WO2016132597A1 - Resin composition and molded body - Google Patents

Resin composition and molded body Download PDF

Info

Publication number
WO2016132597A1
WO2016132597A1 PCT/JP2015/079337 JP2015079337W WO2016132597A1 WO 2016132597 A1 WO2016132597 A1 WO 2016132597A1 JP 2015079337 W JP2015079337 W JP 2015079337W WO 2016132597 A1 WO2016132597 A1 WO 2016132597A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
aromatic
hydrogen atom
alkyl group
Prior art date
Application number
PCT/JP2015/079337
Other languages
French (fr)
Japanese (ja)
Inventor
直人 櫻井
桜井 美弥
渡辺 泰之
竹雄 池田
佐藤 隆幸
Original Assignee
Dic株式会社
国立大学法人高知大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 国立大学法人高知大学 filed Critical Dic株式会社
Publication of WO2016132597A1 publication Critical patent/WO2016132597A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a resin composition that emits fluorescence or phosphorescence, and a molded body obtained from the resin composition.
  • Luminescent substances and radiopaque substances are used as marking substances for product identification, foreign matter contamination, and internal conditions, and forgery prevention applications such as securities, certificates, credit cards, electronic devices, personal authentication media, It is used in various industrial applications such as product inspection and medical devices.
  • As the light-emitting substance there are a fluorescent material and a phosphorescent material.
  • a method for visualizing a medical device in a living body a method in which a radiopaque substance is contained in the medical device is used (see, for example, Patent Documents 1 and 2).
  • a medical device formed of a resin containing a radiopaque substance can confirm a position in a living body based on an X-ray image captured by X-ray emission.
  • a medical device contains a near-infrared fluorescent material which is one of luminescent substances.
  • a feature of the near-infrared wavelength region that it cannot be seen with the human naked eye, has little influence on the living body, and has high permeability to living bodies such as skin.
  • Such a feature can be utilized by including a near-infrared fluorescent material in the medical device itself.
  • a system for confirming the position of a medical device embedded in a living body by irradiating near-infrared light from outside the living body by including a near-infrared fluorescent material in a medical device such as a shunt tube is disclosed.
  • Near-infrared light has a smaller influence on the living body than X-rays, and thus medical devices in the living body can be visualized more safely.
  • Near-infrared fluorescent materials include inorganic fluorescent materials and organic fluorescent materials.
  • inorganic near-infrared fluorescent materials have a relatively long Stokes shift, but rare earths such as rare and expensive rare earths and nanoparticles with uniform particle sizes are required.
  • various organic near-infrared fluorescent materials have been developed in recent years because organic near-infrared fluorescent materials can be synthesized relatively easily and the wavelength can be easily adjusted.
  • Patent Document 4 shows azo-boron that exhibits particularly excellent light absorption characteristics in the visible light region and good light emission characteristics in the near infrared region, is excellent in light resistance and heat resistance, and is easy to manufacture. Complex compounds are disclosed.
  • a boron complex of a ⁇ -conjugated compound is known.
  • a boron dipyrromethene skeleton in which a disubstituted boron atom and dipyrromethene (or a derivative thereof) form a complex is known.
  • BODIPY dyes having the same are known (for example, see Non-Patent Document 1).
  • Patent Document 5 discloses BODIPY dyes having a heterocycle in the BODIPY skeleton.
  • Non-Patent Document 2 discloses a near-infrared fluorescent material of a DPP-based boron complex having two boron complex units in the molecule, obtained by complexing a diketopyrrolopyrrole (DPP) derivative with boron. .
  • DPP diketopyrrolopyrrole
  • BODIPY dyes and DPP-based boron complexes are mainly used as biomarkers for labeling biomolecules such as nucleic acids and proteins and tumor tissues, and contain BODIPY dyes and DPP-based boron complexes. There is almost no report about the resin.
  • Patent Document 7 discloses a composition that emits fluorescence in the visible light region mixed with a polymer together with a solvent in order to enhance the compatibility of the visible light emitting BODIPY dye.
  • Patent Document 8 discloses an optical filter containing BODIPY dyes having at least one electron-withdrawing group and a resin and having high light absorption in the visible light region. Discloses a color conversion material that contains BODIPY pigments and a resin and converts low-wavelength light into long-wavelength light.
  • Patent Document 10 includes a DPP-based boron complex as a compound that has absorption in the infrared region and does not have absorption in the visible light region.
  • An infrared absorbing composition comprising a hydrophobic polymer is disclosed.
  • luminescent substances are also used in anti-counterfeiting applications such as securities, certificates, credit cards, electronic devices, and personal authentication media, and materials with higher security levels are required to improve anti-counterfeiting effects. ing.
  • JP 2000-060975 A Special table 2008-541987 JP 2012-115535 A JP 2011-162445 A Japanese Patent No. 5177427 JP 2013-060399 A US Patent Application Publication No. 2013/0249137 US Patent Application Publication No. 2013/0252000 JP 2011-241160 A Japanese Patent No. 5380019 JP 2010-090313 A
  • Patent Document 5 discloses BODIPY dyes that emit near-infrared fluorescence, but does not describe whether these can be contained in a resin.
  • the siloxane-containing BODIPY dye described in Patent Document 6 has good compatibility with the silicone monomer solution before curing, and a silicone resin in which the dye is uniformly dispersed can be obtained by curing, but other resins and resins There is a problem that the compatibility with the solution is low.
  • the resin composition described in Patent Document 7 has a problem in safety because a solvent may remain in the resin.
  • Patent Document 6 Patent Document 7, Patent Document 8, and Patent Document 9 do not describe a BODIPY dye that emits near-infrared fluorescence in the first place, nor does it describe application to medical use.
  • Patent Document 10 and Patent Document 11 do not describe a DPP-based boron complex that emits near-infrared light, and do not report application to medical use.
  • Medical devices that contain only near-infrared fluorescent materials do not require large-scale equipment and have a low burden on the living body, so they are expected as an intraoperative navigation system, but they are sensitive to detect positions in the deep part of the living body. Sometimes it is insufficient.
  • the anti-counterfeiting material using the light emitting substance has a defect that the anti-counterfeiting level is low while the authenticity can be easily discriminated by the excitation light. If the anti-counterfeiting material is combined with the detection by the luminescent substance and the detection by the X-ray, it can be expected that the security level becomes higher. However, there is no report that such a resin composition is produced by a simple method such as melt-kneading, and there is no report on the luminescent properties of the luminescent material when it is combined.
  • an object of the present invention is to provide a resin composition in which light emission by a luminescent substance is sensitized and has radiopacity, and a molded body obtained from the resin composition.
  • the resin composition and molded product according to the present invention are the following [1] to [18].
  • a resin composition comprising a luminescent substance, a radiopaque substance, and a resin, wherein the content of the radiopaque substance is 2% by mass or more and 80% by mass or less.
  • the resin composition according to [1] or [2], wherein the content of the light-emitting substance is 0.001% by mass or more and 0.5% by mass or less.
  • the near-infrared fluorescent material is represented by the following general formula (II 1 )
  • R a and R b are an aromatic 5-membered ring, aromatic 6-membered ring, or 2 to 3 5-membered or 6-membered ring, together with a nitrogen atom to which R a is bonded and a carbon atom to which R b is bonded.
  • R c and R d together with the nitrogen atom to which R c is bonded and the carbon atom to which R d is bonded, are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings.
  • R e and R f represent a halogen atom or an oxygen atom
  • R g represents a hydrogen atom or an electron withdrawing group.
  • R e and R f are oxygen atoms
  • a boron atom bonded to R e , R e , a nitrogen atom bonded to R a , and R a may form a ring together
  • R f A boron atom bonded to R f , R c , and a nitrogen atom bonded to R c may form a ring together.
  • R e is an oxygen atom and does not form a ring
  • R e is an oxygen atom having a substituent
  • R f is an oxygen atom having a substituent
  • a compound represented by The following general formula (II 3 ) [In the formula (II 3 ) R h and R i , together with the nitrogen atom to which R h is bonded and the carbon atom to which R i is bonded, are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation; R j and R k together with the nitrogen atom to which R j is bonded and the carbon atom to which R k are bonded together are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings.
  • R 1 , R m , R n , and R o each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R p and R q each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R r and R s each independently represent a hydrogen atom or an electron withdrawing group.
  • R h to R q are the same as those in the formula (II 3 ).
  • R 101 , R 102 , and R 103 are (P1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, (P2) R 101 and R 102 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 103 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or (p3) R 102 and R 103 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 101 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl
  • R 107 and R 108 are oxygen atoms
  • a boron atom bonded to R 107 , R 107 , a nitrogen atom bonded to the boron atom, R 101 , and a carbon atom bonded to R 101 together form a ring.
  • R 108 , a boron atom bonded to R 108 , a nitrogen atom bonded to the boron atom, R 104 , and a carbon atom bonded to R 104 may form a ring together.
  • R 107 is an oxygen atom and does not form a ring
  • R 107 is an oxygen atom having a substituent
  • R 108 is an oxygen atom having a substituent
  • a compound represented by the following general formula (II 2 -0) [In the formula (II 2 -0), R 101 to R 108 are the same as those in the formula (II 1 -0). ]
  • the resin composition of said [5] containing 1 type, or 2 or more types of compounds selected from the group which consists of a compound represented by this.
  • R 101 and R 102 form a ring
  • R 104 and R 105 form a ring
  • R 102 and R 103 form a ring
  • R 105 and R 106 form a ring
  • the ring is represented by the following general formulas (C-1) to (C-9):
  • Y 1 to Y 8 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom, and R 11 to R 22 are independently A hydrogen atom or any group that does not inhibit the fluorescence of the compound.
  • the resin composition of said [6] represented by either. [8] The following general formulas (II 1 -1-1) to (II 1 -1-6), (II 1 -2-1) to (II 1 -12-12), (II 2 -1-1) To (II 2 -1-6) and (II 2 -2-1) to (II 2 -12-12)
  • Y 11 and Y 12 each independently represent an oxygen atom or a sulfur atom; Y 21 and Y 22 each independently represent a carbon atom or a nitrogen atom; Q 11 represents a hydrogen atom or an electron withdrawing group; X represents independently of each other a halogen atom, a C 1-20 alkoxy group, an aryloxy group, or an acyloxy group; P 11 to P 14 and P 17 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, or a dialkylamino group; A 11 to A 14 are each independently selected from the group consisting of a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group.
  • Y 23 and Y 24 each independently represent a carbon atom or a nitrogen atom
  • Y 13 and Y 14 each independently represent an oxygen atom or a sulfur atom
  • Y 25 and Y 26 each independently represent a carbon atom or a nitrogen atom
  • R 47 and R 48 each independently represent a hydrogen atom or an electron withdrawing group
  • R 43 , R 44 , R 45 and R 46 represent a halogen atom or an aryl group which may have a substituent
  • P 15 and P 16 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, or a dialkylamino group
  • n15 and n16 each independently represent an integer of 0 to 3
  • a 15 and A 16 are independently selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an
  • R 23 , R 24 , R 25 , and R 26 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R 27 and R 28 each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R 29 and R 30 each independently represent a hydrogen atom or an electron withdrawing group
  • Y 9 and Y 10 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom
  • R 31 and R 32 are (P4) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (p5) R 31 and R 32 are both Form
  • R 23 to R 30 are the same as those in the formula (II 3 -1);
  • X 1 and X 2 each independently represent a nitrogen atom or a phosphorus atom;
  • R 35 , R 36 , R 37 , and R 38 are (P6) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
  • R 35 and R 36 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and
  • R 37 and R 38 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R 36 and R 37 together form an optionally substituted aromatic 5-membered ring or optionally
  • R 39 and R 40 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring
  • R 41 and R 42 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R 40 and R 41 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring
  • R 39 and R 42 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • R 41 and R 42 both represent a substituent.
  • R 39 and R 40 are each independently a hydrogen atom, a halogen atom, C 1- 20 represents an alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group.
  • X ′ represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
  • R 1 represents a C 1-12 alkyl group, an aryl group, an aryl ethenyl group, an aryl ethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, or one R 1 represents the above X Represents a —O—C ( ⁇ O) — group bonded to “, and forms a 6-membered ring, and the other R 1 is independently a C 1-12 alkyl group, aryl group, aryl Represents an ethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom; R 2 and R 3 together form an —O— group, an —S— group or an —N (R 8 )
  • R 4 and R 5 represent a hydrogen atom group, or R 4 and R 5 together represent an —O— group, an —S— group, or an —N (R 8 ) — group (R 8 is as defined above, and R 2 and R 3 represent a hydrogen atom group;
  • R 6 and R 7 independently represent a hydrogen atom group, a C 1-12 alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
  • the substituent of the aryl group or heteroaryl group includes a C 1-12 alkyl group, a mono (C 1-12 alkyl) amino group, a di (C 1-12 alkyl) amino group, a hydroxyl group, and a C 1-12 alkoxy group.
  • an azo-boron complex compound represented by The resin composition according to [4], wherein the maximum absorption wavelength is 650 nm or more and the Stokes shift is 50 nm or more.
  • the azo - boron complex compounds in the following formulas (I 1) [Formula (I 1), Y which may have an optionally substituted aryl group, or a substituent hetero an aryl group, R 1 ⁇ R 7 represents a same meaning as R 1 ⁇ R 7 in the formula (I). ]
  • radiopaque substance comprises barium sulfate, bismuth oxide, bismuth subcarbonate, calcium carbonate, aluminum hydroxide, tungsten, zinc oxide, zirconium oxide, zirconium, titanium, platinum, bismuth subnitrate, and bismuth. Any one or more selected from [1] to [12].
  • resin composition according to any one of [1] to [13], wherein the resin is a thermoplastic resin.
  • the resin is at least one selected from the group consisting of urethane resins, olefin resins, polystyrene resins, polyester resins, and vinyl chloride resins. Any one resin composition.
  • the resin composition according to the present invention contains a radiopaque substance and a luminescent substance, it can be detected by X-rays or luminescence as necessary. Furthermore, since the emission intensity in the direction of the excitation light source with respect to the amount of the added luminescent substance is stronger than that of the resin composition that does not contain a radiopaque substance, luminescence can be detected with high sensitivity even with weaker excitation light. For this reason, the molded product obtained from the resin composition according to the present invention is particularly suitable as a medical device used in a living body or a member thereof, and also as a security application such as an identification marker for preventing so-called forgery. preferable.
  • Test example 9 it is the photograph which image
  • the film produced in Example 8 is a photograph taken with a near-infrared imaging camera by irradiating a pork having a thickness of 2 mm with excitation light having a center wavelength of 740 nm.
  • the film produced in Example 8 is a photograph taken with a near-infrared imaging camera by irradiating a pork having a thickness of 15 mm with excitation light having a center wavelength of 740 nm.
  • the present invention is a resin composition comprising a luminescent substance, a radiopaque substance, and a resin, wherein the content of the radiopaque substance is 2% by mass or more and 80% by mass or less.
  • the resin composition according to the present invention has clearly higher emission intensity in the direction of the excitation light source and higher sensitivity for emission detection than the resin composition containing the same kind of luminescent substance.
  • the resin composition according to the present invention containing both a fluorescent material and a radiopaque substance has a maximum fluorescence wavelength and the vicinity thereof than a resin composition containing only the same kind of fluorescent material.
  • the fluorescence intensity can be enhanced by 30% or more, preferably 100% or more, more preferably 150% or more, further preferably 200% or more, particularly preferably 300% or more, and most preferably 2000% or more.
  • the reason why the effect of enhancing the emission intensity (sensitization effect) by the radiopaque substance is not clear, but is presumed as follows. For example, (1) since it contains a radiopaque material, the excitation light hits the opaque material, does not pass through the resin, and is scattered near the surface, resulting in local enhancement of the excitation light.
  • the fluorescence In the transparent smooth film, the fluorescence easily emits light at the end face by the law of total reflection, but the smoothness is lost due to the radiopaque material, the total reflection is reduced, and the fluorescence is scattered inside, and the excitation light source (3)
  • the coexistence with the radiopaque material improves the dispersibility of the luminescent material (the interaction between the luminescent materials decreases, quenching decreases, and the luminous efficiency increases. )).
  • the reasons described above act synergistically and a sensitizing effect appears. Since 2% by mass or more of the radiopaque substance is contained, the sensitizing effect on the luminescent substance can be sufficiently exhibited.
  • the light-emitting substance contained in the resin composition according to the present invention is appropriately selected and used in consideration of the product quality required for a molded body obtained from the resin composition, the kind of resin component to be mixed, and the like. be able to.
  • the fluorescent material may be one having a fluorescent maximum wavelength in the visible light region (visible light fluorescent material), or one having a fluorescent maximum wavelength in the near infrared region (near infrared fluorescent material).
  • the fluorescent maximum wavelength may be in the infrared region (infrared fluorescent material).
  • an inorganic substance may be sufficient and an organic compound may be sufficient.
  • visible light fluorescent materials examples include coumarin dyes, cyanine dyes, quinol dyes, rhodamines, oxazole dyes, phenazine dyes, azo-hydrazone dyes, violanthrone dyes, vilantron dyes, and flavantron dyes. , Fluoresceins, xanthene dyes, pyrenes, naphthalimide dyes, anthraquinone dyes, thioindigo dyes, perinone dyes, perylene dyes, azo-boron dyes, boron dimers described in International Publication No.
  • Examples thereof include compounds such as pyromethene (BODIPY) dyes and porphyrin dyes.
  • ZnS Ag
  • (ZnCd) S Cu
  • (ZnCd) S Ag
  • Zn 2 SiO 4 Mn
  • Cd 2 B 2 O 5 Mn
  • (SrMg) 3 (PO 4 ) 2 Mn
  • YVO 3 Inorganic phosphors such as En and CaWO 4 are also available.
  • near-infrared fluorescent materials and infrared fluorescent materials include polymethine dyes, anthraquinone dyes, dithiol metal salt dyes, cyanine dyes, phthalocyanine dyes, indophenol dyes, thiamine dyes, and styryl.
  • examples of phosphorescent materials include iridium complexes, osmium complexes, platinum complexes, europium complexes, copper complex and other organometallic complexes, porphycene complexes, and the like.
  • the resin composition according to the present invention when used as a raw material for a medical device or a security device used in a living body, it is preferable to contain a near-infrared fluorescent material or an infrared fluorescent material.
  • the near-infrared fluorescent material, the resin composition containing the infrared fluorescent material, and the molded product obtained therefrom can be excited and detected by invisible near-infrared light. Can be detected without changing the color tone.
  • the near-infrared fluorescent material contained in the resin composition according to the present invention includes cyanine dyes, azo-boron dyes, boron dipyrromethene (BODIPY) dyes, diketopyrrolopyrrole (DPP).
  • -Based boron complexes, phthalocyanine-based dyes, or squalium-based dyes are preferable from the viewpoint of luminous efficiency, and in particular, azo-boron complex compounds represented by the following general formula (I), the following general formula (II 1 ), or the following general A BODIPY dye represented by the formula (II 2 ), a DPP boron complex represented by the following general formula (II 3 ) or the following general formula (II 4 ) is preferable from the viewpoint of heat resistance. This is because when the luminous efficiency is high, sufficient luminous intensity can be obtained, and when the heat resistance is high, the material does not decompose or is difficult to knead with the resin.
  • X ′ represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
  • R 1 represents a C 1-12 alkyl group, an aryl group, an aryl ethenyl group, an aryl ethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, or one R 1 represents the above X Represents a —O—C ( ⁇ O) — group bonded to “, and forms a 6-membered ring, and the other R 1 is independently a C 1-12 alkyl group, aryl group, aryl Represents an ethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom; R 2 and R 3 together form an —O— group, an —S— group or an —N (R 8 )
  • R 4 and R 5 represent a hydrogen atom group, or R 4 and R 5 together represent an —O— group, an —S— group, or an —N (R 8 ) — group (R 8 is as defined above, and R 2 and R 3 represent a hydrogen atom group;
  • R 6 and R 7 independently represent a hydrogen atom group, a C 1-12 alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
  • the substituent of the aryl group or heteroaryl group includes a C 1-12 alkyl group, a mono (C 1-12 alkyl) amino group, a di (C 1-12 alkyl) amino group, a hydroxyl group, and a C 1-12 alkoxy group.
  • the “aryl group” means an aromatic hydrocarbon group.
  • a phenyl group, a naphthyl group, an indenyl group, a biphenyl group, etc. preferably a C 6-10 aryl group, more preferably a phenyl group.
  • Heteroaryl group means an aromatic heterocyclyl group having a 5-membered ring, 6-membered ring or condensed ring having at least one heteroatom such as a nitrogen atom, oxygen atom or sulfur atom.
  • the “heteroaryl group” includes a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a thienyl group, a furanyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazole group and the like; a pyridinyl group, a pyrazinyl group Groups, 6-membered heteroaryl groups such as pyrimidinyl group, pyridazinyl group; indolyl group, isoindolyl group, indazolyl group, quinolidinyl group, quinolinyl group, isoquinoliny
  • C 1-12 alkyl group means a linear or branched monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms.
  • R 6 to R 7 are preferably a C 2-12 alkyl group, more preferably a C 2-10 alkyl group, and particularly preferably an nC 2-8 alkyl group. In other cases, a C 1-6 alkyl group is preferred, a C 1-4 alkyl group is more preferred, a C 1-2 alkyl group is more preferred, and a methyl group is more preferred.
  • arylethenyl group refers to a —CH ⁇ CH— group substituted with the above aryl group, which may be trans or cis, but is preferably a trans type from the viewpoint of stability.
  • arylethynyl group refers to a —C ⁇ C— group substituted with the above aryl group.
  • C 1-12 alkoxy group means a C 1-12 alkyloxy group, preferably a C 1-6 alkoxy group, more preferably a C 1-4 alkoxy group, more preferably a C 1-2 alkoxy group, A methoxy group is more preferred.
  • the hydrocarbon groups when two R 1 are alkoxy groups, the hydrocarbon groups may be bonded to each other to form a cyclic structure together with the boron atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, and more preferably a fluorine atom.
  • “Mono (C 1-12 alkyl) amino group” means an amino group substituted by one of the above C 1-12 alkyls, for example, methylamino group, ethylamino group, propylamino group, isopropylamino group, Examples thereof include a butylamino group, an isobutylamino group, a t-butylamino group, a pentylamino group, and a hexylamino group, preferably a mono C 1-6 alkylamino group, more preferably a mono C 1-4 alkyl group. An amino group, more preferably a mono C 1-2 alkylamino group.
  • Di (C 1-12 alkyl) amino group means an amino group substituted with two of the above C 1-12 alkyl. In the group, the two alkyl groups may be the same as or different from each other.
  • Examples of the di-C 1-12 alkylamino group include a dimethylamino group, a diethylamino group, a dipropylamino group, a diisopropylamino group, a dibutylamino group, a diisobutylamino group, a dipentylamino group, a dihexylamino group, an ethylmethylamino group, Examples thereof include a methylpropylamino group, a butylmethylamino group, an ethylpropylamino group, and a butylethylamino group, preferably a di (C 1-6 alkyl) amino group, more preferably a di (C 1-4). Alkyl) amino group, and more preferably a
  • one R 1 represents a —O—C ( ⁇ O) — group bonded to the above X ′, and forms a 6-membered ring.
  • the other R 1 independently represents a C 1-12 alkyl group, an aryl group, an arylethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, and
  • the compounds represented by the following formulas (I 1 ) to (I 3 ) are preferable. Among these, a compound represented by the formula (I 1 ) is more preferable.
  • Y represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent
  • R 1 to R 7 in formula (I) Are the same as R 1 to R 7 in the formula.
  • the formula (I 2) and (I 3) in, X 'and R 1 ⁇ R 7 is, X in the formula (I)' indicates a and R 1 ⁇ R 7 synonymous.
  • the azo-boron complex compound represented by the formula (I) can be synthesized by, for example, reacting a boron compound with a hydrazone compound (II) represented by the following formula (II) (see, for example, Patent Document 2) .)
  • X 'and R 1 ⁇ R 7 is X in the formula (I)' indicates a and R 1 ⁇ R 7 synonymous.
  • R 9 is C 1-12 alkyl group, an aryl group, Arirueparu group, aryl ethynyl group, C 1-12 alkoxy group, an aryloxy group or a halogen atom, or R 1 is identical to R 1 A group that is more easily eliminated.
  • a compound represented by general formula (II 3 ) or general formula (II 4 ) is also preferable.
  • these compounds may be referred to as “DPP-based boron complexes used in the present invention”.
  • R a and R b form an aromatic ring consisting of 1 to 3 rings together with the nitrogen atom to which R a is bonded and the carbon atom to which R b is bonded.
  • R c and R d are aromatics composed of 1 to 3 rings together with the nitrogen atom to which R c is bonded and the carbon atom to which R d is bonded. Form a ring.
  • Each of the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d is a 5-membered ring or a 6-membered ring.
  • the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d are bonded to two nitrogen atoms. Having a ring structure condensed with a ring containing a boron atom. That is, the compound represented by the general formula (II 1 ) or the general formula (II 2 ) has a robust condensed ring structure composed of a wide conjugate plane.
  • R h and R i form an aromatic ring composed of 1 to 3 rings together with the nitrogen atom to which R h is bonded and the carbon atom to which R i is bonded.
  • R j and R k are aromatics composed of 1 to 3 rings together with the nitrogen atom to which R j is bonded and the carbon atom to which R k is bonded. Form a ring.
  • Each of the aromatic ring formed by R h and R i and the aromatic ring formed by R j and R k is a 5-membered ring or a 6-membered ring.
  • the compound represented by the general formula (II 3 ) or the general formula (II 4 ) includes an aromatic ring formed by R h and R i , a ring containing a boron atom bonded to two nitrogen atoms, and one nitrogen atom.
  • a five-membered heterocycle containing a 5-ring heterocycle, an aromatic ring formed by R j and R k , a ring containing a boron atom bonded to two nitrogen atoms, and a five-membered ring containing one nitrogen atom It has a ring structure in which a 3-ring condensed with a heterocycle is condensed between 5-membered heterocycles, that is, a ring structure in which at least 6 rings are condensed.
  • the compound represented by the general formula (II 3 ) or the general formula (II 4 ) has a robust condensed ring structure composed of a very wide conjugate plane.
  • the aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k are aromatic. If it has, it will not specifically limit.
  • the aromatic ring include pyrrole ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, pyridine ring, pyrimidine ring, pyridazine ring, isoindole ring, indole ring, indazole ring, purine ring, perimidine ring, thienopyrrole ring, and fluropyrrole.
  • the number of condensed rings is 2 or 3 because the maximum fluorescence wavelength becomes longer to the near infrared region. It is preferably 2, and more preferably 2 from the viewpoint of complexity of synthesis.
  • the wavelength can be increased by devising a substituent on the ring or a substituent on boron.
  • the wavelength can be increased to the near infrared region only by bonding a substituted aryl group or a heteroaryl group.
  • the aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k include a substituent. It may not have, and may have one or a plurality of substituents.
  • the substituent of the aromatic ring may be “any group that does not inhibit the fluorescence of the compound”.
  • the resin composition according to the present invention is used as a medical material (raw material of a medical device), as a near-infrared fluorescent material to be contained, in a necessary biological safety test, mutagenicity, cytotoxicity, Those having negative sensitization and skin irritation are preferred. From the viewpoint of safety, it is preferable that the near-infrared fluorescent material does not elute from the molded body obtained by processing the resin composition according to the present invention with body fluid such as blood or tissue fluid. For this reason, it is preferable that the near-infrared fluorescent material used in the present invention has low solubility in biological components such as blood.
  • the resin component itself in the resin composition according to the present invention hardly elutes in body fluids and the near-infrared fluorescent material.
  • the content of the resin composition itself is very small, the molded article of the resin composition according to the present invention can be used while avoiding elution of the near-infrared fluorescent material even in vivo.
  • mutagenicity and the like are difficult to express as a substituent that the aromatic ring formed by R a and R b or the aromatic ring formed by R c and R d has. It is preferable to select those that reduce water solubility.
  • the aromatic ring formed by R h and R i or the aromatic ring formed by R j and R k does not easily exhibit mutagenicity or the like. It is preferable to select those that reduce water solubility.
  • substituents examples include a halogen atom, nitro group, cyano group, hydroxy group, carboxyl group, aldehyde group, sulfonic acid group, alkylsulfonyl group, halogenosulfonyl group, thiol group, alkylthio group, isocyanate group, and thioisocyanate group.
  • Alkyl group alkenyl group, alkynyl group, alkoxy group, alkoxycarbonyl group, alkylamidocarbonyl group, alkylcarbonylamide group, acyl group, amino group, monoalkylamino group, dialkylamino group, silyl group, monoalkylsilyl group, Examples thereof include a dialkylsilyl group, a trialkylsilyl group, a monoalkoxysilyl group, a dialkoxysilyl group, a trialkoxysilyl group, an aryl group, and a heteroaryl group.
  • the aromatic ring formed by R a and R b, the substituent of the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i , or the aromatic ring formed by R j and R k include A cyano group, hydroxy group, carboxyl group, alkylthio group, alkyl group, alkoxy group, alkoxycarbonyl group, amide group, alkylsulfonyl group, fluorine, chlorine, aryl group, or heteroaryl group from the viewpoint of safety to living bodies It is preferable that these substituents may further have a substituent. However, the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, and more preferably a fluorine atom.
  • the alkyl group, alkenyl group, and alkynyl group may be linear, branched, or cyclic (aliphatic cyclic group). These groups preferably have 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 8, and further preferably 1 to 6.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group (tert-butyl group), pentyl group, isoamyl group, hexyl group, heptyl group, Examples include octyl group, nonyl group, decyl group, undecyl group, dodecyl group and the like.
  • alkenyl group examples include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, a 1,3-butadienyl group, a 2-pentenyl group, and a 2-hexenyl group.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, isopropynyl group, 1-butynyl group, isobutynyl group and the like.
  • alkyl group moiety in the group, dialkoxysilyl group, and trialkoxysilyl group include the same alkyl groups as those described above.
  • the alkoxy group includes methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group, heptyloxy group Octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group and the like.
  • dialkylamino group examples include dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, dipentylamino group, dihexylamino group, ethylmethylamino group, and methylpropyl group.
  • examples thereof include an amino group, a butylmethylamino group, an ethylpropylamino group, and a butylethylamino group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, an indenyl group, and a biphenyl group.
  • a phenyl group is preferred.
  • Examples of the heteroaryl group include a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a thienyl group, a furanyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, and a thiadiazole group; a pyridinyl group and a pyrazinyl group Groups, 6-membered heteroaryl groups such as pyrimidinyl group, pyridazinyl group; indolyl group, isoindolyl group, indazolyl group, quinolidinyl group, quinolinyl group, isoquinolinyl group, benzofuranyl group,
  • the alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group may be an unsubstituted group, and one or more hydrogen atoms may be substituted with a substituent.
  • substituents include a halogen atom, alkyl group, alkoxy group, nitro group, cyano group, hydroxy group, amino group, thiol group, carboxyl group, aldehyde group, sulfonic acid group, isocyanate group, thioisocyanate group, and aryl group.
  • heteroaryl groups include a halogen atom, alkyl group, alkoxy group, nitro group, cyano group, hydroxy group, amino group, thiol group, carboxyl group, aldehyde group, sulfonic acid group, isocyanate group, thioisocyanate group, and aryl group.
  • heteroaryl groups include a halogen atom, alkyl group, al
  • the absorption wavelength and fluorescence wavelength of fluorescent materials depend on the surrounding environment. Therefore, the absorption wavelength of the fluorescent material in the resin may be shorter or longer than that in the solution.
  • the absorption wavelength of the BODIPY dye or DPP-based boron complex used in the present invention is increased, the maximum absorption wavelength is in the near infrared region among various resins.
  • the maximum absorption wavelength of the fluorescent material can be obtained by introducing the electron donating group and the electron withdrawing group at appropriate positions in the molecule, thereby reducing the band gap between the highest occupied orbital (HOMO) and the lowest unoccupied orbit (LUMO). Narrower and longer wavelength can be achieved.
  • an electron donating group is introduced into the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d, and an electron is introduced into R g .
  • an attractive group By introducing an attractive group, the maximum absorption wavelength and the maximum fluorescence wavelength of the compound can be made longer.
  • an electron donating group is introduced into the aromatic ring formed by R h and R i and the aromatic ring formed by R j and R k , R p And when R q has an aromatic ring, by introducing an electron donating group into the aromatic ring, or by introducing an electron withdrawing group into R r and R s , the maximum absorption wavelength and the maximum The fluorescence wavelength can be made longer. By combining these designs, it is possible to adjust to the target wavelength.
  • the compound represented by the general formula (II 2 ) having an aza-BODIPY skeleton has a relatively long wavelength even if the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d are unsubstituted. Is a skeleton having absorption.
  • the pyrrole cross-linked portion is a nitrogen atom, a substituent cannot be introduced on the nitrogen, but the pyrrole portion (R a and R b By introducing an electron donating group into the aromatic ring formed by R c and R d formed by R c and R d ), the maximum absorption wavelength and the maximum fluorescence wavelength of the compound can be made longer.
  • an electron donating group is introduced into the pyrrole moiety (the aromatic ring formed by R h and R i and the aromatic ring formed by R j and R k ).
  • R p and R q have an aromatic ring, the maximum absorption wavelength and the maximum fluorescence wavelength of the compound can be made longer by introducing an electron donating group into the aromatic ring.
  • the aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k have As the group, among “any group that does not inhibit the fluorescence of the compound”, a group that functions as an electron-donating group for the aromatic ring is preferable. By introducing an electron donating group into the aromatic ring, fluorescence of the compound represented by the general formula (II 1 ), the general formula (II 2 ), the general formula (II 3 ), or the general formula (II 4 ) Becomes longer wavelength side.
  • Examples of the group that functions as an electron donating group include alkyl groups; alkoxy groups such as methoxy groups; aryl groups such as phenyl groups, p-alkoxyphenyl groups, p-dialkylaminophenyl groups, dialkoxyphenyl groups (aromatic rings). Group); heteroaryl groups (heteroaromatic ring groups) such as 2-thienyl group and 2-furanyl group.
  • alkyl group the alkyl group in the substituent of the phenyl group, and the alkyl group portion in the alkoxy group, a linear or branched alkyl group having 1 to 10 carbon atoms is preferable.
  • the carbon number of an alkyl group part is 6 or more or that it is branched.
  • Examples of the substituent that the aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k include A C 1-6 alkyl group, a C 1-6 alkoxy group, an aryl group, or a heteroaryl group, preferably a methyl group, an ethyl group, a methoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group, p -A dimethylaminophenyl group, a dimethoxyphenyl group, a thienyl group, or a furanyl group is more preferable, and a methyl group, an ethyl group, a methoxy group, a phenyl group, or a p-methoxyphenyl group is more preferable.
  • the BODIPY skeleton and the DPP skeleton have high planarity, molecules are easily aggregated by ⁇ - ⁇ stacking.
  • an aryl group or heteroaryl group having a bulky substituent into the BODIPY skeleton or DPP skeleton, aggregation of molecules can be suppressed and the emission quantum yield of the resin composition according to the present invention can be increased.
  • the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d may be different or the same. May be.
  • the aromatic ring formed by R h and R i may be different from the aromatic ring formed by R j and R k. May be.
  • the aromatic ring formed by R a and R b and R c and aromatic ring R d form, or an aromatic ring which R h and R i is an aromatic ring and R j and R k to be formed is formed is preferably the same type.
  • R e and R f each independently represent a halogen atom or an oxygen atom.
  • R e and R f are halogen atoms, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom or a chlorine atom is more preferable, and a fluorine atom is particularly preferable because it has a strong bond with a boron atom.
  • a compound in which R e and R f are fluorine atoms has high heat resistance, and thus is advantageous when melt kneaded with a resin at a high temperature.
  • R e and R f are not a halogen atom or an oxygen atom but a substituent containing an atom that can be bonded to a boron atom. Even if it exists, it can be made to contain in resin similarly to the BODIPY pigment
  • a ring formed by a boron atom bonded to R e , R e and a nitrogen atom bonded to R a is condensed with an aromatic ring formed by R a and R b
  • R A ring formed by a boron atom bonded to f 1 , R f , and a nitrogen atom bonded to R c is condensed with an aromatic ring formed by R c and R d .
  • the ring formed by R e and the like and the ring formed by R f and the like are preferably 6-membered rings.
  • R e when R e is an oxygen atom and R e does not form a ring, R e is an oxygen atom having a substituent (substituted) Oxygen atom bonded to the group).
  • substituent include a C 1-20 alkyl group, an aryl group, a heteroaryl group, an alkylcarbonyl group, an arylcarbonyl group, and a heteroarylcarbonyl group.
  • R f when R f is an oxygen atom and R f does not form a ring, R f represents oxygen having a substituent.
  • An atom (an oxygen atom bonded to a substituent).
  • substituents include a C 1-20 alkyl group, an aryl group, a heteroaryl group, an alkylcarbonyl group, an arylcarbonyl group, and a heteroarylcarbonyl group.
  • R e and R f are oxygen atoms having a substituent, the substituent that R e has and the substituent that R f has may be the same or different.
  • R e and R f are oxygen atoms
  • R e , R f , and a boron atom bonded to R e and R f together form a ring.
  • the ring structure include a structure in which R e and R f are connected to the same aryl ring or heteroaryl ring, and a structure in which R e and R f are connected by an alkylene group.
  • R 1 , R m , R n , and R o are each independently a halogen atom, a C 1-20 alkyl group, or a C 1-20 alkoxy group. Represents an aryl group or a heteroaryl group.
  • R 1 , R m , R n , or Ro is a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom or a chlorine atom is more preferable, and a strong bond with a boron atom is provided. Therefore, a fluorine atom is particularly preferable.
  • a compound in which R l , R m , R n , and R o are fluorine atoms has high heat resistance, and therefore is advantageous when melt kneaded with a resin at a high temperature.
  • C 1-20 alkyl group means an alkyl group having 1 to 20 carbon atoms
  • C 1-20 alkoxy group means an alkoxy group having 1 to 20 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic (aliphatic ring) Group).
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isoamyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group. Decyl group, undecyl group, dodecyl group and the like.
  • R 1 , R m , R n , or R o is a C 1-20 alkoxy group
  • the alkyl group portion of the alkoxy group may be linear, branched, or cyclic (Aliphatic cyclic group) may be used.
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group, heptyloxy group, Examples include octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group and the like.
  • R 1 , R m , R n , or Ro is an aryl group
  • examples of the aryl group include a phenyl group, a naphthyl group, an indenyl group, and a biphenyl group.
  • R 1 , R m , R n , or Ro is a heteroaryl group
  • examples of the heteroaryl group include pyrrolyl group, imidazolyl group, pyrazolyl group, thienyl group, furanyl group, oxazolyl group, isoxazolyl group, thiazolyl group, 5-membered ring heteroaryl groups such as isothiazolyl group and thiadiazole group; 6-membered ring heteroaryl groups such as pyridinyl group, pyrazinyl group, pyrimidinyl group and pyridazinyl group; indolyl group, isoindolyl group, indazolyl group, quinolidinyl group, quinolinyl group, isoquinolinyl group And a condensed heteroaryl group such as a benzofuranyl group, an isobenzofuranyl group, a chromenyl group, a benzoxazoly
  • the C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R 1 , R m , R n , or R o may be an unsubstituted group or one or more
  • the hydrogen atom may be substituted with a substituent.
  • substituents include a halogen atom, alkyl group, alkoxy group, nitro group, cyano group, hydroxy group, amino group, thiol group, carboxyl group, aldehyde group, sulfonic acid group, isocyanate group, thioisocyanate group, and aryl group. And heteroaryl groups.
  • R 1 , R m , R n , and R o are a halogen atom, an unsubstituted aryl group, or an aryl group having a substituent.
  • Preferred is a fluorine atom, a chlorine atom, a bromine atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group.
  • a fluorine atom, a chlorine atom, an unsubstituted A phenyl group or a phenyl group substituted with a C 1-10 alkyl group or a C 1-10 alkoxy group is more preferred, and a fluorine atom or an unsubstituted phenyl group is particularly preferred.
  • R p and R q each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, Or represents a heteroaryl group.
  • Examples of the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R p and R q include R 1 , R m , R n in the general formula (II 3 ). Or the same as R o .
  • R p and R q are a hydrogen atom or an aryl group are preferable, and a hydrogen atom, an unsubstituted phenyl group, or C 1
  • a phenyl group substituted with a -20 alkyl group or a C 1-20 alkoxy group is preferred, and a phenyl group substituted with a hydrogen atom, an unsubstituted phenyl group, or a C 1-20 alkoxy group is more preferred.
  • a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-10 alkoxy group is particularly preferable.
  • R g represents a hydrogen atom or an electron withdrawing group.
  • R r and R s each independently represent a hydrogen atom or an electron withdrawing group.
  • the electron withdrawing group include a halogenated methyl group such as a trifluoromethyl group, a nitro group, a cyano group, an aryl group, a heteroaryl group, an alkynyl group, an alkenyl group, a carboxyl group, an acyl group, and a carbonyl group.
  • Substituents having a carbonyl group such as an oxy group, an amide group, and an aldehyde group; sulfoxide groups; sulfonyl groups; alkoxymethyl groups; aminomethyl groups and the like, and aryl groups having these electron-withdrawing groups as substituents;
  • a heteroaryl group or the like can also be used.
  • these electron withdrawing groups a trifluoromethyl group, a nitro group, a cyano group, a sulfonyl group and the like that can function as a strong electron withdrawing group are preferable from the viewpoint of increasing the maximum fluorescence wavelength.
  • the BODIPY dye used in the present invention a compound represented by the following general formula (II 1 -0) or the general formula (II 2 -0) are preferred.
  • a compound having a boron dipyrromethene skeleton is preferable because the maximum fluorescence wavelength becomes longer, and particularly, the pyrrole ring satisfying the following (p2), (p3), (q2), or (q3) is an aromatic ring or
  • a compound condensed with a heteroaromatic ring is preferable as the near-infrared fluorescent material used in the present invention because the maximum wavelength becomes a longer wavelength.
  • R 101 , R 102 , and R 103 satisfy any of the following (p1) to (p3).
  • P1 represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • P2 R 101 and R 102 together form an aromatic 5-membered ring or an aromatic 6-membered ring
  • R 103 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or
  • R 102 and R 103 together form an aromatic 5-membered ring or an aromatic 6-membered ring
  • R 101 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alk
  • R 104 , R 105 , and R 106 satisfy any of the following (q1) to (q3).
  • (Q1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group
  • (Q2) R 104 and R 105 together form an aromatic 5-membered ring or an aromatic 6-membered ring
  • R 106 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or
  • R 105 and R 106 together form an aromatic 5-membered ring or an aromatic 6-membered ring
  • R 104 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a
  • halogen atom C 1-20 alkyl group, C 1-20 alkoxy group, aryl group and heteroaryl group in the above (p1) to (p3) or (q1) to (q3), R a and R What was illustrated as "any group which does not inhibit the fluorescence of a compound" in b can be used.
  • those represented by any of the following general formulas (C-1) to (C-9) are preferred, and the following general formulas (C-1), (C-2), or (C-9) Those represented by any of the above are more preferred.
  • Y 1 to Y 8 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom.
  • Y 1 to Y 8 are preferably independently a sulfur atom, an oxygen atom, or a nitrogen atom, and more preferably a sulfur atom or an oxygen atom independently of each other.
  • R 11 to R 22 each independently represent a hydrogen atom or an arbitrary group that does not inhibit the fluorescence of the compound.
  • an arbitrary group that does not inhibit the fluorescence of the compound those exemplified in “an arbitrary group that does not inhibit the fluorescence of the compound” in R a and R b can be used.
  • R 11 to R 22 are preferably each independently a hydrogen atom, an unsubstituted aryl group, an aryl group having a substituent, an unsubstituted heteroaryl group, or a heteroaryl group having a substituent,
  • a hydrogen atom, an (unsubstituted) phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group, a p-dimethylaminophenyl group, a dimethoxyphenyl group, a thienyl group, or a furanyl group is more preferred, and a hydrogen atom, (unsubstituted) A phenyl group or a p-methoxyphenyl group is more preferable.
  • the compound includes at least one of the above-described unsubstituted aryl group, aryl group having a substituent, and unsubstituted heteroaryl group. Or a heteroaryl group having a substituent is particularly preferred.
  • R 101 and R 104, R 102 and R 105, and R 103 and R 106 which may be different from each It is preferable that they are the same kind of group. That is, when R 101 , R 102 , and R 103 satisfy (p1), R 104 , R 105 , and R 106 preferably satisfy (q1), and R 101 , R 102 , And R 103 satisfy (p2), R 104 , R 105 , and R 106 preferably satisfy (q2), and R 101 , R 102 , and R 103 satisfy (p3). R 104 , R 105 , and R 106 preferably satisfy the above (q3).
  • R 101 and R 102 form a ring
  • R 104 and R 105 form a ring
  • R 102 And R 103 forms a ring
  • R 105 and R 106 preferably form a ring. That is, it is preferable that R 101 , R 102 , and R 103 satisfy (p2) or (p3), and R 104 , R 105 , and R 106 satisfy (q2) or (q3). This is because when the aromatic ring or heteroaromatic ring is further condensed to the boron dipyrromethene skeleton, the maximum fluorescence wavelength becomes longer.
  • R 107 and R 108 represent a halogen atom or an oxygen atom.
  • R 107 and R 108 are oxygen atoms
  • a boron atom bonded to R 107 , R 107 , a nitrogen atom bonded to the boron atom, R 101 , and a carbon atom bonded to R 101 together form a ring.
  • the boron atom bonded to the R 108, R 108, nitrogen atom to boron atom bonded, R 104, and carbon atoms may together form a ring bonded with R 104.
  • ring and ring R 107 boron atoms and R 101 or the like is formed, the R 108 and the boron atom and R 104 or the like is formed are both condensed with boron dipyrromethene backbone.
  • the ring formed by R 107 , boron atom, R 101 and the like, and the ring formed by R 108 , boron atom, R 104 and the like are preferably 6-membered rings.
  • R 107 is an oxygen atom, and if does not form a ring, R 107 is an oxygen atom (substituent group having a substituent Oxygen atoms bonded to each other). Examples of the substituent include a C 1-20 alkyl group, an aryl group, and a heteroaryl group.
  • R 108 when R 108 is an oxygen atom, and do not form a ring, R 108 is an oxygen atom having a substituent group (Oxygen atom bonded to a substituent).
  • substituents examples include a C 1-20 alkyl group, an aryl group, and a heteroaryl group. Note that when both R 107 and R 108 are oxygen atoms having a substituent, the substituent that R 107 has and the substituent that R 108 have may be the same or different.
  • R 109 represents a hydrogen atom or an electron-withdrawing group.
  • the electron withdrawing group include the same groups as those described above for R g .
  • a fluoroalkyl group, a nitro group, a cyano group, an aryl group, and a sulfonyl group that can function as a strong electron-attracting group are preferable.
  • a trifluoromethyl group, a nitro group, and a cyano group are preferable.
  • R 101 and R 102 are both the general formulas (C-1 ), Any one of R 11 and R 12 is a hydrogen atom, and the remaining one is a hydrogen atom, a C 1-20 alkyl group, or a C 1 1-3 hydrogen atom.
  • R 20 forms a ring that may be substituted with an alkoxy group, a phenyl group, a thienyl group, or a furanyl group, and R 104 and R 105 together form a ring of the same type as the ring formed by R 101 and R 102 ;
  • R 103 and R 106 are hydrogen atoms and R 107 and R 108 are halogen atoms;
  • R 101 and R 102 are both R 13 and R among the rings represented by the general formula (C-2)
  • R 1 Any one of 4 is a hydrogen atom, and the other is a phenyl group in which 1 to 3 hydrogen atoms may be substituted with a halogen atom, a C 1-20 alkyl group, or a C 1-20 alkoxy group,
  • a ring that is a thienyl group or a furanyl group is formed, R 104 and R 105 together form a ring that is the same as the ring that R 101 and R 102
  • R 109 is a trifluoromethyl group, a cyano group, more preferably those which are nitro group, or a phenyl group, a trifluoromethyl group or a phenyl Those which are groups are particularly preferred.
  • Preferred compounds of the BODIPY dye used in the present invention include the following general formulas (II 1 -1), (II 1 -2), (II 1 -3), (II 2 -1), (II 2 -2) And compounds represented by (II 2 -3).
  • R 101 , R 103 , R 104 , and R 106 to R 108 are as defined above, ED represents an electron donating group, and EW represents an electron withdrawing group.
  • Z 1 to Z 4 rings each independently represents a 5-membered or 6-membered aryl group, or a 5-membered or 6-membered heteroaryl group.
  • the following general formula (II 1 -1 ) compounds represented by the following general formulas (II 1 -1-1) to (II 1 -1-6) are preferable, and the following general formula (II 1 -2) is preferable. is preferably a compound represented by the following general formula (II 1 -2-1) ⁇ (II 1 -2-12), as the following general formula (II 2 -1), the following general formula (II 2 -1 -1) to (II 2 -1-6) are preferred, and the following general formulas (II 2 -2) include the following general formulas (II 2 -2-1) to (II 2 -2-) The compound represented by 12) is preferred.
  • Y 11 and Y 12 each independently represent an oxygen atom or a sulfur atom
  • Y 21 and Y 22 each independently represent a carbon atom or a nitrogen atom.
  • Y 11 and Y 12 are preferably the same kind of atoms
  • Y 21 and Y 22 are preferably the same kind of atoms.
  • Q 11 represents a hydrogen atom or an electron withdrawing property. Represents a group. Examples of the electron withdrawing group include the same groups as those described above for R g .
  • a compound in which Q 11 is a trifluoromethyl group, a cyano group, a nitro group, or a phenyl group which may have a substituent is preferable.
  • a compound which is a trifluoromethyl group or a phenyl group which may have a substituent is more preferable.
  • X is independently of each other a halogen atom, a C 1-20 alkoxy group, an aryloxy group, or an acyloxy group. Represents a group.
  • the alkyl group portion of the alkoxy group may be linear, branched, or cyclic (aliphatic ring group).
  • the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group, heptyloxy group, Examples include octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group and the like.
  • aryloxy group examples include a phenyloxy group, a naphthyloxy group, an indenyloxy group, and a biphenyloxy group.
  • the acyloxy group is preferably an alkylcarbonyloxy group or an arylcarbonyloxy group.
  • alkylcarbonyloxy group include a methylcarbonyloxy group (acetoxy group), an ethylcarbonyloxy group, a propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, an isobutylcarbonyloxy group, and a t-butylcarbonyl group.
  • Examples of the arylcarbonyloxy group include a phenylcarbonyloxy group (benzoyloxy group), a naphthylcarbonyloxy group, an indenylcarbonyloxy group, and a biphenylcarbonyloxy group.
  • X is preferably a halogen atom, and X is particularly preferably a fluorine atom.
  • P 11 to P 14 and P 17 are each independently a halogen atom, C 1 And represents a -20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group.
  • C 1-20 alkyl group C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 11 to P 14 , R g and (p1) to (p3), (q1) The same as those described in (q3).
  • P 11 to P 14 are C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxy It is preferably a phenyl group, a thienyl group, or a furanyl group.
  • a C 1-20 alkyl group, a C 1-20 alkoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group , A dimethoxyphenyl group, a thienyl group, or a furanyl group, and these substituents may further have a substituent.
  • the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
  • n11 to n14 and n17 each independently represent an integer of 0 to 3.
  • a 11 to A 14 are independently of each other a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and A phenyl group optionally having 1 to 3 substituents selected from the group consisting of dialkylamino groups, or a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkyl Having 1 to 3 substituents selected from the group consisting of an amino group and a dialkylamino group
  • heteroaryl group examples include those similar to R 1 , R m , R n , or Ro in the general formula (II 3 ), and a thienyl group or a furanyl group is preferable.
  • C 1-20 alkyl group C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in the substituent that the phenyl group or the heteroaryl group may have, each of R g and Examples are the same as those described in (p1) to (p3) and (q1) to (q3).
  • a 11 to A 14 are preferably an unsubstituted phenyl group, a phenyl group having 1 or 2 C 1-20 alkoxy groups as a substituent, or an unsubstituted heteroaryl group, an unsubstituted phenyl group, or More preferred is a phenyl group having one C 1-20 alkoxy group as a substituent, and more preferred is an unsubstituted phenyl group or a phenyl group having one C 1-10 alkoxy group as a substituent. Even more preferred is a phenyl group or a phenyl group having one C 1-6 alkoxy group as a substituent.
  • a 11 to A 14 are all preferably the same functional group.
  • the BODIPY dye used in the present invention in particular, the following general formulas (1-1) to (1-37), (2-1) to (2-7), (3-1) to (3-37) , (4-1) to (4-7), (5-1) to (5-2) are preferred, and the following general formulas (1-1) to (1-12), A compound represented by any one of (1-25) to (1-31), (2-1) to (2-7), and (3-25) to (3-31) is more preferable.
  • P 1 to P 4 and P 18 are independently of each other a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, or a monoalkyl.
  • An amino group and a dialkylamino group are represented.
  • the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 1 to P 4 R g and (p1) to (p3), (q1) The same as those described in (q3).
  • P 1 to P 4 and P 18 include C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl.
  • Group, dimethoxyphenyl group, thienyl group, or furanyl group and C 1-20 alkyl group, C 1-20 alkoxy group, phenyl group, p-methoxyphenyl group, p- More preferably, it is an ethoxyphenyl group, a dimethoxyphenyl group, a thienyl group, or a furanyl group, and these substituents may further have a substituent.
  • the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
  • n1 to n4 and n18 each independently represent an integer of 0 to 3.
  • all of the plurality of P 1 may be the same or different functional groups. Also good. The same applies to P 2 to P 4 and P 18 .
  • Q is a trifluoromethyl group, a cyano group, a nitro group, or a substituent. It is preferably a trifluoromethyl group or a phenyl group which may have a substituent, and more preferably a trifluoromethyl group or an unsubstituted phenyl group.
  • substituent that the phenyl group may have include a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group.
  • X is the same as in general formula (II 1 -1-1).
  • X is a halogen atom
  • a fluorine atom is particularly preferable.
  • m2 is 0 or 1. In the compound represented by the general formula (1-32), m2 is preferably 1.
  • the compounds represented by the general formulas (3-1) to (3-37), (4-1) to (4-7), (5-2) include P 1 to P 4 and P 18 are independently of each other a C 1-20 alkyl group, a C 1-20 alkoxy group, a (unsubstituted) phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group, a p-dimethylaminophenyl group, a dimethoxyphenyl group.
  • the compound represented by any one of the following general formulas (II 3 -1) to (II 3 -6), or A compound represented by any one of formulas (II 4 -1) to (II 4 -6) is also preferred.
  • R 23 , R 24 , R 25 , and R 26 are independent of each other.
  • Examples of the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R 23 , R 24 , R 25 , or R 26 include R in the general formula (II 3 ). l, R m, R n, or are the same as those of the R o.
  • R 23 , R 24 , R 25 and R 26 are preferably a halogen atom, an unsubstituted aryl group, or an aryl group having a substituent, specifically, a fluorine atom, A chlorine atom, a bromine atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group is preferred, and a fluorine atom, a chlorine atom, an unsubstituted phenyl group, or C 1 A phenyl group substituted with a -10 alkyl group or a C 1-10 alkoxy group is more preferable, and a compound having high luminous efficiency and thermal
  • R 27 and R 28 are each independently a hydrogen atom or a halogen atom.
  • Examples of the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R 27 or R 28 are the same as those for R p or R q in the general formula (II 3 ). Things.
  • R 27 and R 28 are preferably a hydrogen atom or an aryl group, and a compound having high luminous efficiency can be obtained. Therefore, a hydrogen atom, an unsubstituted phenyl group, a C 1-20 alkyl group or a C 1-20 alkoxy group is obtained.
  • a phenyl group substituted with a group more preferred is a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group, with high emission efficiency, since the compounds have excellent compatibility with the resin is obtained, a hydrogen atom, an unsubstituted phenyl group, or a full substituted with linear or branched C 1-10 alkoxy group What is sulfonyl group are particularly preferred.
  • R 29 and R 30 each independently represent a hydrogen atom or an electron withdrawing group.
  • Examples of the electron withdrawing group represented by R 29 or R 30 include the same groups as those described above for R r or R s in the general formula (II 3 ).
  • R 29 and R 30 are strong electron withdrawing groups.
  • a compound having a trifluoromethyl group or a cyano group is more preferable because a compound having high luminous efficiency and excellent compatibility with the resin can be obtained.
  • Y 9 and Y 10 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom.
  • Y 9 and Y 10 are each independently a sulfur atom, Those which are oxygen atoms or nitrogen atoms are preferable, those which are sulfur atoms or oxygen atoms independently of each other are more preferable, and since a compound having high luminous efficiency and thermal stability is obtained, both are sulfur atoms or More preferably, both are oxygen atoms.
  • X 1 and X 2 each independently represent a nitrogen atom or a phosphorus atom.
  • X 1 and X 2 are Since both compounds are nitrogen atoms or phosphorus atoms, compounds that are both nitrogen atoms or phosphorus atoms are preferable, and since compounds that have both high luminous efficiency and thermal stability are obtained, those that are both nitrogen atoms are more preferable.
  • R 31 and R 32 satisfy the following (p4) or (p5).
  • P4 Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • P5 R 31 and R 32 together form an aromatic 5-membered ring which may have a substituent or an aromatic 6-membered ring which may have a substituent.
  • R 33 and R 34 satisfy the following (q4) or (q5).
  • (Q4) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (q5)
  • R 33 and R 34 are both An aromatic 5-membered ring which may have a substituent or an aromatic 6-membered ring which may have a substituent is formed.
  • R 35 , R 36 , R 37 , and R 38 are represented by the following (p6 ) To (p9) are satisfied.
  • (P6) represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, independently of each other.
  • R 35 and R 36 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring
  • R 37 and R 38 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • R 36 and R 37 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 35 and R 38 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • R 37 and R 38 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 35 and R 36 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • R 39 , R 40 , R 41 , and R 42 are represented by the following (q6 ) To (q9) are satisfied.
  • (Q6) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group.
  • R 39 and R 40 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring
  • R 41 and R 42 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • R 40 and R 41 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring
  • R 39 and R 42 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • R 41 and R 42 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring
  • R 39 and R 40 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
  • C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group in the above (p4), (p6) to (p9) and (q4), (q6) to (q9) May be those exemplified as “any group that does not inhibit the fluorescence of the compound” in R a and R b , respectively.
  • R 23 , R 24 , R 25 and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group;
  • Y 9 and Y 10 are both a sulfur atom or an oxygen atom;
  • R 31 and R 32 are independently hydrogen.
  • R 31 and R 32 together form a phenyl group which may have a substituent
  • R 33 and R 34 independently of one another Is a hydrogen atom or a C 1-20 alkyl group, or a compound R 33 and R 34 together form a phenyl group which may have a substituent is preferable
  • R 23, R 24, R 25, and R 26 Are both halogen atoms or unsubstituted phenyl groups
  • R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or phenyl groups substituted with linear or branched C 1-20 alkoxy groups
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, or a cyano group
  • Y 9 and Y 10 are both a sulfur atom or an oxygen atom
  • R 31 and R 32 are each independently hydrogen.
  • R 31 and R 32 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group
  • R 33 and R 34 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 33 and R 34 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group.
  • the compound is more preferable because it has high luminous efficiency and excellent compatibility with the resin.
  • Examples of the compound represented by (II 3 -2) include that R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group;
  • R 35 , R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group
  • R 35 and R 36 together form a phenyl group which may have a substituent
  • R 37 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group
  • R 36 and R 37 together form an optionally substituted phenyl group
  • R 35 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 And R 38 together form an optionally substituted phenyl group,
  • R 35 and R 38 are each independently
  • R 37 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 36 and R 37 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group.
  • R 35 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 are both an unsubstituted phenyl group or a C 1-10 alkyl group.
  • R 35 and R 36 are each independently a hydrogen atom or a C 1-20 alkyl group;
  • R 39 , R 40 , R 41 , and R 42 are independently hydrogen is an atom or a C 1-20 alkyl group, form a phenyl group which R 39 and R 40 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, 41 and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, to form a phenyl group substituted by R 40 and R 41 are both unsubstituted phenyl group or a C 1-10 alkyl group,
  • R 39 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 41 and R 42 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group
  • R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 36 , R 37 , and R 38 are independently of each other is a hydrogen atom or a C 1-20 alkyl group, and R 36 and R 37 are have both substituents form a well phenyl group,
  • R 38 is a hydrogen atom or a C 1-20
  • Examples of the compound represented by (II 3 -4) include that R 23 , R 24 , R 25 and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 35 , R 36 , and R 37 are independently from each other is a hydrogen atom or a C 1-20 alkyl group, to form a phenyl group optionally R 35 and R 36 are have together substituent,
  • R 37 is
  • R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 35 , R 36 , and R 38 are independently of each other is a hydrogen atom or a C 1-20 alkyl group, or R 35 and R 36 also form a phenyl group optionally both have a substituent,
  • R 38 is a hydrogen atom or a C
  • R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 35 , R 37 , and R 38 are independently of each other is a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 also form a phenyl group optionally both have a substituent,
  • R 35 is a hydrogen atom or a C 1
  • R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • Y 9 and Y 10 are both a sulfur atom or an oxygen atom;
  • R 31 and R 32 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 31 and R 32 both have a substituent.
  • R 33 and R 34 are each independently of the other hydrogen or C 1-20 alkyl group, or R 33 and R 34 together have a substituent It is preferably a compound that forms a phenyl group which may, R 23, R 24, R 25, and R 26 are are both a halogen atom or an unsubstituted phenyl group; R 27 and R 28 are both hydrogen atoms, unsubstituted A phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group; Y 9 and Y 10 are both sulfur atoms or oxygen atoms; R 31 and R 32 are independent of each other A hydrogen atom or a C 1-20 alkyl group, or R 31 and R 32 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group; R 33 and R 34 are is a hydrogen atom or a C 1-20 alkyl group
  • Examples of the compound represented by (II 4 -2) include that R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • a phenyl group substituted with an alkoxy group R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 35 , R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 35 and R 36 together form a phenyl group that may have a substituent.
  • R 37 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, R 36 and R 37 together form an optionally substituted phenyl group, and R 35 And R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 together form an optionally substituted phenyl group, and R 35 and R 36 are Independently a hydrogen atom or a C 1-20 alkyl group;
  • R 39 , R 40 , R 41 , and R 42 are independently a hydrogen atom or a C 1-20 alkyl group, R 39 and R 40 are Both form an optionally substituted phenyl group, R 41 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, R 40 and R 41 both have a substituent also form a phenyl group optionally, a hydrogen atom or a C 1-20 alkyl group independently R 39 and R 42 each other, or R 41 and R 42 is optionally both have a substituent Fe Forming
  • R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, R 36 and R 37 both have a substituent.
  • R 38 is a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 also form a phenyl group optionally both have a substituent
  • 36 is hydrogen atom or a C 1-20 alkyl group
  • R 40, R 41, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, the R 40 and R 41 are both substituents
  • An optionally substituted phenyl group, R 42 is a hydrogen atom or a C 1-20 alkyl group, or R 41 and R 42 together form an optionally substituted phenyl group
  • a compound in which R 40 is a hydrogen atom or a C 1-20 alkyl group is preferred, and R 23 , R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; and R 27 and R 28 are both hydrogen atom, an unsubstituted phenyl group, or a linear or branched C 1-20
  • R 23 , R 24 , R 25 and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 35 , R 36 , and R 37 are each independently a hydrogen atom or a C 1-20 alkyl group, R 35 and R 36 both have a substituent.
  • R 37 is a hydrogen atom or a C 1-20 alkyl group, or R 36 and R 37 together form a phenyl group which may have a substituent
  • 35 is hydrogen atom or a C 1-20 alkyl group
  • R 39, R 40, and R 41 are each independently of the other hydrogen or C 1-20 alkyl group, the R 39 and R 40 are both substituents Forming an optionally substituted phenyl group
  • R 41 is a hydrogen atom or a C 1-20 alkyl group, or R 40 and R 41 together form an optionally substituted phenyl group
  • a compound in which R 39 is a hydrogen atom or a C 1-20 alkyl group is preferred, and R 23 , R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups;
  • R 27 and R 28 are both A hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with
  • R 37 is a hydrogen atom or a C 1-20 alkyl group, or R 36 and R 37 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, and R 35 Is a hydrogen atom or a C 1-20 alkyl group;
  • R 39 , R 40 , and R 41 are each independently a hydrogen atom or a C 1-20 alkyl group, R 39 and R 40 are both unsubstituted phenyl form a phenyl group substituted with a group or a C 1-10 alkyl group, R 41 is a hydrogen atom or a C 1-20 alkyl group, or R 40 and R 41 is Substituted phenyl group to form unsubstituted phenyl group or a C 1-10 alkyl group, the compound R 39 is a hydrogen atom or a C 1-20 alkyl group, the emission efficiency is high, compatibility with resin Since it is excellent, it is more
  • R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 35 , R 36 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 35 and R 36 both have a substituent.
  • R 38 is hydrogen atom or a C 1-20 alkyl group
  • R 39, R 40, and R 42 are each independently of the other hydrogen or C 1- 0 is an alkyl group, or R 39 and R 40 together form a phenyl group which may have a substituent
  • the compound R 42 is a hydrogen atom or a C 1-20 alkyl group is preferable
  • R 23, R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups
  • R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or linear or branched C 1-
  • X 1 and X 2 are both nitrogen atoms
  • R 35 , R 36 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 35 and R 36 form a phenyl group substituted both with unsubstituted
  • Examples of the compound represented by (II 4 -6) include that R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10.
  • a phenyl group substituted with an alkoxy group R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group;
  • X 1 and X 2 are both nitrogen atoms;
  • R 35 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 both have a substituent.
  • R 35 is hydrogen atom or a C 1-20 alkyl group
  • R 39, R 41, and R 42 are each independently of the other hydrogen or C 1- 0 is an alkyl group, or R 41 and R 42 together form a phenyl group which may have a substituent
  • the compound R 39 is a hydrogen atom or a C 1-20 alkyl group is preferable
  • R 23, R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups
  • R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or linear or branched C 1-
  • X 1 and X 2 are both nitrogen atoms
  • R 35 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 are taken together form an unsubstituted phenyl group or a
  • Examples of the compound represented by any one of (II 3 -1) to (II 3 -6) include compounds represented by any one of the following general formulas (II 3 -7) to (II 3 -9).
  • the compound represented by any one of (II 4 -1) to (II 4 -6) is represented by any one of the following general formulas (II 4 -7) to (II 4 -9) Compounds are preferred.
  • Y 23 and Y 24 each independently represent a carbon atom or a nitrogen atom.
  • Y 23 and Y 24 are preferably the same kind of atoms.
  • Y 13 and Y 14 each independently represent an oxygen atom or a sulfur atom.
  • Y 23 and Y 24 are preferably the same kind of atoms.
  • Y 25 and Y 26 each independently represent a carbon atom or a nitrogen atom.
  • Y 25 and Y 26 are preferably the same kind of atoms.
  • R 47 and R 48 independently of each other represent a hydrogen atom or an electron withdrawing group, and the fluorescence intensity becomes high. It is preferably a group, a cyano group, a nitro group, a sulfonyl group, or a phenyl group, and particularly preferably a trifluoromethyl group or a cyano group.
  • R 47 and R 48 are preferably the same functional group.
  • R 43 , R 44 , R 45 , and R 46 are halogen atoms or substituted
  • An aryl group which may have a group is represented.
  • the aryl group those exemplified as “any group that does not inhibit the fluorescence of the compound” in R a and R b can be used.
  • the substituent that the aryl group may have is any “any group that does not inhibit the fluorescence of the compound”, and examples thereof include a C 1-6 alkyl group, a C 1-6 alkoxy group, an aryl Group, heteroaryl group, and the like.
  • R 43 to R 46 may be different from each other, but they are all the same.
  • the group is preferably.
  • R 43 to R 46 are all of the same type. Those that are halogen atoms or are all phenyl groups that may have the same type of substituent are preferred, those that are all fluorine atoms or unsubstituted phenyl groups are more preferred, and those that are all fluorine atoms are particularly preferred. .
  • P 15 to P 16 are each independently a halogen atom
  • C 1-20 represents an alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group or a dialkylamino group
  • R g and (p1) to (p3), (q1) The same as those described in (q3).
  • P 15 to P 16 include C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxy It is preferably a phenyl group, a thienyl group, or a furanyl group.
  • a C 1-20 alkyl group, a C 1-20 alkoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group , A dimethoxyphenyl group, a thienyl group, or a furanyl group, and these substituents may further have a substituent.
  • the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
  • n15 to n16 each independently represent an integer of 0 to 3.
  • the plurality of P 15 may be the same functional group or different functional groups. Also good. The same is true for P 16.
  • a 15 to A 16 are independently of each other a hydrogen atom, a halogen atom,
  • C represents a phenyl group optionally having 1 to 3 substituents selected from the group consisting of a 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group .
  • C 1-20 alkyl group C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in the substituent that the phenyl group may have, each of R g and (p1) to (p p3) and the same as those mentioned in (q1) to (q3).
  • a 15 to A 16 are preferably an unsubstituted phenyl group, a phenyl group having 1 or 2 C 1-20 alkoxy groups as a substituent, an unsubstituted phenyl group, or one C 1-20 alkoxy A phenyl group having a group as a substituent is more preferable, and an unsubstituted phenyl group or a phenyl group having one C 1-10 alkoxy group as a substituent is more preferable.
  • the general formula (II 3 -7) a compound represented by like, it is preferable either A 15 ⁇ A 16 is a functional group of the same type.
  • Examples of the compound represented by any one of (II 3 -1) to (II 3 -6) include the following general formulas (6-1) to (6-12), (7-1) to (7-12). ).
  • Ph represents an unsubstituted phenyl group.
  • the general formulas (6-4), (6-5), (6-7), (6-8), (7-4), (7-5) ), (7-7), and (7-8) are preferred, represented by general formulas (6-4), (6-5), (6-7), and (6-8) Compounds are more preferred.
  • P 5 to P 8 are each independently a halogen atom, a C 1-20 alkyl group, C 1-20 represents an alkoxy group, an amino group, a monoalkylamino group or a dialkylamino group.
  • C 1-20 alkyl group C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 5 to P 8 , R g and (p1) to (p3), (q1) The same as those described in (q3).
  • P 5 to P 8 include C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxy It is preferably a phenyl group, a thienyl group, or a furanyl group.
  • n5 to n8 each independently represents an integer of 0 to 3.
  • all of the plurality of P 5 may be the same or different functional groups. Also good. The same applies to P 6 to P 8 .
  • P 5 to P 8 are each independently a C 1-20 alkyl group or A C 1-20 alkoxy group in which n5 to n8 are independently 0 to 2, P 5 and P 6 are independently C 1-20 alkyl groups, and n5 and n6 are More preferably, it is independently 0 to 2, P 7 and P 8 are each independently a C 1-20 alkoxy group, and n7 and n8 are each independently 0 to 1, and P 5 and P 8 6 is independently a C 1-20 alkyl group, n5 and n6 are independently 1 to 2, P 7 and P 8 are independently C 1-20 alkoxy groups, n7 and More preferably, n8 is 1.
  • Specific examples of the compounds represented by the general formulas (6-1) to (6-12) include compounds represented by the following formulas (6-1-1) to (6-12-1). Can be mentioned. “ ⁇ ” is the peak wavelength of the absorption spectrum in the solution of each compound, and “Em” is the peak wavelength of the fluorescence spectrum.
  • Radiopaque substances As the radiopaque substance contained in the resin composition according to the present invention, those having lower radiation permeability than those of skin, muscle, fat and the like are preferable, and those having lower permeability than bone, calcium and the like are more preferable.
  • a radiopaque material include non-metal atoms such as barium sulfate, calcium carbonate, aluminum hydroxide, bromine, bromide, iodine, and iodide, and include metal atoms.
  • metal powders and oxides of metals such as titanium, zinc, zirconium, rhodium, palladium, silver, tin, tantalum, tungsten, rhenium, iridium, platinum, gold, and bismuth.
  • mica, talc, etc. can also be used as a radiopaque substance.
  • the resin composition according to the present invention when used as a material for a medical device used in a living body, it preferably contains a radiopaque substance having high biocompatibility.
  • a radiopaque substance having high biocompatibility examples include barium sulfate, bismuth oxide, bismuth hypocarbonate, calcium carbonate, aluminum hydroxide, tungsten, zinc oxide, zirconium oxide, zirconium, titanium, platinum, bismuth subnitrate, Bismuth etc. are mentioned.
  • the radiopaque substance used in the present invention is more preferably barium sulfate, calcium carbonate, bismuth subcarbonate or bismuth oxide from the viewpoint of safety and the like, and barium sulfate is preferred from the viewpoint of the sensitizing effect on the luminescent substance. Particularly preferred.
  • the resin composition according to the present invention may contain one kind of radiopaque substance or may contain two or more kinds. In the resin composition which concerns on this invention, what contains the 1 type (s) or 2 or more types of the radiopaque substance mentioned above is preferable.
  • the shape of the radiopaque substance used in the present invention is not particularly limited as long as it can impart radiopacity to the blended resin composition, and any of particulate, filamentous, and irregular shapes can be used. It may be.
  • the radiopaque substance used in the present invention is preferably in the form of particles from the viewpoint of dispersibility in a resin, radiolucency, and the light emission intensity of the luminescent substance.
  • the resin component contained in the resin composition according to the present invention is not particularly limited, and considers the type of luminescent material and radiopaque material to be blended, product quality required when forming a molded body, and the like. And it can select from a well-known resin composition and its improvement suitably, and can use it.
  • the resin component may be a thermoplastic resin or a thermosetting resin. When used in a molded article, the thermosetting resin may be cured during melt-kneading, so the resin component contained in the resin composition according to the present invention is preferably a thermoplastic resin.
  • a resin component used in this invention only 1 type may be used and 2 or more types may be mixed and used. When two or more types are mixed, it is preferable to use a combination of highly compatible resins.
  • urethane resins such as polyurethane (PU) and thermoplastic polyurethane (TPU); polycarbonate (PC); polyvinyl chloride (PVC), vinyl chloride-vinyl acetate copolymer resin, and the like.
  • Vinyl chloride resins acrylic resins such as polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate (PMMA), polyethyl methacrylate; polyethylene terephthalate (PET), polybutylene terephthalate -Polyester resins such as polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate; polyamide resins such as nylon (registered trademark); polystyrene (PS), imide-modified polystyrene, acrylonitrile ⁇ Butadiene styrene (A S) resin, imide-modified ABS resin, styrene / acrylonitrile copolymer (SAN) resin, polystyrene resin such as acrylonitrile / ethylene-propylene-diene / styrene (AES) resin, polyethylene (PE) resin, polypropylene (PP) resin, Olefin resins such as
  • the resin composition according to the present invention contains the azo-boron complex compound represented by the above formula (I) as the light emitting substance, the dispersibility of the azo-boron complex compound is high.
  • PU, TPU, PET, PVC, PC, PMMA, PS are preferable, and TPU, PET, PS are more preferable. In addition, these may mix and use 2 or more types.
  • the resin composition according to the present invention contains a compound represented by the general formula (II 1 ), the general formula (II 2 ), the general formula (II 3 ), or the general formula (II 4 ) as a luminescent substance.
  • the resin component includes fluorine resin, silicone resin, urethane resin, olefin resin, vinyl chloride resin, polyester resin, polystyrene resin, polycarbonate resin, polyamide Resin or acrylic resin is preferable, and urethane resin, olefin resin, polystyrene resin, polyester resin, and vinyl chloride resin are more preferable.
  • PTFE Teflon (Teflon) is considered in view of low solubility in body fluids such as blood and difficulty in elution in a use environment and biocompatibility.
  • silicone, PU, TPU, PP, PE, PC, PET, PS, polyamide, PVC are preferable, TPU, PU, PP, PE, PET, PS are more preferable, and TPU, PP, PET, PS are preferable. Further preferred. In addition, these may mix and use 2 or more types.
  • the resin component when the resin composition according to the present invention is a thermoplastic resin composition, the resin component may be a thermoplastic resin as a whole resin component, and may contain a small amount of a non-thermoplastic resin.
  • the resin component when the resin composition according to the present invention is a thermosetting resin composition, the resin component may be a thermosetting resin as a whole resin component and contains a small amount of a non-thermosetting resin. Also good.
  • the resin composition according to the present invention can be produced by mixing and dispersing a luminescent substance and a radiopaque substance in a resin component.
  • the light-emitting substance according to the present invention contained in the resin composition according to the present invention may be only one type, or may contain two or more types.
  • the content of the luminescent substance in the resin composition is not particularly limited as long as the luminescent substance can be mixed with the resin, but from the viewpoint of emission intensity and its detection sensitivity, it is 0.0001% by mass or more. Preferably, it is preferably 5% by mass or less, more preferably in the range of 0.0001 to 1% by mass, and still more preferably in the range of 0.001 to 0.5% by mass from the viewpoint of detection sensitivity due to concentration quenching and reabsorption of luminescence. A range of 0.005 to 0.05 mass% is particularly preferable.
  • the content of the near-infrared fluorescent material in the resin composition according to the present invention is particularly limited as long as the near-infrared fluorescent material can be mixed with the resin.
  • it is preferably 0.0001% by mass or more from the viewpoint of fluorescence intensity and its detection sensitivity, and is preferably 5% by mass or less from the viewpoint of detection sensitivity by concentration quenching or fluorescence reabsorption, from 0.001 to The range of 0.5% by mass is more preferable, and the range of 0.005 to 0.05% by mass is more preferable.
  • the near-infrared fluorescent material used in the present invention has a high molar extinction coefficient and a high quantum yield in the resin, even if the concentration of the near-infrared fluorescent material in the resin is relatively low.
  • the light emission can be sufficiently visually confirmed with a camera or the like.
  • Low near-infrared fluorescent material concentration reduces the possibility of elution, reduces the possibility of bleeding out from a molded product processed from a resin composition, and processes a molded product that requires transparency It is desirable from the point of being possible.
  • the content of the radiopaque substance in the resin composition is 2% by mass or more from the viewpoint of obtaining a sensitizing effect on the luminescent substance, and 5% from the viewpoint of obtaining a more remarkable sensitizing effect on the luminescent substance. % Or more is preferable, and since it has a radiation shielding ability and both detection by X-ray radiation and detection by light emission are possible, 10% by mass or more is more preferable. Moreover, content of the radiopaque substance in a resin composition is 80 mass% or less from a viewpoint of the mechanical strength of a resin composition, and 50 mass% or less is preferable.
  • it is usually 2% by mass or more and 80% by mass or less, more preferably 5% by mass or more and 50% by mass or less, further preferably 10% by mass or more and 50% by mass or less, and more preferably 20 to 40% by mass. Is particularly preferred.
  • the mixing ratio of the luminescent substance and the radiopaque substance is not particularly limited, but from the viewpoint of increasing the emission intensity, the mixing ratio (the mass of the luminescent substance / the mass of the radiopaque substance) is 0.00001 to The range of 2.5 is preferable, the range of 0.00025 to 0.2 is more preferable, and the range of 0.00025 to 0.001 is more preferable.
  • the method of mixing and dispersing the luminescent substance and the radiopaque substance in the resin component is not particularly limited, and any known method may be used, and an additive may be used in combination.
  • a luminescent substance and a radiopaque substance may be added and dispersed in a resin composition solution dissolved in a suitable solvent. Even when no solvent is used, the resin composition according to the present invention can be obtained by adding a luminescent substance and a radiopaque substance to the resin composition and melt-kneading them. Thus, a resin composition in which the light emitting substance and the radiopaque substance are uniformly dispersed in the resin is obtained.
  • the type and kneading of the resin and the fluorescent material are performed even when melt-kneading is performed at a temperature lower than the decomposition point of the fluorescent material.
  • fluorescence may not be emitted due to causes such as poor dispersion or decomposition of the fluorescent material. Whether or not the fluorescent material can be dispersed in the thermoplastic resin or the like is difficult to predict from the thermophysical properties of the fluorescent material.
  • the compound represented by the general formula (II 1 ), the general formula (II 2 ), the general formula (II 3 ), or the general formula (II 4 ) is uniformly mixed with various resin components. It can be dispersed and can emit fluorescence with high quantum yield even in the resin. The reason is not clear, but can be inferred as follows.
  • the fluorescent material is dispersed by a method such as melt-kneading, if the aggregation or the like occurs, it is considered that the fluorescence quantum yield decreases due to concentration quenching. Therefore, in order for the fluorescent material to emit fluorescence efficiently, it is desirable that the fluorescent material has high compatibility with the resin and can be uniformly dispersed.
  • the compatibility is high. If the difference between the SP value of the fluorescent material and the SP value of the resin is small, it is highly compatible and can be dispersed uniformly. On the other hand, even when the SP value is different, it can be explained by other physical property parameters.
  • the compatibility with the resin can be explained from calculated values such as solubility, distribution coefficient, relative dielectric constant, polarizability, etc. of the fluorescent material, or measured values.
  • the compatibility between the resin and the fluorescent material may differ depending on the crystallinity of the resin.
  • the compatibility between the resin and the fluorescent material can be controlled by the functional group of the fluorescent material molecule itself.
  • the fluorescent material molecule when dispersed in a fat-soluble (hydrophobic) polyolefin-based resin such as polypropylene or polyethylene, the fluorescent material molecule preferably has a hydrophobic group.
  • compatibility with the resin can be improved by introducing a hydrophobic group such as an alicyclic alkyl group, a long-chain alkyl group, a halogenated alkyl group, or an aromatic ring into the fluorescent material molecule.
  • a hydrophobic group such as an alicyclic alkyl group, a long-chain alkyl group, a halogenated alkyl group, or an aromatic ring into the fluorescent material molecule.
  • the fluorescent material molecule when dispersed in a highly polar resin such as polyurethane or polyamide, the fluorescent material molecule has a hydrophilic group such as a carboxyl group, a hydroxyl group, an amino group, an alkoxy group, an aryloxy group, an alkylamino group, an ester or an amide. It is preferable. However, it is not limited to these.
  • the partition coefficient and SP value which are indicators of compatibility, can be estimated as the water / octanol partition coefficient and the Hildebrand SP value from the “Hansen solubility parameter” obtained by calculation from commercially available software.
  • the following compounds (8-1) to (8- The distribution coefficient and SP value of the compound represented by 8) are as follows.
  • the near-infrared fluorescent material used in the present invention can be melt-kneaded and uniformly dispersed and mixed with a resin component such as PP, and the kneaded resin composition or molded from the resin composition.
  • the body can stably emit near-infrared fluorescence with a high emission quantum yield.
  • the near-infrared fluorescent material used in the present invention is different from many other organic near-infrared fluorescent materials, the reason why it exhibits high emission characteristics even when melt-kneaded with the resin composition is not clear, but it is used in the present invention. It is presumed that the near-infrared fluorescent material obtained has a robust skeleton composed of a wide conjugate plane, and therefore has high heat resistance and excellent compatibility with the resin.
  • the resin composition according to the present invention contains a light emitting substance having a high quantum yield (number of emitted photons / number of absorbed photons) of 20% or more, there is no particular problem, but the quantum yield is low. In the case of containing a low light emitting substance, it is also important to understand the Stokes shift (difference between the maximum absorption wavelength and the maximum emission wavelength) of the resin composition according to the present invention.
  • the resin composition according to the present invention preferably has a Stokes shift (difference between the maximum absorption wavelength and the maximum emission wavelength) of 10 nm or more, and more preferably has a Stokes shift of 20 nm or more. The larger the Stokes shift, the more sensitive it is to detect light emitted from the molded body even when using a general detector equipped with a filter for noise reduction by excitation light. is there.
  • near-infrared fluorescence from the resin composition according to the present invention can be detected with high sensitivity under the following conditions. For example, if excitation can be performed with light having a wavelength shorter than the maximum absorption wavelength, fluorescence can be detected even if noise is cut. In addition, when the fluorescence spectrum is broad, it is possible to sufficiently detect fluorescence even if noise is cut. On the other hand, some fluorescent materials have a plurality of fluorescent peaks. In that case, even if the Stokes shift is small, if there is a fluorescence peak (second peak) on the longer wavelength side, detection should be performed with high sensitivity even when a detector equipped with a filter by noise cut is used. Is possible.
  • the fluorescence peak wavelength on the long wavelength side may have a difference from the maximum absorption wavelength of 30 nm or more, and preferably 50 nm or more.
  • an excitation light source, a cut filter, etc. are selected appropriately, it will not be limited to the conditions mentioned above.
  • the resin composition according to the present invention does not change color in the visual state even when excited by excitation light in the near-infrared region, and is invisible. It emits fluorescence in the near infrared region and can be detected by a detector. Therefore, it is sufficient that the maximum absorption wavelength is 600 nm or more for the excitation light in the near infrared region. However, from the viewpoint of absorption efficiency, the maximum absorption wavelength is preferably close to the wavelength of the excitation light, and more than 650 nm is more preferable. Preferably, it is more preferably 665 nm or more, and particularly preferably 680 nm or more. Furthermore, when used as a medical device such as an implant, 700 nm or more is preferable.
  • the resin composition according to the present invention and the molded product obtained from the composition do not change the color of the irradiated object, and the detection sensitivity is considered. Then, if the maximum fluorescence wavelength is 650 nm or more, there is no practical problem, but 700 nm or more is preferable, and 720 nm or more is more preferable. In the case of having a plurality of fluorescence peaks, even if the wavelength of the maximum fluorescence peak is 720 nm or less, it is sufficient if there is a fluorescence peak having sufficient detection sensitivity at 740 nm or more. In that case, the intensity of the fluorescence peak (second peak) on the long wavelength side is preferably 5% or more and more preferably 10% or more with respect to the intensity of the maximum fluorescence wavelength.
  • the resin composition according to the present invention and the molded product obtained from the composition have strong absorption in the range of 650 nm to 1500 nm, and preferably emit strong fluorescence in this range.
  • Light of 650 nm or more is not easily affected by hemoglobin, and light of 1500 nm or less is hardly affected by water.
  • light within the range of 650 nm to 1500 nm has high skin permeability and is not easily affected by contaminants in the living body. Therefore, the wavelength of light used for visualizing medical implants implanted under the skin or the like. It is suitable as a region.
  • the resin composition according to the present invention and the molded product obtained from the composition are suitable for detection by light in the range of 650 nm to 1500 nm, It is suitable as a medical device used in vivo.
  • the resin composition according to the present invention may contain components other than the resin component, the luminescent material, and the radiopaque material as long as the effects of the present invention are not impaired.
  • the other components include an ultraviolet absorber, a heat stabilizer, a light stabilizer, an antioxidant, a flame retardant, a flame retardant aid, a crystallization accelerator, a plasticizer, an antistatic agent, a colorant, and a release agent. Is mentioned.
  • a molded body capable of both emission detection and radiation detection is obtained.
  • the molding method is not particularly limited, and examples thereof include casting (casting method), injection molding using a mold, compression molding, extrusion molding using a T die, blow molding, and the like.
  • the molded body may be formed only from the resin composition according to the present invention, or the resin composition according to the present invention and other resin compositions may be used as raw materials.
  • the entire molded body may be molded with the resin composition according to the present invention, or only a part of the molded body may be molded with the resin composition according to the present invention.
  • the resin composition according to the present invention is preferably used as a raw material constituting the surface portion of the molded body.
  • the distal end portion of the catheter is molded with the resin composition according to the present invention, and the remaining portion is molded with a resin composition containing no near-infrared fluorescent material.
  • the molded object which emits near-infrared fluorescence in stripe form can be manufactured by alternately laminating
  • surface coating for improving the visibility of the molded body may be performed.
  • Radiation detection can be performed by a conventional method using a commercially available X-ray apparatus or the like.
  • Luminescence detection can also be performed by a conventional method using a commercially available fluorescence or phosphorescence detection device or the like.
  • excitation light used for fluorescence or phosphorescence detection an arbitrary light source can be used, and in addition to a near-infrared lamp having a long wavelength width, a laser, LED, or the like having a narrow wavelength width can be used.
  • a molded product obtained from a near-infrared fluorescent material or a resin composition containing an infrared fluorescent material does not change its color even when irradiated with light in the near-infrared region, and can be detected with higher sensitivity than before.
  • the molded body is particularly suitable for a medical device that is inserted into or placed in the body of a patient.
  • Examples of the medical device include a stent, a coil embolus, a catheter tube, an injection needle, an indwelling needle, a port, a shunt tube, a drain tube, and an implant.
  • the dichloromethane layer was separated, washed with water, and concentrated under reduced pressure.
  • compound (a-1) (3.39 g, 16.8 mmol) and ethyl azidoacetate (8.65 g, 67.0 mmol) were dissolved in ethanol (300 mL) in a 1 L three-necked flask under a stream of argon. Thereafter, a 20% by mass sodium ethoxide ethanol solution (22.8 g, 67.0 mmol) was slowly added dropwise to the obtained solution in an ice bath at 0 ° C. and stirred for 2 hours.
  • compound (a-3) (1.90 g, 6.66 mmol) was placed in a 300 mL flask, and ethanol (60 mL) and sodium hydroxide (3.90 g, 97.5 mmol) were dissolved in water (30 mL). Aqueous solution was added and stirred at reflux for 1 hour.
  • compound (a-4) (327 mg, 5.52 mmol) and trifluoroacetic acid (16.5 mL) were placed in a 200 mL three-necked flask and stirred at 45 ° C. After the compound (a-4) was dissolved, the mixture was stirred for 15 minutes until the firing stopped. To the stirred solution, trifluoroacetic anhydride (3.3 mL) was added and reacted at 80 ° C. for 1 hour. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution and ice were added to neutralize the solution, followed by suction filtration. The filtrate was dried under vacuum to obtain a black solid of compound (a-5) (yield: 320 mg). Compound (a-5) was directly used in the next reaction without purification.
  • compound (a-5) (320 mg) was placed in a 200 mL three-necked flask, and toluene (70 mL), triethylamine (1.0 mL), and boron trifluoride diethyl ether complex (1.5 mL) were added dropwise. Heated to reflux for 30 minutes. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added, and the organic phase was recovered. The organic phase was washed with water and saturated brine, dried over anhydrous magnesium sulfate, the desiccant was filtered off, and the solvent was concentrated under reduced pressure.
  • tert-butyloxypotassium (25.18 g, 224.4 mmol) and tert-amyl alcohol (160 mL) were placed in a 500 mL four-necked flask under an argon stream, and the compound (b- 1)
  • a solution prepared by mixing (14.8 g, 64 mmol) with tert-amyl alcohol (7 mL) was added and heated to reflux.
  • a solution prepared by mixing succinic acid diisopropyl ester (6.5 g, 32 mmol) with tert-amyl alcohol (10 mL) was added dropwise over about 3 hours under reflux with heating, and the mixture was heated to reflux for 6 hours after completion of the addition.
  • acetic acid (872 mg, 14.5 mmol) and acetonitrile (30 mL) were placed in a 100 mL three-necked flask, and the inside of the system was placed in an argon atmosphere. Under an argon atmosphere, malononitrile (2.4 g, 36.3 mmol) and compound (b-4) (2.39 g, 13.2 mmol) were added, and the mixture was heated to reflux for 2 hours. Acetonitrile was removed under reduced pressure, the residue was dissolved in ethyl acetate, and the organic layer was washed with water and saturated brine, and treated with anhydrous magnesium sulfate.
  • precursor (b-6) (1.52 g, 1.57 mmol
  • toluene 45 mL
  • triethylamine 4.35 mL, 31.4 mmol
  • boron trifluoride Diethyl ether complex 7.88 mL, 62.7 mmol
  • the reaction solution was ice-cooled, the precipitated solid was filtered off, and the solid was washed with water, saturated aqueous sodium hydrogen carbonate solution, 50% aqueous methanol solution and methanol, and dried under reduced pressure.
  • the obtained residue was dissolved in toluene, and methanol was added for precipitation to obtain a dark green solid of near-infrared fluorescent dye B (yield: 1.25 g, yield: 75%).
  • compound (c-2) (4.7 g, 20 mmol), sodium cyanide (1.47 g, 30 mmol), a small amount of sodium iodide and DMF (50 mL) were placed in a 100 mL three-necked flask, and the mixture was stirred at 60 ° C. Reacted for hours.
  • the reaction mixture was cooled and extracted with water (200 mL) / ethyl acetate (300 mL), and the resulting ethyl acetate layer was further washed with water.
  • dichloromethane 40 mL
  • saturated aqueous sodium hydrogen carbonate solution 40 mL
  • the organic layer was treated with anhydrous magnesium sulfate, the magnesium sulfate was filtered off, the solvent was removed under reduced pressure, and the residue was roughly removed by silica gel column chromatography (eluent: hexane / ethyl acetate).
  • a precursor (d-3) (522 mg, 0.65 mmol), N, N-diisopropylethylamine (258 mg, 2.0 mmol), dichloromethane (20 mL) was placed in a 100 mL two-necked flask under an argon stream. Chlorodiphenylborane (600 mg, 3.0 mmol) was added under reflux, and the reaction was continued overnight. The reaction solution was washed with water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated.
  • a precursor (e-4) (973 mg, 1.0 mmol), N, N-diisopropylethylamine (387 mg, 3.0 mmol), and dichloromethane (30 mL) were placed in a 100 mL two-necked flask under an argon stream.
  • Chlorodiphenylborane (900 mg, 4.5 mmol) was added while refluxing, and the reaction was continued overnight.
  • the reaction solution was washed with water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated.
  • the residue was washed with methanol and purified by column chromatography (eluent: dichloromethane) to obtain a green solid of near-infrared fluorescent dye E (yield: 0.42 g, yield: 35%).
  • N-Butyllithium (68.8 mL, 1.6 mol / L hexane solution) was added dropwise to this solution, and the mixture was stirred at the same temperature for 1 hour, and then ethyl chloroformate (10.9 mL, 120 mmol) in dehydrated THF (50 mL). Was added dropwise and the mixture was further stirred for 1 hour.
  • the reaction solution was returned to room temperature, saturated aqueous ammonium chloride solution (110 mL) was added, and the mixture was extracted with dichloromethane. The organic phase was washed with water and then saturated brine, dried over anhydrous magnesium sulfate and concentrated.
  • compound (f-1) (15.0 g, 81.5 mmol) and ethanol (40 mL) were added to a 200 mL four-necked flask, and hydrazine monohydrate (12.2 g, 244 mmol) was added dropwise to this solution. And stirred at reflux for 12 hours. After cooling the reaction solution, the solvent was distilled off under reduced pressure. The residue was dissolved in dichloromethane, washed with water and then saturated brine, dried over anhydrous magnesium sulfate, and concentrated.
  • compound (f-5) (2.0 g, 3.8 m2 mol) and dichloromethane (250 mL) were added to a 2 L flask under an argon stream, and the mixture was stirred at room temperature for 5 minutes.
  • N, N-diisopropylethylamine (1.48 g, 11.5 mmol) and boron trifluoride diethyl ether complex (3.27 g, 23 mmol) were added dropwise, and the mixture was stirred at room temperature for 1 hour.
  • reaction solution was concentrated, and the residue was separated and purified by silica gel column chromatography (eluent: dichloromethane) to obtain a dark green solid of near-infrared fluorescent dye F (yield: 1.66 g, yield: 76%).
  • 2-azido-3- (5-bromo-thiophen-2-yl) -acrylic acid ethyl ester (18.1 g, 60 mmol) was placed in a 500 mL eggplant flask and dissolved in o-xylene (200 mL). Then, the mixture was stirred at reflux for 1.5 hours.
  • compound (g-1) (6.0 g, 22 mmol) was placed in a 500 mL flask, and an aqueous solution in which ethanol (200 mL) and sodium hydroxide (12.4 g, 310 mmol) were dissolved in water (100 mL) was added. Stir at reflux for 1 hour. The solution after stirring under reflux was allowed to cool and then adjusted to acidity by adding 6 mol / L hydrochloric acid, then water was added and suction filtration was performed, and the obtained filtrate was vacuum-dried to give 2-bromo-4H. -A gray solid of thieno [3.2-b] pyrrole-5-carboxylic acid (g-2) was obtained (yield: 4.1 g, yield: 75.8%).
  • compound (g-2) (4.0 g, 16.3 mmol) and trifluoroacetic acid (100 mL) were placed in a 300 mL three-necked flask and stirred at 40 ° C. After the compound (d-2) was dissolved, the mixture was stirred for 15 minutes until foaming stopped. To the stirred solution, trifluoroacetic anhydride (36 mL) was added and reacted at 80 ° C. for 4 hours. After completion of the reaction, the reaction solution was added to a saturated aqueous sodium hydrogen carbonate solution containing ice, and the solution was neutralized. Then, suction filtration was performed, followed by vacuum drying to obtain a crude product of compound (g-3).
  • Example 1 TPU pellet (product name: EG-60D-B40, manufactured by Lubrizol) 55 g containing 40% by mass of barium sulfate and Coumarin 6 (reagent commercially available from Tokyo Chemical Industry Co., Ltd., visible fluorescent material) 5 mg was mixed to attach the fluorescent material to the pellet surface. Subsequently, the pellets were put into a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and melt-kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out and formed into a film.
  • a lab plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Filming was performed as follows. First, the melt-kneaded fluorescent material-containing resin was heated for 5 minutes while being sandwiched between iron plates heated to 200 ° C., and pressed at 5 to 10 mPa while cooling the iron plates. At that time, the thickness of the film was about 300 ⁇ m, and the pigment concentration was 0.03% by mass. The mixing ratio of the fluorescent material and the radiopaque substance (the mass of the fluorescent material / the mass of the radiopaque substance) was 0.00075.
  • the absorption spectrum of the obtained film was measured with an ultraviolet-visible near-infrared spectrophotometer “UV3600” manufactured by SHIMADZU, and the emission spectrum was measured with an absolute PL quantum yield measuring device “Quantaurus-QY C11347” manufactured by Hamamatsu Photonics. As a result, it was confirmed that the maximum absorption wavelength was 444 nm, the maximum fluorescence wavelength was around 516 nm, and yellow-green fluorescence was emitted.
  • the film could be detected by X-ray photography, and the radiopacity was comparable to the film obtained from TPU before containing the fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
  • Example 1 A film was produced in the same manner as in Example 1 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation was performed. As a result, it was confirmed that the obtained film emitted yellowish green fluorescence, but it was not detected by the X-ray detection device because there was no X-ray opacity. The results are summarized in Table 1.
  • Example 2 A dye concentration of 0.03% by mass was obtained in the same manner as in Example 1 except that the fluorescent material used was changed from Coumarin 6 to Lumogen (registered trademark) F Red 305 (visible fluorescent material manufactured by BASF, perylene dye).
  • a film was prepared and evaluated in the same manner as in Example 1. The obtained film had a maximum absorption wavelength of 534 nm and a maximum fluorescence wavelength of around 627 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
  • Example 2 A film was produced in the same manner as in Example 2 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation was performed. As a result, it was confirmed that the obtained film emits red fluorescence, but it was not detected by the X-ray detection device because there was no X-ray opacity. The results are summarized in Table 1.
  • Example 3 A film having a dye concentration of 0.03% by mass was prepared in the same manner as in Example 1 except that the fluorescent material used was changed from coumarin 6 to the azo-boron complex (near-infrared light fluorescent material) synthesized in Production Example 1. The same evaluation as in Example 1 was performed. The obtained film had a maximum absorption wavelength of 683 nm and a maximum fluorescence wavelength near 820 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
  • Example 3 A film was produced in the same manner as in Example 3 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity.
  • the resin composition according to the present invention and the molded product obtained from the composition are radiopaque and contain a luminescent material, detection by X-ray imaging and detection by luminescence are possible. Both are possible.
  • the resin composition according to the present invention has a higher emission intensity with respect to the amount of the added luminescent substance than a resin composition that does not contain a radiopaque substance, it detects luminescence with high sensitivity even with weaker excitation light. It can be considered as an industrially useful resin composition. The results are summarized in Table 1.
  • Example 4 A film having a dye concentration of 0.03% by mass was prepared in the same manner as in Example 1 except that the fluorescent material used was replaced with the near-infrared fluorescent dye A (near-infrared fluorescent material) synthesized in Production Example 2 from coumarin 6. The same evaluation as in Example 1 was performed. The obtained film had a maximum absorption wavelength of 730 nm, a maximum fluorescence wavelength of 765 nm, and a fluorescence peak was observed at 824 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00075. Moreover, when the said film was radiographed, the radiopacity was comparable with the film obtained from TPU before containing a fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
  • Example 4 A film was produced in the same manner as in Example 4 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation similar to Example 1 was made. Went. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
  • Example 5 110 g of TPU pellets (product name: EG-60D-B40, manufactured by Lubrizol) containing 40% by mass of barium sulfate and 5.5 mg of near-infrared fluorescent dye A synthesized in Production Example 2 were mixed, and the pellet surface was fluorescent. Material was deposited. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a film having a pigment concentration of 0.005% by mass was produced in the same manner as in Example 1. The mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
  • the absorption spectrum of the obtained film was measured with an ultraviolet-visible near-infrared spectrophotometer “UV3600” manufactured by SHIMADZU, and the emission spectrum was measured with a spectrofluorophotometer “FP-8600” manufactured by JASCO Corporation. (Excitation wavelength: 740 nm)
  • the obtained film had a maximum absorption wavelength of 738 nm, a strong fluorescence tail at 750 nm or more, and fluorescence with a peak at 827 nm was observed.
  • Example 5 A film was produced in the same manner as in Example 5 except that the used pellet was changed from a pellet containing barium sulfate to a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). The same evaluation was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
  • Example 6 A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye B synthesized in Production Example 3.
  • a film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 738 nm, a maximum fluorescence wavelength of 757 nm, and a fluorescence peak was observed at 832 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
  • Example 6 A film was produced in the same manner as in Example 6 except that the pellets used were changed from pellets containing barium sulfate to TPU pellets containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation similar to 6 was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
  • Example 7 Example 5 except that the amount of pellets used was changed from 110 g to 440 g, and the used fluorescent material was changed from the near infrared fluorescent dye A synthesized in Production Example 2 to the near infrared fluorescent dye C synthesized in Production Example 4. Similarly, a film having a pigment concentration of 0.00125% by mass was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 772 nm, and a fluorescence peak was observed at 864 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.0000313.
  • Example 8 A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye C synthesized in Production Example 4.
  • a film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 784 nm, and a fluorescence peak was observed at 864 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
  • Example 7 A film was produced in the same manner as in Example 8 except that the used pellet was changed from a pellet containing barium sulfate to a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation similar to 8 was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
  • Example 9 The dye concentration was the same as in Example 5 except that the near-infrared fluorescent dye A synthesized in Production Example 2 was replaced with 5.5 mg of the near-infrared fluorescent dye A synthesized in Production Example 2 to 44 mg.
  • a 0.04% by mass film was produced and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 759 nm, a maximum fluorescence wavelength of 809 nm, and a fluorescence peak was observed at 864 nm. Further, the mixing ratio of the fluorescent material and the radiopaque substance was 0.001.
  • Example 10 A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye D synthesized in Production Example 5.
  • a film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 743 nm, a maximum fluorescence wavelength of 760 nm, and a fluorescence peak was observed at 852 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
  • Example 11 A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was replaced with the near-infrared fluorescent dye E synthesized in Production Example 6 from the near-infrared fluorescent dye A synthesized in Production Example 2.
  • a film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 754 nm, a maximum fluorescence wavelength of 776 nm, and a fluorescence peak was observed at 872 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
  • Example 12 A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye F synthesized in Production Example 7.
  • a film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. In the obtained film, a fluorescence peak was observed at a maximum absorption wavelength of 744 nm and a maximum fluorescence wavelength of 787 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
  • Example 13 The dye concentration was the same as in Example 5 except that the near-infrared fluorescent dye A synthesized in Production Example 2 was replaced with 5.5 mg of the near-infrared fluorescent dye A synthesized in Production Example 8 by 33 mg.
  • a 0.03% by mass film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. In the obtained film, a fluorescence peak was observed at a maximum absorption wavelength of 741 nm and a maximum fluorescence wavelength of 771 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
  • Example 14 A dye concentration of 0.03 mass% was obtained in the same manner as in Example 13 except that the used fluorescent material was replaced with the near-infrared fluorescent dye H synthesized in Production Example 9 from the near-infrared fluorescent dye G synthesized in Production Example 8.
  • a film was prepared and evaluated in the same manner as in Example 13, and the results are summarized in Table 1.
  • a fluorescence peak was observed at a maximum absorption wavelength of 744 nm and a maximum fluorescence wavelength of 776 nm.
  • the mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
  • Example 15 88 g of TPU pellets (product name: EG-60D, manufactured by Lubrizol), 22 g of bismuth oxide (manufactured by Aldrich), and 5.5 mg of near-infrared fluorescent dye B synthesized in Production Example 3 are mixed, and a fluorescent material is formed on the pellet surface.
  • the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a film having a pigment concentration of 0.005 mass% and a bismuth oxide content of 20 mass% was produced in the same manner as in Example 5.
  • the mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
  • This film was evaluated in the same manner as in Example 5, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 738 nm, a maximum fluorescence wavelength of 756 nm, and a fluorescence peak was observed at 830 nm.
  • Example 16 Mix 104.5 g of TPU pellet (product name: EG-60D, manufactured by Lubrizol), 5.5 g of calcium carbonate (manufactured by Aldrich), and 5.5 mg of near-infrared fluorescent dye B synthesized in Production Example 3, and pellet A fluorescent material was attached to the surface. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a film having a pigment concentration of 0.005 mass% and a calcium carbonate content of 5 mass% was produced in the same manner as in Example 5.
  • the mixing ratio of the fluorescent material and the radiopaque substance was 0.001.
  • This film was evaluated in the same manner as in Example 5, and the results are summarized in Table 2.
  • the obtained film had a maximum absorption wavelength of 738 nm, a maximum fluorescence wavelength of 756 nm, and a fluorescence peak was observed at 830 nm.
  • Example 17 A film having a dye concentration of 0.005% by mass was prepared in the same manner as in Example 15 except that the near-infrared fluorescent dye C synthesized in Production Example 4 was used instead of the near-infrared fluorescent dye B synthesized in Production Example 3. Then, the same evaluation as in Example 15 was performed, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 783 nm, and a fluorescence peak was observed at 859 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
  • Example 18 A film having a dye concentration of 0.005% by mass was prepared in the same manner as in Example 16 except that the near-infrared fluorescent dye C synthesized in Production Example 4 was used instead of the near-infrared fluorescent dye B synthesized in Production Example 3. Then, the same evaluation as in Example 16 was performed, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 779 nm, and a fluorescence peak was observed at 858 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
  • Example 19 PP pellet (product name: B221WA, manufactured by Prime Polymer Co., Ltd.) 88 g, barium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) 22 g, and near-infrared fluorescent dye B 5.5 mg synthesized in Production Example 3 were mixed, and the pellet surface was fluorescent. Material was deposited. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 180 ° C. for 10 minutes.
  • Example 5 Thereafter, the kneaded fluorescent material-containing resin was taken out, and a PP film having a pigment concentration of 0.005 mass% and a barium sulfate content of 20 mass% was produced in the same manner as in Example 5. At this time, the mixing ratio of the fluorescent material and the radiopaque substance was 0.00025. This film was evaluated in the same manner as in Example 5, and the results are summarized in Table 3. The obtained film had a maximum absorption wavelength of 737 nm, a maximum fluorescence wavelength of around 750 nm, and a fluorescence peak was observed at 827 nm.
  • Example 8 A film was produced in the same manner as in Example 19 except that the pellet to be used was replaced with PP pellets containing no barium sulfate (product name: B221WA, manufactured by Prime Polymer Co., Ltd.) without using barium sulfate. Similar evaluations were made. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity.
  • Example 20 The near-infrared fluorescent dye A synthesized in Production Example 2 was used in place of the near-infrared fluorescent dye B synthesized in Production Example 3, and polystyrene (Dick Styrene (trademark) LP-6000, manufactured by DIC Corporation) was used instead of the PP pellet. And a polystyrene film having a dye concentration of 0.005% by mass was prepared in the same manner as in Example 19 except that the kneading temperature was changed to 230 ° C., and the same evaluation as in Example 19 was performed. I summarized it.
  • the obtained film had a maximum absorption wavelength of 736 nm, had a strong fluorescence tail at 750 nm or more, and fluorescence with a peak at 830 nm was observed.
  • the mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
  • Example 21 The near-infrared fluorescent dye A synthesized in Production Example 2 was used instead of the near-infrared fluorescent dye B synthesized in Production Example 3, and PET (Byron (trademark) SI-173C, manufactured by Toyobo Co., Ltd.) was used instead of the PP pellet.
  • a PET film having a pigment concentration of 0.005% by mass was prepared in the same manner as in Example 19 except that the kneading temperature was changed to 210 ° C., and the same evaluation as in Example 19 was performed. I summarized it.
  • the obtained film had a maximum absorption wavelength of 738 nm, had a strong fluorescence tail above 750 nm, and fluorescence with a peak at 827 nm was observed.
  • the mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
  • Example 22 A film having a pigment concentration of 0.005% by mass was prepared in the same manner as in Example 15 except that the bismuth oxide used in Example 15 was changed to barium sulfate and adjusted so as to contain 5%. Evaluation was performed and the results are summarized in Table 4. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 781 nm, and a fluorescence peak was also observed in the vicinity of 860 nm. Further, the mixing ratio of the fluorescent material and the radiopaque substance was 0.001.
  • Example 9 A film was produced in the same manner as in Example 15 except that the content of barium sulfate used in Example 22 was adjusted to 1%, and the same evaluation as in Example 15 was performed. The mixing ratio of the fluorescent material and the radiopaque substance was 0.005. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but the sensitizing effect was insufficient and the X-ray impermeability was also insufficient. The results are summarized in Table 4.
  • Example 10 A film was produced in the same manner as in Example 15 except that the content of bismuth oxide used in Example 15 was adjusted to 1%, and the same evaluation as in Example 15 was performed. The mixing ratio of the fluorescent material and the radiopaque substance was 0.005. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but the sensitizing effect was insufficient and the X-ray impermeability was also insufficient. The results are summarized in Table 4.
  • the film obtained from the resin composition according to the present invention contains a fluorescent material and a radiopaque substance (barium sulfate), and therefore can be confirmed by both near-infrared fluorescence and X-rays.
  • the film of the comparative example could not be confirmed by X-ray.
  • radiopaque material that can be used in the resin composition according to the present invention is not limited to barium sulfate, and various materials having radiopaque properties are effective.
  • the resin that can be used in the resin composition according to the present invention is not limited to TPU, and various resins are effective.
  • Example 1 The film (1) produced in Example 1 was cut to a size of 1 cm square and wrapped with aluminum foil (2) whose inner side was black so that a 5 mm square opening (2a) was formed on one side, and the opening (2a ) Were shielded from light except for the exposed surface (1a) (FIG. 1). As a result, light can be absorbed only from the exposed surface (1a), and fluorescence can be emitted only from the exposed surface (1a), and a case where detection is actually performed by a detector such as a camera can be assumed. .
  • the luminous efficiency was 0.17 for the film of Example 1, 0.07 for the film of Comparative Example 1, and the luminous efficiency of Example 1 was higher. Therefore, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
  • Example 2 Regarding the films produced in Example 2 and Comparative Example 2, the fluorescence spectrum was measured when the film partially exposed in the same manner as in Test Example 1 was irradiated with excitation light of 582 nm. As a result, the intensity of 627 nm, which is near the maximum fluorescence wavelength, was 95, which was about 118% stronger than the intensity of the maximum fluorescence wavelength of the film of Comparative Example 2. Therefore, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
  • Example 4 The film produced in Example 3 and Comparative Example 3 was irradiated with an LED ring illuminator having excitation light with a center wavelength of 740 nm, and observed with a near-infrared imaging camera having a detection sensitivity of 800 nm or more. As a result, it was confirmed that the film of Example 3 emitted light strongly as compared with the film containing no barium sulfate prepared in Comparative Example 3. As described above, it can be seen that in a resin containing a radiopaque material typified by barium sulfate, light is emitted more strongly than in a resin not containing a radiopaque material. And a luminescent substance are considered to be industrially useful resin compositions.
  • Example 6 With respect to the films prepared in Example 5 and Comparative Example 5, the spectrum at an excitation wavelength of 740 nm was measured with a spectrofluorometer “FP-8600” manufactured by JASCO Corporation. The measurement results are shown in FIG. As a result, the film of Example 5 has a fluorescence peak on the long wavelength side, the intensity of 827 nm near the wavelength of the fluorescence peak is 47000, and the intensity around the maximum fluorescence wavelength of the film of Comparative Example 5. The strength was about 3200%.
  • Example 7 The films produced in Example 6 and Comparative Example 6 were photographed with a near-infrared imaging camera in the same manner as in Test Example 4. As a result, the film of Example 6 clearly emitted light stronger than the film of Comparative Example 6. It was. A photograph of both is shown in FIG. From these results, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
  • Example 9 Using the film produced in Example 8, placing pork with a thickness of 2 mm or 15 mm on the film, and irradiating with an LED ring illuminator having excitation light with a center wavelength of 740 nm, has a detection sensitivity of 800 nm or more. Photographed with a near-infrared imaging camera. When filming without irradiating the excitation light, the film under the pork could not be confirmed (FIG. 6A). The fluorescence from the film could be clearly observed (FIG. 6B), and the fluorescence from the film could be observed even with a 15 mm thick pork (FIG. 6C). From these results, it is clear that the film can be visualized when inserted into the body or placed because the luminescence from the film has passed through pork.
  • the strengths were 3.03 times and 3.96 times stronger, respectively. Furthermore, from the change in the magnification of the fluorescence intensity, it was observed that the fluorescence intensity saturates when the concentration of the radiopaque substance exceeds 40%. From the above results, almost no increase in fluorescence intensity was observed in the film containing 1% or less of the radiopaque substance, but the increase in fluorescence intensity was observed in the film containing 5 to 40% of the radiopaque substance. The sensitizing effect was confirmed.
  • Example 8 when the film produced in Example 8 and Comparative Example 7 was photographed with a near-infrared imaging camera in the same manner as in Test Example 4, the film of Example 8 was clearly stronger than the film of Comparative Example 7. It was emitting light. A photograph of both is shown in FIG. From these results, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
  • the resin composition according to the present invention and the molded product obtained from the composition are radiopaque and contain a luminescent material. Both detection by light emission and detection by light emission are possible. Further, the resin composition according to the present invention has a sensitizing effect that the emission intensity with respect to the amount of the added luminescent substance is stronger than that of the resin composition not containing the radiopaque substance, so that the weaker excitation light However, it can detect luminescence with high sensitivity and is an industrially useful resin composition.

