WO2016134502A1 - Operating device for an illuminant - Google Patents

Operating device for an illuminant Download PDF

Info

Publication number
WO2016134502A1
WO2016134502A1 PCT/CN2015/073305 CN2015073305W WO2016134502A1 WO 2016134502 A1 WO2016134502 A1 WO 2016134502A1 CN 2015073305 W CN2015073305 W CN 2015073305W WO 2016134502 A1 WO2016134502 A1 WO 2016134502A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
operating device
voltage
output terminals
output
Prior art date
Application number
PCT/CN2015/073305
Other languages
French (fr)
Inventor
Quentin LIN
Original Assignee
Tridonic Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Gmbh & Co. Kg filed Critical Tridonic Gmbh & Co. Kg
Priority to EP15882940.8A priority Critical patent/EP3262901B1/en
Priority to PCT/CN2015/073305 priority patent/WO2016134502A1/en
Publication of WO2016134502A1 publication Critical patent/WO2016134502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/26Circuit arrangements for protecting against earth faults
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/24Circuit arrangements for protecting against overvoltage

Definitions

  • the present invention relates to an operating device for an illuminant according to the pre-characterizing part of claim 1 and relates to a method for compensating excessive high voltages at output terminals of an operating device according to the pre-characterizing part of claim 10.
  • a driving circuitry for driving the illuminant comprises a rectifier for rectifying an input AC voltage to a DC voltage and a converter for converting the DC voltage output by the rectifier into a working voltage for the illuminant is disclosed in WO 2014/085837 A2.
  • the output terminals of the operating device are galvanically isolated from the input terminals via a transformer, wherein a radio interference suppression capacitor is connected to the primary winding and the secondary winding of the transformer.
  • the operating device for an illuminant comprises input terminals for being supplied with an AC voltage, output terminals, a driving circuitry for driving the illuminant, when connected to the output terminals, wherein bypass means that comprise at least one capacitor are provided to bypass a current from one of the output terminals to protective earth and/or a neutral terminal of the input terminals.
  • the operating device can comprise a rectifier for rectifying the AC voltage to output a DC voltage, a converter for converting DC voltage output by the rectifier into a working voltage for the illuminant, a first capacitor connected between an output terminal of the rectifier and the protective earth or the neutral terminal and adapted to compensate needle pulses generated by the rectifier, and a second capacitor connected between an output terminal of the rectifier and the one of the output terminals.
  • the converter can be an isolated switching mode power supply converter.
  • the isolated switching mode power supply converter is a LED converter.
  • the bypas s means can be connected in parallel to the second capacitor, wherein the capacity of the capacitor of the bypass means is greater than the capacity of the second capacitor.
  • bypass means can be connected in parallel to a serial connection of the first capacitor and the second capacitor, wherein the capacity of the capacitor of the bypass means is greater than the capacity of the second capacitor.
  • the bypass means is adapted to bypass the current when the voltage between the one of the output terminals and the protective earth and/or the neutral terminal exceeds a certain value.
  • bypass means can comprise at least one of a gas discharge tube, Zener diode, Transient Voltage Suppression diode and voltage-dependent resistor.
  • a lighting device comprises the operating device described above and at least one illuminant connected to the output terminals of the operating device.
  • a current from one of the output terminals is bypassed to protective earth and/or a neutral terminal of the input terminals in order to compensate the excessive high voltages.
  • the method can be performed by the operating device described above.
  • FIG. 1 shows, in schematic form, a first embodiment of the lighting device according to the present invention
  • FIG. 2 shows, in schematic form, a second embodiment of the lighting device according to the present invention
  • FIG. 3 shows, in schematic form, a third embodiment of the lighting device according to the present invention.
  • FIG. 4 shows the operating device of the l ighting device shown in FIG. 2 more detailed.
  • the lighting device which is represented in a simplified manner, comprises input terminals L, N for being supplied with an AC voltage, output terminals X1, X2, a rectifier 1 for rectifying the AC voltage to output a DC voltage, a converter 2 for converting DC voltage output by the rectifier 1 into a working voltage for the illuminant 3 connected to the output terminals X1, X2 and a bypass 4 formed of a capacitor C and connected to the output terminal X2 and the protective earth at the terminal PE.
  • the bypass 4 can be connected to the output terminal X1 instead of terminal X2 and, if neutral conductor is earthed, the bypass 4 can be connected to the input terminal N instead of terminal PE.
  • the rectifier 1 and the converter 2 can be combined in a driving circuitry, wherein the input terminals L, N, the output terminals X1, X2, the driving circuitry and thebypass 4 form an operating device according to the present invention.
  • the output side (output terminals X1, X2) is connected to the protective earth via the capacitor C.
