, and then the shared frequency band can be switched to another network.
  • the UE When the shared frequency band is reused in the original network, the UE needs to be re-accessed to the shared frequency band by means of handover. Since it takes a long time to switch the UE out or come in, the UE disconnects or establishes the connection with the shared frequency band. It takes a long time, and the service of the original UE is interrupted during the handover process, resulting in low utilization of the shared frequency band.
  • Embodiments of the present invention provide a method, an apparatus, and a system for frequency band sharing, which can effectively improve utilization of a shared frequency band.
  • the present invention provides a method for frequency band sharing, which may mainly include:
  • a shared frequency band which is a frequency band that can be used for the first network or the second network, wherein the shared frequency band is a secondary cell of the user equipment UE1 that communicates with the first network and a user equipment that communicates with the second network.
  • the secondary cell of UE2, UE1 and UE2 can operate in a shared frequency band and at least one other frequency band except the shared frequency band;
  • the shared frequency band only transmits the common signal of the second network, and when the service transmission of the second network is performed in the shared frequency band, only the common signal of the first network is transmitted or no signal is transmitted in the shared frequency band.
  • only the common signal of the first network is transmitted or not transmitted in the shared frequency band, and specifically includes: when the communication is performed by using the first network, and the secondary cell is the shared frequency band.
  • UE1 configures multiple downlink carriers including a shared frequency band to correspond to one uplink carrier, it does not transmit any signal of the first network in the shared frequency band; when configuring any UE1 that uses the first network for communication and the secondary cell is a shared frequency band
  • the shared frequency band individually corresponds to one uplink carrier, the common signal of the first network is transmitted in the shared frequency band.
  • the first network is UMTS, and the second network is LTE; when the first network is used for service transmission in the shared frequency band And transmitting only the common signal of the second network in the shared frequency band, specifically: transmitting the UMTS data signal in the shared frequency band, and transmitting one or more of the LTE DRS, CRS, SS, and PBCH in the shared frequency band; when in the shared frequency band
  • the common signal of the first network is transmitted in the shared frequency band, specifically: transmitting the LTE data signal in the shared frequency band, and transmitting one or more of the UMTS SS, CCPCH, and CPICH in the shared frequency band.
  • the method further includes :
  • UE2 based CRS-based measurements are not configured; and/or
  • the first network does not transmit one or more of the SS, CCPCH, and CPICH within the time unit in which the DRS is transmitted; and/or
  • a measurement interval is configured for UE2, and DRS is not transmitted in the shared frequency band during the measurement interval time.
  • the DRS transmitted in the DRS transmission time unit does not include the CRS.
  • the method before the step of determining the shared frequency band, the method further includes:
  • determining, in the shared frequency band, performing service transmission of the first network or the second network The service transmission specifically includes: determining, according to the traffic volume of the first network and the second network, the service transmission of the first network or the service transmission of the second network in the shared frequency band, where the specific includes:
  • the traffic volume of the first network exceeds the first threshold
  • the traffic volume of the second network exceeds the second threshold
  • determining the shared frequency band Performing service transmission of the first network, if the ratio of the traffic volume of the first network and the second network does not exceed the third threshold, determining to perform service transmission of the second network in the shared frequency band.
  • Transmitting only the common signal of the second network includes: activating the first network to work in the shared frequency band, and deactivating the second network to work in the shared frequency band or configuring the second network to be in the OFF state in the shared frequency band;
  • the service transmission of the second network is performed in the shared frequency band
  • only the common signal of the first network is transmitted or not transmitted in the shared frequency band, and specifically includes: activating the second network to work in the shared frequency band or configuring the second network in the shared frequency band In the ON state, and/or, the first network is deactivated to operate in the shared frequency band.
  • the present invention provides a device for frequency band sharing, which may specifically include:
  • a determining unit configured to determine a shared frequency band, the shared frequency band being a frequency band that can be used for the first network or the second network;
  • a configuration unit configured to configure the shared frequency band to be a secondary cell of the user equipment UE1 that uses the first network to communicate, and a secondary cell of the user equipment UE2 that uses the second network to communicate, where both UE1 and UE2 can work in a shared frequency band and At least one other frequency band other than the shared frequency band;
  • a processing unit configured to determine, when the first network and the second network have services that are not transmitted, perform service transmission of the first network or service transmission of the second network in the shared frequency band, when performing the first network in the shared frequency band
  • the service is transmitted, only the common signal of the second network is transmitted in the shared frequency band, and when the service transmission of the second network is performed in the shared frequency band, only the common signal of the first network is transmitted or no signal is transmitted in the shared frequency band.
  • the processing unit is configured to: when all the UE1s that use the first network to communicate and the secondary cell are the shared frequency band are configured with multiple downlink carriers, including the shared frequency band, When an uplink carrier is used, any signal of the first network is not transmitted in the shared frequency band; when any of the UE1s that use the first network for communication and the secondary cell is a shared frequency band is configured with a shared frequency band and corresponds to one uplink carrier, respectively, the shared frequency band is transmitted.
  • the public signal of the first network is configured to: when all the UE1s that use the first network to communicate and the secondary cell are the shared frequency band are configured with multiple downlink carriers, including the shared frequency band, When an uplink carrier is used, any signal of the first network is not transmitted in the shared frequency band; when any of the UE1s that use the first network for communication and the secondary cell is a shared frequency band is configured with a shared frequency band and corresponds to one uplink carrier, respectively, the shared frequency band is transmitted.
  • the public signal of the first network is configured to
  • the first network is UMTS
  • the second network is LTE
  • the processing unit is specifically configured to transmit in a shared frequency band.
  • a data signal of UMTS transmitting one or more of LTE DRS, CRS, SS, and PBCH in a shared frequency band, transmitting LTE data signals in a shared frequency band, and transmitting one or more of UMTS SS, CCPCH, and CPICH in a shared frequency band
  • LTE DRS LTE
  • CRS CRS
  • SS SS
  • PBCH PBCH
  • the apparatus may further include: a switching unit, configured to communicate by using the first network It can only work on other user equipments in a shared frequency band and/or other user equipments that will communicate using the second network and can only work in one shared frequency band to switch to other frequency bands.
  • a switching unit configured to communicate by using the first network It can only work on other user equipments in a shared frequency band and/or other user equipments that will communicate using the second network and can only work in one shared frequency band to switch to other frequency bands.
  • the present invention provides a frequency band sharing system, which may mainly include the second aspect Any of the bands shared devices provided.
  • the cell sharing the frequency band is a secondary cell of the UE that uses the first network to communicate with the secondary cell of the UE that uses the second network to communicate, and the UEs of the two networks can work in the shared frequency band and the shared frequency band.
  • At least one other frequency band when the shared frequency band is switched between the two networks, since the UE of the original network only receives the common signal on the shared frequency band, and the cell of the shared frequency band is the secondary cell of the original network UE, there is no need to The handover of the UE to other frequency bands can also ensure the continuity of the original network UE service, effectively realize the sharing of the shared frequency band between the first network and the second network, and can quickly complete the conversion between the two networks, effectively improving the Utilization of shared bands.
  • FIG. 1 is a schematic flowchart of a method for frequency band sharing according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a configuration manner in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an apparatus for frequency band sharing according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network controller according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for frequency band sharing, which can effectively realize sharing of the shared frequency band between the first network and the second network, and can quickly complete the conversion between the two networks, thereby improving the utilization of the spectrum.
  • a band sharing device and a corresponding band sharing system are also provided, please refer to FIG. 1 to FIG. The detailed description will be respectively made below through specific embodiments.
  • the method for frequency band sharing is applicable to a wireless communication system, specifically, a frequency band sharing method for converting a shared frequency band between two different wireless communication systems, and the two networks may be divided into two.
  • This shared frequency band is shared.
  • the band sharing method will be described in terms of a band sharing device.
  • the band sharing device may specifically be a network controller.
  • the network controller can learn the service requirements of the UE1 in the first network and the UE2 in the second network, and the measurement result, etc., thereby coordinating the use of the shared frequency band by the first network or the second network.
  • the band sharing method is applicable to a first network and a second network covered by one or more base stations.
  • FIG. 1 is a schematic flowchart of a method for frequency band sharing according to an embodiment of the present invention.
  • the method may specifically include the following steps:
  • Step 101 Determine a shared frequency band, where the shared frequency band is a frequency band that can be used in the first network or the second network, where the shared frequency band is a secondary cell of the user equipment UE1 that uses the first network to communicate, and uses the second network to communicate.
  • the secondary cell of the user equipment UE2, UE1 and UE2 can operate in the shared frequency band and at least one other frequency band except the shared frequency band;
  • the user equipment that uses the first network for communication is described as UE1
  • the user equipment that uses the second network for communication is described as UE2
  • UE1 and UE2 may be the same UE or different UEs.
  • the shared frequency band may be used for communication by the first network or the second network. After the shared frequency band is determined, the shared frequency band may be configured as a secondary cell of UE1 and a secondary cell of UE2. One of the other frequency bands in which the UE1 can work is configured as a primary cell. Similarly, one of the other frequency bands in which the UE2 can operate can be configured as a primary cell.