Abstract

Provided is a resin composition characterized by containing a resin, a light-emitting substance, and a radiopaque substance, wherein the content of the radiopaque substance is 2 mass% to 80 mass%. Also provided is any of the abovementioned resin compositions wherein the content of the light-emitting substance is 0.001 mass% to 0.5 mass%. Also provided is any of the abovementioned resin compositions wherein the light-emitting substance is a near-infrared fluorescent material or a phosphorescent material. Also provided is any of the abovementioned resin compositions wherein the radiopaque substance is barium sulfate, bismuth oxide, bismuth subcarbonate, calcium carbonate, aluminum hydroxide, tungsten, zinc oxide, zirconium oxide, zirconium, titanium, platinum, bismuth subnitrate, or bismuth. Also provided is a molded body obtained by processing any of the abovementioned resin compositions.

Description

樹脂組成物及び成形体Resin composition and molded body
 本発明は、蛍光又は燐光を発する樹脂組成物、及び当該樹脂組成物から得られる成形体に関する。 The present invention relates to a resin composition that emits fluorescence or phosphorescence, and a molded body obtained from the resin composition.
 発光物質や放射線不透過性物質は、製品の識別、異物の混入や内部の状況を知るためのマーキング物質として、有価証券、証明書、クレジットカード、電子機器、個人認証媒体等の偽造防止用途、製品の検査用途、医療用具等、様々な工業用途に利用されている。発光物質としては、蛍光材料と燐光材料がある。 Luminescent substances and radiopaque substances are used as marking substances for product identification, foreign matter contamination, and internal conditions, and forgery prevention applications such as securities, certificates, credit cards, electronic devices, personal authentication media, It is used in various industrial applications such as product inspection and medical devices. As the light-emitting substance, there are a fluorescent material and a phosphorescent material.
 応用用途の一つである、シャントチューブやカテーテル、ステント等の生体内に埋め込まれた状態で使用される医療用具は、生体内における位置を生体外からいかにして確認するかが重要である。現在では主に、生体内での医療用具を可視化する方法として、医療用具に放射線不透過性物質を含有させる方法が用いられている(例えば、特許文献1及び2参照。)。例えば、放射線不透過性物質を含有させた樹脂より形成された医療用具は、X線放射して撮像されたX線画像に基づいて生体内における位置を確認することができる。 It is important for medical devices used in the living body such as shunt tubes, catheters, and stents, which is one of the applications, to check the position in the living body from outside the living body. At present, as a method for visualizing a medical device in a living body, a method in which a radiopaque substance is contained in the medical device is used (see, for example, Patent Documents 1 and 2). For example, a medical device formed of a resin containing a radiopaque substance can confirm a position in a living body based on an X-ray image captured by X-ray emission.
 その他、医療用具に、発光物質のひとつである近赤外蛍光材料を含有させる方法もある。特に、近赤外波長領域の特徴として、ヒトの肉眼では目視できないこと、生体への影響が少ないこと、皮膚などの生体透過性が高いこと等が知られている。医療用具自体に近赤外蛍光材料を含有させることにより、このような特徴を利用することができる。例えば、シャントチューブ等の医療用具に近赤外蛍光材料を含有させることにより、生体外から近赤外光を照射することによって生体内に埋め込まれた医療用具の位置を確認するシステムが開示されている(例えば、特許文献3参照。)。近赤外光は、X線よりも生体に対する影響が小さいため、より安全に生体内の医療用具を可視化することができる。 In addition, there is a method in which a medical device contains a near-infrared fluorescent material which is one of luminescent substances. In particular, it is known as a feature of the near-infrared wavelength region that it cannot be seen with the human naked eye, has little influence on the living body, and has high permeability to living bodies such as skin. Such a feature can be utilized by including a near-infrared fluorescent material in the medical device itself. For example, a system for confirming the position of a medical device embedded in a living body by irradiating near-infrared light from outside the living body by including a near-infrared fluorescent material in a medical device such as a shunt tube is disclosed. (For example, refer to Patent Document 3). Near-infrared light has a smaller influence on the living body than X-rays, and thus medical devices in the living body can be visualized more safely.
 皮下などに埋め込まれている医療用インプラントを可視化するためには、皮膚透過性の高い近赤外光での励起が必要であり、さらに当該医療用インプラントから発せられる蛍光も皮膚透過性の高い近赤外領域である必要がある。すなわち、通常、視認性を確保するためには、医療用インプラントに含有されている近赤外蛍光材料自身が近赤外領域で強く光を吸収しなくてはならず、加えて強い蛍光を発する必要がある。このため、医療用インプラントの原料とされる樹脂組成物に含まれる近赤外蛍光材料としては、樹脂中において極大吸収波長が近赤外領域にあることが好ましい。 In order to visualize medical implants implanted under the skin, etc., excitation with near-infrared light having high skin permeability is required, and fluorescence emitted from the medical implants also has high skin permeability. Must be in the infrared region. That is, normally, in order to ensure visibility, the near-infrared fluorescent material itself contained in the medical implant must absorb light strongly in the near-infrared region, and additionally emits strong fluorescence. There is a need. For this reason, as a near-infrared fluorescent material contained in the resin composition used as a raw material for medical implants, it is preferable that the maximum absorption wavelength in the resin is in the near-infrared region.
 一般的に、蛍光材料から発される蛍光を検出する場合、励起光の散乱光や反射光も検出器に入ってきてしまうため、通常は、検出器に励起光の波長域をカットするフィルターが入れられている。このような検出器では、励起光と蛍光の波長域が重複し、蛍光がフィルターによってカットされる波長域にある蛍光材料の蛍光は検出できないという問題がある。蛍光と励起光を区別し、蛍光のみを高感度で検出することを可能にするためには、近赤外蛍光材料のストークスシフト(極大吸収と極大蛍光波長の差)が十分大きいことや材料の蛍光波長範囲が励起光よりも十分離れていることが望ましい。 In general, when detecting fluorescence emitted from a fluorescent material, scattered light or reflected light of excitation light also enters the detector. Therefore, a filter that cuts the wavelength range of excitation light is usually attached to the detector. It is put. Such a detector has a problem that the excitation light and the fluorescence wavelength region overlap, and the fluorescence of the fluorescent material in the wavelength region where the fluorescence is cut by the filter cannot be detected. In order to distinguish between fluorescence and excitation light and enable only fluorescence to be detected with high sensitivity, the Stokes shift (difference between maximum absorption and maximum fluorescence wavelength) of near-infrared fluorescent materials is sufficiently large, It is desirable that the fluorescence wavelength range is sufficiently far from the excitation light.
 近赤外蛍光材料には、無機蛍光材料と有機蛍光材料がある。一般的に、無機近赤外蛍光材料は、比較的ストークスシフトは長いが、希少で高価な希土類等のレアアースや粒径の揃ったナノ粒子が必要である。一方で、有機近赤外蛍光材料は、比較的簡便に合成することができ、波長の調整がしやすいといった特徴から、近年、種々の有機近赤外蛍光材料が開発されている。例えば、特許文献4には、可視光領域での特に優れた光吸収特性と近赤外領域での良好な発光特性を示し、耐光性や耐熱性等に優れ、かつ製造も容易なアゾ-ホウ素錯体化合物が開示されている。 Near-infrared fluorescent materials include inorganic fluorescent materials and organic fluorescent materials. In general, inorganic near-infrared fluorescent materials have a relatively long Stokes shift, but rare earths such as rare and expensive rare earths and nanoparticles with uniform particle sizes are required. On the other hand, various organic near-infrared fluorescent materials have been developed in recent years because organic near-infrared fluorescent materials can be synthesized relatively easily and the wavelength can be easily adjusted. For example, Patent Document 4 shows azo-boron that exhibits particularly excellent light absorption characteristics in the visible light region and good light emission characteristics in the near infrared region, is excellent in light resistance and heat resistance, and is easy to manufacture. Complex compounds are disclosed.
 また、発光量子収率が高い有機蛍光材料としては、π共役化合物のホウ素錯体が知られており、例えば、二置換ホウ素原子とジピロロメテン(又はその誘導体)が複合体を形成したボロンジピロメテン骨格を有するBODIPY色素類が知られている(例えば、非特許文献1参照。)。近赤外蛍光を発するBODIPY色素類としては、特許文献5には、BODIPY骨格中にヘテロ環を有するBODIPY色素が開示されている。 Further, as an organic fluorescent material having a high emission quantum yield, a boron complex of a π-conjugated compound is known. For example, a boron dipyrromethene skeleton in which a disubstituted boron atom and dipyrromethene (or a derivative thereof) form a complex is known. BODIPY dyes having the same are known (for example, see Non-Patent Document 1). As BODIPY dyes that emit near-infrared fluorescence, Patent Document 5 discloses BODIPY dyes having a heterocycle in the BODIPY skeleton.
 さらに、非特許文献2には、ジケトピロロピロール(DPP)誘導体をホウ素錯体化して得られる、分子内に2つのホウ素錯体ユニットを持つDPP系ホウ素錯体の近赤外蛍光材料が開示されている。これらのBODIPY色素類やDPP系ホウ素錯体類は、主に、核酸やタンパク質等の生体分子や腫瘍組織等を標識するバイオマーカーとして使用されており、BODIPY色素類やDPP系ホウ素錯体類を含有させた樹脂については、ほとんど報告がない。BODIPY色素類を含有させた樹脂組成物としては、特許文献6に、アルキレン基を介してオルガノシロキサニル基が導入されたシロキサン含有BODIPY色素を、シリコーン樹脂中に共重合させることにより、可視光領域の蛍光を発する樹脂が得られたことが開示されている。また、特許文献7には、可視光発光のBODIPY色素の相溶性を高めるために、溶媒と伴にポリマーに混合した可視光領域の蛍光を発する組成物が開示されている。その他、特許文献8には、少なくとも1の電子求引性基を持つBODIPY色素類と樹脂とを含有し、可視光領域の光の吸収性が高い光学フィルターが開示されており、特許文献9には、BODIPY色素類と樹脂とを含有し、低波長光を長波長光に変換する色変換材料が開示されている。 Further, Non-Patent Document 2 discloses a near-infrared fluorescent material of a DPP-based boron complex having two boron complex units in the molecule, obtained by complexing a diketopyrrolopyrrole (DPP) derivative with boron. . These BODIPY dyes and DPP-based boron complexes are mainly used as biomarkers for labeling biomolecules such as nucleic acids and proteins and tumor tissues, and contain BODIPY dyes and DPP-based boron complexes. There is almost no report about the resin. As a resin composition containing BODIPY dyes, visible light can be obtained by copolymerizing a siloxane-containing BODIPY dye having an organosiloxanyl group introduced through an alkylene group in Patent Document 6 into a silicone resin. It is disclosed that a resin emitting region fluorescence is obtained. Patent Document 7 discloses a composition that emits fluorescence in the visible light region mixed with a polymer together with a solvent in order to enhance the compatibility of the visible light emitting BODIPY dye. In addition, Patent Document 8 discloses an optical filter containing BODIPY dyes having at least one electron-withdrawing group and a resin and having high light absorption in the visible light region. Discloses a color conversion material that contains BODIPY pigments and a resin and converts low-wavelength light into long-wavelength light.
 その他、特許文献10には、赤外線領域に吸収を有しており、かつ可視光領域に吸収を有さない化合物として、DPP系ホウ素錯体が挙げられており、特許文献11には、当該化合物と疎水性ポリマーとを含む赤外線吸収用組成物が開示されている。 In addition, Patent Document 10 includes a DPP-based boron complex as a compound that has absorption in the infrared region and does not have absorption in the visible light region. An infrared absorbing composition comprising a hydrophobic polymer is disclosed.
 一方、発光物質は、有価証券、証明書、クレジットカード、電子機器、個人認証媒体等の偽造防止用途にも使用されており、偽造防止効果向上のために、より高いセキュリティレベルの材料が求められている。 On the other hand, luminescent substances are also used in anti-counterfeiting applications such as securities, certificates, credit cards, electronic devices, and personal authentication media, and materials with higher security levels are required to improve anti-counterfeiting effects. ing.
特開2000-060975号公報JP 2000-060975 A 特表2008-541987号公報Special table 2008-541987 特開2012-115535号公報JP 2012-115535 A 特開2011-162445号公報JP 2011-162445 A 特許第5177427号公報Japanese Patent No. 5177427 特開2013-060399号公報JP 2013-060399 A 米国特許出願公開第2013/0249137号明細書US Patent Application Publication No. 2013/0249137 米国特許出願公開第2013/0252000号明細書US Patent Application Publication No. 2013/0252000 特開2011-241160号公報JP 2011-241160 A 特許第5380019号公報Japanese Patent No. 5380019 特開2010-090313号公報JP 2010-090313 A
 特許文献5には、近赤外蛍光を発するBODIPY色素類が開示されているものの、これらを樹脂に含有させることができるかどうかについては記載がない。
 また、特許文献6に記載のシロキサン含有BODIPY色素は、硬化前のシリコーンモノマー溶液との相溶性は良好で、硬化することにより均一に色素が分散したシリコーン樹脂が得られるものの、その他の樹脂や樹脂溶液への相溶性は低い、という問題がある。また、特許文献7に記載の樹脂組成物は、溶媒が樹脂中に残留する可能性があるため、安全性に問題がある。そのうえ、特許文献6、特許文献7、特許文献8、及び特許文献9には、そもそも近赤外蛍光を発するBODIPY色素についての記載はなく、医療用途への適用についても記載されていない。同様に、特許文献10及び特許文献11にも、近赤外発光するDPP系ホウ素錯体に関する記述はなく、医療用途への適用についても報告されていない。
Patent Document 5 discloses BODIPY dyes that emit near-infrared fluorescence, but does not describe whether these can be contained in a resin.
In addition, the siloxane-containing BODIPY dye described in Patent Document 6 has good compatibility with the silicone monomer solution before curing, and a silicone resin in which the dye is uniformly dispersed can be obtained by curing, but other resins and resins There is a problem that the compatibility with the solution is low. Further, the resin composition described in Patent Document 7 has a problem in safety because a solvent may remain in the resin. In addition, Patent Document 6, Patent Document 7, Patent Document 8, and Patent Document 9 do not describe a BODIPY dye that emits near-infrared fluorescence in the first place, nor does it describe application to medical use. Similarly, Patent Document 10 and Patent Document 11 do not describe a DPP-based boron complex that emits near-infrared light, and do not report application to medical use.
 近赤外蛍光材料のみを含有する医療用具は、大掛かりな設備も必要とせず、生体への負荷が小さいため、術中ナビゲーションシステムとして期待されるものの、生体深部での位置を検出するには感度が不十分な場合もある。 Medical devices that contain only near-infrared fluorescent materials do not require large-scale equipment and have a low burden on the living body, so they are expected as an intraoperative navigation system, but they are sensitive to detect positions in the deep part of the living body. Sometimes it is insufficient.
 また、発光物質を使用した偽造防止材料は、励起光により容易に真偽が判別できる一方、偽造防止レベルが低い欠点を有する。偽造防止材料に、発光物質による検出とX線による検出を複合化すれば、よりセキュリティレベルが高くなると期待できる。ただし、そのような樹脂組成物を溶融混練等の簡便な方法で製造された報告は無く、また複合化した場合に発光物質の発光特性について報告されていない。 In addition, the anti-counterfeiting material using the light emitting substance has a defect that the anti-counterfeiting level is low while the authenticity can be easily discriminated by the excitation light. If the anti-counterfeiting material is combined with the detection by the luminescent substance and the detection by the X-ray, it can be expected that the security level becomes higher. However, there is no report that such a resin composition is produced by a simple method such as melt-kneading, and there is no report on the luminescent properties of the luminescent material when it is combined.
 すなわち、本発明の目的は、発光物質による発光が増感され、放射線不透過性を有する樹脂組成物、及び当該樹脂組成物から得られる成形体を提供することである。 That is, an object of the present invention is to provide a resin composition in which light emission by a luminescent substance is sensitized and has radiopacity, and a molded body obtained from the resin composition.
 本発明に係る樹脂組成物及び成形体は、下記[1]~[18]である。
[1] 発光物質、放射線不透過性物質、及び樹脂を含有し、前記放射線不透過性物質の含有量が2質量%以上80質量%以下であることを特徴とする樹脂組成物。
[2] 前記放射線不透過性物質の含有量が5質量%以上50質量%以下である前記[1]の樹脂組成物。
[3] 前記発光物質の含有量が0.001質量%以上0.5質量%以下である前記[1]又は[2]の樹脂組成物。
[4] 前記発光物質が近赤外蛍光材料である、前記[1]~[3]のいずれか一つの樹脂組成物。
[5] 前記近赤外蛍光材料が、下記一般式(II
[式(II)中、
及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
及びRは、ハロゲン原子又は酸素原子を表し;
は、水素原子、又は電子求引性基を表す。
ただし、R及びRが酸素原子の場合には、R、Rと結合するホウ素原子、R、及びRが結合する窒素原子が共に環を形成してもよく、R、Rと結合するホウ素原子、R、及びRが結合する窒素原子が共に環を形成してもよい。Rが酸素原子であり、かつ環を形成していない場合には、Rは置換基を有する酸素原子であり、Rが酸素原子であり、かつ環を形成していない場合には、Rは置換基を有する酸素原子である。]で表される化合物、
下記一般式(II
[式(II)中、R~Rは、前記式(II)と同じである。]で表される化合物、
下記一般式(II
[式(II)中、
及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
、R、R、及びRは、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
及びRは、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し、
及びRは、互いに独立して、水素原子、又は電子求引性基を表す。]で表される化合物、
及び下記一般式(II
The resin composition and molded product according to the present invention are the following [1] to [18].
[1] A resin composition comprising a luminescent substance, a radiopaque substance, and a resin, wherein the content of the radiopaque substance is 2% by mass or more and 80% by mass or less.
[2] The resin composition according to [1], wherein the content of the radiopaque substance is 5% by mass or more and 50% by mass or less.
[3] The resin composition according to [1] or [2], wherein the content of the light-emitting substance is 0.001% by mass or more and 0.5% by mass or less.
[4] The resin composition according to any one of [1] to [3], wherein the luminescent substance is a near-infrared fluorescent material.
[5] The near-infrared fluorescent material is represented by the following general formula (II 1 )
[In the formula (II 1 )
R a and R b are an aromatic 5-membered ring, aromatic 6-membered ring, or 2 to 3 5-membered or 6-membered ring, together with a nitrogen atom to which R a is bonded and a carbon atom to which R b is bonded. Forming a condensed aromatic ring formed by condensation;
R c and R d , together with the nitrogen atom to which R c is bonded and the carbon atom to which R d is bonded, are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation;
R e and R f represent a halogen atom or an oxygen atom;
R g represents a hydrogen atom or an electron withdrawing group.
However, when R e and R f are oxygen atoms, a boron atom bonded to R e , R e , a nitrogen atom bonded to R a , and R a may form a ring together, and R f , A boron atom bonded to R f , R c , and a nitrogen atom bonded to R c may form a ring together. When R e is an oxygen atom and does not form a ring, R e is an oxygen atom having a substituent, and when R f is an oxygen atom and does not form a ring, R f is an oxygen atom having a substituent. A compound represented by
The following general formula (II 2 )
[In the formula (II 2 ), R a to R f are the same as those in the formula (II 1 ). A compound represented by
The following general formula (II 3 )
[In the formula (II 3 )
R h and R i , together with the nitrogen atom to which R h is bonded and the carbon atom to which R i is bonded, are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation;
R j and R k together with the nitrogen atom to which R j is bonded and the carbon atom to which R k are bonded together are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation;
R 1 , R m , R n , and R o each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
R p and R q each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
R r and R s each independently represent a hydrogen atom or an electron withdrawing group. A compound represented by
And the following general formula (II 4 )
[式(II)中、R~Rは、前記式(II)と同じである。]で表される化合物からなる群より選択される1種又は2種以上の化合物であり、
 極大蛍光波長が650nm以上である、前記[4]の樹脂組成物。
[In the formula (II 4 ), R h to R q are the same as those in the formula (II 3 ). Or a compound selected from the group consisting of compounds represented by the formula:
The resin composition according to [4], wherein the maximum fluorescence wavelength is 650 nm or more.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[6] 下記一般式(II-0)
[式(II-0)中、
101、R102、及びR103は、
(p1)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(p2)R101及びR102は共に、芳香族5員環又は芳香族6員環を形成し、R103は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(p3)R102及びR103は共に、芳香族5員環又は芳香族6員環を形成し、R101は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
104、R105、及びR106は、
(q1)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(q2)R104及びR105は共に、芳香族5員環又は芳香族6員環を形成し、R106は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(q3)R105及びR106は共に、芳香族5員環又は芳香族6員環を形成し、R104は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
107及びR108は、ハロゲン原子又は酸素原子を表し;
109は、水素原子、又は電子求引性基を表す。
ただし、R107及びR108が酸素原子の場合には、R107、R107と結合するホウ素原子、ホウ素原子が結合する窒素原子、R101、及びR101と結合する炭素原子が共に環を形成してもよく、R108、R108と結合するホウ素原子、ホウ素原子が結合する窒素原子、R104、及びR104と結合する炭素原子が共に環を形成してもよい。R107が酸素原子であり、かつ環を形成していない場合には、R107は置換基を有する酸素原子であり、R108が酸素原子であり、かつ環を形成していない場合には、R108は置換基を有する酸素原子である。]で表される化合物、及び下記一般式(II-0)
[式(II-0)中、R101~R108は、前記式(II-0)と同じである。]で表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、前記[5]の樹脂組成物。
[6] the following general formula (II 1 -0)
[In the formula (II 1 -0)
R 101 , R 102 , and R 103 are
(P1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(P2) R 101 and R 102 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 103 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or (p3) R 102 and R 103 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 101 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
R 104 , R 105 , and R 106 are:
(Q1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(Q2) R 104 and R 105 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 106 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or (q3) R 105 and R 106 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 104 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
R 107 and R 108 represent a halogen atom or an oxygen atom;
R 109 represents a hydrogen atom or an electron withdrawing group.
However, when R 107 and R 108 are oxygen atoms, a boron atom bonded to R 107 , R 107 , a nitrogen atom bonded to the boron atom, R 101 , and a carbon atom bonded to R 101 together form a ring. Alternatively , R 108 , a boron atom bonded to R 108 , a nitrogen atom bonded to the boron atom, R 104 , and a carbon atom bonded to R 104 may form a ring together. When R 107 is an oxygen atom and does not form a ring, R 107 is an oxygen atom having a substituent, and when R 108 is an oxygen atom and does not form a ring, R 108 is an oxygen atom having a substituent. And a compound represented by the following general formula (II 2 -0)
[In the formula (II 2 -0), R 101 to R 108 are the same as those in the formula (II 1 -0). ] The resin composition of said [5] containing 1 type, or 2 or more types of compounds selected from the group which consists of a compound represented by this.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[7] 前記一般式(II-0)又は前記一般式(II-0)において、R101及びR102が環を形成し、R104及びR105が環を形成している、又は、R102及びR103が環を形成し、R105及びR106が環を形成しており、
 前記環が、下記一般式(C-1)~(C-9)
[7] Formula (II 1 -0) or the general formula (II 2 -0), R 101 and R 102 form a ring, R 104 and R 105 form a ring, or, R 102 and R 103 form a ring, R 105 and R 106 form a ring,
The ring is represented by the following general formulas (C-1) to (C-9):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式(C-1)~(C-9)中、Y~Yは、互いに独立して硫黄原子、酸素原子、窒素原子、又はリン原子を表し、R11~R22は、互いに独立して水素原子、又は前記化合物の蛍光を阻害しない任意の基を表す。]のいずれかで表される、前記[6]の樹脂組成物。
[8] 下記一般式(II-1-1)~(II-1-6)、(II-2-1)~(II-2-12)、(II-1-1)~(II-1-6)、及び(II-2-1)~(II-2-12)
[In formulas (C-1) to (C-9), Y 1 to Y 8 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom, and R 11 to R 22 are independently A hydrogen atom or any group that does not inhibit the fluorescence of the compound. ] The resin composition of said [6] represented by either.
[8] The following general formulas (II 1 -1-1) to (II 1 -1-6), (II 1 -2-1) to (II 1 -12-12), (II 2 -1-1) To (II 2 -1-6) and (II 2 -2-1) to (II 2 -12-12)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
[式中、Y11及びY12は、互いに独立して、酸素原子又は硫黄原子を表し;
21及びY22は、互いに独立して、炭素原子又は窒素原子を表し;
11は、水素原子又は電子求引性基を表し;
Xは、互いに独立して、ハロゲン原子、C1-20アルコキシ基、アリールオキシ基、又はアシルオキシ基を表し;
11~P14及びP17は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表し;
11~A14は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基、又はハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいヘテロアリール基を表し;
n11~n14及びn17は、互いに独立して、0~3の整数を表し;
m1は0又は1を表す。]
のいずれかで表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、前記[5]の樹脂組成物。
[9] 下記一般式(II-7)~(II-9)及び(II-7)~(II-9)
[Wherein Y 11 and Y 12 each independently represent an oxygen atom or a sulfur atom;
Y 21 and Y 22 each independently represent a carbon atom or a nitrogen atom;
Q 11 represents a hydrogen atom or an electron withdrawing group;
X represents independently of each other a halogen atom, a C 1-20 alkoxy group, an aryloxy group, or an acyloxy group;
P 11 to P 14 and P 17 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, or a dialkylamino group;
A 11 to A 14 are each independently selected from the group consisting of a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group. Selected from the group consisting of an optionally substituted phenyl group, or a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group Represents a heteroaryl group optionally having 1 to 3 substituents;
n11 to n14 and n17 each independently represent an integer of 0 to 3;
m1 represents 0 or 1. ]
The resin composition according to [5] above, which contains one or more compounds selected from the group consisting of compounds represented by any of the above:
[9] The following general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[式中、Y23及びY24は、互いに独立して、炭素原子又は窒素原子を表し;
13及びY14は、互いに独立して、酸素原子又は硫黄原子を表し;
25及びY26は、互いに独立して、炭素原子又は窒素原子を表し;
47及びR48は、互いに独立して、水素原子又は電子求引性基を表し;
43、R44、R45、及びR46は、ハロゲン原子、又は置換基を有していてもよいアリール基を表し;
15及びP16は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表し;
n15及びn16は、互いに独立して、0~3の整数を表し;
15及びA16は、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基を表す。]
のいずれかで表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、前記[5]の樹脂組成物。
[10] 下記一般式(II-1)~(II-6)
[Wherein Y 23 and Y 24 each independently represent a carbon atom or a nitrogen atom;
Y 13 and Y 14 each independently represent an oxygen atom or a sulfur atom;
Y 25 and Y 26 each independently represent a carbon atom or a nitrogen atom;
R 47 and R 48 each independently represent a hydrogen atom or an electron withdrawing group;
R 43 , R 44 , R 45 and R 46 represent a halogen atom or an aryl group which may have a substituent;
P 15 and P 16 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, or a dialkylamino group;
n15 and n16 each independently represent an integer of 0 to 3;
A 15 and A 16 are independently selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group. Represents a phenyl group optionally having 1 to 3 substituents. ]
The resin composition according to [5] above, which contains one or more compounds selected from the group consisting of compounds represented by any of the above:
[10] The following general formulas (II 3 -1) to (II 3 -6)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[式(II-1)中、
23、R24、R25、及びR26は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
27及びR28は、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
29及びR30は、互いに独立して、水素原子、又は電子求引性基を表し;
及びY10は、互いに独立して硫黄原子、酸素原子、窒素原子、又はリン原子を表し;
31及びR32は、
(p4)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(p5)R31及びR32は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成する;
33及びR34は、
(q4)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(q5)R33及びR34は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成する。]
[In the formula (II 3 -1),
R 23 , R 24 , R 25 , and R 26 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
R 27 and R 28 each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
R 29 and R 30 each independently represent a hydrogen atom or an electron withdrawing group;
Y 9 and Y 10 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom;
R 31 and R 32 are
(P4) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (p5) R 31 and R 32 are both Forming an optionally substituted aromatic five-membered ring or an optionally substituted aromatic six-membered ring;
R 33 and R 34 are
(Q4) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (q5) R 33 and R 34 are both An aromatic 5-membered ring which may have a substituent or an aromatic 6-membered ring which may have a substituent is formed. ]
[式(II-2)~(II-6)中、R23~R30は、前記式(II-1)と同じであり;
及びXは、互いに独立して窒素原子又はリン原子を表し;
35、R36、R37、及びR38は、
(p6)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(p7)R35及びR36は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R37及びR38は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(p8)R36及びR37は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R35及びR38は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(p9)R37及びR38は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R35及びR36は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
39、R40、R41、及びR42は、
(q6)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(q7)R39及びR40は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R41及びR42は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(q8)R40及びR41は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R39及びR42は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(q9)R41及びR42は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R39及びR40は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。]のいずれかで表される化合物、及び下記一般式(II-1)~(II-6)
[In the formulas (II 3 -2) to (II 3 -6), R 23 to R 30 are the same as those in the formula (II 3 -1);
X 1 and X 2 each independently represent a nitrogen atom or a phosphorus atom;
R 35 , R 36 , R 37 , and R 38 are
(P6) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(P7) R 35 and R 36 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 37 and R 38 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(P8) R 36 and R 37 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 35 and R 38 are Independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (p9) R 37 and R 38 both represent a substituent. An aromatic 5-membered ring which may have or an aromatic 6-membered ring which may have a substituent, and R 35 and R 36 are each independently a hydrogen atom, halogen atom, C 1- Represents a 20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
R 39 , R 40 , R 41 , and R 42 are
(Q6) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group.
(Q7) R 39 and R 40 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring, and R 41 and R 42 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(Q8) R 40 and R 41 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring, and R 39 and R 42 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (q9) R 41 and R 42 both represent a substituent. An aromatic 5-membered ring which may have or an aromatic 6-membered ring which may have a substituent, and R 39 and R 40 are each independently a hydrogen atom, a halogen atom, C 1- 20 represents an alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group. And the following general formulas (II 4 -1) to (II 4 -6)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式(II-1)~(II-6)中、R23~R28は、前記式(II-1)と同じである。式(II-1)中、R31~R34、Y、及びY10は、前記式(II-1)と同じであり、式(II-2)~(II-6)中、R35~R42は、前記式(II-2)と同じであり、式(II-3)~(II-6)中、X、及びXは、前記式(II-3)と同じである。]のいずれかで表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、前記[5]の樹脂組成物。
[11] 前記近赤外蛍光材料が、下記式(I)
[In the formulas (II 4 -1) to (II 4 -6), R 23 to R 28 are the same as those in the formula (II 3 -1). In the formula (II 4 -1), R 31 to R 34 , Y 9 and Y 10 are the same as those in the formula (II 3 -1), and the formulas (II 4 -2) to (II 4 -6) In the formula, R 35 to R 42 are the same as those in the formula (II 3 -2). In the formulas (II 4 -3) to (II 4 -6), X 1 and X 2 are the same as those in the formula (II 3 -3) is the same as that. ] The resin composition of said [5] containing 1 type, or 2 or more types of compounds selected from the group which consists of a compound represented by either.
[11] The near-infrared fluorescent material has the following formula (I)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[式(I)中、
X’は、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し;
は、C1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示すか、或いは、一方のRは、上記X’とも結合している-O-C(=O)-基を示し、6員環を形成するものであり、且つ他方のRは、独立してC1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示し;
とRは、一体となって-O-基、-S-基もしくは-N(R)-基(ここで、Rは水素原子又はC1-12アルキル基を示す)を形成し、且つRとRは水素原子基を示すか、或いは、RとRは、一体となって-O-基、-S-基、もしくは-N(R)-基(Rは上記と同義を示す)を形成し、且つRとRは水素原子基を示し;
とRは、独立して水素原子基、C1-12アルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し;
上記アリール基又はヘテロアリール基の置換基は、C1-12アルキル基、モノ(C1-12アルキル)アミノ基、ジ(C1-12アルキル)アミノ基、水酸基及びC1-12アルコキシ基からなる群より選択される1種以上の基を示す。]で表されるアゾ-ホウ素錯体化合物からなり、
 極大吸収波長が650nm以上、かつストークスシフトが50nm以上である、前記[4]の樹脂組成物。
[12] 前記アゾ-ホウ素錯体化合物が、下記式(I)[式(I)中、Yは置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し、R~Rは前記式(I)中のR~Rと同義を示す。]で表される、前記[11]の樹脂組成物。
[In the formula (I),
X ′ represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
R 1 represents a C 1-12 alkyl group, an aryl group, an aryl ethenyl group, an aryl ethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, or one R 1 represents the above X Represents a —O—C (═O) — group bonded to “, and forms a 6-membered ring, and the other R 1 is independently a C 1-12 alkyl group, aryl group, aryl Represents an ethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom;
R 2 and R 3 together form an —O— group, an —S— group or an —N (R 8 ) — group (wherein R 8 represents a hydrogen atom or a C 1-12 alkyl group). And R 4 and R 5 represent a hydrogen atom group, or R 4 and R 5 together represent an —O— group, an —S— group, or an —N (R 8 ) — group (R 8 is as defined above, and R 2 and R 3 represent a hydrogen atom group;
R 6 and R 7 independently represent a hydrogen atom group, a C 1-12 alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
The substituent of the aryl group or heteroaryl group includes a C 1-12 alkyl group, a mono (C 1-12 alkyl) amino group, a di (C 1-12 alkyl) amino group, a hydroxyl group, and a C 1-12 alkoxy group. One or more groups selected from the group consisting of: And an azo-boron complex compound represented by
The resin composition according to [4], wherein the maximum absorption wavelength is 650 nm or more and the Stokes shift is 50 nm or more.
[12] The azo - boron complex compounds, in the following formulas (I 1) [Formula (I 1), Y which may have an optionally substituted aryl group, or a substituent hetero an aryl group, R 1 ~ R 7 represents a same meaning as R 1 ~ R 7 in the formula (I). ] The resin composition of said [11] represented by.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[13] 前記放射線不透過性物質が硫酸バリウム、酸化ビスマス、次炭酸ビスマス、炭酸カルシウム、水酸化アルミニウム、タングステン、酸化亜鉛、酸化ジルコニウム、ジルコニウム、チタン、白金、次硝酸ビスマス、及びビスマスからなる群より選択される1種以上である、前記[1]~[12]のいずれか一つの樹脂組成物。
[14] 前記樹脂が熱可塑性樹脂である、前記[1]~[13]のいずれか一つの樹脂組成物。
[15] 前記樹脂が、ウレタン系樹脂、オレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、及び塩化ビニル系樹脂からなる群より選択される1種以上である、前記[1]~[14]のいずれか一つの樹脂組成物。
[16] 医療用材料として用いられる、前記[1]~[15]のいずれか一つの樹脂組成物。
[17] 前記[1]~[16]のいずれか一つの樹脂組成物を加工して得られる成形体。
[18] 少なくとも一部が、患者の体内で使用される医療用具である、前記[17]の成形体。
[13] The group in which the radiopaque substance comprises barium sulfate, bismuth oxide, bismuth subcarbonate, calcium carbonate, aluminum hydroxide, tungsten, zinc oxide, zirconium oxide, zirconium, titanium, platinum, bismuth subnitrate, and bismuth. Any one or more selected from [1] to [12].
[14] The resin composition according to any one of [1] to [13], wherein the resin is a thermoplastic resin.
[15] The above-mentioned [1] to [14], wherein the resin is at least one selected from the group consisting of urethane resins, olefin resins, polystyrene resins, polyester resins, and vinyl chloride resins. Any one resin composition.
[16] The resin composition according to any one of [1] to [15], which is used as a medical material.
[17] A molded product obtained by processing the resin composition according to any one of [1] to [16].
[18] The molded article according to [17], wherein at least a part is a medical device used in a patient's body.
 本発明に係る樹脂組成物は、放射線不透過性物質および発光物質を含んでいるため、必要に応じてX線又は発光による検出が可能である。さらに、放射線不透過性物質を含有していない樹脂組成物よりも、添加した発光物質の量に対する励起光源方向への発光強度が強いため、より弱い励起光でも感度よく発光検出することができる。
 このため、本発明に係る樹脂組成物から得られる成形体は、生体内で使用される医療用具又はその部材として特に好適であり、その他、いわゆる偽造防止のための識別マーカー等のセキュリティ用途としても好ましい。
Since the resin composition according to the present invention contains a radiopaque substance and a luminescent substance, it can be detected by X-rays or luminescence as necessary. Furthermore, since the emission intensity in the direction of the excitation light source with respect to the amount of the added luminescent substance is stronger than that of the resin composition that does not contain a radiopaque substance, luminescence can be detected with high sensitivity even with weaker excitation light.
For this reason, the molded product obtained from the resin composition according to the present invention is particularly suitable as a medical device used in a living body or a member thereof, and also as a security application such as an identification marker for preventing so-called forgery. preferable.
試験例1において作製した、アルミ箔(2)で部分的に遮光したフィルム(1)の模式図(正面図、背面図、及び側面図)である。It is the schematic diagram (a front view, a rear view, and a side view) of the film (1) produced in Test Example 1 and partially shielded with an aluminum foil (2). 実施例1で製造したフィルムを部分的に遮光したフィルムと、比較例1で製造したフィルムを部分的に遮光したフィルムの発光スペクトルを示した図である。It is the figure which showed the emission spectrum of the film which shielded the film manufactured in Example 1 partially, and the film which blocked the film manufactured in Comparative Example 1 partially. 試験例6において、実施例5及び比較例5で作製したフィルムの励起波長740nmのスペクトルを示した図である。In Experiment 6, it is the figure which showed the spectrum of excitation wavelength 740nm of the film produced in Example 5 and Comparative Example 5. FIG. 試験例7において、実施例6及び比較例6で作製したフィルムを近赤外イメージングカメラで撮影した写真である。In Experiment 7, it is the photograph which image | photographed the film produced in Example 6 and Comparative Example 6 with the near-infrared imaging camera. 試験例8において、実施例19及び比較例8で作製したフィルムの励起波長740nmのスペクトルを示した図である。In Experiment 8, it is the figure which showed the spectrum of the excitation wavelength 740nm of the film produced in Example 19 and Comparative Example 8. FIG. 試験例9において、実施例8で作製したフィルムを厚さ15mmの豚肉ごしに、光を照射せずに近赤外イメージングカメラで撮影した写真である。In Test example 9, it is the photograph which image | photographed with the near-infrared imaging camera, without irradiating light to the 15-mm-thick pork sliced film produced in Example 8. 試験例9において、実施例8で作製したフィルムを厚さ2mmの豚肉ごしに、中心波長が740nmの励起光を照射して近赤外イメージングカメラで撮影した写真である。In Test Example 9, the film produced in Example 8 is a photograph taken with a near-infrared imaging camera by irradiating a pork having a thickness of 2 mm with excitation light having a center wavelength of 740 nm. 試験例9において、実施例8で作製したフィルムを厚さ15mmの豚肉ごしに、中心波長が740nmの励起光を照射して近赤外イメージングカメラで撮影した写真である。In Test Example 9, the film produced in Example 8 is a photograph taken with a near-infrared imaging camera by irradiating a pork having a thickness of 15 mm with excitation light having a center wavelength of 740 nm. 試験例10において、実施例8,17,18,22及び比較例7,9,10で作製したフィルムの励起波長740nmのスペクトルを示した図である。In Experiment 10, it is the figure which showed the spectrum of 740 nm of excitation wavelengths of the film produced in Example 8, 17, 18, 22 and Comparative Example 7, 9, 10. FIG. 試験例10において、実施例8及び比較例7で作製したフィルムを近赤外イメージングカメラで撮影した写真である。In Experiment 10, it is the photograph which image | photographed the film produced in Example 8 and Comparative Example 7 with the near-infrared imaging camera.
 本発明は、発光物質、放射線不透過性物質、及び樹脂を含有し、前記放射線不透過性物質の含有量が2質量%以上80質量%以下であることを特徴とする樹脂組成物である。
 本発明に係る樹脂組成物は、同種等量の発光物質を含有させた樹脂組成物よりも、励起光源方向への発光強度が明らかに強く、発光検出の感度が高い。例えば、蛍光材料と放射線不透過性物質の両方を含有している本発明に係る樹脂組成物は、同種等量の蛍光材料のみを含有させた樹脂組成物よりも、極大蛍光波長及びその付近の蛍光強度を、30%以上、好ましくは100%以上、より好ましくは150%以上、さらに好ましくは200%以上、特に好ましくは300%以上、最も好ましくは2000%以上増強させることができる。放射線不透過性物質による発光強度増強効果(増感効果)が得られる理由は明らかではないが、以下のように推察される。例えば、(1)放射線不透過性物質を含有しているため、励起光が不透過性物質に当たり、樹脂中を透過せず、面付近で散乱し、結果的に励起光が局所的に増強されたため、(2)透明平滑フィルムでは、蛍光が全反射の法則により端面で発光しやすいが、放射線不透過性物質により平滑性が失われ全反射が減り、また蛍光が内部で散乱し、励起光源方向にも強く出るため、又は(3)放射線不透過性物質と共存することにより、発光物質の分散性が向上したため(発光物質同士の相互作用が低下し、消光が減り、発光効率が高くなったため)、ではないかと推察される。上記記載の理由が相乗的に作用して、増感効果が現れている可能性も考えられる。
 放射線不透過性物質を2質量%以上含有していることから、発光物質に対する増感効果を十分に発揮できる。
The present invention is a resin composition comprising a luminescent substance, a radiopaque substance, and a resin, wherein the content of the radiopaque substance is 2% by mass or more and 80% by mass or less.
The resin composition according to the present invention has clearly higher emission intensity in the direction of the excitation light source and higher sensitivity for emission detection than the resin composition containing the same kind of luminescent substance. For example, the resin composition according to the present invention containing both a fluorescent material and a radiopaque substance has a maximum fluorescence wavelength and the vicinity thereof than a resin composition containing only the same kind of fluorescent material. The fluorescence intensity can be enhanced by 30% or more, preferably 100% or more, more preferably 150% or more, further preferably 200% or more, particularly preferably 300% or more, and most preferably 2000% or more. The reason why the effect of enhancing the emission intensity (sensitization effect) by the radiopaque substance is not clear, but is presumed as follows. For example, (1) since it contains a radiopaque material, the excitation light hits the opaque material, does not pass through the resin, and is scattered near the surface, resulting in local enhancement of the excitation light. Therefore, (2) In the transparent smooth film, the fluorescence easily emits light at the end face by the law of total reflection, but the smoothness is lost due to the radiopaque material, the total reflection is reduced, and the fluorescence is scattered inside, and the excitation light source (3) The coexistence with the radiopaque material improves the dispersibility of the luminescent material (the interaction between the luminescent materials decreases, quenching decreases, and the luminous efficiency increases. )). There is a possibility that the reasons described above act synergistically and a sensitizing effect appears.
Since 2% by mass or more of the radiopaque substance is contained, the sensitizing effect on the luminescent substance can be sufficiently exhibited.
<発光物質>
 本発明に係る樹脂組成物が含有する発光物質は、当該樹脂組成物から得られる成形体等に要求される製品品質や、混合される樹脂成分の種類等を考慮して、適宜選択して用いることができる。発光物質には蛍光材料と燐光材料がある。当該蛍光材料は、蛍光極大波長が可視光領域にあるもの(可視光蛍光材料)であってもよく、蛍光極大波長が近赤外領域にあるもの(近赤外蛍光材料)であってもよく、蛍光極大波長が赤外領域にあるもの(赤外蛍光材料)であってもよい。また、無機物質であってもよく、有機化合物であってもよい。
<Luminescent material>
The light-emitting substance contained in the resin composition according to the present invention is appropriately selected and used in consideration of the product quality required for a molded body obtained from the resin composition, the kind of resin component to be mixed, and the like. be able to. There are fluorescent materials and phosphorescent materials as light emitting substances. The fluorescent material may be one having a fluorescent maximum wavelength in the visible light region (visible light fluorescent material), or one having a fluorescent maximum wavelength in the near infrared region (near infrared fluorescent material). The fluorescent maximum wavelength may be in the infrared region (infrared fluorescent material). Moreover, an inorganic substance may be sufficient and an organic compound may be sufficient.
 可視光蛍光材料としては、例えば、クマリン系色素、シアニン系色素、キノール系色素、ローダミン類、オキサゾール系色素、フェナジン系色素、アゾ-ヒドラゾン系色素、ビオラントロン系色素、ビラントロン系色素、フラバントロン系色素、フルオレセイン類、キサンテン系色素、ピレン類、ナフタルイミド系色素、アントラキノン系色素、チオインジゴ系色素、ペリノン系色素、ペリレン系色素、アゾ-ホウ素系色素、国際公開2007/126052号公報などに記載のボロンジピロメテン(BODIPY)系色素、ポルフィリン系色素等の化合物が挙げられる。また、ZnS:Ag、(ZnCd)S:Cu、(ZnCd)S:Ag、Zn2SiO4:Mn、Cd225:Mn、(SrMg)3(PO42:Mn、YVO3:En,CaWO4等の無機蛍光体もある。 Examples of visible light fluorescent materials include coumarin dyes, cyanine dyes, quinol dyes, rhodamines, oxazole dyes, phenazine dyes, azo-hydrazone dyes, violanthrone dyes, vilantron dyes, and flavantron dyes. , Fluoresceins, xanthene dyes, pyrenes, naphthalimide dyes, anthraquinone dyes, thioindigo dyes, perinone dyes, perylene dyes, azo-boron dyes, boron dimers described in International Publication No. 2007/126052 Examples thereof include compounds such as pyromethene (BODIPY) dyes and porphyrin dyes. ZnS: Ag, (ZnCd) S: Cu, (ZnCd) S: Ag, Zn 2 SiO 4 : Mn, Cd 2 B 2 O 5 : Mn, (SrMg) 3 (PO 4 ) 2 : Mn, YVO 3 : Inorganic phosphors such as En and CaWO 4 are also available.
 近赤外蛍光材料や赤外蛍光材料としては、例えば、ポリメチン系色素、アントラキノン系色素、ジチオ―ル金属塩系色素、シアニン系色素、フタロシアニン系色素、インドフエノ―ル系色素、シアミン系色素、スチリル系色素、アルミニウム系色素、ジイモニウム系色素、アゾ系色素、アゾ-ホウ素系色素、国際公開2007/126052号公報などに記載のボロンジピロメテン(BODIPY)系色素、スクアリウム系色素、ペリレン系色素等の化合物が挙げられる。 Examples of near-infrared fluorescent materials and infrared fluorescent materials include polymethine dyes, anthraquinone dyes, dithiol metal salt dyes, cyanine dyes, phthalocyanine dyes, indophenol dyes, thiamine dyes, and styryl. Dyes, aluminum dyes, diimonium dyes, azo dyes, azo-boron dyes, boron dipyrromethene (BODIPY) dyes described in International Publication No. 2007/126052, etc., squalium dyes, perylene dyes, etc. Compounds.
 また、燐光材料としては、イリジウム錯体、オスミニウム錯体、白金錯体、ユーロピウム錯体、銅錯体などの有機金属錯体、ポルフィセン錯体等が挙げられる。 Also, examples of phosphorescent materials include iridium complexes, osmium complexes, platinum complexes, europium complexes, copper complex and other organometallic complexes, porphycene complexes, and the like.
 本発明に係る樹脂組成物が、例えば生体内で使用される医療用具やセキュリティ用具の素材として用いられる場合には、近赤外蛍光材料や赤外蛍光材料を含有することが好ましい。上記近赤外蛍光材料や赤外蛍光材料を含有する樹脂組成物及びこれから得られる成形体は、目に見えない近赤外領域の光で励起、検出できるため、励起光及び発光が生体組織などの色調を変えることなく検出できる。 For example, when the resin composition according to the present invention is used as a raw material for a medical device or a security device used in a living body, it is preferable to contain a near-infrared fluorescent material or an infrared fluorescent material. The near-infrared fluorescent material, the resin composition containing the infrared fluorescent material, and the molded product obtained therefrom can be excited and detected by invisible near-infrared light. Can be detected without changing the color tone.
 本発明に係る樹脂組成物が含有する近赤外蛍光材料としては、上記記載の材料の中でも、シアニン系色素、アゾ-ホウ素系色素、ボロンジピロメテン(BODIPY)系色素、ジケトピロロピロール(DPP)系ホウ素錯体、フタロシアニン系色素、又はスクアリウム系色素が、発光効率の点から好ましく、特に、下記一般式(I)で表されるアゾ-ホウ素錯体化合物、下記一般式(II)又は下記一般式(II)で表されるBODIPY色素、下記一般式(II)又は下記一般式(II)で表されるDPP系ホウ素錯体が耐熱性の点から好ましい。発光効率が高い場合には、十分な発光強度を得ることができ、また、耐熱性が高い場合には、樹脂との混練の際に材料が分解しない、またはしにくいからである。 Among the materials described above, the near-infrared fluorescent material contained in the resin composition according to the present invention includes cyanine dyes, azo-boron dyes, boron dipyrromethene (BODIPY) dyes, diketopyrrolopyrrole (DPP). ) -Based boron complexes, phthalocyanine-based dyes, or squalium-based dyes are preferable from the viewpoint of luminous efficiency, and in particular, azo-boron complex compounds represented by the following general formula (I), the following general formula (II 1 ), or the following general A BODIPY dye represented by the formula (II 2 ), a DPP boron complex represented by the following general formula (II 3 ) or the following general formula (II 4 ) is preferable from the viewpoint of heat resistance. This is because when the luminous efficiency is high, sufficient luminous intensity can be obtained, and when the heat resistance is high, the material does not decompose or is difficult to knead with the resin.
<一般式(I)で表されるアゾ-ホウ素錯体化合物> <Azo-boron complex compound represented by formula (I)>
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式(I)中、
X’は、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し;
は、C1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示すか、或いは、一方のRは、上記X’とも結合している-O-C(=O)-基を示し、6員環を形成するものであり、且つ他方のRは、独立してC1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示し;
とRは、一体となって-O-基、-S-基もしくは-N(R)-基(ここで、Rは水素原子又はC1-12アルキル基を示す)を形成し、且つRとRは水素原子基を示すか、或いは、RとRは、一体となって-O-基、-S-基、もしくは-N(R)-基(Rは上記と同義を示す)を形成し、且つRとRは水素原子基を示し;
とRは、独立して水素原子基、C1-12アルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し;
上記アリール基又はヘテロアリール基の置換基は、C1-12アルキル基、モノ(C1-12アルキル)アミノ基、ジ(C1-12アルキル)アミノ基、水酸基及びC1-12アルコキシ基からなる群より選択される1種以上の基を示す。]
[In the formula (I),
X ′ represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
R 1 represents a C 1-12 alkyl group, an aryl group, an aryl ethenyl group, an aryl ethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, or one R 1 represents the above X Represents a —O—C (═O) — group bonded to “, and forms a 6-membered ring, and the other R 1 is independently a C 1-12 alkyl group, aryl group, aryl Represents an ethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom;
R 2 and R 3 together form an —O— group, an —S— group or an —N (R 8 ) — group (wherein R 8 represents a hydrogen atom or a C 1-12 alkyl group). And R 4 and R 5 represent a hydrogen atom group, or R 4 and R 5 together represent an —O— group, an —S— group, or an —N (R 8 ) — group (R 8 is as defined above, and R 2 and R 3 represent a hydrogen atom group;
R 6 and R 7 independently represent a hydrogen atom group, a C 1-12 alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
The substituent of the aryl group or heteroaryl group includes a C 1-12 alkyl group, a mono (C 1-12 alkyl) amino group, a di (C 1-12 alkyl) amino group, a hydroxyl group, and a C 1-12 alkoxy group. One or more groups selected from the group consisting of: ]
 本発明において、「アリール基」は芳香族炭化水素基を意味する。例えば、フェニル基、ナフチル基、インデニル基、ビフェニル基等であり、好ましくはC6-10アリール基、より好ましくはフェニル基である。 In the present invention, the “aryl group” means an aromatic hydrocarbon group. For example, a phenyl group, a naphthyl group, an indenyl group, a biphenyl group, etc., preferably a C 6-10 aryl group, more preferably a phenyl group.
 「ヘテロアリール基」は、窒素原子、酸素原子又は硫黄原子等のヘテロ原子を少なくとも1個有する5員環、6員環又は縮合環を有する芳香族ヘテロシクリル基を意味する。「ヘテロアリール基」としては、ピロリル基、イミダゾリル基、ピラゾリル基、チエニル基、フラニル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾール基等の5員環ヘテロアリール基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基等の6員環ヘテロアリール基;インドリル基、イソインドリル基、インダゾリル基、キノリジニル基、キノリニル基、イソキノリニル基、ベンゾフラニル基、イソベンゾフラニル基、クロメニル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基などの縮合ヘテロアリール基を挙げることができる。好ましくは窒素原子を含むヘテロアリールであり、より好ましくはベンゾチアゾリル基である。 “Heteroaryl group” means an aromatic heterocyclyl group having a 5-membered ring, 6-membered ring or condensed ring having at least one heteroatom such as a nitrogen atom, oxygen atom or sulfur atom. The “heteroaryl group” includes a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a thienyl group, a furanyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazole group and the like; a pyridinyl group, a pyrazinyl group Groups, 6-membered heteroaryl groups such as pyrimidinyl group, pyridazinyl group; indolyl group, isoindolyl group, indazolyl group, quinolidinyl group, quinolinyl group, isoquinolinyl group, benzofuranyl group, isobenzofuranyl group, chromenyl group, benzoxazolyl And a condensed heteroaryl group such as a benzoisoxazolyl group, a benzothiazolyl group, and a benzoisothiazolyl group. Preferred is a heteroaryl containing a nitrogen atom, and more preferred is a benzothiazolyl group.
 「C1-12アルキル基」とは、炭素数が1~12の直鎖状又は分枝鎖状の1価脂肪族炭化水素基を意味する。例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、ヘプチル基、オクチル基、ノナニル基、デシル基、ウンデシル基、ドデシル基等である。R~Rとしては、C2-12アルキル基が好ましく、C2-10アルキル基がより好ましく、特にn-C2-8アルキル基が好ましい。その他の場合では、C1-6アルキル基が好ましく、C1-4アルキル基がより好ましく、C1-2アルキル基がより好ましく、メチル基がより好ましい。 “C 1-12 alkyl group” means a linear or branched monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms. For example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, isoamyl group, hexyl group, heptyl group, octyl group, nonanyl group, decyl group, undecyl group , Dodecyl group and the like. R 6 to R 7 are preferably a C 2-12 alkyl group, more preferably a C 2-10 alkyl group, and particularly preferably an nC 2-8 alkyl group. In other cases, a C 1-6 alkyl group is preferred, a C 1-4 alkyl group is more preferred, a C 1-2 alkyl group is more preferred, and a methyl group is more preferred.
 「アリールエテニル基」は、上記アリール基に置換された-CH=CH-基を示し、トランス型であってもシス型であってもよいが、安定性の点からトランス型のものが好ましい。また、「アリールエチニル基」は、上記アリール基に置換された-C≡C-基を示す。 The “arylethenyl group” refers to a —CH═CH— group substituted with the above aryl group, which may be trans or cis, but is preferably a trans type from the viewpoint of stability. . The “arylethynyl group” refers to a —C≡C— group substituted with the above aryl group.
 「C1-12アルコキシ基」は、C1-12アルキルオキシ基を意味し、C1-6アルコキシ基が好ましく、C1-4アルコキシ基がより好ましく、C1-2アルコキシ基がより好ましく、メトキシ基がより好ましい。また、本発明において用いられるアゾ-ホウ素錯体化合物において、2つのRがアルコキシ基である場合には、炭化水素基同士が結合してホウ素原子と共に環状構造を形成していてもよい。 “C 1-12 alkoxy group” means a C 1-12 alkyloxy group, preferably a C 1-6 alkoxy group, more preferably a C 1-4 alkoxy group, more preferably a C 1-2 alkoxy group, A methoxy group is more preferred. In the azo-boron complex compound used in the present invention, when two R 1 are alkoxy groups, the hydrocarbon groups may be bonded to each other to form a cyclic structure together with the boron atom.
 「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子を例示することができ、フッ素原子、塩素原子及び臭素原子が好ましく、フッ素原子がより好ましい。 Examples of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, and more preferably a fluorine atom.
 「モノ(C1-12アルキル)アミノ基」は、1つの上記C1-12アルキルに置換されたアミノ基を意味し、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基等を挙げることができ、好ましくはモノC1-6アルキルアミノ基であり、より好ましくはモノC1-4アルキルアミノ基であり、さらに好ましくはモノC1-2アルキルアミノ基である。 “Mono (C 1-12 alkyl) amino group” means an amino group substituted by one of the above C 1-12 alkyls, for example, methylamino group, ethylamino group, propylamino group, isopropylamino group, Examples thereof include a butylamino group, an isobutylamino group, a t-butylamino group, a pentylamino group, and a hexylamino group, preferably a mono C 1-6 alkylamino group, more preferably a mono C 1-4 alkyl group. An amino group, more preferably a mono C 1-2 alkylamino group.
 「ジ(C1-12アルキル)アミノ基」は、2つの上記C1-12アルキルに置換されたアミノ基を意味する。当該基において、2つのアルキル基は互いに同一であっても異なっていてもよい。ジC1-12アルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ブチルメチルアミノ基、エチルプロピルアミノ基、ブチルエチルアミノ基等を挙げることができ、好ましくはジ(C1-6アルキル)アミノ基であり、より好ましくはジ(C1-4アルキル)アミノ基であり、さらに好ましくはジ(C1-2アルキル)アミノ基である。 “Di (C 1-12 alkyl) amino group” means an amino group substituted with two of the above C 1-12 alkyl. In the group, the two alkyl groups may be the same as or different from each other. Examples of the di-C 1-12 alkylamino group include a dimethylamino group, a diethylamino group, a dipropylamino group, a diisopropylamino group, a dibutylamino group, a diisobutylamino group, a dipentylamino group, a dihexylamino group, an ethylmethylamino group, Examples thereof include a methylpropylamino group, a butylmethylamino group, an ethylpropylamino group, and a butylethylamino group, preferably a di (C 1-6 alkyl) amino group, more preferably a di (C 1-4). Alkyl) amino group, and more preferably a di ( C1-2alkyl ) amino group.
 本発明において用いられるアゾ-ホウ素錯体化合物(I)としては、一方のRが、上記X’とも結合している-O-C(=O)-基を示し、6員環を形成するものであり、且つ他方のRが、独立してC1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示す化合物、及び、下記式(I)~(I)で表される化合物が好適である。中でも、式(I)で表される化合物がより好ましい。式(I)中、Yは置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し、R~Rは、前記式(I)中のR~Rと同義を示す。また、式(I)及び(I)中、X’及びR~Rは、前記式(I)中のX’及びR~Rと同義を示す。 As the azo-boron complex compound (I) used in the present invention, one R 1 represents a —O—C (═O) — group bonded to the above X ′, and forms a 6-membered ring. And the other R 1 independently represents a C 1-12 alkyl group, an aryl group, an arylethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, and The compounds represented by the following formulas (I 1 ) to (I 3 ) are preferable. Among these, a compound represented by the formula (I 1 ) is more preferable. In formula (I 1 ), Y represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent, and R 1 to R 7 in formula (I) Are the same as R 1 to R 7 in the formula. Further, the formula (I 2) and (I 3) in, X 'and R 1 ~ R 7 is, X in the formula (I)' indicates a and R 1 ~ R 7 synonymous.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 なお、式(I)で表されるアゾ-ホウ素錯体化合物は、例えば、下記式(II)で表されるヒドラゾン化合物(II)にホウ素化合物を反応させることにより合成できる(例えば、特許文献2参照。)。下記式中、X’及びR~Rは前記式(I)中のX’及びR~Rと同義を示す。また、RはC1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子であり、Rと同一であるか或いはRよりも脱離し易い基を示す。 The azo-boron complex compound represented by the formula (I) can be synthesized by, for example, reacting a boron compound with a hydrazone compound (II) represented by the following formula (II) (see, for example, Patent Document 2) .) In the following formulas, X 'and R 1 ~ R 7 is X in the formula (I)' indicates a and R 1 ~ R 7 synonymous. Also, R 9 is C 1-12 alkyl group, an aryl group, Arirueteniru group, aryl ethynyl group, C 1-12 alkoxy group, an aryloxy group or a halogen atom, or R 1 is identical to R 1 A group that is more easily eliminated.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<一般式(II)、一般式(II)、一般式(II)、又は一般式(II)で表される化合物>
 本発明において用いられる近赤外蛍光材料としては、一般式(II)又は一般式(II)で表される化合物も好ましい。これらの化合物は、以下、「本発明において用いられるBODIPY色素」ということがある。
<Compound Represented by General Formula (II 1 ), General Formula (II 2 ), General Formula (II 3 ), or General Formula (II 4 )>
As the near-infrared fluorescent material used in the present invention, a compound represented by general formula (II 1 ) or general formula (II 2 ) is also preferable. These compounds are hereinafter sometimes referred to as “BODIPY dyes used in the present invention”.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 本発明において用いられる近赤外蛍光材料としては、一般式(II)又は一般式(II)で表される化合物も好ましい。これらの化合物は、以下、「本発明において用いられるDPP系ホウ素錯体」ということがある。 As the near-infrared fluorescent material used in the present invention, a compound represented by general formula (II 3 ) or general formula (II 4 ) is also preferable. Hereinafter, these compounds may be referred to as “DPP-based boron complexes used in the present invention”.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一般式(II)又は一般式(II)中、R及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に1~3個の環からなる芳香環を形成する。同様に、一般式(II)又は一般式(II)中、R及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に1~3個の環からなる芳香環を形成する。R及びRが形成する芳香環、並びにR及びRが形成する芳香環の各環は、5員環又は6員環である。一般式(II)又は一般式(II)で表される化合物は、R及びRが形成する芳香環とR及びRが形成する芳香環が、2個の窒素原子と結合するホウ素原子を含む環により縮合した環構造を有する。すなわち、一般式(II)又は一般式(II)で表される化合物は、広い共役平面からなる堅牢な縮合環構造を有する。 In general formula (II 1 ) or general formula (II 2 ), R a and R b form an aromatic ring consisting of 1 to 3 rings together with the nitrogen atom to which R a is bonded and the carbon atom to which R b is bonded. To do. Similarly, in general formula (II 1 ) or general formula (II 2 ), R c and R d are aromatics composed of 1 to 3 rings together with the nitrogen atom to which R c is bonded and the carbon atom to which R d is bonded. Form a ring. Each of the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d is a 5-membered ring or a 6-membered ring. In the compound represented by the general formula (II 1 ) or the general formula (II 2 ), the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d are bonded to two nitrogen atoms. Having a ring structure condensed with a ring containing a boron atom. That is, the compound represented by the general formula (II 1 ) or the general formula (II 2 ) has a robust condensed ring structure composed of a wide conjugate plane.
 一般式(II)又は一般式(II)中、R及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に1~3個の環からなる芳香環を形成する。同様に、一般式(II)又は一般式(II)中、R及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に1~3個の環からなる芳香環を形成する。R及びRが形成する芳香環、並びにR及びRが形成する芳香環の各環は、5員環又は6員環である。一般式(II)又は一般式(II)で表される化合物は、R及びRが形成する芳香環と2個の窒素原子と結合するホウ素原子を含む環と1個の窒素原子を含む5員のヘテロ環とが縮合した3環と、R及びRが形成する芳香環と2個の窒素原子と結合するホウ素原子を含む環と1個の窒素原子を含む5員のヘテロ環とが縮合した3環とが5員のヘテロ環同士において縮合した環構造、すなわち、すくなくとも6環が縮合した環構造を有する。このように、一般式(II)又は一般式(II)で表される化合物は、非常に広い共役平面からなる堅牢な縮合環構造を有する。 In general formula (II 3 ) or general formula (II 4 ), R h and R i form an aromatic ring composed of 1 to 3 rings together with the nitrogen atom to which R h is bonded and the carbon atom to which R i is bonded. To do. Similarly, in general formula (II 3 ) or general formula (II 4 ), R j and R k are aromatics composed of 1 to 3 rings together with the nitrogen atom to which R j is bonded and the carbon atom to which R k is bonded. Form a ring. Each of the aromatic ring formed by R h and R i and the aromatic ring formed by R j and R k is a 5-membered ring or a 6-membered ring. The compound represented by the general formula (II 3 ) or the general formula (II 4 ) includes an aromatic ring formed by R h and R i , a ring containing a boron atom bonded to two nitrogen atoms, and one nitrogen atom. A five-membered heterocycle containing a 5-ring heterocycle, an aromatic ring formed by R j and R k , a ring containing a boron atom bonded to two nitrogen atoms, and a five-membered ring containing one nitrogen atom It has a ring structure in which a 3-ring condensed with a heterocycle is condensed between 5-membered heterocycles, that is, a ring structure in which at least 6 rings are condensed. Thus, the compound represented by the general formula (II 3 ) or the general formula (II 4 ) has a robust condensed ring structure composed of a very wide conjugate plane.
 R及びRが形成する芳香環、R及びRが形成する芳香環、R及びRが形成する芳香環、並びにR及びRが形成する芳香環としては、芳香性を有するものであれば特に限定されるものではない。当該芳香環としては、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピリジン環、ピリミジン環、ピリダジン環、イソインドール環、インドール環、インダゾール環、プリン環、ペリミジン環、チエノピロール環、フロピロール環、ピロロチアゾール環、ピロロオキサゾール環等が挙げられる。極大蛍光波長が近赤外領域まで長波長化することから、特に、一般式(II)又は一般式(II)の場合は、当該芳香環としては、縮環数が2又は3であることが好ましく、合成上の煩雑さなどの点から2であることがより好ましい。ただし、当該芳香環の縮環数が1である場合にも、環上の置換基やホウ素上の置換基を工夫することで長波長化も可能である。また、特に、一般式(II)又は一般式(II)の場合は、置換アリール基やヘテロアリール基を結合させるだけで、近赤外領域まで長波長化させることができる。 The aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k are aromatic. If it has, it will not specifically limit. Examples of the aromatic ring include pyrrole ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, pyridine ring, pyrimidine ring, pyridazine ring, isoindole ring, indole ring, indazole ring, purine ring, perimidine ring, thienopyrrole ring, and fluropyrrole. A ring, a pyrrolothiazole ring, a pyrrolooxazole ring, and the like. In particular, in the case of general formula (II 1 ) or general formula (II 3 ), the number of condensed rings is 2 or 3 because the maximum fluorescence wavelength becomes longer to the near infrared region. It is preferably 2, and more preferably 2 from the viewpoint of complexity of synthesis. However, even when the number of condensed rings of the aromatic ring is 1, the wavelength can be increased by devising a substituent on the ring or a substituent on boron. In particular, in the case of the general formula (II 2 ) or the general formula (II 4 ), the wavelength can be increased to the near infrared region only by bonding a substituted aryl group or a heteroaryl group.
