WO2016132491A1 - Apparatus for producing lithium hydroxide and method for producing lithium hydroxide - Google Patents

Apparatus for producing lithium hydroxide and method for producing lithium hydroxide Download PDF

Info

Publication number
WO2016132491A1
WO2016132491A1 PCT/JP2015/054484 JP2015054484W WO2016132491A1 WO 2016132491 A1 WO2016132491 A1 WO 2016132491A1 JP 2015054484 W JP2015054484 W JP 2015054484W WO 2016132491 A1 WO2016132491 A1 WO 2016132491A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
anode
lithium hydroxide
cathode
lithium
Prior art date
Application number
PCT/JP2015/054484
Other languages
French (fr)
Japanese (ja)
Inventor
幸紀 阿部
聡 大久保
昂弥 濱井
裕久 上條
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to PCT/JP2015/054484 priority Critical patent/WO2016132491A1/en
Priority to CL2016000357A priority patent/CL2016000357A1/en
Priority to ARP160100433A priority patent/AR103790A1/en
Publication of WO2016132491A1 publication Critical patent/WO2016132491A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/40Purification; Separation by electrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides

Definitions

  • the present invention relates to an apparatus for producing lithium hydroxide and a method for producing lithium hydroxide.
  • Patent Document 1 a solution containing lithium ions such as seawater is accommodated in an anode tank, a solution containing dilute hydrochloric acid is accommodated in a cathode tank, and an electric current is passed between the anode tank and the cathode tank, thereby lithium hydroxide.
  • a method of manufacturing is disclosed.
  • seawater was used as a solution contained in the anode tank. Since seawater contains a substance of an element other than lithium (for example, sodium chloride), cations other than lithium ions such as sodium ions and magnesium ions are generated in the anode tank when electrolyzed. When cations other than lithium ions enter the cathode chamber, compounds other than lithium hydroxide are generated. Therefore, in the conventional method, a special film for selectively allowing only lithium ions to pass through must be provided between the anode tank and the cathode tank so that cations other than lithium ions do not pass through the cathode tank. There was a problem that a cation exchange membrane could not be used.
  • an element other than lithium for example, sodium chloride
  • the present invention has been made in view of these points, and a lithium hydroxide production apparatus and lithium hydroxide production capable of producing lithium hydroxide by electrolysis using a cation exchange membrane. It aims to provide a method.
  • an anode tank containing an anolyte containing lithium chloride a cathode tank containing a catholyte containing lithium hydroxide, an anode plate provided in the anode tank, and the cathode
  • a voltage is provided between a cathode plate provided in a tank, a cation exchange membrane provided between the anode plate and the cathode plate, and selectively passing cations, and the anode plate and the cathode plate.
  • a lithium hydroxide production apparatus having a power source to be applied and a housing portion for housing a part of the catholyte produced in the cathode tank.
  • the lithium hydroxide manufacturing apparatus includes a circulation unit that circulates the catholyte, a measurement unit that measures a current value flowing between the anode plate and the cathode plate, and the current value measured by the measurement unit. And a recovery unit for recovering a part of the catholyte.
  • the lithium hydroxide production apparatus is based on a hydrochloric acid production tank that produces hydrochloric acid by reacting chlorine gas generated in the anode tank with hydrogen, lithium carbonate, and the hydrochloric acid produced in the hydrochloric acid production tank.
  • You may further have a lithium chloride manufacturing tank which manufactures lithium chloride, and an introduction part which introduces the lithium chloride manufactured in the lithium chloride manufacturing tank into the anode tank.
  • the surface of the anode plate may be covered with a platinum group oxide.
  • a step of introducing an anolyte containing lithium chloride into the anode vessel, a step of introducing pure water into the cathode vessel, an anode plate provided in the anode vessel, and the cathode vessel Provided is a method for producing lithium hydroxide, which comprises a step of applying a voltage between the cathode plate provided and a step of recovering a part of the catholyte containing lithium hydroxide generated in the cathode tank.
  • the method for producing lithium hydroxide includes a step of circulating the catholyte and a step of measuring a current value flowing between the anode plate and the cathode plate, and in the step of collecting, A portion of the catholyte may be recovered based on the current value. In the recovering step, recovery of a part of the catholyte may be started on the condition that the current value is larger than a predetermined value.
  • the method for producing lithium hydroxide includes a step of producing hydrochloric acid by reacting a chlorine gas generated in the anode tank with hydrogen, a step of producing the lithium chloride based on lithium carbonate and the hydrochloric acid, In the step of introducing the anolyte into the anode tank, the lithium chloride produced in the step of producing lithium chloride may be introduced into the anode tank.
  • the method for producing lithium hydroxide has a step of measuring a current value flowing between the anode plate and the cathode plate, and in the step of introducing the anolyte containing lithium chloride into an anode tank, the current An amount of the lithium chloride determined based on the value may be introduced into the anode tank.
  • lithium hydroxide can be produced by electrolysis using a cation exchange membrane.
  • FIG. 1 is a diagram illustrating a configuration of a lithium hydroxide production apparatus 100.
  • the lithium hydroxide production apparatus 100 includes an electrolysis apparatus 1, a hydrochloric acid production tank 2, a lithium chloride production tank 3, a pure water tank 4, a lithium hydroxide concentration tank 5, a control unit 6, a pump 7, and a pump. 8, a pump 9, and a pump 10.
  • the electrolyzer 1 generates lithium hydroxide (LiOH) by electrolyzing a lithium chloride (LiCl) solution used as an anolyte.
  • the electrolysis apparatus 1 includes an anode tank 11, a cathode tank 12, an anode plate 13, a cathode plate 14, a cation exchange membrane 15, a circulation unit 16, a circulation unit 17, a rectifier 18, and a measurement unit 19. And having. Details of the electrolysis apparatus 1 will be described later.
  • the hydrochloric acid production tank 2 is a tank for producing hydrogen chloride (HCl).
  • hydrogen chloride is produced as shown in the following chemical reaction formula (1) by reacting hydrogen (H 2 ) with chlorine (Cl 2 ) generated in the electrolysis apparatus 1.
  • the Chemical reaction formula (1) H 2 + Cl 2 ⁇ 2HCl
  • the lithium chloride production tank 3 is a tank for producing lithium chloride, and functions as an anolyte receiving tank (electrolysis start liquid tank).
  • lithium chloride is produced by removing impurities such as Na, K and Mg from the brine.
  • lithium chloride is produced as shown in the following chemical reaction formula (2) by reacting lithium carbonate (Li 2 CO 3 ) with hydrogen chloride produced in the hydrochloric acid production tank 2. May be.
  • Chemical reaction formula (2) Li 2 CO 3 + HCl ⁇ 2LiCl + CO 2 + H 2 O
  • the pure water tank 4 is a tank for containing pure water.
  • the pure water stored in the pure water tank 4 is introduced into the cathode tank 12 and becomes a part of the catholyte when the catholyte is reduced.
  • the lithium hydroxide concentration tank 5 is a tank for storing and concentrating lithium hydroxide generated in the electrolysis apparatus 1 and functions as a storage portion (catholyte receiving tank). As will be described later, when lithium hydroxide is generated in the electrolysis apparatus 1, the generated lithium hydroxide is in a lithium hydroxide concentration tank 5 when a predetermined condition (an example of the condition will be described later) is satisfied. Moved to. In the lithium hydroxide concentration tank 5, lithium hydroxide is precipitated in the region of solubility or higher, and the precipitated lithium hydroxide is dried to produce lithium hydroxide hydrate (LiOH ⁇ H 2 O). .
  • the control unit 6 is a computer that controls the lithium hydroxide production process in the lithium hydroxide production apparatus 100.
  • the control unit 6 functions as an introduction unit that introduces the lithium chloride produced in the lithium chloride production tank 3 into the anode tank 11.
  • the control unit 6 also functions as an introduction unit that introduces pure water accommodated in the pure water tank 4 into the cathode tank 12.
  • the control unit 6 also functions as a recovery unit that recovers a part of the catholyte produced in the cathode tank 12 and moves it to the lithium hydroxide concentration tank 5.
  • the pump 7 collects chlorine generated in the anode tank 11 based on the control of the control unit 6 and introduces it into the hydrochloric acid production tank 2.
  • the pump 8 introduces the lithium chloride produced in the lithium chloride production tank 3 into the anode tank 11 based on the control of the control unit 6.
  • the pump 9 introduces pure water stored in the pure water tank 4 into the cathode tank 12 based on the control of the control unit 6.
  • the pump 10 moves a part of the solution containing lithium hydroxide generated in the cathode tank 12 to the lithium hydroxide concentration tank 5 based on the control of the control unit 6.
  • the anode tank 11 accommodates an anolyte containing lithium chloride.
  • the anode tank 11 accommodates, for example, a lithium chloride solution introduced from the lithium chloride production tank 3.
  • lithium chloride is electrolyzed into Li + and Cl ⁇ as shown in the following chemical reaction formula (3).
  • Li + moves to the cathode chamber 12 through the cation exchange membrane 15, and Cl ⁇ becomes chlorine (Cl 2 ).
  • Chlorine is recovered using, for example, an acid-resistant suction pump and introduced into the hydrochloric acid production tank 2.
  • the cathode chamber 12 contains a catholyte containing lithium hydroxide.
  • pure water (H 2 O) introduced from the pure water tank 4 is electrolyzed into H + and OH ⁇ .
