WO2016131326A1 - 一种正交频分复用***频谱资源的使用方法及相应的基站 - Google Patents

一种正交频分复用***频谱资源的使用方法及相应的基站 Download PDF

Info

Publication number
WO2016131326A1
WO2016131326A1 PCT/CN2015/096141 CN2015096141W WO2016131326A1 WO 2016131326 A1 WO2016131326 A1 WO 2016131326A1 CN 2015096141 W CN2015096141 W CN 2015096141W WO 2016131326 A1 WO2016131326 A1 WO 2016131326A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
frequency
frequency band
time domain
overlap
Prior art date
Application number
PCT/CN2015/096141
Other languages
English (en)
French (fr)
Inventor
王继承
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15882465.6A priority Critical patent/EP3328110B1/en
Publication of WO2016131326A1 publication Critical patent/WO2016131326A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning

Definitions

  • This application relates to, but is not limited to, wireless communication systems.
  • Wireless Communication is a communication method that uses information that electromagnetic wave signals can propagate in free space, and provides a fast and convenient means of communication.
  • a typical application of wireless communication is to deploy some fixed transceivers, which can be called base stations, to provide communication connections to a large number of mobile transceivers, ie terminals, in a wireless manner.
  • the fixed base station can be connected to the telecommunication or data cable network, so that the terminal can connect to a wide range of telecommunication or data networks through the base station, realize mutual communication, or communicate with the fixed terminal, or access Internet (Internet) services.
  • Internet Internet
  • both parties need to follow predefined wireless specifications, including wireless frequency, modulation technology, data encoding format, and related communication control commands.
  • the currently widely used mobile cellular communication network is a kind of wireless communication.
  • the relevant bands of the ITU International Telecommunication Union
  • ITU International Telecommunication Union
  • corresponding international standards are issued, so that mobile terminals conforming to the protocol specifications can be different. Roaming between countries.
  • the mobile communication network In order to build a larger capacity network and provide more user services, the mobile communication network generally adopts a cellular space diversity method to multiplex spectrum resources in different geographical areas.
  • a base station device of a mobile cellular communication network can perform wireless coverage of a geographical area using a plurality of antennas, and an area covered by each antenna can be referred to as a sector.
  • Frequency diversity can also be used in each sector to deploy multiple carrier frequencies.
  • Each access carrier of each sector may be referred to as a cell (Cell), which is an access point of the mobile terminal in the network.
  • Cell is an access point of the mobile terminal in the network.
  • the mobile cellular communication network structure is shown in Figure 1.
  • AMPS Advanced Mobile Phone System
  • FDMA Frequency Division Multiple Access
  • TACS Total Access Communication System
  • TDMA Time Division Multiple Access
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Communication
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long Term Evolution
  • OFDM technology is also used in wireless communication such as Wifi, WiMAX, and Bluetooth.
  • OFDM technology uses mutually orthogonal subcarrier modulation data, as shown in Figure 2, can have higher spectrum efficiency than traditional frequency division FDM technology.
  • Each subcarrier has a low bandwidth and a low adjustment symbol rate, which effectively reduces inter-symbol interference, and can use enough subcarriers in parallel to increase the overall transmission rate.
  • the wireless communication system adopting OFDM technology has frequency division scheduling capability, and can allocate different subcarriers for different users.
  • LTE is a long-term evolution system relative to UMTS. It belongs to the IMT standard protocol family and was developed by the 3GPP organization and introduced at the R8 protocol version. LTE is an access network eUTRAN (Enhanced Universal Terrestrial Access Network) based on EPC (Evolved Packet Core Network). The logical structure of the LTE system is shown in Figure 3.
  • eUTRAN Enhanced Universal Terrestrial Access Network
  • EPC Evolved Packet Core Network
  • each subcarrier 1 ms subframe may include 2 slots, each slot including 6 or 7 modulation symbols.
  • One symbol on each subcarrier is defined as a resource element (RE: Resource Element), which is the smallest unit of LTE frequency time domain resource allocation.
  • a resource in which 12 consecutive subcarriers in frequency last for one slot is defined as one resource block RB (Resource Block).
  • the LTE base station eNB may allocate resources to different users according to the RB granularity, and schedule data transmission.
  • the LTE cell defines different types of downlink channels, and frequency and time domain resources used by each channel.
  • the basic synchronization channel PSS and the secondary synchronization channel SSS are included for the terminal to acquire cell synchronization information during initial cell search, and each 10 ms radio frame is transmitted twice.
  • the FDD LTE cell PSS is on the last OFDM symbol of the 1st and 11th time slots of each radio frame, and the SSS is directly before the PSS.
  • PSS and SSS are mapped to 62 children in the LTE cell center.
  • the PSS and SSS of different cells use different numerical sequences, 168 SSS sequences and 3 PSS sequences combined to represent 504 different physical cell identification numbers PCI.
  • the PBCH is a broadcast channel BCH for carrying other channel configuration and operation information including cells.
  • the PBCH is transmitted following the basic synchronization channel PSS on the first time slot, using the center 72 subcarriers of the cell, and appears only in the first four symbols of the second time slot of one radio frame, repeating every 40 ms. In this way, the terminal can read the BCH information by scanning the cell synchronization signal and identifying the cell center frequency without knowing the cell bandwidth.
  • the LTE cell must transmit a cell-specific reference signal CRS on a particular symbol of each time slot of a particular subcarrier, the location of which is related to the antenna port number.
  • CRS position on the first antenna port as an example, the first and fifth symbols appear in each time slot in the time domain, and the first symbol on the frequency domain appears on the first and the first of each PRB. 7 subcarriers, the CRS on the 5th symbol appears on the 4th and 10th subcarriers of each PRB.
  • the CRS is mainly used for three purposes, as channel estimation for downlink physical channel coherent demodulation, acquisition of channel state information, and measurement of CRS as a basis for cell selection and handover.
  • the generation and mapping mechanism of the CRS value sequence is defined in detail in the 3GPP standard protocol TS36.201.
  • PCFICH Physical Control Format Indicator Channel
  • the PCFICH is used to indicate the number of symbols used by the Physical Downlink Control Channel (PDCCH) in each wireless subframe, and may be 1, 2, or 3.
  • the PCFICH of each LTE cell is divided into four segments, and each segment of four REs constitutes one resource unit group (REG), and each REG occupies four consecutive subcarriers (requires interval REs occupied by CRS), and only uses each subframe. The first symbol.
  • the four groups of REGs of the PCFICH are evenly distributed over the entire bandwidth, so the location of the PCFICH in the frequency domain is related to the bandwidth of the cell.
  • the PHICH is used for the uplink signaling of the ARQ, which may be a positive ACK or a negative NACK.
  • Multiple PHICHs are mapped to the same group of resource elements to form a PHICH group.
  • Each PHICH component is divided into three segments, each segment of four REs constitutes one REG, and each REG occupies four consecutive The same position symbol of the subcarrier (requires the RE occupied by the CRS), which is generally the first symbol of each subframe.
  • the three REGs of each PHICH group are evenly distributed over the entire bandwidth, so the location of the PHICH in the frequency domain is related to the bandwidth of the cell.
  • Each cell is configured with at least one group of PHICHs, and multiple groups of PHICHs can also be configured.
  • the PDCCH transmits resource allocation signaling for one or a group of terminals, using the first 1, 2 or 3 symbols of each subframe, and the actual number used is defined by the PCFICH channel mapped on the subframe.
  • frequency-time domain resources other than the frequency-time domain resources occupied by the cell CRS, the PCFICH, and the PHICH may be used for PDCCH transmission.
  • the PDSCH is a downlink channel in which an LTE cell carries user data, and RB is a basic transmission unit.
  • each RB can be used for PDSCH channel transmission.
  • the LTE cell can use flexible wireless bandwidth, and the standard frequency band defined by 3GPP includes 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz.
  • the bandwidth used by each LTE cell is notified to the terminal in the broadcast control information of the cell, and the terminal can demodulate the wireless signal over the entire bandwidth according to the information, and perform data transmission.
  • the spectrum resource owned by the operator of the mobile cellular communication network is not equal to the bandwidth defined by the 3GPP standard, the entire spectrum may be divided into multiple carriers based on the standard bandwidth, and each carrier forms one cell.
  • the LTE system also defines a function CA (Carrier Aggregation) that combines different carriers, and the terminal can simultaneously perform data transmission on multiple cells of different carriers at the same time, thereby improving the peak throughput rate.
  • CA Carrier Aggregation
  • the LTE cell has multiple bandwidths and can be used in combination, it can be flexibly deployed under different spectrum resource conditions. However, each bandwidth and its combination are still limited, and there are still many scenarios that cannot fully utilize the spectrum resources owned by operators. Combine the finite bandwidth into smaller sub-bandwidths, also It will affect the peak rate of CA terminals that are not supported.
  • a method for using spectrum resources of an OFDM system includes:
  • the first cell and the second cell are respectively deployed according to the first frequency band and the second frequency band having the standard bandwidth, where the first frequency band and the second frequency band are partially overlapped, and the overlapping portions form a coincident frequency band;
  • allocating the frequency time domain resources to the data of the first cell and the second cell including: performing unified scheduling on the data of the first cell and the second cell, and allocating frequency time domain resources on the overlapping frequency band;
  • the first cell and the second cell are aligned at a center frequency of each corresponding subcarrier on the overlapping frequency band.
  • the allocating the frequency time domain resources to the data of the first cell and the second cell further includes:
  • uniformly allocating data of the first cell and the second cell, and allocating frequency time domain resources including:
  • User data of the first cell and the second cell are uniformly scheduled to share frequency domain resources of the physical downlink shared channel (PDSCH), and frequency domain resources of the PDSCH are avoided by the first cell and the second cell.
  • uniformly allocating data of the first cell and the second cell, and allocating frequency time domain resources including:
  • uniformly allocating data of the first cell and the second cell, and allocating frequency time domain resources including:
  • the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • Frequency time domain resources if the frequency and time domain resource positions of the PHICHs of the first cell and the second cell overlap, the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • the first frequency band and the second frequency band are obtained by dividing an entire frequency band owned by an operator, and the entire frequency band owned by the operator is divided into two or more frequency bands having a standard bandwidth, including the first One band and second band.
  • the physical channel of the synchronization channel and/or the cell of the first cell and the second cell is broadcasted according to the resource allocation manner specified by the OFDM system.
  • the subcarrier resources allocated by the channel are different.
  • the frequency time domain resource allocation on the coincident frequency band satisfies one or more of the following according to the resource allocation manner specified by the OFDM system. condition:
  • the frequency time domain resources allocated for the PCFICH of the first cell and the second cell do not overlap
  • the frequency time domain resources allocated for the PHICH of the first cell and the second cell do not overlap
  • the frequency time domain resources allocated for the PHICH of the first cell and the PCFICH of the second cell do not overlap;
  • the frequency time domain resources allocated for the PCFICH of the first cell and the PHICH of the second cell do not overlap.
  • Deploying the first cell and the second cell respectively according to the first frequency band and the second frequency band with the standard bandwidth including:
  • the CRS symbol positions in the coincident subcarriers of the first cell and the second cell are the same by setting the physical cell identification number PCI of the first cell and the second cell.
  • the allocating the frequency time domain resources to the data of the first cell and the second cell further includes:
  • the overlapping frequency band if the frequency domain time resource positions allocated for the control channel and/or the reference signal of the first cell and the second cell overlap, conflict processing is performed, and a control channel or a reference signal of one of the cells is selected.
  • the data is used as data at the overlap.
  • the conflict handling includes:
  • the value of the CRS at the overlap is determined according to one or more of the following rules:
  • Rule 3 If the conditions of Rule 1 and/or Rule 2 are not met, the value of the CRS at the overlap is determined by the calculation manner of the first cell or the second cell.
  • the conflict handling includes:
  • the method further includes:
  • Mapping data of the first cell and the second cell to the result of frequency time domain resource allocation And transmitting, on each subcarrier of an overall frequency band formed by the first frequency band and the second frequency band.
  • the bandwidth of the coincidence frequency band is equal to the bandwidth of the N resource blocks, where the resource block is the smallest unit for allocating resources to the user, and N is a positive integer.
  • a base station for an orthogonal frequency division multiplexing OFDM system comprising:
  • the cell deployment module is configured to: deploy the first cell and the second cell respectively according to the first frequency band and the second frequency band with the standard bandwidth, where the first frequency band and the second frequency band partially overlap, and the overlapping portions form a coincident frequency band;
  • the resource allocation module is configured to: allocate frequency domain time resources for the data of the first cell and the second cell, and include: uniformly scheduling, allocating data of the first cell and the second cell on the overlapping frequency band Frequency time domain resources;
  • the first cell and the second cell are aligned at a center frequency of each corresponding subcarrier on the overlapping frequency band.
  • the resource allocation module is further configured to:
  • the resource allocation module is set to:
  • User data of the first cell and the second cell are uniformly scheduled to share frequency domain resources of the physical downlink shared channel (PDSCH), and frequency domain resources of the PDSCH are avoided by the first cell and the second cell.
  • the resource allocation module is set to:
  • the resource allocation module is set to:
  • the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • Frequency time domain resources if the frequency and time domain resource positions of the PHICHs of the first cell and the second cell overlap, the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • the first frequency band and the second frequency band are obtained by dividing the entire frequency band owned by the operator.
  • the cell deployment module is set to:
  • the CRS symbol positions in the coincident subcarriers of the first cell and the second cell are the same by setting the physical cell identification number PCI of the first cell and the second cell.
  • the resource allocation module is further configured to:
  • the overlapping frequency band if the frequency domain time resource positions allocated for the control channel and/or the reference signal of the first cell and the second cell overlap, conflict processing is performed, and a control channel or a reference signal of one of the cells is selected.
  • the data is used as data at the overlap.
  • the resource allocation module is set to:
  • the value of the CRS at the overlap is determined according to one or more of the following rules:
  • Rule 3 If the conditions of Rule 1 and/or Rule 2 are not met, the value of the CRS at the overlap is determined by the calculation manner of the first cell or the second cell.
  • the resource allocation module is set to:
  • the resource allocation module is further configured to: map data of the first cell and the second cell to a whole of the first frequency band and the second frequency band according to a frequency time domain resource allocation result of the resource allocation module On each subcarrier of the frequency band;
  • the base station further includes: a transmission processing module configured to: transmit data mapped to each subcarrier of the overall frequency band.
  • the bandwidth of the coincidence frequency band is equal to the bandwidth of the N resource blocks, where the resource block is the smallest unit for allocating resources to the user, and N is a positive integer.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the foregoing solution deploys the first cell and the second cell respectively according to the two frequency bands with the standard bandwidth and the partial overlap, and performs unified scheduling on the data of the first cell and the second cell in the overlapping frequency band, and allocates frequency and time domain resources, which can be fully utilized.
  • the spectrum resources of the OFDM system support the deployment of OFDM systems at any bandwidth, allowing operators to take advantage of the entire bandwidth they have.
  • FIG. 1 is a schematic diagram of a structure of a mobile cellular communication network
  • 2 is a schematic diagram of an OFDM modulation technique
  • FIG. 3 is a schematic diagram of a logical structure of an LTE system
  • 4 is a schematic diagram of LTE adopting OFDM multiple access technology for radio resource allocation
  • Figure 5 is a flow chart of a method of an embodiment of the present invention.
  • FIG. 6 is a block diagram of a base station in accordance with an embodiment of the present invention.
  • the embodiment of the present invention provides a method for using a spectrum resource of an OFDM system.
  • the OFDM system may be an LTE system or a subsequent evolution system of an LTE system, such as an LTE-A system, a 5G system, or the like, and may also be used in other OFDM systems.
  • the method in this embodiment includes:
  • Step 110 Deploy a first cell and a second cell respectively according to the first frequency band and the second frequency band with a standard bandwidth, where the first frequency band and the second frequency band partially overlap, and the overlapping portions form a coincident frequency band;
  • the first cell and the second cell are aligned at a center frequency of each corresponding subcarrier on the overlapping frequency band.
  • the bandwidth of the overlapping frequency band is equal to the bandwidth of the N resource blocks, where the resource block is a minimum unit for allocating resources to the user, and N is a positive integer.
  • the first frequency band and the second frequency band in this step may be obtained by dividing the entire frequency band owned by the operator, and the entire frequency band owned by the operator may be divided into two or more frequency bands having standard bandwidth, including the The first frequency band and the second frequency band.
  • the physical channel of the synchronization channel and/or the cell of the first cell and the second cell is broadcasted according to the resource allocation manner specified by the OFDM system.
  • the subcarrier resources allocated by the channel are different.
  • the frequency time domain resource allocation on the coincident frequency band satisfies one or more of the following according to the resource allocation manner specified by the OFDM system. condition:
  • the frequency time domain resources allocated for the PCFICH of the first cell and the second cell do not overlap
  • the frequency time domain resources allocated for the PHICH of the first cell and the second cell do not overlap
  • the frequency time domain resources allocated for the PHICH of the first cell and the PCFICH of the second cell do not overlap;
  • the frequency time domain resources allocated for the PCFICH of the first cell and the PHICH of the second cell do not overlap.
  • the first cell and the second cell when the first cell and the second cell are respectively deployed based on the first frequency band and the second frequency band having the standard bandwidth, the first cell and the second cell may be set.
  • the PCI of the second cell is such that the CRS symbol positions of the first cell and the second cell in the coincident subcarriers are the same. Because the CRS occupies more frequency and time domain resources, the PCI of the two cells is set as above, so that the frequency and time domain resources of the CRS of the first cell and the second cell are the same, thereby avoiding occupying too many resources and affecting the transmission of other data.
  • Step 120 Allocating frequency-time domain resources for the data of the first cell and the second cell, including: uniformly scheduling data of the first cell and the second cell, and allocating frequency time domain resources on the overlapping frequency band .
  • allocating the frequency time domain resources to the data of the first cell and the second cell, including the user data, the control channel data, the reference signal, and the like may further include:
  • the data of the first cell and the second cell are uniformly scheduled in the overlapping frequency band, and the frequency time domain resource is allocated, and the following one or more scheduling modes may be included:
  • User data of the first cell and the second cell are uniformly scheduled to share frequency domain resources of the physical downlink shared channel (PDSCH), and frequency domain resources of the PDSCH are avoided by the first cell and the second cell.
  • the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • Frequency time domain resources if the frequency and time domain resource positions of the PHICHs of the first cell and the second cell overlap, the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • control channels, reference signals such as synchronization channels, broadcast channels, CRS, etc.
  • the control channels and/or reference signals of the first cell and the second cell are in the overlapping frequency band.
  • the frequency time domain resource locations may still overlap (may be between the control channels of two cells, between the reference signals of two cells, between the control channel of one cell and the reference signal of another cell, etc.), such as There is an overlap situation, in which case conflict processing is required, and the data of the control channel or reference signal of one of the cells is selected as the data of the overlap. It is equivalent to allocating frequency time domain resources for the selected control channel data.
  • the value of the CRS at the overlap is determined according to one or more of the following rules:
  • Rule 3 If the conditions of rule 1 and/or rule 2 are not met, the value of the CRS at the overlap is determined by the calculation manner of the first cell or the second cell, and the probability that the CRS values of the two cells are selected may be equal.
  • the CRS is used for channel estimation, so the above rule 1 is for the broadcast data to be correctly decoded by the terminal, and the second rule is advantageous for decoding the user data.
  • the PHICH data of the first cell or the second cell is selected as the PHICH of the overlap. data.
  • the method may further include: mapping data of the first cell and the second cell to the first according to a result of frequency time domain resource allocation
  • Each subcarrier of an overall frequency band formed by the frequency band and the second frequency band is transmitted and transmitted.
  • the processing at the time of transmission includes modulation, IFFT conversion, addition of a cyclic prefix, digital-to-analog conversion, and up-conversion processing to form an airborne RF transmission waveform.
  • the bandwidth of the new cell is the bandwidth of the overall frequency band, and the bandwidth can be non-standard, and the overlapping frequency band of the first frequency band and the second frequency band can be adjusted. It is very close to or equal to the bandwidth of the entire frequency band owned by the operator.
  • mapping after the resource allocation of the two cell data is completed (the collision processing has been performed at the time of allocation), the data of the two cells is directly mapped to each of the entire frequency bands according to the frequency time domain resources allocated for the data.
  • the data of the first cell is first mapped to the subcarrier of the first frequency band, and the data of the second cell is used.
  • each subcarrier On each subcarrier.
  • the embodiment further provides a base station of an OFDM system, which may be a long-term evolution LTE system or a subsequent evolution system of the LTE system.
  • the base station includes:
  • the cell deployment module 10 is configured to: deploy the first cell and the second cell respectively according to the first frequency band and the second frequency band with the standard bandwidth, where the first frequency band and the second frequency band partially overlap, and the overlapping portions form a coincident frequency band.
  • the resource allocation module 20 is configured to: allocate frequency information for data of the first cell and the second cell
  • the domain resource includes: uniformly scheduling data of the first cell and the second cell, and allocating frequency time domain resources on the overlapping frequency band.
  • the first cell and the second cell are aligned at a center frequency of each corresponding subcarrier on the overlapping frequency band.
  • the resource allocation module 20 is further configured to:
  • the resource allocation module 20 is configured to:
  • User data of the first cell and the second cell are uniformly scheduled to share frequency domain resources of the physical downlink shared channel (PDSCH), and frequency domain resources of the PDSCH are avoided by the first cell and the second cell.
  • the resource allocation module 20 is configured to:
  • the resource allocation module 20 is configured to:
  • the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • Frequency time domain resources if the frequency and time domain resource positions of the PHICHs of the first cell and the second cell overlap, the first cell and the second cell are uniformly scheduled to respond to the uplink transmission ARQ to share the PHICH of the overlap.
  • the first frequency band and the second frequency band are obtained by dividing the entire frequency band owned by the operator.
  • the cell deployment module 10 is configured to:
  • the CRS symbol positions of the first cell and the second cell in the coincident subcarrier are the same.
  • the resource allocation module 20 is further configured to:
  • the overlapping frequency band if the frequency domain time resource positions allocated for the control channel and/or the reference signal of the first cell and the second cell overlap, conflict processing is performed, and a control channel or a reference signal of one of the cells is selected.
  • the data is used as data at the overlap.
  • the resource allocation module 20 is configured to:
  • the value of the CRS at the overlap is determined according to one or more of the following rules:
  • Rule 3 If the conditions of Rule 1 and/or Rule 2 are not met, the value of the CRS at the overlap is determined by the calculation manner of the first cell or the second cell.
  • the resource allocation module 20 is configured to:
  • the resource allocation module is further configured to: allocate frequency domain resources according to the resource allocation module As a result, the data of the first cell and the second cell are mapped to each sub-carrier of an overall frequency band formed by the first frequency band and the second frequency band; the sub-carrier mapping process can be regarded as a link of the resource allocation process. .
  • the base station further includes a transmission processing module 30 configured to: transmit data mapped to each subcarrier of the overall frequency band.
  • the bandwidth of the overlapping frequency band is equal to the bandwidth of the N resource blocks, where the resource block is a minimum unit for allocating resources to the user, and N is a positive integer.
  • the bandwidths of the two frequency bands used by the first cell and the second cell are consistent with the definitions of standards such as 3GPP, and can support universal terminal access.
  • the degree of coincidence of the two bands the total bandwidth of the two bands can be matched to the width of the entire band owned by the operator, thereby making full use of its spectrum resources.
  • a cell with a higher bandwidth can be deployed, which can give a single user a higher data rate.
  • the first cell and the second cell may each allocate resources.
  • the data of the two cells are uniformly scheduled, and the frequency time domain resources are allocated to realize dynamic sharing of resources on the coincident frequency band and avoid resource conflicts.
  • the base station allocates corresponding resources to the cell according to the cell actually accessed by the terminal.
  • each cell conforms to the standard defined bandwidth.
  • the terminal chooses to connect to one of the cells and uses standard bandwidth for data transmission. It does not pay attention to whether the frequency bands of these cells overlap.
  • the operator has a band resource of about 6.06 to 6.26 MHz bandwidth, which is slightly higher than the standard defined 5 MHz LTE bandwidth and far below the standard defined 10 MHz LTE bandwidth.
  • the entire frequency band is divided into a 5 MHz standard bandwidth band deployment cell A1, and a 3 MHz standard bandwidth band is deployed to the cell B1, and the two frequency bands used by the two cells overlap 7 PRBs, and the two frequency bands are configured.
  • the overall frequency band is just enough to fully use the entire frequency band owned by the operator.
  • the frequency band used by the cell C1 is the frequency band formed by the frequency band used by the cell A1 and the frequency band used by the cell B1.
  • a total of 25 PRBs occupy a bandwidth of 4.5 MHz, wherein each PRB occupies a bandwidth of 180 kHz.
  • the cell A1 actually occupies a bandwidth of 4.8 to 5 MHz.
  • this example also defines a cell B1 with a bandwidth of 3MHz.
  • a total of 15 PRBs occupy a total bandwidth of 2.7MHz, and each PRB also occupies a frequency of 180KHz. width.
  • Cell B1 and cell A1 overlap 7 PRBs, but staggered 8 PRBs. Since the cell B1 and the cell A1 use continuous OFDM modulation techniques, the subcarriers of the cell B1 and the cell A1 are orthogonal to each other.
  • the 25 PRBs of the cell A1, plus the 8 PRBs in which the cell B1 does not overlap with the cell A1, can deploy 33 PRBs on the entire spectrum, that is, occupy a 5.94 MHz bandwidth to form the cell C1.
  • the protection bandwidth of about 0.3 to 0.5 MHz on both sides, that is, it can be used at a bandwidth of about 6.24 to 6.46 MHz.
  • a total of 15 PRBs of PRB0 to PRB14 in cell C1 can be allocated for use by cell B1, and a total of 25 PRBs of PRB8 to PRB32 can be allocated for use by cell A1.
  • the cell A1 and the cell B1 use a total of 7 PRBs in PRB8 to PRB14, the cell B1 uses PRB0 to PRB7 alone, and the cell A1 uses 18 PRBs in PRB15 to PRB32.
  • the cell A1 or B1 allocates resources to the users it serves, it follows the principle of the cell PR1 number of the cell A1 or B1.
  • the spectrum bandwidth of the LTE standard cell defined by the 3GPP standard can be extended in units of 1 PRB.
  • the synchronization channels of the cell A1 and the cell B1 are synchronized in time, but the 72 subcarriers used do not overlap at all, so the terminal can distinguish the synchronization channels of different cells, and can synchronize with the two cells respectively.
  • PBCH Cell Physical Broadcast Channel
  • the broadcast channels of cell A1 and cell B1 are synchronized in time, but the 72 subcarriers used do not overlap at all. Therefore, after acquiring the synchronization with the cell A1 or the cell B1, the terminal can read the PBCH broadcast channel content.
  • the cell A1 defines the bandwidth of the cell in its broadcast channel content to be 5 MHz
  • the cell B1 defines the bandwidth of the cell in the content of its broadcast channel to be 3 MHz.
  • the terminal accessed by the cell A1 or the cell B1 performs data transmission according to the bandwidth defined by the cell connected to each other, and does not use the spectrum resource beyond the bandwidth of the cell A1 or the cell B1.
  • the parameters such as the bandwidth of the overlapping frequency band can be made such that the synchronization channel and the broadcast channel between the cell A1 and the cell B1 do not overlap in the resources, so that the terminal can distinguish the two cells.
  • this example completely shifts the synchronization channel and the PBCH of the two upper cells in the frequency domain, if there is a partial overlap in the frequency domain, it is also possible to be staggered by the time domain.
  • the CRS in the LTE system has two characteristics. One is that the location of the CRS in each PRB is determined by the PCI, and the other is that the value of the CRS of the entire cell constitutes a PCI-related sequence, and the values of different symbol positions in different subcarriers may be Not the same.
  • the PCI selection of the cell A1 and the cell B1 in this example is either the same, or the difference is a multiple of 6, so that the CRSs of the cell A1 and the cell B1 are in the coincident frequency band (also referred to as coincident spectrum).
  • the location of the PRB will be completely coincident, avoiding each cell transmitting CRS using symbols of different locations, consuming more frequency time domain resources, and affecting the transmission of other data.
  • the CRSs in the same position in the frequency time domain are not necessarily the same according to the values calculated by the cell A1 and the cell B1, so the cell A1 and The value of CRS in cell B1 on the coincident frequency band will be in conflict.
  • Rule 3 if the conditions of rule one and/or rule two are not met, the first cell is randomly selected Or the calculation manner of the second cell determines the value of the CRS at the overlap, and the probability of using the two cell calculation manners may be the same.
  • the terminal connected in different cells receives the CRS value that is not defined by the cell at the specified CRS location, the coherent demodulation performance will be affected to some extent, and the degree of influence is related to the coherent demodulation algorithm adopted by the terminal.
  • the CRS of the first cell and the CRS of the second cell are all calculated according to the calculation manner of the local cell.
  • PCFICH Physical Control Format Indicator Channel
  • the PCFICH is scrambled by using the cell identifier, in order to ensure that users connected to different cells can demodulate the PCFICH, it is necessary to ensure that the allocation of the PCFICH of the different cells in the frequency and time domain resources does not overlap.
  • the PCFICH of the present cell A1 appears in the PRB8, PRB14, PRB20, and PRB26 in which the cell C1 is the reference
  • the PCFICH of the cell B1 appears in the PRB0, PRB3, PRB7, and PRB11 in which the cell C1 is the reference. It can be seen that the other PCHICHs of the two cells use different PRBs and do not overlap.
  • the PCFICH of the two cells can be basically staggered, and if individual REs cannot be staggered, they can be treated as conflicts.
  • the PCFICH of one of the cells is selected, and the PCFICH of the other cell will be wrongly packetized, but the PCFICH channel itself also has strong error correction capability.
  • the PHICH uses the cell identifier to perform scrambling, in order to ensure that users connected to different cells can demodulate the PHICH, it is necessary to ensure that the PHICHs of different cells do not overlap in the allocation of frequency and time domain resources, or avoid different cells simultaneously using the same frequency by scheduling.
  • the PHICH channel of the domain If the 5 MHz cell A is configured with 2 PHICH groups and the 3 MHz cell B is configured with 2 PHICH groups, according to the provisions of the LTS system, the PHICH of the present example cell A1 may be calculated to appear on the cell C1 as the reference PRB8/9, PRB16/17, and PRB24. Within /25, the PHICH of cell B1 appears in PRB0/1, PRB5, and PRB10 with cell C1 as the reference. The PHICHs of the two cells do not overlap.
  • the collision processing can also be performed. If the value of one cell is selected, only one REG block of another cell user will be flushed, and two left. The REG block can be decoded.
  • the cell A1 and the cell B1 use different frequency and time domain resources to transmit the PHICH and the PCFICH, and also reduce the number of resources that can be allocated to the PDCCH, it is necessary to consider using more symbols per subframe, such as 2 or 3 symbols.
  • the PDCCH, and the PDCCH channel of the cell A1 or the cell B1 must avoid the frequency time domain resources that have been occupied by the CRS, PHICH, and PCFICH of the two cells.
  • the two cells can dynamically allocate the frequency-time domain resources of the PDCCHs of all connected users as a whole, and prevent the two cells from allocating the same frequency time domain for the respective users.
  • the two cells can be dynamically allocated as the frequency domain time resources of the PDSCH of all connected users as a whole, and the two cells are prevented from being allocated the same frequency time domain resources for the respective users. . If some time slots of a certain PRB of the coincidence band have been allocated to the user of the cell A1, the same time slot cannot be allocated to the user of the cell B1. In a PRB that does not overlap spectrum, two cells can independently allocate PDSCH frequency time domain resources for respective users.
  • the high-level algorithm may decide to use the inter-cell handover signaling procedure to migrate users connected to a certain cell to other cells to provide services based on the number of users and the amount of traffic in each cell.
  • the operator has a band resource of about 7.86 to 8.06 MHz bandwidth, which is higher than the standard defined 5 MHz LTE bandwidth and lower than the standard defined 10 MHz LTE bandwidth.
  • the whole frequency band is divided into two frequency bands of 5MHz standard bandwidth and cells A2 and B2 are respectively deployed, which overlaps 8 PRBs and staggers 17 PRBs, just enough to fully use the existing wireless bandwidth to form a new one.
  • the frequency band used by the cell C2 is an overall frequency band composed of two frequency bands.
  • the subcarriers of the cell B2 and the cell A2 are orthogonal to each other, and no guard bandwidth is required.
  • the 25 PRBs of the cell A2, plus the 17 PRBs that the cell B2 does not overlap with the cell A2, can deploy 42 PRBs on the entire spectrum, that is, occupy a bandwidth of 7.56 MHz to form a new cell C2.
  • the protection bandwidth of about 0.3 to 0.5 MHz on both sides that is, it can be used at a bandwidth of about 7.86 to 8.06 MHz.
  • a total of 25 PRBs of PRB0 to PRB24 of cell C2 can be allocated for use by cell B2, and a total of 25 PRBs of PRB17 to PRB41 can be allocated for use by cell A2.
  • the cell A2 and the cell B2 use a total of 8 PRBs from PRB17 to PRB24, the cell B2 uses 17 PRBs of PRB0 to PRB16, and the cell A2 uses 17 PRBs of PRB25 to PRB41.
  • the number of the PRB is different from the PRB number of the cell C2
  • the PRB0 of the cell A2 corresponds to the PRB17 of the cell C
  • the PRB1 of the cell A2 corresponds to the PRB 18 of the cell C2, and so on.
  • the cell A2 allocates resources for the users it serves, it actually follows the PRB numbering principle of the cell A2 itself. The same is true for cell B2.
  • cell A2 and cell B2 are synchronized in time, but the 72 subcarriers used do not overlap at all, so the terminal can distinguish the synchronization channels of different cells, and can synchronize with the two cells respectively.
  • cell A2 and cell B2 may use the same or different PCI.
  • PBCH Cell Physical Broadcast Channel
  • the broadcast channels of cell A2 and cell B2 are synchronized in time, but the 72 subcarriers used do not overlap at all. Therefore, after acquiring the synchronization with cell A2 or cell B2, the terminal can read the PBCH broadcast channel content.
  • the cells A2 and B2 define the bandwidth of the cell in the content of the broadcast to be 5 MHz.
  • the terminals accessed by the cell A2 or the cell B2 respectively perform data transmission according to the defined bandwidth, and do not use the bandwidth beyond the bandwidth. Spectrum resources.
  • This example allocates a non-overlapping synchronization channel and a broadcast channel to the cell A2 and the cell B2, so that the terminal can distinguish the two cells.
  • the CRS has two characteristics. One is that the CRS is determined by the PCI at the position of each PRB, and the other is that the value of the CRS of the entire cell constitutes a PCI-related sequence, and the values of different symbol positions may be different in different subcarriers.
  • the PCI selection of the cell A2 and the cell B2 in this example is either the same, or the difference is a multiple of 6, so that the CRS of the cell A2 and the cell B2 will completely coincide with each PRB in the coincident frequency band, avoiding Each cell transmits CRSs using symbols at different locations, consuming more frequency time domain resources.
  • the CRSs of the same location in the frequency time domain are not necessarily the same according to the values calculated by the cell A2 and the cell B2, so the cell A2 and The value of the CRS of the cell B2 on the overlapping partial spectrum will be in conflict.
  • Rule 3 If the conditions of Rule 1 and/or Rule 2 are not met, the value of the CRS at the overlap is determined by the calculation manner of the first cell or the second cell, and the probability of using the two cell calculation modes may be the same.
  • the terminal connected in different cells receives the CRS value that is not defined by the cell at the specified CRS location, the coherent demodulation performance will be affected to some extent, and the degree of influence is related to the coherent demodulation algorithm adopted by the terminal.
  • PCFICH Physical Control Format Indicator Channel
  • the PCFICH is scrambled by using the cell identifier, in order to ensure that users connected to different cells can demodulate the PCFICH, it is necessary to ensure that the allocation of the PCFICH of the different cells in the frequency and time domain resources does not overlap.
  • the PCFICH of the cell B2 in the present example appears in the PRB0, PRB6, PRB12, and PRB18 with the cell C2 as the reference, and the PCFICH of the cell A2 appears in the PRB17, PRB23, and PRB29 with the cell C2 as the reference. And within PRB35. It can be seen that the PCFICH of the two cells does not overlap.
  • the PHICH uses the cell identifier to perform scrambling, in order to ensure that users connected to different cells can demodulate the PHICH, it is necessary to ensure that the PHICHs of different cells do not overlap in the allocation of frequency and time domain resources, or avoid different cells simultaneously using the same frequency by scheduling.
  • the PHICH channel of the domain Such as
  • the two PHMS groups are configured in the two 5 MHz cells, it can be calculated that the PHICH of the cell B2 in the present example appears in the PRB0/1/2, PRB8/9/10, and PRB16/17/18 with the cell C2 as the reference, and the cell The PHICH of A2 appears in PRB17/18/19, PRB25/26/27 and PRB33/34/35 based on cell C2.
  • the PHICH of the cell A2 in the PRB 17/18 is the same as the PHICH time domain resource of the cell B2 in the PRB 17/18, and the PHICH of the A2 in the PRB 18 and the cell B2 in the PRB 18
  • the PCFICH frequency time domain resources are the same.
  • the other PHICHs of the two cells do not overlap. Therefore, when the PHICH resource is allocated to the user of the cell A2 or B2 during scheduling, it is necessary to avoid the frequency time domain resources occupied by the PRB 17 and the PRB 18 by another cell.
  • This example uses three symbols to transmit the PDCCH.
  • the cell A2 or the cell B2 When transmitting the PDCCH channel, the cell A2 or the cell B2 must avoid the frequency time domain resources that have been occupied by the above-mentioned channel.
  • the two cells can dynamically allocate the frequency-time domain resources of the PDCCHs of all connected users as a whole, and prevent the two cells from allocating the same frequency time domain for the respective users. Conflicts with resources. If some symbols of a certain PRB of the coincidence band have been allocated to the user of the cell A2, the same symbol can no longer be allocated to the user of the cell B2.
  • two cells In a PRB that does not overlap spectrum, two cells can independently allocate PDCCH frequency time domain resources for respective users.
  • the PBCH and PDCCH frequency time domain resources of the cell A2 and the cell B2 may occupy the data channel frequency time domain location of the opposite cell, each cell needs to avoid the resources occupied by the PBCH and the PDCCH of other cells when allocating resources to the respective users.
  • the two cells can be dynamically allocated as the frequency domain time resources of the PDSCH of all connected users, and the two cells are prevented from being assigned the same frequency time domain resources for the respective users. . If some time slots of a certain PRB of the coincidence band have been allocated to the user of the cell A2, the same time slot cannot be allocated to the user of the cell B2.
  • two cells can independently allocate PDSCH frequency time domain resources for respective users.
  • the high-level algorithm may decide to use the inter-cell handover signaling procedure to migrate users connected to a certain cell to other cells to provide services based on the number of users and the amount of traffic in each cell.
  • This example is similar to Example 2 and can be deployed with a bandwidth of 8.4 to 8.6 MHz.
  • Two 5MHz bandwidth cells A3 and B3 are used, but only 5 PRBs are overlapped by 20 PRBs.
  • the 25 PRBs of the cell A3, plus the 20 PRBs of the cell B3 that do not overlap with the cell A3, can deploy 45 PRBs on the entire spectrum, that is, occupy a bandwidth of 8.1 MHz to form a new cell C3.
  • a total of 25 PRBs of PRB0 to PRB24 of cell C3 can be allocated for use by cell B3, and a total of 25 PRBs of PRB20 to PRB44 can be allocated for use by cell A3.
  • the cell A3 and the cell B3 jointly use PRB20 to PRB24 for a total of 5 PRBs, the cell B3 uses PRB0 to PRB19 for a total of 20 PRBs, and the cell A3 uses PRB25 to PRB44 for a total of 20 PRBs.
  • the number of the PRB is different from the PRB number of the cell C3, the PRB0 of the cell A3 corresponds to the PRB20 of the cell C3, the PRB1 of the cell A3 corresponds to the PRB 21 of the cell 3, and so on.
  • the cell A3 allocates resources for the users it serves, it actually follows the principle of the cell A3's own PRB number. The same is true for cell B3.
  • This example also uses another solution for CRS collisions of two cells, that is, the CRS positions are staggered by the PCI settings of the two cells, such as the rule that the two cells PCI modulo 6 are different by one. And the CRS transmission of the two cells is reserved at the same time in the coincident PRB, thus reducing the influence on the channel coherent demodulation. At the same time, this means that if the data of one cell is in the CRS position of another cell, it will not be circumvented by the high-level scheduling, or it will be directly covered by the CRS value and restored by the redundancy error correction capability of the data itself.
  • the application of the embodiment of the present invention can adapt to the requirements of different bandwidths by appropriately adjusting the bandwidth of the overlap between cells.
  • the computer program can be implemented in a computer readable storage medium, the computer program being executed on a corresponding hardware platform (such as a system, device, device, device, etc.), when executed, including One or a combination of the steps of the method embodiments.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the first cell and the second cell are respectively deployed according to the two frequency bands with the standard bandwidth and the partial overlap, and the data of the first cell and the second cell in the coincidence frequency band are uniformly scheduled, and the frequency and time domain resources are allocated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种正交频分复用***频谱资源的使用方法及相应的基站,基站基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段;基站为所述第一小区和第二小区的数据分配频时域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源;其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。

Description

一种正交频分复用***频谱资源的使用方法及相应的基站 技术领域
本申请涉及但不限于无线通信***。
背景技术
无线通信(Wireless Communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,为人们提供了一种快速便捷的通讯手段。无线通信一种典型的应用是部署一些固定的收发信机,可以称为基站,通过无线的方式给众多移动收发信机即终端,提供通信连接。固定的基站可以与电信或数据有线网络连接,这样终端就可以通过基站连接到大范围的电信或数据网络,实现相互间的通信,或者与固定终端的通信,或者访问互联网(Internet)业务。
为保证无线通信双方能够建立起连接,需要双方都遵循预定义的无线规范,包括空中收发的无线频率、调制技术、数据编码格式,以及相关的通信控制命令等。
当前广泛使用的移动蜂窝通信网络就是无线通信的一种,一般由ITU(国际电信联盟)的相关机构定义全球适用的频段和技术,发布相应的国际标准,以便符合协议规范的移动终端可以在不同国家间漫游。
移动蜂窝通信网络的运营商需要向无线频谱监管部门申请频谱资源,并且只能得到有限频宽的频谱资源。为建设更大容量的网络,提供更多用户服务,移动通信网络一般采用蜂窝型空间分集方式,在不同地理区域复用频谱资源。移动蜂窝通信网络的基站设备都可以使用多个天线完成对地理区域的无线覆盖,每个天线覆盖的区域可以称为一个扇区。每个扇区中还可以使用频率分集方式,部署多个载频。每个扇区的每个接入载波,可以称为一个小区(Cell),是移动终端在网络的接入点。移动蜂窝通信网络结构如图1所示。
移动蜂窝通信网络发展过程中经历了以AMPS(先进的移动电话***) 和TACS(总接入通信***)为代表的FDMA(频分多址接入)技术,以GSM(全球移动通信***)为代表的TDMA(时分多址接入)技术和以UMTS(通用移动通信***)为代表的CDMA(码分多址接入)技术等阶段,现在演进到以LTE(长期演进)为代表的OFDM(Orthogonal Frequency Division Multiplexing,正交频分多址)技术。其中OFDM技术也在Wifi、WiMAX和Bluetooth等无线通信中使用。OFDM技术使用相互正交的子载波调制数据,如图2所示,可以比传统频分FDM技术具备更高的频谱使用效率。每个子载波频宽较低,调整符号速率也较低,有效降低码间干扰,可以并行使用足够多的子载波提升整体传输速率。采用OFDM技术的无线通信***具备频分调度能力,能够为不同用户分配不同的子载波。
LTE是相对于UMTS的长期演进***,同属于IMT标准协议家族,由3GPP组织制定,在R8协议版本开始引入。LTE是基于EPC(演进数据包核心网)的接入网eUTRAN(增强通用陆地接入网)。LTE***的逻辑结构如图3所示。
LTE基于OFDM技术,以15KHz为子载波频宽,10ms为一个无线帧,1ms为一个子帧和TTI调度周期,在频域和时域上灵活分配资源。如图4所示,每个子载波1ms子帧可以包括2个时隙,每个时隙包括6或7个调制符号。每个子载波上的一个符号定义为一个资源单元(RE:Resource Element),是LTE频时域资源分配的最小单位。频率上连续的12个子载波持续一个时隙的资源定义为一个资源块RB(Resource Block)。LTE基站eNB可以RB为粒度给不同用户分配资源,调度数据传输。在物理层定义的RB,也称为PRB,每个PRB在频域上占用180KHz。
在上述频时域资源定义基础上,LTE小区定义了不同类型的下行信道,以及每种信道使用的频时域资源。
一)同步信道
包括基本同步信道PSS和辅助同步信道SSS,用于终端在初始小区搜索时捕获小区同步信息,每个10ms无线帧传输两次。在时域上,FDD LTE小区PSS处于每个无线帧第1和第11个时隙的最后一个OFDM符号上,SSS直接位于PSS之前。在频域上,PSS和SSS映射到LTE小区中心的62个子 载波内传输。不同小区的PSS和SSS使用不同的数值序列,168个SSS序列和3个PSS序列组合,可以表示504个不同的物理小区识别号PCI。
二)小区物理广播信道(PBCH)
PBCH是用于承载包括小区其他信道配置和操作信息的广播信道BCH。PBCH紧随着第1个时隙上基本同步信道PSS后发射,使用小区的中心72个子载波,并且仅出现在一个无线帧第二个时隙的前四个符号,每40ms重复一次。这样终端可以在不知道小区频宽的前提下,通过扫描小区同步信号,识别小区中心频率后就可以读出BCH信息。
三)小区专用参考信号(CRS)
按照3GPP定义,LTE小区必须在特定的子载波的每个时隙的特定符号上发射小区专用参考信号CRS,其位置与天线端口号有关。以第一个天线端口上的CRS位置为例,时域上出现在每个时隙的第1和第5个符号,频域上第1个符号上CRS出现在每个PRB的第1和第7个子载波,第5个符号上CRS出现在每个PRB的第4和第10个子载波。
CRS主要用于三个目的,作为下行物理信道相干解调的信道估计、捕获信道状态信息,及测量CRS作为小区选择和切换的依据。CRS值序列的产生及映射机制在3GPP标准协议TS36.201有详细定义。
四)物理控制格式指示信道(PCFICH)
PCFICH用于指示每个无线子帧中物理下行链路控制信道(PDCCH)使用的符号数,可以为1、2或3。每个LTE小区的PCFICH分成四段,每段四个RE组成一个资源单元组(REG),每一个REG占用四个连续的子载波(需要间隔出CRS占用的RE),并且只使用每个子帧的第一个符号。PCFICH的四组REG在整个带宽平均分布,因此PCFICH在频域上的位置与小区的频宽相关。
五)物理混合ARQ指示信道(PHICH)
PHICH用于上行传输ARQ的应答信令,可能为肯定ACK或否定NACK。多个PHICH映射到同一组资源单元上,构成一个PHICH组。每一PHICH组分成三段,每段四个RE组成一个REG,每个REG占用四个连续的 子载波(需要间隔出CRS占用的RE)的相同位置符号,一般为每个子帧的第一个符号。每一PHICH组的三个REG在整个带宽平均分布,因此PHICH在频域上的位置与小区的频宽相关。每个小区至少配置1组PHICH,也可以配置多组PHICH。
六)物理下行链路控制信道(PDCCH)
PDCCH传输一个或一组终端的资源分配信令,使用每个子帧的前1、2或3个符号,实际使用的数量由映射在该子帧上的PCFICH信道定义。在每个子帧的前1、2或3个符号中,除小区CRS、PCFICH和PHICH占用的频时域资源外的频时域资源都可以用于PDCCH传输。
七)物理下行共享信道PDSCH
PDSCH是LTE小区承载用户数据的下行链路信道,以RB为基本传输单元。每个RB除了上述定义的参考信号和控制信道外,剩余的符号都可以用于PDSCH信道传输。
LTE的小区可以使用灵活的无线带宽,3GPP已定义的标准频段带宽包括1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz等。每个LTE小区使用的频宽,在小区的广播控制信息中通知终端,终端可以按照此信息在整个频宽上解调无线信号,进行数据传输。如果移动蜂窝通信网络的运营商拥有的频谱资源并不等于3GPP标准定义的频宽,可以基于标准频宽为单位将整个频谱划分成多个载波,每个载波形成一个小区。LTE***还定义了将不同载波组合起来使用的功能CA(载波聚合),终端可以同时在不同载波的多个小区上同时进行数据传输,提高了峰值吞吐率。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
虽然LTE的小区定了多种频宽并能组合使用,可以在不同频谱资源条件时灵活部署。但是每种频宽及其组合依然有限,仍然存在很多场景不能充分利用运营商拥有的频谱资源。将有限频宽划分为较小的子频宽进行组合,也 会影响不支持CA功能终端的峰值速率。
一种正交频分复用OFDM***频谱资源的使用方法,包括:
基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段;
为所述第一小区和第二小区的数据分配频时域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源;
其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。
可选地,
为所述第一小区和第二小区的数据分配频时域资源,还包括:
在所述第一频段除所述重合频段外的频段上,对所述第一小区的数据进行调度,分配频时域资源;
在所述第二频段除所述重合频段外的频段上,对所述第二小区的数据进行调度,分配频时域资源。
可选地,
在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,包括:
在所述重合频段上,统一调度第一小区和第二小区的用户数据以共享物理下行共享信道PDSCH的频时域资源,所述PDSCH的频时域资源避开第一小区和第二小区的参考信号和控制信道占用的频时域资源。
可选地,
在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,包括:
在所述重合频段上,统一调度所述第一小区和第二小区的资源分配信令以共享物理下行链路控制信道PDCCH的频时域资源,所述PDCCH的频时域资源避开所述第一小区和第二小区的小区专用参考信号CRS、物理控制格式指示信道PCFICH和物理混合ARQ指示信道PHICH占用的频时域资源。
可选地,
在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,包括:
在所述重合频段上,如所述第一小区和第二小区的PHICH的频时域资源位置重叠,统一调度第一小区和第二小区对上行传输ARQ的应答信令以共享重叠处PHICH的频时域资源。
可选地,
所述第一频段和第二频段是将运营商拥有的整个频段划分得到的,所述运营商拥有的整个频段被划分为具有标准频宽的二个或三个以上频段,其中包括所述第一频段和第二频段。
可选地,
将运营商拥有的整个频段划分为具有标准频宽的二个或三个以上频段,包括:
通过选择划分的频段的数量、标准频宽及频段重合部分的频宽,使得按照所述OFDM***规定的资源分配方式,为所述第一小区和第二小区的同步信道和/或小区物理广播信道分配的子载波资源不同。
可选地,
将运营商拥有的整个频段划分为具有标准频宽的二个或三个以上频段,包括:
通过选择划分的频段的数量、标准频宽及频段重合部分的频宽,使得按照所述OFDM***规定的资源分配方式,在所述重合频段上的频时域资源分配满足以下一种或多种条件:
为第一小区和第二小区的PCFICH分配的频时域资源不重叠;
为第一小区和第二小区的PHICH分配的频时域资源不重叠;
为第一小区的PHICH和第二小区的PCFICH分配的频时域资源不重叠;
为第一小区的PCFICH和第二小区的PHICH分配的频时域资源不重叠。
可选地,
基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,包括:
通过设置所述第一小区和第二小区的物理小区识别号PCI,使第一小区和第二小区在重合子载波中的CRS符号位置相同。
可选地,
为所述第一小区和第二小区的数据分配频时域资源,还包括:
在所述重合频段上,如为所述第一小区和第二小区的控制信道和/或参考信号分配的频时域资源位置重叠,则进行冲突处理,选择其中一个小区的控制信道或参考信号的数据作为重叠处的数据。
可选地,
所述冲突处理包括:
在所述重合频段上,为所述第一小区和第二小区的CRS分配的频时域资源位置重叠时,按以下一种或多种规则确定重叠处CRS的值:
规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区或第二小区的计算方式确定该重叠处CRS的值。
可选地,
所述冲突处理包括:
在所述重合频段上,为所述第一小区和第二小区的PHICH分配的频时域资源位置重叠时,选择所述第一小区或第二小区的PHICH数据作为重叠处的PHICH数据。
可选地,
为所述第一小区和第二小区的数据分配频时域资源之后,还包括:
根据频时域资源分配的结果,将所述第一小区和第二小区的数据映射到 所述第一频段和第二频段构成的一整体频段的每个子载波上并进行发射。
可选地,
所述重合频段的频宽等于N个资源块的频宽,其中,资源块是为用户分配资源的最小单位,N为正整数。
一种正交频分复用OFDM***的基站,包括:
小区部署模块,设置为:基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段;
资源分配模块,设置为:为所述第一小区和第二小区的数据分配频时域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源;
其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。
可选地,
所述资源分配模块还设置为:
在所述第一频段除所述重合频段外的频段上,对所述第一小区的数据进行调度,分配频时域资源;
在所述第二频段除所述重合频段外的频段上,对所述第二小区的数据进行调度,分配频时域资源。
可选地,
所述资源分配模块是设置为:
在所述重合频段上,统一调度第一小区和第二小区的用户数据以共享物理下行共享信道PDSCH的频时域资源,所述PDSCH的频时域资源避开第一小区和第二小区的参考信号和控制信道占用的频时域资源。
可选地,
所述资源分配模块是设置为:
在所述重合频段上,统一调度所述第一小区和第二小区的资源分配信令以共享物理下行链路控制信道PDCCH的频时域资源,所述PDCCH的频时域资源避开所述第一小区和第二小区的小区专用参考信号CRS、物理控制格式指示信道PCFICH和物理混合ARQ指示信道PHICH占用的频时域资源。
可选地,
所述资源分配模块是设置为:
在所述重合频段上,如所述第一小区和第二小区的PHICH的频时域资源位置重叠,统一调度第一小区和第二小区对上行传输ARQ的应答信令以共享重叠处PHICH的频时域资源。
可选地,
所述第一频段和第二频段是将运营商拥有的整个频段划分得到的。
可选地,
所述小区部署模块是设置为:
通过设置所述第一小区和第二小区的物理小区识别号PCI,使第一小区和第二小区在重合子载波中的CRS符号位置相同。
可选地,
所述资源分配模块还设置为:为
在所述重合频段上,如为所述第一小区和第二小区的控制信道和/或参考信号分配的频时域资源位置重叠,则进行冲突处理,选择其中一个小区的控制信道或参考信号的数据作为重叠处的数据。
可选地,
所述资源分配模块是设置为:
在所述重合频段上,为所述第一小区和第二小区的CRS分配的频时域资源位置重叠时,按以下一种或多种规则确定重叠处CRS的值:
规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二 小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区或第二小区的计算方式确定该重叠处CRS的值。
可选地,
所述资源分配模块是设置为:
在所述重合频段上,为所述第一小区和第二小区的PHICH分配的频时域资源位置重叠时,选择所述第一小区或第二小区的PHICH数据作为重叠处的PHICH数据。
可选地,
所述资源分配模块还设置为:根据所述资源分配模块的频时域资源分配结果,将所述第一小区和第二小区的数据映射到所述第一频段和第二频段构成的一整体频段的每个子载波上;
所述基站还包括:发射处理模块,设置为:发射映射到所述整体频段的每个子载波上的数据。
可选地,
所述重合频段的频宽等于N个资源块的频宽,其中,资源块是为用户分配资源的最小单位,N为正整数。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
上述方案基于具有标准频宽且部分重合的两个频段分别部署第一小区和第二小区,对重合频带上第一小区和第二小区的数据进行统一调度,分配频时域资源,可以充分利用OFDM***的频谱资源,支持在任意频宽条件下部署OFDM***,使得运营商几乎可以利用拥有的整个频宽。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是移动蜂窝通信网络结构的示意图;
图2是OFDM调制技术的示意图;
图3是LTE***逻辑结构的示意图;
图4是LTE采用OFDM多址接入技术无线资源分配的示意图;
图5是本发明实施例方法的流程图;
图6是本发明实施例基站的模块图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供一种OFDM***频谱资源的使用方法,所述OFDM***如可以为LTE***或者LTE***的后续演进***如LTE-A***、5G***等,也可以用于其他的OFDM***。
如图5所示,本实施例方法包括:
步骤110,基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段;
其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。
可选的,所述重合频段的频宽等于N个资源块的频宽,其中,资源块是为用户分配资源的最小单位,N为正整数。
本步骤中的第一频段和第二频段可以是将运营商拥有的整个频段划分得到的,运营商拥有的整个频段可以划分为具有标准频宽的二个或三个以上频段,其中包括所述第一频段和第二频段。
在选择划分的频段的数量、标准频宽及频段重合部分的频宽时,可以考 虑以下一种或多种方式以避免资源冲突:
通过选择划分的频段的数量、标准频宽及频段重合部分的频宽,使得按照所述OFDM***规定的资源分配方式,为所述第一小区和第二小区的同步信道和/或小区物理广播信道分配的子载波资源不同。
通过选择划分的频段的数量、标准频宽及频段重合部分的频宽,使得按照所述OFDM***规定的资源分配方式,在所述重合频段上的频时域资源分配满足以下一种或多种条件:
为第一小区和第二小区的PCFICH分配的频时域资源不重叠;
为第一小区和第二小区的PHICH分配的频时域资源不重叠;
为第一小区的PHICH和第二小区的PCFICH分配的频时域资源不重叠;
为第一小区的PCFICH和第二小区的PHICH分配的频时域资源不重叠。
本步骤中,根据物理小区识别号PCI和CRS符号位置的关系,基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区时,可以通过设置所述第一小区和第二小区的PCI,使第一小区和第二小区在重合子载波中的CRS符号位置相同。因为CRS占用的频时域资源较多,如上设置两个小区的PCI,可以使第一小区和第二小区的CRS的频时域资源相同,避免占用过多资源而影响其他数据的传送。
步骤120,为所述第一小区和第二小区的数据分配频时域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源。
本步骤中,为所述第一小区和第二小区的数据(包括用户数据、控制信道数据、参考信号等)分配频时域资源,还可以包括:
在所述第一频段除所述重合频段外的频段上,对所述第一小区的数据进行调度,分配频时域资源;
在所述第二频段除所述重合频段外的频段上,对所述第二小区的数据进行调度,分配频时域资源。
其中,在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,可以包括以下一种或多种调度方式:
在所述重合频段上,统一调度第一小区和第二小区的用户数据以共享物理下行共享信道PDSCH的频时域资源,所述PDSCH的频时域资源避开第一小区和第二小区的参考信号和控制信道占用的频时域资源。
在所述重合频段上,统一调度所述第一小区和第二小区的资源分配信令以共享物理下行链路控制信道PDCCH的频时域资源,所述PDCCH的频时域资源避开所述第一小区和第二小区的小区专用参考信号CRS、物理控制格式指示信道PCFICH和物理混合ARQ指示信道PHICH占用的频时域资源。
在所述重合频段上,如所述第一小区和第二小区的PHICH的频时域资源位置重叠,统一调度第一小区和第二小区对上行传输ARQ的应答信令以共享重叠处PHICH的频时域资源。
有些控制信道、参考信号如同步信道、广播信道、CRS等的频时域资源分配无需调度,可以直接按照标准的规定分配相应的资源。如上所述,虽然可以通过对整个频段划分时的参数选择、对其他数据的调度来尽量避免发生资源冲突,但在重合频段上,第一小区和第二小区的控制信道和/或参考信号的频时域资源位置仍有可能重叠(可以是两个小区的控制信道之间、两个小区的参考信号之间,一个小区的控制信道与另一个小区的参考信号之间,等等),如存在重叠的情况,此时需要进行冲突处理,选择其中一个小区的控制信道或参考信号的数据作为重叠处的数据。相当于为选择的控制信道数据分配了频时域资源。
例如,在所述重合频段上,为所述第一小区和第二小区的CRS分配的频时域资源位置重叠时,按以下一种或多种规则确定重叠处CRS的值:
规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区或第二小区的计算方式确定该重叠处CRS的值,两个小区的CRS值被选择的概率可以相等。
CRS用于信道评估,因而上述规则一用于使广播数据被终端正确解码,而规则二则有利于对用户数据的解码。
又如,在所述重合频段上,为所述第一小区和第二小区的PHICH分配的频时域资源位置重叠时,选择所述第一小区或第二小区的PHICH数据作为重叠处的PHICH数据。
为所述第一小区和第二小区的数据分配频时域资源之后,还可以包括:根据频时域资源分配的结果,将所述第一小区和第二小区的数据映射到所述第一频段和第二频段构成的一整体频段的每个子载波上并进行发射。发射时的处理包括调制、IFFT转换、添加循环前缀、数模转换以及上变频处理,形成空中射频发射波形。在基站侧,可以认为形成了一个新的小区,该新的小区的频宽为该整体频段的频宽,该频宽可以是非标的,可以通过调整第一频段和第二频段的重合频段大小使其非常接近或等于运营商拥有的整个频段的频宽。
映射时,可以在完成对两个小区数据的资源分配(分配时已进行冲突处理)后,按照为数据分配的频时域资源,将两个小区的数据直接映射到所述整体频段的每个子载波上;也可以在完成对两个小区数据的资源分配后,按照为数据分配的频时域资源,先将第一小区的数据映射到第一频段的子载波上,将第二小区的数据映射到第二频段的子载波上,再将两个频段上的子载波数据按照两个频段的频域位置合并,合并时进行冲突处理,这样也将两个小区的数据最终映射到了整体频段的每个子载波上。
相应地,本实施例还提供了一种OFDM***的基站,所述OFDM***可以为长期演进LTE***或者LTE***的后续演进***。如图6所示,所述基站包括:
小区部署模块10,设置为:基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段。
资源分配模块20,设置为:为所述第一小区和第二小区的数据分配频时 域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源。
其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。
可选地,
所述资源分配模块20还设置为:
在所述第一频段除所述重合频段外的频段上,对所述第一小区的数据进行调度,分配频时域资源;
在所述第二频段除所述重合频段外的频段上,对所述第二小区的数据进行调度,分配频时域资源。
可选地,
所述资源分配模块20是设置为:
在所述重合频段上,统一调度第一小区和第二小区的用户数据以共享物理下行共享信道PDSCH的频时域资源,所述PDSCH的频时域资源避开第一小区和第二小区的参考信号和控制信道占用的频时域资源。
可选地,
所述资源分配模块20是设置为:
在所述重合频段上,统一调度所述第一小区和第二小区的资源分配信令以共享物理下行链路控制信道PDCCH的频时域资源,所述PDCCH的频时域资源避开所述第一小区和第二小区的小区专用参考信号CRS、物理控制格式指示信道PCFICH和物理混合ARQ指示信道PHICH占用的频时域资源。
可选地,
所述资源分配模块20是设置为:
在所述重合频段上,如所述第一小区和第二小区的PHICH的频时域资源位置重叠,统一调度第一小区和第二小区对上行传输ARQ的应答信令以共享重叠处PHICH的频时域资源。
可选地,
所述第一频段和第二频段是将运营商拥有的整个频段划分得到的。
可选地,
所述小区部署模块10是设置为:
通过设置所述第一小区和第二小区的PCI,使第一小区和第二小区在重合子载波中的CRS符号位置相同。
可选地,
所述资源分配模块20还设置为:
在所述重合频段上,如为所述第一小区和第二小区的控制信道和/或参考信号分配的频时域资源位置重叠,则进行冲突处理,选择其中一个小区的控制信道或参考信号的数据作为重叠处的数据。
可选地,
所述资源分配模块20是设置为:
在所述重合频段上,为所述第一小区和第二小区的CRS分配的频时域资源位置重叠时,按以下一种或多种规则确定重叠处CRS的值:
规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区或第二小区的计算方式确定该重叠处CRS的值。
可选地,
所述资源分配模块20是设置为:
在所述重合频段上,为所述第一小区和第二小区的PHICH分配的频时域资源位置重叠时,选择所述第一小区或第二小区的PHICH数据作为重叠处的PHICH数据。
可选地,
所述资源分配模块还设置为:根据所述资源分配模块的频时域资源分配 结果,将所述第一小区和第二小区的数据映射到所述第一频段和第二频段构成的一整体频段的每个子载波上;此子载波映射处理可以视为资源分配过程的一个环节。
所述基站还包括:发射处理模块30,设置为:发射映射到所述整体频段的每个子载波上的数据。
可选地,所述重合频段的频宽等于N个资源块的频宽,其中,资源块是为用户分配资源的最小单位,N为正整数。
上述实施例方案中,第一小区和第二小区使用的两个频段的频宽都符合如3GPP等标准的定义,能够支持通用终端接入。通过调整两个频段的重合程度可以使两个频段的总频宽能与运营商拥有的整个频段的宽度相匹配,从而充分利用其频谱资源。而且通过频段的重合,可以部署频宽更高的小区,能够给单个用户更高的数据速率。
从基站角度,在非重合频段,第一小区和第二小区可以各自分配资源。而在重合频段,则对两个小区的数据统一调度,分配频时域资源,以实现对重合频段上资源的动态共享并避免资源冲突。基站按照终端实际接入的小区,在该小区为其分配相应的资源。但从终端角度,会识别出在频谱上存在多个小区,每个小区都符合标准定义的频宽。终端选择连接在其中一个小区,使用标准频宽进行数据传输,并不关注这些小区的频段是否存在重合。
下面再用两个实际应用的示例进行说明。
示例一
本示例中,假定运营商拥有约6.06~6.26MHz频宽的频段资源,略高于标准定义的5MHz LTE频宽,又远低于标准定义的10MHz LTE频宽。为了充分利用频谱,将整个频段划分为一个5MHz标准频宽的频段部署小区A1,及一个3MHz标准频宽的频段部署小区B1,两个小区使用的两个频段重合7个PRB,两个频段构成的一整体频段,正好充分使用运营商拥有的整个频段。实际发射信号时,是在该整体频段上发射,因而可以认为形成了一个新的小 区C1,小区C1使用的频段为小区A1使有的频段和小区B1使用的频段构成的该整体频段。
5MHz频宽的小区A1,按照3GPP定义,共有25个PRB共占用4.5MHz频宽,其中每个PRB占用180KHz频宽。考虑到调制后频带两个边缘需要预留共约0.3~0.5MHz的保护带宽,因此该小区A1实际占用4.8~5MHz频宽。为了更高效地使用可能多于4.8~5MHz的频宽,本示例还定义了一个3MHz频宽的小区B1,按照3GPP定义,共有15个PRB共占用2.7MHz频宽,每个PRB也占用180KHz频宽。小区B1与小区A1重合7个PRB,但错开8个PRB。由于小区B1和小区A1使用连续的OFDM调制技术,因此小区B1和小区A1的子载波间相互正交。
小区A1的25个PRB,加上小区B1没有与小区A1重合的8个PRB,可以在整个频谱上部署33个PRB,即占用5.94MHz频宽,形成小区C1。小区C1实际部署时还需要考虑两边加上共约0.3~0.5MHz的保护带宽,即可以在约6.24~6.46MHz频宽时使用。小区C1中的PRB0~PRB14共15个PRB可分配给小区B1使用,PRB8~PRB32共25个PRB可分配给小区A1使用。小区A1和小区B1共同使用PRB8~PRB14共7个PRB,小区B1单独使用PRB0~PRB7,小区A1单独使用PRB15~PRB32共18个PRB。
当小区A1或B1为其服务的用户分配资源时,按照小区A1或B1自己的PRB编号原则。
使用本示例的上述方法,可以按1个PRB为单位扩展3GPP标准定义的LTE标准小区的频谱带宽。
为了使小区A1和小区B1都能按照3GPP标准的定义正常工作,还需要注意以下事项。
1、同步信道
本示例中,小区A1和小区B1的同步信道在时间上同步,但使用的72个子载波完全不重叠,因此终端可以分辨出不同小区的同步信道,分别跟这两个小区都能进行同步。
2、小区物理广播信道(PBCH)
小区A1和小区B1的广播信道在时间上同步,但使用的72个子载波完全不重叠。因此终端在取得跟小区A1或小区B1的同步后,能读出PBCH广播信道内容。小区A1在其广播信道内容里定义本小区的频宽为5MHz,小区B1在其广播信道内容里定义本小区的频宽为3MHz。在小区A1或小区B1接入的终端,分别按照各自连接的小区定义的频宽进行数据传输,并不使用超出小区A1或小区B1频宽的频谱资源。
可以通过重合频段的频宽等参数,使得为小区A1和小区B1之间的同步信道和广播信道在资源不重叠,使终端能够区分出这两个小区。虽然本示例是在频域上将两上小区的同步信道和PBCH完全错开,但如果频域上有部分重合,通过时域来错开也是可以的。
3、小区专用参考信号(CRS)
LTE***中的CRS具有两个特征,一是CRS在每个PRB的位置由PCI决定,二是整个小区的CRS的取值构成一个与PCI相关的序列,在不同子载波不同符号位置的值可能都不相同。
考虑CRS的特征一,本示例中小区A1和小区B1的PCI选择要么相同,要么其差为6的倍数,这样小区A1和小区B1的CRS在重合频段(也可称为重合频谱)中每个PRB的位置将完全重合,避免每个小区使用不同位置的符号发送CRS,消耗更多的频时域资源,及影响其他数据的发送。
考虑CRS的特征二,本示例中不论小区A1和小区B1的PCI如何选择,在频时域上相同位置的CRS,按照小区A1和小区B1分别计算出来的值也不一定相同,因此小区A1和小区B1在重合频段上CRS的取值将存在冲突。
本示例以如下一种或多种规则解决重叠处CRS取值冲突的问题:
规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区 或第二小区的计算方式确定该重叠处CRS的值,使用两个小区计算方式的概率可以相同。
在不同小区连接的终端在指定CRS位置如果收到并非按照该小区定义的CRS值,将会一定程度影响相干解调性能,影响程度与终端采用的相干解调算法有关。
当然,在非重合频段上,第一小区的CRS和第二小区的CRS均按本小区的计算方式取值。
4、物理控制格式指示信道(PCFICH)
由于PCFICH使用小区标识进行加扰,为保证连接在不同小区的用户能够解调出PCFICH,需要保证不同小区的PCFICH在频时域资源的分配不重叠。根据3GPP标准定义的规则,本示例小区A1的PCFICH出现在小区C1为基准的PRB8、PRB14、PRB20和PRB26内,而小区B1的PCFICH出现在小区C1为基准的PRB0、PRB3、PRB7和PRB11内。可见这两个小区的其他PCHICH都使用不同的PRB,并不重叠。
在其他示例的情况下,通过对划分的标准频段的数量、标准频宽及频段重合部分的频宽的选择,基本可以错开两个小区的PCFICH,如果有个别RE无法错开,可以按冲突对待,选择其中一个小区的PCFICH,另一个小区的PCFICH将会错包,但PCFICH信道本身也有较强的纠错能力。
5、物理混合ARQ指示信道PHICH
由于PHICH使用小区标识进行加扰,为保证连接在不同小区的用户能够解调出PHICH,需要保证不同小区的PHICH在频时域资源的分配不重叠,或者通过调度避免不同小区同时使用相同频时域的PHICH信道。如果5MHz小区A配置2个PHICH组,3MHz小区B配置2个PHICH组,按照LTS***的规定,可以计算出本示例小区A1的PHICH出现在小区C1为基准的PRB8/9、PRB16/17和PRB24/25内,而小区B1的PHICH出现在小区C1为基准的PRB0/1、PRB5和PRB10内。两个小区的PHICH并不重叠。
但假如5MHz小区A配置4个PHICH组,3MHz小区B依然配置2个 PHICH组,可以计算出A1在PRB10内的PHICH与小区B1在PRB10内的PHICH频时域资源相同。因此在调度时,为小区A2或B2的用户分配PHICH资源时,需要避开PRB17和PRB18被另一小区占用的频时域资源。如,小区A1在给其用户分配PHICH资源时,需要通过调度避开PRB10被小区B1占用的频时域资源。
因为PHICH本身也有一定抗干扰能力,如果两个小区分配的PHICH发生冲突时,也可以进行冲突处理,选择一个小区的值填写,只会冲掉另一个小区用户的一个REG块,还剩两个REG块可以解码。
6、物理下行链路控制信道PDCCH
由于小区A1和小区B1使用不同的频时域资源发送PHICH和PCFICH,也降低了可以分配给PDCCH的资源数量,需要考虑每子帧使用更多的符号数,比如2个或3个符号来发送PDCCH,并且小区A1或小区B1的PDCCH信道时必须避开已被两个小区的CRS、PHICH和PCFICH等占用的频时域资源。同时,在小区A1和小区B1重叠部分频谱内的7个PRB,两个小区可以作为整体动态分配所有连接用户的PDCCH的频时域资源,避免两个小区为各自用户分配了相同的频时域资源而发生冲突。如果重合频段某个PRB的某些符号已分配给小区A1的用户,则相同符号不能再分配给小区B1的用户。在不重叠频谱的PRB,两个小区可以为各自用户独立分配PDCCH频时域资源。
7、物理下行共享信道PDSCH
由于小区A1和小区B1的PBCH和PDCCH频时域资源可能占用了对方小区的数据信道频时域位置,因此每个小区在给各自用户分配资源时需要避开被两个小区控制信道和参考信号如PBCH和PDCCH占用的资源。对于两个小区重合频段区间的7个PRB,两个小区可以作为整体动态分配为所有连接用户的PDSCH的频时域资源,避免两个小区为各自用户分配了相同的频时域资源而发生冲突。如果重合频段某个PRB的某些时隙已分配给小区A1的用户,则相同时隙不能再分配给小区B1的用户。在不重叠频谱的PRB,两个小区可以为各自用户独立分配PDSCH频时域资源。
另外,为避免小区间负荷不均,可以由高层算法基于每个小区的用户数及业务量,决策通过小区间切换信令流程,将部分连接在某个小区的用户迁移到其他小区提供服务。
示例二
本示例中,假定运营商拥有约7.86~8.06MHz频宽的频段资源,高于标准定义的5MHz LTE频宽,又低于标准定义的10MHz LTE频宽。为了充分利用频谱,将整个频段划分为两个5MHz标准频宽的频段并分别部署小区A2和B2,将其重合8个PRB,错开17个PRB,正好充分使用既有的无线频宽,形成新的小区C2,小区C2使用的频段是两个频段构成的整体频段。
由于小区B2和小区A2使用连续的OFDM调制技术,因此小区B2和小区A2的子载波间相互正交,不需要保护带宽。小区A2的25个PRB,加上小区B2没有与小区A2重合的17个PRB,可以在整个频谱上部署42个PRB,即占用7.56MHz频宽,形成新的小区C2。小区C2实际部署时还需要考虑两边加上共约0.3~0.5MHz的保护带宽,即可以在约7.86~8.06MHz频宽时使用。小区C2的PRB0~PRB24共25个PRB可分配给小区B2使用,PRB17~PRB41共25个PRB可分配给小区A2使用。小区A2和小区B2共同使用PRB17~PRB24共8个PRB,小区B2单独使用PRB0~PRB16共17个PRB,小区A2单独使用PRB25~PRB41共17个PRB。
从小区A2的角度,PRB的编号与小区C2的PRB编号不同,小区A2的PRB0对应于小区C2的PRB17,小区A2的PRB1对应于小区C2的PRB18,以此类推。当小区A2为其服务的用户分配资源时,实际按照小区A2自己的PRB编号原则。小区B2也是如此。
虽然按照3GPP的定义,可以把一个5MHz的标准频宽小区(25个PRB)加上一个3MHz的标准频宽小区(15个PRB)一起来使用约8MHz的频宽。但是一方面这样部署只能使用一共40个PRB,少于比本示例可以使用的42个PRB。另一方面,在3MHz小区接入用户的峰值速率低于在5MHz小区接入。
为了使采用本示例所示方案的小区A2和小区B2都能按照3GPP标准的定义正常工作,还需要注意以下事项。
1、同步信道
小区A2和小区B2的同步信道在时间上同步,但使用的72个子载波完全不重叠,因此终端可以分辨出不同小区的同步信道,分别跟这两个小区都能进行同步。本示例的方案,小区A2和小区B2可以使用相同或者不同的PCI。
2、小区物理广播信道(PBCH)
小区A2和小区B2的广播信道在时间上同步,但使用的72个子载波完全不重叠,因此终端在取得跟小区A2或小区B2的同步后,能读出PBCH广播信道内容。小区A2和B2在其广播的内容里都定义本小区的频宽为5MHz,在小区A2或小区B2接入的终端,分别按照这个定义的频宽进行数据传输,并不使用超出该频宽的频谱资源。
本示例给小区A2和小区B2分配不重叠的同步信道和广播信道,使终端能够区分出这两个小区。
3、小区专用参考信号(CRS)
CRS具有两个特征,一是CRS在每个PRB的位置由PCI决定,二是整个小区的CRS的取值构成一个与PCI相关的序列,在不同子载波不同符号位置的值可能都不相同。
考虑CRS的特征一,本示例中小区A2和小区B2的PCI选择要么相同,要么其差为6的倍数,这样小区A2和小区B2的CRS在重合频段中每个PRB的位置将完全重合,避免每个小区使用不同位置的符号发送CRS,消耗更多的频时域资源。
考虑CRS的特征二,本示例中不论小区A2和小区B2的PCI如何选择,在频时域上相同位置的CRS,按照小区A2和小区B2分别计算出来的值也不一定相同,因此小区A2和小区B2在重合部分频谱上CRS的取值将存在冲突。
本示例以如下一种或多种规则解决重叠处CRS取值冲突的问题:
规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区或第二小区的计算方式确定该重叠处CRS的值,使用两个小区计算方式的概率可以相同。
在不同小区连接的终端在指定CRS位置如果收到并非按照该小区定义的CRS值,将会一定程度影响相干解调性能,影响程度与终端采用的相干解调算法有关。
4、物理控制格式指示信道(PCFICH)
由于PCFICH使用小区标识进行加扰,为保证连接在不同小区的用户能够解调出PCFICH,需要保证不同小区的PCFICH在频时域资源的分配不重叠。根据3GPP标准定义的规则,可以计算出本示例中小区B2的PCFICH出现在小区C2为基准的PRB0、PRB6、PRB12和PRB18内,而小区A2的PCFICH出现在小区C2为基准的PRB17、PRB23、PRB29和PRB35内。可见两个小区的PCFICH并不重叠。
5、物理混合ARQ指示信道(PHICH)
由于PHICH使用小区标识进行加扰,为保证连接在不同小区的用户能够解调出PHICH,需要保证不同小区的PHICH在频时域资源的分配不重叠,或者通过调度避免不同小区同时使用相同频时域的PHICH信道。如
果两个5MHz小区都配置4个PHICH组,可以计算出本示例中小区B2的PHICH出现在小区C2为基准的PRB0/1/2、PRB8/9/10和PRB16/17/18内,而小区A2的PHICH出现在小区C2为基准的PRB17/18/19、PRB25/26/27和PRB33/34/35内。小区A2在PRB17/18内的PHICH与小区B2在PRB17/18内的PHICH频时域资源相同,A2在PRB18内的PHICH与小区B2在PRB18 内的PCFICH频时域资源相同。两个小区其他的PHICH并不重叠。因此在调度时,为小区A2或B2的用户分配PHICH资源时,需要避开PRB17和PRB18被另一小区占用的频时域资源。
6、物理下行链路控制信道PDCCH
本示例使用3个符号来发送PDCCH,小区A2或小区B2在发送PDCCH信道时必须避开已被对方上述信道占用的频时域资源。同时,在小区A2和小区B2重叠部分频谱内的8个PRB,两个小区可以作为整体动态分配所有连接用户的PDCCH的频时域资源,避免两个小区为各自用户分配了相同的频时域资源而发生冲突。如果重合频段某个PRB的某些符号已分配给小区A2的用户,则相同符号不能再分配给小区B2的用户。在不重叠频谱的PRB,两个小区可以为各自用户独立分配PDCCH频时域资源。
7、物理下行共享信道PDSCH
由于小区A2和小区B2的PBCH和PDCCH频时域资源可能占用了对方小区的数据信道频时域位置,因此每个小区在给各自用户分配资源时需要避开被其他小区PBCH和PDCCH占用的资源。对于两个小区重合频段区间的8个PRB,两个小区可以作为整体动态分配为所有连接用户的PDSCH的频时域资源,避免两个小区为各自用户分配了相同的频时域资源而发生冲突。如果重合频段某个PRB的某些时隙已分配给小区A2的用户,则相同时隙不能再分配给小区B2的用户。在不重叠频谱的PRB,两个小区可以为各自用户独立分配PDSCH频时域资源。
另外,为避免小区间负荷不均,可以由高层算法基于每个小区的用户数及业务量,决策通过小区间切换信令流程,将部分连接在某个小区的用户迁移到其他小区提供服务。
示例三
本示例与示例2类似,可以部署8.4~8.6MHz频宽。使用两个5MHz频宽的小区A3和B3,但仅重合5个PRB错开20个PRB。小区A3的25个PRB,加上小区B3没有与小区A3重合的20个PRB,可以在整个频谱上部署45个PRB,即占用8.1MHz频宽,形成新的小区C3。
小区C3实际部署时还需要考虑两边加上共约0.3~0.5MHz的保护带宽,即可以在约8.4~8.6MHz频宽时使用。小区C3的PRB0~PRB24共25个PRB可分配给小区B3使用,PRB20~PRB44共25个PRB可分配给小区A3使用。小区A3和小区B3共同使用PRB20~PRB24共5个PRB,小区B3单独使用PRB0~PRB19共20个PRB,小区A3单独使用PRB25~PRB44共20个PRB。
从小区A3的角度,PRB的编号与小区C3的PRB编号不同,小区A3的PRB0对应于小区C3的PRB20,小区A3的PRB1对应于小区3的PRB21,以此类推。当小区A3为其服务的用户分配资源时,实际按照小区A3自己的PRB编号原则。小区B3也是如此。
按这种方式部署时,两个小区的PCFICH和PHICH间没有任何重叠。
本示例对两个小区的CRS冲突也使用了另一种解决方案,即通过两个小区的PCI设置,比如两个小区PCI模6差1的规则,使CRS位置错开。并且在重合的PRB同时保留两个小区的CRS发射,这样降低对信道相干解调的影响。但同时,这样意味着一个小区的数据如果处于另一个小区的CRS位置,则要不通过高层调度规避,要不直接由CRS值覆盖而通过数据本身的冗余纠错能力还原。
根据本示例可以看出,应用本发明实施例,通过适当调整小区间重合部分的频宽,可以适应不同频宽的需求。
需要说明,不同标准频宽的重叠组合方式难以穷举,本文中上述的实例仅是对发明可行性及使用方法的一些展示,并不代表所有可能的应用组合。本文都以两个载波描述实例,但按相同原理,还可以把两个以上载波进行组合。本发明实施例可以用于基于OFDM调制技术的无线通信***中,可以用于多种载频带宽,而不局限于比如按通信协议标准预先规定的某些特定载频带宽。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例基于具有标准频宽且部分重合的两个频段分别部署第一小区和第二小区,对重合频带上第一小区和第二小区的数据进行统一调度,分配频时域资源,可以充分利用OFDM***的频谱资源,支持在任意频宽条件下部署OFDM***,使得运营商几乎可以利用拥有的整个频宽。

Claims (16)

  1. 一种正交频分复用OFDM***频谱资源的使用方法,包括:
    基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段;
    为所述第一小区和第二小区的数据分配频时域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源;
    其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。
  2. 如权利要求1所述的方法,其中:
    为所述第一小区和第二小区的数据分配频时域资源,还包括:
    在所述第一频段除所述重合频段外的频段上,对所述第一小区的数据进行调度,分配频时域资源;
    在所述第二频段除所述重合频段外的频段上,对所述第二小区的数据进行调度,分配频时域资源。
  3. 如权利要求1所述的方法,其中:
    在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,包括:
    在所述重合频段上,统一调度第一小区和第二小区的用户数据以共享物理下行共享信道PDSCH的频时域资源,所述PDSCH的频时域资源避开第一小区和第二小区的参考信号和控制信道占用的频时域资源。
  4. 如权利要求1所述的方法,其中:
    在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,包括:
    在所述重合频段上,统一调度所述第一小区和第二小区的资源分配信令以共享物理下行链路控制信道PDCCH的频时域资源,所述PDCCH的频时域资源避开所述第一小区和第二小区的小区专用参考信号CRS、物理控制格式指示信道PCFICH和物理混合ARQ指示信道PHICH占用的频时域资源。
  5. 如权利要求1所述的方法,其中:
    在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源,包括:
    在所述重合频段上,如所述第一小区和第二小区的PHICH的频时域资源位置重叠,统一调度第一小区和第二小区对上行传输ARQ的应答信令以共享重叠处PHICH的频时域资源。
  6. 如权利要求1-5中任一所述的方法,其中:
    所述第一频段和第二频段是将运营商拥有的整个频段划分得到的,所述运营商拥有的整个频段被划分为具有标准频宽的二个或三个以上频段,其中包括所述第一频段和第二频段。
  7. 如权利要求6所述的方法,其中:
    将运营商拥有的整个频段划分为具有标准频宽的二个或三个以上频段,包括:
    通过选择划分的频段的数量、标准频宽及频段重合部分的频宽,使得按照所述OFDM***规定的资源分配方式,为所述第一小区和第二小区的同步信道和/或小区物理广播信道分配的子载波资源不同。
  8. 如权利要求6所述的方法,其中:
    将运营商拥有的整个频段划分为具有标准频宽的二个或三个以上频段,包括:
    通过选择划分的频段的数量、标准频宽及频段重合部分的频宽,使得按照所述OFDM***规定的资源分配方式,在所述重合频段上的频时域资源分配满足以下一种或多种条件:
    为第一小区和第二小区的PCFICH分配的频时域资源不重叠;
    为第一小区和第二小区的PHICH分配的频时域资源不重叠;
    为第一小区的PHICH和第二小区的PCFICH分配的频时域资源不重叠;
    为第一小区的PCFICH和第二小区的PHICH分配的频时域资源不重叠。
  9. 如权利要求1所述的方法,其中:
    基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,包括:通过设置所述第一小区和第二小区的物理小区识别号PCI,使第一小区和第二小区在重合子载波中的CRS符号位置相同。
  10. 如权利要求1-5、7-9中任一所述的方法,其中:
    为所述第一小区和第二小区的数据分配频时域资源,还包括:
    在所述重合频段上,如为所述第一小区和第二小区的控制信道和/或参考信号分配的频时域资源位置重叠,则进行冲突处理,选择其中一个小区的控制信道或参考信号的数据作为重叠处的数据。
  11. 如权利要求10所述的方法,其中:
    所述冲突处理包括:
    在所述重合频段上,为所述第一小区和第二小区的CRS分配的频时域资源位置重叠时,按以下一种或多种规则确定重叠处CRS的值:
    规则一,如重叠处CRS位于所述第一小区或第二小区广播信道所在的子载波上,则按照该小区的计算方式确定该重叠处CRS的值;
    规则二,如重叠处CRS所在的物理资源块已分配给所述第一小区或第二小区的用户,则按照该小区的计算方式确定该重叠处CRS的值;
    规则三,如不满足规则一和/或规则二的条件,则随机以所述第一小区或第二小区的计算方式确定该重叠处CRS的值。
  12. 如权利要求10所述的方法,其中:
    所述冲突处理包括:
    在所述重合频段上,为所述第一小区和第二小区的PHICH分配的频时域资源位置重叠时,选择所述第一小区或第二小区的PHICH数据作为重叠处的PHICH数据。
  13. 如权利要求1-5、7-9、11-12中任一所述的方法,其中:
    为所述第一小区和第二小区的数据分配频时域资源之后,还包括:
    根据频时域资源分配的结果,将所述第一小区和第二小区的数据映射到所述第一频段和第二频段构成的一整体频段的每个子载波上并进行发射。
  14. 如权利要求1-5、7-9、11-12中任一所述的方法,其中:
    所述重合频段的频宽等于N个资源块的频宽,其中,资源块是为用户分配资源的最小单位,N为正整数。
  15. 一种正交频分复用OFDM***的基站,包括:
    小区部署模块,设置为:基于具有标准频宽的第一频段和第二频段分别部署第一小区和第二小区,所述第一频段和第二频段部分重合,重合的部分构成重合频段;
    资源分配模块,设置为:为所述第一小区和第二小区的数据分配频时域资源,包括:在所述重合频段上,对所述第一小区和第二小区的数据统一调度,分配频时域资源;
    其中,所述第一小区和第二小区在所述重合频段上的每个对应子载波的中心频点对齐。
  16. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-14任一项的方法。
PCT/CN2015/096141 2015-07-17 2015-12-01 一种正交频分复用***频谱资源的使用方法及相应的基站 WO2016131326A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15882465.6A EP3328110B1 (en) 2015-07-17 2015-12-01 Method of using spectrum resource of orthogonal frequency division multiplexing system, and corresponding base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510425540.9 2015-07-17
CN201510425540.9A CN106357579B (zh) 2015-07-17 2015-07-17 一种正交频分复用***频谱资源的使用方法及相应的基站

Publications (1)

Publication Number Publication Date
WO2016131326A1 true WO2016131326A1 (zh) 2016-08-25

Family

ID=56688705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096141 WO2016131326A1 (zh) 2015-07-17 2015-12-01 一种正交频分复用***频谱资源的使用方法及相应的基站

Country Status (3)

Country Link
EP (1) EP3328110B1 (zh)
CN (1) CN106357579B (zh)
WO (1) WO2016131326A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271261A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种下行控制信道指示方法、终端设备及网络设备
CN108632006A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种参考信号传输方法、装置及***
WO2023151477A1 (zh) * 2022-02-11 2023-08-17 华为技术有限公司 资源配置方法、通信装置及通信设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480376A (zh) * 2018-01-12 2020-07-31 Oppo广东移动通信有限公司 数据传输方法及装置
CN110474717A (zh) * 2019-08-26 2019-11-19 江西省计量测试研究院 一种用于泛在电力物联网通信的物理层安全技术
CN110730460A (zh) * 2019-08-29 2020-01-24 临涣焦化股份有限公司 一种厂区内语音通讯的方法
CN111417187B (zh) * 2020-03-25 2022-02-22 展讯通信(上海)有限公司 实际trs频域资源的确定方法及装置、存储介质、ue
CN115866616A (zh) * 2021-08-25 2023-03-28 华为技术有限公司 资源分配的方法和通信装置
WO2023206132A1 (en) * 2022-04-27 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Network deployment based on partially overlapped carriers
CN116528330B (zh) * 2023-07-05 2023-10-03 Tcl通讯科技(成都)有限公司 设备入网方法、装置、电子设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558608A (zh) * 2006-12-13 2009-10-14 诺基亚公司 Tdd通信***间时间与频率域上的灵活的无线资源共享
CN103748822A (zh) * 2011-08-11 2014-04-23 Sca艾普拉控股有限公司 在包括机器型通信应用的移动电信***中分配资源和传输数据
CN104126328A (zh) * 2012-03-14 2014-10-29 诺基亚公司 针对新载波类型的聚合
WO2015052691A1 (en) * 2013-10-09 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Secondary cells in overlapping bands

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370170B (en) * 2000-12-15 2003-01-29 Ntl Group Ltd Signal transmission systems
DE60215612T2 (de) * 2002-04-10 2007-08-23 Lucent Technologies Inc. Reduzierung von Kanalüberlappungen in drahtlosen lokalen Netzwerken unter Verwendung eines zentralen Zugriffsprotokolls
JP4601637B2 (ja) * 2007-03-20 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び無線通信システム
JP4728301B2 (ja) * 2007-08-14 2011-07-20 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法、及び通信システム
CN101541011B (zh) * 2008-03-20 2011-09-14 华为技术有限公司 一种协调方法、装置及用户设备
CN101667985B (zh) * 2008-09-04 2012-04-04 中兴通讯股份有限公司 资源单位的分配方法和装置
WO2010077318A1 (en) * 2008-12-17 2010-07-08 Airhop Communications, Inc. Base station with coordinated multiple air-interface operations
CN102237928B (zh) * 2010-05-07 2014-11-19 华为技术有限公司 一种信号的传输方法、装置和***
GB2507277A (en) * 2012-10-23 2014-04-30 Broadcom Corp Reserving shared medium resources in overlapping wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558608A (zh) * 2006-12-13 2009-10-14 诺基亚公司 Tdd通信***间时间与频率域上的灵活的无线资源共享
CN103748822A (zh) * 2011-08-11 2014-04-23 Sca艾普拉控股有限公司 在包括机器型通信应用的移动电信***中分配资源和传输数据
CN104126328A (zh) * 2012-03-14 2014-10-29 诺基亚公司 针对新载波类型的聚合
WO2015052691A1 (en) * 2013-10-09 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Secondary cells in overlapping bands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3328110A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271261A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种下行控制信道指示方法、终端设备及网络设备
EP3534659A4 (en) * 2016-12-30 2019-11-06 Huawei Technologies Co., Ltd. DOWNLINK CONTROL CHANNEL DISPLAY METHOD, DEVICE DEVICE AND NETWORK DEVICE
CN108271261B (zh) * 2016-12-30 2023-06-27 华为技术有限公司 一种下行控制信道指示方法、终端设备及网络设备
CN108632006A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种参考信号传输方法、装置及***
CN108632006B (zh) * 2017-03-24 2024-01-05 华为技术有限公司 一种参考信号传输方法、装置及***
US11916705B2 (en) 2017-03-24 2024-02-27 Huawei Technologies Co., Ltd. Reference signal transmission method, apparatus, and system
WO2023151477A1 (zh) * 2022-02-11 2023-08-17 华为技术有限公司 资源配置方法、通信装置及通信设备

Also Published As

Publication number Publication date
EP3328110B1 (en) 2021-08-25
CN106357579A (zh) 2017-01-25
EP3328110A4 (en) 2018-07-18
EP3328110A1 (en) 2018-05-30
CN106357579B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
US11678367B2 (en) Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
WO2016131326A1 (zh) 一种正交频分复用***频谱资源的使用方法及相应的基站
ES2799525T3 (es) Concesiones de enlace ascendente para Internet de las cosas de banda estrecha
CN109479277B (zh) 使用参数集的发送方法和装置以及调度方法和装置
US10609702B2 (en) Base station apparatus, terminal apparatus, and communication method
EP4147515A1 (en) Frequency domain resource allocation techniques for full duplex communications
KR101926004B1 (ko) 직류 컴포넌트 부반송파 구성 방법 및 장치
US9432160B2 (en) Allocating resources and transmitting data in mobile telecommunication systems comprising machine type communication applications
EP3641457A1 (en) Method for using radio interface technology, apparatus, and communications system
RU2608589C2 (ru) Способ назначения ресурсов и передачи данных в мобильных телекоммуникационных системах, использующих приложения для связи между машинами
US9496994B2 (en) Method and base station for determining size of transmission blocks in subframe
CN112567827A (zh) 无线通信***中发送和接收物理信道和信号的方法以及使用其的装置
US20150256403A1 (en) Information Transmission Method and Device
US20120039268A1 (en) Apparatus for Controlling Spectrum Exploitation Utilising Overlapping Channel Bandwidths
CA2844756A1 (en) Radio communication device, radio communication method, and radio communication system
EP3410771A2 (en) Base station, terminal and communication method
US20180109406A1 (en) Resource block alignment in mixed numerology wireless communications
WO2017073083A1 (en) Systems and methods for multi-physical structure system
US11134488B2 (en) Base station apparatus for communicating with a terminal apparatus using multiple frequency bands
CN116527209A (zh) 使用参数集的发送方法和装置以及使用参数集的调度方法和装置
JP2023531892A (ja) Pdcch監視アグリゲーションのための技法
EP3605978A1 (en) User terminal and wireless communication method
WO2017073084A1 (en) Systems and methods for multi-physical structure system
KR20220080654A (ko) 무선 통신 시스템을 위한 셀간 간섭 제어 장치 및 방법
WO2024104756A1 (en) Puncturing assumption for control channel in narrowband new radio operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015882465

Country of ref document: EP