 R及びRが形成する芳香環、R及びRが形成する芳香環、R及びRが形成する芳香環、並びにR及びRが形成する芳香環としては、置換基を有していないものであってもよく、1個又は複数個の置換基を有していてもよい。当該芳香環が有する置換基としては、「化合物の蛍光を阻害しない任意の基」であればよい。 The aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k include a substituent. It may not have, and may have one or a plurality of substituents. The substituent of the aromatic ring may be “any group that does not inhibit the fluorescence of the compound”.
 本発明に係る樹脂組成物を医療用材料(医療用具の原材料)として用いる場合には、含有させる近赤外蛍光材料としては、必要な生物学的安全性試験において、変異原性、細胞毒性、感作性、皮膚刺激性などが陰性のものが好ましい。また、安全性の観点から、当該近赤外蛍光材料が、血液や組織液などの体液によって、本発明に係る樹脂組成物を加工して得られた成形体から溶出しないことが好ましい。このため、本発明において用いられる近赤外蛍光材料は、血液などの生体成分等への溶解性が低いことが好ましい。ただし、本発明において用いられる近赤外蛍光材料自体が水溶性であっても、本発明に係る樹脂組成物中の樹脂成分自体が体液等にほとんど溶出しない場合であり、かつ近赤外蛍光材料自体の含有量が微量である場合には、本発明に係る樹脂組成物の成形体は、生体内においても近赤外蛍光材料の溶出を避けて使用することが可能である。これらを考慮し、本発明において用いられるBODIPY色素において、R及びRが形成する芳香環又はR及びRが形成する芳香環が有する置換基としては、変異原性等を発現し難いものや、水溶性を低下させるものが選択されることが好ましい。同様に、本発明において用いられるDPP系ホウ素錯体において、R及びRが形成する芳香環又はR及びRが形成する芳香環が有する置換基としては、変異原性等を発現し難いものや、水溶性を低下させるものが選択されることが好ましい。 When the resin composition according to the present invention is used as a medical material (raw material of a medical device), as a near-infrared fluorescent material to be contained, in a necessary biological safety test, mutagenicity, cytotoxicity, Those having negative sensitization and skin irritation are preferred. From the viewpoint of safety, it is preferable that the near-infrared fluorescent material does not elute from the molded body obtained by processing the resin composition according to the present invention with body fluid such as blood or tissue fluid. For this reason, it is preferable that the near-infrared fluorescent material used in the present invention has low solubility in biological components such as blood. However, even if the near-infrared fluorescent material itself used in the present invention is water-soluble, the resin component itself in the resin composition according to the present invention hardly elutes in body fluids and the near-infrared fluorescent material. When the content of the resin composition itself is very small, the molded article of the resin composition according to the present invention can be used while avoiding elution of the near-infrared fluorescent material even in vivo. In view of these, in the BODIPY dye used in the present invention, mutagenicity and the like are difficult to express as a substituent that the aromatic ring formed by R a and R b or the aromatic ring formed by R c and R d has. It is preferable to select those that reduce water solubility. Similarly, in the DPP-based boron complex used in the present invention, the aromatic ring formed by R h and R i or the aromatic ring formed by R j and R k does not easily exhibit mutagenicity or the like. It is preferable to select those that reduce water solubility.
 当該置換基としては、例えば、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、カルボキシル基、アルデヒド基、スルホン酸基、アルキルスルフォニル基、ハロゲノスルフォニル基、チオール基、アルキルチオ基、イソシアネート基、チオイソシアネート基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルコキシカルボニル基、アルキルアミドカルボニル基、アルキルカルボニルアミド基、アシル基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、シリル基、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基、アリール基及びヘテロアリール基等が挙げられる。R及びRが形成する芳香環、R及びRが形成する芳香環が有する置換基、R及びRが形成する芳香環、又はR及びRが形成する芳香環としては、生体に対する安全性の点からシアノ基、ヒドロキシ基、カルボキシル基、アルキルチオ基、アルキル基、アルコキシ基、アルコキシカルボニル基、アミド基、アルキルスルフォニル基、フッ素、塩素、アリール基、又はヘテロアリール基であることが好ましく、これらの置換基はさらに置換基を有していてもよい。ただし、これらの置換基以外の置換基であっても、さらに適当な置換基を導入することにより安全性を向上させることもできることから、これらの置換基に限定されるものではない。 Examples of the substituent include a halogen atom, nitro group, cyano group, hydroxy group, carboxyl group, aldehyde group, sulfonic acid group, alkylsulfonyl group, halogenosulfonyl group, thiol group, alkylthio group, isocyanate group, and thioisocyanate group. Alkyl group, alkenyl group, alkynyl group, alkoxy group, alkoxycarbonyl group, alkylamidocarbonyl group, alkylcarbonylamide group, acyl group, amino group, monoalkylamino group, dialkylamino group, silyl group, monoalkylsilyl group, Examples thereof include a dialkylsilyl group, a trialkylsilyl group, a monoalkoxysilyl group, a dialkoxysilyl group, a trialkoxysilyl group, an aryl group, and a heteroaryl group. The aromatic ring formed by R a and R b, the substituent of the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i , or the aromatic ring formed by R j and R k include A cyano group, hydroxy group, carboxyl group, alkylthio group, alkyl group, alkoxy group, alkoxycarbonyl group, amide group, alkylsulfonyl group, fluorine, chlorine, aryl group, or heteroaryl group from the viewpoint of safety to living bodies It is preferable that these substituents may further have a substituent. However, the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子を挙げることができ、フッ素原子、塩素原子及び臭素原子が好ましく、フッ素原子がより好ましい。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, and more preferably a fluorine atom.
 アルキル基、アルケニル基、及びアルキニル基としては、直鎖状であってもよく、分岐状であってもよく、環状(脂肪族環基)であってもよい。これらの基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましく、1~6がさらに好ましい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基(tert-ブチル基)、ペンチル基、イソアミル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基等が挙げられる。アルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、イソプロピニル基、1-ブチニル基、イソブチニル基等が挙げられる。 The alkyl group, alkenyl group, and alkynyl group may be linear, branched, or cyclic (aliphatic cyclic group). These groups preferably have 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 8, and further preferably 1 to 6. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group (tert-butyl group), pentyl group, isoamyl group, hexyl group, heptyl group, Examples include octyl group, nonyl group, decyl group, undecyl group, dodecyl group and the like. Examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, a 1,3-butadienyl group, a 2-pentenyl group, and a 2-hexenyl group. Examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, isopropynyl group, 1-butynyl group, isobutynyl group and the like.
 アルキルスルフォニル基、アルキルチオ基、アルコキシ基、アルコキシカルボニル基、アルキルアミドカルボニル基、アルキルカルボニルアミド基、モノアルキルアミノ基、ジアルキルアミノ基、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、モノアルコキシシリル基、ジアルコキシシリル基、及びトリアルコキシシリル基におけるアルキル基部分としては、前記アルキル基と同様のものが挙げられる。例えば、アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、イソアミルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基等が挙げられる。また、例えば、モノアルキルアミノ基としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基等を挙げることができ、ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ブチルメチルアミノ基、エチルプロピルアミノ基、ブチルエチルアミノ基等を挙げることができる。 Alkylsulfonyl group, alkylthio group, alkoxy group, alkoxycarbonyl group, alkylamidocarbonyl group, alkylcarbonylamide group, monoalkylamino group, dialkylamino group, monoalkylsilyl group, dialkylsilyl group, trialkylsilyl group, monoalkoxysilyl Examples of the alkyl group moiety in the group, dialkoxysilyl group, and trialkoxysilyl group include the same alkyl groups as those described above. For example, the alkoxy group includes methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group, heptyloxy group Octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group and the like. Further, for example, as monoalkylamino group, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, t-butylamino group, pentylamino group, hexylamino group, etc. Examples of the dialkylamino group include dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, dipentylamino group, dihexylamino group, ethylmethylamino group, and methylpropyl group. Examples thereof include an amino group, a butylmethylamino group, an ethylpropylamino group, and a butylethylamino group.
 アリール基としては、例えば、フェニル基、ナフチル基、インデニル基、ビフェニル基等が挙げられる。好ましくはフェニル基である。
 ヘテロアリール基としては、例えば、ピロリル基、イミダゾリル基、ピラゾリル基、チエニル基、フラニル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾール基等の5員環ヘテロアリール基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基等の6員環ヘテロアリール基;インドリル基、イソインドリル基、インダゾリル基、キノリジニル基、キノリニル基、イソキノリニル基、ベンゾフラニル基、イソベンゾフラニル基、クロメニル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基などの縮合ヘテロアリール基を挙げることができる。
Examples of the aryl group include a phenyl group, a naphthyl group, an indenyl group, and a biphenyl group. A phenyl group is preferred.
Examples of the heteroaryl group include a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a thienyl group, a furanyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, and a thiadiazole group; a pyridinyl group and a pyrazinyl group Groups, 6-membered heteroaryl groups such as pyrimidinyl group, pyridazinyl group; indolyl group, isoindolyl group, indazolyl group, quinolidinyl group, quinolinyl group, isoquinolinyl group, benzofuranyl group, isobenzofuranyl group, chromenyl group, benzoxazolyl And a condensed heteroaryl group such as a benzoisoxazolyl group, a benzothiazolyl group, and a benzoisothiazolyl group.
 アルキル基、アルケニル基、アルキニル基、アリール基、及びヘテロアリール基は、無置換の基であってもよく、1以上の水素原子が置換基によって置換されていてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基、ヘテロアリール基等が挙げられる。 The alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group may be an unsubstituted group, and one or more hydrogen atoms may be substituted with a substituent. Examples of the substituent include a halogen atom, alkyl group, alkoxy group, nitro group, cyano group, hydroxy group, amino group, thiol group, carboxyl group, aldehyde group, sulfonic acid group, isocyanate group, thioisocyanate group, and aryl group. And heteroaryl groups.
 蛍光材料の吸収波長及び蛍光波長は周辺の環境に依存する。それ故、樹脂中における蛍光材料の吸収波長は、溶液中と比較して短波長化する場合もあれば、長波長化する場合もある。本発明において用いられるBODIPY色素やDPP系ホウ素錯体など自身の吸収波長が長波長化されている場合には、種々の樹脂中でも極大吸収波長が近赤外領域にあるようになるため好ましい。蛍光材料の極大吸収波長は、分子内の適切な位置に電子供与性基と電子求引性基を導入することにより、最高被占軌道(HOMO)と最低空軌道(LUMO)間のバンドギャップを狭め、より長波長化することができる。 The absorption wavelength and fluorescence wavelength of fluorescent materials depend on the surrounding environment. Therefore, the absorption wavelength of the fluorescent material in the resin may be shorter or longer than that in the solution. When the absorption wavelength of the BODIPY dye or DPP-based boron complex used in the present invention is increased, the maximum absorption wavelength is in the near infrared region among various resins. The maximum absorption wavelength of the fluorescent material can be obtained by introducing the electron donating group and the electron withdrawing group at appropriate positions in the molecule, thereby reducing the band gap between the highest occupied orbital (HOMO) and the lowest unoccupied orbit (LUMO). Narrower and longer wavelength can be achieved.
 例えば、一般式(II)で表される化合物のうち、R及びRが形成する芳香環及びR及びRが形成する芳香環に電子供与性基を導入し、Rに電子求引性基を導入することにより、当該化合物の極大吸収波長及び極大蛍光波長をより長波長化することができる。同様に、一般式(II)で表される化合物のうち、R及びRが形成する芳香環並びにR及びRが形成する芳香環に電子供与性基を導入すること、R及びRが芳香環を有する場合には当該芳香環に電子供与性基を導入すること、又はR及びRに電子求引性基を導入することにより、当該化合物の極大吸収波長及び極大蛍光波長をより長波長化することができる。これらの設計を組み合わせることにより、目的の波長に調整することが可能である。 For example, among the compounds represented by the general formula (II 1 ), an electron donating group is introduced into the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d, and an electron is introduced into R g . By introducing an attractive group, the maximum absorption wavelength and the maximum fluorescence wavelength of the compound can be made longer. Similarly, among the compounds represented by the general formula (II 3 ), an electron donating group is introduced into the aromatic ring formed by R h and R i and the aromatic ring formed by R j and R k , R p And when R q has an aromatic ring, by introducing an electron donating group into the aromatic ring, or by introducing an electron withdrawing group into R r and R s , the maximum absorption wavelength and the maximum The fluorescence wavelength can be made longer. By combining these designs, it is possible to adjust to the target wavelength.
 アザBODIPY骨格を有する一般式(II)で表される化合物は、R及びRが形成する芳香環及びR及びRが形成する芳香環が無置換であっても比較的長波長に吸収を有する骨格である。一般式(II)で表される化合物とは異なり、当該骨格ではピロールの架橋部分が窒素原子であるために窒素上に置換基を導入することができないが、ピロール部分(R及びRが形成する芳香環及びR及びRが形成する芳香環)に電子供与性基を導入することにより、当該化合物の極大吸収波長及び極大蛍光波長をより長波長化できる。同様に、一般式(II)で表される化合物の場合、ピロール部分(R及びRが形成する芳香環並びにR及びRが形成する芳香環)に電子供与性基を導入すること、又はR及びRが芳香環を有する場合には当該芳香環に電子供与性基を導入することにより、当該化合物の極大吸収波長及び極大蛍光波長をより長波長化できる。 The compound represented by the general formula (II 2 ) having an aza-BODIPY skeleton has a relatively long wavelength even if the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d are unsubstituted. Is a skeleton having absorption. Unlike the compound represented by the general formula (II 1 ), in the skeleton, since the pyrrole cross-linked portion is a nitrogen atom, a substituent cannot be introduced on the nitrogen, but the pyrrole portion (R a and R b By introducing an electron donating group into the aromatic ring formed by R c and R d formed by R c and R d ), the maximum absorption wavelength and the maximum fluorescence wavelength of the compound can be made longer. Similarly, in the case of the compound represented by the general formula (II 4 ), an electron donating group is introduced into the pyrrole moiety (the aromatic ring formed by R h and R i and the aromatic ring formed by R j and R k ). In addition, when R p and R q have an aromatic ring, the maximum absorption wavelength and the maximum fluorescence wavelength of the compound can be made longer by introducing an electron donating group into the aromatic ring.
 このため、R及びRが形成する芳香環、R及びRが形成する芳香環、R及びRが形成する芳香環、並びにR及びRが形成する芳香環が有する置換基としては、「化合物の蛍光を阻害しない任意の基」のうち、当該芳香環に対して電子供与性基として機能する基が好ましい。当該芳香環に電子供与性基が導入されることにより、一般式(II)、一般式(II)、一般式(II)、又は一般式(II)で表される化合物の蛍光がより長波長側になる。電子供与性基として機能する基としては、例えば、アルキル基;メトキシ基等のアルコキシ基;フェニル基、p-アルコキシフェニル基、p-ジアルキルアミノフェニル基、ジアルコキシフェニル基等のアリール基(芳香環基);2-チエニル基、2-フラニル基等のヘテロアリール基(複素芳香環基)等が挙げられる。アルキル基や、フェニル基の置換基中のアルキル基、アルコキシ基中のアルキル基部分としては、炭素数1~10の直鎖状又は分岐鎖状のアルキル基が好ましい。なお、アルキル基部分の炭素数や分岐の有無は、蛍光材料の諸物性を鑑み、適宜選択すればよい。溶解性や相溶性などの観点からは、炭素数6以上が好ましい場合や分岐している方が好ましい場合もある。R及びRが形成する芳香環、R及びRが形成する芳香環、R及びRが形成する芳香環、並びにR及びRが形成する芳香環が有する置換基としては、C1-6アルキル基、C1-6アルコキシ基、アリール基、又はヘテロアリール基が好ましく、メチル基、エチル基、メトキシ基、フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基がより好ましく、メチル基、エチル基、メトキシ基、フェニル基又はp-メトキシフェニル基がさらに好ましい。BODIPY骨格及びDPP骨格は平面性が高いため、π-πスタッキングにより分子同士が凝集し易い。BODIPY骨格又はDPP骨格に嵩高い置換基をもつアリール基やヘテロアリール基を導入することにより、分子の凝集が抑制でき、本発明に係る樹脂組成物の発光量子収率を高くすることができる。 For this reason, the aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k have As the group, among “any group that does not inhibit the fluorescence of the compound”, a group that functions as an electron-donating group for the aromatic ring is preferable. By introducing an electron donating group into the aromatic ring, fluorescence of the compound represented by the general formula (II 1 ), the general formula (II 2 ), the general formula (II 3 ), or the general formula (II 4 ) Becomes longer wavelength side. Examples of the group that functions as an electron donating group include alkyl groups; alkoxy groups such as methoxy groups; aryl groups such as phenyl groups, p-alkoxyphenyl groups, p-dialkylaminophenyl groups, dialkoxyphenyl groups (aromatic rings). Group); heteroaryl groups (heteroaromatic ring groups) such as 2-thienyl group and 2-furanyl group. As the alkyl group, the alkyl group in the substituent of the phenyl group, and the alkyl group portion in the alkoxy group, a linear or branched alkyl group having 1 to 10 carbon atoms is preferable. In addition, what is necessary is just to select suitably the carbon number of an alkyl group part, and the presence or absence of a branch in view of the various physical properties of a fluorescent material. From the viewpoints of solubility and compatibility, it may be preferable that the number of carbon atoms is 6 or more or that it is branched. Examples of the substituent that the aromatic ring formed by R a and R b , the aromatic ring formed by R c and R d , the aromatic ring formed by R h and R i, and the aromatic ring formed by R j and R k include A C 1-6 alkyl group, a C 1-6 alkoxy group, an aryl group, or a heteroaryl group, preferably a methyl group, an ethyl group, a methoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group, p -A dimethylaminophenyl group, a dimethoxyphenyl group, a thienyl group, or a furanyl group is more preferable, and a methyl group, an ethyl group, a methoxy group, a phenyl group, or a p-methoxyphenyl group is more preferable. Since the BODIPY skeleton and the DPP skeleton have high planarity, molecules are easily aggregated by π-π stacking. By introducing an aryl group or heteroaryl group having a bulky substituent into the BODIPY skeleton or DPP skeleton, aggregation of molecules can be suppressed and the emission quantum yield of the resin composition according to the present invention can be increased.
 一般式(II)又は一般式(II)中、R及びRが形成する芳香環と、R及びRが形成する芳香環とは、相違していてもよく、同種であってもよい。一般式(II)又は一般式(II)中、R及びRが形成する芳香環と、R及びRが形成する芳香環とは、相違していてもよく、同種であってもよい。本発明において用いられるBODIPY色素又はDPP系ホウ素錯体としては、合成が容易であることに加え、より発光量子収率が高い傾向にあることから、R及びRが形成する芳香環とR及びRが形成する芳香環、又はR及びRが形成する芳香環とR及びRが形成する芳香環は、同種であることが好ましい。 In general formula (II 1 ) or general formula (II 2 ), the aromatic ring formed by R a and R b and the aromatic ring formed by R c and R d may be different or the same. May be. In the general formula (II 3 ) or the general formula (II 4 ), the aromatic ring formed by R h and R i may be different from the aromatic ring formed by R j and R k. May be. As the BODIPY dye or DPP-based boron complex used in the present invention, since the emission quantum yield tends to be higher in addition to easy synthesis, the aromatic ring formed by R a and R b and R c and aromatic ring R d form, or an aromatic ring which R h and R i is an aromatic ring and R j and R k to be formed is formed is preferably the same type.
 一般式(II)又は一般式(II)中、R及びRは、互いに独立して、ハロゲン原子又は酸素原子を表す。R及びRがハロゲン原子の場合、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子又は塩素原子がより好ましく、ホウ素原子と強固な結合を有することからフッ素原子が特に好ましい。R及びRがフッ素原子の化合物は耐熱性が高いため、樹脂と高温で溶融混練する場合には有利である。なお、一般式(II)又は一般式(II)で表される化合物としては、R及びRがハロゲン原子又は酸素原子ではなく、ホウ素原子と結合しうる原子を含んだ置換基であっても、本発明において用いられるBODIPY色素と同様に樹脂に含有させることができる。当該置換基としては、蛍光を阻害しないものであれば許容される。 In General Formula (II 1 ) or General Formula (II 2 ), R e and R f each independently represent a halogen atom or an oxygen atom. When R e and R f are halogen atoms, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom or a chlorine atom is more preferable, and a fluorine atom is particularly preferable because it has a strong bond with a boron atom. . A compound in which R e and R f are fluorine atoms has high heat resistance, and thus is advantageous when melt kneaded with a resin at a high temperature. In addition, as a compound represented by general formula (II 1 ) or general formula (II 2 ), R e and R f are not a halogen atom or an oxygen atom but a substituent containing an atom that can be bonded to a boron atom. Even if it exists, it can be made to contain in resin similarly to the BODIPY pigment | dye used in this invention. The substituent is acceptable as long as it does not inhibit fluorescence.
 一般式(II)又は一般式(II)中、R及びRが酸素原子の場合、R、Rと結合するホウ素原子、R、及びRが結合する窒素原子が共に環を形成してもよく、R、Rと結合するホウ素原子、R、及びRが結合する窒素原子が共に環を形成してもよい。つまり、環構造を形成する場合は、R、Rと結合するホウ素原子、及びRが結合する窒素原子が形成する環は、R及びRが形成する芳香環と縮合し、R、Rと結合するホウ素原子、及びRが結合する窒素原子が形成する環は、R及びRが形成する芳香環と縮合する。R等が形成する環及びR等が形成する環は、好ましくは6員環である。 In the general formula (II 1 ) or general formula (II 2 ), when R e and R f are oxygen atoms, R e , a boron atom bonded to R e , a R a , and a nitrogen atom bonded to R a are both A ring may be formed, and a boron atom bonded to R f , R f , R c , and a nitrogen atom bonded to R c may form a ring together. That is, when forming a ring structure, a ring formed by a boron atom bonded to R e , R e and a nitrogen atom bonded to R a is condensed with an aromatic ring formed by R a and R b , and R A ring formed by a boron atom bonded to f 1 , R f , and a nitrogen atom bonded to R c is condensed with an aromatic ring formed by R c and R d . The ring formed by R e and the like and the ring formed by R f and the like are preferably 6-membered rings.
 一般式(II)又は一般式(II)中、Rが酸素原子の場合であって、Rが環を形成していない場合には、Rは置換基を有する酸素原子(置換基と結合した酸素原子)である。当該置換基としては、C1-20アルキル基、アリール基、ヘテロアリール基、アルキルカルボニル基、アリールカルボニル基、又はヘテロアリールカルボニル基等が挙げられる。同様に、一般式(II)又は一般式(II)中、Rが酸素原子の場合であって、Rが環を形成していない場合には、Rは置換基を有する酸素原子(置換基と結合した酸素原子)である。当該置換基としては、C1-20アルキル基、アリール基、ヘテロアリール基、アルキルカルボニル基、アリールカルボニル基、又はヘテロアリールカルボニル基等が挙げられる。なお、R及びRが共に置換基を有する酸素原子の場合、Rが有する置換基とRが有する置換基とは、同種であってもよく異種であってもよい。 In the general formula (II 1 ) or general formula (II 2 ), when R e is an oxygen atom and R e does not form a ring, R e is an oxygen atom having a substituent (substituted) Oxygen atom bonded to the group). Examples of the substituent include a C 1-20 alkyl group, an aryl group, a heteroaryl group, an alkylcarbonyl group, an arylcarbonyl group, and a heteroarylcarbonyl group. Similarly, in the general formula (II 1 ) or general formula (II 2 ), when R f is an oxygen atom and R f does not form a ring, R f represents oxygen having a substituent. An atom (an oxygen atom bonded to a substituent). Examples of the substituent include a C 1-20 alkyl group, an aryl group, a heteroaryl group, an alkylcarbonyl group, an arylcarbonyl group, and a heteroarylcarbonyl group. When both R e and R f are oxygen atoms having a substituent, the substituent that R e has and the substituent that R f has may be the same or different.
 一般式(II)又は一般式(II)中、R及びRが酸素原子の場合、R、R、並びにR及びRと結合するホウ素原子が共に環を形成してもよい。当該環構造としては、例えば、R及びRが同じアリール環又はヘテロアリール環と連結している構造、R及びRがアルキレン基により連結している構造が挙げられる。 In the general formula (II 1 ) or general formula (II 2 ), when R e and R f are oxygen atoms, R e , R f , and a boron atom bonded to R e and R f together form a ring. Also good. Examples of the ring structure include a structure in which R e and R f are connected to the same aryl ring or heteroaryl ring, and a structure in which R e and R f are connected by an alkylene group.
 一般式(II)又は一般式(II)中、R、R、R、及びRは、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。R、R、R、又はRがハロゲン原子の場合、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子又は塩素原子がより好ましく、ホウ素原子と強固な結合を有することからフッ素原子が特に好ましい。R、R、R、及びRがフッ素原子の化合物は耐熱性が高いため、樹脂と高温で溶融混練する場合には有利である。 In general formula (II 3 ) or general formula (II 4 ), R 1 , R m , R n , and R o are each independently a halogen atom, a C 1-20 alkyl group, or a C 1-20 alkoxy group. Represents an aryl group or a heteroaryl group. When R 1 , R m , R n , or Ro is a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom or a chlorine atom is more preferable, and a strong bond with a boron atom is provided. Therefore, a fluorine atom is particularly preferable. A compound in which R l , R m , R n , and R o are fluorine atoms has high heat resistance, and therefore is advantageous when melt kneaded with a resin at a high temperature.
 なお、本願発明及び本願明細書において、「C1-20アルキル基」は炭素数1~20のアルキル基を意味し、「C1-20アルコキシ基」は炭素数1~20のアルコキシ基を意味する。 In the present invention and the present specification, “C 1-20 alkyl group” means an alkyl group having 1 to 20 carbon atoms, and “C 1-20 alkoxy group” means an alkoxy group having 1 to 20 carbon atoms. To do.
 R、R、R、又はRがC1-20アルキル基の場合、当該アルキル基としては、直鎖状であってもよく、分岐状であってもよく、環状(脂肪族環基)であってもよい。当該アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。 When R 1 , R m , R n , or Ro is a C 1-20 alkyl group, the alkyl group may be linear, branched, or cyclic (aliphatic ring) Group). Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isoamyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group. Decyl group, undecyl group, dodecyl group and the like.
 R、R、R、又はRがC1-20アルコキシ基の場合、当該アルコキシ基のアルキル基部分としては、直鎖状であってもよく、分岐状であってもよく、環状(脂肪族環基)であってもよい。当該アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、イソアミルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基等が挙げられる。 When R 1 , R m , R n , or R o is a C 1-20 alkoxy group, the alkyl group portion of the alkoxy group may be linear, branched, or cyclic (Aliphatic cyclic group) may be used. Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group, heptyloxy group, Examples include octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group and the like.
 R、R、R、又はRがアリール基の場合、当該アリール基としては、フェニル基、ナフチル基、インデニル基、ビフェニル基等が挙げられる。
 R、R、R、又はRがヘテロアリール基の場合、当該ヘテロアリール基としては、ピロリル基、イミダゾリル基、ピラゾリル基、チエニル基、フラニル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾール基等の5員環ヘテロアリール基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基等の6員環ヘテロアリール基;インドリル基、イソインドリル基、インダゾリル基、キノリジニル基、キノリニル基、イソキノリニル基、ベンゾフラニル基、イソベンゾフラニル基、クロメニル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基などの縮合ヘテロアリール基を挙げることができる。
When R 1 , R m , R n , or Ro is an aryl group, examples of the aryl group include a phenyl group, a naphthyl group, an indenyl group, and a biphenyl group.
When R 1 , R m , R n , or Ro is a heteroaryl group, examples of the heteroaryl group include pyrrolyl group, imidazolyl group, pyrazolyl group, thienyl group, furanyl group, oxazolyl group, isoxazolyl group, thiazolyl group, 5-membered ring heteroaryl groups such as isothiazolyl group and thiadiazole group; 6-membered ring heteroaryl groups such as pyridinyl group, pyrazinyl group, pyrimidinyl group and pyridazinyl group; indolyl group, isoindolyl group, indazolyl group, quinolidinyl group, quinolinyl group, isoquinolinyl group And a condensed heteroaryl group such as a benzofuranyl group, an isobenzofuranyl group, a chromenyl group, a benzoxazolyl group, a benzoisoxazolyl group, a benzothiazolyl group, and a benzoisothiazolyl group.
 R、R、R、又はRが表すC1-20アルキル基、C1-20アルコキシ基、アリール基、及びヘテロアリール基は、無置換の基であってもよく、1以上の水素原子が置換基によって置換されていてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基、ヘテロアリール基等が挙げられる。 The C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R 1 , R m , R n , or R o may be an unsubstituted group or one or more The hydrogen atom may be substituted with a substituent. Examples of the substituent include a halogen atom, alkyl group, alkoxy group, nitro group, cyano group, hydroxy group, amino group, thiol group, carboxyl group, aldehyde group, sulfonic acid group, isocyanate group, thioisocyanate group, and aryl group. And heteroaryl groups.
 一般式(II)又は一般式(II)で表される化合物としては、R、R、R、及びRがハロゲン原子、無置換のアリール基、又は置換基を有するアリール基が好ましく、フッ素原子、塩素原子、臭素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基が好ましく、フッ素原子、塩素原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基がより好ましく、フッ素原子又は無置換のフェニル基が特に好ましい。 As a compound represented by general formula (II 3 ) or general formula (II 4 ), R 1 , R m , R n , and R o are a halogen atom, an unsubstituted aryl group, or an aryl group having a substituent. Preferred is a fluorine atom, a chlorine atom, a bromine atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group. A fluorine atom, a chlorine atom, an unsubstituted A phenyl group or a phenyl group substituted with a C 1-10 alkyl group or a C 1-10 alkoxy group is more preferred, and a fluorine atom or an unsubstituted phenyl group is particularly preferred.
 一般式(II)又は一般式(II)中、R及びRは、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。R及びRが表すハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、及びヘテロアリール基としては、前記一般式(II)のR、R、R、又はRと同様のものが挙げられる。 In general formula (II 3 ) or general formula (II 4 ), R p and R q each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, Or represents a heteroaryl group. Examples of the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R p and R q include R 1 , R m , R n in the general formula (II 3 ). Or the same as R o .
 一般式(II)又は一般式(II)で表される化合物としては、R及びRが水素原子又はアリール基であるものが好ましく、水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であるものが好ましく、水素原子、無置換のフェニル基、又はC1-20アルコキシ基で置換されたフェニル基であるものがより好ましく、水素原子、無置換のフェニル基、又はC1-10アルコキシ基で置換されたフェニル基であるものが特に好ましい。 As the compound represented by the general formula (II 3 ) or the general formula (II 4 ), those in which R p and R q are a hydrogen atom or an aryl group are preferable, and a hydrogen atom, an unsubstituted phenyl group, or C 1 A phenyl group substituted with a -20 alkyl group or a C 1-20 alkoxy group is preferred, and a phenyl group substituted with a hydrogen atom, an unsubstituted phenyl group, or a C 1-20 alkoxy group is more preferred. A hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-10 alkoxy group is particularly preferable.
 一般式(II)中、Rは、水素原子、又は電子求引性基を表す。また、一般式(II)中、R及びRは、互いに独立して、水素原子、又は電子求引性基を表す。当該電子求引性基としては、例えば、トリフルオロメチル基などのようなハロゲン化メチル基;ニトロ基;シアノ基;アリール基;ヘテロアリール基;アルキニル基;アルケニル基;カルボキシル基、アシル基、カルボニルオキシ基、アミド基、アルデヒド基などのカルボニル基を有する置換基;スルホキシド基;スルホニル基;アルコキシメチル基;アミノメチル基などが挙げられ、これらの電子求引性基を置換基として持つアリール基やヘテロアリール基なども使用することができる。これらの電子求引性基の中でも、極大蛍光波長の長波長化の点から、強い電子求引性基として機能し得るトリフルオロメチル基、ニトロ基、シアノ基、スルホニル基等が好ましい。 In general formula (II 1 ), R g represents a hydrogen atom or an electron withdrawing group. In the general formula (II 3 ), R r and R s each independently represent a hydrogen atom or an electron withdrawing group. Examples of the electron withdrawing group include a halogenated methyl group such as a trifluoromethyl group, a nitro group, a cyano group, an aryl group, a heteroaryl group, an alkynyl group, an alkenyl group, a carboxyl group, an acyl group, and a carbonyl group. Substituents having a carbonyl group such as an oxy group, an amide group, and an aldehyde group; sulfoxide groups; sulfonyl groups; alkoxymethyl groups; aminomethyl groups and the like, and aryl groups having these electron-withdrawing groups as substituents; A heteroaryl group or the like can also be used. Among these electron withdrawing groups, a trifluoromethyl group, a nitro group, a cyano group, a sulfonyl group and the like that can function as a strong electron withdrawing group are preferable from the viewpoint of increasing the maximum fluorescence wavelength.
 本発明において用いられるBODIPY色素としては、下記一般式(II-0)又は一般式(II-0)で表される化合物が好ましい。ボロンジピロメテン骨格を有する化合物は、極大蛍光波長がより長波長になるため好ましく、特に下記の(p2)、(p3)、(q2)、又は(q3)を充足する、ピロール環が芳香環又は複素芳香環と縮合した化合物は、極大波長がさらに長波長になるため、本発明において用いられる近赤外蛍光材料として好ましい。 The BODIPY dye used in the present invention, a compound represented by the following general formula (II 1 -0) or the general formula (II 2 -0) are preferred. A compound having a boron dipyrromethene skeleton is preferable because the maximum fluorescence wavelength becomes longer, and particularly, the pyrrole ring satisfying the following (p2), (p3), (q2), or (q3) is an aromatic ring or A compound condensed with a heteroaromatic ring is preferable as the near-infrared fluorescent material used in the present invention because the maximum wavelength becomes a longer wavelength.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 一般式(II-0)又は一般式(II-0)中、R101、R102、及びR103は、下記(p1)~(p3)のいずれかを充足する。
(p1)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(p2)R101及びR102は共に、芳香族5員環又は芳香族6員環を形成し、R103は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(p3)R102及びR103は共に、芳香族5員環又は芳香族6員環を形成し、R101は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
In general formula (II 1 -0) or general formula (II 2 -0), R 101 , R 102 , and R 103 satisfy any of the following (p1) to (p3).
(P1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(P2) R 101 and R 102 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 103 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or (p3) R 102 and R 103 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 101 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
 一般式(II-0)又は一般式(II-0)中、R104、R105、及びR106は、下記(q1)~(q3)のいずれかを充足する。
(q1)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
(q2)R104及びR105は共に、芳香族5員環又は芳香族6員環を形成し、R106は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(q3)R105及びR106は共に、芳香族5員環又は芳香族6員環を形成し、R104は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
In the general formula (II 1 -0) or the general formula (II 2 -0), R 104 , R 105 , and R 106 satisfy any of the following (q1) to (q3).
(Q1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
(Q2) R 104 and R 105 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 106 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or (q3) R 105 and R 106 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 104 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
 前記(p1)~(p3)又は(q1)~(q3)におけるハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、及びヘテロアリール基としては、それぞれ、RとRにおいて「化合物の蛍光を阻害しない任意の基」として例示されたものを用いることができる。 As the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group and heteroaryl group in the above (p1) to (p3) or (q1) to (q3), R a and R What was illustrated as "any group which does not inhibit the fluorescence of a compound" in b can be used.
 前記(p2)~(p3)又は(q2)~(q3)において、R101及びR102が共に形成する芳香族5員環又は芳香族6員環、R104及びR105が共に形成する芳香族5員環又は芳香族6員環、R102及びR103が共に形成する芳香族5員環又は芳香族6員環、R105及びR106が共に形成する芳香族5員環又は芳香族6員環としては、下記一般式(C-1)~(C-9)のいずれかで表されるものが好ましく、下記一般式(C-1)、(C-2)、又は(C-9)のいずれかで表されるものがより好ましい。下記一般式(C-1)~(C-9)中、アスタリスクが付されている箇所が、一般式(II-0)又は一般式(II-0)中のボロンジピロメテン骨格と結合する部分である。 In the above (p2) to (p3) or (q2) to (q3), an aromatic 5-membered ring or an aromatic 6-membered ring formed by R 101 and R 102 together, an aromatic formed by R 104 and R 105 together 5- or 6-membered aromatic ring, R 102 and R 103 is an aromatic 5- or 6-membered aromatic ring to form together an aromatic 5-membered to R 105 and R 106 form together ring or an aromatic 6-membered As the ring, those represented by any of the following general formulas (C-1) to (C-9) are preferred, and the following general formulas (C-1), (C-2), or (C-9) Those represented by any of the above are more preferred. In the following general formulas (C-1) ~ (C -9), places an asterisk is attached is combined with the general formula (II 1 -0) or boron dipyrromethene skeleton in the general formula (II 2 -0) It is a part to do.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 前記一般式(C-1)~(C-8)中、Y~Yは、互いに独立して硫黄原子、酸素原子、窒素原子、又はリン原子を表す。当該Y~Yとしては、互いに独立して硫黄原子、酸素原子、又は窒素原子であることが好ましく、互いに独立して硫黄原子又は酸素原子であることがより好ましい。 In the general formulas (C-1) to (C-8), Y 1 to Y 8 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom. Y 1 to Y 8 are preferably independently a sulfur atom, an oxygen atom, or a nitrogen atom, and more preferably a sulfur atom or an oxygen atom independently of each other.
 前記一般式(C-1)~(C-9)中、R11~R22は、互いに独立して水素原子、又は前記化合物の蛍光を阻害しない任意の基を表す。「化合物の蛍光を阻害しない任意の基」としては、RとRにおける「化合物の蛍光を阻害しない任意の基」で例示されたものを用いることができる。R11~R22としては、互いに独立して、水素原子、無置換のアリール基、置換基を有するアリール基、無置換のヘテロアリール基、又は置換基を有するヘテロアリール基であることが好ましく、水素原子、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基がより好ましく、水素原子、(無置換の)フェニル基、又はp-メトキシフェニル基がさらに好ましい。電子供与性を高めることと、嵩高い置換基によりBODIPY骨格の凝集を抑制できることから、前記化合物は、少なくとも一つの前記の無置換のアリール基、置換基を有するアリール基、無置換のヘテロアリール基、又は置換基を有するヘテロアリール基により置換されていることが特に好ましい。 In the general formulas (C-1) to (C-9), R 11 to R 22 each independently represent a hydrogen atom or an arbitrary group that does not inhibit the fluorescence of the compound. As “an arbitrary group that does not inhibit the fluorescence of the compound”, those exemplified in “an arbitrary group that does not inhibit the fluorescence of the compound” in R a and R b can be used. R 11 to R 22 are preferably each independently a hydrogen atom, an unsubstituted aryl group, an aryl group having a substituent, an unsubstituted heteroaryl group, or a heteroaryl group having a substituent, A hydrogen atom, an (unsubstituted) phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group, a p-dimethylaminophenyl group, a dimethoxyphenyl group, a thienyl group, or a furanyl group is more preferred, and a hydrogen atom, (unsubstituted) A phenyl group or a p-methoxyphenyl group is more preferable. Since the electron donating property can be increased and the aggregation of the BODIPY skeleton can be suppressed by a bulky substituent, the compound includes at least one of the above-described unsubstituted aryl group, aryl group having a substituent, and unsubstituted heteroaryl group. Or a heteroaryl group having a substituent is particularly preferred.
 一般式(II-0)又は一般式(II-0)の化合物としては、R101とR104、R102とR105、及びR103とR106は、それぞれ相違していてもよいが、同種の基であることが好ましい。つまり、R101、R102、及びR103が前記(p1)を充足する場合には、R104、R105、及びR106は前記(q1)を充足することが好ましく、R101、R102、及びR103が前記(p2)を充足する場合には、R104、R105、及びR106は前記(q2)を充足することが好ましく、R101、R102、及びR103が前記(p3)を充足する場合には、R104、R105、及びR106は前記(q3)を充足することが好ましい。 The compounds of general formula (II 1 -0) or the general formula (II 2 -0), R 101 and R 104, R 102 and R 105, and R 103 and R 106, which may be different from each It is preferable that they are the same kind of group. That is, when R 101 , R 102 , and R 103 satisfy (p1), R 104 , R 105 , and R 106 preferably satisfy (q1), and R 101 , R 102 , And R 103 satisfy (p2), R 104 , R 105 , and R 106 preferably satisfy (q2), and R 101 , R 102 , and R 103 satisfy (p3). R 104 , R 105 , and R 106 preferably satisfy the above (q3).
 一般式(II-0)又は一般式(II-0)の化合物としては、R101及びR102が環を形成し、R104及びR105が環を形成している、又は、R102及びR103が環を形成し、R105及びR106が環を形成していることが好ましい。すなわち、R101、R102、及びR103が前記(p2)又は(p3)を充足し、R104、R105、及びR106が前記(q2)又は(q3)を充足するものが好ましい。ボロンジピロメテン骨格にさらに芳香環又は複素芳香環が縮合することにより、極大蛍光波長がより長波長側となるためである。 As a compound of general formula (II 1 -0) or general formula (II 2 -0), R 101 and R 102 form a ring, R 104 and R 105 form a ring, or R 102 And R 103 forms a ring, and R 105 and R 106 preferably form a ring. That is, it is preferable that R 101 , R 102 , and R 103 satisfy (p2) or (p3), and R 104 , R 105 , and R 106 satisfy (q2) or (q3). This is because when the aromatic ring or heteroaromatic ring is further condensed to the boron dipyrromethene skeleton, the maximum fluorescence wavelength becomes longer.
 一般式(II-0)又は一般式(II-0)中、R107及びR108は、ハロゲン原子又は酸素原子を表す。R107及びR108が酸素原子の場合には、R107、R107と結合するホウ素原子、ホウ素原子が結合する窒素原子、R101、及びR101と結合する炭素原子が共に環を形成してもよく、R108、R108と結合するホウ素原子、ホウ素原子が結合する窒素原子、R104、及びR104と結合する炭素原子が共に環を形成してもよい。つまり、R107とホウ素原子とR101等が形成する環と、R108とホウ素原子とR104等が形成する環は、いずれもボロンジピロメテン骨格と縮合する。R107とホウ素原子とR101等が形成する環、及びR108とホウ素原子とR104等が形成する環は、好ましくは6員環である。 In general formula (II 1 -0) or general formula (II 2 -0), R 107 and R 108 represent a halogen atom or an oxygen atom. When R 107 and R 108 are oxygen atoms, a boron atom bonded to R 107 , R 107 , a nitrogen atom bonded to the boron atom, R 101 , and a carbon atom bonded to R 101 together form a ring. At best, the boron atom bonded to the R 108, R 108, nitrogen atom to boron atom bonded, R 104, and carbon atoms may together form a ring bonded with R 104. In other words, ring and ring R 107 boron atoms and R 101 or the like is formed, the R 108 and the boron atom and R 104 or the like is formed are both condensed with boron dipyrromethene backbone. The ring formed by R 107 , boron atom, R 101 and the like, and the ring formed by R 108 , boron atom, R 104 and the like are preferably 6-membered rings.
 一般式(II-0)又は一般式(II-0)中、R107が酸素原子であり、かつ環を形成していない場合には、R107は置換基を有する酸素原子(置換基と結合した酸素原子)である。当該置換基としては、C1-20アルキル基、アリール基、又はヘテロアリール基等が挙げられる。同様に、一般式(II-0)又は一般式(II-0)中、R108が酸素原子であり、かつ環を形成していない場合には、R108は置換基を有する酸素原子(置換基と結合した酸素原子)である。当該置換基としては、C1-20アルキル基、アリール基、又はヘテロアリール基等が挙げられる。なお、R107及びR108が共に置換基を有する酸素原子の場合、R107が有する置換基とR108が有する置換基とは、同種であってもよく異種であってもよい。 In the general formula (II 1 -0) or the general formula (II 2 -0), R 107 is an oxygen atom, and if does not form a ring, R 107 is an oxygen atom (substituent group having a substituent Oxygen atoms bonded to each other). Examples of the substituent include a C 1-20 alkyl group, an aryl group, and a heteroaryl group. Similarly, in the general formula (II 1 -0) or the general formula (II 2 -0), when R 108 is an oxygen atom, and do not form a ring, R 108 is an oxygen atom having a substituent group (Oxygen atom bonded to a substituent). Examples of the substituent include a C 1-20 alkyl group, an aryl group, and a heteroaryl group. Note that when both R 107 and R 108 are oxygen atoms having a substituent, the substituent that R 107 has and the substituent that R 108 have may be the same or different.
 一般式(II-0)中、R109は、水素原子、又は電子求引性基を表す。電子求引性基としては、前記Rで挙げられた基と同様のものが挙げられる。中でも、極大蛍光波長の長波長化の点から、強い電子求引性基として機能し得るフルオロアルキル基、ニトロ基、シアノ基、アリール基、スルホニル基が好ましく、トリフルオロメチル基、ニトロ基、シアノ基、フェニル基、スルホニル基等がより好ましく、生体に対する安全性の点からトリフルオロメチル基、シアノ基、フェニル基、スルホニル基がさらに好ましい。ただし、これらの置換基に限定されるものではない。 In general formula (II 1 -0), R 109 represents a hydrogen atom or an electron-withdrawing group. Examples of the electron withdrawing group include the same groups as those described above for R g . Among these, from the viewpoint of increasing the maximum fluorescence wavelength, a fluoroalkyl group, a nitro group, a cyano group, an aryl group, and a sulfonyl group that can function as a strong electron-attracting group are preferable. A trifluoromethyl group, a nitro group, and a cyano group are preferable. Group, phenyl group, sulfonyl group and the like are more preferable, and trifluoromethyl group, cyano group, phenyl group and sulfonyl group are more preferable from the viewpoint of safety to living bodies. However, it is not limited to these substituents.
 本発明において用いられるBODIPY色素としては、一般式(II-0)又は一般式(II-0)で表される化合物のうち、R101及びR102が共に、上記一般式(C-1)で表される環のうち、R11とR12のいずれか一方が水素原子であり、残る一方が、1~3個の水素原子がハロゲン原子、C1-20アルキル基、又はC1-20アルコキシ基により置換されていてもよいフェニル基、チエニル基、又はフラニル基である環を形成し、R104及びR105が共にR101及びR102が形成する環と同種の環を形成し、R103及びR106が水素原子であり、R107及びR108がハロゲン原子である化合物;R101及びR102が共に、上記一般式(C-2)で表される環のうち、R13とR14のいずれか一方が水素原子であり、残る一方が、1~3個の水素原子がハロゲン原子、C1-20アルキル基、又はC1-20アルコキシ基により置換されていてもよいフェニル基、チエニル基、又はフラニル基である環を形成し、R104及びR105が共にR101及びR102が形成する環と同種の環を形成し、R103及びR106が水素原子であり、R107及びR108がハロゲン原子である化合物;R102及びR103が共に、上記一般式(C-1)で表される環のうち、R11とR12のいずれか一方が水素原子であり、残る一方が1~3個の水素原子がハロゲン原子、C1-20アルキル基、又はC1-20アルコキシ基により置換されていてもよいフェニル基、チエニル基、又はフラニル基である環を形成し、R105及びR106が共にR102及びR103が形成する環と同種の環を形成し、R101及びR104が水素原子であり、R107及びR108がハロゲン原子である化合物;R102及びR103が共に、上記一般式(C-2)で表される環のうち、R13とR14のいずれか一方が水素原子であり、残る一方が1~3個の水素原子がハロゲン原子、C1-20アルキル基、又はC1-20アルコキシ基により置換されていてもよいフェニル基、チエニル基、又はフラニル基である環を形成し、R105及びR106が共にR101及びR102が形成する環と同種の環を形成し、R101及びR104が水素原子であり、R107及びR108がハロゲン原子である化合物;R102及びR103が共に、上記一般式(C-9)で表される環のうち、R19~R22のうちのいずれか1個が1~3個の水素原子がハロゲン原子、C1-20アルキル基、又はC1-20アルコキシ基により置換されていてもよいフェニル基、チエニル基、又はフラニル基であり、残る3個が水素原子である環を形成し、R105及びR106が共にR101及びR102が形成する環と同種の環を形成し、R101及びR104が水素原子、ハロゲン原子、C1-20アルキル基、又はC1-20アルコキシ基により置換されていてもよいフェニル基、チエニル基、又はフラニル基であり、R107及びR108がハロゲン原子である化合物;が好ましい。これらの化合物が一般式(II-0)で表される化合物の場合、R109がトリフルオロメチル基、シアノ基、ニトロ基、又はフェニル基であるものがさらに好ましく、トリフルオロメチル基又はフェニル基であるものが特に好ましい。 The BODIPY dye used in the present invention, among the general formula (II 1 -0) or the compound represented by formula (II 2 -0), R 101 and R 102 are both the general formulas (C-1 ), Any one of R 11 and R 12 is a hydrogen atom, and the remaining one is a hydrogen atom, a C 1-20 alkyl group, or a C 1 1-3 hydrogen atom. 20 forms a ring that may be substituted with an alkoxy group, a phenyl group, a thienyl group, or a furanyl group, and R 104 and R 105 together form a ring of the same type as the ring formed by R 101 and R 102 ; Compounds in which R 103 and R 106 are hydrogen atoms and R 107 and R 108 are halogen atoms; R 101 and R 102 are both R 13 and R among the rings represented by the general formula (C-2) R 1 Any one of 4 is a hydrogen atom, and the other is a phenyl group in which 1 to 3 hydrogen atoms may be substituted with a halogen atom, a C 1-20 alkyl group, or a C 1-20 alkoxy group, A ring that is a thienyl group or a furanyl group is formed, R 104 and R 105 together form a ring that is the same as the ring that R 101 and R 102 form, R 103 and R 106 are hydrogen atoms, and R 107 And a compound in which R 108 is a halogen atom; both of R 102 and R 103 are a ring represented by the above general formula (C-1), and either one of R 11 and R 12 is a hydrogen atom and remains One forms a ring in which 1 to 3 hydrogen atoms are a phenyl, thienyl, or furanyl group optionally substituted by a halogen atom, a C 1-20 alkyl group, or a C 1-20 alkoxy group R 105 and R 106 together form a ring of the same kind as the ring formed by R 102 and R 103 , R 101 and R 104 are hydrogen atoms, and R 107 and R 108 are halogen atoms; In R 102 and R 103 , in the ring represented by the general formula (C-2), either one of R 13 and R 14 is a hydrogen atom, and the remaining one is 1 to 3 hydrogen atoms. A ring that is a phenyl group, a thienyl group, or a furanyl group, which may be substituted with a halogen atom, a C 1-20 alkyl group, or a C 1-20 alkoxy group, and R 105 and R 106 are both R 101 and to form a ring in the same type R 102 forms, R 101 and R 104 is a hydrogen atom and R 107 and R 108 is a halogen atom; R 102 and R 103 together, Of the rings represented by the serial formula (C-9), any one of 1 to 3 hydrogen atoms halogen atom of R 19 ~ R 22, C 1-20 alkyl, or C 1 A phenyl group, a thienyl group, or a furanyl group that may be substituted by an -20 alkoxy group to form a ring in which the remaining three are hydrogen atoms, and R 105 and R 106 together form R 101 and R 102 to form a ring in the same type, R 101 and R 104 is a hydrogen atom, a halogen atom, C 1-20 alkyl group, or a C 1-20 alkoxy group by an optionally substituted phenyl group, a thienyl group, or A compound that is a furanyl group and R 107 and R 108 are halogen atoms is preferred. For compounds in which these compounds are represented by the general formula (II 1 -0), R 109 is a trifluoromethyl group, a cyano group, more preferably those which are nitro group, or a phenyl group, a trifluoromethyl group or a phenyl Those which are groups are particularly preferred.
 本発明において用いられるBODIPY色素の好ましい化合物としては、下記一般式(II-1)、(II-2)、(II-3)、(II-1)、(II-2)、及び(II-3)で表される化合物が挙げられる。下記一般式(II-1)等中、R101、R103、R104、及びR106~R108は上記と同義であり、EDは電子供与性基を表し、EWは電子求引性基を表し、Z~Z環は、それぞれ独立して、5員環若しくは6員環のアリール基、又は5員環若しくは6員環のヘテロアリール基を表す。 Preferred compounds of the BODIPY dye used in the present invention include the following general formulas (II 1 -1), (II 1 -2), (II 1 -3), (II 2 -1), (II 2 -2) And compounds represented by (II 2 -3). In the following general formula (II 1 -1) etc., R 101 , R 103 , R 104 , and R 106 to R 108 are as defined above, ED represents an electron donating group, and EW represents an electron withdrawing group. Z 1 to Z 4 rings each independently represents a 5-membered or 6-membered aryl group, or a 5-membered or 6-membered heteroaryl group.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 下記一般式(II-1)としては、下記一般式(II-1-1)~(II-1-6)で表される化合物が好ましく、下記一般式(II-2)としては、下記一般式(II-2-1)~(II-2-12)で表される化合物が好ましく、下記一般式(II-1)としては、下記一般式(II-1-1)~(II-1-6)で表される化合物が好ましく、下記一般式(II-2)としては、下記一般式(II-2-1)~(II-2-12)で表される化合物が好ましい。 As the following general formula (II 1 -1), compounds represented by the following general formulas (II 1 -1-1) to (II 1 -1-6) are preferable, and the following general formula (II 1 -2) is preferable. is preferably a compound represented by the following general formula (II 1 -2-1) ~ (II 1 -2-12), as the following general formula (II 2 -1), the following general formula (II 2 -1 -1) to (II 2 -1-6) are preferred, and the following general formulas (II 2 -2) include the following general formulas (II 2 -2-1) to (II 2 -2-) The compound represented by 12) is preferred.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 一般式(II-1-1)~(II-1-6)、(II-2-1)~(II-2-4)、(II-2-7)~(II-2-10)、(II-1-1)~(II-1-6)、(II-2-1)~(II-2-4)、及び(II-2-7)~(II-2-10)中、Y11及びY12は、互いに独立して、酸素原子又は硫黄原子を表し、Y21及びY22は、互いに独立して、炭素原子又は窒素原子を表す。一般式(II-1-1)等で表される化合物としては、Y11及びY12は同種の原子であることが好ましく、Y21及びY22は同種の原子であることが好ましい。 Formulas (II 1 -1-1) to (II 1 -1-6), (II 1 -2-1) to (II 1 -2-4), (II 1 -2-7) to (II 1 -2-10), (II 2 -1-1) to (II 2 -1-6), (II 2 -2-1) to (II 2 -2-4), and (II 2 -2--7) ) To (II 2 -10), Y 11 and Y 12 each independently represent an oxygen atom or a sulfur atom, and Y 21 and Y 22 each independently represent a carbon atom or a nitrogen atom. To express. In the compound represented by the general formula (II 1 -1-1) or the like, Y 11 and Y 12 are preferably the same kind of atoms, and Y 21 and Y 22 are preferably the same kind of atoms.
 一般式(II-1-1)~(II-1-6)、(II-2-1)~(II-2-12)中、Q11は、水素原子又は電子求引性基を表す。電子求引性基としては、前記Rで挙げられた基と同様のものが挙げられる。一般式(II-1-1)等で表される化合物としては、Q11がトリフルオロメチル基、シアノ基、ニトロ基、又は置換基を有してもよいフェニル基である化合物が好ましく、トリフルオロメチル基又は置換基を有してもよいフェニル基である化合物がより好ましい。 In the general formulas (II 1 -1-1) to (II 1 -1-6) and (II 1 -2-1) to (II 1 -12-12), Q 11 represents a hydrogen atom or an electron withdrawing property. Represents a group. Examples of the electron withdrawing group include the same groups as those described above for R g . As the compound represented by the general formula (II 1 -1-1) or the like, a compound in which Q 11 is a trifluoromethyl group, a cyano group, a nitro group, or a phenyl group which may have a substituent is preferable. A compound which is a trifluoromethyl group or a phenyl group which may have a substituent is more preferable.
 一般式(II-1-1)~(II-1-2)、(II-2-1)~(II-2-2)、(II-1-1)~(II-1-2)、及び(II-2-1)~(II-2-2)中、Xは、互いに独立して、ハロゲン原子、C1-20アルコキシ基、アリールオキシ基、又はアシルオキシ基を表す。 Formulas (II 1 -1-1) to (II 1 -1-2), (II 1 -2-1) to (II 1 -2-2), (II 2 -1-1) to (II 2 -1-2) and (II 2 -2-1) to (II 2 -2-2), X is independently of each other a halogen atom, a C 1-20 alkoxy group, an aryloxy group, or an acyloxy group. Represents a group.
 XがC1-20アルコキシ基の場合、当該アルコキシ基のアルキル基部分としては、直鎖状であってもよく、分岐状であってもよく、環状(脂肪族環基)であってもよい。当該アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、イソアミルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基等が挙げられる。 When X is a C 1-20 alkoxy group, the alkyl group portion of the alkoxy group may be linear, branched, or cyclic (aliphatic ring group). . Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group, heptyloxy group, Examples include octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group and the like.
 Xがアリールオキシ基の場合、当該アリールオキシ基としては、フェニルオキシ基、ナフチルオキシ基、インデニルオキシ基、ビフェニルオキシ基等が挙げられる。 When X is an aryloxy group, examples of the aryloxy group include a phenyloxy group, a naphthyloxy group, an indenyloxy group, and a biphenyloxy group.
 Xがアシルオキシ基の場合、当該アシルオキシ基としては、アルキルカルボニルオキシ基又はアリールカルボニルオキシ基が好ましい。当該アルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基(アセトキシ基)、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、ペンチルカルボニルオキシ基、イソアミルカルボニルオキシ基、ヘキシルカルボニルオキシ基、ヘプチルカルボニルオキシ基、オクチルカルボニルオキシ基、ノニルカルボニルオキシ基、デシルカルボニルオキシ基、ウンデシルカルボニルオキシ基、ドデシルカルボニルオキシ基等が挙げられる。当該アリールカルボニルオキシ基としては、例えば、フェニルカルボニルオキシ基(ベンゾイルオキシ基)、ナフチルカルボニルオキシ基、インデニルカルボニルオキシ基、ビフェニルカルボニルオキシ基等が挙げられる。 When X is an acyloxy group, the acyloxy group is preferably an alkylcarbonyloxy group or an arylcarbonyloxy group. Examples of the alkylcarbonyloxy group include a methylcarbonyloxy group (acetoxy group), an ethylcarbonyloxy group, a propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, an isobutylcarbonyloxy group, and a t-butylcarbonyl group. Oxy group, pentylcarbonyloxy group, isoamylcarbonyloxy group, hexylcarbonyloxy group, heptylcarbonyloxy group, octylcarbonyloxy group, nonylcarbonyloxy group, decylcarbonyloxy group, undecylcarbonyloxy group, dodecylcarbonyloxy group, etc. Can be mentioned. Examples of the arylcarbonyloxy group include a phenylcarbonyloxy group (benzoyloxy group), a naphthylcarbonyloxy group, an indenylcarbonyloxy group, and a biphenylcarbonyloxy group.
 一般式(II-1-1)~(II-1-6)、(II-2-1)~(II-2-2)、(II-2-6)、(II-1-1)~(II-1-6)、(II-2-1)~(II-2-2)、及び(II-2-6)のいずれかで表される化合物としては、Xがいずれもハロゲン原子であるものが好ましく、Xがいずれもフッ素原子であるものが特に好ましい。 Formulas (II 1 -1-1) to (II 1 -1-6), (II 1 -2-1) to (II 1 -2-2), (II 1 -2-6), (II 2 -1-1)-(II 2 -1-6), (II 2 -2-1)-(II 2 -2-2), and (II 2 -2-6) For example, X is preferably a halogen atom, and X is particularly preferably a fluorine atom.
 一般式(II-1-3)~(II-1-4)、(II-2-7)、(II-2-9)、(II-2-11)、(II-1-3)~(II-1-4)、(II-2-7)、(II-2-9)、及び(II-2-11)中、m1は、0又は1を表す。 Formulas (II 1 -1-3) to (II 1 -1-4), (II 1 -2-7), (II 1 -2-9), (II 1 -2-11), (II 2 -1-3) to (II 2 -1-4), (II 2 -2-7), (II 2 -2-9), and (II 2 -2-11), m1 is 0 or 1 Represents.
 一般式(II-1-5)~(II-1-6)、(II-2-3)~(II-2-6)、(II-2-8)、(II-2-10)、(II-2-12)、(II-1-5)~(II-1-6)、(II-2-3)~(II-2-6)、(II-2-8)、(II-2-10)、及び(II-2-12)中、P11~P14及びP17は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表す。当該P11~P14におけるC1-20アルキル基、C1-20アルコキシ基、モノアルキルアミノ基、又はジアルキルアミノ基としては、それぞれ、前記Rや(p1)~(p3)、(q1)~(q3)で挙げられたものと同じものが挙げられる。P11~P14としては、C1-20アルキル基、C1-20アルコキシ基、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることが好ましく、生体に対する安全性の点からC1-20アルキル基、C1-20アルコキシ基、フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることがより好ましく、これらの置換基はさらに置換基を有していてもよい。ただし、これらの置換基以外の置換基であっても、さらに適当な置換基を導入することにより安全性を向上させることもできることから、これらの置換基に限定されるものではない。 Formula (II 1 -1-5) ~ (II 1 -1-6), (II 1 -2-3) ~ (II 1 -2-6), (II 1 -2-8), (II 1 -2-10), (II 1 -12-12), (II 2 -1-5) to (II 2 -1-6), (II 2 -2-3) to (II 1 -2-6) , (II 2 -2-8), (II 2 -2-10), and (II 2 -2-12), P 11 to P 14 and P 17 are each independently a halogen atom, C 1 And represents a -20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group. As the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 11 to P 14 , R g and (p1) to (p3), (q1) The same as those described in (q3). P 11 to P 14 are C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxy It is preferably a phenyl group, a thienyl group, or a furanyl group. From the viewpoint of safety to living bodies, a C 1-20 alkyl group, a C 1-20 alkoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group , A dimethoxyphenyl group, a thienyl group, or a furanyl group, and these substituents may further have a substituent. However, the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
 一般式(II-1-5)~(II-1-6)、(II-2-3)~(II-2-6)、(II-2-8)、(II-2-10)、(II-2-12)、(II-1-5)~(II-1-6)、(II-2-3)~(II-2-6)、(II-2-8)、(II-2-10)、及び(II-2-12)中、n11~n14及びn17は、互いに独立して、0~3の整数を表す。一分子中に、P11が複数個存在した場合(すなわち、n11が2又は3の場合)、複数のP11はいずれも同種の官能基であってもよく、異種類の官能基であってもよい。P12~P14及びP17についても同様である。 Formula (II 1 -1-5) ~ (II 1 -1-6), (II 1 -2-3) ~ (II 1 -2-6), (II 1 -2-8), (II 1 -2-10), (II 1 -12-12), (II 2 -1-5) to (II 2 -1-6), (II 2 -2-3) to (II 1 -2-6) , (II 2 -2-8), (II 2 -2-10), and (II 2 -2-12), n11 to n14 and n17 each independently represent an integer of 0 to 3. When a plurality of P 11 are present in one molecule (that is, when n 11 is 2 or 3), all of the plurality of P 11 may be the same functional group or different functional groups. Also good. The same applies to P 12 to P 14 and P 17 .
 一般式(II-1-1)~(II-1-6)、(II-2-1)~(II-2-4)、(II-2-6)~(II-2-12)、(II-1-1)~(II-1-6)、(II-2-1)~(II-2-4)、及び(II-2-6)~(II-2-12)中、A11~A14は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基、又はハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいヘテロアリール基を表す。当該ヘテロアリール基としては、前記一般式(II)のR、R、R、又はRと同様のものが挙げられ、チエニル基又はフラニル基が好ましい。当該フェニル基又は当該ヘテロアリール基が有していてもよい置換基におけるC1-20アルキル基、C1-20アルコキシ基、モノアルキルアミノ基、又はジアルキルアミノ基としては、それぞれ、前記Rや(p1)~(p3)、(q1)~(q3)で挙げられたものと同じものが挙げられる。A11~A14としては、無置換のフェニル基、1若しくは2個のC1-20アルコキシ基を置換基として有するフェニル基、又は無置換のヘテロアリール基が好ましく、無置換のフェニル基、又は1個のC1-20アルコキシ基を置換基として有するフェニル基がより好ましく、無置換のフェニル基、又は1個のC1-10アルコキシ基を置換基として有するフェニル基がさらに好ましく、無置換のフェニル基、又は1個のC1-6アルコキシ基を置換基として有するフェニル基がよりさらに好ましい。また、一般式(II-1-1)等で表される化合物としては、A11~A14はいずれも同種の官能基であることが好ましい。 Formulas (II 1 -1-1) to (II 1 -1-6), (II 1 -2-1) to (II 1 -2-4), (II 1 -2-6) to (II 1 -2-12), (II 2 -1-1) to (II 2 -1-6), (II 2 -2-1) to (II 2 -2-4), and (II 2 -2-6) ) To (II 2 -12-12), A 11 to A 14 are independently of each other a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and A phenyl group optionally having 1 to 3 substituents selected from the group consisting of dialkylamino groups, or a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkyl Having 1 to 3 substituents selected from the group consisting of an amino group and a dialkylamino group Represents a good heteroaryl group. Examples of the heteroaryl group include those similar to R 1 , R m , R n , or Ro in the general formula (II 3 ), and a thienyl group or a furanyl group is preferable. As the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in the substituent that the phenyl group or the heteroaryl group may have, each of R g and Examples are the same as those described in (p1) to (p3) and (q1) to (q3). A 11 to A 14 are preferably an unsubstituted phenyl group, a phenyl group having 1 or 2 C 1-20 alkoxy groups as a substituent, or an unsubstituted heteroaryl group, an unsubstituted phenyl group, or More preferred is a phenyl group having one C 1-20 alkoxy group as a substituent, and more preferred is an unsubstituted phenyl group or a phenyl group having one C 1-10 alkoxy group as a substituent. Even more preferred is a phenyl group or a phenyl group having one C 1-6 alkoxy group as a substituent. In the compound represented by the general formula (II 1 -1-1), A 11 to A 14 are all preferably the same functional group.
 本発明において用いられるBODIPY色素としては、特に、下記一般式(1-1)~(1-37)、(2-1)~(2-7)、(3-1)~(3-37)、(4-1)~(4-7)、(5-1)~(5-2)のいずれかで表される化合物が好ましく、下記一般式(1-1)~(1-12)、(1-25)~(1-31)、(2-1)~(2-7)、(3-25)~(3-31)のいずれかで表される化合物がより好ましく、下記一般式(1-1)、(1-3)、(1-4)、(1-6)、(1-25)、(1-27)、(2-1)、(3-1)、(3-3)、(3-4)、(3-6)、(3-25)、(3-27)、(4-1)のいずれかで表される化合物がさらに好ましい。 As the BODIPY dye used in the present invention, in particular, the following general formulas (1-1) to (1-37), (2-1) to (2-7), (3-1) to (3-37) , (4-1) to (4-7), (5-1) to (5-2) are preferred, and the following general formulas (1-1) to (1-12), A compound represented by any one of (1-25) to (1-31), (2-1) to (2-7), and (3-25) to (3-31) is more preferable. (1-1), (1-3), (1-4), (1-6), (1-25), (1-27), (2-1), (3-1), (3 -3), (3-4), (3-6), (3-25), (3-27), and a compound represented by (4-1) is more preferable.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 一般式(1-1)~(1-37)、(2-1)~(2-7)、(3-1)~(3-37)、(4-1)~(4-7)、(5-1)~(5-2)中、P~P及びP18は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表す。当該P~PにおけるC1-20アルキル基、C1-20アルコキシ基、モノアルキルアミノ基、又はジアルキルアミノ基としては、それぞれ、前記Rや(p1)~(p3)、(q1)~(q3)で挙げられたものと同じものが挙げられる。P~P及びP18としては、C1-20アルキル基、C1-20アルコキシ基、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることが好ましく、生体に対する安全性の点からC1-20アルキル基、C1-20アルコキシ基、フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることがより好ましく、これらの置換基はさらに置換基を有していてもよい。ただし、これらの置換基以外の置換基であっても、さらに適当な置換基を導入することにより安全性を向上させることもできることから、これらの置換基に限定されるものではない。 Formulas (1-1) to (1-37), (2-1) to (2-7), (3-1) to (3-37), (4-1) to (4-7), In (5-1) to (5-2), P 1 to P 4 and P 18 are independently of each other a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, or a monoalkyl. An amino group and a dialkylamino group are represented. As the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 1 to P 4 , R g and (p1) to (p3), (q1) The same as those described in (q3). P 1 to P 4 and P 18 include C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl. Group, dimethoxyphenyl group, thienyl group, or furanyl group, and C 1-20 alkyl group, C 1-20 alkoxy group, phenyl group, p-methoxyphenyl group, p- More preferably, it is an ethoxyphenyl group, a dimethoxyphenyl group, a thienyl group, or a furanyl group, and these substituents may further have a substituent. However, the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
 一般式(1-1)~(1-37)、(2-1)~(2-7)、(3-1)~(3-37)、(4-1)~(4-7)、(5-1)~(5-2)中、n1~n4及びn18は、互いに独立して、0~3の整数を表す。一分子中に、Pが複数個存在した場合(すなわち、n1が2又は3の場合)、複数のPはいずれも同種の官能基であってもよく、異種類の官能基であってもよい。P~P及びP18についても同様である。 Formulas (1-1) to (1-37), (2-1) to (2-7), (3-1) to (3-37), (4-1) to (4-7), In (5-1) to (5-2), n1 to n4 and n18 each independently represent an integer of 0 to 3. When a plurality of P 1 are present in one molecule (that is, when n1 is 2 or 3), all of the plurality of P 1 may be the same or different functional groups. Also good. The same applies to P 2 to P 4 and P 18 .
 一般式(1-1)~(1-37)、(2-1)~(2-7)、(5-1)中、Qは、トリフルオロメチル基、シアノ基、ニトロ基、又は置換基を有してもよいフェニル基を表し、トリフルオロメチル基又は置換基を有してもよいフェニル基であることが好ましく、トリフルオロメチル基又は無置換のフェニル基であることがより好ましい。フェニル基が有していてもよい置換基としては、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基等が挙げられる。 In general formulas (1-1) to (1-37), (2-1) to (2-7), and (5-1), Q is a trifluoromethyl group, a cyano group, a nitro group, or a substituent. It is preferably a trifluoromethyl group or a phenyl group which may have a substituent, and more preferably a trifluoromethyl group or an unsubstituted phenyl group. Examples of the substituent that the phenyl group may have include a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group.
 一般式(1-1)~(1-31)、(2-1)~(2-7)、(3-1)~(3-31)、(4-1)~(4-7)中、Xは、一般式(II-1-1)等と同じである。一般式(1-1)等で表される化合物としては、Xがハロゲン原子であるものが好ましく、フッ素原子であることが特に好ましい。 Of the general formulas (1-1) to (1-31), (2-1) to (2-7), (3-1) to (3-31), (4-1) to (4-7) , X is the same as in general formula (II 1 -1-1). As the compound represented by the general formula (1-1), those in which X is a halogen atom are preferable, and a fluorine atom is particularly preferable.
 一般式(1-32)~(1-34)及び(3-32)~(3-34)中、m2は、0又は1である。一般式(1-32)等で表される化合物としては、m2は1であることが好ましい。 In the general formulas (1-32) to (1-34) and (3-32) to (3-34), m2 is 0 or 1. In the compound represented by the general formula (1-32), m2 is preferably 1.
 一般式(1-1)~(1-37)、(2-1)~(2-7)、(5-1)で表される化合物としては、P~P及びP18が互いに独立して、C1-20アルキル基、C1-20アルコキシ基、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であり、n1~n4及びn18が互いに独立して、0~2であり、Qがトリフルオロメチル基又はフェニル基であるものが好ましい。同様に、一般式、(3-1)~(3-37)、(4-1)~(4-7)、(5-2)で表される化合物としては、P~P及びP18が互いに独立して、C1-20アルキル基、C1-20アルコキシ基、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であり、n1~n4及びn18が互いに独立して、0~2であるものが好ましい。 As the compounds represented by the general formulas (1-1) to (1-37), (2-1) to (2-7), (5-1), P 1 to P 4 and P 18 are independent of each other. C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxyphenyl group, thienyl group Or a furanyl group, n1 to n4 and n18 are independently of each other from 0 to 2, and Q is a trifluoromethyl group or a phenyl group. Similarly, the compounds represented by the general formulas (3-1) to (3-37), (4-1) to (4-7), (5-2) include P 1 to P 4 and P 18 are independently of each other a C 1-20 alkyl group, a C 1-20 alkoxy group, a (unsubstituted) phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group, a p-dimethylaminophenyl group, a dimethoxyphenyl group. A group, a thienyl group, or a furanyl group, wherein n1 to n4 and n18 are independently from each other, and are preferably 0 to 2.
 本発明に係る近赤外蛍光材料としては、極大蛍光波長がより長波長であるため、下記一般式(II-1)~(II-6)のいずれかで表される化合物、又は一般式(II-1)~(II-6)のいずれかで表される化合物も好ましい。 As the near-infrared fluorescent material according to the present invention, since the maximum fluorescence wavelength is longer, the compound represented by any one of the following general formulas (II 3 -1) to (II 3 -6), or A compound represented by any one of formulas (II 4 -1) to (II 4 -6) is also preferred.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 一般式(II-1)~(II-6)及び一般式(II-1)~(II-6)中、R23、R24、R25、及びR26は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。R23、R24、R25、又はR26が表すハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、及びヘテロアリール基としては、前記一般式(II)のR、R、R、又はRと同様のものが挙げられる。一般式(II-1)~(II-6)のいずれかで表される化合物又は一般式(II-1)~(II-6)のいずれかで表される化合物としては、化合物の熱安定性が高いことから、R23、R24、R25、及びR26がハロゲン原子、無置換のアリール基、又は置換基を有するアリール基が好ましく、具体的には、フッ素原子、塩素原子、臭素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基が好ましく、フッ素原子、塩素原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基がより好ましく、高い発光効率と熱安定性を兼ね備える化合物が得られることから、フッ素原子又は無置換のフェニル基が特に好ましい。 In the general formulas (II 3 -1) to (II 3 -6) and the general formulas (II 4 -1) to (II 4 -6), R 23 , R 24 , R 25 , and R 26 are independent of each other. A halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group. Examples of the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R 23 , R 24 , R 25 , or R 26 include R in the general formula (II 3 ). l, R m, R n, or are the same as those of the R o. As the compound represented by any one of the general formulas (II 3 -1) to (II 3 -6) or the compound represented by any one of the general formulas (II 4 -1) to (II 4 -6), In view of the high thermal stability of the compound, R 23 , R 24 , R 25 and R 26 are preferably a halogen atom, an unsubstituted aryl group, or an aryl group having a substituent, specifically, a fluorine atom, A chlorine atom, a bromine atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group is preferred, and a fluorine atom, a chlorine atom, an unsubstituted phenyl group, or C 1 A phenyl group substituted with a -10 alkyl group or a C 1-10 alkoxy group is more preferable, and a compound having high luminous efficiency and thermal stability can be obtained. Particularly preferred is a ruthenium group.
 一般式(II-1)~(II-6)及び一般式(II-1)~(II-6)中、R27及びR28は、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。R27又はR28が表すハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、及びヘテロアリール基としては、前記一般式(II)のR又はRと同様のものが挙げられる。一般式(II-1)~(II-6)のいずれかで表される化合物又は一般式(II-1)~(II-6)のいずれかで表される化合物としては、R27及びR28が水素原子又はアリール基であるものが好ましく、高い発光効率の化合物が得られることから、水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であるものが好ましく、水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であるものがより好ましく、高い発光効率で、樹脂への相溶性にも優れる化合物が得られることから、水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-10アルコキシ基で置換されたフェニル基であるものが特に好ましい。 In the general formulas (II 3 -1) to (II 3 -6) and the general formulas (II 4 -1) to (II 4 -6), R 27 and R 28 are each independently a hydrogen atom or a halogen atom. Represents a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group. Examples of the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group represented by R 27 or R 28 are the same as those for R p or R q in the general formula (II 3 ). Things. As the compound represented by any one of the general formulas (II 3 -1) to (II 3 -6) or the compound represented by any one of the general formulas (II 4 -1) to (II 4 -6), R 27 and R 28 are preferably a hydrogen atom or an aryl group, and a compound having high luminous efficiency can be obtained. Therefore, a hydrogen atom, an unsubstituted phenyl group, a C 1-20 alkyl group or a C 1-20 alkoxy group is obtained. Preferred is a phenyl group substituted with a group, more preferred is a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group, with high emission efficiency, since the compounds have excellent compatibility with the resin is obtained, a hydrogen atom, an unsubstituted phenyl group, or a full substituted with linear or branched C 1-10 alkoxy group What is sulfonyl group are particularly preferred.
 一般式(II-1)~(II-6)中、R29及びR30は、互いに独立して、水素原子、又は電子求引性基を表す。R29又はR30が表す電子求引性基としては、前記一般式(II)のR又はRと同様のものが挙げられる。一般式(II-1)~(II-6)のいずれかで表される化合物としては、高い発光効率の化合物が得られることから、R29及びR30が、強い電子求引性基として機能し得るフルオロアルキル基、ニトロ基、シアノ基、アリール基であるものが好ましく、トリフルオロメチル基、ニトロ基、シアノ基、又は置換基を有してもよいフェニル基であるものがより好ましく、高い発光効率で、樹脂への相溶性にも優れる化合物が得られることから、トリフルオロメチル基又はシアノ基であるものがさらに好ましい。 In general formulas (II 3 -1) to (II 3 -6), R 29 and R 30 each independently represent a hydrogen atom or an electron withdrawing group. Examples of the electron withdrawing group represented by R 29 or R 30 include the same groups as those described above for R r or R s in the general formula (II 3 ). As the compound represented by any one of the general formulas (II 3 -1) to (II 3 -6), since a compound having high luminous efficiency is obtained, R 29 and R 30 are strong electron withdrawing groups. Are preferably a fluoroalkyl group, a nitro group, a cyano group, or an aryl group that can function as a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group that may have a substituent. A compound having a trifluoromethyl group or a cyano group is more preferable because a compound having high luminous efficiency and excellent compatibility with the resin can be obtained.
 一般式(II-1)及び一般式(II-1)中、Y及びY10は、互いに独立して硫黄原子、酸素原子、窒素原子、又はリン原子を表す。一般式(II-1)又は一般式(II-1)で表される化合物としては、高い発光効率の化合物が得られることから、Y及びY10が、互いに独立して硫黄原子、酸素原子、又は窒素原子であるものが好ましく、互いに独立して硫黄原子又は酸素原子であるものがより好ましく、高い発光効率と熱安定性を兼ね備える化合物が得られることから、共に硫黄原子である若しくは共に酸素原子であるものがさらに好ましい。 In General Formula (II 3 -1) and General Formula (II 4 -1), Y 9 and Y 10 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom. As the compound represented by the general formula (II 3 -1) or the general formula (II 4 -1), since a compound having high luminous efficiency is obtained, Y 9 and Y 10 are each independently a sulfur atom, Those which are oxygen atoms or nitrogen atoms are preferable, those which are sulfur atoms or oxygen atoms independently of each other are more preferable, and since a compound having high luminous efficiency and thermal stability is obtained, both are sulfur atoms or More preferably, both are oxygen atoms.
 一般式(II-3)~(II-6)及び一般式(II-3)~(II-6)中、X及びXは、互いに独立して窒素原子又はリン原子を表す。一般式(II-3)~(II-6)又は一般式(II-3)~(II-6)で表される化合物としては、X及びXが、高い発光効率の化合物が得られることから、共に窒素原子又はリン原子であるものが好ましく、高い発光効率と熱安定性を兼ね備える化合物が得られることから、共に窒素原子であるものがより好ましい。 In the general formulas (II 3 -3) to (II 3 -6) and the general formulas (II 4 -3) to (II 4 -6), X 1 and X 2 each independently represent a nitrogen atom or a phosphorus atom. To express. As compounds represented by the general formulas (II 3 -3) to (II 3 -6) or the general formulas (II 4 -3) to (II 4 -6), X 1 and X 2 are Since both compounds are nitrogen atoms or phosphorus atoms, compounds that are both nitrogen atoms or phosphorus atoms are preferable, and since compounds that have both high luminous efficiency and thermal stability are obtained, those that are both nitrogen atoms are more preferable.
 一般式(II-1)及び一般式(II-1)中、R31及びR32は、下記(p4)又は(p5)を充足する。
(p4)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(p5)R31及びR32は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成する。
In general formula (II 3 -1) and general formula (II 4 -1), R 31 and R 32 satisfy the following (p4) or (p5).
(P4) Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
(P5) R 31 and R 32 together form an aromatic 5-membered ring which may have a substituent or an aromatic 6-membered ring which may have a substituent.
 一般式(II-1)及び一般式(II-1)中、R33及びR34は、下記(q4)又は(q5)を充足する。
(q4)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
(q5)R33及びR34は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成する。
In general formula (II 3 -1) and general formula (II 4 -1), R 33 and R 34 satisfy the following (q4) or (q5).
(Q4) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (q5) R 33 and R 34 are both An aromatic 5-membered ring which may have a substituent or an aromatic 6-membered ring which may have a substituent is formed.
 一般式(II-2)~(II-6)及び一般式(II-2)~(II-6)中、R35、R36、R37、及びR38は、下記(p6)~(p9)のいずれかを充足する。
(p6)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(p7)R35及びR36は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R37及びR38は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(p8)R36及びR37は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R35及びR38は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(p9)R37及びR38は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R35及びR36は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
In general formulas (II 3 -2) to (II 3 -6) and general formulas (II 4 -2) to (II 4 -6), R 35 , R 36 , R 37 , and R 38 are represented by the following (p6 ) To (p9) are satisfied.
(P6) represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, independently of each other.
(P7) R 35 and R 36 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 37 and R 38 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
(P8) R 36 and R 37 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 35 and R 38 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
(P9) R 37 and R 38 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 35 and R 36 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
 一般式(II-2)~(II-6)及び一般式(II-2)~(II-6)中、R39、R40、R41、及びR42は、下記(q6)~(q9)のいずれかを充足する。
(q6)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(q7)R39及びR40は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R41及びR42は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(q8)R40及びR41は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R39及びR42は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
(q9)R41及びR42は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R39及びR40は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
In the general formulas (II 3 -2) to (II 3 -6) and the general formulas (II 4 -2) to (II 4 -6), R 39 , R 40 , R 41 , and R 42 are represented by the following (q6 ) To (q9) are satisfied.
(Q6) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group.
(Q7) R 39 and R 40 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring, and R 41 and R 42 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
(Q8) R 40 and R 41 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring, and R 39 and R 42 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
(Q9) R 41 and R 42 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 39 and R 40 are Independently of each other, a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group is represented.
 前記(p4)、(p6)~(p9)及び(q4)、(q6)~(q9)におけるハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、及びヘテロアリール基としては、それぞれ、RとRにおいて「化合物の蛍光を阻害しない任意の基」として例示されたものを用いることができる。 As the halogen atom, C 1-20 alkyl group, C 1-20 alkoxy group, aryl group, and heteroaryl group in the above (p4), (p6) to (p9) and (q4), (q6) to (q9) May be those exemplified as “any group that does not inhibit the fluorescence of the compound” in R a and R b , respectively.
 前記(p5)、(p7)~(p9)、(q5)、(q7)~(q9)において、R31及びR32が共に形成する芳香族5員環又は芳香族6員環、R33及びR34が共に形成する芳香族5員環又は芳香族6員環、R35及びR36が共に形成する芳香族5員環又は芳香族6員環、R36及びR37が共に形成する芳香族5員環又は芳香族6員環、R37及びR38が共に形成する芳香族5員環又は芳香族6員環、R39及びR40が共に形成する芳香族5員環又は芳香族6員環、R40及びR41が共に形成する芳香族5員環又は芳香族6員環、R41及びR42が共に形成する芳香族5員環又は芳香族6員環としては、前記一般式(C-1)~(C-9)のいずれかで表されるものが好ましく、高い熱安定性の化合物が得られることから、前記一般式(C-9)で表されるものがより好ましい。 In the above (p5), (p7) to (p9), (q5), (q7) to (q9), an aromatic 5-membered ring or an aromatic 6-membered ring formed by R 31 and R 32 together, R 33 and An aromatic 5-membered ring or an aromatic 6-membered ring formed by R 34, an aromatic 5-membered ring or an aromatic 6-membered ring formed by R 35 and R 36, and an aromatic formed by R 36 and R 37 together 5- or 6-membered aromatic ring, R 37 and R 38 are both aromatic 5- or 6-membered aromatic ring to form an aromatic 5-membered R 39 and R 40 form together a ring or a 6-membered aromatic Examples of the ring, the aromatic 5-membered ring or aromatic 6-membered ring formed by R 40 and R 41 together, and the aromatic 5-membered ring or aromatic 6-membered ring formed by R 41 and R 42 together include the above general formula ( Those represented by any one of C-1) to (C-9) are preferred, and a compound having high heat stability can be obtained. Accordingly, the compound represented by the general formula (C-9) is more preferable.
 前記(II-1)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、シアノ基、又はフェニル基であり;Y及びY10が共に硫黄原子又は酸素原子であり;R31及びR32が互いに独立して水素原子若しくはC1-20アルキル基である、又はR31及びR32が共に置換基を有していてもよいフェニル基を形成し;R33及びR34が互いに独立して水素原子若しくはC1-20アルキル基である、又はR33及びR34が共に置換基を有していてもよいフェニル基を形成する化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、又はシアノ基であり;Y及びY10が共に硫黄原子又は酸素原子であり;R31及びR32が互いに独立して水素原子若しくはC1-20アルキル基である、又はR31及びR32が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し;R33及びR34が互いに独立して水素原子若しくはC1-20アルキル基である、又はR33及びR34が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成する化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 3 -1), R 23 , R 24 , R 25 and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group; Y 9 and Y 10 are both a sulfur atom or an oxygen atom; R 31 and R 32 are independently hydrogen. is an atom or a C 1-20 alkyl group, or R 31 and R 32 together form a phenyl group which may have a substituent; R 33 and R 34 independently of one another Is a hydrogen atom or a C 1-20 alkyl group, or a compound R 33 and R 34 together form a phenyl group which may have a substituent is preferable, R 23, R 24, R 25, and R 26 Are both halogen atoms or unsubstituted phenyl groups; R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or phenyl groups substituted with linear or branched C 1-20 alkoxy groups R 29 and R 30 are both a trifluoromethyl group, a nitro group, or a cyano group; Y 9 and Y 10 are both a sulfur atom or an oxygen atom; and R 31 and R 32 are each independently hydrogen. An atom or a C 1-20 alkyl group, or R 31 and R 32 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group; R 33 and R 34 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 33 and R 34 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group. The compound is more preferable because it has high luminous efficiency and excellent compatibility with the resin.
 前記(II-2)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、シアノ基、又はフェニル基であり;R35、R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に置換基を有していてもよいフェニル基を形成し、R37及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に置換基を有していてもよいフェニル基を形成し、R35及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に置換基を有していてもよいフェニル基を形成し、R35及びR36が互いに独立して水素原子若しくはC1-20アルキル基であり;R39、R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に置換基を有していてもよいフェニル基を形成し、R41及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に置換基を有していてもよいフェニル基を形成し、R39及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に置換基を有していてもよいフェニル基を形成し、R39及びR40が互いに独立して水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、又はシアノ基であり;R35、R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R37及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35及びR36が互いに独立して水素原子若しくはC1-20アルキル基であり;R39、R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R41及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39及びR40が互いに独立して水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 Examples of the compound represented by (II 3 -2) include that R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group; R 35 , R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group R 35 and R 36 together form a phenyl group which may have a substituent, and R 37 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group R 36 and R 37 together form an optionally substituted phenyl group, and R 35 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 And R 38 together form an optionally substituted phenyl group, R 35 and R 36 are each independently a hydrogen atom or a C 1-20 alkyl group; R 39 , R 40 , R 41 , And R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, R 39 and R 40 together form a phenyl group which may have a substituent, and R 41 and R 42 are R 40 and R 41 which are independently a hydrogen atom or a C 1-20 alkyl group form a phenyl group which may have a substituent, and R 39 and R 42 are independently a hydrogen atom or C 1-20 alkyl group, or R 41 and R 42 together form an optionally substituted phenyl group, and R 39 and R 40 are each independently a hydrogen atom or a C 1-20 alkyl group Wherein R 23 , R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or linear A phenyl group substituted with a linear or branched C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, or a cyano group; R 35 , R 36 , R 37 And R 38 independently of one another is a hydrogen atom or a C 1-20 alkyl group, and R 35 and R 36 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group. R 37 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 36 and R 37 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group. R 35 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 are both an unsubstituted phenyl group or a C 1-10 alkyl group. R 35 and R 36 are each independently a hydrogen atom or a C 1-20 alkyl group; R 39 , R 40 , R 41 , and R 42 are independently hydrogen is an atom or a C 1-20 alkyl group, form a phenyl group which R 39 and R 40 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, 41 and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, to form a phenyl group substituted by R 40 and R 41 are both unsubstituted phenyl group or a C 1-10 alkyl group, R 39 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 41 and R 42 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group A compound in which R 39 and R 40 are each independently a hydrogen atom or a C 1-20 alkyl group is more preferable because of high luminous efficiency and excellent compatibility with a resin.
 前記(II-3)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、シアノ基、又はフェニル基であり;X及びXが共に窒素原子であり;R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に置換基を有していてもよいフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に置換基を有していてもよいフェニル基を形成し、R36が水素原子若しくはC1-20アルキル基であり;R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に置換基を有していてもよいフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に置換基を有していてもよいフェニル基を形成し、R40が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、又はシアノ基であり;X及びXが共に窒素原子であり;R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R36が水素原子若しくはC1-20アルキル基であり;R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R40が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 3 -3), R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group; X 1 and X 2 are both nitrogen atoms; R 36 , R 37 , and R 38 are independently of each other is a hydrogen atom or a C 1-20 alkyl group, and R 36 and R 37 are have both substituents form a well phenyl group, R 38 is a hydrogen atom or a C 1-20 a A kill group, or R 37 and R 38 together form a phenyl group which may have a substituent, R 36 is hydrogen atom or a C 1-20 alkyl group; R 40, R 41 and, is a hydrogen atom or a C 1-20 alkyl group R 42 independently of one another, are R 40 and R 41 are have both substituents form a well phenyl group, R 42 is a hydrogen atom or a C 1- A compound in which R 20 is a 20 alkyl group, or R 41 and R 42 both form a phenyl group which may have a substituent, and R 40 is a hydrogen atom or a C 1-20 alkyl group, is preferably R 23 , R 24, R 25, and R 26 are are both a halogen atom or an unsubstituted phenyl group; R 27 and R 28 are both hydrogen atom, an unsubstituted phenyl group, or a linear or branched C 1- 0 substituted with an alkoxy group the phenyl group; R 29 and R 30 are both trifluoromethyl group, a nitro group, or a cyano group; X 1 and X 2 are both nitrogen atoms; R 36, R 37 And R 38 is independently a hydrogen atom or a C 1-20 alkyl group, R 36 and R 37 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, R 38 is a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group, and R 36 is a hydrogen atom or be a C 1-20 alkyl group; R 40, R 41, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, R 40 and R 4 There form a phenyl group substituted both with unsubstituted phenyl group or a C 1-10 alkyl group, R 42 is a hydrogen atom or a C 1-20 alkyl group, or R 41 and R 42 are both unsubstituted A compound in which a phenyl group substituted with a phenyl group or a C 1-10 alkyl group and R 40 is a hydrogen atom or a C 1-20 alkyl group has high luminous efficiency and excellent compatibility with a resin. preferable.
 前記(II-4)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、シアノ基、又はフェニル基であり;X及びXが共に窒素原子であり;R35、R36、及びR37が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に置換基を有していてもよいフェニル基を形成し、R37が水素原子若しくはC1-20アルキル基である、又はR36及びR37が共に置換基を有していてもよいフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR41が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に置換基を有していてもよいフェニル基を形成し、R41が水素原子若しくはC1-20アルキル基である、又はR40及びR41が共に置換基を有していてもよいフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、又はシアノ基であり;X及びXが共に窒素原子であり;R35、R36、及びR37が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R37が水素原子若しくはC1-20アルキル基である、又はR36及びR37が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR41が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R41が水素原子若しくはC1-20アルキル基である、又はR40及びR41が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 Examples of the compound represented by (II 3 -4) include that R 23 , R 24 , R 25 and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group; X 1 and X 2 are both nitrogen atoms; R 35 , R 36 , and R 37 are independently from each other is a hydrogen atom or a C 1-20 alkyl group, to form a phenyl group optionally R 35 and R 36 are have together substituent, R 37 is a hydrogen atom or a C 1-20 a A kill group, or R 36 and R 37 together form a phenyl group which may have a substituent, R 35 is hydrogen atom or a C 1-20 alkyl group; R 39, R 40 and, R 41 is a hydrogen atom or a C 1-20 alkyl group independently of one another, are R 39 and R 40 are have both substituents form a well phenyl group, R 41 is a hydrogen atom or a C 1- A compound in which R 20 is an alkyl group, or R 40 and R 41 together form an optionally substituted phenyl group, and R 39 is a hydrogen atom or a C 1-20 alkyl group, is preferably R 23 , R 24, R 25, and R 26 are are both a halogen atom or an unsubstituted phenyl group; R 27 and R 28 are both hydrogen atom, an unsubstituted phenyl group, or a linear or branched C 1- It is 0 the phenyl group substituted with an alkoxy group; R 29 and R 30 are both trifluoromethyl group, a nitro group, or a cyano group; X 1 and X 2 be both nitrogen atoms; R 35, R 36 And R 37 are each independently a hydrogen atom or a C 1-20 alkyl group, R 35 and R 36 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, R 37 is a hydrogen atom or a C 1-20 alkyl group, or R 36 and R 37 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group, and R 35 is a hydrogen atom or be a C 1-20 alkyl group; R 39, R 40, and R 41 are each independently of the other hydrogen or C 1-20 alkyl group, R 39 and R 4 There form a phenyl group substituted both with unsubstituted phenyl group or a C 1-10 alkyl group, R 41 is a hydrogen atom or a C 1-20 alkyl group, or R 40 and R 41 are both unsubstituted A compound in which a phenyl group substituted with a phenyl group or a C 1-10 alkyl group and R 39 is a hydrogen atom or a C 1-20 alkyl group has high luminous efficiency and excellent compatibility with a resin. preferable.
 前記(II-5)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、シアノ基、又はフェニル基であり;X及びXが共に窒素原子であり;R35、R36、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR35及びR36が共に置換基を有していてもよいフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR39及びR40が共に置換基を有していてもよいフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、又はシアノ基であり;X及びXが共に窒素原子であり;R35、R36、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR35及びR36が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR39及びR40が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、好ましい。 As the compound represented by (II 3 -5), R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group; X 1 and X 2 are both nitrogen atoms; R 35 , R 36 , and R 38 are independently of each other is a hydrogen atom or a C 1-20 alkyl group, or R 35 and R 36 also form a phenyl group optionally both have a substituent, R 38 is a hydrogen atom or a C 1-2 An alkyl group; R 39, R 40, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, or a phenyl group which may have a R 39 and R 40 are both substituents Wherein R 42 is a hydrogen atom or a C 1-20 alkyl group, and R 23 , R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; and R 27 and R 28 is a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, X 1 and X 2 are both nitrogen atoms; R 35 , R 36 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group; R 35 and R 36 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group, and R 38 is a hydrogen atom or a C 1-20 alkyl group; R 39 , R 40 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 39 and R 40 are both a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group. A compound formed and R 42 is a hydrogen atom or a C 1-20 alkyl group is preferable because of high luminous efficiency and excellent compatibility with a resin.
 前記(II-6)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、シアノ基、又はフェニル基であり;X及びXが共に窒素原子であり;R35、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に置換基を有していてもよいフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に置換基を有していてもよいフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R29及びR30が共にトリフルオロメチル基、ニトロ基、又はシアノ基であり;X及びXが共に窒素原子であり;R35、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 3 -6), R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, a cyano group, or a phenyl group; X 1 and X 2 are both nitrogen atoms; R 35 , R 37 , and R 38 are independently of each other is a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 also form a phenyl group optionally both have a substituent, R 35 is a hydrogen atom or a C 1-2 An alkyl group; R 39, R 41, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, or R 41 and R 42 is a phenyl group optionally both have a substituent forming a, preferably compounds R 39 is a hydrogen atom or a C 1-20 alkyl group, R 23, R 24, R 25, and R 26 are are both a halogen atom or an unsubstituted phenyl group; R 27 and R 28 is a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group; R 29 and R 30 are both a trifluoromethyl group, a nitro group, A group, or a cyano group; X 1 and X 2 are both nitrogen atoms; R 35 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group; R 37 and R 38 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group, and R 35 is a hydrogen atom or a C 1-20 alkyl group; R 39 , R 41 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, or both R 41 and R 42 are a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group. A compound in which R 39 is a hydrogen atom or a C 1-20 alkyl group is more preferable because of high luminous efficiency and excellent compatibility with a resin.
 前記(II-1)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;Y及びY10が共に硫黄原子又は酸素原子であり;R31及びR32が互いに独立して水素原子若しくはC1-20アルキル基である、又はR31及びR32が共に置換基を有していてもよいフェニル基を形成し;R33及びR34が互いに独立して水素原子若しくはC1-20アルキル基である、又はR33及びR34が共に置換基を有していてもよいフェニル基を形成する化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;Y及びY10が共に硫黄原子又は酸素原子であり;R31及びR32が互いに独立して水素原子若しくはC1-20アルキル基である、又はR31及びR32が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し;R33及びR34が互いに独立して水素原子若しくはC1-20アルキル基である、又はR33及びR34が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成する化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 4 -1), R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; Y 9 and Y 10 are both a sulfur atom or an oxygen atom; R 31 and R 32 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 31 and R 32 both have a substituent. also form a phenyl group optionally; R 33 and R 34 are each independently of the other hydrogen or C 1-20 alkyl group, or R 33 and R 34 together have a substituent It is preferably a compound that forms a phenyl group which may, R 23, R 24, R 25, and R 26 are are both a halogen atom or an unsubstituted phenyl group; R 27 and R 28 are both hydrogen atoms, unsubstituted A phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group; Y 9 and Y 10 are both sulfur atoms or oxygen atoms; R 31 and R 32 are independent of each other A hydrogen atom or a C 1-20 alkyl group, or R 31 and R 32 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group; R 33 and R 34 are is a hydrogen atom or a C 1-20 alkyl group independently of each other, or R 33 and R 34 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group Compound forming the Eniru groups are luminescent efficiency is high, since the compatibility with the resin is excellent, more preferred.
 前記(II-2)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;R35、R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に置換基を有していてもよいフェニル基を形成し、R37及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に置換基を有していてもよいフェニル基を形成し、R35及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に置換基を有していてもよいフェニル基を形成し、R35及びR36が互いに独立して水素原子若しくはC1-20アルキル基であり;R39、R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に置換基を有していてもよいフェニル基を形成し、R41及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に置換基を有していてもよいフェニル基を形成し、R39及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に置換基を有していてもよいフェニル基を形成し、R39及びR42が互いに独立して水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R35、R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R37及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35及びR36が互いに独立して水素原子若しくはC1-20アルキル基であり;R39、R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R41及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39及びR42が互いに独立して水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 Examples of the compound represented by (II 4 -2) include that R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; R 35 , R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 35 and R 36 together form a phenyl group that may have a substituent. , R 37 and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, R 36 and R 37 together form an optionally substituted phenyl group, and R 35 And R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 together form an optionally substituted phenyl group, and R 35 and R 36 are Independently a hydrogen atom or a C 1-20 alkyl group; R 39 , R 40 , R 41 , and R 42 are independently a hydrogen atom or a C 1-20 alkyl group, R 39 and R 40 are Both form an optionally substituted phenyl group, R 41 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, R 40 and R 41 both have a substituent also form a phenyl group optionally, a hydrogen atom or a C 1-20 alkyl group independently R 39 and R 42 each other, or R 41 and R 42 is optionally both have a substituent Fe Forming a group, the compound R 39 and R 42 are each independently of the other hydrogen or C 1-20 alkyl group is preferable, R 23, R 24, R 25, and R 26 are both halogen atoms or unsubstituted R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group; R 35 , R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 35 and R 36 are both a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group forming a, R 37 and R 38 independently of one another represent a hydrogen atom or a C 1-20 alkyl group, R 36 and R 37 are both unsubstituted phenyl group or a C 1- 0 alkyl group to form a substituted phenyl group, R 35 and R 38 are each independently of the other hydrogen or C 1-20 alkyl group, or R 37 and R 38 are both unsubstituted phenyl group or a C Forming a phenyl group substituted with a 1-10 alkyl group, wherein R 35 and R 36 are each independently a hydrogen atom or a C 1-20 alkyl group; and R 39 , R 40 , R 41 , and R 42 are Independently of each other, a hydrogen atom or a C 1-20 alkyl group, R 39 and R 40 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, and R 41 and R 42 There is a hydrogen atom or a C 1-20 alkyl group independently of one another, R 40 and R 41 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group Form a phenyl group, a hydrogen atom or a C 1-20 alkyl group independently R 39 and R 42 are each other, or substituted with R 41 and R 42 are both unsubstituted phenyl group or a C 1-10 alkyl group A compound that forms a substituted phenyl group and R 39 and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group is more preferable because of its high luminous efficiency and excellent compatibility with resins.
 前記(II-3)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に置換基を有していてもよいフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に置換基を有していてもよいフェニル基を形成し、R36が水素原子若しくはC1-20アルキル基であり;R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に置換基を有していてもよいフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に置換基を有していてもよいフェニル基を形成し、R40が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;R36、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、R36及びR37が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R36が水素原子若しくはC1-20アルキル基であり;R40、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、R40及びR41が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R40が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 4 -3), R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; X 1 and X 2 are both nitrogen atoms; R 36 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, R 36 and R 37 both have a substituent. also form a phenyl group optionally, R 38 is a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 also form a phenyl group optionally both have a substituent, 36 is hydrogen atom or a C 1-20 alkyl group; R 40, R 41, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, the R 40 and R 41 are both substituents An optionally substituted phenyl group, R 42 is a hydrogen atom or a C 1-20 alkyl group, or R 41 and R 42 together form an optionally substituted phenyl group, A compound in which R 40 is a hydrogen atom or a C 1-20 alkyl group is preferred, and R 23 , R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; and R 27 and R 28 are both hydrogen atom, an unsubstituted phenyl group, or a linear or branched C 1-20 phenyl group substituted with an alkoxy group; R 36, R 37, and R 38 independently of one another Is a hydrogen atom or a C 1-20 alkyl group Te, R 36 and R 37 form a phenyl group both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, R 38 is a hydrogen atom or a C 1 A -20 alkyl group, or R 37 and R 38 together form an unsubstituted phenyl group or a phenyl group substituted with a C 1-10 alkyl group, and R 36 is a hydrogen atom or a C 1-20 alkyl group Yes; R 40 , R 41 , and R 42 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 40 and R 41 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group the phenyl group is formed, R 42 is a hydrogen atom or a C 1-20 alkyl group, or R 41 and R 42 in both unsubstituted phenyl group or C 1 10 form a phenyl group substituted with an alkyl group, the compound R 40 is a hydrogen atom or a C 1-20 alkyl group, the emission efficiency is high, since the compatibility with the resin is excellent, more preferred.
 前記(II-4)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R35、R36、及びR37が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に置換基を有していてもよいフェニル基を形成し、R37が水素原子若しくはC1-20アルキル基である、又はR36及びR37が共に置換基を有していてもよいフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR41が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に置換基を有していてもよいフェニル基を形成し、R41が水素原子若しくはC1-20アルキル基である、又はR40及びR41が共に置換基を有していてもよいフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R35、R36、及びR37が互いに独立して水素原子若しくはC1-20アルキル基である、R35及びR36が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R37が水素原子若しくはC1-20アルキル基である、又はR36及びR37が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR41が互いに独立して水素原子若しくはC1-20アルキル基である、R39及びR40が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R41が水素原子若しくはC1-20アルキル基である、又はR40及びR41が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 4 -4), R 23 , R 24 , R 25 and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; X 1 and X 2 are both nitrogen atoms; R 35 , R 36 , and R 37 are each independently a hydrogen atom or a C 1-20 alkyl group, R 35 and R 36 both have a substituent. also form a phenyl group optionally, R 37 is a hydrogen atom or a C 1-20 alkyl group, or R 36 and R 37 together form a phenyl group which may have a substituent, 35 is hydrogen atom or a C 1-20 alkyl group; R 39, R 40, and R 41 are each independently of the other hydrogen or C 1-20 alkyl group, the R 39 and R 40 are both substituents Forming an optionally substituted phenyl group, R 41 is a hydrogen atom or a C 1-20 alkyl group, or R 40 and R 41 together form an optionally substituted phenyl group, A compound in which R 39 is a hydrogen atom or a C 1-20 alkyl group is preferred, and R 23 , R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; R 27 and R 28 are both A hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a linear or branched C 1-20 alkoxy group; X 1 and X 2 are both nitrogen atoms; R 35 , R 36 and R 37 are each independently a hydrogen atom or a C 1-20 alkyl group, and R 35 and R 36 are both a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group. R 37 is a hydrogen atom or a C 1-20 alkyl group, or R 36 and R 37 together form a phenyl group substituted with an unsubstituted phenyl group or a C 1-10 alkyl group, and R 35 Is a hydrogen atom or a C 1-20 alkyl group; R 39 , R 40 , and R 41 are each independently a hydrogen atom or a C 1-20 alkyl group, R 39 and R 40 are both unsubstituted phenyl form a phenyl group substituted with a group or a C 1-10 alkyl group, R 41 is a hydrogen atom or a C 1-20 alkyl group, or R 40 and R 41 is Substituted phenyl group to form unsubstituted phenyl group or a C 1-10 alkyl group, the compound R 39 is a hydrogen atom or a C 1-20 alkyl group, the emission efficiency is high, compatibility with resin Since it is excellent, it is more preferable.
 前記(II-5)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R35、R36、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR35及びR36が共に置換基を有していてもよいフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR39及びR40が共に置換基を有していてもよいフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R35、R36、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR35及びR36が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R38が水素原子若しくはC1-20アルキル基であり;R39、R40、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR39及びR40が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R42が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 As the compound represented by (II 4 -5), R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; X 1 and X 2 are both nitrogen atoms; R 35 , R 36 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 35 and R 36 both have a substituent. also to form a phenyl group optionally, R 38 is hydrogen atom or a C 1-20 alkyl group; R 39, R 40, and R 42 are each independently of the other hydrogen or C 1- 0 is an alkyl group, or R 39 and R 40 together form a phenyl group which may have a substituent, the compound R 42 is a hydrogen atom or a C 1-20 alkyl group is preferable, R 23, R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or linear or branched C 1- A phenyl group substituted with 20 alkoxy groups; X 1 and X 2 are both nitrogen atoms; R 35 , R 36 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 35 and R 36 form a phenyl group substituted both with unsubstituted phenyl group or a C 1-10 alkyl group, R 38 is hydrogen atom or a C 1-20 alkyl group R 39, R 40, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, or R 39 and R 40 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group A compound which forms a phenyl group and R 42 is a hydrogen atom or a C 1-20 alkyl group is more preferable because of high luminous efficiency and excellent compatibility with a resin.
 前記(II-6)で表される化合物としては、R23、R24、R25、及びR26が共にハロゲン原子、無置換のフェニル基、又はC1-10アルキル基若しくはC1-10アルコキシ基で置換されたフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又はC1-20アルキル基若しくはC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R35、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に置換基を有していてもよいフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に置換基を有していてもよいフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物が好ましく、R23、R24、R25、及びR26が共にハロゲン原子又は無置換のフェニル基であり;R27及びR28が共に水素原子、無置換のフェニル基、又は直鎖状若しくは分岐鎖状のC1-20アルコキシ基で置換されたフェニル基であり;X及びXが共に窒素原子であり;R35、R37、及びR38が互いに独立して水素原子若しくはC1-20アルキル基である、又はR37及びR38が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R35が水素原子若しくはC1-20アルキル基であり;R39、R41、及びR42が互いに独立して水素原子若しくはC1-20アルキル基である、又はR41及びR42が共に無置換のフェニル基若しくはC1-10アルキル基で置換されたフェニル基を形成し、R39が水素原子若しくはC1-20アルキル基である化合物は、発光効率が高く、樹脂に対する相溶性が優れるため、より好ましい。 Examples of the compound represented by (II 4 -6) include that R 23 , R 24 , R 25 , and R 26 are all halogen atoms, unsubstituted phenyl groups, C 1-10 alkyl groups, or C 1-10. A phenyl group substituted with an alkoxy group; R 27 and R 28 are both a hydrogen atom, an unsubstituted phenyl group, or a phenyl group substituted with a C 1-20 alkyl group or a C 1-20 alkoxy group; X 1 and X 2 are both nitrogen atoms; R 35 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 both have a substituent. also to form a phenyl group optionally, R 35 is hydrogen atom or a C 1-20 alkyl group; R 39, R 41, and R 42 are each independently of the other hydrogen or C 1- 0 is an alkyl group, or R 41 and R 42 together form a phenyl group which may have a substituent, the compound R 39 is a hydrogen atom or a C 1-20 alkyl group is preferable, R 23, R 24 , R 25 , and R 26 are both halogen atoms or unsubstituted phenyl groups; R 27 and R 28 are both hydrogen atoms, unsubstituted phenyl groups, or linear or branched C 1- A phenyl group substituted with 20 alkoxy groups; X 1 and X 2 are both nitrogen atoms; R 35 , R 37 , and R 38 are each independently a hydrogen atom or a C 1-20 alkyl group, or R 37 and R 38 are taken together form an unsubstituted phenyl group or a C 1-10 phenyl group substituted by an alkyl group, R 35 is hydrogen atom or a C 1-20 alkyl group R 39, R 41, and R 42 are each independently of the other hydrogen or C 1-20 alkyl group, or R 41 and R 42 are both substituted with an unsubstituted phenyl group or a C 1-10 alkyl group A compound in which a phenyl group is formed and R 39 is a hydrogen atom or a C 1-20 alkyl group is more preferable because of high luminous efficiency and excellent compatibility with a resin.
 前記(II-1)~(II-6)のいずれかで表される化合物としては、下記一般式(II-7)~(II-9)のいずれかで表される化合物が好ましく、前記(II-1)~(II-6)のいずれかで表される化合物としては、下記一般式(II-7)~(II-9)のいずれかで表される化合物が好ましい。 Examples of the compound represented by any one of (II 3 -1) to (II 3 -6) include compounds represented by any one of the following general formulas (II 3 -7) to (II 3 -9). Preferably, the compound represented by any one of (II 4 -1) to (II 4 -6) is represented by any one of the following general formulas (II 4 -7) to (II 4 -9) Compounds are preferred.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 一般式(II-7)及び(II-7)中、Y23及びY24は、互いに独立して、炭素原子又は窒素原子を表す。一般式(II-7)等中、Y23及びY24は同種の原子であることが好ましい。 In formulas (II 3 -7) and (II 4 -7), Y 23 and Y 24 each independently represent a carbon atom or a nitrogen atom. In general formula (II 3 -7) and the like, Y 23 and Y 24 are preferably the same kind of atoms.
 一般式(II-8)及び(II-8)中、Y13及びY14は、互いに独立して、酸素原子又は硫黄原子を表す。一般式(II-8)等中、Y23及びY24は同種の原子であることが好ましい。 In general formulas (II 3 -8) and (II 4 -8), Y 13 and Y 14 each independently represent an oxygen atom or a sulfur atom. In general formula (II 3 -8) and the like, Y 23 and Y 24 are preferably the same kind of atoms.
 一般式(II-9)及び(II-9)中、Y25及びY26は、互いに独立して、炭素原子又は窒素原子を表す。一般式(II-9)等中、Y25及びY26は同種の原子であることが好ましい。 In the general formulas (II 3 -9) and (II 4 -9), Y 25 and Y 26 each independently represent a carbon atom or a nitrogen atom. In general formula (II 3 -9) and the like, Y 25 and Y 26 are preferably the same kind of atoms.
 一般式(II-7)~(II-9)中、R47及びR48は、互いに独立して、水素原子又は電子求引性基を表し、蛍光強度が高くなることからトリフルオロメチル基、シアノ基、ニトロ基、スルホニル基、又はフェニル基であることが好ましく、トリフルオロメチル基又はシアノ基であることが特に好ましい。一般式(II-7)等中、R47及びR48は同種の官能基であることが好ましい。 In the general formulas (II 3 -7) to (II 3 -9), R 47 and R 48 independently of each other represent a hydrogen atom or an electron withdrawing group, and the fluorescence intensity becomes high. It is preferably a group, a cyano group, a nitro group, a sulfonyl group, or a phenyl group, and particularly preferably a trifluoromethyl group or a cyano group. In general formula (II 3 -7) and the like, R 47 and R 48 are preferably the same functional group.
 一般式(II-7)~(II-9)及び(II-7)~(II-9)中、R43、R44、R45、及びR46は、ハロゲン原子、又は置換基を有してもよいアリール基を表す。当該アリール基としては、RとRにおいて「化合物の蛍光を阻害しない任意の基」として例示されたものを用いることができる。また、当該アリール基が有していてもよい置換基としては、「化合物の蛍光を阻害しない任意の基」であればよく、例えば、C1-6アルキル基、C1-6アルコキシ基、アリール基、又はヘテロアリール基等があげられる。一般式(II-7)~(II-9)及び(II-7)~(II-9)中、R43~R46は、それぞれ異なる基であってもよいが、全て同種の基であることが好ましい。一般式(II-7)~(II-9)及び(II-7)~(II-9)のいずれかで表される化合物としては、R43~R46が、全て同種のハロゲン原子である、又は全て同種の置換基を有してもよいフェニル基であるものが好ましく、全てフッ素原子又は無置換のフェニル基であるものがより好ましく、全てフッ素原子であるものが特に好ましい。 In the general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9), R 43 , R 44 , R 45 , and R 46 are halogen atoms or substituted An aryl group which may have a group is represented. As the aryl group, those exemplified as “any group that does not inhibit the fluorescence of the compound” in R a and R b can be used. Further, the substituent that the aryl group may have is any “any group that does not inhibit the fluorescence of the compound”, and examples thereof include a C 1-6 alkyl group, a C 1-6 alkoxy group, an aryl Group, heteroaryl group, and the like. In general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9), R 43 to R 46 may be different from each other, but they are all the same. The group is preferably. As the compounds represented by any one of the general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9), R 43 to R 46 are all of the same type. Those that are halogen atoms or are all phenyl groups that may have the same type of substituent are preferred, those that are all fluorine atoms or unsubstituted phenyl groups are more preferred, and those that are all fluorine atoms are particularly preferred. .
 一般式(II-7)~(II-9)及び(II-7)~(II-9)中、P15~P16は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表す。当該P15~P16におけるC1-20アルキル基、C1-20アルコキシ基、モノアルキルアミノ基、又はジアルキルアミノ基としては、それぞれ、前記Rや(p1)~(p3)、(q1)~(q3)で挙げられたものと同じものが挙げられる。P15~P16としては、C1-20アルキル基、C1-20アルコキシ基、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることが好ましく、生体に対する安全性の点からC1-20アルキル基、C1-20アルコキシ基、フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることがより好ましく、これらの置換基はさらに置換基を有していてもよい。ただし、これらの置換基以外の置換基であっても、さらに適当な置換基を導入することにより安全性を向上させることもできることから、これらの置換基に限定されるものではない。 In the general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9), P 15 to P 16 are each independently a halogen atom, C 1-20 Represents an alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group or a dialkylamino group; As the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 15 to P 16 , R g and (p1) to (p3), (q1) The same as those described in (q3). P 15 to P 16 include C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxy It is preferably a phenyl group, a thienyl group, or a furanyl group. From the viewpoint of safety to living bodies, a C 1-20 alkyl group, a C 1-20 alkoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group , A dimethoxyphenyl group, a thienyl group, or a furanyl group, and these substituents may further have a substituent. However, the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
 一般式(II-7)~(II-9)及び(II-7)~(II-9)中、n15~n16は、互いに独立して、0~3の整数を表す。一分子中に、P15が複数個存在した場合(すなわち、n15が2又は3の場合)、複数のP15はいずれも同種の官能基であってもよく、異種類の官能基であってもよい。P16についても同様である。 In the general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9), n15 to n16 each independently represent an integer of 0 to 3. When a plurality of P 15 are present in one molecule (that is, when n15 is 2 or 3), the plurality of P 15 may be the same functional group or different functional groups. Also good. The same is true for P 16.
 一般式(II-7)~(II-9)及び(II-7)~(II-9)中、A15~A16は、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基を表す。当該フェニル基が有していてもよい置換基におけるC1-20アルキル基、C1-20アルコキシ基、モノアルキルアミノ基、又はジアルキルアミノ基としては、それぞれ、前記Rや(p1)~(p3)、(q1)~(q3)で挙げられたものと同じものが挙げられる。A15~A16としては、無置換のフェニル基、1又は2個のC1-20アルコキシ基を置換基として有するフェニル基が好ましく、無置換のフェニル基、又は1個のC1-20アルコキシ基を置換基として有するフェニル基がより好ましく、無置換のフェニル基、又は1個のC1-10アルコキシ基を置換基として有するフェニル基がさらに好ましい。また、一般式(II-7)等で表される化合物としては、A15~A16はいずれも同種の官能基であることが好ましい。 In the general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9), A 15 to A 16 are independently of each other a hydrogen atom, a halogen atom, C Represents a phenyl group optionally having 1 to 3 substituents selected from the group consisting of a 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group . As the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in the substituent that the phenyl group may have, each of R g and (p1) to (p p3) and the same as those mentioned in (q1) to (q3). A 15 to A 16 are preferably an unsubstituted phenyl group, a phenyl group having 1 or 2 C 1-20 alkoxy groups as a substituent, an unsubstituted phenyl group, or one C 1-20 alkoxy A phenyl group having a group as a substituent is more preferable, and an unsubstituted phenyl group or a phenyl group having one C 1-10 alkoxy group as a substituent is more preferable. As the general formula (II 3 -7) a compound represented by like, it is preferable either A 15 ~ A 16 is a functional group of the same type.
 前記(II-1)~(II-6)のいずれかで表される化合物としては、下記一般式(6-1)~(6-12)、(7-1)~(7-12)のいずれかで表される化合物が挙げられる。一般式(6-7)~(6-12)、(7-7)~(7-12)中、Phは無置換のフェニル基を意味する。本発明において用いられるDPP系ホウ素錯体としては、特に、一般式(6-4)、(6-5)、(6-7)、(6-8)、(7-4)、(7-5)、(7-7)、(7-8)で表される化合物が好ましく、一般式(6-4)、(6-5)、(6-7)、(6-8)で表される化合物がより好ましい。 Examples of the compound represented by any one of (II 3 -1) to (II 3 -6) include the following general formulas (6-1) to (6-12), (7-1) to (7-12). ). In the general formulas (6-7) to (6-12) and (7-7) to (7-12), Ph represents an unsubstituted phenyl group. As the DPP-based boron complex used in the present invention, in particular, the general formulas (6-4), (6-5), (6-7), (6-8), (7-4), (7-5) ), (7-7), and (7-8) are preferred, represented by general formulas (6-4), (6-5), (6-7), and (6-8) Compounds are more preferred.
 一般式(6-1)~(6-12)、(7-1)~(7-12)中、P~Pは、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表す。当該P~PにおけるC1-20アルキル基、C1-20アルコキシ基、モノアルキルアミノ基、又はジアルキルアミノ基としては、それぞれ、前記Rや(p1)~(p3)、(q1)~(q3)で挙げられたものと同じものが挙げられる。P~Pとしては、C1-20アルキル基、C1-20アルコキシ基、(無置換の)フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-ジメチルアミノフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることが好ましく、生体に対する安全性の点からC1-20アルキル基、C1-20アルコキシ基、フェニル基、p-メトキシフェニル基、p-エトキシフェニル基、ジメトキシフェニル基、チエニル基、又はフラニル基であることがより好ましく、C1-20アルキル基又はC1-20アルコキシ基であることがさらに好ましく、C1-10アルキル基又はC1-10アルコキシ基であることがよりさらに好ましく、これらの置換基はさらに置換基を有していてもよい。ただし、これらの置換基以外の置換基であっても、さらに適当な置換基を導入することにより安全性を向上させることもできることから、これらの置換基に限定されるものではない。 In the general formulas (6-1) to (6-12) and (7-1) to (7-12), P 5 to P 8 are each independently a halogen atom, a C 1-20 alkyl group, C 1-20 represents an alkoxy group, an amino group, a monoalkylamino group or a dialkylamino group. As the C 1-20 alkyl group, C 1-20 alkoxy group, monoalkylamino group, or dialkylamino group in P 5 to P 8 , R g and (p1) to (p3), (q1) The same as those described in (q3). P 5 to P 8 include C 1-20 alkyl group, C 1-20 alkoxy group, (unsubstituted) phenyl group, p-methoxyphenyl group, p-ethoxyphenyl group, p-dimethylaminophenyl group, dimethoxy It is preferably a phenyl group, a thienyl group, or a furanyl group. From the viewpoint of safety to living bodies, a C 1-20 alkyl group, a C 1-20 alkoxy group, a phenyl group, a p-methoxyphenyl group, a p-ethoxyphenyl group , A dimethoxyphenyl group, a thienyl group, or a furanyl group, more preferably a C 1-20 alkyl group or a C 1-20 alkoxy group, and a C 1-10 alkyl group or a C 1-10 alkoxy group. More preferably, it is a group, and these substituents may further have a substituent. However, the substituents other than these substituents are not limited to these substituents because the safety can be improved by further introducing appropriate substituents.
 一般式(6-1)~(6-12)、(7-1)~(7-12)中、n5~n8は、互いに独立して、0~3の整数を表す。一分子中に、Pが複数個存在した場合(すなわち、n5が2又は3の場合)、複数のPはいずれも同種の官能基であってもよく、異種類の官能基であってもよい。P~Pについても同様である。 In the general formulas (6-1) to (6-12) and (7-1) to (7-12), n5 to n8 each independently represents an integer of 0 to 3. When a plurality of P 5 are present in one molecule (that is, when n5 is 2 or 3), all of the plurality of P 5 may be the same or different functional groups. Also good. The same applies to P 6 to P 8 .
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 一般式(6-1)~(6-12)、(7-1)~(7-12)で表される化合物としては、P~Pが互いに独立してC1-20アルキル基又はC1-20アルコキシ基であり、n5~n8が互いに独立して0~2であるものが好ましく、P及びPが互いに独立してC1-20アルキル基であり、n5及びn6が互いに独立して0~2であり、P及びPが互いに独立してC1-20アルコキシ基であり、n7及びn8が互いに独立して0~1であるものがより好ましく、P及びPが互いに独立してC1-20アルキル基であり、n5及びn6が互いに独立して1~2であり、P及びPが互いに独立してC1-20アルコキシ基であり、n7及びn8が1であるものがさらに好ましい。 As the compounds represented by the general formulas (6-1) to (6-12) and (7-1) to (7-12), P 5 to P 8 are each independently a C 1-20 alkyl group or A C 1-20 alkoxy group in which n5 to n8 are independently 0 to 2, P 5 and P 6 are independently C 1-20 alkyl groups, and n5 and n6 are More preferably, it is independently 0 to 2, P 7 and P 8 are each independently a C 1-20 alkoxy group, and n7 and n8 are each independently 0 to 1, and P 5 and P 8 6 is independently a C 1-20 alkyl group, n5 and n6 are independently 1 to 2, P 7 and P 8 are independently C 1-20 alkoxy groups, n7 and More preferably, n8 is 1.
 一般式(6-1)~(6-12)で表される化合物としては、具体的には、下記の式(6-1-1)~(6-12-1)で表される化合物が挙げられる。「λ」は各化合物の溶液中での吸収スペクトルのピーク波長であり、「Em」は蛍光スペクトルのピーク波長である。 Specific examples of the compounds represented by the general formulas (6-1) to (6-12) include compounds represented by the following formulas (6-1-1) to (6-12-1). Can be mentioned. “Λ” is the peak wavelength of the absorption spectrum in the solution of each compound, and “Em” is the peak wavelength of the fluorescence spectrum.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
<放射線不透過性物質>
 本発明に係る樹脂組成物が含有する放射線不透過性物質としては、放射線の透過性が、皮膚や筋肉、脂肪等よりも低いものが好ましく、骨やカルシウム等よりも低いものがより好ましい。このような放射線不透過性物質としては、例えば、非金属原子からなるものとして、硫酸バリウム、炭酸カルシウム、水酸化アルミニウム、臭素、臭化物、ヨウ素、ヨウ化物等が挙げられ、金属原子を含むものとして、チタン、亜鉛、ジルコニウム、ロジウム、パラジウム、銀、スズ、タンタル、タングステン、レニウム、イリジウム、プラチナ、金、ビスマス等の金属の金属粉末や酸化物等が挙げられる。また、雲母、タルク等も放射線不透過性物質として用いることができる。
<Radiopaque substances>
As the radiopaque substance contained in the resin composition according to the present invention, those having lower radiation permeability than those of skin, muscle, fat and the like are preferable, and those having lower permeability than bone, calcium and the like are more preferable. Examples of such a radiopaque material include non-metal atoms such as barium sulfate, calcium carbonate, aluminum hydroxide, bromine, bromide, iodine, and iodide, and include metal atoms. And metal powders and oxides of metals such as titanium, zinc, zirconium, rhodium, palladium, silver, tin, tantalum, tungsten, rhenium, iridium, platinum, gold, and bismuth. Moreover, mica, talc, etc. can also be used as a radiopaque substance.
 本発明に係る樹脂組成物が、例えば生体内で使用される医療用具の素材として用いられる場合には、生体適合性の高い放射線不透過性物質を含有することが好ましい。生体適合性の高い放射線不透過性物質としては、例えば、硫酸バリウム、酸化ビスマス、次炭酸ビスマス、炭酸カルシウム、水酸化アルミニウム、タングステン、酸化亜鉛、酸化ジルコニウム、ジルコニウム、チタン、白金、次硝酸ビスマス、ビスマス等が挙げられる。本発明において用いられる放射線不透過性物質としては、安全性等の点から、硫酸バリウム、炭酸カルシウム、次炭酸ビスマス、又は酸化ビスマスがより好ましく、発光物質に対する増感効果の点から、硫酸バリウムが特に好ましい。本発明に係る樹脂組成物は、1種類の放射線不透過性物質を含有していてもよく、2種類以上を含有していてもよい。本発明に係る樹脂組成物においては、前記で挙げられた放射線不透過性物質の1種又は2種以上を含有するものが好ましい。 For example, when the resin composition according to the present invention is used as a material for a medical device used in a living body, it preferably contains a radiopaque substance having high biocompatibility. Examples of highly biocompatible radiopaque materials include barium sulfate, bismuth oxide, bismuth hypocarbonate, calcium carbonate, aluminum hydroxide, tungsten, zinc oxide, zirconium oxide, zirconium, titanium, platinum, bismuth subnitrate, Bismuth etc. are mentioned. The radiopaque substance used in the present invention is more preferably barium sulfate, calcium carbonate, bismuth subcarbonate or bismuth oxide from the viewpoint of safety and the like, and barium sulfate is preferred from the viewpoint of the sensitizing effect on the luminescent substance. Particularly preferred. The resin composition according to the present invention may contain one kind of radiopaque substance or may contain two or more kinds. In the resin composition which concerns on this invention, what contains the 1 type (s) or 2 or more types of the radiopaque substance mentioned above is preferable.
 本発明において用いられる放射線不透過性物質の形状は、配合された樹脂組成物に放射線不透過性を付与できるものであれば特に限定されるものではなく、粒子状、フィラメント状、不定形状のいずれであってもよい。本発明において用いられる放射線不透過性物質としては、樹脂への分散性、放射線透過性、前記発光物質の発光強度に対する影響の点から、粒子状であることが好ましい。 The shape of the radiopaque substance used in the present invention is not particularly limited as long as it can impart radiopacity to the blended resin composition, and any of particulate, filamentous, and irregular shapes can be used. It may be. The radiopaque substance used in the present invention is preferably in the form of particles from the viewpoint of dispersibility in a resin, radiolucency, and the light emission intensity of the luminescent substance.
<樹脂成分>
 本発明に係る樹脂組成物が含有する樹脂成分は、特に限定されるものではなく、配合させる発光物質や放射線不透過性物質の種類、成形体を形成した際に要求される製品品質等を考慮して、公知の樹脂組成物やその改良物から適宜選択して用いることができる。例えば、当該樹脂成分は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。成形体に使用する場合には、熱硬化樹脂は溶融混練時に硬化する可能性があることから、本発明に係る樹脂組成物が含有する樹脂成分としては、熱可塑性樹脂であることが好ましい。
本発明において用いられる樹脂成分としては、1種のみを用いてもよく、2種類以上を混合して用いてもよい。2種類以上を混合する場合には、相溶性の高い樹脂同士を組み合わせて用いることが好ましい。
<Resin component>
The resin component contained in the resin composition according to the present invention is not particularly limited, and considers the type of luminescent material and radiopaque material to be blended, product quality required when forming a molded body, and the like. And it can select from a well-known resin composition and its improvement suitably, and can use it. For example, the resin component may be a thermoplastic resin or a thermosetting resin. When used in a molded article, the thermosetting resin may be cured during melt-kneading, so the resin component contained in the resin composition according to the present invention is preferably a thermoplastic resin.
As a resin component used in this invention, only 1 type may be used and 2 or more types may be mixed and used. When two or more types are mixed, it is preferable to use a combination of highly compatible resins.
 本発明において用いられる樹脂成分としては、例えば、ポリウレタン(PU)、熱可塑性ポリウレタン(TPU)等のウレタン系樹脂;ポリカーボネート(PC);ポリ塩化ビニル(PVC)、塩化ビニル-酢酸ビニル共重合樹脂等の塩化ビニル系樹脂;ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル等のアクリル系樹脂;ポリエチレンテレフタレ-ト(PET)、ポリブチレンテレフタレ-ト、ポリトリメチレンテレフタレ-ト、ポリエチレンナフタレ-ト、ポリブチレンナフタレ-ト等のポリエステル系樹脂;ナイロン(登録商標)等のポリアミド系樹脂;ポリスチレン(PS)、イミド変性ポリスチレン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、イミド変性ABS樹脂、スチレン・アクリロニトリル共重合(SAN)樹脂、アクリロニトリル・エチレン-プロピレン-ジエン・スチレン(AES)樹脂等のポリスチレン系樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、シクロオレフィン樹脂等のオレフィン系樹脂;ニトロセルロース、酢酸セルロース等のセルロース系樹脂;シリコーン系樹脂;フッ素系樹脂等の熱可塑性樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、イソシアヌレート系エポキシ樹脂、ヒダントイン系エポキシ樹脂等のエポキシ系樹脂;メラミン系樹脂やユリア樹脂等のアミノ系樹脂;フェノール系樹脂;不飽和ポリエステル系樹脂等の熱硬化性樹脂が挙げられる。 Examples of the resin component used in the present invention include urethane resins such as polyurethane (PU) and thermoplastic polyurethane (TPU); polycarbonate (PC); polyvinyl chloride (PVC), vinyl chloride-vinyl acetate copolymer resin, and the like. Vinyl chloride resins; acrylic resins such as polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate (PMMA), polyethyl methacrylate; polyethylene terephthalate (PET), polybutylene terephthalate -Polyester resins such as polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate; polyamide resins such as nylon (registered trademark); polystyrene (PS), imide-modified polystyrene, acrylonitrile・ Butadiene styrene (A S) resin, imide-modified ABS resin, styrene / acrylonitrile copolymer (SAN) resin, polystyrene resin such as acrylonitrile / ethylene-propylene-diene / styrene (AES) resin, polyethylene (PE) resin, polypropylene (PP) resin, Olefin resins such as cycloolefin resins; Cellulosic resins such as nitrocellulose and cellulose acetate; Silicone resins; Thermoplastic resins such as fluorine resins; Bisphenol A type epoxy resins, Bisphenol F type epoxy resins, Isocyanurate type epoxy resins And epoxy resins such as hydantoin epoxy resins; amino resins such as melamine resins and urea resins; phenol resins; thermosetting resins such as unsaturated polyester resins.