  • a current is fed through the capacitor C to the terminal PE, i.e., a current output from the output terminal X2 is bypassed to the terminal PE, so that excessive high voltages between the output terminals X1, X2 of the operating device and the ground potential/protective earth may be suppressed.
  • FIG. 2 shows a second embodiment of the lighting device according to the present invention.
  • a first capacitor C1 and a second capacitor C2 are provided for compensating needle pulses generated by the rectifier 1 and for interference suppression, respectively.
  • the first capacitor C1 is connected between the output terminal X3 of the rectifier 1 and the terminal PE and the second capacitor C2 is connected between the output terminal X3 and the output terminal X2 of the converter 2.
  • the capacitor C of the bypass 4 is connected in parallel to the second capacitor C2.
  • the capacity of the capacitor C of the bypass means 4 is greater than the second capacitor C2 having a capacity of, for example, around 4, 7nF, in order to compensate an excessive high voltage between the output terminal X2 and the terminal PE.
  • FIG. 3 shows a third embodiment of the l ighting device according to the present invention.
  • the capacitor C of the bypass 4 is connected between the terminal PE and the output terminal X2, i.e., the capacitor C of the bypass means 4 is connected in parallel to the serial connection of the first capacitor C1 and the second capacitor C2.
  • the capacity of the capacitor C of the bypass means is greater than the capacity of the second capacitor C2 and, when the voltage between the output terminal X2 and the terminal PE increases strongly due to surges at the input terminals L, N, a current output from the output terminal X2 is bypassed to the terminal PE, so that excessive high voltages between the output terminal X2 and the terminal PE is suppressed.
  • switching or blocking means can be integrated in the bypas s 4 that blocks or switches-off the bypass 4 during normal operation of the lighting device in which no excessive high voltage is present.
  • the switching/blocking means 5 can be integrated in the bypass 4 in each of the first, second and third embodiments of the lighting device shown in Figs. 1, 2 and 3, respectively, wherein the capacitor C and a switching/blocking means 5 indicated by the dotted line in Figs. 1, 2 and 3 are connected in series.
  • the switching/blocking means 5 can be implemented by using two Zener diodes, two Trans ient Voltage Suppression (TVS) diodes, voltage-dependent resistor (VDR) , gas discharge tube (gas arrester) or combinations thereof and is configured to open the bypass, when the voltage between the output terminal X2 and the terminal PE exceeds a certain value or predetermined value, so that a current output from the output terminal X2 is bypassed to the terminal PE.
  • the switching/blocking means 5 prevents extensive DC currents flowing across the capacitor C of the bypass 4. This improves the electromagnetic compatibility (EMC) .
  • FIG. 4 shows an embodiment of the operating device according to the present invention. All components of the circuit shown in FIG. 4, including the recti bomb 1, the converter 2, the first capacitor C1, the second capacitor C2 and the bypass 4 composed of the capacitor C and the switching/blocking means 5 formed o f two Zener diodes ZD10 can be mounted on a single compact printed circuit board (not shown) .
  • the rectifier 1 comprises capacitor CX2 connected in parallel to the input terminals L and N, a full-wave rectifier B connected to the input terminals L and N via inductors L1 and L2, respectively, and asmoothing capacitor C10 connected to the output of the full-wave rectifier B.
  • the converter 2 comprises an isolated transformer T, diodes D90 and D91 connected in parallel and a capacitor C92 connected parallel to the output terminals X1 and X2.
  • the secondary winding of the isolated transformer T is connected to the terminal X2 and the diodes D90 and D91.
  • One end of the primary winding of the isolated transformer T is connected to the full-wave rectifier B and the other end of the primary winding is connected to the terminal X3 via the switch S.
  • the first capacitor C1 is connected between the terminal PE and the output terminal X3 of the rectifier 1
  • the second capacitor C2 is connected between the output terminal X3 and the output terminal X2 of the converter 2 and a serial connection of the capacitor C and the Zener diodes ZD10 is connected in parallel to the second capacitor C2.
  • the rectifier 1 and the converter 2 shown in Figs. 1 to 3 can be built up as shown in FIG. 4. Further, the rectifier 1 and the converter 2, the input terminals L, N, the output terminals X1, X2, and the bypass 4 shown in Figs. 1 to 3form a operating device according to the present invention.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

An operating device for an illuminant comprises input terminals (L, N) for being supplied with an AC voltage, output terminals (X1, X2) and a driving circuitry (1, 2) for driving the illuminant (3), when connected to the output terminals (X1, X2). In order to compensate an excessive high voltage between the output terminals (X1, X2) and the protective earth (PE) due to voltage surges at input terminals (L, N), bypass means (4) are provided to bypass a current from one of the output terminals (X1, X2) to protective earth (PE) and/or a neutral terminal (N) of the input terminals (L, N), wherein the bypass means (4) comprise at least one capacitor (C).