  • OH ⁇ generated by electrolysis is combined with Li + that has passed through the cation exchange membrane 15, lithium hydroxide is generated as shown in the following chemical reaction formula (4).
  • the anode plate 13 is provided in the anode tank 11 and is an electrode to which a positive voltage is applied.
  • the anode plate 13 is made of a titanium plate, and the surface of the titanium plate is covered with a platinum group oxide.
  • a platinum group oxide When the surface of the anode plate 13 is covered with a platinum group oxide, corrosion by the anolyte is difficult to proceed and the concentration of the anolyte can be increased, so that the efficiency of electrolysis is improved.
  • a large number of fine holes are formed on the surface of the anode plate 13. By forming fine holes on the surface of the anode plate 13, the efficiency of electrolysis can be further improved.
  • a DSE (Dimensional-Stable-Electrode) electrode is suitable.
  • the cathode plate 14 is an electrode that is provided in the cathode chamber 12 and to which a negative voltage lower than the positive voltage applied to the anode plate 13 is applied.
  • the cathode plate 14 is made of a stainless plate and has high durability against alkali. Fine holes are formed on the surface of the cathode plate 14. By forming fine holes in the surface of the cathode plate 14, the efficiency of electrolysis can be improved.
  • the cation exchange membrane 15 is a cation exchange membrane that allows a monovalent cation contained in the anolyte in the anode tank 11 to selectively pass to the cathode tank 12, and is a sulfonic acid group, a carboxylic acid group, or a phosphonic acid group. , A sulfate ester group, and a phosphate ester group.
  • the cation exchange membrane 15 is provided between the anode plate 13 and the cathode plate 14.
  • the cation exchange membrane 15 allows lithium ions (Li + ) generated by electrolyzing lithium chloride, which is an anolyte, to pass through the cathode chamber 12 and does not allow chlorine ions (Cl ⁇ ) to pass through the cathode chamber 12. .
  • the circulation unit 16 is provided in the anode tank 11 and includes a pump for circulating the anolyte in order to make the concentration of the anolyte uniform.
  • the circulation unit 17 is provided in the cathode tank 12 and includes a pump for circulating the catholyte in order to make the concentration of the catholyte uniform.
  • the circulation part 16 and the circulation part 17 change the intensity
  • the circulation unit 16 and the circulation unit 17 electrolyze lithium chloride while circulating the anolyte and the catholyte, and collect a part of the catholyte in the lithium hydroxide concentration tank 5 to thereby obtain a difference in concentration between the anolyte and the catholyte Is maintained within a predetermined range.
  • the rectifier 18 is constituted by a power source that applies a positive voltage to the anode plate 13 and a negative voltage to the cathode plate 14.
  • a power source that applies a positive voltage to the anode plate 13 and a negative voltage to the cathode plate 14.
  • the concentration of the anolyte can be increased. Therefore, the rectifier 18 applies a relatively low voltage of 2.5 V to 3.5 V to the anode plate 13 and the cathode plate. 14 is applied.
  • the measuring unit 19 measures the value of current flowing between the anode plate 13 and the cathode plate 14.
  • the current value measured by the measuring unit 19 has a correlation with the amount of lithium hydroxide generated per unit time. Therefore, in the lithium hydroxide manufacturing apparatus 100, the amount of lithium hydroxide recovered generated in the cathode chamber 12 is determined according to the current value measured by the measuring unit 19.
  • the measurement unit 19 is connected to the control unit 6, and the control unit 6 moves a part of the catholyte in the cathode chamber 12 to the lithium hydroxide concentration tank 5 according to the current value measured by the measurement unit 19.
  • the recovery amount of lithium chloride is adjusted.
  • the control unit 6 moves a part of the catholyte to the lithium hydroxide concentration tank 5 on the condition that the current value measured by the measurement unit 19 is larger than a predetermined value.
  • the control unit 6 controls the pump 9 that moves pure water from the pure water tank 4 to the cathode tank 12 in response to the amount of the catholyte being less than a predetermined amount, whereby the cathode in the cathode tank 12 is controlled. Maintain the amount of liquid within a certain range.
  • control unit 6 controls the pump 8 that moves lithium chloride from the lithium chloride production tank 3 to the anode tank 11 in accordance with the current value measured by the measurement unit 19.
  • the control unit 6 moves the lithium chloride from the lithium chloride production tank 3 to the anode tank 11 because the concentration of the anolyte is considered insufficient.
  • FIG. 2 is a flowchart for explaining a method for producing lithium hydroxide in the lithium hydroxide production apparatus 100.
  • hydrochloric acid is produced in the hydrochloric acid production tank 2, and the produced hydrochloric acid is introduced into the lithium chloride production tank 3 (S11).
  • S11 instead of hydrochloric acid produced in the hydrochloric acid production tank 2, hydrochloric acid obtained from an external device may be introduced into the lithium chloride production tank 3.
  • hydrochloric acid may be produced by introducing chlorine recovered in the anode tank 11 into the hydrochloric acid production tank 2.
  • lithium chloride is produced in the lithium chloride production tank 3, and the produced lithium chloride is introduced into the anode tank 11 (S12).
  • concentration of impurities contained in the lithium chloride introduced into the anode tank 11 is preferably 150 ppb or less.
  • lithium chloride obtained from an external device may be introduced into the anode tank 11 instead of lithium chloride produced in the lithium chloride production tank 3.
  • pure water stored in the pure water tank 4 is introduced into the cathode tank 12 (S13). S13 may be executed before S11 or S12.
  • lithium chloride as the anolyte is accommodated in the anode tank 11 and pure water as the catholyte is accommodated in the cathode tank 12, and then a voltage is applied between the anode plate 13 and the cathode plate 14 ( S14). While performing the process of S14, the circulation part 16 and the circulation part 17 are operated, and an anolyte and a catholyte are circulated (S15).
  • the value of the current flowing between the anode plate 13 and the cathode plate 14 is measured (S16).
  • the current value measured in S16 exceeds the predetermined first threshold value, it is determined that lithium hydroxide has been generated in the cathode chamber 12, and the pump 10 is controlled so that one of the catholyte containing lithium hydroxide is obtained.
  • Part collection is started (S18).
  • the current value is less than the second threshold value, which is smaller than the first threshold value, it is determined that the concentration of the anolyte has decreased, and the lithium chloride solution is newly introduced into the anode tank 11 by controlling the pump 8. May be.
  • lithium hydroxide production apparatus 100 As described above, by using the lithium hydroxide production apparatus 100, as shown in the following chemical reaction formula (5), lithium chloride introduced into the anode tank 11 and pure water introduced into the cathode tank 12 are used. Thus, lithium hydroxide can be produced.
  • the lithium hydroxide production apparatus 100 is provided in the anode tank 11 that contains the anolyte containing lithium chloride, the cathode tank 12 that contains the catholyte containing lithium hydroxide, and the anode tank 11.
  • lithium hydroxide production apparatus 100 has such a configuration, lithium hydroxide can be produced using a simple membrane called the cation exchange membrane 15 that selectively allows cations to pass therethrough.
  • the lithium hydroxide manufacturing apparatus 100 includes a circulation unit 17 that circulates the catholyte, and a measurement unit 19 that measures a current value flowing between the anode plate 13 and the cathode plate 14. 6 starts recovery of a part of the catholyte based on the current value measured by the measuring unit 19. By doing in this way, the lithium hydroxide manufacturing apparatus 100 can collect
  • the surface of the anode plate 13 is covered with the platinum group oxide, so that the anode plate 13 is corroded even when the anode tank 11 contains a high concentration of lithium chloride. Difficult to progress. Therefore, high concentration lithium chloride can be used in the lithium hydroxide production apparatus 100, so that lithium hydroxide can be produced efficiently by applying a relatively low voltage at room temperature.
  • the lithium hydroxide production apparatus 100 is based on a hydrochloric acid production tank 2 that produces hydrochloric acid by reacting chlorine gas generated in the anode tank 11 with hydrogen, and lithium carbonate and hydrochloric acid produced in the hydrochloric acid production tank 2.
  • a lithium chloride production tank 3 for producing lithium chloride, and the lithium chloride produced in the lithium chloride production tank 3 is used as the anolyte.
  • Lithium hydroxide was manufactured using the lithium hydroxide manufacturing apparatus 100.
  • 3 L of a 13.97 g / L lithium chloride solution was introduced into the anode tank 11.
  • 3 L of a lithium hydroxide solution having a concentration of 14.53 g / L was introduced into the cathode cell 12 as the catholyte.
  • a cation exchange membrane 15 (F6801 manufactured by Asahi Kasei Co., Ltd.) is installed near the center of the 10 cm ⁇ 10 cm ⁇ 20 cm electrolysis apparatus 1, a DSE electrode is installed as the anode plate 13, and a stainless steel electrode is used as the cathode plate 14. installed.
  • electrolysis was started by connecting the anode plate 13 and the cathode plate 14 to the rectifier 18 and flowing current.
  • the voltage output from the rectifier 18 was set to 3.5 V, and the current density was 156.25 A / m 2 .
  • the anolyte and the catholyte were circulated using a pump.
  • the temperature was set at about 25 ° C.
  • lithium hydroxide was produced for 10 days.
  • the energization amount during this period was 231.275 Ah.
  • an electric energy of 3.86 Ah (theoretical value) is required.