  • both UE1 and UE2 can work in the shared frequency band and at least one other frequency band except the shared frequency band, before step 101, it may further include: other users who will communicate using the first network and can only work in one shared frequency band.
  • the device switches to other frequency bands; and/or other user equipments that will communicate using the second network and can only operate in one shared frequency band switch to other frequency bands.
  • Step 102 If the first network and the second network have services that are not transmitted at the same time, determine to perform service transmission of the first network or service transmission of the second network in the shared frequency band, and perform service transmission of the first network in the shared frequency band. At the time, only the common signal of the second network is transmitted in the shared frequency band, and when the service transmission of the second network is performed in the shared frequency band, only the common signal of the first network is transmitted or no signal is transmitted in the shared frequency band.
  • the network may be determined according to the traffic of the first network and the second network, and the network may be used according to the first network.
  • the RRM measurement result of UE1 and the RRM measurement result of UE2 of the second network determine which network uses the shared frequency band.
  • the foregoing determination may also be determined according to services of the first network and the second network, such as according to service priority, traffic size, service urgency, service quality requirement, service type, and number of users of the service.
  • the first network may be a Universal Mobile Telecommunications System (UMTS), and the second network may be Long Term Evolution (LTE) or LTE-A.
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • the embodiment of the present invention analyzes and describes the method by using the LTE/LTE-A wireless communication system and the UMTS wireless communication system as an example, and does not constitute a limitation of the present invention.
  • a cell can normally provide services for the UE when it is ON, that is, it can transmit various service data, public signals, and common channels, among which, public Signals and channels include: Cell-specific Reference Signal (CRS), Synchronization Signal (SS), and Physical Broadcast Channel (PBCH), where CRS/SS/PBCH are also periodic. Transmitted (the cell transmits these signals for the UE to perform some measurements and receives some necessary signaling); while a cell can transmit only one long-period demodulation reference signal (DRS, Dedicated Reference) when OFF Signal).
  • DRS Long-period demodulation reference signal
  • the ON/OFF of the cell can be selected according to the change of the service requirement and the RRM measurement result on each carrier.
  • the UE may perform measurement according to CRS or DRS when the cell is ON, and may only perform RRM measurement according to DRS when the cell is OFF.
  • Carrier aggregation is introduced in Release 10, so that the UE supporting CA can be served by at least two carriers at the same time, and each carrier has one serving cell, and the cell on one carrier is used as the primary cell Pcell (Pcell is The cell that the UE accesses first, the Pcell can configure other carriers of the UE, and the cell on the other carrier acts as the secondary cell Scell. Among them, Pcell can not be deactivated, and Scell can be activated and deactivated. Each activation requires a certain time for the UE to prepare (such as device parameter adjustment, synchronization, etc.) before starting to receive data transmission from this Scell. .
  • the UE When the Scell is activated, as in the case of the cell ON, the UE can be normally served, that is, it can transmit various service data, and a common signal or channel CRS/SS/PBCH. In the case of deactivation, unlike cellOFF, which only transmits DRS, it can transmit only common signals or channels, such as CRS, SS, or PBCH signals or channels. Among them, the activation/deactivation of Scell can be changed according to business needs. And/or RRM measurement results on individual carriers, etc. are selected. Activation/deactivation may also be selected based on changes in service requirements and/or RRM measurements of individual cells, and the like. The UE can perform RRM measurement according to CRS or DRS.
  • the UMTS In the UMTS system, no cell ON/OFF is introduced, but there is a CA-like design, that is, a dual cell (DC), in which a cell on one carrier is used as a Pcell of the UE, and at least one Scell on the other carrier is configured. That is, the secondary service HS-DSCH cell).
  • the UMTS is activated or deactivated using physical layer signaling.
  • the UE can receive 4ms after being activated (when the UE is configured with only one uplink carrier) to 6ms (when the UE is configured with multiple uplink carriers).
  • the downstream signal begins to be served.
  • each of the Scells does not serve the UE that corresponds to one uplink carrier of the Scell.
  • the downlink Scell may not transmit any signal; if at least one UE configures one uplink carrier to have only one downlink carrier, the carrier transmits a common signal or channel even if it does not serve any UE, for example, Synchronization Signal (SS), Common Pilot Channel (CPICH), and Common Control Physical Channel (CCPCH).
  • SS Synchronization Signal
  • CPICH Common Pilot Channel
  • CCPCH Common Control Physical Channel
  • the SS/CCPCH/CPICH transmission only occupies very little transmission power, and most of the transmission power is used to transmit data.
  • the activation/deactivation of the Scell can be performed according to changes in service requirements and the like.
  • the embodiment of the present invention will be described in detail below by taking the first network as the UMTS and the second network as the LTE.
  • This shared frequency band can be used for UMTS or LTE communication. It should be noted that the frequency band exists in the form of a carrier in both UMTS and LTE, and is a carrier of LTE and a carrier of UMTS, respectively.
  • the shared frequency band of UMTS and LTE may be one or more, for example, the shared frequency band may be one or more of 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
  • UMTS and LTE have a shared frequency band, which may be 5 MHz, or may have two shared frequency bands, respectively 5 MHz and 10 MHz, or may have three shared frequency bands, respectively 5 MHz, 10 MHz, and 20 MHz, etc.
  • the embodiment will be described in detail by taking the shared frequency band of UMTS and LTE as 5 MHz as an example, and does not constitute a limitation of the present invention.
  • UMTS and LTE will only support users of one carrier to switch to other cells or carriers, so that only UMTS UEs supporting DC and LTE UEs supporting CA can use this.
  • a 5MHz band may be 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
  • UMTS and LTE have a shared frequency band, which may be 5 MHz, or may have two shared frequency bands, respectively
  • the UE of UMTS (hereinafter described for UE1 for convenience of description) and the UE of LTE (hereinafter described as UE2 for convenience of description) can operate at 5 MHz, in addition, UE1 can operate in a shared frequency band and in addition to the shared frequency band. At least one other frequency band, UE2 may operate in a shared frequency band and at least one other frequency band except the shared frequency band. In order to ensure that only DC-capable UE1 and CA-capable UE2 can use the shared frequency band, only other users of one frequency band will be supported. The device switches to another cell or band.
  • the shared frequency band may be configured as the secondary cell Scell of the UE1, and the cell of any one of the other frequency bands that the UE1 can work is the primary cell Pcell of the UE1, wherein the coverage of the Scell and the Pcell may be covered by the same base station, and the coverage may be The scope is basically the same.
  • the shared frequency band may be configured as the secondary cell Scell of UE2, and the cell of any one of the other frequency bands in which UE2 can work is the primary cell Pcell of UE2.
  • the coverage of the Scell and the Pcell may be covered by the same base station, and the coverage is basically the same.
  • the two networks transmit services in a time-sharing manner on the shared frequency band, and the network that does not transmit the service on the shared frequency band can transmit or not transmit a common signal in a certain manner according to requirements, thereby ensuring that the measurement of the UE is not interrupted.
  • the UE is not disconnected from the shared frequency band due to the network standard in which the shared frequency band is not used for communication by the UE, and the connection is not re-established due to the network standard in which the shared frequency band is reused for the UE to communicate, without repeating
  • the steps of disconnecting the network and reconnecting the network are performed, and the time can be used for transmitting the service, so that the time for transmitting the service on the shared frequency band is longer, and the spectrum utilization rate is effectively improved.
  • FIG. 2 is a schematic diagram of a configuration manner of an embodiment of the present invention.
  • CC2 denotes a cell having a shared frequency band of 5 MHz
  • CC1 CC3 and CC4 are independent frequency bands of two networks, wherein CC1 represents a 10 MHz cell, CC3 represents a 10 MHz cell, and CC4 represents a 10 MHz cell.
  • the service of the first network and the second network it is necessary to determine which network uses the shared frequency band. For example, it is determined according to the service of the first network and the second network, such as according to service priority, traffic volume, service urgency, service quality requirement, service type, number of users of the service, and the like.
  • the service transmission of the first network or the service transmission of the second network in the shared frequency band is determined according to the traffic volume of the first network and the second network, and specifically includes:
  • the traffic volume of the first network exceeds the first threshold
  • the traffic volume of the second network exceeds the second threshold
  • determining the shared frequency band Performing service transmission of the first network, if the ratio of the traffic volume of the first network and the second network does not exceed the third threshold, determining to perform service transmission of the second network in the shared frequency band.
  • the first threshold, the second threshold, and the third threshold are self-definable, and are not specifically limited in this embodiment.
  • the UMTS If the traffic of the UMTS exceeds the first threshold, the UMTS has a large amount of traffic on the shared frequency band, and the UMTS service transmission is performed in the shared frequency band. Similarly, if the LTE traffic exceeds the second threshold, the LTE is in the shared frequency band. The traffic on the LTE is large, and the LTE service transmission is performed in the shared frequency band. If the service requirements of both UMTS and LTE are large, it is determined that the UMTS or LTE operates on the shared frequency band by comparing the traffic ratios of the two.
  • the ratio of the traffic volume of the UMTS and the LTE exceeds the third threshold, determining that the UMTS service transmission is performed in the shared frequency band, if the ratio of the traffic volume of the UMTS and the LTE does not exceed the third threshold, determining that the LTE service is performed in the shared frequency band. transmission.