Description

Operating device for an illuminant
The present invention relates to an operating device for an illuminant according to the pre-characterizing part of claim 1 and relates to a method for compensating excessive high voltages at output terminals of an operating device according to the pre-characterizing part of claim 10.
An operating device in which a driving circuitry for driving the illuminant comprises a rectifier for rectifying an input AC voltage to a DC voltage and a converter for converting the DC voltage output by the rectifier into a working voltage for the illuminant is disclosed in WO 2014/085837 A2.
In WO 2014/085837 A2, the output terminals of the operating device are galvanically isolated from the input terminals via a transformer, wherein a radio interference suppression capacitor is connected to the primary winding and the secondary winding of the transformer.
In such operating device or other devices including an isolated switching mode power supply converter, voltage surges of, for example, up to two kilo Volt at the input terminals of the operating device caused by, for example, power outages, lightning strikes or inductive spikes, may result in excessive high voltages at output terminals of the operating device when measured against the ground potential/protective earth. This risk is particular high when LEDs mounted on a Metal Core Printed Circuit Board (MCPCB) are connected to the operating device.
It is an object of the present invention to provide an operating device, a lighting device and a method with  which excessive high voltages at output terminals of the operating device can be prevented.
This obj ect is achieved by an operating device, a lighting device and a method according to the enclosed independent claims. Advantageous features of the present invention are defined in the corresponding subclaims.
According to the present invention, the operating device for an illuminant comprises input terminals for being supplied with an AC voltage, output terminals, a driving circuitry for driving the illuminant, when connected to the output terminals, wherein bypass means that comprise at least one capacitor are provided to bypass a current from one of the output terminals to protective earth and/or a neutral terminal of the input terminals.
The operating device can comprise a rectifier for rectifying the AC voltage to output a DC voltage, a converter for converting DC voltage output by the rectifier into a working voltage for the illuminant, a first capacitor connected between an output terminal of the rectifier and the protective earth or the neutral terminal and adapted to compensate needle pulses generated by the rectifier, and a second capacitor connected between an output terminal of the rectifier and the one of the output terminals.
Alternatively or in addition, the converter can be an isolated switching mode power supply converter. Preferably, the isolated switching mode power supply converter is a LED converter.
Alternatively or in addition, the bypas s means can be connected in parallel to the second capacitor, wherein the capacity of the capacitor of the bypass means is greater than the capacity of the second capacitor.
Alternatively, the bypass means can be connected in parallel to a serial connection of the first capacitor and the second capacitor, wherein the capacity of the capacitor of the bypass means is greater than the capacity of the second capacitor.
Preferably, the bypass means is adapted to bypass the current when the voltage between the one of the output terminals and the protective earth and/or the neutral terminal exceeds a certain value.
Alternatively or in addition, the bypass means can comprise at least one of a gas discharge tube, Zener diode, Transient Voltage Suppression diode and voltage-dependent resistor.
According to the present invention, a lighting device comprises the operating device described above and at least one illuminant connected to the output terminals of the operating device.
Further, according to the present invention, in the method for compensating excessive high voltages at output terminals of an operating device for an illuminant due to voltage surges at input terminals of the operating device, a current from one of the output terminals is bypassed to protective earth and/or a neutral terminal of the input terminals in order to compensate the excessive high  voltages. The method can be performed by the operating device described above.
The invention is to be explained more detailed in the following with reference to the accompanying drawing, wherein:
FIG. 1 shows, in schematic form, a first embodiment of the lighting device according to the present invention;
FIG. 2 shows, in schematic form, a second embodiment of the lighting device according to the present invention;
FIG. 3 shows, in schematic form, a third embodiment of the lighting device according to the present invention; and
FIG. 4 shows the operating device of the l ighting device shown in FIG. 2 more detailed.
In the figures 1 to 4, same reference signs refer to the same or analogous elements. In the first embodiment represented in FIG. 1, the lighting device according to the present invention, which is represented in a simplified manner, comprises input terminals L, N for being supplied with an AC voltage, output terminals X1, X2, a rectifier 1 for rectifying the AC voltage to output a DC voltage, a converter 2 for converting DC voltage output by the rectifier 1 into a working voltage for the illuminant 3 connected to the output terminals X1, X2 and a bypass 4 formed of a capacitor C and connected to the output terminal X2 and the protective earth at the terminal PE. Alternatively, the bypass 4 can be connected to the output terminal X1 instead of terminal X2 and, if neutral  conductor is earthed, the bypass 4 can be connected to the input terminal N instead of terminal PE.