Abstract

This apparatus 100 for producing lithium hydroxide comprises: a positive electrode tank 11 which contains a positive electrode solution containing lithium chloride; a negative electrode tank 12 which contains a negative electrode solution containing lithium hydroxide; a positive electrode plate 13 which is provided in the positive electrode tank 11; a negative electrode plate 14 which is provided in the negative electrode tank 12; a positive ion exchange membrane 15 which is provided between the positive electrode plate 13 and the negative electrode plate 14, and which selectively has positive ions pass therethrough; a rectifier 18 which applies a voltage between the positive electrode plate 13 and the negative electrode plate 14; and a lithium hydroxide concentration tank 5 which contains some of the negative electrode solution produced in the negative electrode tank 12.

Description

水酸化リチウム製造装置及び水酸化リチウムの製造方法Lithium hydroxide production apparatus and lithium hydroxide production method
 本発明は、水酸化リチウム製造装置及び水酸化リチウムの製造方法に関する。 The present invention relates to an apparatus for producing lithium hydroxide and a method for producing lithium hydroxide.
 従来、電気分解を行うことにより水酸化リチウムを製造する方法が知られている。特許文献1には、陽極槽に海水などのリチウムイオンを含む溶液を収容し、陰極槽に希塩酸を含む溶液を収容し、陽極槽と陰極槽との間に電流を流すことで、水酸化リチウムを製造する方法が開示されている。 Conventionally, a method for producing lithium hydroxide by electrolysis is known. In Patent Document 1, a solution containing lithium ions such as seawater is accommodated in an anode tank, a solution containing dilute hydrochloric acid is accommodated in a cathode tank, and an electric current is passed between the anode tank and the cathode tank, thereby lithium hydroxide. A method of manufacturing is disclosed.
特開2012-55881号公報JP 2012-55881 A
 従来の方法においては、陽極槽に収容される溶液として海水が使用されていた。海水には、リチウム以外の元素の物質(例えば、塩化ナトリウム)が含有されているので、電気分解をすると、ナトリウムイオン及びマグネシウムイオン等のリチウムイオン以外の陽イオンが陽極槽において発生する。リチウムイオン以外の陽イオンが陰極槽に入ると、水酸化リチウム以外の化合物が生成されてしまう。したがって、従来の方法では、リチウムイオン以外の陽イオンを陰極槽に通過させないように、陽極槽と陰極槽との間に、リチウムイオンだけを選択的に通過させる特殊な膜を設けなければならず、陽イオン交換膜を使用することができないという問題があった。 In the conventional method, seawater was used as a solution contained in the anode tank. Since seawater contains a substance of an element other than lithium (for example, sodium chloride), cations other than lithium ions such as sodium ions and magnesium ions are generated in the anode tank when electrolyzed. When cations other than lithium ions enter the cathode chamber, compounds other than lithium hydroxide are generated. Therefore, in the conventional method, a special film for selectively allowing only lithium ions to pass through must be provided between the anode tank and the cathode tank so that cations other than lithium ions do not pass through the cathode tank. There was a problem that a cation exchange membrane could not be used.
 そこで、本発明はこれらの点に鑑みてなされたものであり、陽イオン交換膜を用いて電気分解をすることにより水酸化リチウムを製造することができる水酸化リチウム製造装置及び水酸化リチウムの製造方法を提供することを目的とする。 Accordingly, the present invention has been made in view of these points, and a lithium hydroxide production apparatus and lithium hydroxide production capable of producing lithium hydroxide by electrolysis using a cation exchange membrane. It aims to provide a method.
 本発明の第1の態様においては、塩化リチウムを含む陽極液を収容する陽極槽と、水酸化リチウムを含む陰極液を収容する陰極槽と、前記陽極槽に設けられた陽極板と、前記陰極槽に設けられた陰極板と、前記陽極板と前記陰極板との間に設けられ、陽イオンを選択的に通過させる陽イオン交換膜と、前記陽極板と前記陰極板との間に電圧を印加する電源と、前記陰極槽において生成された前記陰極液の一部を収容する収容部と、を有する水酸化リチウム製造装置を提供する。 In the first aspect of the present invention, an anode tank containing an anolyte containing lithium chloride, a cathode tank containing a catholyte containing lithium hydroxide, an anode plate provided in the anode tank, and the cathode A voltage is provided between a cathode plate provided in a tank, a cation exchange membrane provided between the anode plate and the cathode plate, and selectively passing cations, and the anode plate and the cathode plate. There is provided a lithium hydroxide production apparatus having a power source to be applied and a housing portion for housing a part of the catholyte produced in the cathode tank.
 上記の水酸化リチウム製造装置は、前記陰極液を循環させる循環部と、前記陽極板と前記陰極板との間を流れる電流値を計測する計測部と、前記計測部が計測した前記電流値に基づいて、前記陰極液の一部を回収する回収部と、をさらに有してもよい。 The lithium hydroxide manufacturing apparatus includes a circulation unit that circulates the catholyte, a measurement unit that measures a current value flowing between the anode plate and the cathode plate, and the current value measured by the measurement unit. And a recovery unit for recovering a part of the catholyte.
 上記の水酸化リチウム製造装置は、前記陽極槽において発生する塩素ガスを水素と反応させることにより塩酸を製造する塩酸製造槽と、炭酸リチウムと前記塩酸製造槽において製造された前記塩酸とに基づいて塩化リチウムを製造する塩化リチウム製造槽と、前記塩化リチウム製造槽において製造された前記塩化リチウムを前記陽極槽に導入する導入部と、をさらに有してもよい。また、前記陽極板の表面が、白金族酸化物により覆われていてもよい。 The lithium hydroxide production apparatus is based on a hydrochloric acid production tank that produces hydrochloric acid by reacting chlorine gas generated in the anode tank with hydrogen, lithium carbonate, and the hydrochloric acid produced in the hydrochloric acid production tank. You may further have a lithium chloride manufacturing tank which manufactures lithium chloride, and an introduction part which introduces the lithium chloride manufactured in the lithium chloride manufacturing tank into the anode tank. The surface of the anode plate may be covered with a platinum group oxide.
 本発明の第2の態様においては、塩化リチウムを含む陽極液を陽極槽に導入する工程と、純水を陰極槽に導入する工程と、前記陽極槽に設けられた陽極板と前記陰極槽に設けられた陰極板との間に電圧を印加する工程と、前記陰極槽において発生する水酸化リチウムを含む陰極液の一部を回収する工程と、を有する水酸化リチウムの製造方法を提供する。 In the second aspect of the present invention, a step of introducing an anolyte containing lithium chloride into the anode vessel, a step of introducing pure water into the cathode vessel, an anode plate provided in the anode vessel, and the cathode vessel Provided is a method for producing lithium hydroxide, which comprises a step of applying a voltage between the cathode plate provided and a step of recovering a part of the catholyte containing lithium hydroxide generated in the cathode tank.
 上記の水酸化リチウムの製造方法は、前記陰極液を循環させる工程と、前記陽極板と前記陰極板との間を流れる電流値を計測する工程と、を有し、前記回収する工程において、前記電流値に基づいて、前記陰極液の一部を回収してもよい。前記回収する工程において、前記電流値が所定の値よりも大きくなったことを条件として、前記陰極液の一部の回収を開始してもよい。 The method for producing lithium hydroxide includes a step of circulating the catholyte and a step of measuring a current value flowing between the anode plate and the cathode plate, and in the step of collecting, A portion of the catholyte may be recovered based on the current value. In the recovering step, recovery of a part of the catholyte may be started on the condition that the current value is larger than a predetermined value.
 上記の水酸化リチウムの製造方法は、前記陽極槽において発生する塩素ガスを水素と反応させることにより塩酸を製造する工程と、炭酸リチウムと前記塩酸とに基づいて前記塩化リチウムを製造する工程と、を有し、前記陽極液を陽極槽に導入する工程において、前記塩化リチウムを製造する工程において製造された前記塩化リチウムを前記陽極槽に導入してもよい。 The method for producing lithium hydroxide includes a step of producing hydrochloric acid by reacting a chlorine gas generated in the anode tank with hydrogen, a step of producing the lithium chloride based on lithium carbonate and the hydrochloric acid, In the step of introducing the anolyte into the anode tank, the lithium chloride produced in the step of producing lithium chloride may be introduced into the anode tank.
 上記の水酸化リチウムの製造方法は、前記陽極板と前記陰極板との間を流れる電流値を計測する工程を有し、前記塩化リチウムを含む陽極液を陽極槽に導入する工程において、前記電流値に基づいて定められる量の前記塩化リチウムを前記陽極槽に導入してもよい。 The method for producing lithium hydroxide has a step of measuring a current value flowing between the anode plate and the cathode plate, and in the step of introducing the anolyte containing lithium chloride into an anode tank, the current An amount of the lithium chloride determined based on the value may be introduced into the anode tank.
 本発明によれば、陽イオン交換膜を用いて電気分解をすることにより水酸化リチウムを製造することができるという効果を奏する。 According to the present invention, lithium hydroxide can be produced by electrolysis using a cation exchange membrane.
水酸化リチウム製造装置100の構成を示す図である。It is a figure which shows the structure of the lithium hydroxide manufacturing apparatus. 水酸化リチウムの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of lithium hydroxide.
[水酸化リチウム製造装置100の構成]
 図1は、水酸化リチウム製造装置100の構成を示す図である。