  • the LTE transmits the signal in the ON state or transmits the signal in the activated state, that is, the LTE can normally transmit various service data, including the common signal/channel, in the 5 MHz band.
  • the Scell in the UMTS is in a deactivated state. Since the shared frequency band (downlink carrier) may be configured to correspond to one uplink carrier, a plurality of downlink carriers including the shared frequency band may be configured to correspond to one uplink carrier.
  • any signal of the UMTS may not be transmitted in the shared frequency band 5 MHz;
  • any one UE1 that uses the first network for communication and the secondary cell is a shared frequency band configures the shared frequency band to correspond to one uplink carrier, the common signal or channel of the UMTS SS/CCPCH/CPICH is transmitted in the shared frequency band 5 MHz. Do not emit any other signals.
  • the transmission power of the SS/CCPCH/CPICH is very low, so that the UMTS transmitting these common signals or channels in the shared frequency band in the case of deactivation will have little interference to the LTE system.
  • the network controller can also according to the service requirements of UMTS. The principle is to determine whether the shared frequency band needs to be activated as the Scell of UE1.
  • the Scell in the UMTS is in an active state, and various service data of the UMTS can be transmitted at 5 MHz, and the UE 1 can normally receive various service data at 5 MHz.
  • the Scell in LTE is in a deactivated state or an OFF state, and LTE can transmit a common signal/channel at 5 MHz in a deactivated or OFF state.
  • the DRS is a long-period DRS, and the period can be configured or adjusted, for example, 40 ms, 80 ms or 160 ms, each time
  • the duration of the transmission can also be configured or adjusted, for example, it can be 1 to 5 ms.
  • the signals actually needed to be used in transmitting DRS can also be configured or adjusted, such as whether to transmit CSIRS, whether to use CRS, or the like.
  • a larger period of DRS (eg, 160 ms) may be configured as needed and/or a shorter duration of the configuration DRS (eg, 1 ms) and/or no signal in the DRS may be configured.
  • Send (if not transmitting CRS).
  • LTE can also follow the deactivated state, ie still transmitting Common signals and channels such as CRS/SS/PBCH. It can be understood that both the LTE system and the UMTS system transmit signals on the shared frequency band (UMTS normally transmits various service data, LTE transmits DRS or CRS/SS/PBCH), and mutual interference occurs.
  • the interference is within the tolerable range, it can coexist in this way. Since UMTS itself is an interference-limited system, transmitting CRS/SS/PBCH on LTE has little effect on UMTS interference, but only increases the strength of noise. On the contrary, the interference of UMTS to LTE is also equivalent to the enhancement of noise or interference intensity, and the measurement accuracy of LTE is degraded.
  • the LTE interference to the UMTS may be reduced by limiting the transmission power of the LTE on the shared frequency band, such as using a transmission power lower than other time units than the time unit transmitting the DRS. Transmit power transmission.
  • the LTE is in the OFF state on the shared frequency band.
  • the LTE may include:
  • the UE2 based CRS measurement is not configured.
  • the data signal of the first network is transmitted in a shared frequency band according to a compressed mode, wherein the DRS is a long period DRS;
  • the first network transmits data and/or a common signal at a reduced transmission power in a time unit for transmitting the DRS, and the common signal includes one or more of SS, CCPCH, and CPICH, such as using a time unit than transmitting the DRS. a transmission power of a low transmission power of other time units;
  • one or more of the SS, CCPCH, and CPICH of the first network are not transmitted;
  • A, B, C, D, and E may be implemented alternatively or in any number, and are not limited in the present invention.
  • the DRS in the DRS transmission time may not include the CRS, so that the interference of LTE on the UMTS can be reduced.
  • the CRS-based RRM measurement of the UE2 is not configured, so that the CRS-based RRM measurement of the UE2 is not needed, so that the CRS can be sent only on the shared frequency band without transmitting CRS, so that the interference of the UMTS to the LTE-transmitted DRS can be effectively reduced.
  • the DRS of the LTE transmission is a long-period DRS, and the transmission subframe of the DRS is configured as little as possible (for example, a large period of 160 ms, a DRS duration of 1 to 2 ms is configured).
  • the service data transmitted by the UMTS on the shared frequency band is compressed and transmitted, then, after receiving the compressed data signal, the UE1 can measure to other frequency bands without receiving any signal on the Scell after receiving the compressed data signal.
  • LTE transmits DRS, it does not cause any interference to UMTS.
  • the first network transmits data and/or a common signal at a reduced transmission power
  • the common signal includes one or more of SS, CCPCH, CPICH, such as to transmit DRS.
  • the transmission power of the transmission power of the other time units outside the time unit is low, so that the interference of the UMTS to the DRS of the LTE can be reduced.
  • the UMTS does not transmit one or more of the SS, the CCPCH, and the CPICH on the shared frequency band, and may also reduce the interference impact on the LTE transmitting DRS, so that the UE2 is based on the DRS measurement. more reliable.
  • the measurement interval Gap is configured for the UE2.
  • the LTE does not transmit any signal on the shared frequency band, that is, the UE2 does not receive the signal of the Scell, so that the UMTS can transmit any service data on the shared frequency band without generating LTE. Interference with UMTS.
  • the signal may be compressed and transmitted as described in B above, or the configuration measurement interval Gap may be reduced as described in D above to reduce the relationship between UMTS and LTE. interference.
  • LTE when LTE transmits signals in a deactivated state, it may cause large interference to UMTS. Therefore, in the case where a very important service or a high-priority user equipment exists, LTE is preferably ON/ The status of OFF. When UE2 does not support ON/OFF but supports CA, LTE can be configured to be in the active/deactivated mode of the CA.
  • the shared frequency band is the secondary cell of the UE2.
  • the UE2 can still use other frequency bands (the frequency band configured as the primary cell) to perform service transmission.
  • the shared frequency band is the auxiliary of the UE1.
  • UE1 can still use other frequency bands (configured as the frequency band of the primary cell) for service transmission without causing service interruption. Ensure the continuity of the UE service.
  • the cell sharing the frequency band is a secondary cell of the UE that uses the first network for communication, and a secondary cell of the UE that uses the second network to communicate, and the UEs of the two networks can work in the shared frequency band.
  • at least one other frequency band except the shared frequency band when the shared frequency band is switched between the two networks, because the UE of the original network only receives the common signal on the shared frequency band, and the cell of the shared frequency band is the auxiliary of the original network UE
  • the cell can ensure the continuity of the original network UE service without switching the UE to other frequency bands, effectively realize sharing of the shared frequency band between the first network and the second network, and can quickly complete the conversion between the two networks. Effectively increase the utilization of the shared frequency band.
  • the embodiment of the present invention further provides a device for frequency band sharing based on the foregoing method for frequency band sharing, and the device for sharing the frequency band may be a network controller.
  • the meaning of the noun is the same as the method of sharing the above-mentioned frequency band. For specific implementation details, reference may be made to the description in the method embodiment.
  • FIG. 3 is a schematic structural diagram of a device for frequency band sharing according to an embodiment of the present invention.
  • the device 200 for sharing the frequency band may mainly include: a determining unit 201, a configuration unit 202, and a processing unit 203.
  • a determining unit 201 configured to determine a shared frequency band, where the shared frequency band is a frequency band that can be used for the first network or the second network;
  • the configuration unit 202 is configured to configure the shared frequency band to be a secondary cell of the user equipment UE1 that uses the first network to communicate with the secondary cell of the user equipment UE2 that uses the second network to communicate, where both the UE1 and the UE2 can work in the shared frequency band. And at least one other frequency band other than the shared frequency band;
  • the processing unit 203 is configured to determine, when the first network and the second network have services that are not transmitted, perform service transmission of the first network or service transmission of the second network in the shared frequency band, when performing the first network in the shared frequency band When the service is transmitted, only the common signal of the second network is transmitted in the shared frequency band, and when the service transmission of the second network is performed in the shared frequency band, only the common signal of the first network is transmitted or no signal is transmitted in the shared frequency band.
  • the processing unit 203 is specifically configured to: when all the UE1s that use the first network to communicate and the secondary cell is a shared frequency band are configured with multiple uplink carriers including the shared frequency band, The shared frequency band does not transmit any signal of the first network; when any UE1 that communicates with the first network and the secondary cell is a shared frequency band is configured with a shared frequency band corresponding to one on the other When the carrier is lined, the common signal of the first network is transmitted in the shared frequency band.
  • the first network is UMTS
  • the second network is LTE
  • the processing unit 203 is specifically configured to transmit the data signal of the UMTS in the shared frequency band, and transmit the DRS and the CRS of the LTE in the shared frequency band.
  • the device shared by the frequency band may further include a switching unit 204, where the switching unit 204 is configured to switch other user equipments that use the first network for communication and can only work in one shared frequency band to switch to other frequency bands; and Or, other user equipments that communicate using the second network and can only work in one shared frequency band switch to other frequency bands.