The rectifier 1 and the converter 2 can be combined in a driving circuitry, wherein the input terminals L, N, the output terminals X1, X2, the driving circuitry and thebypass 4 form an operating device according to the present invention.
With the bypass 4 shown in FIG. 1, the output side (output terminals X1, X2) is connected to the protective earth via the capacitor C. When the voltage between the output terminals X1, X2 and the ground potential/protective earth increases due to surges at the input terminals L, N, a current is fed through the capacitor C to the terminal PE, i.e., a current output from the output terminal X2 is bypassed to the terminal PE, so that excessive high voltages between the output terminals X1, X2 of the operating device and the ground potential/protective earth may be suppressed.
FIG. 2 shows a second embodiment of the lighting device according to the present invention. In FIG. 2, in order to improve Electromagnetic Compatibility (EMC) of the lighting device, a first capacitor C1 and a second capacitor C2 are provided for compensating needle pulses generated by the rectifier 1 and for interference suppression, respectively. The first capacitor C1 is connected between the output terminal X3 of the rectifier 1 and the terminal PE and the second capacitor C2 is connected between the output terminal X3 and the output terminal X2 of the converter 2. As shown in FIG. 2, the capacitor C of the bypass 4 is connected in parallel to the second capacitor C2. The capacity of the capacitor C  of the bypass means 4 is greater than the second capacitor C2 having a capacity of, for example, around 4, 7nF, in order to compensate an excessive high voltage between the output terminal X2 and the terminal PE.
FIG. 3 shows a third embodiment of the l ighting device according to the present invention. In FIG. 3, the capacitor C of the bypass 4 is connected between the terminal PE and the output terminal X2, i.e., the capacitor C of the bypass means 4 is connected in parallel to the serial connection of the first capacitor C1 and the second capacitor C2. Also here, the capacity of the capacitor C of the bypass means is greater than the capacity of the second capacitor C2 and, when the voltage between the output terminal X2 and the terminal PE increases strongly due to surges at the input terminals L, N, a current output from the output terminal X2 is bypassed to the terminal PE, so that excessive high voltages between the output terminal X2 and the terminal PE is suppressed.
Since the bypass 4 only must be activated in the case of excessive high voltages between the output terminal X2 and the terminal PE and usually activation is necessary only for a short period of time, switching or blocking means can be integrated in the bypas s 4 that blocks or switches-off the bypass 4 during normal operation of the lighting device in which no excessive high voltage is present.
With the switching or blocking means, losses due to the leakage current of the potentially very big capacitor C during normal operation can be avoided. The switching/blocking means 5 can be integrated in the bypass 4 in each of the first, second and third embodiments of  the lighting device shown in Figs. 1, 2 and 3, respectively, wherein the capacitor C and a switching/blocking means 5 indicated by the dotted line in Figs. 1, 2 and 3 are connected in series.
The switching/blocking means 5 can be implemented by using two Zener diodes, two Trans ient Voltage Suppression (TVS) diodes, voltage-dependent resistor (VDR) , gas discharge tube (gas arrester) or combinations thereof and is configured to open the bypass, when the voltage between the output terminal X2 and the terminal PE exceeds a certain value or predetermined value, so that a current output from the output terminal X2 is bypassed to the terminal PE. In the normal operation mode of the lighting device in which no excessive high voltage is present, the switching/blocking means 5 prevents extensive DC currents flowing across the capacitor C of the bypass 4. This improves the electromagnetic compatibility (EMC) .
FIG. 4 shows an embodiment of the operating device according to the present invention. All components of the circuit shown in FIG. 4, including the recti fier 1, the converter 2, the first capacitor C1, the second capacitor C2 and the bypass 4 composed of the capacitor C and the switching/blocking means 5 formed o f two Zener diodes ZD10 can be mounted on a single compact printed circuit board (not shown) .
As shown in FIG. 4, the rectifier 1 comprises capacitor CX2 connected in parallel to the input terminals L and N, a full-wave rectifier B connected to the input terminals L and N via inductors L1 and L2, respectively, and  asmoothing capacitor C10 connected to the output of the full-wave rectifier B. The converter 2 comprises an  isolated transformer T, diodes D90 and D91 connected in parallel and a capacitor C92 connected parallel to the output terminals X1 and X2. The secondary winding of the isolated transformer T is connected to the terminal X2 and the diodes D90 and D91. One end of the primary winding of the isolated transformer T is connected to the full-wave rectifier B and the other end of the primary winding is connected to the terminal X3 via the switch S. In FIG. 4, the first capacitor C1 is connected between the terminal PE and the output terminal X3 of the rectifier 1, the second capacitor C2 is connected between the output terminal X3 and the output terminal X2 of the converter 2 and a serial connection of the capacitor C and the Zener diodes ZD10 is connected in parallel to the second capacitor C2.
As indicated by the dotted line in FIG. 4, the rectifier 1 and the converter 2 shown in Figs. 1 to 3 can be built up as shown in FIG. 4. Further, the rectifier 1 and the converter 2, the input terminals L, N, the output terminals X1, X2, and the bypass 4 shown in Figs. 1 to 3form a operating device according to the present invention.