 本発明に係る樹脂組成物が発光物質として前記式(I)で表されるアゾ-ホウ素錯体化合物を含有する場合には、当該アゾ-ホウ素錯体化合物の分散性が高いことから、樹脂成分としては、PU、TPU、PET、PVC、PC、PMMA、PSが好ましく、TPU、PET、PSがより好ましい。なお、これらは2種以上を混合して使用しても構わない。 When the resin composition according to the present invention contains the azo-boron complex compound represented by the above formula (I) as the light emitting substance, the dispersibility of the azo-boron complex compound is high. , PU, TPU, PET, PVC, PC, PMMA, PS are preferable, and TPU, PET, PS are more preferable. In addition, these may mix and use 2 or more types.
 本発明に係る樹脂組成物が発光物質として前記一般式(II)、一般式(II)、一般式(II)、又は一般式(II)で表される化合物を含有する場合には、当該化合物の分散性が高いことから、樹脂成分としては、フッ素系樹脂、シリコーン系樹脂、ウレタン系樹脂、オレフィン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ポリアミド系樹脂又はアクリル系樹脂が好ましく、ウレタン系樹脂、オレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、及び塩化ビニル系樹脂がより好ましい。特に、本発明に係る樹脂組成物を医療用材料として用いる場合には、血液などの体液への溶解性が低く、使用環境下において溶出し難い点や生体適合性を考慮すると、PTFE(テフロン(登録商標))、シリコーン、PU、TPU、PP、PE、PC、PET、PS、ポリアミド、PVCが好ましく、TPU、PU、PP、PE、PET、PSがより好ましく、TPU、PP、PET、PSがさらに好ましい。なお、これらは2種以上を混合して使用しても構わない。 When the resin composition according to the present invention contains a compound represented by the general formula (II 1 ), the general formula (II 2 ), the general formula (II 3 ), or the general formula (II 4 ) as a luminescent substance. Since the dispersibility of the compound is high, the resin component includes fluorine resin, silicone resin, urethane resin, olefin resin, vinyl chloride resin, polyester resin, polystyrene resin, polycarbonate resin, polyamide Resin or acrylic resin is preferable, and urethane resin, olefin resin, polystyrene resin, polyester resin, and vinyl chloride resin are more preferable. In particular, when the resin composition according to the present invention is used as a medical material, PTFE (Teflon (Teflon) is considered in view of low solubility in body fluids such as blood and difficulty in elution in a use environment and biocompatibility. (Registered trademark)), silicone, PU, TPU, PP, PE, PC, PET, PS, polyamide, PVC are preferable, TPU, PU, PP, PE, PET, PS are more preferable, and TPU, PP, PET, PS are preferable. Further preferred. In addition, these may mix and use 2 or more types.
 なお、本発明に係る樹脂組成物が熱可塑性樹脂組成物の場合、樹脂成分としては、樹脂成分全体として熱可塑性樹脂であればよく、少量の非熱可塑性樹脂を含有していてもよい。同様に、本発明に係る樹脂組成物が熱硬化性樹脂組成物の場合、樹脂成分としては、樹脂成分全体として熱硬化性樹脂であればよく、少量の非熱硬化性樹脂を含有していてもよい。 In addition, when the resin composition according to the present invention is a thermoplastic resin composition, the resin component may be a thermoplastic resin as a whole resin component, and may contain a small amount of a non-thermoplastic resin. Similarly, when the resin composition according to the present invention is a thermosetting resin composition, the resin component may be a thermosetting resin as a whole resin component and contains a small amount of a non-thermosetting resin. Also good.
<樹脂組成物>
 本発明に係る樹脂組成物は、樹脂成分に発光物質と放射線不透過性物質を混合・分散させることにより製造できる。本発明に係る樹脂組成物が含有する本発明に係る発光物質は、1種類のみであってもよく、2種類以上を含有していてもよい。
<Resin composition>
The resin composition according to the present invention can be produced by mixing and dispersing a luminescent substance and a radiopaque substance in a resin component. The light-emitting substance according to the present invention contained in the resin composition according to the present invention may be only one type, or may contain two or more types.
 樹脂組成物中の発光物質の含有量は、発光物質が樹脂に混合し得る濃度であれば特に限定されるものでは無いが、発光強度とその検出感度の観点からは0.0001質量%以上が好ましく、濃度消光や発光の再吸収による検出感度の観点からは5質量%以下が好ましく、0.0001~1質量%の範囲がより好ましく、0.001~0.5質量%の範囲がさらに好ましく、0.005~0.05質量%の範囲が特に好ましい。 The content of the luminescent substance in the resin composition is not particularly limited as long as the luminescent substance can be mixed with the resin, but from the viewpoint of emission intensity and its detection sensitivity, it is 0.0001% by mass or more. Preferably, it is preferably 5% by mass or less, more preferably in the range of 0.0001 to 1% by mass, and still more preferably in the range of 0.001 to 0.5% by mass from the viewpoint of detection sensitivity due to concentration quenching and reabsorption of luminescence. A range of 0.005 to 0.05 mass% is particularly preferable.
 前記発光物質が近赤外蛍光材料の場合、本発明に係る樹脂組成物中の近赤外蛍光材料の含有量は、当該近赤外蛍光材料が樹脂に混合し得る濃度であれば特に限定されるものでは無いが、蛍光強度とその検出感度の観点からは0.0001質量%以上が好ましく、濃度消光や蛍光の再吸収による検出感度の観点からは5質量%以下が好ましく、0.001~0.5質量%の範囲がより好ましく、0.005~0.05質量%の範囲がさらに好ましい。また、本発明において用いられる近赤外蛍光材料は、樹脂中においても高いモル吸光係数と高い量子収率を有しているため、樹脂中での近赤外蛍光材料濃度が比較的低くても、その発光をカメラ等で十分視認できる。近赤外蛍光材料濃度が低いことは、溶出する可能性が低くなること、樹脂組成物から加工された成形体からブリードアウトする可能性が低くなること、透明性が要求される成形体を加工できる等の点から望ましい。 When the light-emitting substance is a near-infrared fluorescent material, the content of the near-infrared fluorescent material in the resin composition according to the present invention is particularly limited as long as the near-infrared fluorescent material can be mixed with the resin. However, it is preferably 0.0001% by mass or more from the viewpoint of fluorescence intensity and its detection sensitivity, and is preferably 5% by mass or less from the viewpoint of detection sensitivity by concentration quenching or fluorescence reabsorption, from 0.001 to The range of 0.5% by mass is more preferable, and the range of 0.005 to 0.05% by mass is more preferable. In addition, since the near-infrared fluorescent material used in the present invention has a high molar extinction coefficient and a high quantum yield in the resin, even if the concentration of the near-infrared fluorescent material in the resin is relatively low. The light emission can be sufficiently visually confirmed with a camera or the like. Low near-infrared fluorescent material concentration reduces the possibility of elution, reduces the possibility of bleeding out from a molded product processed from a resin composition, and processes a molded product that requires transparency It is desirable from the point of being possible.
 樹脂組成物中の放射性不透過性物質の含有量は、発光物質に対する増感効果が得られる観点から、2質量%以上であり、より顕著な発光物質に対する増感効果が得られる観点から5質量%以上が好ましく、放射線遮蔽能を有し、X線放射による検出と発光による検出の両方が可能となることから、10質量%以上がさらに好ましい。また、樹脂組成物中の放射性不透過性物質の含有量は、樹脂組成物の機械的強度の観点からは80質量%以下であり、50質量%以下が好ましい。すなわち、通常、2質量%以上80質量%以下であり、5質量%以上50質量%以下の範囲がより好ましく、10質量%以上50質量%以下の範囲がさらに好ましく、20~40質量%の範囲が特に好ましい。 The content of the radiopaque substance in the resin composition is 2% by mass or more from the viewpoint of obtaining a sensitizing effect on the luminescent substance, and 5% from the viewpoint of obtaining a more remarkable sensitizing effect on the luminescent substance. % Or more is preferable, and since it has a radiation shielding ability and both detection by X-ray radiation and detection by light emission are possible, 10% by mass or more is more preferable. Moreover, content of the radiopaque substance in a resin composition is 80 mass% or less from a viewpoint of the mechanical strength of a resin composition, and 50 mass% or less is preferable. That is, it is usually 2% by mass or more and 80% by mass or less, more preferably 5% by mass or more and 50% by mass or less, further preferably 10% by mass or more and 50% by mass or less, and more preferably 20 to 40% by mass. Is particularly preferred.
 発光物質と放射線不透過性物質の混合比には、特に制限は無いが、発光強度を高める観点からは、混合比(発光物質の質量/放射線不透過性物質の質量)は、0.00001~2.5の範囲が好ましく、0.00025~0.2の範囲がより好ましく、0.00025~0.001の範囲がさらに好ましい。 The mixing ratio of the luminescent substance and the radiopaque substance is not particularly limited, but from the viewpoint of increasing the emission intensity, the mixing ratio (the mass of the luminescent substance / the mass of the radiopaque substance) is 0.00001 to The range of 2.5 is preferable, the range of 0.00025 to 0.2 is more preferable, and the range of 0.00025 to 0.001 is more preferable.
 発光物質及び放射線不透過性物質を樹脂成分に混合・分散する方法は、特に限定されるものではなく、公知のいずれの方法で行ってもよく、さらに添加剤を併用しても構わない。例えば、適当な溶媒に溶解させた樹脂組成物溶液に、発光物質と放射線不透過性物質を添加して分散させてもよい。また、溶媒を使用しない場合も、樹脂組成物に発光物質と放射線不透過性物質を添加して溶融混練させ、本発明に係る樹脂組成物を得ることができる。こうして樹脂中に発光物質と放射線不透過性物質が均一に分散された状態の樹脂組成物が得られる。 The method of mixing and dispersing the luminescent substance and the radiopaque substance in the resin component is not particularly limited, and any known method may be used, and an additive may be used in combination. For example, a luminescent substance and a radiopaque substance may be added and dispersed in a resin composition solution dissolved in a suitable solvent. Even when no solvent is used, the resin composition according to the present invention can be obtained by adding a luminescent substance and a radiopaque substance to the resin composition and melt-kneading them. Thus, a resin composition in which the light emitting substance and the radiopaque substance are uniformly dispersed in the resin is obtained.
 なお、樹脂と蛍光材料を溶融混練することによって蛍光材料を熱可塑性樹脂等に分散させる場合に、蛍光材料の分解点未満の温度で溶融混練を行った場合でも、樹脂や蛍光材料の種類及び混練条件によっては、分散不良を起こしてしまったり、蛍光材料が分解してしまうなどの原因によって蛍光を発しないことがある。そして、蛍光材料が熱可塑性樹脂等に分散できるか否かは、蛍光材料の熱物性等から予測するのは困難である。 In addition, when the fluorescent material is dispersed in a thermoplastic resin or the like by melt-kneading the resin and the fluorescent material, the type and kneading of the resin and the fluorescent material are performed even when melt-kneading is performed at a temperature lower than the decomposition point of the fluorescent material. Depending on the conditions, fluorescence may not be emitted due to causes such as poor dispersion or decomposition of the fluorescent material. Whether or not the fluorescent material can be dispersed in the thermoplastic resin or the like is difficult to predict from the thermophysical properties of the fluorescent material.
 これに対して、前記一般式(II)、一般式(II)、一般式(II)、又は一般式(II)で表される化合物は、様々な樹脂成分に均一に混合・分散させることが可能であり、樹脂中においても高い量子収率で蛍光を発することが出来る。その理由は明らかではないが、以下のように推察できる。溶融混練等の方法で蛍光材料を分散させる場合、凝集等を起こしてしまうと濃度消光により蛍光の量子収率は低くなることが考えられる。そこで、該蛍光材料が蛍光を効率よく発するためには、樹脂と相溶性が高く、均一に分散できることが望ましい。相溶性が高いかどうかの1つの指標としてSP値が挙げられる。蛍光材料のSP値と樹脂のSP値の差が小さければ、相溶性が高く均一に分散させることができる。一方、SP値等が異なる場合にも、他の物性パラメーターで説明することもできる。例えば、蛍光材料の溶解度、分配係数、比誘電率、分極率等の計算値、又は実測値から、樹脂との相溶性を説明できる。また、樹脂と蛍光材料の相溶性は、樹脂の結晶性によっても異なる場合がある。 In contrast, the compound represented by the general formula (II 1 ), the general formula (II 2 ), the general formula (II 3 ), or the general formula (II 4 ) is uniformly mixed with various resin components. It can be dispersed and can emit fluorescence with high quantum yield even in the resin. The reason is not clear, but can be inferred as follows. When the fluorescent material is dispersed by a method such as melt-kneading, if the aggregation or the like occurs, it is considered that the fluorescence quantum yield decreases due to concentration quenching. Therefore, in order for the fluorescent material to emit fluorescence efficiently, it is desirable that the fluorescent material has high compatibility with the resin and can be uniformly dispersed. One index of whether the compatibility is high is the SP value. If the difference between the SP value of the fluorescent material and the SP value of the resin is small, it is highly compatible and can be dispersed uniformly. On the other hand, even when the SP value is different, it can be explained by other physical property parameters. For example, the compatibility with the resin can be explained from calculated values such as solubility, distribution coefficient, relative dielectric constant, polarizability, etc. of the fluorescent material, or measured values. In addition, the compatibility between the resin and the fluorescent material may differ depending on the crystallinity of the resin.
 その他にも、樹脂と蛍光材料との相溶性は、蛍光材料の分子自体が有する官能基によって制御できる。例えば、ポリプロピレンやポリエチレンのような脂溶(疎水)性のポリオレフィン系樹脂に分散させる場合は、蛍光材料分子が疎水性基を有していることが好ましい。例えば、脂環式アルキル基、長鎖アルキル基、ハロゲン化アルキル基、又は芳香環等の疎水性基を蛍光材料分子に導入することにより、樹脂との相溶性を向上させることができる。ただし、これらの官能基に限定されるわけではない。また、ポリウレタンやポリアミド等の極性の高い樹脂に分散させる場合は、蛍光材料分子がカルボキシル基、水酸基、アミノ基、アルコキシ基、アリールオキシ基、アルキルアミノ基、エステル、アミド等の親水性基を有していることが好ましい。ただし、これらに限定されるものではない。 In addition, the compatibility between the resin and the fluorescent material can be controlled by the functional group of the fluorescent material molecule itself. For example, when dispersed in a fat-soluble (hydrophobic) polyolefin-based resin such as polypropylene or polyethylene, the fluorescent material molecule preferably has a hydrophobic group. For example, compatibility with the resin can be improved by introducing a hydrophobic group such as an alicyclic alkyl group, a long-chain alkyl group, a halogenated alkyl group, or an aromatic ring into the fluorescent material molecule. However, it is not necessarily limited to these functional groups. In addition, when dispersed in a highly polar resin such as polyurethane or polyamide, the fluorescent material molecule has a hydrophilic group such as a carboxyl group, a hydroxyl group, an amino group, an alkoxy group, an aryloxy group, an alkylamino group, an ester or an amide. It is preferable. However, it is not limited to these.
 樹脂との相溶性を高めるためには、色素分子の凝集を抑える必要がある。蛍光材料の場合、共役系の伸張や平面性の確保から分子に芳香環や複素環の導入が行われる。しかし、これらの環の導入により、分子間の相互作用が強くなり、スタッキングを起こしやすく、凝集しやすい傾向にある。前記一般式(II)、一般式(II)、一般式(II)、又は一般式(II)で表される化合物は、ホウ素原子を中心とした広い共役平面からなる骨格を有しているため、凝集しやすいが、電子供与性基や電子求引性置換基を導入して分極させることや嵩高い官能基を導入することにより色素の凝集が抑えられており、様々な樹脂への相溶性が実現できていると推測される。 In order to increase the compatibility with the resin, it is necessary to suppress aggregation of the dye molecules. In the case of a fluorescent material, an aromatic ring or a heterocyclic ring is introduced into the molecule in order to ensure the extension of the conjugated system and planarity. However, the introduction of these rings increases the interaction between molecules, tends to cause stacking, and tends to aggregate. The compound represented by the general formula (II 1 ), general formula (II 2 ), general formula (II 3 ), or general formula (II 4 ) has a skeleton composed of a wide conjugated plane centered on a boron atom. However, the aggregation of dyes is suppressed by introducing an electron donating group or an electron withdrawing substituent to polarize or introducing a bulky functional group. It is presumed that compatibility with is realized.
 相溶性の指標となる分配係数やSP値は、市販ソフトから計算で得られる「ハンセンの溶解性パラメーター」から、水/オクタノール分配係数やヒルデブランドのSP値として見積もることができる。例えば、前記一般式(II)、一般式(II)、一般式(II)、又は一般式(II)で表される化合物のうち、下記化合物(8-1)~(8-8)で表される化合物の分配係数とSP値は以下の通りである。 The partition coefficient and SP value, which are indicators of compatibility, can be estimated as the water / octanol partition coefficient and the Hildebrand SP value from the “Hansen solubility parameter” obtained by calculation from commercially available software. For example, among the compounds represented by the general formula (II 1 ), general formula (II 2 ), general formula (II 3 ), or general formula (II 4 ), the following compounds (8-1) to (8- The distribution coefficient and SP value of the compound represented by 8) are as follows.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 本発明において用いられる近赤外蛍光材料は、PP等の樹脂成分と溶融混練して均一に分散・混合させることが可能であり、混練された樹脂組成物や当該樹脂組成物から加工された成形体は、高い発光量子収率で安定して近赤外蛍光を発することができる。本発明において用いられる近赤外蛍光材料が、他の多くの有機近赤外蛍光材料と異なり、樹脂組成物と溶融混練した場合でも高い発光特性を示す理由は明らかではないが、本発明において用いられる近赤外蛍光材料は、広い共役平面からなる堅牢な骨格を有しているため、耐熱性が高く、かつ樹脂への相溶性が優れるためと推察される。なお、BODIPY色素及びDPP系ホウ素錯体が、溶融混練のように負荷の高い処理によっても蛍光特性が損なわれないことは、本発明者らが初めて見出した知見である。 The near-infrared fluorescent material used in the present invention can be melt-kneaded and uniformly dispersed and mixed with a resin component such as PP, and the kneaded resin composition or molded from the resin composition. The body can stably emit near-infrared fluorescence with a high emission quantum yield. Although the near-infrared fluorescent material used in the present invention is different from many other organic near-infrared fluorescent materials, the reason why it exhibits high emission characteristics even when melt-kneaded with the resin composition is not clear, but it is used in the present invention. It is presumed that the near-infrared fluorescent material obtained has a robust skeleton composed of a wide conjugate plane, and therefore has high heat resistance and excellent compatibility with the resin. In addition, it is the knowledge which the present inventors discovered for the first time that BODIPY pigment | dye and a DPP type | system | group boron complex do not impair a fluorescence characteristic by processing with high load like melt-kneading.
 本発明に係る樹脂組成物が、20%以上の高い量子収率(放出された光子数/吸収された光子数)の発光物質を含有する場合には、特に問題にならないが、量子収率が低い発光物質を含有する場合には、本発明に係る樹脂組成物のストークスシフト(極大吸収波長と極大発光波長の差)に対する理解も重要である。 When the resin composition according to the present invention contains a light emitting substance having a high quantum yield (number of emitted photons / number of absorbed photons) of 20% or more, there is no particular problem, but the quantum yield is low. In the case of containing a low light emitting substance, it is also important to understand the Stokes shift (difference between the maximum absorption wavelength and the maximum emission wavelength) of the resin composition according to the present invention.
 励起光によるノイズカットのためのフィルターが備えられている一般的な発光検出器を用いる場合、本発明に係る樹脂組成物のストークスシフトが小さいと、発光がフィルターによりカットされるため、高感度で検出することが難しい。そのため、本発明に係る樹脂組成物は、ストークスシフト(極大吸収波長と極大発光波長の差)が10nm以上のものが好ましく、ストークスシフトが20nm以上のものがより好ましい。ストークスシフトが大きいほど、励起光によるノイズカットのためのフィルターが備えられている一般的な検出器を用いた場合でも、当該成形体から発される発光をより高感度で検出することが可能である。 When using a general luminescence detector equipped with a filter for noise reduction by excitation light, if the Stokes shift of the resin composition according to the present invention is small, the luminescence is cut by the filter, so the sensitivity is high. It is difficult to detect. Therefore, the resin composition according to the present invention preferably has a Stokes shift (difference between the maximum absorption wavelength and the maximum emission wavelength) of 10 nm or more, and more preferably has a Stokes shift of 20 nm or more. The larger the Stokes shift, the more sensitive it is to detect light emitted from the molded body even when using a general detector equipped with a filter for noise reduction by excitation light. is there.
 ただし、ストークスシフトが小さい場合でも、以下のような条件では、本発明に係る樹脂組成物からの近赤外蛍光を高感度に検出可能である。例えば、極大吸収波長よりも短波長光で励起することができれば、ノイズカットをしても蛍光を検出することが可能である。また、蛍光スペクトルがブロードの場合には、ノイズカットしても十分に蛍光を検出することが可能である。一方で、蛍光材料の中には蛍光ピークを複数有しているものもある。その場合は、ストークスシフトが小さくても、より長波長側に蛍光ピーク(第2のピーク)があれば、ノイズカットによるフィルターが備えられている検出器を用いた場合でも高感度で検出することが可能である。本発明に係る樹脂組成物が複数の蛍光を有している場合における長波長側の蛍光ピーク波長は、極大吸収波長との差が30nm以上であればよく、50nm以上であれば好ましい。なお、励起光源やカットフィルターなどを適切に選択すれば、上述した条件に限定されるものではない。 However, even when the Stokes shift is small, near-infrared fluorescence from the resin composition according to the present invention can be detected with high sensitivity under the following conditions. For example, if excitation can be performed with light having a wavelength shorter than the maximum absorption wavelength, fluorescence can be detected even if noise is cut. In addition, when the fluorescence spectrum is broad, it is possible to sufficiently detect fluorescence even if noise is cut. On the other hand, some fluorescent materials have a plurality of fluorescent peaks. In that case, even if the Stokes shift is small, if there is a fluorescence peak (second peak) on the longer wavelength side, detection should be performed with high sensitivity even when a detector equipped with a filter by noise cut is used. Is possible. In the case where the resin composition according to the present invention has a plurality of fluorescences, the fluorescence peak wavelength on the long wavelength side may have a difference from the maximum absorption wavelength of 30 nm or more, and preferably 50 nm or more. In addition, if an excitation light source, a cut filter, etc. are selected appropriately, it will not be limited to the conditions mentioned above.
 近赤外蛍光材料や赤外蛍光材料を含有する場合には、本発明に係る樹脂組成物は、近赤外領域の励起光で励起しても目視状態で色彩が変わらず、かつ、不可視の近赤外領域の蛍光を発し、検出器で検出できる。したがって、近赤外領域の励起光に対しては極大吸収波長が600nm以上であればよいが、吸収効率の観点からは、極大吸収波長が励起光の波長に近い方が好ましく、650nm以上がより好ましく、665nm以上がさらに好ましく、680nm以上であることが特に好ましい。さらに、インプラントなどの医療用具として使用する場合には、700nm以上が好ましい。 In the case of containing a near-infrared fluorescent material or an infrared fluorescent material, the resin composition according to the present invention does not change color in the visual state even when excited by excitation light in the near-infrared region, and is invisible. It emits fluorescence in the near infrared region and can be detected by a detector. Therefore, it is sufficient that the maximum absorption wavelength is 600 nm or more for the excitation light in the near infrared region. However, from the viewpoint of absorption efficiency, the maximum absorption wavelength is preferably close to the wavelength of the excitation light, and more than 650 nm is more preferable. Preferably, it is more preferably 665 nm or more, and particularly preferably 680 nm or more. Furthermore, when used as a medical device such as an implant, 700 nm or more is preferable.
 近赤外蛍光材料や赤外蛍光材料を含有する場合には、本発明に係る樹脂組成物及び当該組成物から得られる成形体は、被照射物の色彩が変わらず、かつ、検出感度を考慮すると、極大蛍光波長が650nm以上であれば実用的には問題がないが、700nm以上であることが好ましく、720nm以上であることがより好ましい。蛍光ピークを複数有する場合には、極大蛍光ピークの波長が720nm以下であっても、740nm以上に充分な検出感度を有する蛍光ピークがあればよい。その場合、長波長側の蛍光ピーク(第2のピーク)の強度が極大蛍光波長の強度に対して、5%以上であることが好ましく、10%以上であることがより好ましい。 When a near-infrared fluorescent material or an infrared fluorescent material is contained, the resin composition according to the present invention and the molded product obtained from the composition do not change the color of the irradiated object, and the detection sensitivity is considered. Then, if the maximum fluorescence wavelength is 650 nm or more, there is no practical problem, but 700 nm or more is preferable, and 720 nm or more is more preferable. In the case of having a plurality of fluorescence peaks, even if the wavelength of the maximum fluorescence peak is 720 nm or less, it is sufficient if there is a fluorescence peak having sufficient detection sensitivity at 740 nm or more. In that case, the intensity of the fluorescence peak (second peak) on the long wavelength side is preferably 5% or more and more preferably 10% or more with respect to the intensity of the maximum fluorescence wavelength.
 本発明に係る樹脂組成物及び当該組成物から得られる成形体としては、650nm~1500nmの範囲に強い吸収があり、この範囲で強い蛍光を発することが好ましい。650nm以上の光は、ヘモグロビンによる影響を受けにくく、1500nm以下の光は、水の影響を受けにくい。つまり、650nm~1500nmの範囲内の光は、皮膚透過性が高く、生体内の夾雑物質の影響を受けにくいため、皮下などに埋め込まれている医療用インプラントを可視化するために用いられる光の波長領域として好適である。極大吸収波長と極大蛍光波長が650nm~1500nmの範囲にある場合、本発明に係る樹脂組成物及び当該組成物から得られる成形体は、650nm~1500nmの範囲内の光による検出に適しており、生体内で使用される医療用具等として好適である。 The resin composition according to the present invention and the molded product obtained from the composition have strong absorption in the range of 650 nm to 1500 nm, and preferably emit strong fluorescence in this range. Light of 650 nm or more is not easily affected by hemoglobin, and light of 1500 nm or less is hardly affected by water. In other words, light within the range of 650 nm to 1500 nm has high skin permeability and is not easily affected by contaminants in the living body. Therefore, the wavelength of light used for visualizing medical implants implanted under the skin or the like. It is suitable as a region. When the maximum absorption wavelength and the maximum fluorescence wavelength are in the range of 650 nm to 1500 nm, the resin composition according to the present invention and the molded product obtained from the composition are suitable for detection by light in the range of 650 nm to 1500 nm, It is suitable as a medical device used in vivo.
 本発明に係る樹脂組成物は、本発明の効果を損なわない限り、前記樹脂成分と発光物質と放射線不透過性物質以外の他の成分を含有していてもよい。当該他の成分としては、紫外線吸収剤、熱安定剤、光安定剤、酸化防止剤、難燃剤、難燃助剤、結晶化促進剤、可塑剤、帯電防止剤、着色剤、離型剤等が挙げられる。 The resin composition according to the present invention may contain components other than the resin component, the luminescent material, and the radiopaque material as long as the effects of the present invention are not impaired. Examples of the other components include an ultraviolet absorber, a heat stabilizer, a light stabilizer, an antioxidant, a flame retardant, a flame retardant aid, a crystallization accelerator, a plasticizer, an antistatic agent, a colorant, and a release agent. Is mentioned.
<成形体>
 本発明に係る樹脂組成物を加工することにより、発光検出と放射線検出の両方が可能な成形体が得られる。成形方法は、特に限定されないが、キャスティング(注型法)、金型を用いた射出成形、圧縮成形及びTダイ等による押し出し成形、ブロー成形などが挙げられる。
<Molded body>
By processing the resin composition according to the present invention, a molded body capable of both emission detection and radiation detection is obtained. The molding method is not particularly limited, and examples thereof include casting (casting method), injection molding using a mold, compression molding, extrusion molding using a T die, blow molding, and the like.
 成形体の製造において、本発明に係る樹脂組成物のみから形成してもよく、本発明に係る樹脂組成物とその他の樹脂組成物を原料として用いてもよい。例えば、成形体の全部を本発明に係る樹脂組成物により成形してもよく、成形体の一部分のみを本発明に係る樹脂組成物により成形してもよい。本発明に係る樹脂組成物は、成形体の表面部分を構成する原料として用いられることが好ましい。例えば、カテーテルを成形する場合、カテーテルの先端部のみを本発明に係る樹脂組成物により成形し、残りの部分を近赤外蛍光材料を含有していない樹脂組成物により成形することにより、先端部のみが近赤外蛍光を発するカテーテルが製造できる。また、本発明に係る樹脂組成物と近赤外蛍光材料を含有していない樹脂組成物とを交互に積層して成形することにより、ストライプ状に近赤外蛍光を発する成形体が製造できる。その他、成形体の視認性を高めるための表面コーティングを行ってもよい。 In the production of a molded body, the molded body may be formed only from the resin composition according to the present invention, or the resin composition according to the present invention and other resin compositions may be used as raw materials. For example, the entire molded body may be molded with the resin composition according to the present invention, or only a part of the molded body may be molded with the resin composition according to the present invention. The resin composition according to the present invention is preferably used as a raw material constituting the surface portion of the molded body. For example, when molding a catheter, only the distal end portion of the catheter is molded with the resin composition according to the present invention, and the remaining portion is molded with a resin composition containing no near-infrared fluorescent material. Only a catheter that emits near-infrared fluorescence can be produced. Moreover, the molded object which emits near-infrared fluorescence in stripe form can be manufactured by alternately laminating | stacking and shape | molding the resin composition which concerns on this invention, and the resin composition which does not contain a near-infrared fluorescent material. In addition, surface coating for improving the visibility of the molded body may be performed.
 放射線検出は、市販されているX線装置等を使用し、常法により実施することができる。また、発光検出も、市販されている蛍光又は燐光検出装置等を使用し、常法により実施することができる。蛍光又は燐光検出に用いる励起光としては、任意の光源を使用でき、波長幅が長い近赤外線ランプの他、波長幅が狭いレーザー、LEDなどを使用することができる。 Radiation detection can be performed by a conventional method using a commercially available X-ray apparatus or the like. Luminescence detection can also be performed by a conventional method using a commercially available fluorescence or phosphorescence detection device or the like. As excitation light used for fluorescence or phosphorescence detection, an arbitrary light source can be used, and in addition to a near-infrared lamp having a long wavelength width, a laser, LED, or the like having a narrow wavelength width can be used.
 近赤外蛍光材料や赤外蛍光材料を含有する樹脂組成物から得られた成形体は、近赤外領域の光を照射しても色彩が変わらず、従来よりも高感度に検出可能な近赤外蛍光を発するため、当該成形体は、特に、患者の体内に挿入したり留置したりする医療用具に好適である。 A molded product obtained from a near-infrared fluorescent material or a resin composition containing an infrared fluorescent material does not change its color even when irradiated with light in the near-infrared region, and can be detected with higher sensitivity than before. In order to emit infrared fluorescence, the molded body is particularly suitable for a medical device that is inserted into or placed in the body of a patient.
 近赤外蛍光材料や赤外蛍光材料を含有する樹脂組成物から得られた成形体を蛍光検出する場合には、近赤外領域の励起光を照射することが好ましいが、被照射物の色彩が多少赤みを帯びても構わない場合には、必ずしも近赤外線領域の励起光を使用する必要はない。
例えば、励起光を照射して体内の医療用具を蛍光検出しようとした場合、皮膚などの生体に対する透過性の高い波長領域で励起光を使用することが必要となるが、この場合には、生体透過性の高い650nm以上の励起光を使用すればよい。
When fluorescence detection is performed on a molded product obtained from a near-infrared fluorescent material or a resin composition containing an infrared fluorescent material, it is preferable to irradiate excitation light in the near-infrared region. However, when it is possible to have a slight redness, it is not always necessary to use excitation light in the near infrared region.
For example, when an excitation light is irradiated to detect fluorescence in a medical device in the body, it is necessary to use the excitation light in a wavelength region with high permeability to a living body such as skin. Excitation light having a high transmittance of 650 nm or more may be used.
 当該医療用具としては、例えば、ステント、コイル塞栓子、カテーテルチューブ、注射針、留置針、ポート、シャントチューブ、ドレーンチューブ、インプラント等が挙げられる。 Examples of the medical device include a stent, a coil embolus, a catheter tube, an injection needle, an indwelling needle, a port, a shunt tube, a drain tube, and an implant.
 以下、実施例及び比較例等を挙げて本発明をさらに詳述するが、本発明はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.
[製造例1]アゾ-ホウ素錯体化合物の合成
(1) ヒドラゾン化合物の製造
 合成装置用ナスフラスコに、オルトキノン誘導体(200mg,5.33×10-4mol)と2-ヒドラジノ安息香酸塩酸塩(402mg,2.13×10-3mol)を加えた後、さらにメタノール:水:ジメチルスルホキシド=3:4:4の混合溶媒(55mL)を加え、50℃で加熱撹拌した。反応を開始すると、反応溶液に結晶が析出した。反応開始から13時間後、反応溶液の加熱をやめ、撹拌しながら室温で放冷した。析出した結晶を濾別し、メタノール:水=4:1の混合溶媒で洗浄し、赤茶色粉末状結晶を得た(収量:96mg,収率:35.3%)。この化合物は溶解性が低いため、これ以上精製せず、ホウ素錯体化を行った。
[Production Example 1] Synthesis of azo-boron complex compound (1) Production of hydrazone compound In an eggplant flask for a synthesizer, an orthoquinone derivative (200 mg, 5.33 × 10 -4 mol) and 2-hydrazinobenzoic acid hydrochloride (402 mg) were prepared. , 2.13 × 10 −3 mol), a mixed solvent of methanol: water: dimethylsulfoxide = 3: 4: 4 (55 mL) was further added, and the mixture was heated and stirred at 50 ° C. When the reaction was started, crystals precipitated in the reaction solution. After 13 hours from the start of the reaction, the reaction solution was no longer heated and allowed to cool at room temperature with stirring. The precipitated crystals were separated by filtration and washed with a mixed solvent of methanol: water = 4: 1 to obtain reddish brown powdery crystals (yield: 96 mg, yield: 35.3%). Since this compound has low solubility, it was not purified any more and boron complexation was performed.
(2) アゾ-ホウ素錯体化合物の製造
 上記(1)で得られた赤茶色粉末状結晶(200mg,3.92×10-4mol)を300mL容ナスフラスコに入れ、ジクロロメタン(70mL)を加えた。さらにトリエチルアミン(137mg,1.37×10-3mol)を加えてヒドラゾン化合物を完全に溶解させてから、三フッ化ホウ素エーテル錯塩(334mg,2.35×10-3mol)を滴下し、室温で撹拌して反応を行った。反応開始から3日間後、TLCで反応の進行が確認できなくなったため、水を加えて反応を停止した。ジクロロメタン層を分離し水洗した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン/酢酸エチル=10/1)で精製し、緑色粉末結晶である目的化合物を得た(収量:62.2mg,収率:29.4%)。
(2) Production of azo-boron complex compound The reddish brown powdery crystals (200 mg, 3.92 × 10 −4 mol) obtained in (1) above were placed in a 300 mL eggplant flask and dichloromethane (70 mL) was added. . Further, triethylamine (137 mg, 1.37 × 10 −3 mol) was added to completely dissolve the hydrazone compound, and then boron trifluoride etherate (334 mg, 2.35 × 10 −3 mol) was added dropwise at room temperature. The reaction was carried out with stirring. Three days after the start of the reaction, since the progress of the reaction could not be confirmed by TLC, water was added to stop the reaction. The dichloromethane layer was separated, washed with water, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (eluent: dichloromethane / ethyl acetate = 10/1) to obtain the target compound as green powder crystals (yield: 62.2 mg, yield: 29.4%). ).
1H-NMR(CDCl3)δ=1.03(6H,t,J=7.46),1.40-1.49(4H,m),1.66-1.74(4H,m),3.47(4H,t),6.78(1H,d,J=2.20),6.90(1H,dd,J=2.20,J=9.16),7.48(1H,t,J=7.44),7.66-7.78(3H,m),8.13(1H,d,J=9.16),8.30-8.33(2H,m),8.39(1H,d,J=7.70),8.75(1H,d,J=7.70) 1 H-NMR (CDCl 3 ) δ = 1.03 (6H, t, J = 7.46), 1.40-1.49 (4H, m), 1.66-1.74 (4H, m), 3.47 (4H, t), 6.78 (1H, d, J = 2.20), 6.90 (1H, dd, J = 2.20, J = 9.16), 7.48 (1H, t, J = 7.44), 7.66-7.78 (3H, m), 8.13 (1H, d, J = 9.16), 8.30-8.33 (2H, m), 8.39 (1H, d, J = 7.70), 8.75 (1H, d, J = 7.70)
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
[製造例2]近赤外蛍光色素Aの合成
 アルゴン気流下、500mL容三口フラスコに、4-メトキシフェニルボロン酸(2.99g、19.7mmol)を入れ、トルエン(120mL)に溶解し、[1,1’-ビス(ジフェニルホスフィノ)-フェロセン]パラジウム(II)ジクロリド-ジクロロメタン複合体(1:1)(100mg)、エタノール(30mL)、5-ブロモ-2-フラルデヒド(3.46g、19.8mmol)及び2mol/L炭酸ナトリウム水溶液(20mL)を加え、80℃で14時間撹拌した。反応終了後、有機相を水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、乾燥剤を濾別して溶媒を減圧濃縮した。得られた粗生成物を、フラッシュシリカゲルクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=19/1→4/1)で分離精製することにより、5-(4-メトキシフェニル)-フラン-2-カルボアルデヒド(a-1)を薄黄色液体として得た(収量:3.39g、収率:84.8%)。
[Production Example 2] Synthesis of near-infrared fluorescent dye A Under a stream of argon, 4-methoxyphenylboronic acid (2.99 g, 19.7 mmol) was placed in a 500 mL three-necked flask and dissolved in toluene (120 mL). 1,1′-bis (diphenylphosphino) -ferrocene] palladium (II) dichloride-dichloromethane complex (1: 1) (100 mg), ethanol (30 mL), 5-bromo-2-furaldehyde (3.46 g, 19 .8 mmol) and 2 mol / L aqueous sodium carbonate solution (20 mL) were added, and the mixture was stirred at 80 ° C. for 14 hours. After completion of the reaction, the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, the desiccant was filtered off, and the solvent was concentrated under reduced pressure. The obtained crude product was separated and purified by flash silica gel chromatography (eluent: hexane / ethyl acetate = 19/1 → 4/1) to give 5- (4-methoxyphenyl) -furan-2-carbohydrate. Aldehyde (a-1) was obtained as a pale yellow liquid (yield: 3.39 g, yield: 84.8%).
 次に、1L容三口フラスコに、アルゴン気流下、化合物(a-1)(3.39g、16.8mmol)とアジド酢酸エチル(8.65g、67.0mmol)をエタノール(300mL)に溶解させた後、得られた溶液に、20質量%ナトリウムエトキシドエタノール溶液(22.8g、67.0mmol)を0℃氷浴中でゆっくり滴下し、2時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加えてpHを弱酸性に調整した後、水を加えて吸引濾過を行い、得られた濾物を乾燥することにより、2-アジド-3-[5-(4-メトキシフェニル)-フラン-2-イル]-アクリル酸エチルエステル(a-2)の黄色固体を得た(収量:3.31g、収率:63.1%)。 Next, compound (a-1) (3.39 g, 16.8 mmol) and ethyl azidoacetate (8.65 g, 67.0 mmol) were dissolved in ethanol (300 mL) in a 1 L three-necked flask under a stream of argon. Thereafter, a 20% by mass sodium ethoxide ethanol solution (22.8 g, 67.0 mmol) was slowly added dropwise to the obtained solution in an ice bath at 0 ° C. and stirred for 2 hours. After completion of the reaction, a saturated aqueous ammonium chloride solution was added to adjust the pH to weak acidity, water was added, suction filtration was performed, and the obtained filtrate was dried to give 2-azido-3- [5- ( A yellow solid of 4-methoxyphenyl) -furan-2-yl] -acrylic acid ethyl ester (a-2) was obtained (yield: 3.31 g, yield: 63.1%).
 さらに、200mL容ナスフラスコに、化合物(a-2)(3.31g、10.6mmol)を入れ、トルエン(60mL)に溶解させた後、1.5時間還流撹拌した。還流撹拌後の溶液を減圧濃縮した後、得られた粗生成物を再結晶(溶液:ヘキサン、酢酸エチル)させた後に吸引濾過し、得られた濾物を乾燥することにより、2-(4-メトキシフェニル)-4H-フロ[3.2-b]ピロール-5-カルボン酸エチルエステル(a-3)の茶色結晶を得た(収量:2.32g、収率:76.8%)。 Further, compound (a-2) (3.31 g, 10.6 mmol) was placed in a 200 mL eggplant flask, dissolved in toluene (60 mL), and then stirred under reflux for 1.5 hours. The solution after stirring under reflux was concentrated under reduced pressure, and the resulting crude product was recrystallized (solution: hexane, ethyl acetate) and then filtered with suction, and the obtained filtrate was dried to give 2- (4 -Methoxyphenyl) -4H-furo [3.2-b] pyrrole-5-carboxylic acid ethyl ester (a-3) brown crystals were obtained (yield: 2.32 g, yield: 76.8%).
 次いで、300mL容フラスコに、化合物(a-3)(1.90g、6.66mmol)を入れ、エタノール(60mL)、水酸化ナトリウム(3.90g、97.5mmol)を水(30mL)に溶解した水溶液を加え、1時間還流撹拌した。還流撹拌後の溶液は、放冷した後に6mol/L塩酸水溶液を加えて酸性に調整した後に、水を加えて吸引濾過を行い、得られた濾物を真空乾燥することにより、2-(4-メトキシフェニル)-4H-フロ[3.2-b]ピロール-5-カルボン酸(a-4)の灰色固体を得た(収量:1.56g、収率:91%)。 Next, compound (a-3) (1.90 g, 6.66 mmol) was placed in a 300 mL flask, and ethanol (60 mL) and sodium hydroxide (3.90 g, 97.5 mmol) were dissolved in water (30 mL). Aqueous solution was added and stirred at reflux for 1 hour. The solution after stirring under reflux was allowed to cool and then adjusted to acidic by adding a 6 mol / L aqueous hydrochloric acid solution, followed by suction filtration with water, and the resulting filtrate was vacuum-dried to give 2- (4 A gray solid of -methoxyphenyl) -4H-furo [3.2-b] pyrrole-5-carboxylic acid (a-4) was obtained (yield: 1.56 g, yield: 91%).
 続いて、200mL容三口フラスコに、化合物(a-4)(327mg、5.52mmol)、トリフルオロ酢酸(16.5mL)を入れ、45℃で攪拌した。化合物(a-4)が溶解した後、発砲がおさまるまで、15分間撹拌した。撹拌後の溶液に、無水トリフルオロ酢酸(3.3mL)を加えて80℃で1時間反応させた。反応終了後、飽和炭酸水素ナトリウム水溶液及び氷を加えて溶液を中和した後、吸引濾過を行い、濾物を真空乾燥することにより、化合物(a-5)の黒色固体を得た(収量:320mg)。化合物(a-5)は、精製せずにそのまま次の反応に用いた。 Subsequently, compound (a-4) (327 mg, 5.52 mmol) and trifluoroacetic acid (16.5 mL) were placed in a 200 mL three-necked flask and stirred at 45 ° C. After the compound (a-4) was dissolved, the mixture was stirred for 15 minutes until the firing stopped. To the stirred solution, trifluoroacetic anhydride (3.3 mL) was added and reacted at 80 ° C. for 1 hour. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution and ice were added to neutralize the solution, followed by suction filtration. The filtrate was dried under vacuum to obtain a black solid of compound (a-5) (yield: 320 mg). Compound (a-5) was directly used in the next reaction without purification.
 アルゴン気流下、化合物(a-5)(320mg)を200mL容三口フラスコに入れ、トルエン(70mL)、トリエチルアミン(1.0mL)、及び三フッ化ホウ素ジエチルエーテル錯体(1.5mL)を滴下し、30分間加熱還流した。反応終了後、飽和炭酸水素ナトリウム水溶液を加えた後、有機相を回収した。当該有機相は、水及び飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した後、乾燥剤を濾別して溶媒を減圧濃縮した。得られた粗生成物を、シリカゲルクロマトグラフィー(溶離液:トルエン/酢酸エチル=20/1(体積比))で分離精製し、近赤外蛍光色素Aの緑色結晶を得た(収量:20mg、収率:6%)。 Under an argon stream, compound (a-5) (320 mg) was placed in a 200 mL three-necked flask, and toluene (70 mL), triethylamine (1.0 mL), and boron trifluoride diethyl ether complex (1.5 mL) were added dropwise. Heated to reflux for 30 minutes. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added, and the organic phase was recovered. The organic phase was washed with water and saturated brine, dried over anhydrous magnesium sulfate, the desiccant was filtered off, and the solvent was concentrated under reduced pressure. The obtained crude product was separated and purified by silica gel chromatography (eluent: toluene / ethyl acetate = 20/1 (volume ratio)) to obtain green crystals of near-infrared fluorescent dye A (yield: 20 mg, Yield: 6%).
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
[製造例3]近赤外蛍光色素Bの合成
 近赤外蛍光色素Bは、Organic Letters、2012年、第4巻、2670~2673ページ、及びChmestry A European Journal、2009年、第15巻、4857~4864ページを参照し、以下のように行った。
 2L容四口フラスコに、4-ヒドロキシベンゾニトリル(25.3g、212mmol)、アセトン(800mL)、炭酸カリウム(100g、724mmol)、1-ブロモオクタン(48g、249mmol)を入れ、終夜加熱還流した。無機塩を濾過後、アセトンを減圧除去した。得られた残渣に酢酸エチルを加え、有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで処理した。硫酸マグネシウムを濾別し、溶媒を減圧除去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)で精製し、4-オクトキシベンゾニトリル(b-1)の無色透明液体を得た(収量:45.2g、収率:92%)。
[Production Example 3] Synthesis of Near Infrared Fluorescent Dye B Near Infrared Fluorescent Dye B is Organic Letters, 2012, Vol. 4, pages 2670-2673, and Chestry A European Journal, 2009, Vol. 15, 4857. Referring to page 4864, the following procedure was performed.
4-Hydroxybenzonitrile (25.3 g, 212 mmol), acetone (800 mL), potassium carbonate (100 g, 724 mmol) and 1-bromooctane (48 g, 249 mmol) were placed in a 2 L four-necked flask and heated to reflux overnight. After filtering the inorganic salt, acetone was removed under reduced pressure. Ethyl acetate was added to the resulting residue, and the organic layer was washed with water and saturated brine, and treated with anhydrous magnesium sulfate. Magnesium sulfate was filtered off, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to give a colorless transparent liquid of 4-octoxybenzonitrile (b-1). (Yield: 45.2 g, yield: 92%).
 次に、アルゴン気流下、500mL容四口フラスコに、tert-ブチルオキシカリウム(25.18g、224.4mmol)、tert-アミルアルコール(160mL)を入れた後、さらに先に合成した化合物(b-1)(14.8g、64mmol)をtert-アミルアルコール(7mL)と混合した溶液を加え、加熱還流した。加熱還流下、コハク酸ジイソプロピルエステル(6.5g、32mmol)をtert-アミルアルコール(10mL)に混合した溶液を約3時間かけて滴下し、滴下終了後、6時間加熱還流した。室温に戻した後、得られた粘性の高い反応液を酢酸:メタノール:水=1:1:1の溶液に入れ、加熱還流を数分行ったところ、赤い固体が析出した。当該固体を濾別し、加熱したメタノール及び水で洗浄することによって、3,6-(4-オクチルオキシフェニル)ピロロ[3,4-c]ピロール-1,4(2H,5H)-ジオン(b-2)の赤色固体を得た(収量:5.6g、収率:32%)。 Next, tert-butyloxypotassium (25.18 g, 224.4 mmol) and tert-amyl alcohol (160 mL) were placed in a 500 mL four-necked flask under an argon stream, and the compound (b- 1) A solution prepared by mixing (14.8 g, 64 mmol) with tert-amyl alcohol (7 mL) was added and heated to reflux. A solution prepared by mixing succinic acid diisopropyl ester (6.5 g, 32 mmol) with tert-amyl alcohol (10 mL) was added dropwise over about 3 hours under reflux with heating, and the mixture was heated to reflux for 6 hours after completion of the addition. After returning to room temperature, the resulting highly viscous reaction solution was put into a solution of acetic acid: methanol: water = 1: 1: 1 and heated under reflux for several minutes. As a result, a red solid was deposited. The solid was filtered off and washed with heated methanol and water to give 3,6- (4-octyloxyphenyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione ( A red solid of b-2) was obtained (yield: 5.6 g, yield: 32%).
 また、200mL容三口フラスコに、4-tert-ブチルアニリン(10g、67mmol)、酢酸(70mL)、チオシアン酸ナトリウム(13g、160mmol)を入れた。系内を15℃以下に保ちながら、臭素(4.5mL、87mmol)を約20分間かけて滴下し、その後15℃以下で3.5時間攪拌した。反応液を28%アンモニア水(150mL)に入れ、しばらく攪拌し、析出した固体を濾別後、当該固体をジエチルエーテルで抽出し、有機層を水で洗浄した。ジエチルエーテルを減圧除去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン/酢酸エチル)で精製し、2-アミノ-6-tert-ブチルベンゾチアゾール(b-3)を淡黄色固体として得た(収量:10.32g、収率:69%)。 Further, 4-tert-butylaniline (10 g, 67 mmol), acetic acid (70 mL), and sodium thiocyanate (13 g, 160 mmol) were placed in a 200 mL three-necked flask. Bromine (4.5 mL, 87 mmol) was added dropwise over about 20 minutes while keeping the system at 15 ° C. or lower, and then stirred at 15 ° C. or lower for 3.5 hours. The reaction solution was poured into 28% aqueous ammonia (150 mL), stirred for a while, the precipitated solid was filtered off, the solid was extracted with diethyl ether, and the organic layer was washed with water. After removing diethyl ether under reduced pressure, the residue was purified by silica gel column chromatography (eluent: dichloromethane / ethyl acetate) to give 2-amino-6-tert-butylbenzothiazole (b-3) as a pale yellow solid ( Yield: 10.32 g, yield: 69%).
 次に、水冷下、1L容四口フラスコに、水酸化カリウム(75.4g、1340mmol)、エチレングリコール(175mL)を入れた。系内をアルゴン雰囲気下にし、化合物(b-3)(7.8g、37.8mmol)を入れ、系内の酸素を除去するために、アルゴンでバブリングを行った後、110℃で18時間反応させた。反応液を40℃以下に水冷し、予めアルゴンバブリングをした2mol/L塩酸を系内に滴下して、中和を行った(pH7付近)。析出した白色固体を濾別し、水洗後、減圧乾燥した。その後、当該白色固体をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)で精製し、4-tert-ブチル-2-メルカプトアニリン(b-4)の白色固体を得た(収量:2.39g、収率:35%)。 Next, potassium hydroxide (75.4 g, 1340 mmol) and ethylene glycol (175 mL) were placed in a 1 L four-necked flask under water cooling. The system was placed under an argon atmosphere, compound (b-3) (7.8 g, 37.8 mmol) was added, and after bubbling with argon to remove oxygen in the system, the reaction was performed at 110 ° C. for 18 hours. I let you. The reaction solution was water-cooled to 40 ° C. or less, and 2 mol / L hydrochloric acid previously bubbled with argon was dropped into the system for neutralization (around pH 7). The precipitated white solid was separated by filtration, washed with water, and dried under reduced pressure. Thereafter, the white solid was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to obtain a white solid of 4-tert-butyl-2-mercaptoaniline (b-4) (yield: 2.39 g). Yield: 35%).
 さらに、100mL容三口フラスコに、酢酸(872mg、14.5mmol)、アセトニトリル(30mL)を入れ、系内をアルゴン雰囲気下にした。アルゴン雰囲気下、マロノニトリル(2.4g、36.3mmol)、化合物(b-4)(2.39g、13.2mmol)を加え、2時間加熱還流した。アセトニトリルを減圧除去し、残渣を酢酸エチルに溶解し、有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで処理した。
硫酸マグネシウムを濾別し、溶媒を減圧除去後、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)で精製し、2-(6-tert-ブチルベンゾチアゾール-2-イル)アセトニトリル(b-5)の単黄色固体を得た(収量:1.98g、収率:65%)。
Furthermore, acetic acid (872 mg, 14.5 mmol) and acetonitrile (30 mL) were placed in a 100 mL three-necked flask, and the inside of the system was placed in an argon atmosphere. Under an argon atmosphere, malononitrile (2.4 g, 36.3 mmol) and compound (b-4) (2.39 g, 13.2 mmol) were added, and the mixture was heated to reflux for 2 hours. Acetonitrile was removed under reduced pressure, the residue was dissolved in ethyl acetate, and the organic layer was washed with water and saturated brine, and treated with anhydrous magnesium sulfate.
After magnesium sulfate was filtered off and the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to give 2- (6-tert-butylbenzothiazol-2-yl) acetonitrile (b -5) was obtained (yield: 1.98 g, yield: 65%).
 続いて、アルゴン気流下、200mL容三口フラスコに、化合物(b-2)(1.91g、3.5mmol)、化合物(b-5)(1.77g、7.68mmol)、脱水トルエン(68mL)を加え、加熱還流した。加熱還流下、塩化ホスホリル(2.56mL、27.4mmol)をシリンジで滴下し、さらに2時間加熱還流した。反応終了後、氷冷しながら、ジクロロメタン(40mL)及び飽和炭酸水素ナトリウム水溶液(40mL)を加え、ジクロロメタンで抽出した。有機層を無水硫酸マグネシウムで処理し、硫酸マグネシウムを濾別し、溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)にかけて不純物をおおまかに除去した。溶媒を留去して得られた残渣を再度シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/ジクロロメタン)で精製し、前駆体(b-6)の緑色固体を得た(収量:1.56g、収率:46%)。 Subsequently, compound (b-2) (1.91 g, 3.5 mmol), compound (b-5) (1.77 g, 7.68 mmol), dehydrated toluene (68 mL) were placed in a 200 mL three-necked flask under an argon stream. And heated to reflux. Under heating and reflux, phosphoryl chloride (2.56 mL, 27.4 mmol) was added dropwise with a syringe, and the mixture was further heated to reflux for 2 hours. After completion of the reaction, dichloromethane (40 mL) and saturated aqueous sodium hydrogen carbonate solution (40 mL) were added with ice cooling, and the mixture was extracted with dichloromethane. The organic layer was treated with anhydrous magnesium sulfate, magnesium sulfate was filtered off, the solvent was removed under reduced pressure, and the residue was roughly removed by silica gel column chromatography (eluent: hexane / ethyl acetate). The residue obtained by distilling off the solvent was purified again by silica gel column chromatography (eluent: hexane / dichloromethane) to obtain a green solid of the precursor (b-6) (yield: 1.56 g, yield). : 46%).
 最後に、アルゴン気流下、200mL容三口フラスコに、前駆体(b-6)(1.52g、1.57mmol)、トルエン(45mL)、トリエチルアミン(4.35mL、31.4mmol)、三フッ化ホウ素ジエチルエーテル錯体(7.88mL、62.7mmol)を加え、1時間加熱還流した。反応液を氷冷し、析出した固体を濾別し、当該固体を水、飽和炭酸水素ナトリウム水溶液、50%メタノール水溶液及びメタノールで洗浄し、減圧乾燥させた。得られた残渣をトルエンに溶解し、メタノールを加えて沈殿させることにより、近赤外蛍光色素Bの濃緑色固体を得た(収量:1.25g、収率:75%)。 Finally, in a 200 mL three-necked flask under an argon stream, precursor (b-6) (1.52 g, 1.57 mmol), toluene (45 mL), triethylamine (4.35 mL, 31.4 mmol), boron trifluoride Diethyl ether complex (7.88 mL, 62.7 mmol) was added and heated to reflux for 1 hour. The reaction solution was ice-cooled, the precipitated solid was filtered off, and the solid was washed with water, saturated aqueous sodium hydrogen carbonate solution, 50% aqueous methanol solution and methanol, and dried under reduced pressure. The obtained residue was dissolved in toluene, and methanol was added for precipitation to obtain a dark green solid of near-infrared fluorescent dye B (yield: 1.25 g, yield: 75%).
H-NMR(300MHz,CDCl):δ=7.90(d、2H)、7.72-7.69(m、6H)、7.51(dd、2H)、7.08(d、2H)、4.07(t、4H)、1.84(m、4H)、1.52(s、18H)、1.35-1.32(m、24H)、0.92(t、6H)ppm。 1 H-NMR (300 MHz, CDCl 3 ): δ = 7.90 (d, 2H), 7.72-7.69 (m, 6H), 7.51 (dd, 2H), 7.08 (d, 2H), 4.07 (t, 4H), 1.84 (m, 4H), 1.52 (s, 18H), 1.35-1.32 (m, 24H), 0.92 (t, 6H) ) Ppm.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[製造例4]近赤外蛍光色素Cの合成
 近赤外蛍光色素Cは、Organic Letters、2012年、第4巻、2670~2673ページ及びChmestry A European Journal、2009年、第15巻、4857~4864ページを参照にして、以下のように行った。
 300mL容三口フラスコに、4-tert-ブチルアニリン(29.8g、0.2mol)、6mol/L塩酸(100mL)を加え、還流しながらクロトンアルデヒド(15.4g、0.22mol)を滴下し、さらに2時間還流した。還流を停止し、熱いうちに塩化亜鉛(27.2g、0.2mol)を加えて、室温で一晩撹拌した。上澄み液を除き、黄色いシロップ状の残渣にイソプロパノールを加えて2時間還流した。混合物を70℃に冷却し、石油エーテル(200mL)を加え、析出した結晶を濾集し、ジエチルエーテルで洗浄後、乾燥させることにより、亜鉛錯体を得た。この亜鉛錯体を水/アンモニア(120mL/60mL)の混合液に加え、ジエチルエーテルジエチルエーテル(80mL)で3回抽出した。得られた有機層を無水硫酸マグネシウムで乾燥後、濃縮して6-tert-ブチル-2-メチル-キノリン(c-1)の黄色液体を得た(収量16.2g、収率41%)。
[Production Example 4] Synthesis of Near Infrared Fluorescent Dye C Near Infrared Fluorescent Dye C is Organic Letters, 2012, Vol. 4, pages 2670-2673 and Chestry A European Journal, 2009, Vol. 15, 4857- With reference to page 4864, the procedure was as follows.
To a 300 mL three-necked flask, 4-tert-butylaniline (29.8 g, 0.2 mol) and 6 mol / L hydrochloric acid (100 mL) were added, and crotonaldehyde (15.4 g, 0.22 mol) was added dropwise while refluxing. The mixture was further refluxed for 2 hours. Refluxing was stopped and zinc chloride (27.2 g, 0.2 mol) was added while hot and stirred overnight at room temperature. The supernatant was removed, isopropanol was added to the yellow syrup-like residue, and the mixture was refluxed for 2 hours. The mixture was cooled to 70 ° C., petroleum ether (200 mL) was added, and the precipitated crystals were collected by filtration, washed with diethyl ether and dried to obtain a zinc complex. This zinc complex was added to a mixture of water / ammonia (120 mL / 60 mL) and extracted three times with diethyl ether diethyl ether (80 mL). The obtained organic layer was dried over anhydrous magnesium sulfate and concentrated to obtain a yellow liquid of 6-tert-butyl-2-methyl-quinoline (c-1) (yield 16.2 g, yield 41%).
 次に、200mL容二口フラスコに、化合物(c-1)(16.0g、80mmol)、クロロホルム(50mL)を入れて撹拌し、トリクロロイソシアヌル酸(6.52g、28mmol)を分割しながら加えた。混合物を1時間還流後、析出した固体を濾過、クロロホルムで洗浄し、得られた有機層を1mol/Lの硫酸で3回抽出した。水層を合わせて、炭酸ナトリウム水溶液でpH3になるよう調整し、ジエチルエーテルで3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濃縮して2-クロロメチル-6-tert-ブチル-キノリン(c-2)の単黄色結晶を得た(収量4.8g、収率25.7%)。 Next, the compound (c-1) (16.0 g, 80 mmol) and chloroform (50 mL) were placed in a 200 mL two-necked flask and stirred, and trichloroisocyanuric acid (6.52 g, 28 mmol) was added in portions. . After the mixture was refluxed for 1 hour, the precipitated solid was filtered and washed with chloroform, and the obtained organic layer was extracted three times with 1 mol / L sulfuric acid. The aqueous layers were combined, adjusted to pH 3 with an aqueous sodium carbonate solution, and extracted three times with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and concentrated to give 2-chloromethyl-6-tert-butyl-quinoline (c-2) single yellow crystals (yield 4.8 g, yield 25.7%). .
 さらに、100mL容三口フラスコに、化合物(c-2)(4.7g、20mmol)、シアン化ナトリウム(1.47g、30mmol)、少量のヨウ化ナトリウム、DMF(50mL)を入れ、60℃で2時間反応した。反応液を冷却後、水(200mL)/酢酸エチル(300mL)で抽出し、得られた酢酸エチル層をさらに水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、濃縮し、石油エーテルで再結晶し、2-(6-tert-ブチルキノリン-2-イル)アセトニトリル(c-3)の白色結晶を得た(収量1.9g、収率42.4%)。 Further, compound (c-2) (4.7 g, 20 mmol), sodium cyanide (1.47 g, 30 mmol), a small amount of sodium iodide and DMF (50 mL) were placed in a 100 mL three-necked flask, and the mixture was stirred at 60 ° C. Reacted for hours. The reaction mixture was cooled and extracted with water (200 mL) / ethyl acetate (300 mL), and the resulting ethyl acetate layer was further washed with water. The organic layer was dried over anhydrous magnesium sulfate, concentrated, and recrystallized from petroleum ether to obtain white crystals of 2- (6-tert-butylquinolin-2-yl) acetonitrile (c-3) (yield 1. 9 g, yield 42.4%).
 続いて、アルゴン気流下、200mL容三口フラスコに、製造例3で得られた化合物(b-2)(2.18g、4.0mmol)、化合物(c-3)(1.9g、8.5mmol)、脱水トルエン(68mL)を加え、加熱還流した。加熱還流下、オキシ塩化リン(2.62mL、28mmol)をシリンジで滴下し、さらに2時間加熱還流した。反応終了後、氷冷しながら、ジクロロメタン(40mL)及び飽和炭酸水素ナトリウム水溶液(40mL)を加え、ジクロロメタンで抽出した。有機層を無水硫酸マグネシウムで処理し、硫酸マグネシウムを濾別後、溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)にかけて不純物をおおまかに除去した。溶媒を留去して得られた残渣を再度シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/ジクロロメタン)で精製し、前駆体(c-4)の緑色固体を得た(収量:1.84g、収率:48%)。 Subsequently, the compound (b-2) (2.18 g, 4.0 mmol) obtained in Production Example 3 and the compound (c-3) (1.9 g, 8.5 mmol) were placed in a 200 mL three-necked flask under an argon stream. ), Dehydrated toluene (68 mL) was added, and the mixture was heated to reflux. Under heating under reflux, phosphorus oxychloride (2.62 mL, 28 mmol) was added dropwise with a syringe, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, dichloromethane (40 mL) and saturated aqueous sodium hydrogen carbonate solution (40 mL) were added with ice cooling, and the mixture was extracted with dichloromethane. The organic layer was treated with anhydrous magnesium sulfate, the magnesium sulfate was filtered off, the solvent was removed under reduced pressure, and the residue was roughly removed by silica gel column chromatography (eluent: hexane / ethyl acetate). The residue obtained by distilling off the solvent was purified again by silica gel column chromatography (eluent: hexane / dichloromethane) to obtain a green solid of the precursor (c-4) (yield: 1.84 g, yield). : 48%).
 最後に、アルゴン気流下、200mL容三口フラスコに、前駆体(c-4)(1.72g、1.8mmol)、トルエン(45mL)、トリエチルアミン(4.35mL、31.4mmol)、三フッ化ホウ素ジエチルエーテル錯体(7.88mL、62.7mmol)を加え、1時間加熱還流した。反応液を氷冷し、析出した固体を濾別後、当該固体を水、飽和炭酸水素ナトリウム水溶液、50%メタノール水溶液及びメタノールで洗浄し、減圧乾燥させた。得られた残渣をトルエンに溶解し、メタノールを加えて、沈殿させることにより、近赤外蛍光色素Cの濃緑色固体を得た(収量:1.10g、収率:58%)。 Finally, a precursor (c-4) (1.72 g, 1.8 mmol), toluene (45 mL), triethylamine (4.35 mL, 31.4 mmol), boron trifluoride was added to a 200 mL three-necked flask under an argon stream. Diethyl ether complex (7.88 mL, 62.7 mmol) was added and heated to reflux for 1 hour. The reaction solution was ice-cooled, and the precipitated solid was filtered off. The solid was washed with water, a saturated aqueous sodium hydrogen carbonate solution, a 50% aqueous methanol solution and methanol, and dried under reduced pressure. The obtained residue was dissolved in toluene, and methanol was added for precipitation to obtain a dark green solid of near-infrared fluorescent dye C (yield: 1.10 g, yield: 58%).
H-NMR(300MHz,CDCl):δ=8.42(m、2H)、8.14(d、2H)、7.74(dd、2H)、7.72(d、4H)、7.66(m、4H)、7.06(m、4H)、4.08(t、4H)、1.85(m、4H)、1.53(m、4H)、1.45-1.2(m、16H)、1.36(s、18H)、0.91(t、6H)ppm。 1 H-NMR (300 MHz, CDCl 3 ): δ = 8.42 (m, 2H), 8.14 (d, 2H), 7.74 (dd, 2H), 7.72 (d, 4H), 7 .66 (m, 4H), 7.06 (m, 4H), 4.08 (t, 4H), 1.85 (m, 4H), 1.53 (m, 4H), 1.45-1. 2 (m, 16H), 1.36 (s, 18H), 0.91 (t, 6H) ppm.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
[製造例5]近赤外蛍光色素Dの合成
 近赤外蛍光色素Dは、Organic Letters、2012年、第4巻、2670~2673ページ及びChmestry A European Journal、2009年、第15巻、4857~4864ページを参照し、以下のように行った。
 アルゴン気流下、200mL容三口フラスコに、水素化ナトリウム(60%分散体、流動パラフィン)(4.0g、100mmol)、脱水DMF(40mL)を加え、0℃に冷却した。同温で撹拌しながらシアノ酢酸tert-ブチルエステル(11.9g、85mmol)をゆっくりと加え、室温で1時間撹拌した。次いで、2-クロロ-4,6-ジメチルピリミジン(10g、70mmol)を加えて、90℃で36時間反応した。反応液を5%塩化ナトリウム水溶液(200ml)が入った三角フラスコに注ぎ、酢酸で中和した。析出した黄色沈殿物を濾集し、水で洗浄後、乾燥させることにより、シアノ-(4,6-ジメチル-ピリミジン-2-イル)酢酸tert-ブチルエステル(d-1)を得た(収量9.8g、収率56.9%)。
[Production Example 5] Synthesis of near-infrared fluorescent dye D Near-infrared fluorescent dye D is Organic Letters, 2012, volume 4, pages 2670-2673 and Chestry A European Journal, 2009, volume 15, 4857-. With reference to page 4864, the procedure was as follows.
Under a stream of argon, sodium hydride (60% dispersion, liquid paraffin) (4.0 g, 100 mmol) and dehydrated DMF (40 mL) were added to a 200 mL three-necked flask and cooled to 0 ° C. While stirring at the same temperature, cyanoacetic acid tert-butyl ester (11.9 g, 85 mmol) was slowly added, and the mixture was stirred at room temperature for 1 hour. Subsequently, 2-chloro-4,6-dimethylpyrimidine (10 g, 70 mmol) was added and reacted at 90 ° C. for 36 hours. The reaction solution was poured into an Erlenmeyer flask containing a 5% aqueous sodium chloride solution (200 ml) and neutralized with acetic acid. The precipitated yellow precipitate was collected by filtration, washed with water and dried to obtain cyano- (4,6-dimethyl-pyrimidin-2-yl) acetic acid tert-butyl ester (d-1) (yield) 9.8 g, yield 56.9%).
 次に、300mL容三口フラスコに、化合物(d-1)(9.8g、40mmol)、ジクロロメタン(60mL)、トリフルオロ酢酸(30mL)を加え、室温で終夜反応した。反応液を飽和炭酸ナトリウム水溶液で中和し、ジクロロメタン層を分離後、水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、濃縮して得られた残渣をカラムクロマトグラフィー(石油エーテル/酢酸エチル=1/5)で精製し、(4,6-ジメチル-ピリミジン-2-イル)アセトニトリル(d-2)の白色結晶を得た(収量0.85g、収率14.5%)。 Next, compound (d-1) (9.8 g, 40 mmol), dichloromethane (60 mL), and trifluoroacetic acid (30 mL) were added to a 300 mL three-necked flask and reacted at room temperature overnight. The reaction solution was neutralized with a saturated aqueous sodium carbonate solution, and the dichloromethane layer was separated and washed with water. The organic layer was dried over anhydrous magnesium sulfate and concentrated. The resulting residue was purified by column chromatography (petroleum ether / ethyl acetate = 1/5) and (4,6-dimethyl-pyrimidin-2-yl) acetonitrile. White crystals of (d-2) were obtained (yield 0.85 g, yield 14.5%).
 続いて、アルゴン気流下、200mL容三口フラスコに、製造例3で得られた化合物(b-2)(1.36g、2.5mmol)、化合物(d-2)(0.81g、5.5mmol)、脱水トルエン(50mL)を加え、加熱還流した。加熱還流下、塩化ホスホリル(2.34mL、25mmol)をシリンジで滴下し、さらに2時間加熱還流した。反応終了後、氷冷しながら、ジクロロメタン(40mL)及び飽和炭酸水素ナトリウム水溶液(40mL)を加え、ジクロロメタンで抽出した。有機層を無水硫酸マグネシウムで処理し、硫酸マグネシウムを濾別後、溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)にかけて不純物をおおまかに除去した。溶媒を留去して得られた残渣を再度シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン/酢酸エチル=50/1)で精製し、前駆体(d-3)の緑色固体を得た(収量:0.54g、収率:27%)。 Subsequently, the compound (b-2) (1.36 g, 2.5 mmol) obtained in Production Example 3 and the compound (d-2) (0.81 g, 5.5 mmol) were placed in a 200 mL three-necked flask under an argon stream. ), Dehydrated toluene (50 mL) was added, and the mixture was heated to reflux. Under heating and reflux, phosphoryl chloride (2.34 mL, 25 mmol) was added dropwise with a syringe, and the mixture was further heated to reflux for 2 hours. After completion of the reaction, dichloromethane (40 mL) and saturated aqueous sodium hydrogen carbonate solution (40 mL) were added with ice cooling, and the mixture was extracted with dichloromethane. The organic layer was treated with anhydrous magnesium sulfate, the magnesium sulfate was filtered off, the solvent was removed under reduced pressure, and the residue was roughly removed by silica gel column chromatography (eluent: hexane / ethyl acetate). The residue obtained by distilling off the solvent was purified again by silica gel column chromatography (eluent: dichloromethane / ethyl acetate = 50/1) to obtain a green solid of the precursor (d-3) (yield: 0). .54 g, yield: 27%).
 最後に、アルゴン気流下、100mL容二口フラスコに、前駆体(d-3)(522mg、0.65mmol)、N,N-ジイソプロピルエチルアミン(258mg、2.0mmol)、ジクロロメタン(20mL)を入れ、還流しながらクロロジフェニルボラン(600mg、3.0mmol)を加え、終夜反応した。反応液を水で洗浄後、有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をメタノールで洗浄後、カラムクロマトグラフィー(溶離液:ジクロロメタン/酢酸エチル=100/1)で精製し、近赤外蛍光色素Dの緑色固体を得た(収量:0.24g、収率:32.6%)。 Finally, a precursor (d-3) (522 mg, 0.65 mmol), N, N-diisopropylethylamine (258 mg, 2.0 mmol), dichloromethane (20 mL) was placed in a 100 mL two-necked flask under an argon stream. Chlorodiphenylborane (600 mg, 3.0 mmol) was added under reflux, and the reaction was continued overnight. The reaction solution was washed with water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated. The residue was washed with methanol and purified by column chromatography (eluent: dichloromethane / ethyl acetate = 100/1) to obtain a green solid of near-infrared fluorescent dye D (yield: 0.24 g, yield: 32). .6%).
H-NMR(300MHz,CDCl):δ=7.11(m、20H)、6.43(m、4H)、6.25(s、2H)、6.02(m、4H)、3.92(t、4H)、2.27(s、6H)、1.78(m、10H)、1.5-1.2(m、20H)、0.85(t、6H)ppm。 1 H-NMR (300 MHz, CDCl 3 ): δ = 7.11 (m, 20H), 6.43 (m, 4H), 6.25 (s, 2H), 6.02 (m, 4H), 3 .92 (t, 4H), 2.27 (s, 6H), 1.78 (m, 10H), 1.5-1.2 (m, 20H), 0.85 (t, 6H) ppm.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
[製造例6]近赤外蛍光色素Eの合成
 近赤外蛍光色素Eは、Organic Letters、2012年、第4巻、2670~2673ページ及びChmestry A European Journal、2009年、第15巻、4857~4864ページを参照し、以下のように行った。
 1-ブロモオクタン(48g、249mmol)に代えて、1-ブロモ-2-エチルヘキサン(48g、249mmol)を使用した以外は製造例3と同様の操作を行い、3,6-(4-(2-エチルヘキシル)オキシフェニル)ピロロ[3,4-c]ピロール-1,4(2H,5H)-ジオン(e-2)の赤色固体を得た(収量:4.6g)。
[Production Example 6] Synthesis of Near Infrared Fluorescent Dye E Near Infrared Fluorescent Dye E is Organic Letters, 2012, Vol. 4, pages 2670-2673, and Chestry A European Journal, 2009, Vol. 15, 4857- With reference to page 4864, the procedure was as follows.