  • the switching unit 204 is configured to switch other user equipments that use the first network for communication and can only work in one shared frequency band to switch to other frequency bands; and Or, other user equipments that communicate using the second network and can only work in one shared frequency band switch to other frequency bands.
  • the present invention further provides a network controller, that is, the device for sharing a frequency band described in the foregoing embodiment, is deployed in the first network and the second network, and the structural schematic diagram is as shown in FIG. 4, including: connecting to the bus.
  • the processor 300, and the network controller may further include a memory 301, a transmitter 302, a receiver 303, and the like, wherein:
  • the memory 301 is used to store information such as necessary files for processing data by the processor 300, such as program code.
  • the program code stored in the memory 301 is used to implement the above-mentioned frequency band sharing method, and then the processor 300 executes the program code. ;
  • the processor 30 is configured to determine a shared frequency band, where the shared frequency band is a frequency band that can be used for the first network or the second network service, where the shared frequency band is a secondary cell of the user equipment UE1 that uses the first network to communicate, and adopts the first The secondary cell of the user equipment UE2 that the two networks communicate with, UE1 and UE2 can work in the shared frequency band and at least one other frequency band except the shared frequency band; if the first network and the second network have both untransferred services simultaneously If the completed service is not transmitted, it is determined that the service transmission of the first network or the service transmission of the second network is performed in the shared frequency band, and when the service transmission of the first network is performed in the shared frequency band, only the public signal of the second network is transmitted in the shared frequency band. When the service transmission of the second network is performed in the shared frequency band, only the common signal of the first network is transmitted or no signal is transmitted in the shared frequency band.
  • the present invention also provides a frequency band sharing system, which mainly includes the device for frequency band sharing described in the foregoing embodiments.
  • a frequency band sharing system which mainly includes the device for frequency band sharing described in the foregoing embodiments.
  • the technical solution of the present invention may be embodied in the form of a software product in the form of a software product, or a part of the technical solution, which is stored in a storage medium, including a plurality of instructions.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种频带共享的方法、装置以及***。本发明实施例方法包括:确定共享频带,共享频带是能用于第一网络或第二网络的频带,其中,共享频带的小区为采用第一网络进行通信的UE1的辅小区和采用第二网络进行通信的UE2的辅小区,UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带;当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号,本实施例可以保证UE业务的连续性,并可以快速完成在在两个网络间的转换,有效地提高了共享频带的利用率。

Description

一种频带共享的方法、装置以及*** 技术领域
本发明涉及通信领域,尤其涉及一种频带共享的方法、装置以及***。
背景技术
随着无线通信的发展,无线通信需求越来越高,数据流量和速率要求越来越大,频谱资源的需求急剧膨胀,然而,频谱资源不是取之不尽、用之不竭的公共资源,因此,尽量提高频谱利用率是必不可少的。
在无线通信***中,通用移动通信***(UMTS,Universal Mobile Telecommunications System)已经广泛使用,长期演进技术(LTE,Long Term Evolution)也逐渐使用起来,有一些频带是既可以用于UMTS也可以用于LTE的频带,而LTE的业务和UMTS的业务是相互独立的,在UMTS业务量低的时候,可能LTE的业务量非常高,甚至到频谱不够用或因为频谱受限而服务质量下降的情况。同样的,在LTE业务量低的时候,可能UMTS的业务量非常高,甚至到频谱不够用或因为频谱受限而服务质量下降的情况。为了LTE的UE和UMTS的UE都能有好的数据体验,LTE和UMTS可以分时共享一个频带。
现有技术中,根据UE的测量结果和业务需求来决定由LTE或UMTS使用该共享频带,当LTE使用该共享频带时,UMTS不使用该共享频带,反之亦然。但是,该共享频带从作为原网络的频带切换为另一网络的频带,由于原网络中的UE仍然在该共享频带上进行着各种测量,将该共享频带切换出去会导致测量错误而使UE的连接中断,为了保证UE业务的连续性,在将共享频带切换出去之前需将在该共享频带上为其提供网络服务的UE切换到其他频带,然后才能将该共享频带切换到另一网络中,而当共享频带重新用于原网络时,也需要通过切换的方式让UE重新接入该共享频带,由于需要较长的时间才能把UE切换出去或进来,UE与共享频带断开或建连需要较长时间,并且切换过程中会导致原UE的业务中断,从而导致共享频带的利用率低。
发明内容
本发明实施例提供了一种频带共享的方法、装置以及***,可以有效地提高共享频带的利用率。
第一方面,本发明提供了一种频带共享的方法,其主要可包括:
确定共享频带,共享频带是能用于第一网络或第二网络的频带,其中,共享频带的小区为采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带;
若第一网络和第二网络同时有未传输完成的业务,则确定在共享频带进行第一网络的业务传输或第二网络的业务传输,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号。
在第一方面的第一种可能的实现方式中,在共享频带仅传输第一网络的公共信号或不传输任何信号,具体包括:当为采用第一网络进行通信且辅小区为共享频带的所有UE1配置了包括共享频带在内的多个下行载波对应一个上行载波时,在共享频带不传输第一网络的任何信号;当为采用第一网络进行通信且辅小区为共享频带的任一UE1配置了共享频带单独对应一个上行载波时,在共享频带传输第一网络的公共信号。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,第一网络为UMTS,第二网络为LTE;当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,具体包括:在共享频带传输UMTS的数据信号,在共享频带传输LTE的DRS、CRS、SS和PBCH中的一个或多个;当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号,具体包括:在共享频带传输LTE的数据信号,在共享频带传输UMTS的SS、CCPCH和CPICH中的一个或多个。
结合第一方面的第二种种可能的实现方式,在第三种可能的实现方式中,当在共享频带进行第一网络的业务传输,在共享频带仅传输第二网络的DRS时,方法还包括:
不配置UE2基于CRS的测量;和/或
在传输DRS的时间单元内,将第一网络的数据信号按照压缩模式在共享频带传输,其中,DRS为长周期DRS;和/或
在传输DRS的时间单元内,第一网络发射数据和/或公共信号的发射功率 小于其他时间单元内的发射功率,公共信号包括SS、CCPCH、CPICH中的一个或多个;和/或
在传输DRS的时间单元内,第一网络不传输SS、CCPCH和CPICH中的一个或多个;和/或
为UE2配置测量间隔,在测量间隔时间内在共享频带不传输DRS。
结合第一方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,在DRS传输时间单元内传输的DRS不包括CRS。
结合第一方面、或第一方面的第一至第四中任一种可能的实现方式,在第五种可能的实现方式中,确定共享频带的步骤之前,还包括:
将采用第一网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带;和/或