Claims (11)

  1. An operating device for an illuminant comprising
    input terminals (L, N) for being supplied with an AC voltage;
    output terminals (X1, X2) ;
    a driving circuitry (1, 2) for driving the illuminant (3) , when connected to the output terminals (X1, X2) , characterized in that
    bypass means (4) are provided to bypass a current from one of the output terminals (X1, X2) to protective earth (PE) and/or a neutral terminal (N) of the input terminals (L, N) , wherein
    the bypass means (4) comprise at least one capacitor (C) .
  2. The operating device according to claim 1, wherein the driving circuitry (1, 2) comprises
    a rectifier (1) for rectifying the AC voltage to output a DC voltage;
    a converter (2) for converting DC voltage output by the rectifier (1) into a working voltage for the illuminant (3) ;
    a first capacitor (C1) connected between an output terminal (X3) of the rectifier (1) and the protective earth (PE) or the neutral terminal (N) ; and
    a second capacitor (C2) connected between the output terminal (X3) of the rectifier and the one of the output terminals (X1, X2) .
  3. The operating device according to claim 2, wherein
    the converter (2) is an isolated switching mode power supply converter.
  4. The operating device according to claim 3, wherein
    the isolated switching mode power supply converter is a LED converter.
  5. The operating device according to claim 2, 3 or 4, wherein
    the bypass means (4) is connected in parallel to the second capacitor (C2) and the capacity of the capacitor (C) of the bypass means (4) is greater than the capacity of the second capacitor (C2) .
  6. The operating device according to claim 2, 3 or 4, wherein
    the bypass means (4) is connected in parallel to a serial connection of the first capacitor (C1) and the second capacitor (C2) and the capacity of the capacitor (C) of the bypass means (4) is greater than the capacity of the second capacitor (C2) .
  7. The operating device according to anyone of claims 1 to 6, wherein
    the bypass means (4) is adapted to bypass the current when the voltage between the one of the output terminals (X1, X2) and the protective earth (PE) and/or the neutral terminal (N) exceeds a certain value.
  8. The operating device according to claim 7, wherein
    the bypass means (4) comprise at least one of a gas discharge tube, Zener diode, Transient Voltage Suppression diode and voltage-dependent resistor.
  9. A lighting device comprising
    the operating device according to anyone of claims 1 to 8; and
    at least one illuminant (3) connected to the output terminals (X1, X2) of the operating device.
  10. A method for compensating excessive high voltages at output terminals (X1, X2) of an operating device for an illuminant due to voltage surges at input terminals (L, N) of the operating device, characterized in that
    a current from one of the output terminals (L, N) is bypassed to protective earth (PE) and/or a neutral terminal (N) of the input terminals (L, N) in order to compensate the excessive high voltages.
  11. The method according to claim 10, wherein the method is performed by the operating device according to anyone of claims 1 to 8.
PCT/CN2015/073305 2015-02-26 2015-02-26 Operating device for an illuminant WO2016134502A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15882940.8A EP3262901B1 (en) 2015-02-26 2015-02-26 Operating device for an illuminant
PCT/CN2015/073305 WO2016134502A1 (en) 2015-02-26 2015-02-26 Operating device for an illuminant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073305 WO2016134502A1 (en) 2015-02-26 2015-02-26 Operating device for an illuminant