The same operation as in Production Example 3 was carried out except that 1-bromo-2-ethylhexane (48 g, 249 mmol) was used instead of 1-bromooctane (48 g, 249 mmol), and 3,6- (4- (2 A red solid of (ethylhexyl) oxyphenyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (e-2) was obtained (yield: 4.6 g).
 次に、100mL容二口フラスコに、2-アミノ-4-tert-ブチルフェノール(5.24g、31.7mmol)、2-シアノ-アセチミディック酸エチルエステル塩酸塩(4.45g、33.3mmol)、ジクロロメタン(30mL)を加え、終夜還流した。反応液をジクロロメタン(100mL)で希釈し、1mol/L水酸化ナトリウム水溶液で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥、溶媒を留去して(5-tert-ブチル-ベンゾオキサゾール-2-イル)-アセトニトリル(e-3)の黄色液体を得た(収量6.3g、収率88%)。 Next, into a 100 mL two-necked flask was added 2-amino-4-tert-butylphenol (5.24 g, 31.7 mmol), 2-cyano-acetimidic acid ethyl ester hydrochloride (4.45 g, 33.3 mmol). , Dichloromethane (30 mL) was added and refluxed overnight. The reaction solution was diluted with dichloromethane (100 mL) and washed twice with a 1 mol / L aqueous sodium hydroxide solution. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain a yellow liquid of (5-tert-butyl-benzoxazol-2-yl) -acetonitrile (e-3) (yield 6.3 g, yield). 88%).
 続いて、アルゴン気流下、200mL容三口フラスコに、化合物(e-2)(1.64g、3.0mmol)、化合物(e-3)(1.41g、6.6mmol)、脱水トルエン(50mL)を加え、加熱還流した。加熱還流下、塩化ホスホリル(2.34mL、25mmol)をシリンジで滴下し、さらに2時間加熱還流した。反応終了後、氷冷しながら、ジクロロメタン(40mL)及び飽和炭酸水素ナトリウム水溶液(40mL)を加え、ジクロロメタンで抽出した。有機層を無水硫酸マグネシウムで処理し、硫酸マグネシウムを濾別後、溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル)にかけて不純物をおおまかに除去した。溶媒を留去して得られた残渣を再度シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン)で精製し、前駆体(e-4)の青緑色固体を得た(収量:0.98g、収率:35%)。 Subsequently, compound (e-2) (1.64 g, 3.0 mmol), compound (e-3) (1.41 g, 6.6 mmol), dehydrated toluene (50 mL) were placed in a 200 mL three-necked flask under an argon stream. And heated to reflux. Under heating and reflux, phosphoryl chloride (2.34 mL, 25 mmol) was added dropwise with a syringe, and the mixture was further heated to reflux for 2 hours. After completion of the reaction, dichloromethane (40 mL) and saturated aqueous sodium hydrogen carbonate solution (40 mL) were added with ice cooling, and the mixture was extracted with dichloromethane. The organic layer was treated with anhydrous magnesium sulfate, the magnesium sulfate was filtered off, the solvent was removed under reduced pressure, and the residue was roughly removed by silica gel column chromatography (eluent: hexane / ethyl acetate). The residue obtained by distilling off the solvent was purified again by silica gel column chromatography (eluent: dichloromethane) to obtain a blue-green solid of the precursor (e-4) (yield: 0.98 g, yield: 35%).
 最後に、アルゴン気流下、100mL容二口フラスコに、前駆体(e-4)(973mg、1.0mmol)、N,N-ジイソプロピルエチルアミン(387mg、3.0mmol)、ジクロロメタン(30mL)を入れ、還流しながらクロロジフェニルボラン(900mg、4.5mmol)を加え、終夜反応した。反応液を水で洗浄後、有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をメタノールで洗浄後、カラムクロマトグラフィー(溶離液:ジクロロメタン)で精製し、近赤外蛍光色素Eの緑色固体を得た(収量:0.42g、収率:35%)。 Finally, a precursor (e-4) (973 mg, 1.0 mmol), N, N-diisopropylethylamine (387 mg, 3.0 mmol), and dichloromethane (30 mL) were placed in a 100 mL two-necked flask under an argon stream. Chlorodiphenylborane (900 mg, 4.5 mmol) was added while refluxing, and the reaction was continued overnight. The reaction solution was washed with water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated. The residue was washed with methanol and purified by column chromatography (eluent: dichloromethane) to obtain a green solid of near-infrared fluorescent dye E (yield: 0.42 g, yield: 35%).
H-NMR(300MHz,CDCl):δ=7.11(m、24H)、6.62(m、4H)、6.32(m、6H)、3.8-3.9(m、4H)、2.27(s、6H)、1.8(m、2H)、1.6-1.3(m、16H)、1.38(s、18H)、0.9-1.0(m、12H)ppm。 1 H-NMR (300 MHz, CDCl 3 ): δ = 7.11 (m, 24H), 6.62 (m, 4H), 6.32 (m, 6H), 3.8-3.9 (m, 4H), 2.27 (s, 6H), 1.8 (m, 2H), 1.6-1.3 (m, 16H), 1.38 (s, 18H), 0.9-1.0 (M, 12H) ppm.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
[製造例7]近赤外蛍光色素Fの合成
 近赤外蛍光色素FはJournal of Organic Chemistry、2011年、第76巻、4489~4505ページ記載の方法に従って合成した。
 アルゴン気流下、500mL容四口フラスコに、2-エチルチオフェン(11.2g、100mmol)、脱水THF(80mL)を加え、-78℃で撹拌した。この溶液にn-ブチルリチウム(68.8mL、1.6mol/Lヘキサン溶液)を滴下して同温で1時間撹拌後、エチルクロロホルメート(10.9mL、120mmol)の脱水THF溶液(50mL)を滴下してさらに1時間撹拌した。反応液を室温に戻した後、飽和塩化アンモニウム水溶液(110mL)を加え、ジクロロメタンで抽出した。有機相を水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン/シクロヘキサン=6/4(体積比))で分離精製し、5-エチルチオフェン-2-カルボキシレート(f-1)の無色液体を得た(収量:15.4g、収率:83.7%)。
[Production Example 7] Synthesis of near-infrared fluorescent dye F Near-infrared fluorescent dye F was synthesized according to the method described in Journal of Organic Chemistry, 2011, Vol. 76, pages 4489-4505.
Under a stream of argon, 2-ethylthiophene (11.2 g, 100 mmol) and dehydrated THF (80 mL) were added to a 500 mL four-necked flask and stirred at −78 ° C. N-Butyllithium (68.8 mL, 1.6 mol / L hexane solution) was added dropwise to this solution, and the mixture was stirred at the same temperature for 1 hour, and then ethyl chloroformate (10.9 mL, 120 mmol) in dehydrated THF (50 mL). Was added dropwise and the mixture was further stirred for 1 hour. The reaction solution was returned to room temperature, saturated aqueous ammonium chloride solution (110 mL) was added, and the mixture was extracted with dichloromethane. The organic phase was washed with water and then saturated brine, dried over anhydrous magnesium sulfate and concentrated. The residue was separated and purified by silica gel chromatography (eluent: dichloromethane / cyclohexane = 6/4 (volume ratio)) to obtain a colorless liquid of 5-ethylthiophene-2-carboxylate (f-1) (yield: 15 0.4 g, yield: 83.7%).
 次に、200mL容四口フラスコに、化合物(f-1)(15.0g、81.5mmol)、エタノール(40mL)を加え、この溶液にヒドラジン1水和物(12.2g、244mmol)を滴下し、12時間還流撹拌した。反応液を冷却後、溶媒を減圧留去し、残渣をジクロロメタンに溶解し、水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣をシクロヘキサンで再結晶し、濾集、乾燥することにより、5-エチルチオフェン-2-カルボヒドラジン(f-2)の白色固体を得た(収量:8.6g、収率:62.1%)。 Next, compound (f-1) (15.0 g, 81.5 mmol) and ethanol (40 mL) were added to a 200 mL four-necked flask, and hydrazine monohydrate (12.2 g, 244 mmol) was added dropwise to this solution. And stirred at reflux for 12 hours. After cooling the reaction solution, the solvent was distilled off under reduced pressure. The residue was dissolved in dichloromethane, washed with water and then saturated brine, dried over anhydrous magnesium sulfate, and concentrated. The residue was recrystallized from cyclohexane, collected by filtration and dried to obtain a white solid of 5-ethylthiophene-2-carbohydrazine (f-2) (yield: 8.6 g, yield: 62.1%). ).
 さらに、50mL容三口フラスコに、化合物(f-2)(8.5g、50mmol)、4-メトキシアセトフェノン(7.5g、50mmol)を加え、75℃で1時間撹拌した。残渣をジクロロメタン/メタノールで再結晶し、濾集、乾燥することにより、(E)-5-エチル-N’-(1-(2-ヒドロキシ-4-メトキシフェニル)エチリデン)-チオフェン-2-カルボヒドラジン(f-3)の白色固体を得た(収量:12.4g、収率:78%)。 Furthermore, compound (f-2) (8.5 g, 50 mmol) and 4-methoxyacetophenone (7.5 g, 50 mmol) were added to a 50 mL three-necked flask and stirred at 75 ° C. for 1 hour. The residue was recrystallized from dichloromethane / methanol, collected by filtration and dried to give (E) -5-ethyl-N ′-(1- (2-hydroxy-4-methoxyphenyl) ethylidene) -thiophene-2-carbohydrate. A white solid of hydrazine (f-3) was obtained (yield: 12.4 g, yield: 78%).
 続いて、500mL容四口フラスコに、化合物(f-3)(9.5g、29.8mmol)、THF(300mL)を加え溶解させた後、この溶液に酢酸鉛(15.9g、35.9mmol)を加えて室温で1時間撹拌した。反応液を濾過後、ろ液を減圧濃縮し、得られた残渣を水/ジクロロメタンで抽出した。有機相を水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をアルミナクロマトグラフィー(溶離液:ジクロロメタン/シクロヘキサン=4/6(体積比))で分離精製し、(5-エチル-2-チエニル)(2-アセチル-5-メトキシ-1-フェニル)ケトン(f-4)の白色固体を得た(収量:7.6g、収率88.6%)。 Subsequently, compound (f-3) (9.5 g, 29.8 mmol) and THF (300 mL) were added and dissolved in a 500 mL four-necked flask, and then lead acetate (15.9 g, 35.9 mmol) was added to this solution. ) And stirred at room temperature for 1 hour. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the resulting residue was extracted with water / dichloromethane. The organic phase was washed with water and then saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was separated and purified by alumina chromatography (eluent: dichloromethane / cyclohexane = 4/6 (volume ratio)), and (5-ethyl-2-thienyl) (2-acetyl-5-methoxy-1-phenyl) ketone ( A white solid of f-4) was obtained (yield: 7.6 g, yield 88.6%).
 さらに、500mL容四口フラスコに、アルゴン気流下、化合物(f-4)(6.6g、22.8mmol)、酢酸(48mL)、エタノール(240mL)を加えて65℃で撹拌し、この溶液に塩化アンモニウム(1.22g、22.8mmol)と酢酸アンモニウム(10.7g、139mmol)を添加した後、30分間還流撹拌した。反応液を濾過後、ろ液を減圧濃縮し、得られた残渣を水/ジクロロメタンで抽出した。有機相を水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン)で分離精製し、化合物(f-5)の濃青色固体を得た(収量:2.1g、収率:35.2%)。 Further, compound (f-4) (6.6 g, 22.8 mmol), acetic acid (48 mL), ethanol (240 mL) were added to a 500 mL four-necked flask under an argon stream, and the mixture was stirred at 65 ° C. Ammonium chloride (1.22 g, 22.8 mmol) and ammonium acetate (10.7 g, 139 mmol) were added, and the mixture was stirred at reflux for 30 minutes. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the resulting residue was extracted with water / dichloromethane. The organic phase was washed with water and then saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was separated and purified by silica gel chromatography (eluent: dichloromethane) to obtain a dark blue solid of compound (f-5) (yield: 2.1 g, yield: 35.2%).
 最後に、アルゴン気流下、2L容フラスコに、化合物(f-5)(2.0g、3.8m2mol)とジクロロメタン(250mL)を加え、室温で5分間撹拌した。N,N-ジイソプロピルエチルアミン(1.48g、11.5mmol)、及び三フッ化ホウ素ジエチルエーテル錯体(3.27g、23mmol)を滴下し、室温で1時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン)で分離精製し、近赤外蛍光色素Fの濃緑色固体を得た(収量:1.66g、収率:76%)。 Finally, compound (f-5) (2.0 g, 3.8 m2 mol) and dichloromethane (250 mL) were added to a 2 L flask under an argon stream, and the mixture was stirred at room temperature for 5 minutes. N, N-diisopropylethylamine (1.48 g, 11.5 mmol) and boron trifluoride diethyl ether complex (3.27 g, 23 mmol) were added dropwise, and the mixture was stirred at room temperature for 1 hour. The reaction solution was concentrated, and the residue was separated and purified by silica gel column chromatography (eluent: dichloromethane) to obtain a dark green solid of near-infrared fluorescent dye F (yield: 1.66 g, yield: 76%).
H-NMR(300MHz,CDCl/CCl=1/1):δ=7.85(s,2H),7.64(d,2H),7.39(s,1H),7.29(s,2H),6.98(m,4H),3.86(s,6H),2.98(q,4H),1.43(t,6H)ppm。 1 H-NMR (300 MHz, CDCl 3 / CCl 4 = 1/1): δ = 7.85 (s, 2H), 7.64 (d, 2H), 7.39 (s, 1H), 7.29 (S, 2H), 6.98 (m, 4H), 3.86 (s, 6H), 2.98 (q, 4H), 1.43 (t, 6H) ppm.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
[製造例8]近赤外蛍光色素Gの合成
 近赤外蛍光色素GはChemistry An Asian Journal、2013年、第8巻、3123~3132ページ記載の方法に従って合成した。
 2L容四口フラスコにて、アルゴン気流下、5-ブロモ-2-チオフェンカルボキシアルデヒド(19.1g、0.1mol)とアジド酢酸エチル(51.6g、0.4mol)をエタノール(800mL)に溶解させた後、得られた溶液に、20質量%ナトリウムエトキシドエタノール溶液(136g、0.4mol)を0℃氷浴中でゆっくり滴下し、2時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加えてpHを弱酸性に調整した。さらに、水を加え、沈殿物を濾集、乾燥することにより、2-アジド-3-(5-ブロモ-チオフェン-2-イル)-アクリル酸エチルエステルの黄色固体を得た(収量:18.4g、収率:61.3%)。
[Production Example 8] Synthesis of Near-Infrared Fluorescent Dye G Near-infrared fluorescent dye G was synthesized according to the method described in Chemistry An Asian Journal, 2013, Vol. 8, pages 3123-3132.
Dissolve 5-bromo-2-thiophenecarboxaldehyde (19.1 g, 0.1 mol) and ethyl azidoacetate (51.6 g, 0.4 mol) in ethanol (800 mL) under a stream of argon in a 2 L four-necked flask. Then, a 20% by mass sodium ethoxide ethanol solution (136 g, 0.4 mol) was slowly added dropwise in a 0 ° C. ice bath to the obtained solution, and the mixture was stirred for 2 hours. After completion of the reaction, a saturated aqueous ammonium chloride solution was added to adjust the pH to slightly acidic. Further, water was added, and the precipitate was collected by filtration and dried to obtain a yellow solid of 2-azido-3- (5-bromo-thiophen-2-yl) -acrylic acid ethyl ester (yield: 18. 4 g, yield: 61.3%).
 次に、500mL容ナスフラスコに、2-アジド-3-(5-ブロモ-チオフェン-2-イル)-アクリル酸エチルエステル(18.1g、60mmol)を入れ、o-キシレン(200mL)に溶解させた後、1.5時間還流撹拌した。還流撹拌後の溶液を減圧濃縮した後、得られた粗生成物を再結晶(溶液:ヘキサン、酢酸エチル)させた後に吸引濾過し、得られた濾物を乾燥することにより、2-ブロモ-4H-チエノ[3.2-b]ピロール-5-カルボン酸エチルエステル(g-1)を得た(収量:12.1g、収率:73.8%)。 Next, 2-azido-3- (5-bromo-thiophen-2-yl) -acrylic acid ethyl ester (18.1 g, 60 mmol) was placed in a 500 mL eggplant flask and dissolved in o-xylene (200 mL). Then, the mixture was stirred at reflux for 1.5 hours. The solution after stirring under reflux was concentrated under reduced pressure, and the resulting crude product was recrystallized (solution: hexane, ethyl acetate) and then filtered with suction, and the resulting filtrate was dried to give 2-bromo- 4H-thieno [3.2-b] pyrrole-5-carboxylic acid ethyl ester (g-1) was obtained (yield: 12.1 g, yield: 73.8%).
 さらに、500mL容フラスコに、化合物(g-1)(6.0g、22mmol)を入れ、エタノール(200mL)、水酸化ナトリウム(12.4g、310mmol)を水(100mL)に溶解した水溶液を加え、1時間還流撹拌した。還流撹拌後の溶液は、放冷した後に6mol/L塩酸を加えて酸性に調整した後に、水を加えて吸引濾過を行い、得られた濾物を真空乾燥することにより、2-ブロモ-4H-チエノ[3.2-b]ピロール-5-カルボン酸(g-2)の灰色固体を得た(収量:4.1g、収率:75.8%)。 Further, compound (g-1) (6.0 g, 22 mmol) was placed in a 500 mL flask, and an aqueous solution in which ethanol (200 mL) and sodium hydroxide (12.4 g, 310 mmol) were dissolved in water (100 mL) was added. Stir at reflux for 1 hour. The solution after stirring under reflux was allowed to cool and then adjusted to acidity by adding 6 mol / L hydrochloric acid, then water was added and suction filtration was performed, and the obtained filtrate was vacuum-dried to give 2-bromo-4H. -A gray solid of thieno [3.2-b] pyrrole-5-carboxylic acid (g-2) was obtained (yield: 4.1 g, yield: 75.8%).
 続いて、300mL容三口フラスコに、化合物(g-2)(4.0g、16.3mmol)、トリフルオロ酢酸(100mL)を入れ、40℃で攪拌した。化合物(d-2)が溶解した後、発泡がおさまるまで、15分間撹拌した。撹拌後の溶液に、無水トリフルオロ酢酸(36mL)を加えて80℃で4時間反応させた。反応終了後、氷を入れた飽和炭酸水素ナトリウム水溶液に、反応液を加え、溶液を中和した後、吸引濾過を行い、真空乾燥し、化合物(g-3)の粗生成物を得た。 Subsequently, compound (g-2) (4.0 g, 16.3 mmol) and trifluoroacetic acid (100 mL) were placed in a 300 mL three-necked flask and stirred at 40 ° C. After the compound (d-2) was dissolved, the mixture was stirred for 15 minutes until foaming stopped. To the stirred solution, trifluoroacetic anhydride (36 mL) was added and reacted at 80 ° C. for 4 hours. After completion of the reaction, the reaction solution was added to a saturated aqueous sodium hydrogen carbonate solution containing ice, and the solution was neutralized. Then, suction filtration was performed, followed by vacuum drying to obtain a crude product of compound (g-3).
 さらに、アルゴン気流下、2L容フラスコに、化合物(g-3)とジクロロメタン(1L)を加え、室温で5分間撹拌した。トリエチルアミン(12mL)、及び三フッ化ホウ素ジエチルエーテル錯体(16mL)を滴下し、室温で1時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン)で分離精製し、2,8-ジブロモ-11-トリフルオロメチル-ジチエノ[2,3-b][3,2-g]-5,5-ジフルオロ-5-ボラ-3a,4a-ジチオ-s-インダセン(g-4)の濃青緑色固体を得た(収量:580mg、収率:13.4%)。 Furthermore, the compound (g-3) and dichloromethane (1 L) were added to a 2 L flask under an argon stream, and the mixture was stirred at room temperature for 5 minutes. Triethylamine (12 mL) and boron trifluoride diethyl ether complex (16 mL) were added dropwise, and the mixture was stirred at room temperature for 1 hour. The reaction solution is concentrated, and the residue is separated and purified by silica gel column chromatography (eluent: dichloromethane) to obtain 2,8-dibromo-11-trifluoromethyl-dithieno [2,3-b] [3,2-g]. A dark blue-green solid of -5,5-difluoro-5-bora-3a, 4a-dithio-s-indacene (g-4) was obtained (yield: 580 mg, yield: 13.4%).
 最後に、アルゴン気流下、化合物(g-4)(200mg、0.378mmol)、4-メトキシフェニルホウ酸(240mg、1.6mmol)、炭酸ナトリウム(120mg、1.2mmol)、トルエン/THF/水=1:1:1(60mL)を200mL容三口フラスコに加え、アルゴンガスで30分間バブリングした後、テトラキス(トリフェニルホスフィン)パラジウム(0)(22mg)を加えて、80℃で4時間カップリング反応した。冷却後、反応液に水(10mL)を加え、ジエチルエーテルで3回抽出した。
得られた有機相を水及び飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧濃縮した。得られた粗生成物を、シリカゲルクロマトグラフィー(溶離液:トルエン/酢酸エチル=20/1(体積比))で分離精製し、近赤外蛍光色素Gの濃緑色結晶を得た(収量:110mg、収率:49.8%)。
Finally, compound (g-4) (200 mg, 0.378 mmol), 4-methoxyphenylboric acid (240 mg, 1.6 mmol), sodium carbonate (120 mg, 1.2 mmol), toluene / THF / water under an argon stream = 1: 1: 1 (60 mL) was added to a 200 mL three-necked flask, bubbled with argon gas for 30 minutes, tetrakis (triphenylphosphine) palladium (0) (22 mg) was added, and coupling was performed at 80 ° C. for 4 hours. Reacted. After cooling, water (10 mL) was added to the reaction solution, and extracted with diethyl ether three times.
The obtained organic phase was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was concentrated under reduced pressure. The obtained crude product was separated and purified by silica gel chromatography (eluent: toluene / ethyl acetate = 20/1 (volume ratio)) to obtain dark green crystals of near-infrared fluorescent dye G (yield: 110 mg). Yield: 49.8%).
H-NMR(300MHz,CDCl):δ=7.76(d,4H),7.34(s,2H),7.32(s,2H),7.03(d,4H),3.91(s,6H)ppm。 1 H-NMR (300 MHz, CD 2 Cl 2 ): δ = 7.76 (d, 4H), 7.34 (s, 2H), 7.32 (s, 2H), 7.03 (d, 4H) , 3.91 (s, 6H) ppm.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
[製造例9]近赤外蛍光色素Hの合成
 4-メトキシフェニルホウ酸の代わりにチオフェン-2-ホウ酸(205mg、1.6mmol)を使用した以外は、製造例7と同様の操作を行い、近赤外蛍光色素Hの濃緑色結晶を得た(収量:94mg、収率:46.4%)。
[Production Example 9] Synthesis of near-infrared fluorescent dye H The same procedure as in Production Example 7 was performed, except that thiophene-2-boric acid (205 mg, 1.6 mmol) was used instead of 4-methoxyphenylboric acid. Thus, dark green crystals of near-infrared fluorescent dye H were obtained (yield: 94 mg, yield: 46.4%).
H-NMR(300MHz,CDCl):δ=7.57(m,4H),7.54(d,2H),7.53(s,2H),7.34(s,2H),7.24(m,2H)ppm 1 H-NMR (300 MHz, CD 2 Cl 2 ): δ = 7.57 (m, 4H), 7.54 (d, 2H), 7.53 (s, 2H), 7.34 (s, 2H) , 7.24 (m, 2H) ppm
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
[実施例1]
 40質量%の硫酸バリウムを含有するTPUペレット(製品名:EG-60D-B40、Lubrizol社製)55gと、クマリン6(東京化成工業(株)から市販されている試薬、可視蛍光材料)16.5mgを混ぜて、ペレット表面に蛍光材料を付着させた。
次いで、当該ペレットをラボプラストミル(東洋精機製作所(株)製)に投入し、設定温度190℃で10分間溶融混練した。その後、混練された蛍光材料含有樹脂を取り出し、フィルム化した。
[Example 1]
15. TPU pellet (product name: EG-60D-B40, manufactured by Lubrizol) 55 g containing 40% by mass of barium sulfate and Coumarin 6 (reagent commercially available from Tokyo Chemical Industry Co., Ltd., visible fluorescent material) 5 mg was mixed to attach the fluorescent material to the pellet surface.
Subsequently, the pellets were put into a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and melt-kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out and formed into a film.
 フィルム化は、以下のようにして行った。まず、溶融混練された蛍光材料含有樹脂を200℃に熱した鉄板で挟みながら5分間加熱し、当該鉄板を冷却しながら、5~10mPaでプレスした。そのときのフィルムの厚みは約300μm、色素濃度は0.03質量%であった。また、蛍光材料と放射線不透過性物質との混合比(蛍光材料の質量/放射性不透過性物質の質量)は、0.00075であった。 Filming was performed as follows. First, the melt-kneaded fluorescent material-containing resin was heated for 5 minutes while being sandwiched between iron plates heated to 200 ° C., and pressed at 5 to 10 mPa while cooling the iron plates. At that time, the thickness of the film was about 300 μm, and the pigment concentration was 0.03% by mass. The mixing ratio of the fluorescent material and the radiopaque substance (the mass of the fluorescent material / the mass of the radiopaque substance) was 0.00075.
 得られたフィルムの吸収スペクトルをSHIMADZU社製の紫外可視近赤外分光光度計「UV3600」で測定し、発光スペクトルを浜松ホトニクス社製の絶対PL量子収率測定装置「Quantaurus-QY C11347」で測定したところ、極大吸収波長が444nm、極大蛍光波長が516nm付近であり、黄緑色の蛍光を発することが確認された。 The absorption spectrum of the obtained film was measured with an ultraviolet-visible near-infrared spectrophotometer “UV3600” manufactured by SHIMADZU, and the emission spectrum was measured with an absolute PL quantum yield measuring device “Quantaurus-QY C11347” manufactured by Hamamatsu Photonics. As a result, it was confirmed that the maximum absorption wavelength was 444 nm, the maximum fluorescence wavelength was around 516 nm, and yellow-green fluorescence was emitted.
 また、当該フィルムは、X線撮影により検出でき、放射線の不透過性は、蛍光材料を含有させる前のTPUから得られたフィルムと同程度であった。これらの結果から、蛍光材料及び放射線不透過性物質を含有する本発明に係る樹脂組成物は、X線検出装置及び蛍光検出装置によって視覚化できることが明らかである。結果を表1に纏めた。 Further, the film could be detected by X-ray photography, and the radiopacity was comparable to the film obtained from TPU before containing the fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
[比較例1]
 硫酸バリウムを含有するペレットを、硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例1と同様にしてフィルムを作製し、実施例1と同様の評価を行った。この結果、得られたフィルムは、黄緑色の蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。結果を表1に纏めた。
[Comparative Example 1]
A film was produced in the same manner as in Example 1 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation was performed. As a result, it was confirmed that the obtained film emitted yellowish green fluorescence, but it was not detected by the X-ray detection device because there was no X-ray opacity. The results are summarized in Table 1.
[実施例2]
 使用した蛍光材料をクマリン6からルモゲン(登録商標)Fレッド305(BASF社製の可視光蛍光材料、ペリレン系色素)に代えた以外は実施例1と同様にして色素濃度0.03質量%のフィルムを作製し、実施例1と同様の評価を行った。得られたフィルムは、極大吸収波長が534nm、極大蛍光波長が627nm付近であった。なお、蛍光材料と放射線不透過性物質との混合比は、0.00075であった。
[Example 2]
A dye concentration of 0.03% by mass was obtained in the same manner as in Example 1 except that the fluorescent material used was changed from Coumarin 6 to Lumogen (registered trademark) F Red 305 (visible fluorescent material manufactured by BASF, perylene dye). A film was prepared and evaluated in the same manner as in Example 1. The obtained film had a maximum absorption wavelength of 534 nm and a maximum fluorescence wavelength of around 627 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
 また、当該フィルムをX線撮影したところ、放射線の不透過性は、蛍光材料を含有させる前のTPUから得られたフィルムと同程度であった。これらの結果から、蛍光材料及び放射線不透過性物質を含有する本発明に係る樹脂組成物は、X線検出装置及び蛍光検出装置によって視覚化できることが明らかである。結果を表1に纏めた。 Further, when the film was radiographed, the radiopacity was comparable to that obtained from the TPU before containing the fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
[比較例2]
 硫酸バリウムを含有するペレットを、硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例2と同様にしてフィルムを作製し、実施例1と同様の評価を行った。この結果、得られたフィルムは、赤色の蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。結果を表1に纏めた。
[Comparative Example 2]
A film was produced in the same manner as in Example 2 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation was performed. As a result, it was confirmed that the obtained film emits red fluorescence, but it was not detected by the X-ray detection device because there was no X-ray opacity. The results are summarized in Table 1.
[実施例3]
 使用した蛍光材料をクマリン6から製造例1で合成したアゾ-ホウ素錯体(近赤外光蛍光材料)に代えた以外は実施例1と同様にして色素濃度0.03質量%のフィルムを作製し、実施例1と同様の評価を行った。得られたフィルムは、極大吸収波長が683nm、極大蛍光波長が820nm付近であった。なお、蛍光材料と放射線不透過性物質との混合比は、0.00075であった。
[Example 3]
A film having a dye concentration of 0.03% by mass was prepared in the same manner as in Example 1 except that the fluorescent material used was changed from coumarin 6 to the azo-boron complex (near-infrared light fluorescent material) synthesized in Production Example 1. The same evaluation as in Example 1 was performed. The obtained film had a maximum absorption wavelength of 683 nm and a maximum fluorescence wavelength near 820 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
 また、当該フィルムをX線撮影したところ、放射線の不透過性は、蛍光材料を含有させる前のTPUから得られたフィルムと同程度であった。これらの結果から、蛍光材料及び放射線不透過性物質を含有する本発明に係る樹脂組成物は、X線検出装置及び蛍光検出装置によって視覚化できることが明らかである。結果を表1に纏めた。 Further, when the film was radiographed, the radiopacity was comparable to that obtained from the TPU before containing the fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
[比較例3]
 硫酸バリウムを含有するペレットを、硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例3と同様にしてフィルムを作製し、実施例1と同様の評価を行った。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。
[Comparative Example 3]
A film was produced in the same manner as in Example 3 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity.
 以上のように、本発明に係る樹脂組成物及び当該組成物から得られる成形体は、放射線不透過性であり、かつ発光物質も含有しているため、X線撮影による検出と発光による検出の両方が可能である。また、本発明に係る樹脂組成物は、放射線不透過性物質を含有していない樹脂組成物よりも、添加した発光物質の量に対する発光強度が強いため、より弱い励起光でも感度よく発光検出することができ、産業上有用な樹脂組成物と考えられる。結果を表1に纏めた。 As described above, since the resin composition according to the present invention and the molded product obtained from the composition are radiopaque and contain a luminescent material, detection by X-ray imaging and detection by luminescence are possible. Both are possible. Moreover, since the resin composition according to the present invention has a higher emission intensity with respect to the amount of the added luminescent substance than a resin composition that does not contain a radiopaque substance, it detects luminescence with high sensitivity even with weaker excitation light. It can be considered as an industrially useful resin composition. The results are summarized in Table 1.
[実施例4]
 使用した蛍光材料をクマリン6から製造例2で合成した近赤外蛍光色素A(近赤外光蛍光材料)に代えた以外は実施例1と同様にして色素濃度0.03質量%のフィルムを作製し、実施例1と同様の評価を行った。得られたフィルムは、極大吸収波長が730nm、極大蛍光波長が765nmであり、その他に824nmに蛍光ピークが観測された。なお、蛍光材料と放射線不透過性物質との混合比は、0.00075であった。
 また、当該フィルムをX線撮影したところ、放射線の不透過性は、蛍光材料を含有させる前のTPUから得られたフィルムと同程度であった。これらの結果から、蛍光材料及び放射線不透過性物質を含有する本発明に係る樹脂組成物は、X線検出装置及び蛍光検出装置によって視覚化できることが明らかである。結果を表1に纏めた。
[Example 4]
A film having a dye concentration of 0.03% by mass was prepared in the same manner as in Example 1 except that the fluorescent material used was replaced with the near-infrared fluorescent dye A (near-infrared fluorescent material) synthesized in Production Example 2 from coumarin 6. The same evaluation as in Example 1 was performed. The obtained film had a maximum absorption wavelength of 730 nm, a maximum fluorescence wavelength of 765 nm, and a fluorescence peak was observed at 824 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
Moreover, when the said film was radiographed, the radiopacity was comparable with the film obtained from TPU before containing a fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
[比較例4]
 硫酸バリウムを含有するペレットを硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例4と同様にしてフィルムを作製し、実施例1と同様の評価を行った。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。結果を表1に纏めた。
[Comparative Example 4]
A film was produced in the same manner as in Example 4 except that the pellet containing barium sulfate was replaced with a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation similar to Example 1 was made. Went. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
[実施例5]
 40質量%の硫酸バリウムを含有するTPUペレット(製品名:EG-60D-B40、Lubrizol社製)110gと、製造例2で合成した近赤外蛍光色素A5.5mgを混ぜて、ペレット表面に蛍光材料を付着させた。次いで、当該ペレットをラボプラストミルに投入し、設定温度190℃で10分間溶融混練した。その後、混練された蛍光材料含有樹脂を取り出し、実施例1と同様にして色素濃度0.005質量%のフィルムを作製した。なお、蛍光材料と放射線不透過性物質との混合比は、0.000125であった。
[Example 5]
110 g of TPU pellets (product name: EG-60D-B40, manufactured by Lubrizol) containing 40% by mass of barium sulfate and 5.5 mg of near-infrared fluorescent dye A synthesized in Production Example 2 were mixed, and the pellet surface was fluorescent. Material was deposited. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a film having a pigment concentration of 0.005% by mass was produced in the same manner as in Example 1. The mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
 得られたフィルムの吸収スペクトルをSHIMADZU社製の紫外可視近赤外分光光度計「UV3600」で測定し、発光スペクトルを日本分光(株)製の分光蛍光光度計「FP-8600」で測定したところ(励起波長740nm)、得られたフィルムは、極大吸収波長が738nmであり、750nm以上に強い蛍光の裾を持ち、さらに827nmにピークのある蛍光が観測された。 The absorption spectrum of the obtained film was measured with an ultraviolet-visible near-infrared spectrophotometer “UV3600” manufactured by SHIMADZU, and the emission spectrum was measured with a spectrofluorophotometer “FP-8600” manufactured by JASCO Corporation. (Excitation wavelength: 740 nm) The obtained film had a maximum absorption wavelength of 738 nm, a strong fluorescence tail at 750 nm or more, and fluorescence with a peak at 827 nm was observed.
 また、当該フィルムをX線撮影したところ、放射線の不透過性は、蛍光材料を含有させる前のTPUから得られたフィルムと同程度であった。これらの結果から、蛍光材料及び放射線不透過性物質を含有する本発明に係る樹脂組成物は、X線検出装置及び蛍光検出装置によって視覚化できることが明らかである。結果を表1に纏めた。 Further, when the film was radiographed, the radiopacity was comparable to that obtained from the TPU before containing the fluorescent material. From these results, it is clear that the resin composition according to the present invention containing a fluorescent material and a radiopaque substance can be visualized by an X-ray detection device and a fluorescence detection device. The results are summarized in Table 1.
[比較例5]
 使用したペレットを硫酸バリウムを含有するペレットから硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例5と同様にしてフィルムを作製し、実施例5と同様の評価を行った。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。結果を表1に纏めた。
[Comparative Example 5]
A film was produced in the same manner as in Example 5 except that the used pellet was changed from a pellet containing barium sulfate to a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). The same evaluation was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
[実施例6]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aから製造例3で合成した近赤外蛍光色素Bに代えた以外は実施例5と同様にして色素濃度0.005質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が738nm、極大蛍光波長が757nmであり、その他に832nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.000125であった。
[Example 6]
A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye B synthesized in Production Example 3. A film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 738 nm, a maximum fluorescence wavelength of 757 nm, and a fluorescence peak was observed at 832 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
[比較例6]
 使用したペレットを、硫酸バリウムを含有するペレットから硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例6と同様にしてフィルムを作製し、実施例6と同様の評価を行った。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。結果を表1に纏めた。
[Comparative Example 6]
A film was produced in the same manner as in Example 6 except that the pellets used were changed from pellets containing barium sulfate to TPU pellets containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation similar to 6 was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
[実施例7]
 使用したペレット量を110gから440gに代え、使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aから製造例4で合成した近赤外蛍光色素Cに代えた以外は実施例5と同様にして色素濃度0.00125質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が762nm、極大蛍光波長が772nmであり、その他に864nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.0000313であった。
[Example 7]
Example 5 except that the amount of pellets used was changed from 110 g to 440 g, and the used fluorescent material was changed from the near infrared fluorescent dye A synthesized in Production Example 2 to the near infrared fluorescent dye C synthesized in Production Example 4. Similarly, a film having a pigment concentration of 0.00125% by mass was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 772 nm, and a fluorescence peak was observed at 864 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.0000313.
[実施例8]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aから製造例4で合成した近赤外蛍光色素Cに代えた以外は実施例5と同様にして色素濃度0.005質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が762nm、極大蛍光波長が784nmであり、その他に864nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.000125であった。
[Example 8]
A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye C synthesized in Production Example 4. A film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 784 nm, and a fluorescence peak was observed at 864 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
[比較例7]
 使用したペレットを、硫酸バリウムを含有するペレットから硫酸バリウムを含まないTPUペレット(製品名:EG-65D、Lubrizol社製)に代えた以外は実施例8と同様にしてフィルムを作製し、実施例8と同様の評価を行った。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。結果を表1に纏めた。
[Comparative Example 7]
A film was produced in the same manner as in Example 8 except that the used pellet was changed from a pellet containing barium sulfate to a TPU pellet containing no barium sulfate (product name: EG-65D, manufactured by Lubrizol). Evaluation similar to 8 was performed. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity. The results are summarized in Table 1.
[実施例9]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aを5.5mgから製造例4で合成した近赤外蛍光色素Cを44mgに代えた以外は実施例5と同様にして色素濃度0.04質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が759nm、極大蛍光波長が809nmであり、その他に864nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.001であった。
[Example 9]
The dye concentration was the same as in Example 5 except that the near-infrared fluorescent dye A synthesized in Production Example 2 was replaced with 5.5 mg of the near-infrared fluorescent dye A synthesized in Production Example 2 to 44 mg. A 0.04% by mass film was produced and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 759 nm, a maximum fluorescence wavelength of 809 nm, and a fluorescence peak was observed at 864 nm. Further, the mixing ratio of the fluorescent material and the radiopaque substance was 0.001.
[実施例10]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aから製造例5で合成した近赤外蛍光色素Dに代えた以外は実施例5と同様にして色素濃度0.005質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が743nm、極大蛍光波長が760nmであり、その他に852nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.000125であった。
[Example 10]
A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye D synthesized in Production Example 5. A film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 743 nm, a maximum fluorescence wavelength of 760 nm, and a fluorescence peak was observed at 852 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
[実施例11]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aから製造例6で合成した近赤外蛍光色素Eに代えた以外は実施例5と同様にして色素濃度0.005質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が754nm、極大蛍光波長が776nmであり、その他に872nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.000125であった。
[Example 11]
A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was replaced with the near-infrared fluorescent dye E synthesized in Production Example 6 from the near-infrared fluorescent dye A synthesized in Production Example 2. A film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. The obtained film had a maximum absorption wavelength of 754 nm, a maximum fluorescence wavelength of 776 nm, and a fluorescence peak was observed at 872 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
[実施例12]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aから製造例7で合成した近赤外蛍光色素Fに代えた以外は実施例5と同様にして色素濃度0.005質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が744nm、極大蛍光波長が787nmに蛍光ピークが観測された。
また、蛍光材料と放射線不透過性物質との混合比は、0.000125であった。
[Example 12]
A dye concentration of 0.005% by mass was obtained in the same manner as in Example 5 except that the used fluorescent material was changed from the near-infrared fluorescent dye A synthesized in Production Example 2 to the near-infrared fluorescent dye F synthesized in Production Example 7. A film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. In the obtained film, a fluorescence peak was observed at a maximum absorption wavelength of 744 nm and a maximum fluorescence wavelength of 787 nm.
Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.000125.
[実施例13]
 使用した蛍光材料を製造例2で合成した近赤外蛍光色素Aを5.5mgから製造例8で合成した近赤外蛍光色素Gを33mgに代えた以外は実施例5と同様にして色素濃度0.03質量%のフィルムを作製し、実施例5と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が741nm、極大蛍光波長が771nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.00075であった。
[Example 13]
The dye concentration was the same as in Example 5 except that the near-infrared fluorescent dye A synthesized in Production Example 2 was replaced with 5.5 mg of the near-infrared fluorescent dye A synthesized in Production Example 8 by 33 mg. A 0.03% by mass film was prepared and evaluated in the same manner as in Example 5. The results are summarized in Table 1. In the obtained film, a fluorescence peak was observed at a maximum absorption wavelength of 741 nm and a maximum fluorescence wavelength of 771 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
[実施例14]
 使用した蛍光材料を製造例8で合成した近赤外蛍光色素Gから製造例9で合成した近赤外蛍光色素Hに代えた以外は実施例13と同様にして色素濃度0.03質量%のフィルムを作製し、実施例13と同様の評価を行い、結果を表1に纏めた。なお、得られたフィルムは、極大吸収波長が744nm、極大蛍光波長が776nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.00075であった。
[Example 14]
A dye concentration of 0.03 mass% was obtained in the same manner as in Example 13 except that the used fluorescent material was replaced with the near-infrared fluorescent dye H synthesized in Production Example 9 from the near-infrared fluorescent dye G synthesized in Production Example 8. A film was prepared and evaluated in the same manner as in Example 13, and the results are summarized in Table 1. In the obtained film, a fluorescence peak was observed at a maximum absorption wavelength of 744 nm and a maximum fluorescence wavelength of 776 nm. Moreover, the mixing ratio of the fluorescent material and the radiopaque substance was 0.00075.
[実施例15]
 TPUペレット(製品名:EG-60D、Lubrizol社製)88gと、酸化ビスマス(Aldrich社製)22gと、製造例3で合成した近赤外蛍光色素B5.5mgを混ぜて、ペレット表面に蛍光材料を付着させた。次いで、当該ペレットをラボプラストミルに投入し、設定温度190℃で10分間溶融混練した。その後、混練された蛍光材料含有樹脂を取り出し、実施例5と同様にして色素濃度0.005質量%、酸化ビスマス含量20質量%のフィルムを作製した。この時の蛍光材料と放射線不透過性物質との混合比は、0.00025であった。このフィルムについて、実施例5と同様の方法で評価を行い、その結果を表2に纏めた。なお、得られたフィルムは、極大吸収波長が738nm、極大蛍光波長が756nmであり、その他に830nmに蛍光ピークが観測された。
[Example 15]
88 g of TPU pellets (product name: EG-60D, manufactured by Lubrizol), 22 g of bismuth oxide (manufactured by Aldrich), and 5.5 mg of near-infrared fluorescent dye B synthesized in Production Example 3 are mixed, and a fluorescent material is formed on the pellet surface. Was attached. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a film having a pigment concentration of 0.005 mass% and a bismuth oxide content of 20 mass% was produced in the same manner as in Example 5. At this time, the mixing ratio of the fluorescent material and the radiopaque substance was 0.00025. This film was evaluated in the same manner as in Example 5, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 738 nm, a maximum fluorescence wavelength of 756 nm, and a fluorescence peak was observed at 830 nm.
[実施例16]
 TPUペレット(製品名:EG-60D、Lubrizol社製)104.5gと、炭酸カルシウム(Aldrich社製)5.5gと、製造例3で合成した近赤外蛍光色素B5.5mgを混ぜて、ペレット表面に蛍光材料を付着させた。次いで、当該ペレットをラボプラストミルに投入し、設定温度190℃で10分間溶融混練した。その後、混練された蛍光材料含有樹脂を取り出し、実施例5と同様にして色素濃度0.005質量%、炭酸カルシウム含量5質量%のフィルムを作製した。この時の蛍光材料と放射線不透過性物質との混合比は、0.001であった。このフィルムについて、実施例5と同様の方法で評価を行い、その結果を表2に纏めた。なお、得られたフィルムは、極大吸収波長が738nm、極大蛍光波長が756nmであり、その他に830nmに蛍光ピークが観測された。
[Example 16]
Mix 104.5 g of TPU pellet (product name: EG-60D, manufactured by Lubrizol), 5.5 g of calcium carbonate (manufactured by Aldrich), and 5.5 mg of near-infrared fluorescent dye B synthesized in Production Example 3, and pellet A fluorescent material was attached to the surface. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 190 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a film having a pigment concentration of 0.005 mass% and a calcium carbonate content of 5 mass% was produced in the same manner as in Example 5. At this time, the mixing ratio of the fluorescent material and the radiopaque substance was 0.001. This film was evaluated in the same manner as in Example 5, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 738 nm, a maximum fluorescence wavelength of 756 nm, and a fluorescence peak was observed at 830 nm.
[実施例17]
 製造例3で合成した近赤外蛍光色素Bに代えて製造例4で合成した近赤外蛍光色素Cを使用した以外は実施例15と同様にして色素濃度0.005質量%のフィルムを作製し、実施例15と同様の評価を行い、結果を表2に纏めた。なお、得られたフィルムは、極大吸収波長が762nm、極大蛍光波長が783nmであり、その他に859nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.00025であった。
[Example 17]
A film having a dye concentration of 0.005% by mass was prepared in the same manner as in Example 15 except that the near-infrared fluorescent dye C synthesized in Production Example 4 was used instead of the near-infrared fluorescent dye B synthesized in Production Example 3. Then, the same evaluation as in Example 15 was performed, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 783 nm, and a fluorescence peak was observed at 859 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
[実施例18]
 製造例3で合成した近赤外蛍光色素Bに代えて製造例4で合成した近赤外蛍光色素Cを使用した以外は実施例16と同様にして色素濃度0.005質量%のフィルムを作製し、実施例16と同様の評価を行い、結果を表2に纏めた。なお、得られたフィルムは、極大吸収波長が762nm、極大蛍光波長が779nmであり、その他に858nmに蛍光ピークが観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.00025であった。
[Example 18]
A film having a dye concentration of 0.005% by mass was prepared in the same manner as in Example 16 except that the near-infrared fluorescent dye C synthesized in Production Example 4 was used instead of the near-infrared fluorescent dye B synthesized in Production Example 3. Then, the same evaluation as in Example 16 was performed, and the results are summarized in Table 2. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 779 nm, and a fluorescence peak was observed at 858 nm. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
[実施例19]
 PPペレット(製品名:B221WA、プライムポリマー社製)88gと、硫酸バリウム(和光純薬社製)22gと、製造例3で合成した近赤外蛍光色素B5.5mgを混ぜて、ペレット表面に蛍光材料を付着させた。次いで、当該ペレットをラボプラストミルに投入し、設定温度180℃で10分間溶融混練した。その後、混練された蛍光材料含有樹脂を取り出し、実施例5と同様にして色素濃度0.005質量%、硫酸バリウム含量20質量%のPPフィルムを作製した。この時の蛍光材料と放射線不透過性物質との混合比は、0.00025であった。このフィルムについて、実施例5と同様の方法で評価を行い、その結果を表3に纏めた。なお、得られたフィルムは、極大吸収波長が737nmで、極大蛍光波長が750nm付近であり、その他に827nmに蛍光ピークが観測された。
[Example 19]
PP pellet (product name: B221WA, manufactured by Prime Polymer Co., Ltd.) 88 g, barium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) 22 g, and near-infrared fluorescent dye B 5.5 mg synthesized in Production Example 3 were mixed, and the pellet surface was fluorescent. Material was deposited. Next, the pellets were put into a lab plast mill and melt kneaded at a preset temperature of 180 ° C. for 10 minutes. Thereafter, the kneaded fluorescent material-containing resin was taken out, and a PP film having a pigment concentration of 0.005 mass% and a barium sulfate content of 20 mass% was produced in the same manner as in Example 5. At this time, the mixing ratio of the fluorescent material and the radiopaque substance was 0.00025. This film was evaluated in the same manner as in Example 5, and the results are summarized in Table 3. The obtained film had a maximum absorption wavelength of 737 nm, a maximum fluorescence wavelength of around 750 nm, and a fluorescence peak was observed at 827 nm.
[比較例8]
 硫酸バリウムを用いずに、使用するペレットを硫酸バリウムを含まないPPペレット(製品名:B221WA、プライムポリマー社製)に代えた以外は実施例19と同様にしてフィルムを作製し、実施例19と同様の評価を行った。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、X線の不透過性がないため、X線検出装置では検出はできなかった。
[Comparative Example 8]
A film was produced in the same manner as in Example 19 except that the pellet to be used was replaced with PP pellets containing no barium sulfate (product name: B221WA, manufactured by Prime Polymer Co., Ltd.) without using barium sulfate. Similar evaluations were made. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but it was not detected by the X-ray detection apparatus because there was no X-ray opacity.
[実施例20]
 製造例3で合成した近赤外蛍光色素Bに代えて製造例2で合成した近赤外蛍光色素Aを使用し、PPペレットに代えてポリスチレン(ディックスチレン(商標)LP-6000、DIC社製)を使用し、さらに混練温度を230℃にした以外は実施例19と同様にして色素濃度0.005質量%のポリスチレンフィルムを作製し、実施例19と同様の評価を行い、結果を表3に纏めた。なお、得られたフィルムは、極大吸収波長が736nmであり、750nm以上に強い蛍光の裾を持ち、さらに830nmにピークのある蛍光が観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.00025であった。
[Example 20]
The near-infrared fluorescent dye A synthesized in Production Example 2 was used in place of the near-infrared fluorescent dye B synthesized in Production Example 3, and polystyrene (Dick Styrene (trademark) LP-6000, manufactured by DIC Corporation) was used instead of the PP pellet. And a polystyrene film having a dye concentration of 0.005% by mass was prepared in the same manner as in Example 19 except that the kneading temperature was changed to 230 ° C., and the same evaluation as in Example 19 was performed. I summarized it. The obtained film had a maximum absorption wavelength of 736 nm, had a strong fluorescence tail at 750 nm or more, and fluorescence with a peak at 830 nm was observed. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
[実施例21]
 製造例3で合成した近赤外蛍光色素Bに代えて製造例2で合成した近赤外蛍光色素Aを使用し、PPペレットに代えてPET(バイロン(商標)SI-173C、東洋紡社製)を使用し、さらに混練温度を210℃にした以外は実施例19と同様にして色素濃度0.005質量%のPETフィルムを作製し、実施例19と同様の評価を行い、結果を表3に纏めた。なお、得られたフィルムは、極大吸収波長が738nmであり、750nm以上に強い蛍光の裾を持ち、さらに827nmにピークのある蛍光が観測された。また、蛍光材料と放射線不透過性物質との混合比は、0.00025であった。
[Example 21]
The near-infrared fluorescent dye A synthesized in Production Example 2 was used instead of the near-infrared fluorescent dye B synthesized in Production Example 3, and PET (Byron (trademark) SI-173C, manufactured by Toyobo Co., Ltd.) was used instead of the PP pellet. A PET film having a pigment concentration of 0.005% by mass was prepared in the same manner as in Example 19 except that the kneading temperature was changed to 210 ° C., and the same evaluation as in Example 19 was performed. I summarized it. The obtained film had a maximum absorption wavelength of 738 nm, had a strong fluorescence tail above 750 nm, and fluorescence with a peak at 827 nm was observed. The mixing ratio of the fluorescent material and the radiopaque substance was 0.00025.
[実施例22]
 実施例15で使用した酸化ビスマスを硫酸バリウムに変え、5%含有するように調整した以外は実施例15と同様にして色素濃度0.005質量%のフィルムを作製し、実施例15と同様の評価を行い、結果を表4に纏めた。なお、得られたフィルムは、極大吸収波長が762nm、極大蛍光波長が781nmであり、その他に860nm付近にも蛍光ピークが観測された。
また、蛍光材料と放射線不透過性物質との混合比は、0.001であった。
[Example 22]
A film having a pigment concentration of 0.005% by mass was prepared in the same manner as in Example 15 except that the bismuth oxide used in Example 15 was changed to barium sulfate and adjusted so as to contain 5%. Evaluation was performed and the results are summarized in Table 4. The obtained film had a maximum absorption wavelength of 762 nm, a maximum fluorescence wavelength of 781 nm, and a fluorescence peak was also observed in the vicinity of 860 nm.
Further, the mixing ratio of the fluorescent material and the radiopaque substance was 0.001.
[比較例9]
 実施例22で使用した硫酸バリウムの含有量を1%になるように調整した以外は実施例15と同様にしてフィルムを作製し、実施例15と同様の評価を行った。また、蛍光材料と放射線不透過性物質との混合比は、0.005であった。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、増感効果が不十分であり、X線の不透過性も不十分であった。結果を表4に纏めた。
[Comparative Example 9]
A film was produced in the same manner as in Example 15 except that the content of barium sulfate used in Example 22 was adjusted to 1%, and the same evaluation as in Example 15 was performed. The mixing ratio of the fluorescent material and the radiopaque substance was 0.005. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but the sensitizing effect was insufficient and the X-ray impermeability was also insufficient. The results are summarized in Table 4.
[比較例10]
 実施例15で使用した酸化ビスマスの含有量を1%に調製した以外は実施例15と同様にしてフィルムを作製し、実施例15と同様の評価を行った。また、蛍光材料と放射線不透過性物質との混合比は、0.005であった。この結果、得られたフィルムは、近赤外蛍光を発することは確認できたが、増感効果が不十分であり、X線の不透過性も不十分であった。結果を表4に纏めた。
[Comparative Example 10]
A film was produced in the same manner as in Example 15 except that the content of bismuth oxide used in Example 15 was adjusted to 1%, and the same evaluation as in Example 15 was performed. The mixing ratio of the fluorescent material and the radiopaque substance was 0.005. As a result, it was confirmed that the obtained film emitted near-infrared fluorescence, but the sensitizing effect was insufficient and the X-ray impermeability was also insufficient. The results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
 表1から明らかなように、本発明に係る樹脂組成物から得られたフィルムは、蛍光材料及び放射線不透過物質(硫酸バリウム)を含有するため、近赤外蛍光とX線の両方で確認できたのに対し、比較例のフィルムはX線では確認できなかった。 As is clear from Table 1, the film obtained from the resin composition according to the present invention contains a fluorescent material and a radiopaque substance (barium sulfate), and therefore can be confirmed by both near-infrared fluorescence and X-rays. On the other hand, the film of the comparative example could not be confirmed by X-ray.
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
 また、表2から、本発明に係る樹脂組成物に使用できる放射線不透過物質は硫酸バリウムに限定されず、放射線不透過性を有する種々の材料が有効であることが明らかである。 Also, from Table 2, it is clear that the radiopaque material that can be used in the resin composition according to the present invention is not limited to barium sulfate, and various materials having radiopaque properties are effective.
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
 更に、表3から、本発明に係る樹脂組成物に使用できる樹脂はTPUに限定されず、種々の樹脂が有効であることが明らかである。 Furthermore, it is clear from Table 3 that the resin that can be used in the resin composition according to the present invention is not limited to TPU, and various resins are effective.
[試験例1]
 実施例1で作製したフィルム(1)を1cm角の大きさに切り、片側だけ5mm角の開口部(2a)ができるように内側を黒くしたアルミ箔(2)で包んで、開口部(2a)から露出した面(1a)以外を遮光した(図1)。これにより、露出した面(1a)からのみ光を吸収し、露出した面(1a)のみから蛍光が発せられるようになり、実際にカメラ等の検出器で検出する場合を想定することができた。このように作製したフィルムについて、463nmの励起光を照射した場合の発光スペクトルを浜松ホトニクス社製の絶対PL量子収率測定装置「Quantaurus-QY C11347」で測定し、蛍光スペクトルを測定した。比較例1で作製したフィルムについても同様にして、アルミ箔により部分的に遮光した後、蛍光スペクトルを測定した。その結果、極大蛍光波長付近である516nmのintensity(蛍光強度)は170で、比較例1のフィルムの極大蛍光波長のintensityに対して115%強度が強くなっていた(図2)。発光効率は、実施例1のフィルムは0.17、比較例1のフィルムは0.07で実施例1の方が発光効率が高かった。したがって、硫酸バリウムを含有したフィルムの方が蛍光強度は強く、検出器での検出が容易になることが明らかとなった。
[Test Example 1]
The film (1) produced in Example 1 was cut to a size of 1 cm square and wrapped with aluminum foil (2) whose inner side was black so that a 5 mm square opening (2a) was formed on one side, and the opening (2a ) Were shielded from light except for the exposed surface (1a) (FIG. 1). As a result, light can be absorbed only from the exposed surface (1a), and fluorescence can be emitted only from the exposed surface (1a), and a case where detection is actually performed by a detector such as a camera can be assumed. . With respect to the film thus prepared, an emission spectrum when irradiated with excitation light of 463 nm was measured with an absolute PL quantum yield measuring apparatus “Quantaurus-QY C11347” manufactured by Hamamatsu Photonics, and a fluorescence spectrum was measured. Similarly, the film prepared in Comparative Example 1 was partially shielded from light by an aluminum foil, and then the fluorescence spectrum was measured. As a result, the intensity (fluorescence intensity) at 516 nm near the maximum fluorescence wavelength was 170, which was 115% stronger than the intensity of the maximum fluorescence wavelength of the film of Comparative Example 1 (FIG. 2). The luminous efficiency was 0.17 for the film of Example 1, 0.07 for the film of Comparative Example 1, and the luminous efficiency of Example 1 was higher. Therefore, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
[試験例2]
 実施例2及び比較例2で作製したフィルムに関しても、試験例1と同様にして部分露出させたフィルムにおいて、582nmの励起光を照射した場合の蛍光スペクトルを測定した。その結果、極大蛍光波長付近である627nmのintensityは95で、比較例2のフィルムの極大蛍光波長のintensityに対して約118%強度が強かった。したがって、硫酸バリウムを含有したフィルムの方が蛍光強度は強く、検出器での検出が容易になることが明らかとなった。
[Test Example 2]
Regarding the films produced in Example 2 and Comparative Example 2, the fluorescence spectrum was measured when the film partially exposed in the same manner as in Test Example 1 was irradiated with excitation light of 582 nm. As a result, the intensity of 627 nm, which is near the maximum fluorescence wavelength, was 95, which was about 118% stronger than the intensity of the maximum fluorescence wavelength of the film of Comparative Example 2. Therefore, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
[試験例3]
 実施例3及び比較例3で作製したフィルムに関しても、試験例1と同様にして部分露出させたフィルムにおいて、683nmの励起光を照射した場合の蛍光スペクトルを測定した。その結果、極大蛍光波長付近である800nmのintensityは20で、比較例3のフィルムの極大蛍光波長付近のintensityに対して約430%強度が強かった。したがって、硫酸バリウムを含有したフィルムの方が蛍光強度は強く、検出器での検出が容易になることが明らかとなった。
[Test Example 3]
Regarding the films produced in Example 3 and Comparative Example 3, the fluorescence spectrum was also measured in the case where the film partially exposed in the same manner as in Test Example 1 was irradiated with excitation light of 683 nm. As a result, the intensity at 800 nm near the maximum fluorescence wavelength was 20, which was about 430% stronger than the intensity around the maximum fluorescence wavelength of the film of Comparative Example 3. Therefore, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
[試験例4]
 実施例3及び比較例3で作製したフィルムを、中心波長が740nmの励起光を有するLEDリング照明器で照射し、800nm以上に検出感度をもつ近赤外イメージングカメラで観察した。その結果、実施例3のフィルムは、比較例3で作製した硫酸バリウムを含有しないフィルムと比較して強く発光していることが確認された。以上のように硫酸バリウムに代表されるような放射線不透過性物質を含有した樹脂中では、放射線不透過性物質を含有しない樹脂中よりも強く発光していることがわかり、放射線不透過性物質と発光物質を含有したものは産業上有用な樹脂組成物と考えられる。
[Test Example 4]
The film produced in Example 3 and Comparative Example 3 was irradiated with an LED ring illuminator having excitation light with a center wavelength of 740 nm, and observed with a near-infrared imaging camera having a detection sensitivity of 800 nm or more. As a result, it was confirmed that the film of Example 3 emitted light strongly as compared with the film containing no barium sulfate prepared in Comparative Example 3. As described above, it can be seen that in a resin containing a radiopaque material typified by barium sulfate, light is emitted more strongly than in a resin not containing a radiopaque material. And a luminescent substance are considered to be industrially useful resin compositions.
[試験例5]
 実施例4及び比較例4で作製したフィルムに関しても、試験例1と同様にして部分露出させたフィルムにおいて、730nmの励起光を照射した場合の蛍光スペクトルを測定した。その結果、極大蛍光波長付近である755nmのintensityは70で、比較例4のフィルムの極大蛍光波長付近のintensityに対して約40%強度が強かった。また、長波長側の蛍光ピークの波長付近である822nmのintensityは43で、比較例4のフィルムの極大蛍光波長付近のintensityに対して約150%強度が強かった。したがって、硫酸バリウムを含有したフィルムの方が蛍光強度は強く、検出器での検出が容易になることが明らかとなった。
[Test Example 5]
Regarding the films produced in Example 4 and Comparative Example 4, the fluorescence spectrum was also measured when irradiated with 730 nm excitation light in the partially exposed film as in Test Example 1. As a result, the intensity at 755 nm near the maximum fluorescence wavelength was 70, which was about 40% stronger than the intensity near the maximum fluorescence wavelength of the film of Comparative Example 4. In addition, the intensity at 822 nm, which is near the wavelength of the fluorescence peak on the long wavelength side, was 43, which was about 150% stronger than the intensity around the maximum fluorescence wavelength of the film of Comparative Example 4. Therefore, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
[試験例6]
 実施例5及び比較例5で作製したフィルムについて、励起波長740nmのスペクトルを、日本分光(株)製の分光蛍光光度計「FP-8600」で測定した。測定結果を図3に示す。その結果、実施例5のフィルムでは、長波長側に蛍光ピークを有しており、当該蛍光ピークの波長付近である827nmのintensityは47000であり、比較例5のフィルムの極大蛍光波長付近のintensityに対して約3200%強度が強かった。
[Test Example 6]
With respect to the films prepared in Example 5 and Comparative Example 5, the spectrum at an excitation wavelength of 740 nm was measured with a spectrofluorometer “FP-8600” manufactured by JASCO Corporation. The measurement results are shown in FIG. As a result, the film of Example 5 has a fluorescence peak on the long wavelength side, the intensity of 827 nm near the wavelength of the fluorescence peak is 47000, and the intensity around the maximum fluorescence wavelength of the film of Comparative Example 5. The strength was about 3200%.
[試験例7]
 実施例6及び比較例6で作製したフィルムについて、試験例4と同様の方法により近赤外イメージングカメラで撮影したところ、実施例6のフィルムは比較例6のフィルムに比べて明らかに強く発光していた。両者の写真を図4に示す。これらの結果から、硫酸バリウムを含有したフィルムの方が蛍光強度は強く、検出器での検出が容易になることが明らかとなった。
[Test Example 7]
The films produced in Example 6 and Comparative Example 6 were photographed with a near-infrared imaging camera in the same manner as in Test Example 4. As a result, the film of Example 6 clearly emitted light stronger than the film of Comparative Example 6. It was. A photograph of both is shown in FIG. From these results, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
[試験例8]
 実施例19及び比較例8で作製したフィルムについて、励起波長740nmのスペクトルを、日本分光(株)製の分光蛍光光度計「FP-8600」で測定した。測定結果を図5に示す。その結果、実施例19のフィルムの蛍光ピークである827nm付近のintensityは44,000であり、比較例8のフィルムの蛍光ピークのintensityに対して190%強度が強かった。以上の結果から、PP中でも放射線不透過物質による蛍光強度の増大という増感効果が確認された。
[Test Example 8]
With respect to the films prepared in Example 19 and Comparative Example 8, the spectrum at an excitation wavelength of 740 nm was measured with a spectrofluorometer “FP-8600” manufactured by JASCO Corporation. The measurement results are shown in FIG. As a result, the intensity around 827 nm, which is the fluorescence peak of the film of Example 19, was 44,000, and the intensity was 190% stronger than the intensity of the fluorescence peak of the film of Comparative Example 8. From the above results, the sensitizing effect of increasing the fluorescence intensity due to the radiopaque substance was confirmed even in PP.
[試験例9]
 実施例8で作製したフィルムを使用し、当該フィルム上に厚さ2mm又は15mmの豚肉を置き、中心波長が740nmの励起光を有するLEDリング照明器で照射しながら、800nm以上に検出感度をもつ近赤外イメージングカメラで撮影した。励起光を照射せずに撮影した場合には、豚肉の下のフィルムは確認できなかったが(図6A)、励起光を照射して撮影した場合には、厚さ2mmの豚肉ごしでも当該フィルムからの蛍光が明瞭に観察でき(図6B)、厚さ15mmの豚肉ごしでも当該フィルムからの蛍光が観察できた(図6C)。これらの結果から、当該フィルムからの発光は豚肉を透過したことから、当該フィルムは、体内に挿入したり留置した場合に可視化できることが明らかである。
[Test Example 9]
Using the film produced in Example 8, placing pork with a thickness of 2 mm or 15 mm on the film, and irradiating with an LED ring illuminator having excitation light with a center wavelength of 740 nm, has a detection sensitivity of 800 nm or more. Photographed with a near-infrared imaging camera. When filming without irradiating the excitation light, the film under the pork could not be confirmed (FIG. 6A). The fluorescence from the film could be clearly observed (FIG. 6B), and the fluorescence from the film could be observed even with a 15 mm thick pork (FIG. 6C). From these results, it is clear that the film can be visualized when inserted into the body or placed because the luminescence from the film has passed through pork.
[試験例10]
 実施例8,17,18,22、比較例7,9,10で作製したフィルムについて、励起波長740nmのスペクトルを、日本分光(株)製の分光蛍光光度計「FP-8600」で測定した。測定結果を図7および表4に示す。表4の「増感効果」の欄中、「◎」は増感効果が非常に強い、「○」は増感効果が強い、「△」は増感効果が弱い、「×」は増感効果がない、をそれぞれ意味する。
[Test Example 10]
With respect to the films produced in Examples 8, 17, 18, and 22 and Comparative Examples 7, 9, and 10, spectra at an excitation wavelength of 740 nm were measured with a spectrofluorometer “FP-8600” manufactured by JASCO Corporation. The measurement results are shown in FIG. In the column of “sensitization effect” in Table 4, “◎” indicates a very strong sensitization effect, “○” indicates a strong sensitization effect, “△” indicates a weak sensitization effect, and “×” indicates a sensitization. Means no effect.
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
 表4から、実施例8の蛍光波長780nmでのintensityは比較例7に対し、387%強度が強く、比較例9に対し、331%強度が強いことが明らかとなった。また、実施例17の蛍光波長780nmでのintensityは比較例7に対し、306%強度が強く、比較例10に対し、284%強度が強いことが明らかとなった。また、実施例22の蛍光波長780nmでのintensityは比較例7に対し、217%強度が強く、比較例10に対し、202%強度が強いことが明らかとなった。
 また、比較例7の極大蛍光波長でのintensityを1としたときに、比較例9,10ではほとんど蛍光強度は変わらないが、実施例18,22ではそれぞれ1.75倍、2.16倍強度が強く、実施例17,8ではそれぞれ3.03倍、3.96倍強度が強かった。さらに、蛍光強度の倍率の変化から、放射線不透過性物質の濃度が40%を超えると、蛍光強度が飽和していく傾向が観察された。
 以上の結果から、放射線不透過性物質を1%以下含有するフィルムでは、蛍光強度の増大がほとんど確認されなかったが、放射線不透過性物質を5~40%含有するフィルムでは、蛍光強度の増大という増感効果が確認された。
From Table 4, it was clarified that the intensity at a fluorescence wavelength of 780 nm in Example 8 was 387% stronger than Comparative Example 7 and 331% stronger than Comparative Example 9. In addition, it was revealed that the intensity at a fluorescence wavelength of 780 nm in Example 17 was 306% stronger than Comparative Example 7 and 284% stronger than Comparative Example 10. In addition, it was revealed that the intensity at a fluorescence wavelength of 780 nm of Example 22 was 217% stronger than Comparative Example 7 and 202% stronger than Comparative Example 10.
Further, when the intensity at the maximum fluorescence wavelength of Comparative Example 7 is 1, the fluorescence intensity is hardly changed in Comparative Examples 9 and 10, but in Examples 18 and 22, the intensity is 1.75 and 2.16 times, respectively. In Examples 17 and 8, the strengths were 3.03 times and 3.96 times stronger, respectively. Furthermore, from the change in the magnification of the fluorescence intensity, it was observed that the fluorescence intensity saturates when the concentration of the radiopaque substance exceeds 40%.
From the above results, almost no increase in fluorescence intensity was observed in the film containing 1% or less of the radiopaque substance, but the increase in fluorescence intensity was observed in the film containing 5 to 40% of the radiopaque substance. The sensitizing effect was confirmed.
 また、実施例8及び比較例7で作製したフィルムについて、試験例4と同様の方法により近赤外イメージングカメラで撮影したところ、実施例8のフィルムは比較例7のフィルムに比べて明らかに強く発光していた。両者の写真を図8に示す。これらの結果から、硫酸バリウムを含有したフィルムの方が蛍光強度は強く、検出器での検出が容易になることが明らかとなった。 Moreover, when the film produced in Example 8 and Comparative Example 7 was photographed with a near-infrared imaging camera in the same manner as in Test Example 4, the film of Example 8 was clearly stronger than the film of Comparative Example 7. It was emitting light. A photograph of both is shown in FIG. From these results, it was clarified that the film containing barium sulfate has higher fluorescence intensity and can be easily detected by a detector.
 これらの実施例及び試験例に示すように、本発明に係る樹脂組成物及び当該組成物から得られる成形体は、放射線不透過性であり、かつ発光物質も含有しているため、X線放射による検出と発光による検出の両方が可能である。また、本発明に係る樹脂組成物は、放射線不透過性物質を含有していない樹脂組成物よりも、添加した発光物質の量に対する発光強度が強いという増感効果があるため、より弱い励起光でも感度よく発光検出することができ、産業上有用な樹脂組成物である。 As shown in these Examples and Test Examples, the resin composition according to the present invention and the molded product obtained from the composition are radiopaque and contain a luminescent material. Both detection by light emission and detection by light emission are possible. Further, the resin composition according to the present invention has a sensitizing effect that the emission intensity with respect to the amount of the added luminescent substance is stronger than that of the resin composition not containing the radiopaque substance, so that the weaker excitation light However, it can detect luminescence with high sensitivity and is an industrially useful resin composition.
 1…フィルム、1a…露出した面、2…内側を黒くしたアルミ箔、2a…開口部。 1 ... film, 1a ... exposed surface, 2 ... aluminum foil with blackened inside, 2a ... opening.

Claims (18)

  1.  発光物質、放射線不透過性物質、及び樹脂を含有し、前記放射線不透過性物質の含有量が2質量%以上80質量%以下であることを特徴とする樹脂組成物。 A resin composition comprising a light-emitting substance, a radiopaque substance, and a resin, wherein the content of the radiopaque substance is 2% by mass or more and 80% by mass or less.
  2.  前記放射線不透過性物質の含有量が5質量%以上50質量%以下である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the radiopaque substance is 5% by mass or more and 50% by mass or less.
  3.  前記発光物質の含有量が0.001質量%以上0.5質量%以下である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the content of the luminescent material is 0.001% by mass or more and 0.5% by mass or less.
  4.  前記発光物質が近赤外蛍光材料である、請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the luminescent substance is a near-infrared fluorescent material.
  5.  前記近赤外蛍光材料が、
    下記一般式(II
    Figure JPOXMLDOC01-appb-C000001
    [式(II)中、
    及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
    及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
    及びRは、ハロゲン原子又は酸素原子を表し;
    は、水素原子、又は電子求引性基を表す。
    ただし、R及びRが酸素原子の場合には、R、Rと結合するホウ素原子、R、及びRが結合する窒素原子が共に環を形成してもよく、R、Rと結合するホウ素原子、R、及びRが結合する窒素原子が共に環を形成してもよい。Rが酸素原子であり、かつ環を形成していない場合には、Rは置換基を有する酸素原子であり、Rが酸素原子であり、かつ環を形成していない場合には、Rは置換基を有する酸素原子である。]で表される化合物、
    下記一般式(II
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R~Rは、前記式(II)と同じである。]
    で表される化合物、
    下記一般式(II
    Figure JPOXMLDOC01-appb-C000003
    [式(II)中、
    及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
    及びRは、Rが結合する窒素原子及びRが結合する炭素原子と共に、芳香族5員環、芳香族6員環、又は2~3個の5員環若しくは6員環が縮合してなる縮合芳香環を形成し;
    、R、R、及びRは、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
    及びRは、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し、
    及びRは、互いに独立して、水素原子、又は電子求引性基を表す。]で表される化合物、
    及び下記一般式(II
    Figure JPOXMLDOC01-appb-C000004
    [式(II)中、R~Rは、前記式(II)と同じである。]
    で表される化合物からなる群より選択される1種又は2種以上の化合物であり、
     極大蛍光波長が650nm以上である、請求項4に記載の樹脂組成物。
    The near-infrared fluorescent material is
    The following general formula (II 1 )
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (II 1 )
    R a and R b are an aromatic 5-membered ring, aromatic 6-membered ring, or 2 to 3 5-membered or 6-membered ring, together with a nitrogen atom to which R a is bonded and a carbon atom to which R b is bonded. Forming a condensed aromatic ring formed by condensation;
    R c and R d , together with the nitrogen atom to which R c is bonded and the carbon atom to which R d is bonded, are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation;
    R e and R f represent a halogen atom or an oxygen atom;
    R g represents a hydrogen atom or an electron withdrawing group.
    However, when R e and R f are oxygen atoms, a boron atom bonded to R e , R e , a nitrogen atom bonded to R a , and R a may form a ring together, and R f , A boron atom bonded to R f , R c , and a nitrogen atom bonded to R c may form a ring together. When R e is an oxygen atom and does not form a ring, R e is an oxygen atom having a substituent, and when R f is an oxygen atom and does not form a ring, R f is an oxygen atom having a substituent. A compound represented by
    The following general formula (II 2 )
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (II 2 ), R a to R f are the same as those in the formula (II 1 ). ]
    A compound represented by
    The following general formula (II 3 )
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (II 3 )
    R h and R i , together with the nitrogen atom to which R h is bonded and the carbon atom to which R i is bonded, are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation;
    R j and R k together with the nitrogen atom to which R j is bonded and the carbon atom to which R k are bonded together are an aromatic 5-membered ring, an aromatic 6-membered ring, or 2 to 3 5-membered rings or 6-membered rings. Forming a condensed aromatic ring formed by condensation;
    R 1 , R m , R n , and R o each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    R p and R q each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
    R r and R s each independently represent a hydrogen atom or an electron withdrawing group. A compound represented by
    And the following general formula (II 4 )
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (II 4 ), R h to R q are the same as those in the formula (II 3 ). ]
    One or more compounds selected from the group consisting of compounds represented by:
    The resin composition according to claim 4, wherein the maximum fluorescence wavelength is 650 nm or more.
  6.  下記一般式(II-0)
    Figure JPOXMLDOC01-appb-C000005
    [式(II-0)中、
    101、R102、及びR103は、
    (p1)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
    (p2)R101及びR102は共に、芳香族5員環又は芳香族6員環を形成し、R103は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
    (p3)R102及びR103は共に、芳香族5員環又は芳香族6員環を形成し、R101は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
    104、R105、及びR106は、
    (q1)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
    (q2)R104及びR105は共に、芳香族5員環又は芳香族6員環を形成し、R106は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
    (q3)R105及びR106は共に、芳香族5員環又は芳香族6員環を形成し、R104は水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。
    107及びR108は、ハロゲン原子又は酸素原子を表し;
    109は、水素原子、又は電子求引性基を表す。
    ただし、R107及びR108が酸素原子の場合には、R107、R107と結合するホウ素原子、ホウ素原子が結合する窒素原子、R101、及びR101と結合する炭素原子が共に環を形成してもよく、R108、R108と結合するホウ素原子、ホウ素原子が結合する窒素原子、R104、及びR104と結合する炭素原子が共に環を形成してもよい。R107が酸素原子であり、かつ環を形成していない場合には、R107は置換基を有する酸素原子であり、R108が酸素原子であり、かつ環を形成していない場合には、R108は置換基を有する酸素原子である。]で表される化合物、
    及び下記一般式(II-0)
    Figure JPOXMLDOC01-appb-C000006
    [式(II-0)中、R101~R108は、前記式(II-0)と同じである。]
    で表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、請求項5に記載の樹脂組成物。
    The following general formula (II 1 -0)
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (II 1 -0)
    R 101 , R 102 , and R 103 are
    (P1) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
    (P2) R 101 and R 102 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 103 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group, or a heteroaryl group, or (p3) R 102 and R 103 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 101 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    R 104 , R 105 , and R 106 are:
    (Q1) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    (Q2) R 104 and R 105 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 106 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl Represents a group or a heteroaryl group, or (q3) R 105 and R 106 together form an aromatic 5-membered ring or an aromatic 6-membered ring, and R 104 represents a hydrogen atom, a halogen atom, a C 1-20 alkyl A group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    R 107 and R 108 represent a halogen atom or an oxygen atom;
    R 109 represents a hydrogen atom or an electron withdrawing group.
    However, when R 107 and R 108 are oxygen atoms, a boron atom bonded to R 107 , R 107 , a nitrogen atom bonded to the boron atom, R 101 , and a carbon atom bonded to R 101 together form a ring. Alternatively , R 108 , a boron atom bonded to R 108 , a nitrogen atom bonded to the boron atom, R 104 , and a carbon atom bonded to R 104 may form a ring together. When R 107 is an oxygen atom and does not form a ring, R 107 is an oxygen atom having a substituent, and when R 108 is an oxygen atom and does not form a ring, R 108 is an oxygen atom having a substituent. A compound represented by
    And Formula (II 2 -0)
    Figure JPOXMLDOC01-appb-C000006
    [In the formula (II 2 -0), R 101 to R 108 are the same as those in the formula (II 1 -0). ]
    The resin composition of Claim 5 containing the 1 type, or 2 or more types of compound selected from the group which consists of a compound represented by these.
  7.  前記一般式(II-0)又は前記一般式(II-0)において、R101及びR102が環を形成し、R104及びR105が環を形成している、又は、R102及びR103が環を形成し、R105及びR106が環を形成しており、
     前記環が、下記一般式(C-1)~(C-9)
    Figure JPOXMLDOC01-appb-C000007
    [式(C-1)~(C-9)中、Y~Yは、互いに独立して硫黄原子、酸素原子、窒素原子、又はリン原子を表し、R11~R22は、互いに独立して水素原子、又は前記化合物の蛍光を阻害しない任意の基を表す。]のいずれかで表される、請求項6に記載の樹脂組成物。
    In the general formula (II 1 -0) or Formula (II 2 -0), R 101 and R 102 form a ring, R 104 and R 105 form a ring, or, R 102 and R 103 forms a ring, R 105 and R 106 form a ring,
    The ring is represented by the following general formulas (C-1) to (C-9):
    Figure JPOXMLDOC01-appb-C000007
    [In formulas (C-1) to (C-9), Y 1 to Y 8 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom, and R 11 to R 22 are independently A hydrogen atom or any group that does not inhibit the fluorescence of the compound. ] The resin composition of Claim 6 represented by either.
  8.  下記一般式(II-1-1)~(II-1-6)、(II-2-1)~(II-2-12)、(II-1-1)~(II-1-6)、及び(II-2-1)~(II-2-12)
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    [式中、Y11及びY12は、互いに独立して、酸素原子又は硫黄原子を表し;
    21及びY22は、互いに独立して、炭素原子又は窒素原子を表し;
    11は、トリフルオロメチル基、シアノ基、ニトロ基、又はフェニル基を表し;
    Xは、互いに独立して、ハロゲン原子、C1-20アルコキシ基、アリールオキシ基、又はアシルオキシ基を表し;
    11~P14及びP17は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表し;
    11~A14は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基、又はハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいヘテロアリール基を表し;
    n11~n14及びn17は、互いに独立して、0~3の整数を表し;
    m1は0又は1を表す。]
    のいずれかで表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、請求項5に記載の樹脂組成物。
    The following general formulas (II 1 -1-1) to (II 1 -1-6), (II 1 -2-1) to (II 1 -12-12), (II 2 -1-1) to (II 2 -1-6), and (II 2 -2-1) to (II 2 -12-12)
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    [Wherein Y 11 and Y 12 each independently represent an oxygen atom or a sulfur atom;
    Y 21 and Y 22 each independently represent a carbon atom or a nitrogen atom;
    Q 11 represents a trifluoromethyl group, a cyano group, a nitro group, or a phenyl group;
    X represents independently of each other a halogen atom, a C 1-20 alkoxy group, an aryloxy group, or an acyloxy group;
    P 11 to P 14 and P 17 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, or a dialkylamino group;
    A 11 to A 14 are each independently selected from the group consisting of a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group. Selected from the group consisting of a phenyl group optionally having three substituents, or a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group Represents a heteroaryl group optionally having 1 to 3 substituents;
    n11 to n14 and n17 each independently represent an integer of 0 to 3;
    m1 represents 0 or 1. ]
    The resin composition of Claim 5 containing the 1 type, or 2 or more types of compound selected from the group which consists of a compound represented by either.
  9.  下記一般式(II-7)~(II-9)及び(II-7)~(II-9)
    Figure JPOXMLDOC01-appb-C000014
    [式中、Y23及びY24は、互いに独立して、炭素原子又は窒素原子を表し;
    13及びY14は、互いに独立して、酸素原子又は硫黄原子を表し;
    25及びY26は、互いに独立して、炭素原子又は窒素原子を表し;
    47及びR48は、互いに独立して、水素原子又は電子求引性基を表し;
    43、R44、R45、及びR46は、ハロゲン原子又は置換基を有していてもよいアリール基を表し;
    15及びP16は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基を表し;
    n15及びn16は、互いに独立して、0~3の整数を表し;
    15及びA16は、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アミノ基、モノアルキルアミノ基、及びジアルキルアミノ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基を表す。]
    のいずれかで表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、請求項5に記載の樹脂組成物。
    The following general formulas (II 3 -7) to (II 3 -9) and (II 4 -7) to (II 4 -9)
    Figure JPOXMLDOC01-appb-C000014
    [Wherein Y 23 and Y 24 each independently represent a carbon atom or a nitrogen atom;
    Y 13 and Y 14 each independently represent an oxygen atom or a sulfur atom;
    Y 25 and Y 26 each independently represent a carbon atom or a nitrogen atom;
    R 47 and R 48 each independently represent a hydrogen atom or an electron withdrawing group;
    R 43 , R 44 , R 45 , and R 46 represent a halogen atom or an optionally substituted aryl group;
    P 15 and P 16 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, or a dialkylamino group;
    n15 and n16 each independently represent an integer of 0 to 3;
    A 15 and A 16 are independently selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an amino group, a monoalkylamino group, and a dialkylamino group. Represents a phenyl group optionally having 1 to 3 substituents. ]
    The resin composition of Claim 5 containing the 1 type, or 2 or more types of compound selected from the group which consists of a compound represented by either.
  10.  下記一般式(II-1)~(II-6)
    Figure JPOXMLDOC01-appb-C000015
    [式(II-1)中、
    23、R24、R25、及びR26は、互いに独立して、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
    27及びR28は、互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
    29及びR30は、互いに独立して、水素原子、又は電子求引性基を表し;
    及びY10は、互いに独立して硫黄原子、酸素原子、窒素原子、又はリン原子を表し;
    31及びR32は、
    (p4)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
    (p5)R31及びR32は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成する;
    33及びR34は、
    (q4)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
    (q5)R33及びR34は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成する。]
    Figure JPOXMLDOC01-appb-C000016
    [式(II-2)~(II-6)中、R23~R30は、前記式(II-1)と同じであり;
    及びXは、互いに独立して窒素原子又はリン原子を表し;
    35、R36、R37、及びR38は、
    (p6)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
    (p7)R35及びR36は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R37及びR38は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
    (p8)R36及びR37は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R35及びR38は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
    (p9)R37及びR38は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R35及びR36は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表し;
    39、R40、R41、及びR42は、
    (q6)互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
    (q7)R39及びR40は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R41及びR42は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、
    (q8)R40及びR41は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R39及びR42は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す、又は
    (q9)R41及びR42は共に、置換基を有していてもよい芳香族5員環又は置換基を有していてもよい芳香族6員環を形成し、R39及びR40は互いに独立して、水素原子、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基、アリール基、又はヘテロアリール基を表す。]のいずれかで表される化合物、及び下記一般式(II-1)~(II-6)
    Figure JPOXMLDOC01-appb-C000017
    [式(II-1)~(II-6)中、R23~R28は、前記式(II-1)と同じである。式(II-1)中、R31~R34、Y、及びY10は、前記式(II-1)と同じであり、式(II-2)~(II-6)中、R35~R42は、前記式(II-2)と同じであり、式(II-3)~(II-6)中、X、及びXは、前記式(II-3)と同じである。]のいずれかで表される化合物からなる群より選択される1種又は2種以上の化合物を含有する、請求項5に記載の樹脂組成物。
    The following general formulas (II 3 -1) to (II 3 -6)
    Figure JPOXMLDOC01-appb-C000015
    [In the formula (II 3 -1),
    R 23 , R 24 , R 25 , and R 26 each independently represent a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    R 27 and R 28 each independently represent a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    R 29 and R 30 each independently represent a hydrogen atom or an electron withdrawing group;
    Y 9 and Y 10 each independently represent a sulfur atom, an oxygen atom, a nitrogen atom, or a phosphorus atom;
    R 31 and R 32 are
    (P4) represents each independently a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (p5) R 31 and R 32 are both Forming an optionally substituted aromatic five-membered ring or an optionally substituted aromatic six-membered ring;
    R 33 and R 34 are
    (Q4) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (q5) R 33 and R 34 are both An aromatic 5-membered ring which may have a substituent or an aromatic 6-membered ring which may have a substituent is formed. ]
    Figure JPOXMLDOC01-appb-C000016
    [In the formulas (II 3 -2) to (II 3 -6), R 23 to R 30 are the same as those in the formula (II 3 -1);
    X 1 and X 2 each independently represent a nitrogen atom or a phosphorus atom;
    R 35 , R 36 , R 37 , and R 38 are
    (P6) independently of each other, represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
    (P7) R 35 and R 36 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 37 and R 38 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
    (P8) R 36 and R 37 together form an optionally substituted aromatic 5-membered ring or optionally substituted aromatic 6-membered ring, and R 35 and R 38 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (p9) R 37 and R 38 together represent a substituent. An aromatic 5-membered ring which may have or an aromatic 6-membered ring which may have a substituent, and R 35 and R 36 are each independently a hydrogen atom, halogen atom, C 1- 20 represents an alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group;
    R 39 , R 40 , R 41 , and R 42 are
    (Q6) each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
    (Q7) R 39 and R 40 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring, and R 41 and R 42 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group,
    (Q8) R 40 and R 41 together form an optionally substituted aromatic 5-membered ring or an optionally substituted aromatic 6-membered ring, and R 39 and R 42 are Each independently represents a hydrogen atom, a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group, or (q9) R 41 and R 42 both represent a substituent. An aromatic 5-membered ring which may have or an aromatic 6-membered ring which may have a substituent, and R 39 and R 40 are each independently a hydrogen atom, halogen atom, C 1- 20 represents an alkyl group, a C 1-20 alkoxy group, an aryl group, or a heteroaryl group. And the following general formulas (II 4 -1) to (II 4 -6)
    Figure JPOXMLDOC01-appb-C000017
    [In the formulas (II 4 -1) to (II 4 -6), R 23 to R 28 are the same as those in the formula (II 3 -1). In the formula (II 4 -1), R 31 to R 34 , Y 9 and Y 10 are the same as those in the formula (II 3 -1), and the formulas (II 4 -2) to (II 4 -6) In the formula, R 35 to R 42 are the same as those in the formula (II 3 -2). In the formulas (II 4 -3) to (II 4 -6), X 1 and X 2 are the same as those in the formula (II 3 -3) is the same as that. ] The resin composition of Claim 5 containing the 1 type, or 2 or more types of compound selected from the group which consists of a compound represented by either.
  11.  前記近赤外蛍光材料が、下記式(I)
    Figure JPOXMLDOC01-appb-C000018
    [式(I)中、
    X’は、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し;
    1は、C1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示すか、或いは、一方のR1は、上記X’とも結合している-O-C(=O)-基を示し、6員環を形成するものであり、且つ他方のR1は、独立してC1-12アルキル基、アリール基、アリールエテニル基、アリールエチニル基、C1-12アルコキシ基、アリールオキシ基又はハロゲン原子を示し;
    2とR3は、一体となって-O-基、-S-基もしくは-N(R8)-基(ここで、R8は水素原子又はC1-12アルキル基を示す)を形成し、且つR4とR5は水素原子基を示すか、或いは、R4とR5は、一体となって-O-基、-S-基、もしくは-N(R8)-基(R8は上記と同義を示す)を形成し、且つR2とR3は水素原子基を示し;
    6とR7は、独立して水素原子基、C1-12アルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し;
    上記アリール基又はヘテロアリール基の置換基は、C1-12アルキル基、モノ(C1-12アルキル)アミノ基、ジ(C1-12アルキル)アミノ基、水酸基及びC1-12アルコキシ基からなる群より選択される1種以上の基を示す。]で表されるアゾ-ホウ素錯体化合物からなり、
     極大吸収波長が650nm以上、かつストークスシフトが50nm以上である、請求項4に記載の樹脂組成物。
    The near-infrared fluorescent material has the following formula (I)
    Figure JPOXMLDOC01-appb-C000018
    [In the formula (I),
    X ′ represents an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
    R 1 represents a C 1-12 alkyl group, an aryl group, an aryl ethenyl group, an aryl ethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom, or one R 1 represents the above X Represents a —O—C (═O) — group bonded to “, and forms a 6-membered ring, and the other R 1 is independently a C 1-12 alkyl group, aryl group, aryl An ethenyl group, an arylethynyl group, a C 1-12 alkoxy group, an aryloxy group or a halogen atom;
    R 2 and R 3 together form an —O— group, —S— group or —N (R 8 ) — group (where R 8 represents a hydrogen atom or a C 1-12 alkyl group). And R 4 and R 5 represent a hydrogen atom group, or R 4 and R 5 together represent an —O— group, —S— group, or —N (R 8 ) — group (R 8 is as defined above), and R 2 and R 3 are hydrogen atom groups;
    R 6 and R 7 independently represent a hydrogen atom group, a C 1-12 alkyl group, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent;
    The substituent of the aryl group or heteroaryl group is selected from a C 1-12 alkyl group, a mono (C 1-12 alkyl) amino group, a di (C 1-12 alkyl) amino group, a hydroxyl group, and a C 1-12 alkoxy group. One or more groups selected from the group consisting of: And an azo-boron complex compound represented by
    The resin composition according to claim 4, wherein the maximum absorption wavelength is 650 nm or more and the Stokes shift is 50 nm or more.
  12.  前記アゾ-ホウ素錯体化合物が、下記式(I1
    Figure JPOXMLDOC01-appb-C000019
    [式(I1)中、Yは置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示し、R1~R7は前記式(I)中のR1~R7と同義を示す。]で表される、請求項11に樹脂組成物。
    The azo-boron complex compound is represented by the following formula (I 1 )
    Figure JPOXMLDOC01-appb-C000019
    [In the formula (I 1 ), Y represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent, and R 1 to R 7 in the formula (I) Are the same as R 1 to R 7 in the formula. ] The resin composition of Claim 11 represented by these.
  13.  前記放射線不透過性物質が硫酸バリウム、酸化ビスマス、次炭酸ビスマス、炭酸カルシウム、水酸化アルミニウム、タングステン、酸化亜鉛、酸化ジルコニウム、ジルコニウム、チタン、白金、次硝酸ビスマス、及びビスマスからなる群より選択される1種以上である、請求項1~12のいずれか一項に記載の樹脂組成物。 The radiopaque material is selected from the group consisting of barium sulfate, bismuth oxide, bismuth subcarbonate, calcium carbonate, aluminum hydroxide, tungsten, zinc oxide, zirconium oxide, zirconium, titanium, platinum, bismuth subnitrate, and bismuth. The resin composition according to any one of claims 1 to 12, wherein the resin composition is at least one selected from the group consisting of:
  14.  前記樹脂が熱可塑性樹脂である、請求項1~13のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein the resin is a thermoplastic resin.
  15.  前記樹脂が、ウレタン系樹脂、オレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、及び塩化ビニル系樹脂からなる群より選択される1種以上である、請求項1~14のいずれか一項に記載の樹脂組成物。 The resin according to any one of claims 1 to 14, wherein the resin is at least one selected from the group consisting of a urethane resin, an olefin resin, a polystyrene resin, a polyester resin, and a vinyl chloride resin. Resin composition.
  16.  医療用材料として用いられる、請求項1~15のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 15, which is used as a medical material.
  17.  請求項1~16のいずれか一項に記載の樹脂組成物を加工して得られる成形体。 A molded product obtained by processing the resin composition according to any one of claims 1 to 16.
  18.  少なくとも一部が、患者の体内で使用される医療用具である、請求項17に記載の成形体。 The molded article according to claim 17, wherein at least a part is a medical device used in a patient's body.
PCT/JP2015/079337 2015-02-18 2015-10-16 Resin composition and molded body WO2016132597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-030083 2015-02-18
JP2015030083 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016132597A1 true WO2016132597A1 (en) 2016-08-25

Family

ID=56692126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079337 WO2016132597A1 (en) 2015-02-18 2015-10-16 Resin composition and molded body

Country Status (1)

Country Link
WO (1) WO2016132597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117073A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion luminescent resin composition, production method for wavelength conversion luminescent resin composition, wavelength conversion member, and light-emitting element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281660A (en) * 1987-05-06 1988-11-18 バイオマトリックス インコーポレーテッド Closure forming composition and its use
WO2007126052A1 (en) * 2006-04-28 2007-11-08 Keio University Fluorescent compound and labeling agent comprising the same
JP2008031190A (en) * 2006-07-26 2008-02-14 Shin Etsu Chem Co Ltd Curable silicone composition containing phosphor for led, and led light-emitting device using the composition
JP2008541987A (en) * 2005-06-07 2008-11-27 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Polymer marker with high radiopacity for use in medical devices
JP2009263614A (en) * 2008-03-30 2009-11-12 Fujifilm Corp Infrared absorptive compound and fine particles comprising the compound
JP2010090313A (en) * 2008-10-09 2010-04-22 Fujifilm Corp Near-infrared-absorbing composition and article having near-infrared-absorbing coating thereon
JP2011162445A (en) * 2010-02-04 2011-08-25 Kochi Univ Azo-boron complex compound and method for producing the same
WO2012073774A1 (en) * 2010-12-02 2012-06-07 国立大学法人高知大学 Medical tool that emits near infrared fluorescence and medical tool position-confirming system
JP2013060399A (en) * 2011-09-14 2013-04-04 Shin-Etsu Chemical Co Ltd Fluorescent compound and fluorescent resin composition
WO2015022977A1 (en) * 2013-08-13 2015-02-19 Dic株式会社 Resin composition and molded article
WO2015056779A1 (en) * 2013-10-17 2015-04-23 Dic株式会社 Resin composition and molded article

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281660A (en) * 1987-05-06 1988-11-18 バイオマトリックス インコーポレーテッド Closure forming composition and its use
JP2008541987A (en) * 2005-06-07 2008-11-27 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Polymer marker with high radiopacity for use in medical devices
WO2007126052A1 (en) * 2006-04-28 2007-11-08 Keio University Fluorescent compound and labeling agent comprising the same
JP2008031190A (en) * 2006-07-26 2008-02-14 Shin Etsu Chem Co Ltd Curable silicone composition containing phosphor for led, and led light-emitting device using the composition
JP2009263614A (en) * 2008-03-30 2009-11-12 Fujifilm Corp Infrared absorptive compound and fine particles comprising the compound
JP2010090313A (en) * 2008-10-09 2010-04-22 Fujifilm Corp Near-infrared-absorbing composition and article having near-infrared-absorbing coating thereon
JP2011162445A (en) * 2010-02-04 2011-08-25 Kochi Univ Azo-boron complex compound and method for producing the same
WO2012073774A1 (en) * 2010-12-02 2012-06-07 国立大学法人高知大学 Medical tool that emits near infrared fluorescence and medical tool position-confirming system
JP2013060399A (en) * 2011-09-14 2013-04-04 Shin-Etsu Chemical Co Ltd Fluorescent compound and fluorescent resin composition
WO2015022977A1 (en) * 2013-08-13 2015-02-19 Dic株式会社 Resin composition and molded article
WO2015056779A1 (en) * 2013-10-17 2015-04-23 Dic株式会社 Resin composition and molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117073A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion luminescent resin composition, production method for wavelength conversion luminescent resin composition, wavelength conversion member, and light-emitting element
CN110114701A (en) * 2016-12-19 2019-08-09 富士胶片株式会社 Wavelength convert photism resin combination and its manufacturing method and wavelength convert component and light-emitting component
JPWO2018117073A1 (en) * 2016-12-19 2019-10-24 富士フイルム株式会社 Light-emitting resin composition for wavelength conversion, method for producing the same, wavelength conversion member, and light-emitting device
US11186769B2 (en) 2016-12-19 2021-11-30 Fujifilm Corporation Wavelength conversion luminescent resin composition, method for producing wavelength conversion luminescent resin composition, wavelength conversion member, and light-emitting element

Similar Documents

Publication Publication Date Title
JP6057486B2 (en) Resin composition, molded article and production method
JP5943530B2 (en) Resin composition and molded body
Chow et al. Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains
Gao et al. Layered double hydroxides-based smart luminescent materials and the tuning of their excited states
US9783554B2 (en) Lanthanide ion complexes and imaging method
WO2016132597A1 (en) Resin composition and molded body
JP6255529B2 (en) Resin composition, method for producing the same, and molded article
KR101718867B1 (en) Biocompatible Fluorescence Nanoparticles and Uses Thereof
WO2022059582A1 (en) Resin composition and molded object
Oliveira et al. An overview on sensing materials depending on the electromagnetic spectra region applied
Singh et al. Tuning intramolecular charge transfer and spin–orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy
WO2023127507A1 (en) Powdered pigment composition, method for producing powdered pigment composition, resin composition, and molded body
WO2023182121A1 (en) Masterbatch, resin composition including same, and method for producing molded object
JP6188209B2 (en) Resin composition and molded body
EP3959290B1 (en) Luminescent material made of a polymer-matrix comprising luminescent organic compound and luminescent metal clusters
JP6188206B2 (en) Thermoplastic resin composition and molded body
Wang et al. Current Development of Lanthanide Complexes for Biomedical Applications
Redhu et al. Photoluminescence tuning of terbium tris-1, 1, 1-trifluoro-5, 5-dimethyl-2, 4-hexanedione complexes: Synthesis, spectroscopic, thermal and electrochemical analyses
CN117164585A (en) Photochemical long afterglow system and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP