WO2016132073A1 - Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage - Google Patents

Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage Download PDF

Info

Publication number
WO2016132073A1
WO2016132073A1 PCT/FR2016/050370 FR2016050370W WO2016132073A1 WO 2016132073 A1 WO2016132073 A1 WO 2016132073A1 FR 2016050370 W FR2016050370 W FR 2016050370W WO 2016132073 A1 WO2016132073 A1 WO 2016132073A1
Authority
WO
WIPO (PCT)
Prior art keywords
trailing edge
pylon
cutout
propulsion unit
propeller
Prior art date
Application number
PCT/FR2016/050370
Other languages
English (en)
Inventor
Mathieu Simon Paul GRUBER
Norman Bruno André JODET
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US15/551,921 priority Critical patent/US10723434B2/en
Priority to GB1713020.4A priority patent/GB2549439B/en
Publication of WO2016132073A1 publication Critical patent/WO2016132073A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/16Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/40Sound or heat insulation, e.g. using insulation blankets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • B64D27/14Aircraft characterised by the type or position of power plants of gas-turbine type  within, or attached to, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/04Power-plant nacelles, fairings, or cowlings associated with fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/14Boundary layer controls achieving noise reductions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D2027/005Aircraft with an unducted turbofan comprising contra-rotating rotors, e.g. contra-rotating open rotors [CROR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Aircraft propulsion unit comprising a non-ttled fan turbojet engine and an attachment pylon.
  • the present invention relates to the general field of turbomachines, and more particularly applies to turbojet propellant propellant propellant.
  • the nacelle channels the secondary flow to produce the majority of the thrust.
  • the nacelle is removed and the propulsion system consists of an upstream propeller which drives the flow and a downstream propeller, counter-rotating with respect to the upstream propeller, which aims to straighten the flow (the downstream propeller can also be fixed on other types of architectures).
  • the propulsive efficiency of the engine is improved by recovering the energy in rotation more efficiently than with a fixed wheel, and the diameter of the propellers is also greatly increased to allow the entrainment of a larger quantity of air.
  • the noise emissions represent a major drawback of this architecture, and more particularly the noise generated by the propellers, and by the various interactions between the propellers and the components related to the mounting of the engine on the aircraft. (also called effects related to the installation of the engine on the airplane).
  • a tonal type noise corresponding to the interaction between the average wake (consisting of a speed deficit downstream of the tower) and the upstream propeller, present at the natural frequencies of the propeller, and
  • a broadband type noise mainly corresponding to the interaction between the turbulent wake structures and the upstream propeller, whose source is located at the leading edge of the upstream propeller blades and which covers a wide range of frequency range.
  • the document FR 2968634 proposes, for example, to compensate for the speed deficit of the wake downstream of the pylon to reduce the impact of the wake thanks to a pylon equipped with a trailing edge equipped with two inclinable faces between which air can be blown on the entire span of the pylon.
  • a solution has the disadvantage of being active and requiring a large amount of air pressure under pressure at the turbomachine, which can in particular reduce performance.
  • turbojet engine having at least one non-vetted propellant propeller
  • an attachment pylon for securing the turbojet on a structural element of the aircraft, said pylon being positioned on the turbojet engine upstream of the propeller and having an aerodynamic profile extending transversely between an edge of the aircraft; attack and a trailing edge, the trailing edge of the aerodynamic profile of the pylon having a cut extending longitudinally on a portion of the trailing edge facing at least a portion of the helix, said cutout being configured to locally increase the distance between the trailing edge and the helix, an outline of the cutout having a curved shape having at least two points of inflection.
  • Cuttingout means a portion forming a stall in the edge of the trailing edge of the pylon.
  • the cut can extend throughout the thickness of the trailing edge.
  • the cutting can be obtained by removal of material in a pylon already manufactured, or be directly integrated into the pylon during its manufacture.
  • the propulsion unit according to the invention makes it possible to reduce the size of the wake for a given segment of the trailing edge of the attachment pylon corresponding to the cut, by reducing the speed deficit created downstream of the pylon (or, in other words, other words, decreasing the aerodynamic losses in the flow).
  • the cut at the trailing edge reduces the size of the pylon "seen” by the flow on the segment of the trailing edge considered. In this way, the speed deficit in the wake downstream of the pylon is reduced at the cutting.
  • the cutout is located in front of at least a portion of the helix, the interaction wake / helix responsible for the undesirable noise generation is reduced.
  • the cut can locally increase the distance downstream of the latching pylon on which the wake can dissipate before meeting the leading edge of the blades of the upstream propeller, which allows to promote the decay of the speed deficit in the plane of the leading edge of the upstream propeller.
  • the device according to the invention makes it possible to reduce the upstream wake / helix interaction noise completely passively. Indeed, the noise reduction is performed without air sampling at the engine, and therefore does not alter the performance of the turbojet engine.
  • the cut is a withdrawal of material on the latching pylon, which allows a saving in weight.
  • the term “geometric profile of the trailing edge” the curve that describes the edge of the trailing edge.
  • its geometric profile can be generally rectilinear or very slightly curved.
  • the trailing edge of the aerodynamic profile of the pylon has a curved geometric profile.
  • the trailing edge has a regular shape, which avoids the formation of vortices downstream of the pylon due to irregular edges (sharp angle type).
  • the cutting of the trailing edge of the aerodynamic profile of the pylon extends longitudinally on the trailing edge between a point of the trailing edge located at less than 80% of the height of the helix and a point of the edge of leak located more than 110% of the height of the propeller.
  • the presence of the cutout on this part of the tower is optimal for reducing the noise generated at the end of the blades of the upstream propeller in particular.
  • the cutting of the trailing edge of the aerodynamic profile of the pylon has a geometric profile composed of a central segment and two junction curves, said junction curves having a point of inflection and being tangential at their ends to the central segment and the trailing edge.
  • the cutting of the trailing edge of the aerodynamic profile of the pylon has a geometric profile comprising a circular arc, or a geometric profile describing a polynomial curve or describing a spline.
  • Cutting the trailing edge of the aerodynamic profile of the tower may have a geometric profile composed of two junction curves, each junction curve being tangential at one end to the trailing edge and at another end to the other junction curve.
  • FIG. 1 is a schematic view of a propulsion unit according to the invention
  • FIG. 1A is an enlarged schematic view of a propulsion assembly according to the invention at its attachment pylon,
  • FIG. 2 is a sectional view of the latching pylon according to the plane II of FIG. 1, and
  • FIG. 3 is an enlarged schematic view of a propulsion unit according to another embodiment of the invention at its latching pylon.
  • the terms “longitudinal”, “transverse” and their derivatives are defined relative to the main axis of the pylon extending between the turbojet engine and the aircraft; the terms “upstream” and “downstream” are themselves defined with respect to the direction of flow of the fluid passing through the turbojet engine.
  • FIG. 1 shows a schematic view of a propulsion unit comprising a turbojet engine 1 hooked to the fuselage 2 of an aircraft by means of an attachment pylon 3.
  • the turbojet engine 1 is centered on an axis XX and comprises a doublet d unpatized propeller 4 consisting of a rotating upstream propeller 4a (comprising a set of blades 40) and a downstream propeller 4b, counter-rotating relative to the upstream propeller 4a.
  • the downstream propeller 4b can also be fixed and take the form of a variable-pitch stator, as is the case for example so-called USF motors (for "Unducted Single Fan"), or without variable timing.
  • the turbojet engine 1 is in the so-called "pusher" configuration, that is to say that the attachment pylon 3 is hooked on the turbojet engine 1 upstream of the propeller doublet 4.
  • the attachment pylon 3 comprises an aerodynamic profile 30 extending transversely between a leading edge 31 and a trailing edge 32.
  • the attachment pylon 3 also comprises a cutout 34 at its level. trailing edge 32, at least a portion of which is located in front of the upstream propeller 4a or opposite the upstream propeller 4a.
  • This cut 34 locally increases the distance between the trailing edge 32 of the pylon 3 and the upstream propeller 4a, which has the particular effect of reducing the depth of the speed deficit in the wake downstream of the pylon 3 and therefore the noise. the interaction it generates when it encounters the upstream propeller 4a.
  • FIG. 2 shows a section of the attachment pylon 3 of FIG.
  • the cutout 34 can be obtained by removing material with respect to the profile of the edge leakage 32 without cutting (shown in dotted lines). It will be noted that the depth of the cutout 34 is also conditioned by the functions to be performed by the attachment pylon, namely the attachment of the turbojet engine to the aircraft, as well as the passage of elements ensuring, in particular, the feeding and control of the turbojet engine from the aircraft (for example: electric cables, hydraulic circuits, fuel supply, etc.), otherwise called servitudes, as well as the hooked element.
  • FIG. 1A which is an enlarged view of FIG. 1, the attachment pylon 3 is detailed at its cutout 34. It can be seen that the cutout 34 extends over part of the trailing edge 32 which is located at least partly facing the upstream propeller 4a.
  • the trailing edge 32 provided with the cutout 34 has a curved geometric profile whose spatial derivatives are all continuous.
  • the trailing edge 32 has a regular profile over its entire length, which prevents the formation of vortices due to geometric irregularities.
  • the cutout 32 has a geometric profile composed of a central segment 34a, and two junction curves 34b.
  • the central segment 34a is substantially parallel to the initial profile of the trailing edge 32
  • the junction curves 34b have an inflection point I and are tangential at their ends to the central segment 34a and the trailing edge 32.
  • the geometric profile of the trailing edge 32 may also have at its upper end a curved portion 36 (shown in Figure 1A) which is tangent to the fuselage 2 of the aircraft.
  • the cutout 34 extends longitudinally on the trailing edge 32 between a point A of the trailing edge 32 located at less than 80% of the height H of the helix 4a and a point B of the trailing edge 32 located at more than 110% of the height H of the propeller 4a.
  • the height H being defined as the radial distance (with respect to the axis XX of the turbojet engine) taken between the point of a blade 40 of the propeller 4a flush with the casing of the turbojet engine 1 and the top of the blade 40.
  • FIG. 3 Another embodiment of the invention is illustrated in FIG. 3 (unless otherwise indicated, the reference signs of the various figures designate identical characteristics).
  • the attachment pylon 3 has a trailing edge 32 provided with a cutout 34 'having a curved geometric profile and regular as defined above.
  • the cut 34 ' here has a geometric profile comprising a circular arc 34'a connected to the trailing edge by two tangential junctions respectively to the arc 34'a and the trailing edge 32 at their ends.
  • the geometric profile of this cutout 34 ' can also be seen as comprising two junction curves 34'b which are tangential to each other, and each tangential with the trailing edge 32.
  • the cut 34 ' extends longitudinally on the trailing edge facing at least a portion of the upstream propeller 4a, and preferably at least between a point located at 80% of the height H of the helix 4a and a point located at 110% of the height of the propeller 4a.
  • the cutout 34, 34 ' may have other geometric profiles, for example describing a polynomial curve or a spline, while remaining in the spirit of the present invention.
  • the device according to the invention may comprise any type of non-shrimped turbojet engine in a "pusher" configuration, for example with a pair of counter-rotating propellers, or having a single propellant propeller rotating upstream and a propeller of fixed recovery downstream.
  • the string law of the attachment pylon 3 is substantially constant.
  • the rope law corresponds to the evolution of the distance between the leading edge 31 of the pylon 3 and its trailing edge 30 devoid of cutting, between the fuselage 2 of the aircraft and the turbojet engine 1.
  • the leading edge 31 and the trailing edge 32 devoid of cutting have a substantially straight geometric profile and are substantially parallel to each other.
  • the invention can also be applied to towing towers having a rope law different, for example increasing, decreasing, or decreasing and increasing.
  • the geometric profile of the leading edge 31 or the trailing edge 32 devoid of cutting can be slightly curved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un ensemble propulsif pour aéronef, comprenant : un turboréacteur (1) ayant au moins une hélice propulsive non carénée (4a), et un pylône d'accrochage (3) destiné à assurer l'accrochage du turboréacteur sur un élément de structure (2) de l'aéronef, ledit pylône étant positionné sur le turboréacteur en amont de l'hélice (4a) et ayant un profil aérodynamique (30) s'étendant transversalement entre un bord d'attaque (31) et un bord de fuite (32), le bord de fuite du profil aérodynamique du pylône comportant une découpe (34) s'étendant longitudinalement sur une partie du bord de fuite en regard d'au moins une partie de l'hélice, ladite découpe étant configurée pour augmenter localement la distance entre le bord de fuite et l'hélice, le contour de la découpe ayant une forme courbe présentant au moins deux points d'inflexion.

Description

Ensemble propulsif pour aéronef comprenant un turboréacteur à soufflante non carénée et un pylône d'accrochage.
Arrière-plan de l'invention
La présente invention se rapporte au domaine général des turbomachines, et s'applique plus particulièrement aux turboréacteurs à hélices propulsives non carénées.
La tendance actuelle concernant les moteurs d'aéronefs civils vise à réduire notamment leur consommation spécifique et le rejet de polluants atmosphériques. Une des solutions techniques adoptées par les motoristes consiste à augmenter le taux de dilution entre le flux primaire (ou flux « chaud ») et le flux secondaire (ou flux « froid ») du moteur d'aéronef. A ce titre, plusieurs architectures de turboréacteurs ont été proposées, parmi lesquelles les turboréacteurs à doublet d'hélices contrarotatives (aussi appelés « CROR » pour « Contra Rotative Open Rotor ») qui sont de bons candidats pour remplacer les turboréacteurs actuels notamment sur des aéronefs assurant des vols moyens courriers.
Sur une architecture classique de turboréacteur, la nacelle canalise le flux secondaire pour produire la majorité de la poussée. Dans le cas d'une architecture CROR, la nacelle est retirée et le système propulsif se compose d'une hélice amont qui entraîne l'écoulement et d'une hélice aval, contrarotative par rapport à l'hélice amont, qui a pour but de redresser l'écoulement (l'hélice aval pouvant aussi être fixe sur d'autres types d'architectures). Le rendement propulsif du moteur est amélioré en récupérant l'énergie en rotation de manière plus efficace qu'avec une roue fixe, et le diamètre des hélices est aussi fortement augmenté pour permettre l'entraînement d'une plus grande quantité d'air.
Cependant, en l'absence de nacelle, les émissions sonores représentent un inconvénient majeur de cette architecture, et plus particulièrement le bruit généré par les hélices, et par les diverses interactions entre les hélices et les composants liés au montage du moteur sur l'aéronef (aussi appelés effets liés à l'installation du moteur sur l'avion).
Lorsque le turboréacteur est monté sur le fuselage d'un aéronef par le biais d'un pylône d'accrochage fixé en amont des hélices, on parle d'un montage de type « pusher ». Dans une telle configuration, plusieurs sources de bruit sont liées à la présence du pylône d'accrochage, et la plus importante est constituée par l'interaction entre le sillage (correspondant à un déficit de vitesse de l'écoulement) créé en aval du pylône et l'hélice amont.
Cette interaction sillage/hélice amont entraîne notamment deux types de bruit :
- un bruit de type tonal, correspondant à l'interaction entre le sillage moyen (constitué par un déficit de vitesse en aval du pylône) et l'hélice amont, présent aux fréquences propres de l'hélice, et
- un bruit de type large bande, correspondant principalement à l'interaction entre les structures turbulentes du sillage et l'hélice amont, dont la source est localisée au niveau du bord d'attaque des pales de l'hélice amont et qui couvre une large gamme de fréquences.
Plusieurs solutions ont été proposées pour réduire les nuisances sonores produites par les interactions entre le sillage du pylône et l'hélice amont. Le document FR 2968634 propose par exemple de combler le déficit de vitesse du sillage en aval du pylône pour réduire l'impact du sillage grâce à un pylône muni d'un bord de fuite équipé de deux faces inclinables entre lesquelles de l'air peut être soufflé sur toute l'envergure du pylône. Cependant, une telle solution présente l'inconvénient d'être active et de nécessiter un important prélèvement d'air sous pression au niveau de la turbomachine, ce qui peut notamment en réduire les performances.
Objet et résumé de l'invention
La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un ensemble propulsif pour aéronef comprenant :
un turboréacteur ayant au moins une hélice propulsive non carénée, et
un pylône d'accrochage destiné à assurer l'accrochage du turboréacteur sur un élément de structure de l'aéronef, ledit pylône étant positionné sur le turboréacteur en amont de l'hélice et ayant un profil aérodynamique s'étendant transversalement entre un bord d'attaque et un bord de fuite, le bord de fuite du profil aérodynamique du pylône comportant une découpe s'étendant longitudinalement sur une partie du bord de fuite en regard d'au moins une partie de l'hélice, ladite découpe étant configurée pour augmenter localement la distance entre le bord de fuite et l'hélice, un contour de la découpe ayant une forme courbe présentant au moins deux points d'inflexion.
On entend par « découpe » une portion formant un décrochage dans l'arrête du bord de fuite du pylône. La découpe peut s'étendre dans toute l'épaisseur du bord de fuite. La découpe peut être obtenue par enlèvement de matière dans un pylône déjà fabriqué, ou être directement intégrée au pylône lors de sa fabrication.
L'ensemble propulsif selon l'invention permet de réduire la taille du sillage pour un segment donné du bord de fuite du pylône d'accrochage correspondant à la découpe, en diminuant le déficit de vitesse créé en aval du pylône (ou, en d'autres termes, en diminuant les pertes aérodynamiques dans l'écoulement). En effet, la découpe présente au niveau du bord de fuite permet de réduire la taille du pylône « vue » par l'écoulement sur le segment du bord de fuite considéré. De la sorte, le déficit de vitesse dans le sillage en aval du pylône est réduit au niveau de la découpe. Comme la découpe est située en face d'au moins une partie de l'hélice, l'interaction sillage/hélice responsable de la génération de bruit indésirable s'en voit réduite.
De façon équivalente, la découpe permet d'augmenter localement la distance à l'aval du pylône d'accrochage sur laquelle le sillage peut se dissiper avant de rencontrer le bord d'attaque des aubes de l'hélice amont, ce qui permet de favoriser la décroissance du déficit de vitesse dans le plan du bord d'attaque de l'hélice amont.
En outre, le dispositif selon l'invention permet de réduire le bruit d'interaction sillage/hélice amont de façon totalement passive. En effet, la réduction de bruit est réalisée sans prélèvement d'air au niveau du moteur, et n'altère donc pas les performances du turboréacteur. De plus, la découpe constitue un retrait de matière sur le pylône d'accrochage, ce qui permet un gain de masse.
Dans tout l'exposé, on entend par « profil géométrique du bord de fuite », la courbe que décrit l'arrête du bord de fuite. Lorsque le bord de fuite ne présente pas de découpe, son profil géométrique peut être généralement rectiligne ou très légèrement courbé. De même, on entend par « profil géométrique de la découpe », la courbe que décrit le contour de la découpe.
De préférence, le bord de fuite du profil aérodynamique du pylône présente un profil géométrique courbe. En d'autres termes le bord de fuite présente une forme régulière, ce qui évite la formation de tourbillons en aval du pylône dus à des bords irréguliers (de type angles pointus).
De préférence également, la découpe du bord de fuite du profil aérodynamique du pylône s'étend longitudinalement sur le bord de fuite entre un point du bord de fuite situé à moins de 80% de la hauteur de l'hélice et un point du bord de fuite situé à plus de 110% de la hauteur de l'hélice. La présence de la découpe sur cette partie du pylône est optimale pour réduire le bruit généré au niveau de l'extrémité des pales de l'hélice amont notamment.
Selon un mode de réalisation de l'invention, la découpe du bord de fuite du profil aérodynamique du pylône présente un profil géométrique composé d'un segment central et de deux courbes de jonction, lesdites courbes de jonction présentant un point d'inflexion et étant tangentielles à leurs extrémités au segment central et au bord de fuite.
Selon un autre mode de réalisation de l'invention, la découpe du bord de fuite du profil aérodynamique du pylône présente un profil géométrique comprenant un arc de cercle, ou encore un profil géométrique décrivant une courbe polynomiale ou décrivant une spline.
La découpe du bord de fuite du profil aérodynamique du pylône peut présenter un profil géométrique composé de deux courbes de jonction, chaque courbe de jonction étant tangentielle à une extrémité au bord de fuite et à une autre extrémité à l'autre courbe de jonction.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la figure 1 est une vue schématique d'un ensemble propulsif selon l'invention, - la figure 1A est une vue schématique agrandie d'un ensemble propulsif selon l'invention au niveau de son pylône d'accrochage,
- la figure 2 est une vue en coupe du pylône d'accrochage selon le plan II de la figure 1, et
- la figure 3 est une vue schématique agrandie d'un ensemble propulsif selon un autre mode de réalisation de l'invention au niveau de son pylône d'accrochage.
Description détaillée de l'invention
Dans le présent exposé, les termes « longitudinal », « transversal » et leurs dérivés sont définis par rapport à l'axe principal du pylône s'étendant entre le turboréacteur et l'aéronef ; les termes « amont » et « aval » sont quant à eux définis par rapport au sens d'écoulement du fluide traversant le turboréacteur.
La figure 1 montre une vue schématique d'un ensemble propulsif comprenant un turboréacteur 1 accroché au fuselage 2 d'un aéronef par le biais d'un pylône d'accrochage 3. Le turboréacteur 1 est centré sur un axe X-X et comprend un doublet d'hélices 4 non carénées composé d'une hélice amont 4a rotative (comprenant un ensemble d'aubes 40) et d'une hélice aval 4b, contrarotative par rapport à l'hélice amont 4a. L'hélice aval 4b peut également être fixe et prendre la forme d'un stator à calage variable, comme c'est le cas par exemple des moteurs dits USF (pour « Unducted Single Fan »), ou sans calage variable. On notera que le turboréacteur 1 est en configuration dite « pusher », c'est-à- dire que le pylône d'accrochage 3 est accroché sur le turboréacteur 1 en amont du doublet d'hélices 4.
Le pylône d'accrochage 3 comprend un profil aérodynamique 30 s'étendant transversalement entre un bord d'attaque 31 et un bord de fuite 32. Conformément à l'invention, le pylône d'accrochage 3 comprend également une découpe 34 au niveau de son bord de fuite 32, dont au moins une partie est située en face de l'hélice amont 4a ou en regard de l'hélice amont 4a. Cette découpe 34 augmente localement la distance entre le bord de fuite 32 du pylône 3 et l'hélice amont 4a, ce qui a notamment pour effet de réduire la profondeur du déficit de vitesse dans le sillage en aval du pylône 3 et donc le bruit d'interaction qu'il génère lorsqu'il rencontre l'hélice amont 4a. La figure 2 montre une coupe du pylône d'accrochage 3 de la figure 1 selon le plan II, au niveau de la découpe 34. On voit sur cette figure que la découpe 34 peut être obtenue par enlèvement de matière par rapport au profil du bord de fuite 32 dépourvu de découpe (représenté en pointillés). On notera que la profondeur de la découpe 34 est aussi conditionnée par les fonctions que doit assurer le pylône d'accrochage, à savoir l'accrochage du turboréacteur sur l'aéronef, ainsi que le passage d'éléments assurant notamment l'alimentation et le contrôle du turboréacteur depuis l'aéronef (par exemple : câbles électriques, circuits hydrauliques, alimentation en carburant, etc.), autrement appelés servitudes, ainsi que l'élément d'accroché.
Sur la figure 1A, qui est une vue agrandie de la figure 1, le pylône d'accrochage 3 est détaillé au niveau de sa découpe 34. On peut voir que la découpe 34 s'étend sur une partie du bord de fuite 32 qui est située au moins en partie en regard de l'hélice amont 4a.
Le bord de fuite 32 muni de la découpe 34 présente un profil géométrique courbe dont les dérivées spatiales sont toutes continues. En d'autres termes, le bord de fuite 32 présente un profil régulier sur toute sa longueur, ce qui évite la formation de tourbillons dus à des irrégularités géométriques.
Dans le mode de réalisation illustré, la découpe 32 présente un profil géométrique composé d'un segment central 34a, et de deux courbes de jonction 34b. Le segment central 34a est sensiblement parallèle au profil initial du bord de fuite 32, les courbes de jonction 34b présentent quant à elles un point d'inflexion I et sont tangentielles à leurs extrémités au segment central 34a et au bord de fuite 32. Afin d'améliorer l'aérodynamique de l'ensemble, le profil géométrique du bord de fuite 32 peut aussi présenter à son extrémité supérieure une partie courbe 36 (représentée sur la figure 1A) qui est tangente au fuselage 2 de l'aéronef.
Avantageusement, la découpe 34 s'étend longitudinalement sur le bord de fuite 32 entre un point A du bord de fuite 32 situé à moins de 80% de la hauteur H de l'hélice 4a et un point B du bord de fuite 32 situé à plus de 110% de la hauteur H de l'hélice 4a. La hauteur H étant définie comme la distance radiale (par rapport à l'axe X-X du turboréacteur) prise entre le point d'une aube 40 de l'hélice 4a affleurant le carter du turboréacteur 1 et le sommet de l'aube 40. Les sources de bruit d'interaction les plus importants entre le pylône 3 et l'hélice amont 4a sont localisées à proximité du sommet des aubes 40 au niveau de leur bord d'attaque, cette disposition permet donc d'optimiser la réduction de bruit sur cette zone.
Un autre mode de réalisation de l'invention est illustré sur la figure 3 (sauf indication contraire, les signes de référence des différentes figures désignent des caractéristiques identiques). Sur cette figure, le pylône d'accrochage 3 présente un bord de fuite 32 muni d'une découpe 34' ayant un profil géométrique courbe et régulièr tel que défini ci-avant.
La découpe 34' présente ici un profil géométrique comprenant un arc de cercle 34'a relié au bord de fuite par deux jonctions tangentielles respectivement à l'arc de cercle 34'a et au bord de fuite 32 en leurs extrémités. Le profil géométrique de cette découpe 34' peut également être vu comme comprenant deux courbes de jonction 34'b qui sont tangentielles l'une avec l'autre, et tangentielle chacune avec le bord de fuite 32. De la même manière que précédemment, la découpe 34' s'étend longitudinalement sur le bord de fuite en regard d'au moins une partie de l'hélice amont 4a, et de préférence au moins entre un point situé à 80% de la hauteur H de l'hélice 4a et un point situé à 110% de la hauteur de l'hélice 4a.
Bien entendu, la découpe 34, 34' peut présenter d'autres profils géométriques, par exemple décrivant une courbe polynomiale ou une spline, tout en restant dans l'esprit de la présente invention. En outre, le dispositif selon l'invention peut comprendre tout type de turboréacteur à soufflante non carénée en configuration « pusher », par exemple à doublet d'hélices contra rotatives, ou ayant une seule hélice propulsive rotative à l'amont et une hélice de redressement fixe à l'aval.
On notera également que dans les exemples illustrés, la loi de corde du pylône d'accrochage 3 est sensiblement constante. La loi de corde correspond à l'évolution de la distance entre le bord d'attaque 31 du pylône 3 et son bord de fuite 30 dépourvu de découpe, entre le fuselage 2 de l'aéronef et le turboréacteur 1. En d'autres termes, dans les exemples illustrés, le bord d'attaque 31 et le bord de fuite 32 dépourvu de découpe présentent un profil géométrique sensiblement rectiligne et sont sensiblement parallèles entre eux. Toutefois, l'invention peut également s'appliquer à des pylônes d'accrochage présentant une loi de corde différente, par exemple croissante, décroissante, ou encore, décroissante puis croissante. Dans ce cas, le profil géométrique du bord d'attaque 31 ou du bord de fuite 32 dépourvu de découpe peuvent être légèrement courbés.

Claims

REVENDICATIONS
1. Ensemble propulsif pour aéronef comprenant :
un turboréacteur (1) ayant au moins une hélice propulsive non carénée (4a), et
un pylône d'accrochage (3) destiné à assurer l'accrochage du turboréacteur sur un élément de structure (2) de l'aéronef, ledit pylône étant positionné sur le turboréacteur en amont de l'hélice (4a) et ayant un profil aérodynamique (30) s'étendant transversalement entre un bord d'attaque (31) et un bord de fuite (32),
caractérisé en ce que le bord de fuite du profil aérodynamique du pylône comporte une découpe (34 ; 34 s'étendant longitudinalement sur une partie du bord de fuite en regard d'au moins une partie de l'hélice, ladite découpe étant configurée pour augmenter localement la distance entre le bord de fuite et l'hélice, un contour de la découpe ayant une forme courbe présentant au moins deux points d'inflexion (I).
2. Ensemble propulsif selon la revendication 1, caractérisé en ce que le bord de fuite (32) du profil aérodynamique du pylône présente un profil géométrique courbe.
3. Ensemble propulsif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la découpe (34 ; 34 du bord de fuite (32) du profil aérodynamique du pylône s'étend longitudinalement sur le bord de fuite (32) entre un point (A) du bord de fuite situé à moins de 80% de la hauteur (H) de l'hélice et un point (B) du bord de fuite situé à plus de 110% de la hauteur (H) de l'hélice.
4. Ensemble propulsif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la découpe (34) du bord de fuite du profil aérodynamique du pylône présente un profil géométrique composé d'un segment central (34a) et de deux courbes de jonction (34b), lesdites courbes de jonction présentant un point d'inflexion et étant tangentielles en leurs extrémités au segment central et au bord de fuite (32).
5. Ensemble propulsif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la découpe (340 du bord de fuite du profil aérodynamique du pylône présente un profil géométrique comprenant un arc de cercle (34'a).
6. Ensemble propulsif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la découpe du bord de fuite du profil aérodynamique du pylône présente un profil géométrique décrivant une courbe polynomiale ou une spline.
7. Ensemble propulsif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la découpe (340 du bord de fuite (32) du profil aérodynamique (30) du pylône présente un profil géométrique composé de deux courbes de jonction (34'b), chaque courbe de jonction étant tangentielle à une extrémité au bord de fuite et à une autre extrémité à l'autre courbe de jonction.
PCT/FR2016/050370 2015-02-19 2016-02-18 Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage WO2016132073A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/551,921 US10723434B2 (en) 2015-02-19 2016-02-18 Aircraft propulsion unit comprising an unducted-fan turbine engine and an attachment pylon
GB1713020.4A GB2549439B (en) 2015-02-19 2016-02-18 Aircraft propulsion unit comprising an unducted-fan turbine engine and an attachment pylon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1551395A FR3032942B1 (fr) 2015-02-19 2015-02-19 Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage
FR1551395 2015-02-19

Publications (1)

Publication Number Publication Date
WO2016132073A1 true WO2016132073A1 (fr) 2016-08-25

Family

ID=53040581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050370 WO2016132073A1 (fr) 2015-02-19 2016-02-18 Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage

Country Status (4)

Country Link
US (1) US10723434B2 (fr)
FR (1) FR3032942B1 (fr)
GB (1) GB2549439B (fr)
WO (1) WO2016132073A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050721B1 (fr) * 2016-04-28 2018-04-13 Airbus Operations Ensemble moteur pour aeronef comprenant un bord d'attaque de mat integre a une rangee annulaire d'aubes directrices de sortie non carenees
US11814174B2 (en) 2019-10-15 2023-11-14 General Electric Company Layered fuselage shield
US11506067B2 (en) 2019-10-15 2022-11-22 General Electric Company Gas turbine engine with clutch assembly
US11401824B2 (en) 2019-10-15 2022-08-02 General Electric Company Gas turbine engine outlet guide vane assembly
US11286795B2 (en) 2019-10-15 2022-03-29 General Electric Company Mount for an airfoil
US11834196B2 (en) 2019-10-15 2023-12-05 General Electric Company System and method for control for unducted engine
US11492918B1 (en) 2021-09-03 2022-11-08 General Electric Company Gas turbine engine with third stream
US11834995B2 (en) 2022-03-29 2023-12-05 General Electric Company Air-to-air heat exchanger potential in gas turbine engines
US11834954B2 (en) 2022-04-11 2023-12-05 General Electric Company Gas turbine engine with third stream
US11834992B2 (en) 2022-04-27 2023-12-05 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with an accessory gearbox of a turbofan engine
US11680530B1 (en) 2022-04-27 2023-06-20 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with a power gearbox of a turbofan engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2327628A2 (fr) * 2009-11-27 2011-06-01 Airbus Operations S.L. Procédés et systèmes pour minimiser les perturbations de flux dans des pales d'hélice d'avion occasionnées par des pylônes en amont
US20110309189A1 (en) * 2008-12-01 2011-12-22 AIRBUS OPERATIONS (inc as a Societe par Act Simpl) Rigid aircraft pylon fitted with a rib extension for taking up the moment in the lengthways direction
GB2486342A (en) * 2010-12-08 2012-06-13 Snecma Pylon for fixing an aircraft engine having unducted pusher propellers
US20120273609A1 (en) * 2011-04-28 2012-11-01 Airbus Operations (S.A.S.) Streamlined profile reducing the speed deficit in its wake
FR2979391A1 (fr) * 2011-08-26 2013-03-01 Snecma Turbomachine comportant un element grillage circonferentiel entre deux helices contrarotatives non carenees
FR3008069A1 (fr) * 2013-07-08 2015-01-09 Airbus Operations Sas Ensemble propulsif pour aeronef comprenant un moteur a helice et un mat monte en amont.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3319566A1 (de) * 1983-05-30 1984-12-06 Wilhelm 6301 Biebertal Knechtel Antriebssystem fuer flugzeuge insbesondere fuer motorsegler
US4953812A (en) * 1987-11-13 1990-09-04 The Boeing Company Aircraft configuration with aft mounted engines and method
FR2899200B1 (fr) * 2006-03-28 2008-11-07 Airbus France Sas Aeronef a impact environnemental reduit
ES2342866B1 (es) * 2007-11-30 2011-05-18 Airbus España, S.L. Fuselaje de aeronave resistente a impactos.
ES2343047B1 (es) * 2007-12-13 2011-06-14 Airbus España, S.L. Fuselaje de aeronave atenuado acusticamente.
FR2929591B1 (fr) * 2008-04-02 2010-12-24 Airbus France Avion a controle en tangage et en lacet par un ensemble propulsif.
GB2473651B (en) * 2009-09-21 2011-08-31 Rolls Royce Plc Gas turbine aircraft engines and operation thereof
DE102010010128A1 (de) * 2010-03-04 2011-09-08 Rolls-Royce Deutschland Ltd & Co Kg Flugzeugtriebwerk mit optimiertem Ölwärmetauscher
ES2560896T3 (es) * 2011-12-28 2016-02-23 Airbus Operations S.L. Parte trasera del fuselaje con un escudo para una aeronave con motores montados en el fuselaje y método para la determinación del área del escudo
FR2994942B1 (fr) * 2012-09-06 2015-08-07 Airbus Operations Sas Ensemble propulsif lateral pour aeronef comprenant un arceau de support d'un turbomoteur.
EP3025954B1 (fr) * 2014-11-27 2018-03-07 Airbus Operations S.L. Section de fuselage d'aéronef

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110309189A1 (en) * 2008-12-01 2011-12-22 AIRBUS OPERATIONS (inc as a Societe par Act Simpl) Rigid aircraft pylon fitted with a rib extension for taking up the moment in the lengthways direction
EP2327628A2 (fr) * 2009-11-27 2011-06-01 Airbus Operations S.L. Procédés et systèmes pour minimiser les perturbations de flux dans des pales d'hélice d'avion occasionnées par des pylônes en amont
GB2486342A (en) * 2010-12-08 2012-06-13 Snecma Pylon for fixing an aircraft engine having unducted pusher propellers
FR2968634A1 (fr) 2010-12-08 2012-06-15 Snecma Pylone de fixation d'un moteur d'aeronef a helices propulsives non carenees
US20120273609A1 (en) * 2011-04-28 2012-11-01 Airbus Operations (S.A.S.) Streamlined profile reducing the speed deficit in its wake
FR2979391A1 (fr) * 2011-08-26 2013-03-01 Snecma Turbomachine comportant un element grillage circonferentiel entre deux helices contrarotatives non carenees
FR3008069A1 (fr) * 2013-07-08 2015-01-09 Airbus Operations Sas Ensemble propulsif pour aeronef comprenant un moteur a helice et un mat monte en amont.

Also Published As

Publication number Publication date
GB2549439A (en) 2017-10-18
US10723434B2 (en) 2020-07-28
GB201713020D0 (en) 2017-09-27
FR3032942B1 (fr) 2018-11-23
GB2549439B (en) 2020-12-02
FR3032942A1 (fr) 2016-08-26
US20180065727A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2016132073A1 (fr) Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage
EP2697114B1 (fr) Dispositif de propulsion a helices contrarotatives et coaxiales non-carenees
CA2975570C (fr) Ensemble de redressement a performances aerodynamiques optimisees
EP3676480B1 (fr) Aube de redresseur de soufflante de turbomachine, ensemble de turbomachine comprenant une telle aube et turbomachine equipee de ladite aube ou dudit ensemble
FR2938502A1 (fr) Turbomachine comportant une helice non carenee equipee de moyens de guidage d'air
EP2760737B1 (fr) Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes
FR3050721A1 (fr) Ensemble moteur pour aeronef comprenant un bord d'attaque de mat integre a une rangee annulaire d'aubes directrices de sortie non carenees
EP2928769B1 (fr) Pale d'helice pour turbomachine
EP2344381B1 (fr) Entree d'air d'un moteur d'avion a helices propulsives non carenees
FR3082230A1 (fr) Moteur d'aeronef a rotor non carene avec adaptation des aubes de stator
FR3037318A1 (fr) Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d'accrochage
FR2935349A1 (fr) Turbomachine a helices non carenees
WO2023170358A1 (fr) Propulseur aeronautique
FR2983834A1 (fr) Pylone d'accrochage pour turbomachine
FR3045712A1 (fr) Bouclier de bord d'attaque
FR2982842A1 (fr) Avion
FR3021706A1 (fr) Turbopropulseur d'aeronef comportant deux helices coaxiales.
EP2839168A1 (fr) Carter pour roue a aubes de turbomachine ameliore et turbomachine equipee dudit carter
WO2014188121A1 (fr) Turbopropulseur d'aéronef
FR2935348A1 (fr) Turbomachine a helices non carenees
EP3829975B1 (fr) Turbomachine à hélices coaxiales
WO2017109430A1 (fr) Turbomachine à hélice à clipping inversé
FR3131732A1 (fr) Ensemble propulsif a helice pour aeronef, comprenant une aube de stator integree a une partie d’extremite amont d’un mat d’accrochage de hauteur reduite
WO2023242523A1 (fr) Aube a structure composite presentant une orientation de sortie de couche amelioree
WO2023242524A1 (fr) Aube a structure composite presentant une orientation de sortie de couche amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16709994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201713020

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160218

WWE Wipo information: entry into national phase

Ref document number: 15551921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16709994

Country of ref document: EP

Kind code of ref document: A1