 水酸化リチウム製造装置100は、電気分解装置1と、塩酸製造槽2と、塩化リチウム製造槽3と、純水槽4と、水酸化リチウム濃縮槽5と、制御部6と、ポンプ7と、ポンプ8と、ポンプ9と、ポンプ10と、を有する。
[Configuration of lithium hydroxide production apparatus 100]
FIG. 1 is a diagram illustrating a configuration of a lithium hydroxide production apparatus 100.
The lithium hydroxide production apparatus 100 includes an electrolysis apparatus 1, a hydrochloric acid production tank 2, a lithium chloride production tank 3, a pure water tank 4, a lithium hydroxide concentration tank 5, a control unit 6, a pump 7, and a pump. 8, a pump 9, and a pump 10.
 電気分解装置1は、陽極液として使用される塩化リチウム(LiCl)溶液を電気分解することにより、水酸化リチウム(LiOH)を生成する。電気分解装置1は、陽極槽11と、陰極槽12と、陽極板13と、陰極板14と、陽イオン交換膜15と、循環部16と、循環部17と、整流器18と、計測部19と、を有する。電気分解装置1の詳細については後述する。 The electrolyzer 1 generates lithium hydroxide (LiOH) by electrolyzing a lithium chloride (LiCl) solution used as an anolyte. The electrolysis apparatus 1 includes an anode tank 11, a cathode tank 12, an anode plate 13, a cathode plate 14, a cation exchange membrane 15, a circulation unit 16, a circulation unit 17, a rectifier 18, and a measurement unit 19. And having. Details of the electrolysis apparatus 1 will be described later.
 塩酸製造槽2は、塩化水素(HCl)を製造するための槽である。塩酸製造槽2においては、水素(H)と、電気分解装置1において発生する塩素(Cl)とを反応させることにより、以下の化学反応式(1)が示すように塩化水素が製造される。
 化学反応式(1):H+Cl→2HCl
The hydrochloric acid production tank 2 is a tank for producing hydrogen chloride (HCl). In the hydrochloric acid production tank 2, hydrogen chloride is produced as shown in the following chemical reaction formula (1) by reacting hydrogen (H 2 ) with chlorine (Cl 2 ) generated in the electrolysis apparatus 1. The
Chemical reaction formula (1): H 2 + Cl 2 → 2HCl
 塩化リチウム製造槽3は、塩化リチウムを製造するための槽であり、陽極液受け槽(電解始液槽)として機能する。塩化リチウム製造槽3においては、かん水からNa、K、Mg等の不純物を除去することにより、塩化リチウムが製造される。塩化リチウム製造槽3においては、炭酸リチウム(LiCO)と塩酸製造槽2において製造された塩化水素とを反応させることにより、以下の化学反応式(2)が示すように塩化リチウムを製造してもよい。
 化学反応式(2):LiCO+HCl→2LiCl+CO+H
The lithium chloride production tank 3 is a tank for producing lithium chloride, and functions as an anolyte receiving tank (electrolysis start liquid tank). In the lithium chloride production tank 3, lithium chloride is produced by removing impurities such as Na, K and Mg from the brine. In the lithium chloride production tank 3, lithium chloride is produced as shown in the following chemical reaction formula (2) by reacting lithium carbonate (Li 2 CO 3 ) with hydrogen chloride produced in the hydrochloric acid production tank 2. May be.
Chemical reaction formula (2): Li 2 CO 3 + HCl → 2LiCl + CO 2 + H 2 O
 純水槽4は、純水を収容するための槽である。純水槽4が収容する純水は、陰極液が減少した場合に陰極槽12に導入されて、陰極液の一部となる。 The pure water tank 4 is a tank for containing pure water. The pure water stored in the pure water tank 4 is introduced into the cathode tank 12 and becomes a part of the catholyte when the catholyte is reduced.
 水酸化リチウム濃縮槽5は、電気分解装置1において生成される水酸化リチウムを収容し、濃縮するための槽であり、収容部(陰極液受け槽)として機能する。後述するように、電気分解装置1において水酸化リチウムが生成されると、生成された水酸化リチウムは、所定の条件(条件の例は後述する)が満たされた場合に水酸化リチウム濃縮槽5へと移動される。水酸化リチウム濃縮槽5においては、水酸化リチウムを溶解度以上の領域で析出させ、析出した水酸化リチウムを乾燥させることにより、水酸化リチウムの水和物(LiOH・HO)が製造される。 The lithium hydroxide concentration tank 5 is a tank for storing and concentrating lithium hydroxide generated in the electrolysis apparatus 1 and functions as a storage portion (catholyte receiving tank). As will be described later, when lithium hydroxide is generated in the electrolysis apparatus 1, the generated lithium hydroxide is in a lithium hydroxide concentration tank 5 when a predetermined condition (an example of the condition will be described later) is satisfied. Moved to. In the lithium hydroxide concentration tank 5, lithium hydroxide is precipitated in the region of solubility or higher, and the precipitated lithium hydroxide is dried to produce lithium hydroxide hydrate (LiOH · H 2 O). .
 制御部6は、水酸化リチウム製造装置100における水酸化リチウムの製造工程を制御するコンピュータである。制御部6は、塩化リチウム製造槽3において製造された塩化リチウムを陽極槽11に導入する導入部として機能する。また、制御部6は、純水槽4に収容された純水を陰極槽12に導入する導入部としても機能する。また、制御部6は、陰極槽12において生成された陰極液の一部を回収して水酸化リチウム濃縮槽5に移動させる回収部としても機能する。 The control unit 6 is a computer that controls the lithium hydroxide production process in the lithium hydroxide production apparatus 100. The control unit 6 functions as an introduction unit that introduces the lithium chloride produced in the lithium chloride production tank 3 into the anode tank 11. The control unit 6 also functions as an introduction unit that introduces pure water accommodated in the pure water tank 4 into the cathode tank 12. The control unit 6 also functions as a recovery unit that recovers a part of the catholyte produced in the cathode tank 12 and moves it to the lithium hydroxide concentration tank 5.
 ポンプ7は、制御部6の制御に基づいて、陽極槽11において発生した塩素を回収し、塩酸製造槽2に導入する。ポンプ8は、制御部6の制御に基づいて、塩化リチウム製造槽3において製造された塩化リチウムを陽極槽11に導入する。ポンプ9は、制御部6の制御に基づいて、純水槽4に収容された純水を陰極槽12に導入する。ポンプ10は、制御部6の制御に基づいて、陰極槽12において生成された水酸化リチウムを含む溶液の一部を水酸化リチウム濃縮槽5に移動させる。 The pump 7 collects chlorine generated in the anode tank 11 based on the control of the control unit 6 and introduces it into the hydrochloric acid production tank 2. The pump 8 introduces the lithium chloride produced in the lithium chloride production tank 3 into the anode tank 11 based on the control of the control unit 6. The pump 9 introduces pure water stored in the pure water tank 4 into the cathode tank 12 based on the control of the control unit 6. The pump 10 moves a part of the solution containing lithium hydroxide generated in the cathode tank 12 to the lithium hydroxide concentration tank 5 based on the control of the control unit 6.
 以下、電気分解装置1の構成について説明する。
 陽極槽11は、塩化リチウムを含む陽極液を収容する。陽極槽11は、例えば塩化リチウム製造槽3から導入された塩化リチウム溶液を収容する。陽極槽11においては、以下の化学反応式(3)が示すように、塩化リチウムがLiとClとに電気分解される。Liは、陽イオン交換膜15を介して陰極槽12へと移動し、Clは、塩素(Cl)となる。塩素は、例えば耐酸性の吸引ポンプを用いて回収され、塩酸製造槽2に導入される。
 化学反応式(3):2LiCl→2Li+Cl
Hereinafter, the configuration of the electrolyzer 1 will be described.
The anode tank 11 accommodates an anolyte containing lithium chloride. The anode tank 11 accommodates, for example, a lithium chloride solution introduced from the lithium chloride production tank 3. In the anode tank 11, lithium chloride is electrolyzed into Li + and Cl − as shown in the following chemical reaction formula (3). Li + moves to the cathode chamber 12 through the cation exchange membrane 15, and Cl becomes chlorine (Cl 2 ). Chlorine is recovered using, for example, an acid-resistant suction pump and introduced into the hydrochloric acid production tank 2.
Chemical reaction formula (3): 2LiCl → 2Li + + Cl 2
 陰極槽12は、水酸化リチウムを含む陰極液を収容する。陰極槽12においては、純水槽4から導入される純水(HO)が、HとOHとに電気分解される。電気分解により生じたOHが、陽イオン交換膜15を通過してきたLiと結びつくことにより、以下の化学反応式(4)が示すように水酸化リチウムが生成される。
 化学反応式(4):2Li+2HO→2LiOH+H
The cathode chamber 12 contains a catholyte containing lithium hydroxide. In the cathode tank 12, pure water (H 2 O) introduced from the pure water tank 4 is electrolyzed into H + and OH . When OH generated by electrolysis is combined with Li + that has passed through the cation exchange membrane 15, lithium hydroxide is generated as shown in the following chemical reaction formula (4).
Chemical reaction formula (4): 2Li + + 2H 2 O → 2LiOH + H 2
 陽極板13は、陽極槽11に設けられており、正電圧が印加される電極である。陽極板13はチタン板により構成されており、チタン板の表面が白金族酸化物により覆われている。陽極板13の表面が白金族酸化物により覆われている場合には、陽極液による腐食が進みにくく、陽極液の濃度を大きくすることができるので、電気分解の効率が向上する。また、陽極板13の表面には、多数の微細な孔が形成されている。陽極板13の表面に微細な孔が形成されていることにより、電気分解の効率をさらに向上させることができる。陽極板13として、例えばDSE(Dimensional Stable Electrode)電極が好適である。 The anode plate 13 is provided in the anode tank 11 and is an electrode to which a positive voltage is applied. The anode plate 13 is made of a titanium plate, and the surface of the titanium plate is covered with a platinum group oxide. When the surface of the anode plate 13 is covered with a platinum group oxide, corrosion by the anolyte is difficult to proceed and the concentration of the anolyte can be increased, so that the efficiency of electrolysis is improved. A large number of fine holes are formed on the surface of the anode plate 13. By forming fine holes on the surface of the anode plate 13, the efficiency of electrolysis can be further improved. As the anode plate 13, for example, a DSE (Dimensional-Stable-Electrode) electrode is suitable.
 陰極板14は、陰極槽12に設けられており、陽極板13に印加される正電圧よりも低い負電圧が印加される電極である。陰極板14は、ステンレス板により構成されており、アルカリに対する耐久性が高い。陰極板14の表面には、微細な孔が形成されている。陰極板14の表面に微細な孔が形成されていることにより、電気分解の効率を向上させることができる。 The cathode plate 14 is an electrode that is provided in the cathode chamber 12 and to which a negative voltage lower than the positive voltage applied to the anode plate 13 is applied. The cathode plate 14 is made of a stainless plate and has high durability against alkali. Fine holes are formed on the surface of the cathode plate 14. By forming fine holes in the surface of the cathode plate 14, the efficiency of electrolysis can be improved.
 陽イオン交換膜15は、陽極槽11内の陽極液に含まれる1価の陽イオンを選択的に陰極槽12へと通過させるカチオン交換膜であり、スルホン酸基、カルボン酸基、ホスホン酸基、硫酸エステル基、及びリン酸エステル基のうちの少なくともいずれか1種類以上を有する高分子から成る膜である。陽イオン交換膜15は、陽極板13と陰極板14との間に設けられている。陽イオン交換膜15は、陽極液である塩化リチウムを電気分解することにより発生したリチウムイオン(Li)を陰極槽12へと通過させ、塩素イオン(Cl)を陰極槽12へと通過させない。 The cation exchange membrane 15 is a cation exchange membrane that allows a monovalent cation contained in the anolyte in the anode tank 11 to selectively pass to the cathode tank 12, and is a sulfonic acid group, a carboxylic acid group, or a phosphonic acid group. , A sulfate ester group, and a phosphate ester group. The cation exchange membrane 15 is provided between the anode plate 13 and the cathode plate 14. The cation exchange membrane 15 allows lithium ions (Li + ) generated by electrolyzing lithium chloride, which is an anolyte, to pass through the cathode chamber 12 and does not allow chlorine ions (Cl ) to pass through the cathode chamber 12. .
 循環部16は、陽極槽11に設けられており、陽極液の濃度を均一にするために陽極液を循環させるポンプを含んでいる。同様に、循環部17は、陰極槽12に設けられており、陰極液の濃度を均一にするために陰極液を循環させるポンプを含んでいる。循環部16及び循環部17は、例えば、制御部6の制御によりポンプの強度を変化させる。循環部16及び循環部17が陽極液及び陰極液を循環させながら塩化リチウムを電気分解し、陰極液の一部を水酸化リチウム濃縮槽5に回収することにより、陽極液及び陰極液の濃度差が所定の範囲内に維持される。このように、陽極液及び陰極液の濃度差が大きくなり過ぎないようにすることで、逆方向の電圧が発生することを防止できるので、電気分解の効率が向上する。 The circulation unit 16 is provided in the anode tank 11 and includes a pump for circulating the anolyte in order to make the concentration of the anolyte uniform. Similarly, the circulation unit 17 is provided in the cathode tank 12 and includes a pump for circulating the catholyte in order to make the concentration of the catholyte uniform. The circulation part 16 and the circulation part 17 change the intensity | strength of a pump by control of the control part 6, for example. The circulation unit 16 and the circulation unit 17 electrolyze lithium chloride while circulating the anolyte and the catholyte, and collect a part of the catholyte in the lithium hydroxide concentration tank 5 to thereby obtain a difference in concentration between the anolyte and the catholyte Is maintained within a predetermined range. Thus, by preventing the concentration difference between the anolyte and the catholyte from becoming too large, it is possible to prevent the occurrence of a reverse voltage, thereby improving the electrolysis efficiency.
 整流器18は、陽極板13に正電圧、陰極板14に負電圧を印加する電源により構成されている。陽極板13の表面が白金族酸化物により覆われている場合、陽極液の濃度を大きくできるので、整流器18は、2.5V~3.5Vの比較的低い電圧を、陽極板13と陰極板14との間に印加する。 The rectifier 18 is constituted by a power source that applies a positive voltage to the anode plate 13 and a negative voltage to the cathode plate 14. When the surface of the anode plate 13 is covered with a platinum group oxide, the concentration of the anolyte can be increased. Therefore, the rectifier 18 applies a relatively low voltage of 2.5 V to 3.5 V to the anode plate 13 and the cathode plate. 14 is applied.
 計測部19は、陽極板13と陰極板14との間を流れる電流値を計測する。計測部19が計測する電流値は、単位時間当たりの水酸化リチウムの生成量と相関関係がある。そこで、水酸化リチウム製造装置100においては、計測部19が計測した電流値に応じて、陰極槽12に生成される水酸化リチウムの回収量を決定する。 The measuring unit 19 measures the value of current flowing between the anode plate 13 and the cathode plate 14. The current value measured by the measuring unit 19 has a correlation with the amount of lithium hydroxide generated per unit time. Therefore, in the lithium hydroxide manufacturing apparatus 100, the amount of lithium hydroxide recovered generated in the cathode chamber 12 is determined according to the current value measured by the measuring unit 19.
 計測部19は、制御部6に接続されており、制御部6は、計測部19が計測した電流値に応じて、陰極槽12内の陰極液の一部を水酸化リチウム濃縮槽5に移動させるポンプ10を制御することにより、塩化リチウムの回収量を調整する。例えば、制御部6は、計測部19が計測した電流値が所定の値よりも大きくなったことを条件として、陰極液の一部を水酸化リチウム濃縮槽5に移動させる。また、制御部6は、陰極液が所定の量よりも少なくなったことに応じて、純水槽4から純水を陰極槽12に移動させるポンプ9を制御することにより、陰極槽12内の陰極液の量を一定の範囲内に維持する。 The measurement unit 19 is connected to the control unit 6, and the control unit 6 moves a part of the catholyte in the cathode chamber 12 to the lithium hydroxide concentration tank 5 according to the current value measured by the measurement unit 19. By controlling the pump 10 to be adjusted, the recovery amount of lithium chloride is adjusted. For example, the control unit 6 moves a part of the catholyte to the lithium hydroxide concentration tank 5 on the condition that the current value measured by the measurement unit 19 is larger than a predetermined value. Further, the control unit 6 controls the pump 9 that moves pure water from the pure water tank 4 to the cathode tank 12 in response to the amount of the catholyte being less than a predetermined amount, whereby the cathode in the cathode tank 12 is controlled. Maintain the amount of liquid within a certain range.
 また、制御部6は、計測部19が計測した電流値に応じて、塩化リチウム製造槽3から陽極槽11へと塩化リチウムを移動させるポンプ8を制御する。制御部6は、電流値が所定の閾値よりも小さくなった場合は、陽極液の濃度が不十分であると考えられるので、塩化リチウム製造槽3から陽極槽11へと塩化リチウムを移動させる。 Further, the control unit 6 controls the pump 8 that moves lithium chloride from the lithium chloride production tank 3 to the anode tank 11 in accordance with the current value measured by the measurement unit 19. When the current value becomes smaller than the predetermined threshold value, the control unit 6 moves the lithium chloride from the lithium chloride production tank 3 to the anode tank 11 because the concentration of the anolyte is considered insufficient.
[水酸化リチウムの製造方法]
 図2は、水酸化リチウム製造装置100における水酸化リチウムの製造方法を説明するためのフローチャートである。
[Production method of lithium hydroxide]
FIG. 2 is a flowchart for explaining a method for producing lithium hydroxide in the lithium hydroxide production apparatus 100.
 まず、塩酸製造槽2において塩酸を製造して、製造した塩酸を塩化リチウム製造槽3に導入する(S11)。S11においては、塩酸製造槽2で製造した塩酸の代わりに、外部装置から取得した塩酸を塩化リチウム製造槽3に導入してもよい。また、S11においては、陽極槽11において回収される塩素を塩酸製造槽2に導入することにより塩酸を製造してもよい。 First, hydrochloric acid is produced in the hydrochloric acid production tank 2, and the produced hydrochloric acid is introduced into the lithium chloride production tank 3 (S11). In S11, instead of hydrochloric acid produced in the hydrochloric acid production tank 2, hydrochloric acid obtained from an external device may be introduced into the lithium chloride production tank 3. In S11, hydrochloric acid may be produced by introducing chlorine recovered in the anode tank 11 into the hydrochloric acid production tank 2.
 続いて、塩化リチウム製造槽3において塩化リチウムを製造して、製造した塩化リチウムを陽極槽11に導入する(S12)。陽極槽11に導入する塩化リチウムに含まれる不純物の濃度は、150ppb以下であることが好ましい。 Subsequently, lithium chloride is produced in the lithium chloride production tank 3, and the produced lithium chloride is introduced into the anode tank 11 (S12). The concentration of impurities contained in the lithium chloride introduced into the anode tank 11 is preferably 150 ppb or less.
 S12においては、塩化リチウム製造槽3で製造した塩化リチウムの代わりに、外部装置から取得した塩化リチウムを陽極槽11に導入してもよい。続いて、純水槽4に収容された純水を陰極槽12に導入する(S13)。S13は、S11又はS12の前に実行してもよい。 In S12, lithium chloride obtained from an external device may be introduced into the anode tank 11 instead of lithium chloride produced in the lithium chloride production tank 3. Subsequently, pure water stored in the pure water tank 4 is introduced into the cathode tank 12 (S13). S13 may be executed before S11 or S12.
 以上の工程により、陽極液としての塩化リチウムを陽極槽11に収容し、陰極液としての純水を陰極槽12に収容した後に、陽極板13と陰極板14との間に電圧を印加する(S14)。S14の工程を実行する間、循環部16及び循環部17を動作させて、陽極液及び陰極液を循環させる(S15)。 Through the above steps, lithium chloride as the anolyte is accommodated in the anode tank 11 and pure water as the catholyte is accommodated in the cathode tank 12, and then a voltage is applied between the anode plate 13 and the cathode plate 14 ( S14). While performing the process of S14, the circulation part 16 and the circulation part 17 are operated, and an anolyte and a catholyte are circulated (S15).
 また、S14の工程を実行する間、陽極板13と陰極板14との間を流れる電流の値を計測する(S16)。S16において計測した電流値が所定の第1閾値を超えた場合、陰極槽12に水酸化リチウムが生成されたと判断して、ポンプ10を制御することにより、水酸化リチウムが含まれる陰極液の一部の回収を開始する(S18)。電流値が第1閾値よりも小さい第2閾値未満になった場合に、陽極液の濃度が低下したと判断して、ポンプ8を制御することにより、陽極槽11に塩化リチウム溶液を新たに導入してもよい。水酸化リチウムの製造を終了するまで(S19)、S11からS18までの工程を繰り返すことにより、水酸化リチウム製造装置100を用いて、水酸化リチウムを継続的に製造することができる。 Further, during the process of S14, the value of the current flowing between the anode plate 13 and the cathode plate 14 is measured (S16). When the current value measured in S16 exceeds the predetermined first threshold value, it is determined that lithium hydroxide has been generated in the cathode chamber 12, and the pump 10 is controlled so that one of the catholyte containing lithium hydroxide is obtained. Part collection is started (S18). When the current value is less than the second threshold value, which is smaller than the first threshold value, it is determined that the concentration of the anolyte has decreased, and the lithium chloride solution is newly introduced into the anode tank 11 by controlling the pump 8. May be. By repeating the steps S11 to S18 until the production of lithium hydroxide is completed (S19), lithium hydroxide can be continuously produced using the lithium hydroxide production apparatus 100.
 以上のように、水酸化リチウム製造装置100を用いることにより、以下の化学反応式(5)が示すように、陽極槽11に導入された塩化リチウムと陰極槽12に導入された純水を用いて、水酸化リチウムを製造することができる。
 化学反応式(5):2LiCl+2HO→2LiOH+H+Cl
As described above, by using the lithium hydroxide production apparatus 100, as shown in the following chemical reaction formula (5), lithium chloride introduced into the anode tank 11 and pure water introduced into the cathode tank 12 are used. Thus, lithium hydroxide can be produced.
Chemical reaction formula (5): 2LiCl + 2H 2 O → 2LiOH + H 2 + Cl 2
 以上説明したように、水酸化リチウム製造装置100は、塩化リチウムを含む陽極液を収容する陽極槽11と、水酸化リチウムを含む陰極液を収容する陰極槽12と、陽極槽11に設けられた陽極板13と、陰極槽12に設けられた陰極板14と、陽極板13と陰極板14との間に設けられ、陽イオンを選択的に通過させる陽イオン交換膜15と、を有する。水酸化リチウム製造装置100がこのような構成を有することにより、陽イオンを選択的に通過させる陽イオン交換膜15という簡易な膜を用いて水酸化リチウムを製造することができる。 As described above, the lithium hydroxide production apparatus 100 is provided in the anode tank 11 that contains the anolyte containing lithium chloride, the cathode tank 12 that contains the catholyte containing lithium hydroxide, and the anode tank 11. An anode plate 13, a cathode plate 14 provided in the cathode chamber 12, and a cation exchange membrane 15 provided between the anode plate 13 and the cathode plate 14 and selectively allowing cations to pass therethrough. When the lithium hydroxide production apparatus 100 has such a configuration, lithium hydroxide can be produced using a simple membrane called the cation exchange membrane 15 that selectively allows cations to pass therethrough.
 また、水酸化リチウム製造装置100は、陰極液を循環させる循環部17と、陽極板13と陰極板14との間を流れる電流値を計測する計測部19と、を有しており、制御部6は、計測部19が計測した電流値に基づいて陰極液の一部の回収を開始する。このようにすることで、水酸化リチウム製造装置100は、水酸化リチウムの生成量に応じて、適量の水酸化リチウムを回収することができる。 Further, the lithium hydroxide manufacturing apparatus 100 includes a circulation unit 17 that circulates the catholyte, and a measurement unit 19 that measures a current value flowing between the anode plate 13 and the cathode plate 14. 6 starts recovery of a part of the catholyte based on the current value measured by the measuring unit 19. By doing in this way, the lithium hydroxide manufacturing apparatus 100 can collect | recover an appropriate amount of lithium hydroxide according to the production amount of lithium hydroxide.
 また、水酸化リチウム製造装置100においては、陽極板13の表面が、白金族酸化物により覆われているので、陽極槽11に高濃度の塩化リチウムが収容された状態でも陽極板13の腐食が進行しにくい。したがって、水酸化リチウム製造装置100においては高濃度の塩化リチウムを用いることができるので、常温下で比較的低い電圧を印加することにより、効率的に水酸化リチウムを製造することができる。 Further, in the lithium hydroxide production apparatus 100, the surface of the anode plate 13 is covered with the platinum group oxide, so that the anode plate 13 is corroded even when the anode tank 11 contains a high concentration of lithium chloride. Difficult to progress. Therefore, high concentration lithium chloride can be used in the lithium hydroxide production apparatus 100, so that lithium hydroxide can be produced efficiently by applying a relatively low voltage at room temperature.
 さらに、水酸化リチウム製造装置100は、陽極槽11において発生する塩素ガスを水素と反応させることにより塩酸を製造する塩酸製造槽2と、炭酸リチウムと塩酸製造槽2において製造された塩酸とに基づいて塩化リチウムを製造する塩化リチウム製造槽3と、を備え、塩化リチウム製造槽3において製造された塩化リチウムを陽極液として用いる。このようにすることで、陽極槽11において発生する塩素ガスを有効活用することができるので、水酸化リチウムの製造コストを低減することができる。 Further, the lithium hydroxide production apparatus 100 is based on a hydrochloric acid production tank 2 that produces hydrochloric acid by reacting chlorine gas generated in the anode tank 11 with hydrogen, and lithium carbonate and hydrochloric acid produced in the hydrochloric acid production tank 2. A lithium chloride production tank 3 for producing lithium chloride, and the lithium chloride produced in the lithium chloride production tank 3 is used as the anolyte. By doing in this way, since the chlorine gas generate | occur | produced in the anode tank 11 can be used effectively, the manufacturing cost of lithium hydroxide can be reduced.
[実験例]
 水酸化リチウム製造装置100を用いて、水酸化リチウムを製造した。陽極液として、13.97g/Lの塩化リチウム溶液3Lを陽極槽11に導入した。また、陰極液として、濃度14.53g/Lの水酸化リチウム溶液3Lを陰極槽12に導入した。
[Experimental example]
Lithium hydroxide was manufactured using the lithium hydroxide manufacturing apparatus 100. As an anolyte, 3 L of a 13.97 g / L lithium chloride solution was introduced into the anode tank 11. Further, 3 L of a lithium hydroxide solution having a concentration of 14.53 g / L was introduced into the cathode cell 12 as the catholyte.
 続いて、10cm×10cm×20cmの電気分解装置1の中央付近に陽イオン交換膜15(旭化成株式会社製F6801)を設置し、陽極板13としてDSE電極を設置し、陰極板14としてステンレス電極を設置した。電極の有効面積は、0.08m×0.08=0.0064m、陽イオン交換膜15の有効面積は、0.1m×0.1m=0.01mであった。 Subsequently, a cation exchange membrane 15 (F6801 manufactured by Asahi Kasei Co., Ltd.) is installed near the center of the 10 cm × 10 cm × 20 cm electrolysis apparatus 1, a DSE electrode is installed as the anode plate 13, and a stainless steel electrode is used as the cathode plate 14. installed. The effective area of the electrode was 0.08 m × 0.08 = 0.004 m 2 , and the effective area of the cation exchange membrane 15 was 0.1 m × 0.1 m = 0.01 m 2 .
 続いて、陽極板13及び陰極板14を整流器18に接続して電流を流すことにより、電気分解を開始した。整流器18が出力する電圧は3.5Vに設定し、電流密度は156.25A/mであった。この間、ポンプを用いて、陽極液及び陰極液を循環させた。温度は、約25℃に設定した。 Subsequently, electrolysis was started by connecting the anode plate 13 and the cathode plate 14 to the rectifier 18 and flowing current. The voltage output from the rectifier 18 was set to 3.5 V, and the current density was 156.25 A / m 2 . During this time, the anolyte and the catholyte were circulated using a pump. The temperature was set at about 25 ° C.
 以上の条件により、10日間にわたって水酸化リチウムを製造した。この間の通電量は、231.275Ahであった。電気分解でリチウムを1g製造するためには、3.86Ah(理論値)の電力量が必要である。水酸化リチウムの分子量は、リチウムの分子量の6.07倍であることから、水酸化リチウム1gを作るのに必要な電力量は、3.86÷6.0=0.64Ahである。したがって、上記の実験においては、231.275Ah÷0.64Ah=361.37gの水酸化リチウムを製造することができたと推定される。 Under the above conditions, lithium hydroxide was produced for 10 days. The energization amount during this period was 231.275 Ah. In order to produce 1 g of lithium by electrolysis, an electric energy of 3.86 Ah (theoretical value) is required. Since the molecular weight of lithium hydroxide is 6.07 times the molecular weight of lithium, the amount of power required to make 1 g of lithium hydroxide is 3.86 ÷ 6.0 = 0.64 Ah. Therefore, in the above experiment, it is estimated that 231.275 Ah ÷ 0.64 Ah = 361.37 g of lithium hydroxide could be produced.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
1 電気分解装置
2 塩酸製造槽
3 塩化リチウム製造槽
4 純水槽
5 水酸化リチウム濃縮槽
6 制御部
7、8、9、10 ポンプ
11 陽極槽
12 陰極槽
13 陽極板
14 陰極板
15 陽イオン交換膜
16 循環部
17 循環部
18 整流器
19 計測部
100 水酸化リチウム製造装置
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Hydrochloric acid production tank 3 Lithium chloride production tank 4 Pure water tank 5 Lithium hydroxide concentration tank 6 Control part 7, 8, 9, 10 Pump 11 Anode tank 12 Cathode tank 13 Anode plate 14 Cathode plate 15 Cation exchange membrane 16 Circulating part 17 Circulating part 18 Rectifier 19 Measuring part 100 Lithium hydroxide production apparatus

Claims (9)

  1.  塩化リチウムを含む陽極液を収容する陽極槽と、
     水酸化リチウムを含む陰極液を収容する陰極槽と、
     前記陽極槽に設けられた陽極板と、
     前記陰極槽に設けられた陰極板と、
     前記陽極板と前記陰極板との間に設けられ、陽イオンを選択的に通過させる陽イオン交換膜と、
     前記陽極板と前記陰極板との間に電圧を印加する電源と、
     前記陰極槽において生成された前記陰極液の一部を収容する収容部と、
     を有する水酸化リチウム製造装置。
    An anode tank containing an anolyte containing lithium chloride;
    A cathode chamber containing a catholyte containing lithium hydroxide;
    An anode plate provided in the anode tank;
    A cathode plate provided in the cathode chamber;
    A cation exchange membrane provided between the anode plate and the cathode plate and selectively passing cations;
    A power source for applying a voltage between the anode plate and the cathode plate;
    An accommodating portion for accommodating a part of the catholyte produced in the cathode chamber;
    An apparatus for producing lithium hydroxide.
  2.  前記陰極液を循環させる循環部と、
     前記陽極板と前記陰極板との間を流れる電流値を計測する計測部と、
     前記計測部が計測した前記電流値に基づいて、前記陰極液の一部を回収する回収部と、
     をさらに有する、
     請求項1に記載の水酸化リチウム製造装置。
    A circulating part for circulating the catholyte,
    A measurement unit for measuring a current value flowing between the anode plate and the cathode plate;
    Based on the current value measured by the measurement unit, a recovery unit that recovers a part of the catholyte,
    Further having
    The lithium hydroxide manufacturing apparatus according to claim 1.
  3.  前記陽極槽において発生する塩素ガスを水素と反応させることにより塩酸を製造する塩酸製造槽と、
     炭酸リチウムと前記塩酸製造槽において製造された前記塩酸とに基づいて塩化リチウムを製造する塩化リチウム製造槽と、
     前記塩化リチウム製造槽において製造された前記塩化リチウムを前記陽極槽に導入する導入部と、
     をさらに有する、
     請求項1又は2に記載の水酸化リチウム製造装置。
    A hydrochloric acid production tank for producing hydrochloric acid by reacting chlorine gas generated in the anode tank with hydrogen;
    A lithium chloride production tank for producing lithium chloride based on lithium carbonate and the hydrochloric acid produced in the hydrochloric acid production tank;
    An introduction part for introducing the lithium chloride produced in the lithium chloride production tank into the anode tank;
    Further having
    The lithium hydroxide manufacturing apparatus according to claim 1 or 2.
  4.  前記陽極板の表面が、白金族酸化物により覆われている、
     請求項1から3のいずれか1項に記載の水酸化リチウム製造装置。
    The surface of the anode plate is covered with a platinum group oxide,
    The lithium hydroxide manufacturing apparatus according to any one of claims 1 to 3.
  5.  塩化リチウムを含む陽極液を陽極槽に導入する工程と、
     純水を陰極槽に導入する工程と、
     前記陽極槽に設けられた陽極板と前記陰極槽に設けられた陰極板との間に電圧を印加する工程と、
     前記陰極槽において発生する水酸化リチウムを含む陰極液の一部を回収する工程と、
     を有する水酸化リチウムの製造方法。
    Introducing an anolyte containing lithium chloride into the anode tank;
    Introducing pure water into the cathode chamber;
    Applying a voltage between an anode plate provided in the anode tank and a cathode plate provided in the cathode tank;
    Recovering a portion of the catholyte containing lithium hydroxide generated in the cathode chamber;
    The manufacturing method of lithium hydroxide which has this.
  6.  前記陰極液を循環させる工程と、
     前記陽極板と前記陰極板との間を流れる電流値を計測する工程と、
     を有し、
     前記回収する工程において、前記電流値に基づいて、前記陰極液の一部を回収する、
     請求項5に記載の水酸化リチウムの製造方法。
    Circulating the catholyte;
    Measuring a current value flowing between the anode plate and the cathode plate;
    Have
    In the collecting step, a part of the catholyte is collected based on the current value.
    The method for producing lithium hydroxide according to claim 5.
  7.  前記回収する工程において、前記電流値が所定の値よりも大きくなったことを条件として、前記陰極液の一部の回収を開始する、
     請求項6に記載の水酸化リチウムの製造方法。
    In the step of collecting, on the condition that the current value has become larger than a predetermined value, start collecting a part of the catholyte,
    The method for producing lithium hydroxide according to claim 6.
  8.  前記陽極槽において発生する塩素ガスを水素と反応させることにより塩酸を製造する工程と、
     炭酸リチウムと前記塩酸とに基づいて前記塩化リチウムを製造する工程と、
     を有し、
     前記陽極液を陽極槽に導入する工程において、前記塩化リチウムを製造する工程において製造された前記塩化リチウムを前記陽極槽に導入する、
     請求項5から7のいずれか1項に記載の水酸化リチウムの製造方法。
    Producing hydrochloric acid by reacting chlorine gas generated in the anode tank with hydrogen;
    Producing lithium chloride based on lithium carbonate and hydrochloric acid;
    Have
    In the step of introducing the anolyte into the anode vessel, the lithium chloride produced in the step of producing the lithium chloride is introduced into the anode vessel.
    The method for producing lithium hydroxide according to any one of claims 5 to 7.
  9.  前記陽極板と前記陰極板との間を流れる電流値を計測する工程を有し、
     前記塩化リチウムを含む陽極液を陽極槽に導入する工程において、前記電流値に基づいて定められる量の前記塩化リチウムを前記陽極槽に導入する、
     請求項5から8のいずれか1項に記載の水酸化リチウムの製造方法。
     
    Measuring a current value flowing between the anode plate and the cathode plate,
    In the step of introducing the anolyte containing lithium chloride into the anode tank, an amount of the lithium chloride determined based on the current value is introduced into the anode tank.
    The method for producing lithium hydroxide according to any one of claims 5 to 8.
PCT/JP2015/054484 2015-02-18 2015-02-18 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide WO2016132491A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/054484 WO2016132491A1 (en) 2015-02-18 2015-02-18 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
CL2016000357A CL2016000357A1 (en) 2015-02-18 2016-02-17 Lithium hydroxide production equipment and method for the production of lithium hydroxide
ARP160100433A AR103790A1 (en) 2015-02-18 2016-02-18 LITHIUM HYDROXIDE PRODUCTION EQUIPMENT AND METHOD FOR LITHIUM HYDROXIDE PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054484 WO2016132491A1 (en) 2015-02-18 2015-02-18 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide

Publications (1)

Publication Number Publication Date
WO2016132491A1 true WO2016132491A1 (en) 2016-08-25

Family

ID=56692475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054484 WO2016132491A1 (en) 2015-02-18 2015-02-18 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide

Country Status (3)

Country Link
AR (1) AR103790A1 (en)
CL (1) CL2016000357A1 (en)
WO (1) WO2016132491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043228A1 (en) * 2022-08-22 2024-02-29 株式会社アサカ理研 Method for producing lithium hydroxide aqueous solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225144A (en) * 2003-01-27 2004-08-12 Idemitsu Petrochem Co Ltd Method for producing metallic hydroxide, method for regenerating lithium sulfide and method for producing polyarylene sulfide
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide
JP2010084225A (en) * 2008-10-02 2010-04-15 Toyohiko Doi Electrolysis method with inclined electrode and apparatus therefor
JP2011031232A (en) * 2009-08-04 2011-02-17 Kee:Kk Method of manufacturing lithium hydroxide
JP2011518257A (en) * 2008-04-22 2011-06-23 ケメタル・フット・コーポレイション Method for producing high purity lithium hydroxide and hydrochloric acid
WO2012121270A1 (en) * 2011-03-08 2012-09-13 クロリンエンジニアズ株式会社 Apparatus for electrolyzing sulfuric acid and method for electrolyzing sulfuric acid
JP2014015646A (en) * 2012-07-06 2014-01-30 Benten:Kk Electrolytic treatment water generator and method for generating electrolytic treatment water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225144A (en) * 2003-01-27 2004-08-12 Idemitsu Petrochem Co Ltd Method for producing metallic hydroxide, method for regenerating lithium sulfide and method for producing polyarylene sulfide
JP2011518257A (en) * 2008-04-22 2011-06-23 ケメタル・フット・コーポレイション Method for producing high purity lithium hydroxide and hydrochloric acid
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide
JP2010084225A (en) * 2008-10-02 2010-04-15 Toyohiko Doi Electrolysis method with inclined electrode and apparatus therefor
JP2011031232A (en) * 2009-08-04 2011-02-17 Kee:Kk Method of manufacturing lithium hydroxide
WO2012121270A1 (en) * 2011-03-08 2012-09-13 クロリンエンジニアズ株式会社 Apparatus for electrolyzing sulfuric acid and method for electrolyzing sulfuric acid
JP2014015646A (en) * 2012-07-06 2014-01-30 Benten:Kk Electrolytic treatment water generator and method for generating electrolytic treatment water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043228A1 (en) * 2022-08-22 2024-02-29 株式会社アサカ理研 Method for producing lithium hydroxide aqueous solution

Also Published As

Publication number Publication date
CL2016000357A1 (en) 2016-09-02
AR103790A1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
KR101711854B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
US9611555B2 (en) Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
RU2751710C2 (en) Method for producing high-purity lithium hydroxide monohydrate from materials containing lithium carbonate or lithium chloride
US20200188852A1 (en) Process for the removal of magnesium and calcium cations from natural brines using membrane electrolysis with recovery of cation hydroxides
JP2001271193A (en) Synthesis of tetramethylammonium hydroxide
CN113165894A (en) Treatment of lithium-containing brines
RU2196735C1 (en) Process of extracting monohydrate of high-purity lithium hydroxide from materials containing lithium carbonate
JPH033747B2 (en)
CN112281180A (en) Method for preparing chlorine by electrolyzing concentrated seawater through bipolar membrane
WO2016132491A1 (en) Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
CN111924938A (en) Electrochemical method for removing calcium ions in brine and recycling calcium carbonate
JP5352246B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
JP2023051698A (en) Method for recovering lithium from waste lithium-ion battery
JP4843895B2 (en) Aqueous solution processing method and apparatus
JP6419470B2 (en) Electrolytic treatment method and electrolytic treatment apparatus
JP2006176353A (en) Method for recovering hydrochloric acid and copper from copper etching waste liquid
US20230272540A1 (en) Electrolysis process for making lithium hydroxide from lithium chloride and sodium chloride
JP2001192875A (en) Method and apparatus for preparing hydrogen peroxide
US20210324527A1 (en) Electrolysis process for making lithium hydroxide
JP2024511822A (en) Method for producing high purity lithium hydroxide monohydrate
JP2010007133A (en) Method and device for producing metal indium
CN117888123A (en) Preparation method and device of high-purity lithium hydroxide based on lithium ion solid electrolyte
JP5755997B2 (en) Perchlorate manufacturing apparatus and perchlorate manufacturing method
EA046337B1 (en) METHOD FOR PRODUCING HIGH-PURITY LITHIUM HYDROXIDE MONOHYDRATE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15882594

Country of ref document: EP

Kind code of ref document: A1