将采用第二网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带。
结合第一方面、或第一方面的第一至第五中任一种可能的实现方式,在第六种可能的实现方式中,确定在共享频带进行第一网络的业务传输或第二网络的业务传输,具体包括:根据第一网络和第二网络的业务量确定在共享频带进行第一网络的业务传输或第二网络的业务传输,其具体包括:
当第一网络的业务量超过第一门限,和/或第二网络的业务量未超过第二门限,则确定在共享频带进行第一网络的业务传输;
当第一网络的业务量未超过第一门限,和/或第二网络的业务量超过第二门限,则确定在共享频带进行第二网络的业务传输;
当第一网络的业务量超过第一门限,且第二网络的业务量也超过第二门限,则若确定第一网络和第二网络的业务量的比值超过第三门限,则确定在共享频带进行第一网络的业务传输,若第一网络和第二网络的业务量的比值不超过第三门限,则确定在共享频带进行第二网络的业务传输。
结合第一方面、或第一方面的第一至第五中任一种可能的实现方式,在第六种可能的实现方式中,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,具体包括:激活第一网络在共享频带工作,以及去激活第二网络在共享频带工作或将第二网络在共享频带配置成OFF状态;
当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号,具体包括:激活第二网络在共享频带工作或将第二网络在共享频带配置成ON状态,和/或,去激活第一网络在共享频带工作。
第二方面,本发明提供了一种频带共享的装置,其具体可包括:
确定单元,用于确定共享频带,共享频带是能用于第一网络或第二网络的频带;
配置单元,用于将共享频带配置成采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,其中,UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带;
处理单元,用于若第一网络和第二网络同时有未传输完成的业务,则确定在共享频带进行第一网络的业务传输或第二网络的业务传输,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号。
在第二方面的第一种可能的实现方式中,处理单元,具体用于当为采用第一网络进行通信且辅小区为共享频带的所有UE1配置了包括共享频带在内的多个下行载波对应一个上行载波时,在共享频带不传输第一网络的任何信号;当为采用第一网络进行通信且辅小区为共享频带的任一UE1配置了共享频带单独对应一个上行载波时,在共享频带传输第一网络的公共信号。
结合第二方面,或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,第一网络为UMTS,第二网络为LTE;处理单元,具体用于在共享频带传输UMTS的数据信号,在共享频带传输LTE的DRS、CRS、SS和PBCH中的一个或多个,在共享频带传输LTE的数据信号,在共享频带传输UMTS的SS、CCPCH和CPICH中的一个或多个。
结合第二方面,或第二方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,该装置还可包括:切换单元,用于将采用第一网络进行通信且只能工作在一个共享频带的其他用户设备和/或将采用第二网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带。
第三方面,本发明提供了一种频带共享的***,其主要可包括如第二方面 所提供的任一种频带共享的装置。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中共享频带的小区为采用第一网络进行通信的UE的辅小区和采用第二网络进行通信的UE的辅小区,这两个网络的UE均能工作在共享频带和除共享频带之外的至少一个其他频带,当共享频带在两个网络间切换时,由于原网络的UE在该共享频带上仅接收公共信号,且该共享频带的小区为原网络UE的辅小区,无需将UE切换到其他频带也可以保证原网络UE业务的连续性,有效地实现了共享频带在第一网络和第二网络间共享,并可以快速完成在在两个网络间的转换,有效地提高了共享频带的利用率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的频带共享的方法的流程示意图;
图2是本发明实施例中配置方式的示意图;
图3是本发明实施例提供的频带共享的装置的结构示意图;
图4是本发明实施例提供的网络控制器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种频带共享的方法,可以有效实现共享频带在第一网络和第二网络间共享,并可以快速完成在在两个网络间的转换,提高了频谱的利用率,此外,还提供了频带共享装置,以及相应的频带共享***,请参阅图1至图4。下面通过具体实施例,分别进行详细的说明。
本发明实施例提供的频带共享的方法可适用于无线通信***,具体为将共享频带在两个不同的无线通信***间转换的频带共享方法,这两个网络可以分 时共享这个共享频带。其中,为了描述方便,将以频带共享装置的角度对该频带共享方法进行描述,例如,该频带共享装置具体可以是网络控制器。该网络控制器可以获知第一网络中的UE1和第二网络中的UE2的业务需求以及测量结果等,以此协调由第一网络或第二网络使用该共享频带。该频带共享方法可适用于由一个或多个基站覆盖的第一网络和第二网络。
请参阅图1,图1是本发明实施例提供的频带共享的方法的流程示意图,该方法具体可包括如下步骤:
步骤101、确定共享频带,共享频带是能用于第一网络或第二网络的频带,其中,共享频带的小区为采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带;
为了描述方便,本发明中将采用第一网络进行通信的用户设备描述为UE1,将采用第二网络进行通信的用户设备描述为UE2,其中UE1和UE2可以是同一个UE或不同的UE。
该共享频带可以用于第一网络或第二网络进行通信,在确定了共享频带后,可以将该共享频带配置为UE1的辅小区,以及UE2的辅小区。并将UE1可以工作的其他频带中的其中一个频带配置为主小区,同理,可以将UE2可以工作的其他频带中的其中一个频带配置为主小区。
为了保证UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带,可以在步骤101之前,还包括:将采用第一网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带;和/或,将采用第二网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带。
步骤102、若第一网络和第二网络同时有未传输完成的业务,则确定在共享频带进行第一网络的业务传输或第二网络的业务传输,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号。
若第一网络和第二网络同时有未传输完成的业务,则可以根据第一网络和第二网络的业务量来确定哪一个网络使用该共享频带,也可以是根据第一网络 的UE1的RRM测量结果和第二网络的UE2的RRM测量结果来确定哪一个网络使用该共享频带。此外,上述的确定还可以是根据第一网络和第二网络的业务确定,如根据业务优先级、业务量大小、业务紧急程度、业务质量要求、业务类型和服务的用户数等确定。
在一种实现方式中,第一网络可以是通用移动通信***(UMTS,Universal Mobile Telecommunications System),第二网络可以是长期演进技术(LTE,Long Term Evolution)或LTE-A。本发明实施例以应用于LTE/LTE-A无线通信***和UMTS无线通信***为例对方法进行分析说明,不构成对本发明的限定。
LTE***中,在Release 12中引入了cell ON/OFF,这种情况下,一个小区可以在ON的时候正常为UE提供服务,即可以传输各种业务数据、公共信号和公共信道,其中,公共信号和信道包括:小区特有参考信号(CRS,Cell-specific Reference Signal)、同步信号(SS,Synchronization Signal)和物理广播信道(PBCH,Physical Broadcast Channel),其中,CRS/SS/PBCH也都是周期传输的(小区之所以传输这些信号是用于UE进行一些测量以及接收一些必要的信令用);而一个小区可以在OFF的时候只传输一种长周期的解调参考信号(DRS,Dedicated Reference Signal)。其中,小区的ON/OFF可以根据业务需求的变化以及各个载波上的RRM测量结果来选择。其中,在小区ON时UE可以根据CRS或DRS进行测量,在小区OFF时只能根据DRS进行RRM测量。
在Release10中引入了载波聚合(CA,Carrier Aggregation),从而支持CA的UE可以同时被至少两个载波服务,每一个载波上有一个服务小区,其中一个载波上的小区作为主小区Pcell(Pcell是UE首先接入的小区,Pcell可以配置UE其他载波),其他载波上的小区作为辅小区Scell。其中,Pcell是不能被去激活的,而Scell可以被激活和去激活,每一次激活都需要一定的时间供UE做准备(如设备参数调整、同步等)后才能开始从这个Scell上接收数据传输。Scell在激活的时候与cell ON时一样,可以正常为UE提供服务,即可以传输各种业务数据,以及公共信号或信道CRS/SS/PBCH。而在去激活的时候与cellOFF只传输DRS不同,去激活时可以仅传输公共信号或信道,例如CRS、SS、或PBCH等信号或信道。其中,Scell的激活/去激活可以根据业务需求的变化 和/或各个载波上的RRM测量结果等来选择。激活/去激活也可以根据业务需求的变化和/或各个小区的RRM测量结果等来选择。其中,UE可以根据CRS或DRS进行RRM测量。
UMTS***中,没有引入cell ON/OFF,但有类似于CA的设计,即双小区(DC,Dual Cell),其中一个载波上的小区作为UE的Pcell,并配置至少一个其他载波上的Scell(即辅服务HS-DSCH小区)。其中,UMTS的激活或去激活使用的是物理层信令,UE在被激活后4ms(当UE只被配置了一个上行载波)~6ms(当UE被配置了多个上行载波)后就可以接收下行信号而开始被服务。Scell在去激活的时候,若UE被配置了多个下行载波对应一个上行载波时,除了该多个下行载波中的Pcell之外,在其中每一个Scell没有服务该Scell单独对应一个上行载波的UE的时候,该下行Scell都可以不传输任何信号;若至少一个UE配置的一个上行载波只有一个下行载波对应时,该载波即使在不服务任何UE的情况下,也要传输公共信号或信道,例如同步信号(SS,Synchronization Signal)、公共导频信道(CPICH,Common Pilot Channel)和公共控制物理信道(CCPCH,Common Control Physical Channel)。而SS/CCPCH/CPICH的发射只是占用很少的发射功率,大部份的发射功率用于传输数据。其中,Scell的激活/去激活可以根据业务需求的变化等来进行。
下面将以第一网络为UMTS,第二网络为LTE为例对本发明实施例进行详细说明。
首先确定UMTS和LTE的共享频带;
这个共享频带可以用于UMTS或LTE进行通信。需说明的是,频带在UMTS和LTE中均以为载波形式存在,分别是LTE的载波和UMTS的载波。
UMTS和LTE的共享频带可以是一个或多个,例如,该共享频带可以是5MHz、10MHz、15MHz和20MHz中的一个或多个。如UMTS和LTE有一个共享频带,该共享频带可以是5MHz,或者可以有2个共享频带,分别是5MHz和10MHz,或者可以有3个共享频带,分别是5MHz、10MHz和20MHz等等,本发明实施例以UMTS和LTE的共享频带为5MHz为例进行详细说明,不构成对本发明的限定。UMTS和LTE将只能支持一个载波的用户切换到其他小区或载波,使得只有支持DC的UMTS UE和支持CA的LTE UE可以使用这 个5MHz的频带。
UMTS的UE(为了描述方便,以下描述为UE1)和LTE的UE(为了描述方便,以下描述为UE2)可以工作在5MHz上,除此之外,UE1可以工作在共享频带和除共享频带之外的至少一个其他频带,UE2可以工作在共享频带和除共享频带之外的至少一个其他频带,为了保证只有支持DC的UE1和支持CA的UE2可以使用共享频带,将只能支持一个频带的其他用户设备切换到其他小区或频带。
该共享频带可以配置为UE1的辅小区Scell,UE1可以工作的其他频带中的任一个频带的小区为UE1的主小区Pcell,其中,Scell和Pcell的覆盖可以是由同一个基站来覆盖的,覆盖范围基本相同。同理,共享频带可以配置为UE2的辅小区Scell,UE2可以工作的其他频带中的任一个频带的小区为UE2的主小区Pcell。其中,Scell和Pcell的覆盖可以是由同一个基站来覆盖的,覆盖范围基本相同。
通过上述方法,可以保证两个网络在共享频带上分时传输业务,而不在共享频带上传输业务的网络也可以根据需要通过一定的方式传输或不传输公共信号,从而可以保证UE的测量不中断,从而使得UE不会因共享频带不用于该UE进行通信的网络制式而与共享频带断开连接,且不会因共享频带重新用于该UE进行通信的网络制式而重新建立连接,无需重复的执行断开网络和重新连接网络的步骤,而可以将时间用于传输业务,使得在共享频带上传输业务的时间更长,频谱利用率得到有效提升。
请参阅图2,图2是本发明实施例的配置方式示意图。图2中CC2表示共享频带5MHz的小区,CC1、CC3和CC4为两个网络的独立频带,其中,CC1表示10MHz的小区,CC3表示10MHz的小区,CC4表示10MHz的小区。
然后确定由UMTS或LTE中的一个在共享频带进行业务传输;
若同时有未传输完成的第一网络和第二网络的业务,则需要确定哪一个网络使用该共享频带。如根据第一网络和第二网络的业务确定,如根据业务优先级、业务量大小、业务紧急程度、业务质量要求、业务类型、服务的用户数等确定。
其中,若根据第一网络和第二网络的业务量确定在共享频带进行第一网络的业务传输或第二网络的业务传输,具体包括:
当第一网络的业务量超过第一门限,或第二网络的业务量未超过第二门限,或当第一网络的业务量超过第一门限且第二网络的业务量未超过第二门限,则确定在共享频带进行第一网络的业务传输;
当第一网络的业务量超过第一门限,或第二网络的业务量超过第二门限,或当第一网络的业务量未超过第一门限且第二网络的业务量超过第二门限,则确定在共享频带进行第二网络的业务传输;
当第一网络的业务量超过第一门限,且第二网络的业务量也超过第二门限,则若确定第一网络和第二网络的业务量的比值超过第三门限,则确定在共享频带进行第一网络的业务传输,若第一网络和第二网络的业务量的比值不超过第三门限,则确定在共享频带进行第二网络的业务传输。
其中,第一门限、第二门限和第三门限可自定义,本实施例中对此不做具体限定。
UMTS的业务量超过第一门限则表示UMTS在该共享频带上的业务量较大,在该共享频带进行UMTS的业务传输,同理,LTE的业务量超过第二门限则表示LTE在该共享频带上的业务量较大,在该共享频带进行LTE的业务传输,若UMTS和LTE的业务需求均很大,则通过比较两者的业务量比值来确定由UMTS或LTE工作在该共享频带上。UMTS和LTE的业务量的比值超过第三门限,则确定在该共享频带进行UMTS的业务传输,若UMTS和LTE的业务量的比值不超过第三门限,则确定在该共享频带进行LTE的业务传输。
其中,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,具体包括:
激活第一网络在共享频带工作,以及去激活第二网络在共享频带工作;或激活第一网络在共享频带工作,以及将第二网络在共享频带配置成OFF状态;
当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号,具体包括:
激活第二网络在共享频带工作,以及去激活第一网络在共享频带工作;或将第二网络在共享频带配置成ON状态,以及去激活第一网络在共享频带工 作。
一种情况下,若确定由LTE在5MHz进行业务传输,则LTE以ON的状态发射信号或者以激活的状态发射信号,即在5MHz频带上LTE可以正常传输各种业务数据,包括公共信号/信道。此时,UMTS中的Scell为去激活状态,由于可能配置了该共享频带(下行载波)对应一个上行载波,也可能配置了包括在共享频带在内的多个下行载波对应一个上行载波,具体的,一方面,若采用第一网络进行通信且辅小区为共享频带的所有UE1配置了包括共享频带在内的多个下行载波对应一个上行载波时,在共享频带5MHz可以不传输UMTS的任何信号;另一方面,若采用第一网络进行通信且辅小区为共享频带的任意一个UE1配置了该共享频带单独对应一个上行载波时,在共享频带5MHz传输UMTS的SS/CCPCH/CPICH这些公共信号或信道而不发射任何其他信号。可以理解的是,SS/CCPCH/CPICH的发射功率很低,从而UMTS在去激活的情况下在该共享频带发射这些公共信号或信道对LTE***的干扰会很小。其中,在UMTS中,由于共享频带的Scell被去激活了,那么UE1在该共享频带上不会进行任何测量,而即使UE1在共享频带上进行RRM测量,网络控制器也可以根据UMTS的业务需求等原则来确定是否需要激活该共享频带作为UE1的Scell。
另一种情况下,若确定由UMTS在5MHz进行业务传输,则UMTS中的Scell为激活状态,在5MHz上可以传输UMTS的各种业务数据,UE1可在5MHz上正常接收各种业务数据。此时,LTE中的Scell为去激活状态,或者是OFF状态,LTE可以按照去激活或OFF的状态在5MHz上传输公共信号/信道。一方面,若LTE按照Scell OFF的状态只发射DRS,其中,为了降低对UMTS***的干扰,该DRS为长周期的DRS,其周期可以配置或调整,例如可以是40ms、80ms或160ms,每一次发射持续的时间也可以配置或调整,例如可以是1~5ms。此外,发射DRS中实际需要使用的信号也可以配置或调整,例如是否发射CSIRS,是否使用CRS等。此时,为了降低LTE***对UMTS***的影响,可以根据需要配置较大周期的DRS(如160ms)和/或配置DRS的持续时间较短(如1ms)和/或没有DRS中的某些信号的发送(如不传输CRS)。另一方面,LTE还可以按照去激活的状态,即仍然发射 CRS/SS/PBCH等公共信号和信道。可以理解的是,此时LTE***和UMTS***都在共享频带上发射信号(UMTS正常发射各种业务数据,LTE发射DRS或CRS/SS/PBCH),会产生相互的干扰。只要干扰在可容忍范围内,就可以这样共存。由于UMTS本身就是干扰受限***,在LTE上发射CRS/SS/PBCH对UMTS的干扰影响不大,只是增加了噪声的强度。反之,UMTS对LTE的干扰也相当于噪声或干扰强度增强,LTE的测量准确度下降。在一些实施方式中那么,可以通过对LTE在该共享频带上的发射功率进行一定的限制以降低LTE对UMTS的干扰,如采用以比传输DRS的时间单元外的其他时间单元的发射功率低的发射功率发射。
其中,LTE在该共享频带上为OFF状态,为了降低UMTS和LTE相互之间的干扰,具体可以包括:
A、不配置UE2基于CRS的测量;
B、在传输DRS的时间单元内,将第一网络的数据信号按照压缩模式在共享频带传输,其中,DRS为长周期DRS;
C、在传输DRS的时间单元内,第一网络以降低的发射功率发射数据和/或公共信号,公共信号包括SS、CCPCH、CPICH中的一个或多个,如采用比传输DRS的时间单元外的其他时间单元的发射功率低的发射功率发射;
D、在传输DRS的时间单元内,不传输第一网络的SS、CCPCH和CPICH中的一个或多个;
E、为UE2配置测量间隔,在测量间隔时间内在共享频带不传输DRS。
上述A、B、C、D和E可以择一实施,或者任意多个一起实施,具体在本发明中不做限定。
更进一步地,DRS传输时间内的DRS可以不包括CRS,从而可以降低LTE对UMTS的干扰。
在上述A中,不配置UE2基于CRS的RRM测量,因此无需理会UE2基于CRS的RRM测量,从而可以在该共享频带上不发CRS而只发CSIRS,因此可以有效降低UMTS对LTE发射DRS的干扰,同时,为了降低发射DRS时对UMTS的干扰,LTE发射的DRS为长周期DRS,通过尽量少的配置DRS的发射子帧(如配置大周期如160ms、配置1~2ms的DRS持续时间)。
在上述B中,将UMTS在共享频带上传输的业务数据进行压缩后传输,那么,UE1在接收到压缩的数据信号后有几个ms可以到其他频带进行测量而不在Scell上接收任何信号,此时LTE发射DRS对UMTS不会造成任何干扰。
在上述C中,在传输DRS的时间单元内,第一网络以降低的发射功率发射数据和/或公共信号,公共信号包括SS、CCPCH、CPICH中的一个或多个,如以比传输DRS的时间单元外的其他时间单元的发射功率低的发射功率发射,从而可以降低UMTS对LTE的DRS产生的干扰。
在上述D中,在LTE发射CRS的时间里,UMTS在该共享频带上不传输SS、CCPCH和CPICH中的一个或多个,也可以降低对LTE发射DRS的干扰影响,使得UE2基于DRS的测量更可靠。
在上述E中,为UE2配置测量间隔Gap,在Gap上,LTE不在共享频带上传输任何信号,即UE2不对Scell的信号进行接收,从而UMTS可以在共享频带上发射任何业务数据而不会产生LTE和UMTS之间的干扰。
其中,若LTE在该共享频带上为去激活状态,为了降低UMTS和LTE相互之间的干扰,一方面,如果没有DRS配置与DRS相关的RRM测量,那么如果配置的UE2的RRM测量在UMTS使用该共享频带时出现的话,可以不使用UE2的RRM测量结果,或者是在UE2的RRM测量结果的基础上向上调整后使用,其中,调整后的测量结果可以通知给UE2。另一方面,如果有DRS相关的RRM测量,则可以使用如上述B所描述的对信号进行压缩后传输,或者如上述D所描述的配置测量间隔Gap等方式来降低UMTS和LTE相互之间的干扰。
需说明的是,LTE采用去激活的状态发射信号时,可能会对UMTS造成较大干扰,因此,在有非常重要的业务或高优先级的用户设备存在的情况下,优选LTE以处于ON/OFF的状态。当UE2不支持ON/OFF但支持CA时,可以配置LTE处于CA的激活/去激活的模式。
该共享频带为UE2的辅小区,当UE2的辅小区为OFF或去激活状态时,UE2仍然可以采用其他频带(配置为主小区的频带)进行业务传输,同理,该共享频带为UE1的辅小区,当UE1的辅小区为去激活状态时,UE1仍然可以采用其他频带(配置为主小区的频带)进行业务传输不会导致业务中断,可以 保证UE业务的连续性。
由上可知,本发明实施例中共享频带的小区为采用第一网络进行通信的UE的辅小区和采用第二网络进行通信的UE的辅小区,这两个网络的UE均能工作在共享频带和除共享频带之外的至少一个其他频带,当共享频带在两个网络间切换时,由于原网络的UE在该共享频带上仅接收公共信号,且该共享频带的小区为原网络UE的辅小区,无需将UE切换到其他频带也可以保证原网络UE业务的连续性,有效地实现了共享频带在第一网络和第二网络间共享,并可以快速完成在在两个网络间的转换,有效地提高了共享频带的利用率。
为便于更好的实施本发明实施例提供的频带共享的方法,本发明实施例还提供一种基于上述频带共享的方法的频带共享的装置,该频带共享的装置可以是网络控制器。其中名词的含义与上述频带共享的方法中相同,具体实现细节可以参考方法实施例中的说明。
请参阅图3,图3是本发明实施例的频带共享的装置的结构示意图,该频带共享的装置200其主要可包括:确定单元201、配置单元202和处理单元203。
确定单元201,用于确定共享频带,共享频带是能用于第一网络或第二网络的频带;
配置单元202,用于将共享频带配置成采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,其中,UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带;
处理单元203,用于若第一网络和第二网络同时有未传输完成的业务,则确定在共享频带进行第一网络的业务传输或第二网络的业务传输,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号。
在某些实施方式中,处理单元203,具体用于当为采用第一网络进行通信且辅小区为共享频带的所有UE1配置了包括共享频带在内的多个下行载波对应一个上行载波时,在共享频带不传输第一网络的任何信号;当为采用第一网络进行通信且辅小区为共享频带的任一UE1配置了共享频带单独对应一个上 行载波时,在共享频带传输第一网络的公共信号。
在某些实施方式中,第一网络为UMTS,第二网络为LTE;那么,相应的,处理单元203,具体用于在共享频带传输UMTS的数据信号,在共享频带传输LTE的DRS、CRS、SS和PBCH中的一个或多个,在共享频带传输LTE的数据信号,在共享频带传输UMTS的SS、CCPCH和CPICH中的一个或多个。
更进一步地,该频带共享的装置还可包括切换单元204,其中,切换单元204,用于将采用第一网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带;和/或,将采用第二网络进行通信且只能工作在一个共享频带的其他用户设备切换到其他频带。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
此外,本发明还提供了一种网络控制器,即上述实施例所描述的频带共享的装置,部署在第一网络和第二网络中,结构示意图如图4所示,包括:连接在总线的处理器300,且该网络控制器还可以包括存储器301、发送器302和接收器303等,其中:
存储器301中用来储存处理器300处理数据的必要文件等信息,比如程序代码,本实施例中存储器301储存的程序代码用于实现上述频带共享的方法,然后由处理器300来执行这些程序代码;
处理器30,用于确定共享频带,共享频带是能用于第一网络或第二网络服务的频带,其中,共享频带的小区为采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,UE1和UE2均能工作在共享频带和除共享频带之外的至少一个其他频带;若第一网络和第二网络同时有未传输完成的业务同时有未传输完成的业务,则确定在共享频带进行第一网络的业务传输或第二网络的业务传输,当在共享频带进行第一网络的业务传输时,在共享频带仅传输第二网络的公共信号,当在共享频带进行第二网络的业务传输时,在共享频带仅传输第一网络的公共信号或不传输任何信号。
本发明还提供了一种频带共享的***,主要包括上述实施例所描述的频带共享的装置,具体可参阅上述实施例,此处不再赘述。
本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种频带共享的方法、装置以及***进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种频带共享的方法,其特征在于,包括:
    确定共享频带,所述共享频带是能用于第一网络或第二网络的频带,其中,所述共享频带的小区为采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,所述UE1和UE2均能工作在所述共享频带和除所述共享频带之外的至少一个其他频带;
    若第一网络和第二网络同时有未传输完成的业务,则确定在所述共享频带进行第一网络的业务传输或第二网络的业务传输,当在所述共享频带进行第一网络的业务传输时,在所述共享频带仅传输第二网络的公共信号,当在所述共享频带进行第二网络的业务传输时,在所述共享频带仅传输第一网络的公共信号或不传输任何信号。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述共享频带仅传输第一网络的公共信号或不传输任何信号,具体包括:
    当为采用第一网络进行通信且辅小区为所述共享频带的所有UE1配置了包括所述共享频带在内的多个下行载波对应一个上行载波时,在所述共享频带不传输第一网络的任何信号;
    当为采用第一网络进行通信且辅小区为所述共享频带的任一UE1配置了所述共享频带单独对应一个上行载波时,在所述共享频带传输第一网络的公共信号。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一网络为UMTS,第二网络为LTE;
    所述当在所述共享频带进行第一网络的业务传输时,在所述共享频带仅传输第二网络的公共信号,具体包括:在所述共享频带传输UMTS的数据信号,在所述共享频带传输LTE的DRS、CRS、SS和PBCH中的一个或多个;
    所述当在所述共享频带进行第二网络的业务传输时,在所述共享频带仅传输第一网络的公共信号,具体包括:在所述共享频带传输LTE的数据信号,在所述共享频带传输UMTS的SS、CCPCH和CPICH中的一个或多个。
  4. 根据权利要求3所述的方法,其特征在于,当在所述共享频带进行第一网络的业务传输,在所述共享频带仅传输第二网络的DRS时,所述方法还 包括:
    不配置UE2基于CRS的测量;和/或
    在传输DRS的时间单元内,将第一网络的数据信号按照压缩模式在所述共享频带传输,其中,所述DRS为长周期DRS;和/或
    在传输DRS的时间单元内,第一网络发射数据和/或公共信号的发射功率小于其他时间单元内的发射功率,所述公共信号包括SS、CCPCH、CPICH中的一个或多个;和/或
    在传输DRS的时间单元内,第一网络不传输SS、CCPCH和CPICH中的一个或多个;和/或
    为UE2配置测量间隔,在所述测量间隔时间内在所述共享频带不传输DRS。
  5. 根据权利要求3或4所述的方法,其特征在于,
    在所述DRS传输时间单元内传输的DRS不包括CRS。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述确定共享频带的步骤之前,还包括:
    将采用第一网络进行通信且只能工作在一个所述共享频带的其他用户设备切换到其他频带;和/或
    将采用第二网络进行通信且只能工作在一个所述共享频带的其他用户设备切换到其他频带。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述确定在所述共享频带进行第一网络的业务传输或第二网络的业务传输,具体包括:
    根据第一网络和第二网络的业务量确定在所述共享频带进行第一网络的业务传输或第二网络的业务传输,具体包括:
    当第一网络的业务量超过第一门限,和/或第二网络的业务量未超过第二门限,则确定在所述共享频带进行第一网络的业务传输;
    当第一网络的业务量未超过第一门限,和/或第二网络的业务量超过第二门限,则确定在所述共享频带进行第二网络的业务传输;
    当第一网络的业务量超过第一门限,且第二网络的业务量也超过第二门限,则若确定第一网络和第二网络的业务量的比值超过第三门限,则确定在所 述共享频带进行第一网络的业务传输,若第一网络和第二网络的业务量的比值不超过第三门限,则确定在所述共享频带进行第二网络的业务传输。
  8. 根据权利要求1至7任一所述的方法,其特征在于,
    所述当在所述共享频带进行第一网络的业务传输时,在所述共享频带仅传输第二网络的公共信号,具体包括:激活所述第一网络在所述共享频带工作,以及去激活所述第二网络在所述共享频带工作或将所述第二网络在所述共享频带配置成OFF状态;
    所述当在所述共享频带进行第二网络的业务传输时,在所述共享频带仅传输第一网络的公共信号或不传输任何信号,具体包括:激活所述第二网络在所述共享频带工作或将所述第二网络在所述共享频带配置成ON状态,和/或,去激活所述第一网络在所述共享频带工作。
  9. 一种频带共享的装置,其特征在于,包括:
    确定单元,用于确定共享频带,所述共享频带是能用于第一网络或第二网络的频带;
    配置单元,用于将所述共享频带配置成采用第一网络进行通信的用户设备UE1的辅小区和采用第二网络进行通信的用户设备UE2的辅小区,其中,所述UE1和UE2均能工作在所述共享频带和除所述共享频带之外的至少一个其他频带;
    处理单元,用于若第一网络和第二网络同时有未传输完成的业务,则确定在所述共享频带进行第一网络的业务传输或第二网络的业务传输,当在所述共享频带进行第一网络的业务传输时,在所述共享频带仅传输第二网络的公共信号,当在所述共享频带进行第二网络的业务传输时,在所述共享频带仅传输第一网络的公共信号或不传输任何信号。
  10. 根据权利要求9所述的装置,其特征在于,
    所述处理单元,具体用于当为采用第一网络进行通信且辅小区为所述共享频带的所有UE1配置了包括所述共享频带在内的多个下行载波对应一个上行载波时,在所述共享频带不传输第一网络的任何信号;当为采用第一网络进行通信且辅小区为所述共享频带的任一UE1配置了所述共享频带单独对应一个上行载波时,在所述共享频带传输第一网络的公共信号。
  11. 根据权利要求9或10所述的装置,其特征在于,
    所述第一网络为UMTS,第二网络为LTE;
    所述处理单元,具体用于在所述共享频带传输UMTS的数据信号,在所述共享频带传输LTE的DRS、CRS、SS和PBCH中的一个或多个,在所述共享频带传输LTE的数据信号,在所述共享频带传输UMTS的SS、CCPCH和CPICH中的一个或多个。
  12. 根据权利要求9至11任一所述的装置,其特征在于,还包括:
    切换单元,用于将采用第一网络进行通信且只能工作在一个所述共享频带的其他用户设备和/或将采用第二网络进行通信且只能工作在一个所述共享频带的其他用户设备切换到其他频带。
  13. 一种频带共享的***,其特征在于,包括:
    如权利要求9至12中任一所述的频带共享的装置。
PCT/CN2015/073405 2015-02-28 2015-02-28 一种频带共享的方法、装置以及*** WO2016134539A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/073405 WO2016134539A1 (zh) 2015-02-28 2015-02-28 一种频带共享的方法、装置以及***
EP15882977.0A EP3255915B1 (en) 2015-02-28 2015-02-28 Frequency band sharing method, apparatus and system
JP2017545243A JP6526823B2 (ja) 2015-02-28 2015-02-28 周波数帯域共有方法、装置及びシステム
CN201580002114.2A CN106170998B (zh) 2015-02-28 2015-02-28 一种频带共享的方法、装置以及***
US15/686,669 US10904767B2 (en) 2015-02-28 2017-08-25 Frequency band sharing method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073405 WO2016134539A1 (zh) 2015-02-28 2015-02-28 一种频带共享的方法、装置以及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/686,669 Continuation US10904767B2 (en) 2015-02-28 2017-08-25 Frequency band sharing method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016134539A1 true WO2016134539A1 (zh) 2016-09-01

Family

ID=56787831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073405 WO2016134539A1 (zh) 2015-02-28 2015-02-28 一种频带共享的方法、装置以及***

Country Status (5)

Country Link
US (1) US10904767B2 (zh)
EP (1) EP3255915B1 (zh)
JP (1) JP6526823B2 (zh)
CN (1) CN106170998B (zh)
WO (1) WO2016134539A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102904A1 (en) * 2017-05-10 2022-12-14 QUALCOMM Incorporated Cellular vehicle-to-everything design principles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101421B (zh) * 2014-05-09 2019-10-11 宇龙计算机通信科技(深圳)有限公司 资源分配方法和资源分配装置
EP3911025A1 (en) * 2017-06-15 2021-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods for radio resource management measurement
EP3641201B1 (en) * 2017-06-16 2023-08-23 LG Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
KR20210056177A (ko) 2019-11-08 2021-05-18 삼성전자주식회사 듀얼 커넥티비티를 지원하는 전자 장치 및 그 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340777A (zh) * 2010-07-15 2012-02-01 华为技术有限公司 一种动态调整载波资源的方法及基站
WO2013112983A2 (en) * 2012-01-26 2013-08-01 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
CN103460740A (zh) * 2011-02-07 2013-12-18 交互数字专利控股公司 在免许可频谱中操作补充小区的方法和装置
US20140086194A1 (en) * 2011-05-19 2014-03-27 Nec Corporation Spectrum control system, spectrum control method, wireless communication system, and computer readable medium
CN103841564A (zh) * 2012-11-23 2014-06-04 华为技术有限公司 一种频谱共享方法和网络中心控制实体
CN104380819A (zh) * 2012-06-01 2015-02-25 高通股份有限公司 使用感测的授权共享接入载波聚合

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220557A1 (en) * 2000-12-29 2002-07-03 Motorola, Inc. Communication system and method of sharing a communication resource
US8954065B2 (en) * 2010-11-24 2015-02-10 Lg Electronics Inc. Method of communicating data based on an unlicensed band in a wireless communication system
CN102651869A (zh) * 2011-02-28 2012-08-29 中兴通讯股份有限公司 一种频谱资源分配方法及装置
US9578515B2 (en) 2011-05-13 2017-02-21 Qualcomm Incorporated Methods and apparatuses for frequency spectrum sharing
WO2013006988A1 (en) * 2011-07-14 2013-01-17 Renesas Mobile Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
US9326155B2 (en) * 2011-09-23 2016-04-26 Nokia Solutions And Networks Oy Spectrum sharing using sharing profiles
WO2013131257A1 (en) * 2012-03-07 2013-09-12 Renesas Mobile Corporation Methods and apparatuses for facilitating multiple operator coordination for transmissions in an unlicensed band
IN2014DN08965A (zh) * 2012-04-27 2015-05-22 Nec Corp
CN103533552B (zh) * 2012-07-03 2016-12-21 ***通信集团设计院有限公司 一种频谱共享的方法及装置
CN103596183B (zh) * 2012-08-13 2018-05-04 上海无线通信研究中心 使用公用频段进行快速通信的方法和***
WO2014070066A1 (en) * 2012-10-29 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Radio resource management in inter-operator time sharing of frequency spectrum
WO2014071619A1 (zh) * 2012-11-09 2014-05-15 华为技术有限公司 频谱共享的方法和基站
US9531494B2 (en) * 2014-03-28 2016-12-27 Qualcomm Incorporated Techniques for acquiring measurements of a shared spectrum and performing channel selection for access points using the shared spectrum
EP3826390A1 (en) * 2014-09-12 2021-05-26 NEC Corporation Radio station, radio terminal, and method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340777A (zh) * 2010-07-15 2012-02-01 华为技术有限公司 一种动态调整载波资源的方法及基站
CN103460740A (zh) * 2011-02-07 2013-12-18 交互数字专利控股公司 在免许可频谱中操作补充小区的方法和装置
US20140086194A1 (en) * 2011-05-19 2014-03-27 Nec Corporation Spectrum control system, spectrum control method, wireless communication system, and computer readable medium
WO2013112983A2 (en) * 2012-01-26 2013-08-01 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
CN104380819A (zh) * 2012-06-01 2015-02-25 高通股份有限公司 使用感测的授权共享接入载波聚合
CN103841564A (zh) * 2012-11-23 2014-06-04 华为技术有限公司 一种频谱共享方法和网络中心控制实体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255915A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102904A1 (en) * 2017-05-10 2022-12-14 QUALCOMM Incorporated Cellular vehicle-to-everything design principles

Also Published As

Publication number Publication date
JP6526823B2 (ja) 2019-06-05
CN106170998B (zh) 2019-06-21
EP3255915A1 (en) 2017-12-13
CN106170998A (zh) 2016-11-30
US10904767B2 (en) 2021-01-26
JP2018510563A (ja) 2018-04-12
US20170374559A1 (en) 2017-12-28
EP3255915A4 (en) 2018-03-07
EP3255915B1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP7449230B2 (ja) Rlm及びビームモニタリングパラメータの最適化された再設定
CN114884638B (zh) 用于多波束随机接入的方法及对应的无线设备
TWI742134B (zh) 用於無線通訊中的切換的方法、目標基地台、使用者裝備及電腦可讀取媒體
US9942016B2 (en) Device, network, and method for network adaptation and discovery
KR101811359B1 (ko) D2d 신호의 전송 방법 및 장치
CN106537964B (zh) 用于网络适配和利用下行链路发现参考信号的设备、网络和方法
EP3254493B1 (en) D2d traffic balancing
JP6800324B2 (ja) Srsキャリアベース切り替えと関連付けられた中断を制御するようにランダムアクセス設定を適応させる方法および装置
US11330589B2 (en) Carrier switching and information sending method and apparatus
US9577775B2 (en) Synchronization track reference signal transmission processing, receiving processing method and apparatus
EP3550759B1 (en) Data transmission method and device
CN108141774B (zh) 测量报告组的布置
EP3566367B1 (en) Methods, device and node for adapting a numerology depending on a position of a wireless device
KR20190099079A (ko) 멀티캐리어 동작을 위한 뉴머롤로지 조합 세트
US10904767B2 (en) Frequency band sharing method, apparatus, and system
MX2015005626A (es) Metodo y aparato para recibir informacion de temporizacion desde una celda o red en un modo menos activo.
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
CN114095981B (zh) 一种小区状态切换方法及装置
EP4185050A1 (en) Communication method and device
WO2021088770A1 (zh) 一种测量配置方法及设备
WO2022000146A1 (zh) 通信方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015882977

Country of ref document: EP