Publications (1)

Publication Number Publication Date
WO2016134502A1 true WO2016134502A1 (en) 2016-09-01

Family

ID=56787828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073305 WO2016134502A1 (en) 2015-02-26 2015-02-26 Operating device for an illuminant

Country Status (2)

Country Link
EP (1) EP3262901B1 (en)
WO (1) WO2016134502A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096383A1 (en) * 2007-10-10 2009-04-16 Hyun-Il Park Inverter and Liquid Crystal Display Device Including the Same
JP2009289684A (en) * 2008-05-30 2009-12-10 Toshiba Lighting & Technology Corp High pressure discharge lamp lighting device
JP2010080381A (en) 2008-09-29 2010-04-08 Toshiba Lighting & Technology Corp Led lighting device and illumination apparatus
JP2010245054A (en) * 2010-07-22 2010-10-28 Panasonic Electric Works Co Ltd Power supply separate type led lighting device
CN102752912A (en) * 2012-06-01 2012-10-24 台达电子企业管理(上海)有限公司 Light-emitting diode (LED) driving circuit
WO2014085837A2 (en) 2012-12-06 2014-06-12 Tridonic Gmbh & Co Kg Operating device for illuminant
US20140368124A1 (en) 2013-06-17 2014-12-18 Koninklijke Philips N.V Driver with isolation and surge signal protection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870534A (en) * 1988-09-02 1989-09-26 Harford Jack R Power line surge suppressor
JP6008279B2 (en) * 2012-07-24 2016-10-19 パナソニックIpマネジメント株式会社 Power supply device, lighting device, lighting apparatus using the same, and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096383A1 (en) * 2007-10-10 2009-04-16 Hyun-Il Park Inverter and Liquid Crystal Display Device Including the Same
JP2009289684A (en) * 2008-05-30 2009-12-10 Toshiba Lighting & Technology Corp High pressure discharge lamp lighting device
JP2010080381A (en) 2008-09-29 2010-04-08 Toshiba Lighting & Technology Corp Led lighting device and illumination apparatus
JP2010245054A (en) * 2010-07-22 2010-10-28 Panasonic Electric Works Co Ltd Power supply separate type led lighting device
CN102752912A (en) * 2012-06-01 2012-10-24 台达电子企业管理(上海)有限公司 Light-emitting diode (LED) driving circuit
WO2014085837A2 (en) 2012-12-06 2014-06-12 Tridonic Gmbh & Co Kg Operating device for illuminant
US20140368124A1 (en) 2013-06-17 2014-12-18 Koninklijke Philips N.V Driver with isolation and surge signal protection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3262901A4

Also Published As

Publication number Publication date
EP3262901B1 (en) 2022-09-14
EP3262901A1 (en) 2018-01-03
EP3262901A4 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
US8929107B2 (en) Active surge protection in a power supply
US4870534A (en) Power line surge suppressor
US9504121B2 (en) System and method for providing surge protection for an AC direct step driver lighting system
EP2903113A1 (en) Surge protection circuit
US9735725B2 (en) Methods and systems for transient voltage protection
CN105580498B (en) surge protection device
US8520355B2 (en) Methods and systems for transient voltage protection
EP2672597A1 (en) Voltage rectifier
US20130044523A1 (en) Power supply having a surge protection circuit
KR20160038648A (en) Overvoltage protection device
US10033347B2 (en) DC/DC electrical configuration for operating over a large span of input voltages
US8836236B1 (en) LED offset voltage dimmer
JP6317539B2 (en) Voltage change device for electric meters
CN105636261B (en) Surge protection for light emitting diode
WO2016134502A1 (en) Operating device for an illuminant
US20160198538A1 (en) Led drive circuit
JP5929424B2 (en) LED lighting device and lighting device using the same
KR101607457B1 (en) Fluorescent lamp with protection circuit for surge and overvoltage
KR100296703B1 (en) Surge voltage controller
JP2016532422A (en) Method and apparatus for providing auxiliary power in an LED driver
EP2375856A1 (en) Transformer arrangement for protecting optoelectronics components
US9948174B2 (en) Device for providing protection against short circuits upstream from a power module
KR101470076B1 (en) The power supply device for LED
KR102489961B1 (en) LED road traffic electric sign converter that can improve surge protection and control inrush current
KR101532474B1 (en) electrical saving apparatus having an Anti-PowerShock function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882940

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015882940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE