WO2016129678A1 - Laminate and water treatment system - Google Patents

Laminate and water treatment system Download PDF

Info

Publication number
WO2016129678A1
WO2016129678A1 PCT/JP2016/054149 JP2016054149W WO2016129678A1 WO 2016129678 A1 WO2016129678 A1 WO 2016129678A1 JP 2016054149 W JP2016054149 W JP 2016054149W WO 2016129678 A1 WO2016129678 A1 WO 2016129678A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
container
laminate
water treatment
resin
Prior art date
Application number
PCT/JP2016/054149
Other languages
French (fr)
Japanese (ja)
Inventor
良和 石井
松坂 勝雄
善治 松原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2016574862A priority Critical patent/JPWO2016129678A1/en
Publication of WO2016129678A1 publication Critical patent/WO2016129678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a laminate in which at least one surface of a non-conductive substrate is covered with a conductive part. Moreover, this invention relates to the water treatment system using the said laminated body.
  • microbial fuel cells using the mechanism of fuel cells have attracted attention as a method for recovering energy when decomposing organic waste such as wastewater.
  • a microbial fuel cell it is possible to directly recover electrical energy by collecting, with an electrode, electrons released by microorganisms when decomposing organic substances contained in waste water and waste.
  • Patent Documents 1 and 2 An example of the microbial fuel cell is disclosed in Patent Documents 1 and 2 below. Specifically, in Patent Documents 1 and 2, an anode (negative electrode), an ion permeable membrane, and a cathode (positive electrode) are arranged in this order, and the anode and the cathode are connected to each other by a conductive wire. A microbial fuel cell connected to the is disclosed.
  • a liquid containing microorganisms and organic substances that can grow under anaerobic conditions is caused to flow through the flow path of the gap on the surface of the anode. Further, air is caused to flow through the flow path on the surface of the cathode, and the air is brought into contact with the cathode.
  • hydrogen ions (H + ) and electrons (e ⁇ ) are generated from organic substances by microorganisms. Hydrogen ions permeate the ion-permeable membrane and move to the cathode side, causing a potential difference between the anode and the cathode.
  • electric energy corresponding to the product of the generated potential difference and the current flowing through the load circuit can be recovered.
  • Patent Document 1 mentions conductive substrates such as graphite paper, graphite felt, and graphite cloth. Patent Document 1 discloses a microbial fuel cell using graphite felt as an anode and carbon paper carrying, as a cathode, manganese dioxide as an oxygen reduction catalyst by electrolytic deposition.
  • Patent Document 2 discloses a microbial fuel cell using electrodes (anode and cathode) obtained by coating a conductive plastic sheet on both surfaces of a metal conductor.
  • the conductive plastic sheet is a conductive plastic sheet obtained by mixing a conductive powder such as carbon or graphite into a plastic such as polyethylene, polypropylene and polyethylene terephthalate.
  • Patent Document 2 when an electrode that is a metal conductor is used for the base material, defects such as cracks and pinholes are likely to occur in the coating film. For this reason, when a microbial fuel cell is used for a long time, an electrode may corrode or an electrode may be damaged.
  • the microbial fuel cell using the conventional electrode has a problem that the recovery efficiency of electric energy is low.
  • the conventional water treatment system has a problem that corrosion of a member that purifies waste water or the like easily proceeds.
  • An object of the present invention is to provide a laminate that can enhance corrosion resistance over a long period of time. Moreover, the objective of this invention is providing the water treatment system using the said laminated body.
  • a non-conductive substrate and a conductive portion covering at least one surface of the non-conductive substrate are provided, and the conductive portion includes a conductive carbon material and a resin. Including, a laminate is provided.
  • the laminate is a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell.
  • the laminate is a water treatment member used for water treatment.
  • the non-conductive substrate is preferably permeable to liquid, and more preferably permeable to water.
  • the non-conductive substrate is preferably a mesh, a woven fabric, a non-woven fabric or a pore membrane.
  • the material of the non-conductive substrate is preferably a resin.
  • an oxygen reduction catalyst disposed inside the conductive part or on the surface of the conductive part is provided.
  • the said laminated body is further equipped with the 1st electroconductive part which has the said electroconductive part as a 2nd electroconductive part, and has the electroconductivity different from the said 2nd electroconductive part. .
  • the laminate includes the above-described laminate and a container having an inlet and an outlet of water, the laminate is arranged in the container, and the container is disposed in the container.
  • a water treatment system having a sedimentation portion below the laminate is provided.
  • the volume of the sedimentation portion of the container is 20% or more of the total volume of the container.
  • the inflow port is disposed above a side surface of the container, and the container is disposed between the inflow port and the laminate in a plan view. And a shielding member facing a side surface of the container on which the inlet is disposed and spaced apart from the bottom surface of the container.
  • the container has an overflow weir that opens above the container between the stacked body and the outlet in a plan view.
  • a wastewater treatment tank using microorganisms is provided downstream of the outlet of the container.
  • the laminated body is arranged in the container along a direction from the inlet to the outlet in a plan view.
  • the laminate is arranged in the container at regular intervals.
  • the laminate according to the present invention includes a non-conductive substrate and a conductive portion covering at least one surface of the non-conductive substrate, and the conductive portion includes a conductive carbon material and a resin. Therefore, the corrosion resistance can be increased over a long period of time.
  • FIG. 1 is a cross-sectional view schematically showing a laminate according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a laminate according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a laminate according to the third embodiment of the present invention.
  • 4A to 4D are schematic views for explaining an example of the shape of the laminated body.
  • 5A and 5B are schematic diagrams for explaining an example of a method for forming a conductive portion.
  • FIG. 6 is a schematic diagram for explaining another example of a method for forming a conductive portion.
  • 7A and 7B are cross-sectional views schematically showing a microbial fuel cell using the laminate shown in FIG. 1 as a microbial fuel cell electrode.
  • FIG. 8 (a) is a schematic plan view schematically showing the water treatment system according to the first embodiment of the present invention
  • FIG. 8 (b) is a cross-sectional view taken along the line AA ′ of FIG. 8 (a).
  • FIG. 8C is a cross-sectional view taken along the line CC ′ of FIG.
  • FIG. 9A is a schematic plan view schematically showing a water treatment system according to Embodiment 2 of the present invention
  • FIG. 9B is a cross-sectional view taken along the line BB ′ in FIG. 9A.
  • FIG. 10 is a schematic diagram schematically showing a configuration in which the water treatment system according to the third embodiment of the present invention is combined with a water treatment facility.
  • FIG. 11A and 11B are schematic side views each schematically showing a member including a laminate used in a water treatment system according to another embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view schematically showing a member including a laminate used in a water treatment system according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a laminate according to the first embodiment of the present invention.
  • the laminate 1 can be used for, for example, a water treatment member used for water treatment, a microbial fuel cell electrode used for a microbial fuel cell, and the like.
  • the electrode is used for at least one of an anode and a cathode in the microbial fuel cell.
  • the electrode is preferably used for both the anode and the cathode.
  • the laminate 1 includes a non-conductive substrate 11 and a conductive portion 12 that covers the surface of the non-conductive substrate 11.
  • the conductive portion 12 is disposed on at least one surface of the nonconductive substrate 11 so as to be in contact with the nonconductive substrate 11.
  • the laminate 1 is configured by a non-conductive substrate 11 being covered with a conductive portion 12.
  • the conductive portion 12 is disposed on the surfaces on both sides in the thickness direction of the nonconductive substrate 11 and covers the surfaces on both sides in the thickness direction of the nonconductive substrate 11.
  • the conductive part 12 is a film, for example.
  • the conductive portion 12 is illustrated with a certain thickness, but the thickness of the conductive portion 12 is not particularly limited.
  • the conductive portion 12 is formed using a conductive carbon material and a resin.
  • the conductive part 12 includes a conductive carbon material and a resin.
  • the resistivity of the laminate is 10 ⁇ 4 ⁇ ⁇ cm or more and 10 4 ⁇ ⁇ cm or less. Preferably there is.
  • FIG. 2 is a cross-sectional view schematically showing a laminate according to the second embodiment of the present invention.
  • the conductive portion 12A is disposed not only on both sides in the thickness direction of the nonconductive substrate 11 but only on the surface of one side of the nonconductive substrate 11.
  • the laminated body 1A is formed in the same manner as the laminated body 1 except that the conductive portion 12A is disposed only on the surface on one side of the nonconductive substrate 11.
  • the conductive part may be disposed only on the surface on one side in the thickness direction of the non-conductive substrate.
  • the conductive part may cover the entire surface on one side of the non-conductive substrate, or may cover a part of the surface on one side of the non-conductive substrate.
  • the electroconductive part may coat
  • the laminated body preferably includes the conductive portion as a second conductive portion, and further includes a first conductive portion having conductivity different from that of the second conductive portion.
  • Carbon material is not very conductive. For this reason, in the microbial fuel cell provided with the electrode using a carbon material, the energy recovery efficiency tends to be low. On the other hand, if the thickness of the carbon material is increased, the conductivity can be improved, but in this case, the cost of the electrode is increased. In addition, the conventional electrode has low energy recovery efficiency, particularly when the microbial fuel cell is enlarged. In addition, when a carbon material is used, it is difficult to obtain a long electrode, and thus it is difficult to obtain a large amount of electrodes by continuous molding.
  • the electrode obtained by coating the conductive plastic sheet on both surfaces of the metal conductor has a problem that the conductivity becomes low and the thickness becomes thick.
  • the laminate includes the conductive portion as a second conductive portion, and further includes a first conductive portion having a conductivity different from that of the second conductive portion, thereby improving the corrosion resistance of the laminate, Even if it is large-sized, a laminated body can be obtained in large quantities and easily.
  • FIG. 3 is a cross-sectional view schematically showing a laminate according to the third embodiment of the present invention.
  • the stacked body 1B further includes a conductive portion 13B (first conductive portion) having conductivity different from that of the conductive portion 12B (second conductive portion).
  • the laminated body 1B includes the conductive portion 12B (second conductive portion) and the conductive portion 13B (first conductive portion) as the entire conductive portion.
  • the conductive portion 12B and the conductive portion 13B are formed in different regions.
  • the conductive portion 12B has different conductivity with respect to the conductive portion 13B.
  • the conductive portion 12B preferably has higher conductivity than the conductive portion 13B.
  • the material of the conductive portion 12B includes a conductive material.
  • the material of the conductive portion 13B includes a conductive material.
  • the laminate 1B is composed of a non-conductive substrate 11, a conductive part 12B, and a conductive part 13B.
  • the conductive portion 13 ⁇ / b> B is disposed on the surfaces on both sides in the thickness direction of the non-conductive substrate 11 and covers the surfaces on both sides in the thickness direction of the non-conductive substrate 11.
  • the conductive portions 12B are arranged on the surfaces on both sides in the thickness direction of the non-conductive substrate 11 via the conductive portions 13B, and the surfaces on both sides in the thickness direction of the non-conductive substrate 11 via the conductive portions 13B. Is covered.
  • the conductive portion 12B and the conductive portion 13B are illustrated with a certain thickness, but the thickness of the conductive portion 12B and the conductive portion 13B is not particularly limited.
  • the conductive portion 13B is formed in a planar shape.
  • the conductive portion 13B is a conductive layer.
  • the conductive portion 13 ⁇ / b> B is in contact with the nonconductive base material 11.
  • the conductive portion 13 ⁇ / b> B is formed on the entire surface of the nonconductive base material 11.
  • the conductive part 12B, the conductive part 13B, the nonconductive base material 11, the conductive part 13B, and the conductive part 12B are arranged in this order.
  • the surface of the conductive portion 13B is covered with the conductive portion 12B.
  • the conductive portion 13B is formed of a material containing a metal
  • the conductive portion 13B tends to be corroded.
  • the corrosion of the conductive portion 13B can be suppressed by covering the surface of the conductive portion 13B with the conductive portion 12B.
  • the conductive portion covers both surfaces of the non-conductive substrate, but the conductive portion may cover one surface of the non-conductive substrate.
  • the electroconductive part was made into the form which coat
  • both the first conductive portion and the second conductive portion cover the entire surface of the nonconductive base material, but both the first conductive portion and the second conductive portion or One side may coat a part of the surface of the non-conductive substrate.
  • the conductive part including the first conductive part and the second conductive part only needs to cover part or all of at least one surface of the non-conductive substrate.
  • the first conductive portion may extend linearly in two orthogonal directions on the surface of the non-conductive substrate, may be formed in a pattern, or may be formed in a net shape.
  • the 1st electroconductive part may be formed in the one part area
  • the amount of the conductive material used in the first conductive portion of the stacked body is the conductive amount in the second conductive portion of the stacked body. It can be made less than the usage amount of the functional material. For this reason, cost can be reduced.
  • the second conductive portion may be in contact with the nonconductive base material in a region where the first conductive portion is not present.
  • the first conductive part may be embedded in the second conductive part.
  • the second conductive part may be formed on the entire surface of the first conductive part.
  • the 2nd electroconductive part may be formed in the whole on the surface of the area
  • the non-conductive base material is a resin base material
  • the second conductive portion formed of a conductive carbon material and a resin has a resin base compared to the first conductive portion formed of a conductive material. It can be firmly bonded to the material.
  • the shape of the laminate is not particularly limited.
  • 4A to 4D are schematic views for explaining an example of the shape of the laminated body.
  • the laminate 1C may be plate-shaped or elongated. As illustrated in FIG. 4B, the stacked body 1D may have a folded portion or may have a zigzag shape. As shown in FIG.4 (c), the laminated body 1E may be cyclic
  • the laminate preferably has flexibility and is preferably bendable. When the non-conductive substrate is not a metal plate, flexibility can be imparted to the laminate, and the laminate can be bent.
  • the conductive portion may be formed by applying a conductive carbon material-containing liquid containing a conductive carbon material, a resin and an organic solvent to a non-conductive substrate, and then evaporating and removing the organic solvent. More preferred.
  • the laminate is obtained by applying a conductive carbon material-containing liquid containing a conductive carbon material, a resin and an organic solvent to a non-conductive base material, and then evaporating and removing the organic solvent. preferable. In this case, it is easy to make the resistivity of the laminated body within a preferable range.
  • the laminate according to the present invention includes a non-conductive substrate and a conductive portion covering at least one surface of the non-conductive substrate, and the conductive portion includes a conductive carbon material and a resin. Therefore, the corrosion resistance can be increased over a long period of time. Further, the conductivity can be increased and the cost can be reduced. Furthermore, in this invention, when a laminated body is an electrode for microbial fuel cells, the collection
  • the resistivity of the laminate is preferably 10 ⁇ 4 ⁇ ⁇ cm or more, More preferably 10 ⁇ 3 ⁇ ⁇ cm or more, further preferably 10 ⁇ 2 ⁇ ⁇ cm or more, preferably 10 4 ⁇ ⁇ cm or less, more preferably 10 3 ⁇ ⁇ cm or less, still more preferably 10 2 ⁇ ⁇ cm or less. It is.
  • the said resistivity can be measured according to description of the column of evaluation mentioned later.
  • the resistivity in the first conductive part is preferably 10 ⁇ 5. ⁇ ⁇ cm or more, more preferably 10 ⁇ 4 ⁇ ⁇ cm or more, further preferably 10 ⁇ 3 ⁇ ⁇ cm or more, and preferably 100 0 ⁇ ⁇ cm or less.
  • the thickness is preferably 3 ⁇ m or more, and preferably 500 ⁇ m or less.
  • coating weight of the conductive material of the conductive portion is preferably 5 g / m 2 or more, preferably 2,000 g / m 2 or less.
  • the resistivity is preferably 10 0 ⁇ ⁇ cm or more, preferably 10 5 ⁇ ⁇ cm or less, more preferably 10 4 ⁇ ⁇ cm or less, and further preferably 10 3 ⁇ ⁇ cm or less.
  • the thickness is preferably 3 ⁇ m or more, and preferably 500 ⁇ m or less.
  • the coating weight of the conductive material constituting the conductive part is preferably 5 g / m 2 or more, and preferably 1,000 g / m 2 or less. Moreover, it is preferable that at least a part of the second conductive portion is exposed, and the exposed portion of the second conductive portion is in contact with a liquid containing an organic substance in the microbial fuel cell.
  • the material of the non-conductive substrate is preferably not a metal because the laminate can be made even cheaper.
  • the material of the non-conductive substrate is preferably not a conductive carbon material.
  • carbon materials such as metals and graphite paper, graphite felt, and graphite cloth have been used as conductive materials.
  • a metal or a base material formed of a carbon material is used, the cost of the laminate increases.
  • a conductive carbon material is used as a material arrange
  • the resistivity of the non-conductive substrate is generally 10 10 ⁇ ⁇ cm or more.
  • the non-conductive substrate is preferably not a metal substrate.
  • the material of the non-conductive substrate is preferably not a metal.
  • the metal includes a metal alloy.
  • the nonconductive substrate is preferably a nonconductive resin substrate or a nonconductive glass substrate.
  • the material of the non-conductive substrate is preferably a resin or glass. Examples of the resin that is the material of the non-conductive substrate include polyolefin resin, polystyrene resin, polyester resin, polyvinyl chloride resin, acrylic resin, urethane resin, epoxy resin, polyamide resin, methyl cellulose resin, ethyl cellulose resin, and polyvinyl alcohol resin.
  • the resin that is the material of the non-conductive substrate is preferably a polyolefin resin, a polystyrene resin, a polyester resin, or a polyvinyl chloride resin.
  • the non-conductive substrate is preferably permeable to liquid.
  • the non-conductive substrate is preferably a mesh, woven fabric, non-woven fabric, or pore membrane because it can permeate liquid and is excellent in retention of the conductive portion.
  • the conductive carbon material-containing liquid contains the conductive carbon material.
  • the conductive carbon material is dispersed in the conductive carbon material-containing liquid.
  • the conductive portion includes the conductive carbon material.
  • the said conductive carbon material only 1 type may be used and 2 or more types may be used together.
  • the conductive carbon material examples include carbon fiber, chopped carbon, milled carbon, carbon black, activated carbon, graphite, graphite, and carbon nanotube. From the viewpoint of further increasing the conductivity of the laminate, the conductive carbon material is preferably carbon fiber, chopped carbon, milled carbon, carbon black, activated carbon, graphite, graphite, or carbon nanotube. When these preferable conductive carbon materials are used, two or more conductive carbon materials may be used in combination.
  • the aspect ratio of the conductive carbon material is preferably 3 or more, more preferably 10 or more.
  • the aspect ratio of the conductive carbon material may be 100 or less, or 10 or less.
  • the aspect ratio indicates the ratio of the major axis length to the minor axis length.
  • conductive carbon material for example, “Donna Carbo Mild S-244” manufactured by Osaka Gas Chemical Co., Ltd. “PC99-300M” manufactured by Ito Graphite Co., Ltd. “Activated Carbon Type SX” manufactured by Norit Japan Co., Ltd. “Toka Black” manufactured by Tokai Carbon Co., Ltd. # 5500 "and” Carbon ECP "manufactured by Lion Specialty Chemicals.
  • the content of the conductive carbon material is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, preferably 1000 parts by weight or less, with respect to 100 parts by weight of the resin.
  • the amount is preferably 500 parts by weight or less.
  • the content of the conductive carbon material is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, preferably 1000 parts by weight with respect to 100 parts by weight of the resin component (resin) derived from the resin. Part or less, more preferably 500 parts by weight or less.
  • the conductivity of the laminate is further increased.
  • the conductive part is difficult to become brittle.
  • the conductive carbon material-containing liquid contains the resin.
  • the resin In order to form the conductive part, it is preferable to use the resin.
  • the resin In order to form the second conductive portion, it is preferable to use the resin.
  • the said resin only 1 type may be used and 2 or more types may be used together.
  • the resin contained in the conductive carbon material-containing liquid examples include polyolefin resin, polystyrene resin, polyester resin, polyvinyl chloride resin, acrylic resin, urethane resin, epoxy resin, polyamide resin, methyl cellulose resin, ethyl cellulose resin, and polyvinyl alcohol resin. , Vinyl acetate resin, phenol resin, fluororesin, and polyvinyl butyral resin.
  • the conductive carbon material has good dispersibility, low solubility in water, high solubility in many organic solvents other than water, is easy to remove by evaporation, and is not easily decomposed by microorganisms. Acrylic resin, urethane resin or polyvinyl butyral resin is preferred.
  • the resin contained in the conductive carbon material-containing liquid is preferably a crosslinkable resin.
  • the crosslinkable resin may be crosslinked before or when the organic solvent is evaporated.
  • the durability of the laminate is increased by crosslinking the crosslinkable resin.
  • a dense conductive portion can be formed, peeling of the conductive portion from the surface of the nonconductive substrate can be suppressed, and the conductivity of the laminate can be further enhanced.
  • the conductive part includes a resin component (resin such as a crosslinked resin) derived from the resin (crosslinkable resin or the like).
  • the conductive part preferably contains a resin (resin component) obtained by crosslinking the crosslinkable resin.
  • the second conductive portion preferably includes a resin component (resin such as a crosslinked resin) derived from the resin (crosslinkable resin or the like).
  • the second conductive portion preferably includes a resin (resin component) obtained by crosslinking the crosslinkable resin.
  • the method for crosslinking the crosslinkable resin is not particularly limited.
  • the conductive carbon material-containing liquid contains the organic solvent.
  • the organic solvent only 1 type may be used and 2 or more types may be used together.
  • the organic solvent is not particularly limited.
  • ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, diethylene glycol monoethyl ether can be evaporated at an appropriate temperature and the dispersibility of the conductive carbon material is excellent.
  • Acetate, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone or naphtha are preferred.
  • the content of the organic solvent is preferably 30 parts by weight or more, more preferably 50 parts by weight or more, preferably 1000 parts by weight or less, more preferably 100 parts by weight of the resin. 500 parts by weight or less, more preferably 300 parts by weight or less.
  • the content of the organic solvent is not less than the above lower limit, the viscosity of the conductive carbon material-containing liquid is further reduced, and the coating property of the conductive carbon material-containing liquid is further improved.
  • the time for evaporating the organic solvent is further shortened.
  • the content of the organic solvent in the conductive carbon material-containing liquid can be appropriately adjusted so as to have a viscosity suitable for an application method applied when the conductive carbon material-containing liquid is applied.
  • the material forming the conductive portion is a metal or a material at least partly made of metal.
  • the first conductive part is preferably formed of a conductive material other than a conductive carbon material, and the material of the first conductive part preferably contains a metal.
  • the metal includes at least one of silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, brass, potassium, lithium, iron, platinum, tin, chromium, lead, titanium, mercury, and the like.
  • An alloy or stainless steel is preferable. From the viewpoint of enhancing the corrosion resistance, silver, gold, tungsten, platinum, tin, chromium, titanium, and stainless steel are more preferable.
  • the method for applying the conductive carbon material-containing liquid to the non-conductive substrate or the first conductive part is not particularly limited.
  • the coating method include spray coating, curtain flow coating, roll coating, hand lay-up, spray-up, offset printing, gravure printing, screen printing, flexographic printing, and inkjet printing. Removal by evaporation of the organic solvent may be performed at normal temperature or may be performed by heating.
  • a method of disposing the conductive carbon material and the resin for forming the conductive part on the non-conductive substrate or the first conductive part is a roll. -A two-roll system is preferable.
  • FIGS. 5A and 5B are schematic views for explaining an example of a method for forming a conductive portion.
  • the roll-shaped non-conductive base material 42 is developed, and the roll-shaped first conductive portion 43 is developed on the surface of the non-conductive base material 42, thereby
  • the first conductive portion 43 may be formed on the surface of the conductive base material 42.
  • the first conductive portion 43 extends linearly in two orthogonal directions on the surface of the non-conductive base material 42 and is formed in a net shape.
  • a conductive carbon-containing liquid is applied onto the nonconductive base material 42 on which the first conductive portion 43 is formed.
  • the second conductive portion 44 may be formed on the surfaces of the non-conductive base material 42 and the first conductive portion 43.
  • FIG. 6 is a schematic diagram for explaining another example of a method for forming a conductive portion.
  • a roll-shaped non-conductive substrate 42A is developed, and a conductive carbon material-containing liquid is applied onto the surface of the non-conductive substrate 42A.
  • the conductive portion 43A may be formed on the surface of the conductive base material 42A.
  • the thickness of the non-conductive substrate is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, preferably 500 mm or less, more preferably 200 mm or less.
  • the thickness of the non-conductive substrate is equal to or greater than the lower limit, breakage is more difficult to occur.
  • the thickness of the non-conductive substrate is less than or equal to the above upper limit, the internal resistance is low and electric energy can be efficiently recovered.
  • the coating weight of the non-conductive substrate with the conductive carbon material and resin is preferably 5 g / m 2 or more, Preferably it is 4,000 g / m 2 or less, more preferably 1,000 g / m 2 or less.
  • the thickness of the conductive part (total thickness of the first conductive part and the second conductive part) formed due to the conductive carbon material and the resin is preferably It is 3 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 2,000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the conductive carbon material may be included in the non-conductive substrate.
  • the laminate or the coating weight of the first conductive portion is preferably 5 g / m 2 or more, preferably 2,000 g / m 2 or less.
  • the thickness of the second conductive part is preferably 3 ⁇ m or more, and preferably 500 ⁇ m or less.
  • the coating weight and the thickness of the second conductive portion are equal to or more than the lower limit, the conductivity of the laminate is further increased.
  • the coating weight and the thickness of the second conductive part are not more than the upper limit, the cost of the laminate is further reduced.
  • the material which comprises the said electroconductive part may be contained in the said nonelectroconductive base material.
  • an oxygen reduction catalyst is carried or coated on the non-conductive substrate. It is preferable that the laminate includes an oxygen reduction catalyst disposed inside the nonconductive substrate or on the surface of the nonconductive substrate. It is preferable that the laminated body includes an oxygen reduction catalyst disposed inside the conductive part or on the surface of the conductive part.
  • the conductive carbon material-containing liquid preferably contains an oxygen reduction catalyst.
  • the laminate is preferably obtained by applying an oxygen reduction catalyst after evaporating and removing the organic solvent.
  • the nonconductive substrate preferably supports an oxygen reduction catalyst.
  • the oxidation-reduction catalyst is preferably included in the conductive part.
  • the oxygen reduction catalyst examples include noble metal catalysts such as platinum, iron-based catalysts, manganese-based catalysts, and carbon alloy-based catalysts.
  • the noble metal catalyst such as platinum
  • the redox performance is further enhanced.
  • the iron-based catalyst, the manganese-based catalyst, and the carbon alloy-based catalyst are used, the cost is further reduced.
  • the said oxygen reduction catalyst only 1 type may be used and 2 or more types may be used together.
  • an electrode laminate When using the laminate as an electrode for a microbial fuel cell, an electrode laminate can be obtained by disposing an insulator on the surface of the laminate.
  • the electrode laminate includes a laminate (electrode) and an insulator disposed on the surface of the laminate.
  • the material of the insulator is preferably a resin.
  • the resin as the insulator material include polyolefin resin, polystyrene resin, polyester resin, polyvinyl chloride resin, acrylic resin, urethane resin, epoxy resin, polyamide resin, methyl cellulose resin, ethyl cellulose resin, polyvinyl alcohol resin, vinyl acetate.
  • examples thereof include resins, phenol resins, fluororesins, and polyvinyl butyral resins. Since it is excellent in insulation, the resin that is the material of the insulator is preferably a polyolefin resin, a polystyrene resin, a polyester resin, or a polyvinyl chloride resin.
  • the insulator is preferably permeable to liquid.
  • the insulator is preferably a mesh, a woven fabric, a nonwoven fabric or a pore membrane.
  • the insulator is preferably heat-sealed with the laminated body.
  • the first surface of the non-conductive substrate may be covered with a conductive portion, and the non-conductive substrate may be exposed on the second surface of the non-conductive substrate.
  • the first surface of the nonconductive substrate may be covered with a conductive portion, and the nonconductive substrate may be exposed on the second surface of the nonconductive substrate.
  • the microbial fuel cell preferably includes an electrode stack and a conductive wire connecting the anode and the cathode.
  • the electrode laminate described above is used as at least one of the anode and the cathode.
  • the microbial fuel cell preferably includes an anode, a cathode, and a conductive wire connecting the anode and the cathode, and at least one of the anode and the cathode is the laminate described above. Is preferred. It is preferable that both of the anode and the cathode are the above-described laminate.
  • FIGS. 7A and 7B are cross-sectional views schematically showing a microbial fuel cell using the laminate shown in FIG. 1 as an electrode for a microbial fuel cell.
  • an electrode laminate 31 is used.
  • the electrode stack 31 includes an anode 32, an insulator 33, and a cathode 34.
  • the anode 32, the insulator 33, and the cathode 34 are arranged in this order.
  • the insulator 33 is disposed on the surface of the anode 32 so as to be in contact with the anode 32.
  • the cathode 34 is disposed on the surface opposite to the anode 32 side of the insulator 33 so as to be in contact with the insulator 33.
  • laminates (microorganism fuel cell electrodes) 1, 1A, 1B as shown in FIGS. 1 to 3 can be used.
  • the anode 32 and the insulator 33 are coated with the conductive portion on the first surface of the non-conductive substrate, and the non-conductive substrate is exposed on the second surface of the non-conductive substrate.
  • the second surface may be disposed in contact with the cathode.
  • the microbial fuel cell 21 includes an electrode stack 31 and a plurality of air supply units 36. Air can be supplied to the electrode laminate 31 from the air supply unit 36.
  • the air supply unit 36 includes an air chamber 37 and a gas-permeable waterproof film 38 surrounding the air chamber 37.
  • the air permeable waterproof film 38, the air chamber 37, and the air permeable waterproof film 38 are arranged in this order.
  • the outer peripheral edges of the two air permeable waterproof films 38 are sealed.
  • the electrode laminate 31 is in contact with the plurality of air supply units 36.
  • the plurality of air supply units 36 are arranged side by side at intervals.
  • the electrode laminate 31 has a long shape.
  • the electrode laminated body 31 is arrange
  • the electrode laminate 31 in contact with the first air supply unit 36 extends toward the second air supply unit 36 adjacent to the first air supply unit 36 and is in contact with the second air supply unit 36. ing.
  • the electrode stack 31 in contact with the second air supply unit 36 extends toward the third air supply unit 36 adjacent to the second air supply unit 36, and the third air supply unit 36. Is in contact with Further, the electrode stack 31 in contact with the third air supply unit 36 extends toward another air supply unit 36 adjacent to the third air supply unit 36 and is in contact with the other air supply unit 36. ing.
  • the cathode 34 is in contact with the gas-permeable waterproof film 38.
  • the air permeable waterproof film 38 and the cathode 34 constitute an air cathode.
  • the electrode laminated body 31 and the air supply part 36 are arrange
  • the electrode laminate 31 is schematically shown.
  • the anode 32 and the cathode 34 of the electrode laminate 31 are connected by a lead wire (not shown).
  • the anode has a large specific surface area so that microorganisms can be supported effectively.
  • the ratio of the anode area to the anode volume is preferably large.
  • the anode preferably has pores and is preferably a porous body so that a liquid containing an organic substance can pass through.
  • the material of the anode is not particularly limited as long as it is capable of supporting microorganisms and is a conductive material.
  • the conductive material include various conductive metals such as carbon fiber and titanium.
  • Examples of the anode include nets, woven fabrics, nonwoven fabrics, cloths, felts, and the like.
  • anode examples include carbon paper, carbon felt, porous carbon, carbon cloth (carbon woven fabric), metal mesh, and a coated product obtained by coating the metal mesh with carbon black or carbon fiber.
  • examples include stainless steel and titanium.
  • the anode may be surface treated to increase the specific surface area.
  • the thickness of the anode is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, preferably 500 mm or less, more preferably 200 mm or less.
  • the thickness of the anode is equal to or more than the lower limit, microorganisms can be more effectively supported.
  • the thickness of the anode is not more than the above upper limit, the internal resistance becomes low, and the electric energy can be efficiently recovered.
  • the distance between the anode side surface of the cathode and the cathode side surface of the anode is preferably 500 mm or less, more preferably 200 mm or less. When the distance is less than or equal to the above upper limit, the internal resistance is lowered, and electric energy can be efficiently recovered.
  • an insulator is disposed between the anode and the cathode.
  • the material for the insulator is not particularly limited.
  • the insulator may be a separator.
  • the insulator may be an ion permeable membrane.
  • the ion permeable membrane can function as a separator.
  • a fluororesin ion exchange membrane (cation exchange membrane) having a sulfonic acid group is preferably used.
  • Other ion permeable membranes may be used.
  • the sulfonic acid group is hydrophilic and has a high cation exchange capacity.
  • a fluororesin ion exchange membrane in which only the main chain portion is fluorinated, or an aromatic hydrocarbon membrane can be used.
  • ion permeable membrane Commercially available products of the ion permeable membrane include, for example, “Nafion 115” manufactured by DuPont, “NEPTON CR61AZL-389” manufactured by IONICS, “NEOSEPTA CM-1” and “CMB” manufactured by Tokuyama, and “Selemion” manufactured by Asahi Glass. CSV "etc. are mentioned.
  • the material of the ion permeable membrane is not limited to the ion exchange resin, and may be a material such as filter paper that can transmit ions.
  • filter paper examples include “Filter Paper Cat. No. 1004-240” manufactured by GE Healthcare Japan.
  • the thickness of the ion permeable membrane is preferably 10 ⁇ m or more, and preferably 1 mm or less. When the thickness of the ion permeable membrane is equal to or more than the lower limit, breakage is more difficult to occur. When the thickness of the ion permeable membrane is not more than the above upper limit, hydrogen ions move more efficiently.
  • the interval between the cathode and the ion permeable membrane should be as narrow as possible, and the cathode and the ion permeable membrane are preferably in contact with each other.
  • the ion permeable membrane such as air and electrolyte membrane contained in the porous structure.
  • the area of the contact interface (the contact interface between water and air) formed with the generated water is dramatically increased. For this reason, the reaction efficiency which reduces oxygen in the air increases, and the recovery efficiency of electric energy becomes considerably high.
  • the liquid containing the organic substance is not particularly limited, and examples thereof include waste water, waste liquid, human waste, food waste, other organic waste, and sludge.
  • the microbial fuel cell is preferably used as a waste liquid treatment apparatus capable of recovering electrical energy.
  • the above microorganisms include anaerobic microorganisms and aerobic microorganisms.
  • the microorganism is preferably an anaerobic microorganism. Anaerobic microorganisms can grow under anaerobic conditions.
  • the microorganism may be an aerobic microorganism.
  • the microorganism is preferably a microorganism that does not terminate the electron transfer system in the cell membrane of the microorganism. It is desirable to use a microorganism that easily captures electrons at the anode outside the cell membrane and catalyzes electron transfer to the anode.
  • sulfur S (0) reducing bacteria, trivalent iron Fe (III) reducing bacteria, manganese dioxide MnO 2 reducing bacteria, and dechlorinating bacteria are preferably used.
  • Examples of the microorganism include Desulfuromonas sp. Desulfitobacterium sp. Geobivio thiophilus sp. Clostridium thiosulfatireducens sp.
  • Thermoterabacterium ferrireducens sp. Geothrix sp. Geobacter sp. Geoglobus sp. , And Shewanella putrefaciens sp. Etc. are particularly preferably used. These microorganisms are often not major microorganisms in organic substances. Therefore, these microorganisms may be inoculated on the anode and these microorganisms may be supported on the anode.
  • a medium suitable for the growth of these microorganisms in the microorganism reaction chamber at the start of use of the microbial fuel cell. Furthermore, it is more desirable to promote the growth of these microorganisms at the anode by keeping the potential of the anode high.
  • various media using slurry-like sulfur, trivalent iron, manganese dioxide or the like as an electron acceptor have been reported. For example, Ancylobacter / Spirosoma medium, Desulfuromonas medium, and Fe (III) lactate nutrient medium are preferably used.
  • the microbial fuel cell has a high conductivity, corrosion resistance, and a low-cost microbial fuel cell electrode, so that it has high electrical energy recovery efficiency, can withstand long-term use, and is inexpensive. Has the advantage.
  • the above microbial fuel cell does not require aeration and has a high electrical energy recovery efficiency, so that it can be effectively used as an energy-saving wastewater treatment device, and greatly contributes to reduction of environmental load.
  • the above laminate is suitably used for biological treatment and is suitably used for treatment by living organisms.
  • the laminate can be used for a water treatment member used for water treatment, a culture vessel for electrosynthetic microorganisms, and the like.
  • the laminate is preferably a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell.
  • the laminate may be a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell.
  • the laminate can be suitably used in a water treatment system including the laminate and a container having a wastewater inlet and outlet. It is preferable that the laminate is arranged in the container. It is preferable that the said container has a precipitation part under the said laminated body in the said container.
  • the water treatment system preferably includes a wastewater treatment tank using microorganisms downstream of the outlet of the container.
  • the said container is a member for accommodating the water containing a laminated body and organic substance, and making water contact a laminated body.
  • Examples of the water include waste water.
  • the waste water includes household and industrial waste liquid, human waste, food waste, other organic waste, sludge and the like.
  • the size and shape of the vessel are not particularly limited, and can be set as appropriate from a laboratory size of several liters to a water treatment plant size of several thousand cubic meters, a circular, elliptical, or polygonal column shape. , A cone shape, a frustum shape, and the like and a shape similar to these shapes can be appropriately set.
  • the shape of the container is preferably a quadrangular prism shape such as a rectangular parallelepiped or a cube or a shape similar to this.
  • any of various ponds, tanks, and tanks installed in water treatment facilities may be used as the container.
  • a sand basin generally used in the activated sludge method a first sedimentation basin, a reaction tank, a final sedimentation basin, and a tank corresponding to these can be used.
  • a first settling basin and a tank corresponding to this are preferred.
  • Various tanks in existing water treatment facilities can be used as the container.
  • a biological treatment tank an activated sludge tank or the like
  • the required capacity of the biological treatment tank can be reduced, and water treatment can be realized more efficiently.
  • the upper part in the vertical direction of the container may be opened or may not be sealed.
  • the container has a water inlet and outlet. There may be a plurality of inflow ports and outflow ports. From the viewpoint of simplification of the water treatment system, it is preferable that each of the inlet and the outlet is one.
  • the size and shape of the inflow port and outflow port can be appropriately set depending on the size of the container.
  • the inlet and the outlet are preferably arranged on the side surfaces of the container, particularly preferably on the opposite side surfaces.
  • the positions of the inlet and the outlet may be different from each other in the vertical direction and the horizontal direction.
  • the inflow port and the outflow port are preferably arranged at the same position in the vertical direction or the horizontal direction, and more preferably arranged at the same position in the vertical direction or the horizontal direction. More preferably, the inlet and the outlet are arranged above the side surface of the container.
  • the above container is preferably provided with a precipitation portion below a plurality of laminated bodies arranged inside.
  • a solid substance etc. can be effectively precipitated in a sedimentation part, it can prevent clogging of a solid substance between laminated bodies, the inside of this laminated body (between electrodes, etc.).
  • the lower part of the laminated body may include a part below the lowermost end of the laminated body, and may be a part that is higher than the lowermost end of the laminated body or includes a height equivalent to the lowermost end.
  • the sedimentation part may be arranged at a predetermined depth below the container to such an extent that the sediment is not scraped up by stirring caused by the flow of water introduced from the inlet of the container, for example. preferable.
  • the position and depth of the sedimentation part can be appropriately adjusted depending on, for example, the size of the container, the speed of water introduced from the inflow port, and the like.
  • the sedimentation part is preferably arranged at a position and depth of about 1/5 to 1/2 from the bottom of the container depth on the inlet side.
  • the volume of the sedimentation portion of the container is preferably 20% or more of the total volume of the container. Moreover, it is preferable that the volume of the precipitation part of a container is 50% or less of the total volume of a container.
  • the precipitation part is a space in which a solid matter can be primarily stored at the bottom part, for example. It is preferable that the bottom surface of the precipitation part is inclined so that the solid matter is easily precipitated and stored.
  • the shape of the settling portion in plan view is a quadrangle, it is preferable that the settling portion becomes gradually or stepwise shallower toward the outlet. The settling portion may be rapidly shallower on the outlet side.
  • the shape of the precipitation part in a plan view is a circle, the precipitation part is preferably gradually or gradually deeper toward the center.
  • the container may have a shielding member for controlling the flow of water in the container.
  • the container may have an overflow weir.
  • the said shielding member is a member provided in order to spread the water introduce
  • the shielding member functions as a baffle plate.
  • the shielding member preferably has a plate shape in order to efficiently spread the introduced water in the horizontal or vertical direction of the container.
  • the shielding member preferably has a larger plane area than the inlet and has a width equal to or less than the horizontal width of one surface of the container in which the inlet is arranged.
  • the shielding member is about 80% or less (preferably 70%, more preferably 60%) or less of the height (length) in the vertical direction of one surface of the container in which the inflow port is arranged, which does not function as a sedimentation part.
  • a container has a sedimentation part below the container, and as described above, the sedimentation part may be arranged at a position and depth of about 1/5 to 1/2 from the bottom of the container depth.
  • the shielding member has a height (length) of about 75% (preferably 65%, more preferably 60%) or less with respect to the total height (length) in the vertical direction of the container on the inlet side of the container. It is preferable that it is arrange
  • the shielding member is disposed in the vicinity of the inflow port so as to face the inflow port and to be opposed to the side surface on which the inflow port is disposed, and to be parallel to the side surface of the container in which the inflow port is disposed. More preferably. Further, the shielding member is preferably arranged so that a part farther from the inlet of the shielding member is separated from the container, and in particular, the shielding member is separated from the bottom surface of the container.
  • the shielding member When the inflow port is disposed above the side surface of the container, the shielding member is disposed between the inflow port and the laminate in a plan view, and faces the side surface on which the inflow port of the container is disposed; It is preferable that the container is disposed apart from the bottom surface of the container.
  • the shielding member is preferably arranged so as to be connected to two opposite side surfaces of the container. It is preferable that the upper end of the shielding member is disposed at a position higher than the level of water stored in the container.
  • the above overflow weir is introduced, for example, from the inflow port and maintains the flow of water spreading in the horizontal or vertical direction of the container up to the vicinity of the outflow port.
  • the overflow weir moderates the flow of water so that water does not flow directly toward the outlet.
  • the overflow weir is preferably arranged so as to be separated from the outlet and to cover the outlet in the horizontal and vertical directions in the vicinity of the outlet.
  • the overflow weir flows in the horizontal direction with a width equal to or less than the horizontal width of one side of the container in which the outlet is arranged and a height equal to or less than about 500% of the diameter (or length) of the outlet. It is preferable that the outlet is covered and the outlet is covered in the vertical direction at a distance of about 500% or less of the diameter (or length) of the outlet.
  • the overflow weir faces in parallel with the side surface on which the outflow port is disposed between the laminate in the plan view and the outflow port, and It is preferable to connect with two opposing side surfaces of the container in which the outlet is not disposed, to be connected perpendicularly to the surface on which the outlet is disposed, and to cover the lower side of the outlet.
  • the overflow weir is preferably arranged to open above the container.
  • each of parallel and vertical allows an inclination of about ⁇ 20 degrees, preferably about ⁇ 10 degrees with respect to a reference plane or line.
  • the plan view means a case when viewed from above the container (for example, the opened side).
  • Laminate in water treatment system It is preferable that a plurality of laminated bodies are accommodated in the container. In a container, it is preferable that the some laminated body is arrange
  • the laminate is preferably arranged in the container along the direction from the inlet to the outlet in a plan view of the container.
  • water is introduced from the inlet of the container and discharged from the outlet, it is preferably arranged in a direction that does not block the water flow. Therefore, when the laminated body has the inlet and the outlet arranged at the same position in the horizontal direction of the opposing surfaces of the container, the laminated body is a straight line connecting the inlet and the outlet in plan view. It is preferable that they are arranged in parallel with A.
  • the laminated body is parallel to a straight line A connecting the inlet and the outlet in plan view. May be arranged.
  • the laminated body is arranged in parallel to a straight line B that is the shortest distance between the opposing side surfaces where the inlet and the outlet are formed.
  • the plurality of laminated bodies are arranged at regular intervals. With such an arrangement, the amount of power generated per stacked body can be made uniform in water that contacts a plurality of stacked bodies.
  • the interval can be appropriately set depending on the size of the container, the size of the laminate used, the thickness of the anode and the cathode constituting the laminate, and the like.
  • a water treatment system 50 shown in FIGS. 8A to 8C includes a container 51 and a member 52 including a plurality of laminated bodies accommodated in the container 51.
  • the member 52 including the laminated body may be an electrode unit.
  • the electrode unit may include a cathode disposed to face the air chamber, and an anode spaced apart from the cathode and disposed to face each other.
  • the anode and the cathode may be connected by a conducting wire or the like. It is preferable that at least one of the annot and the cathode is the laminate.
  • the container 51 has, for example, a rectangular shape (4 m ⁇ 6 m) in plan view.
  • the upper part of the container 51 is open.
  • the depth of the container 51 is 4 m on one side and 2 m on the other side.
  • the depth of the container 51 is gradually reduced from one side to the other side.
  • one inflow port 51a and one outflow port 51b for the water 56 are provided on the side surfaces of the container 51 facing each other. Both the inflow port 51a and the outflow port 51b are disposed at the horizontal center of the side surface of the container 51, and are disposed above in the vertical direction.
  • the diameter of the inflow port 51a and the outflow port 51b is, for example, 15 cm.
  • a sedimentation part 51c is provided below the container 51 (bottom part).
  • the precipitation part 51c occupies about 35% of the total volume of the container 51, for example.
  • the depth of the precipitation part 51 is 2.1 m on the inflow port 51a side, for example, and is 0.1 m on the outflow port 51b side.
  • the depth of the precipitation part 51c is gradually shallow from one side to the other side.
  • the water 51 is accommodated in the container 51, and the water surface is normally disposed at a position where the member 52 including the laminate is substantially completely immersed.
  • the inflow speed of the water 56 from the inflow port 51a is set to about 1 m / second, and the water flows out from the outflow port 51b over about 8 to 24 hours. Solid matter is precipitated in the precipitation part 51c.
  • the members 52 including the laminated body accommodated in the container 51 are arranged along the direction from the inlet 51a toward the outlet 51b in a plan view.
  • the members 52 including the laminate are arranged in a direction that does not block the flow of water.
  • all the members 52 including a plurality of stacked bodies are arranged in parallel to a straight line connecting the inflow port 51a and the outflow port 51b, and are arranged at a constant interval (for example, 10 cm).
  • the size of the member 52 including the stacked body is, for example, about 1.6 m ⁇ 3.6 m.
  • a water treatment system 50A shown in FIGS. 9A and 9B includes a container 61 provided with a sedimentation portion 61c below, and a member 52 including a plurality of laminated bodies accommodated in the container 61. Is done.
  • the container 61 has the same shape and size as the container 51, and includes the same inlet 56 a and outlet 61 b for water 56 and a precipitation portion 61 c, and accommodates a member 52 including the same laminate. ing.
  • the container 61 includes a shielding member 61d and an overflow weir 61e in the container 61.
  • the shielding member 61d is a plate-like member provided to spread the water 56 introduced from the inflow port 61a in the horizontal direction and the vertical direction of the container 61.
  • the shielding member 61d has a width approximately the same as the horizontal width of the side surface of the container 61 in which the inflow port 61a is disposed, and has a height (length) of about 80% of the vertical height (length) of the side surface. A). Therefore, the shielding member 61d is connected to the two opposing side surfaces where the inlet 61a and the outlet 61b of the container 61 are not disposed, and is spaced from the upper surface of the sedimentation portion of the container 61 by about 20 to 50 cm. Yes.
  • the shielding member 61d is disposed in the vicinity of the inflow port 61a so as to face the inflow port 61a in parallel with the side surface of the container 61 in which the inflow port 61a is disposed.
  • the upper end of the shielding member 61 d is disposed at a position slightly higher than the water surface of the water 56 accommodated in the container 61.
  • the water 56 introduced from the inflow port 61a by the shielding member 61d can be efficiently spread in the horizontal direction and the vertical direction in the container 61 as indicated by arrows in FIG.
  • the water 56 can be brought into contact with the member 52 including the body more uniformly and with a larger area.
  • the overflow weir 61e is introduced from the inlet 61a, maintains the flow of the water 56 spreading in the horizontal and vertical directions of the container 61 to the vicinity of the outlet 61b, and does not flow directly toward the outlet 61b. Alleviate that flow.
  • the overflow weir 61e is disposed in the vicinity of the outlet 61b so as to be separated from the outlet 61b and to cover the outlet 61b in the horizontal direction and the vertical direction.
  • the overflow weir 61e has a width approximately the same as the horizontal width of the side surface of the container in which the outlet 61b is disposed, and a height of about 200% of the diameter of the outlet 61b.
  • the overflow weir 61e faces the parallel to the side surface and covers the outflow port 61b so as to correspond to an L-shaped vertical line in cross section.
  • the overflow weir 61e has a distance of about 150% of the diameter of the outlet 61b, and is perpendicular to the side surface on which the outlet 61b is arranged so as to correspond to an L-shaped horizontal line in cross section, below the outlet 61b. It is covered.
  • the water treatment system 50B shown in FIG. 10 has a shape in which the sedimentation portion 71c of the container 71 becomes deeper at the center and gradually becomes shallower toward the outer periphery, compared to the water treatment systems shown in FIGS. 8 (a) to 8 (c). It is different in having.
  • the container 71 has an inlet 71a and an outlet 71b.
  • the container 71 of the water treatment system 50B is provided as an existing sedimentation tank of a water treatment facility. Specifically, for example, as a first sedimentation basin of a water treatment facility, a container 71 of a water treatment system 50B is arranged, an activated sludge tank is arranged as a reaction tank 53 downstream thereof, and a downstream of the activated sludge tank, A final sedimentation basin 54 is arranged.
  • the members 74A and 74B including the laminate shown in FIG. 11A or FIG. 11B are air cathodes.
  • the members 74 ⁇ / b> A and 74 ⁇ / b> B including the laminated body include a first cathode 75 and a second cathode 76, an air inlet portion 77, an air outlet portion 78, a plate-like partition member 79, and a frame member 72.
  • the first cathode 75 and the second cathode 76 are arranged to face each other with the frame member 72 interposed therebetween.
  • An internal space exists between the first cathode 75 and the second cathode 76.
  • the internal space forms an air chamber 73.
  • the air feeding part 77 and the air sending part 78 are arrange
  • the air inlet 77 is provided to send air into the air chamber 73.
  • the air delivery part 78 is provided to send air out of the air chamber 73.
  • the members 74 ⁇ / b> A and 74 ⁇ / b> B including the laminated body have a plurality of air feeding parts 77 and a plurality of air sending parts 78. Even if there are a plurality of air delivery sections, the partition member 79 can sufficiently move the air in the air chamber.
  • the number and order of the air inlets 77 and the air outlets 78 can be arbitrarily changed as shown in FIG. 11 (a) or FIG. 11 (b).
  • the test apparatus was composed of a constant current source, a voltmeter, a probe, and a changeover switch as shown in FIG. 3 of JIS K7194-1994.
  • the constant current source is a current source that can flow the applied current I 0 by the resistance of the test piece. How to determine the applied current I 0 is, were as follows. When the current I flows from the probe A toward the probe D, assuming that the potential difference generated between the probe B and the probe C is V, the resistance is V / I. Select a current corresponding to the resistance, which was used as the applied current I 0. The applied current I 0 is selected according to the resistance of the test piece.
  • the probe was a metal rod having a diameter of 0.5 to 0.8 mm, and the tip of the rod was processed into a spherical shape.
  • the four probes were arranged in a straight line at equal intervals, and one end processed into a spherical shape was brought into contact with the test piece.
  • the interval between adjacent probes was 5 mm, and the insulation resistance between adjacent probes was 10 10 ⁇ or more.
  • an appropriate force for example, a force of 1 to 2N, was applied to each probe. When the probe was deeply embedded in the test piece, the force applied to each probe was reduced.
  • a rectangular parallelepiped having a length of 80.0 ⁇ 0.2 mm, a width of 50.0 ⁇ 0.2 mm, and a thickness of 20 mm or less.
  • the test piece of the said dimension is not obtained, it is also possible to change a dimension.
  • the dimensions are changed, it is necessary to correct the resistivity according to the dimensions.
  • the applied current I 0 is passed from the probe A to the probe D using the measurement circuit shown in FIG. 3 of JIS K7194-1994, and the probe B, the probe C, The potential difference V 1 occurring between the two was measured. Resistance R 1 between the probe B and probe C at this time is V 1 / l 0.
  • the applied current I 0 was passed in the reverse direction (from the probe D to the probe A) by the changeover switch, and the potential difference V 2 generated between the probe B and the probe C was measured. Resistance R 2 at this time is the absolute value of V 2 / l 0.
  • the resistance R between the probe B and the probe C was an average value of R 1 and R 2 . This resistance R was used when calculating the resistivity.
  • the direction of the applied current I 0 is switched, the potential difference V 2 is displayed on the voltmeter as a negative value. In this case, the absolute value of V 2 / I 0 is adopted as the resistor R 2 .
  • the resistivity ( ⁇ ) of the electrode composed of the coating and the conductive substrate was determined by the formula (1). The measurement was performed on five test pieces, and the average value was adopted as the resistivity.
  • t ⁇ R (1) ( ⁇ : resistivity ( ⁇ ⁇ cm), t: thickness of test piece (cm), R: resistance ( ⁇ ))
  • This measurement procedure is an original method and refers to JIS K7194-1994, but is different from JIS K7194-1994 in that the correction factor (F) is not used.
  • the parts that are not specified follow JIS K7194-1994.
  • the output density of the microbial fuel cell was measured according to the following procedure. The higher the power density, the higher the electrical energy recovery efficiency.
  • a cathode an air cathode obtained by sintering a polytetrafluoroethylene layer on carbon paper (carbon paper “TGP-H-120” manufactured by Toray Industries, Inc.) was used.
  • a platinum catalyst manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM
  • a Nafion solution manufactured by Sigma Aldrich Japan, Nafion perfluorinated resin solution
  • Platinum was applied to the ion permeable membrane side of the cathode so that the supported amount was 4 mg / cm 2 .
  • filter paper GE Healthcare Japan, Cat. No. 1004-240
  • An ion permeable membrane was disposed between the anode and the cathode so as to be in contact with each other to obtain a membrane / electrode bonded structure.
  • a microbial fuel cell is produced using the obtained membrane-electrode assembly structure, and artificial wastewater (BOD concentration: 800 mg / L) containing an organic polymer such as starch is brought into contact with the anode for 30 days. It was allowed to flow continuously. The flow rate was set so that the BOD area load, which is the BOD load amount per outer area of the anode, was 16 g / m 2 / day.
  • soil microorganisms were inoculated as anaerobic microorganisms responsible for power generation. The potential difference at both ends of the load circuit at this time was measured. The power density was determined by equation (2).
  • Example 1 The conductive carbon material (powdered carbon) was fixed to the surface of the nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
  • JELCON CH-8 manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent
  • the JELCON CH-8 was applied to the surface of the non-woven fabric and allowed to stand in an oven at 120 ° C. for 15 minutes to produce a microbial fuel cell electrode.
  • the coating weight of the powdery carbon of the nonwoven fabric and the resin was 60 g / m 2 .
  • the resistivity ⁇ was 3.1 ⁇ 10 0 ⁇ ⁇ cm.
  • the power density P was 170 mW / m 2 .
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 2 The conductive carbon material (powdered carbon) was fixed to the surface of the nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
  • JELCON CH-8 manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent
  • the JELCON CH-8 was applied to the surface of the non-woven fabric and allowed to stand in an oven at 120 ° C. for 15 minutes to produce a microbial fuel cell electrode.
  • the coating weight of the nonwoven fabric with the powdery carbon and the resin was 110 g / m 2 .
  • the resistivity ⁇ was 9.1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm.
  • the power density P was 130 mW / m 2 .
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 3 The conductive carbon material (powdered carbon) was fixed to the surface of the nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
  • JELCON CH-8 manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent
  • the JELCON CH-8 was applied to the surface of the non-woven fabric and allowed to stand in an oven at 120 ° C. for 15 minutes to produce a microbial fuel cell electrode.
  • the coating weight of the nonwoven fabric with the powdery carbon and the resin was 230 g / m 2 .
  • the resistivity ⁇ was 6.6 ⁇ 10 ⁇ 1 ⁇ ⁇ cm.
  • the power density P was 110 mW / m 2 .
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 1 The electrode for a microbial fuel cell, which is the same as in Example 1, except that the coating weight of the non-woven powdery carbon and resin is 6 g / m 2 is used for the anode, and the resistivity ⁇ and the recovery efficiency of electric energy are evaluated.
  • the resistivity ⁇ was 1.2 ⁇ 10 2 ⁇ ⁇ cm or more.
  • the power density P was 10 mW / m 2 .
  • Example 4 As the conductive carbon material, milled carbon obtained by finely pulverizing carbon fibers (Osaka Gas Co., Ltd., DonaCarbo Mild S-244, fiber diameter 13 ⁇ m, average fiber length 0.7 mm, aspect ratio 54) was prepared.
  • milled carbon which is the conductive carbon material
  • polyvinyl butyral (Sekisui Chemical Co., Ltd., ESREC BK BL-1)
  • ethanol which is the organic solvent
  • a non-woven fabric (manufactured by Unitika Ltd., 10606WTD) is dipped in the obtained carbon material-containing liquid and scooped up, and then left in an oven at 80 ° C. for 10 minutes to evaporate and remove the organic solvent, thereby removing microbial fuel.
  • a battery electrode was prepared.
  • the coating weight of the conductive base material with the conductive carbon material was 63 g / m 2 .
  • a microbial fuel cell was produced in the same manner as in Example 1.
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 5 330 parts by weight of graphite as the conductive carbon material (PC99-300M, average particle size 42 ⁇ m) manufactured by Ito Graphite Co., Ltd. and polyvinyl butyral (Sekisui Chemical Co., Ltd., ESREC B ⁇ K BL-1) 100 as the resin described above.
  • a non-woven fabric (manufactured by Toyobo Co., Ltd., 3401A) is dipped in the obtained carbon material-containing liquid and scooped up, and then left in an oven at 80 ° C. for 10 minutes to evaporate and remove the organic solvent, thereby removing microorganisms.
  • a fuel cell electrode was prepared.
  • the coating weight of the conductive base material with the conductive carbon material was 63 g / m 2 .
  • the electrode for microbial fuel cell obtained in Example 1 was used as an anode, and the electrode obtained by applying a platinum catalyst to the electrode for microbial fuel cell obtained in Example 5 so that the amount of platinum applied was 4 mg / cm 2 was used as an air cathode.
  • a microbial fuel cell was prepared in the same manner as in Example 1.
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 6 The conductive carbon material (powdered carbon), which is the first conductive part, was fixed to the surface of a polyester nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
  • JELCON CH-8 manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent
  • the JELCON CH-8 was applied to the surface of the nonwoven fabric in a lattice pattern extending linearly in two orthogonal directions.
  • the thickness of the line is 2 mm
  • the distance between the center line of the line and the center line of the line adjacent to the line is 10 mm
  • the line thickness and the line spacing are the same in the two orthogonal directions. It was.
  • the 1st electroconductive part was formed on the said nonwoven fabric by standing still in 120 degreeC oven for 15 minutes.
  • the coating weight (weight per unit area of the line part) of the powdery carbon and the resin was 240 g / m 2 .
  • the resistivity of the first conductive part measured by the method described below was 6.2 ⁇ 10 ⁇ 1 ⁇ ⁇ cm.
  • a conductive carbon material as a second conductive part was fixed on the first conductive part by the following procedure.
  • JELCON CH-8 was prepared as a conductive carbon material-containing liquid.
  • the JELCON CH-8 was applied to the surface of the first conductive part. By leaving it in an oven at 120 ° C. for 15 minutes, a second conductive part was formed, and an electrode for a microbial fuel cell was produced.
  • the coating weight of the powdery carbon and the resin was 17 g / m 2 .
  • the resistivity of the second conductive part measured by the method described below was 2.1 ⁇ 10 1 ⁇ ⁇ cm.
  • Example 6 the resistivity ⁇ varies from 6.2 ⁇ 10 ⁇ 1 ⁇ ⁇ cm (on the first conductive portion line) to 2.1 ⁇ 10 1 ⁇ ⁇ cm (not on the first conductive portion line). Part).
  • the power density P was 110 mW / m 2 .
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 7 In the following procedure, a conductive carbon material (powdered carbon) as a second conductive part was fixed to the surface of a polyester nonwoven fabric (manufactured by Toyobo Co., Ltd., 3401A).
  • JELCON CH-8 was prepared as a conductive carbon material-containing liquid.
  • the JELCON CH-8 was applied to the surface of the nonwoven fabric. By leaving it in an oven at 120 ° C. for 15 minutes, a second conductive part was formed, and an electrode for a microbial fuel cell was produced.
  • the coating weight of the powdery carbon and the resin was 40 g / m 2 .
  • the resistivity was 5.3 ⁇ 10 0 ⁇ ⁇ cm.
  • JELCON CH-8 was prepared as a conductive carbon material-containing liquid.
  • the JELCON CH-8 was applied on the surface of the second conductive portion in a lattice pattern extending linearly in two directions perpendicular to the surface.
  • the lattice pattern had the same shape as in Example 6.
  • the first conductive part was formed on the second conductive part by standing in an oven at 120 ° C. for 15 minutes.
  • the coating weight (weight per unit area of the line part) of the powdery carbon and the resin was 240 g / m 2 .
  • the resistivity was 6.6 ⁇ 10 ⁇ 1 ⁇ ⁇ cm.
  • the resistivity ⁇ was 6.6 ⁇ 10 ⁇ 1 ⁇ ⁇ cm (on the first conductive portion line) to 5.3 ⁇ 10 0 ⁇ ⁇ cm (the portion not on the first conductive portion line). .
  • the power density P was 200 mW / m 2 .
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 8 The conductive metal-containing material (Chemtronics, Conductive Epoxy), which is the first conductive part, was fixed to the surface of the polyester nonwoven fabric (Unitika, 10606WTD) by the following procedure.
  • the conductive metal-containing material was applied to the surface of the nonwoven fabric.
  • the thickness of the line is 2 mm
  • the distance between the center line of the line and the center line of the line adjacent to the line is 10 mm
  • the line thickness and the line spacing are the same in the two orthogonal directions. It was.
  • the 1st electroconductive part was formed on the said nonwoven fabric by leaving still at room temperature for 1 day.
  • the coating weight (the basis weight of the line portion) was 1,000 g / m 2 .
  • the resistivity of the first conductive part measured by the method described below was 3.1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • a conductive carbon material as a second conductive portion was fixed on the first conductive portion by the following procedure.
  • JELCON CH-8 was prepared as a conductive carbon material-containing liquid.
  • the JELCON CH-8 was applied to the surface of the first conductive part. By leaving it in an oven at 120 ° C. for 15 minutes, a second conductive part was formed, and an electrode for a microbial fuel cell was produced.
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 9 In the same manner as in Example 8, a conductive metal-containing material (Conductive Epoxy, manufactured by Chemtronics) as a first conductive part was fixed to the surface of a polyester nonwoven fabric (manufactured by Unitika Ltd., 10606WTD).
  • a conductive metal-containing material Conductive Epoxy, manufactured by Chemtronics
  • the second conductive part was formed on the surface of the first conductive part by the following method.
  • a conductive carbon material As a conductive carbon material, 330 parts by weight of graphite (manufactured by Ito Graphite Co., PC99-300M, average particle size 42 ⁇ m) and 100 wt. Part, platinum catalyst (manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM) and 1000 parts by weight of ethanol as the organic solvent are mixed and mixed to obtain a conductive carbon material-containing liquid in which the conductive carbon material and the platinum catalyst are dispersed.
  • graphite manufactured by Ito Graphite Co., PC99-300M, average particle size 42 ⁇ m
  • platinum catalyst manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM
  • the obtained carbon material-containing liquid is applied on the first conductive part formed on the nonwoven fabric, it is left in an oven at 80 ° C. for 10 minutes to evaporate and remove the organic solvent, thereby removing microorganisms.
  • a fuel cell electrode was prepared.
  • the coating weight of the conductive base material with the conductive carbon material was 63 g / m 2 .
  • a microbial fuel cell was produced using the microbial fuel cell electrode obtained in Example 6 as an anode and the microbial fuel cell electrode obtained in Example 9 as an air cathode.
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Example 10 In the following procedure, in the sheet in which the nonwoven fabric is laminated on the air-permeable waterproof film (Sekisui Chemical Co., Ltd., Cellpore NWE08, holding the nonwoven fabric), the surface of the nonwoven fabric is the second conductive part. A conductive carbon material was fixed.
  • a conductive carbon material As a conductive carbon material, 330 parts by weight of graphite (manufactured by Ito Graphite Co., PC99-300M, average particle size 42 ⁇ m) and 100 wt. Part, platinum catalyst (manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM) and 1000 parts by weight of ethanol as the organic solvent are mixed and mixed to obtain a conductive carbon material-containing liquid in which the conductive carbon material and the platinum catalyst are dispersed.
  • graphite manufactured by Ito Graphite Co., PC99-300M, average particle size 42 ⁇ m
  • platinum catalyst manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM
  • the 1st electroconductive part was formed on the said nonwoven fabric by standing still in 120 degreeC oven for 15 minutes.
  • a microbial fuel cell was produced using the microbial fuel cell electrode obtained in Example 6 as an anode and the microbial fuel cell electrode obtained in Example 10 as an air cathode.
  • the obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
  • Examples 1 to 10 described above examples in which the laminate was used as an electrode for a microbial fuel cell were shown.
  • the laminates of Examples 1 to 10 it was confirmed that the obtained microbial fuel cell exhibited excellent organic substance removal performance, and thus the electrode had high corrosion resistance. Since the laminates of Examples 1 to 10 have excellent corrosion resistance, they can be widely used for applications that require high corrosion resistance. Since the laminates of Examples 1 to 10 are excellent in corrosion resistance, they can be used, for example, for water treatment members used for water treatment.

Abstract

The purpose of the present invention is to provide a laminate with which it is possible to improve corrosion resistance over a long period of time. This laminate is provided with a non-conductive substrate and a conductive part coated on at least one surface of the non-conductive substrate, the conductive part including a conductive carbon material and a resin.

Description

積層体及び水処理システムLaminate and water treatment system
 本発明は、非導電性基材の少なくとも一方の表面が導電部により被覆されている積層体に関する。また、本発明は、上記積層体を用いた水処理システムに関する。 The present invention relates to a laminate in which at least one surface of a non-conductive substrate is covered with a conductive part. Moreover, this invention relates to the water treatment system using the said laminated body.
 近年、廃水等の有機性廃棄物を分解する際にエネルギーを回収する方法として、燃料電池のしくみを利用した微生物燃料電池が注目されている。微生物燃料電池では、廃水及び廃棄物等に含まれる有機性物質を分解する際に微生物が放出した電子を、電極により回収することによって、直接的に電気エネルギーを回収することが可能である。 In recent years, microbial fuel cells using the mechanism of fuel cells have attracted attention as a method for recovering energy when decomposing organic waste such as wastewater. In a microbial fuel cell, it is possible to directly recover electrical energy by collecting, with an electrode, electrons released by microorganisms when decomposing organic substances contained in waste water and waste.
 上記微生物燃料電池の一例が、下記の特許文献1,2に開示されている。具体的には、特許文献1,2では、アノード(負電極)と、イオン透過性膜と、カソード(正電極)とがこの順で並べられており、かつアノードとカソードとが導線により負荷回路に接続されている微生物燃料電池が開示されている。 An example of the microbial fuel cell is disclosed in Patent Documents 1 and 2 below. Specifically, in Patent Documents 1 and 2, an anode (negative electrode), an ion permeable membrane, and a cathode (positive electrode) are arranged in this order, and the anode and the cathode are connected to each other by a conductive wire. A microbial fuel cell connected to the is disclosed.
 上記微生物燃料電池を使用する際には、アノードの表面上の空隙の流路に、嫌気性下で生育可能な微生物及び有機性物質を含む液を流す。また、カソードの表面上の流路に空気を流し、カソードに空気を接触させる。アノードでは、微生物により有機性物質から水素イオン(H)及び電子(e)が生成される。水素イオンは、イオン透過性膜を透過して、カソード側に移動して、アノードとカソードとの間に電位差が生じる。この状態で、アノードとカソードとが導線によって負荷回路に接続され、閉回路が形成されていると、生じた電位差と負荷回路に流れた電流との積の分の電気エネルギーを回収できる。 When the microbial fuel cell is used, a liquid containing microorganisms and organic substances that can grow under anaerobic conditions is caused to flow through the flow path of the gap on the surface of the anode. Further, air is caused to flow through the flow path on the surface of the cathode, and the air is brought into contact with the cathode. At the anode, hydrogen ions (H + ) and electrons (e ) are generated from organic substances by microorganisms. Hydrogen ions permeate the ion-permeable membrane and move to the cathode side, causing a potential difference between the anode and the cathode. In this state, when the anode and the cathode are connected to the load circuit by a conductive wire to form a closed circuit, electric energy corresponding to the product of the generated potential difference and the current flowing through the load circuit can be recovered.
 また、上記のような微生物燃料電池に用いられる電極(アノード及びカソード)の材料に関して、特許文献1では、グラファイトペーパー、グラファイトフェルト及びグラファイトクロスなどの導電性基材が挙げられている。また、特許文献1では、アノードとして、グラファイトフェルトを用い、かつカソードとして、酸素還元触媒である二酸化マンガンを電解析出によって担持させたカーボンペーパーを用いた微生物燃料電池が開示されている。 In addition, regarding materials for electrodes (anode and cathode) used in the microbial fuel cell as described above, Patent Document 1 mentions conductive substrates such as graphite paper, graphite felt, and graphite cloth. Patent Document 1 discloses a microbial fuel cell using graphite felt as an anode and carbon paper carrying, as a cathode, manganese dioxide as an oxygen reduction catalyst by electrolytic deposition.
 また、カーボン材料以外の材料が電極に使用されることがある。特許文献2では、導電性プラスチックシートを金属製導電体の両面にコーティングすることによって得られた電極(アノード及びカソード)を用いた微生物燃料電池が開示されている。上記導電性プラスチックシートは、ポリエチレン、ポリプロピレン及びポリエチレンテレフタレート等のプラスチックに、炭素又はグラファイトなどの導電性パウダーを混ぜて得られた導電性プラスチックシートである。 Also, materials other than carbon materials may be used for the electrodes. Patent Document 2 discloses a microbial fuel cell using electrodes (anode and cathode) obtained by coating a conductive plastic sheet on both surfaces of a metal conductor. The conductive plastic sheet is a conductive plastic sheet obtained by mixing a conductive powder such as carbon or graphite into a plastic such as polyethylene, polypropylene and polyethylene terephthalate.
 また、微生物燃料電池以外にも、廃水等を処理する幾つかの水処理システムが知られている。水処理システムでは、容器内に、廃水等を浄化等する部材が配置されている。 In addition to microbial fuel cells, several water treatment systems for treating wastewater and the like are known. In the water treatment system, a member for purifying waste water or the like is disposed in the container.
特開2010-9772号公報Japanese Unexamined Patent Publication No. 2010-9772 WO2010/049936A1WO2010 / 049936A1
 特許文献1に記載のようなグラファイトペーパー、グラファイトフェルト及びグラファイトクロス等のカーボン材料は、上記電極の材料として好適ではあるが、カーボン材料は高価であるという問題がある。 Although carbon materials such as graphite paper, graphite felt, and graphite cloth as described in Patent Document 1 are suitable as the material of the electrode, there is a problem that the carbon material is expensive.
 また、特許文献2に記載のように、基材に金属製導電体である電極を用いると、コーティング膜にクラックやピンホール等の欠陥が生じやすい。このため、微生物燃料電池を長期間使用すると、電極が腐食したり、電極が破損したりする可能性がある。 Further, as described in Patent Document 2, when an electrode that is a metal conductor is used for the base material, defects such as cracks and pinholes are likely to occur in the coating film. For this reason, when a microbial fuel cell is used for a long time, an electrode may corrode or an electrode may be damaged.
 また、従来の電極を用いた微生物燃料電池では、電気エネルギーの回収効率が低いという問題がある。 Also, the microbial fuel cell using the conventional electrode has a problem that the recovery efficiency of electric energy is low.
 また、従来の水処理システムでは、廃水等を浄化等する部材の腐食が進行しやすいという問題がある。 In addition, the conventional water treatment system has a problem that corrosion of a member that purifies waste water or the like easily proceeds.
 本発明の目的は、長期に渡り耐腐食性を高めることができる積層体を提供することである。また、本発明の目的は、上記積層体を用いた水処理システムを提供することである。 An object of the present invention is to provide a laminate that can enhance corrosion resistance over a long period of time. Moreover, the objective of this invention is providing the water treatment system using the said laminated body.
 本発明の広い局面によれば、非導電性基材と、前記非導電性基材の少なくとも一方の表面を被覆している導電部とを備え、前記導電部が、導電性カーボン材料及び樹脂を含む、積層体が提供される。 According to a wide aspect of the present invention, a non-conductive substrate and a conductive portion covering at least one surface of the non-conductive substrate are provided, and the conductive portion includes a conductive carbon material and a resin. Including, a laminate is provided.
 本発明に係る積層体のある特定の局面では、前記積層体は、水処理に用いられる水処理用部材であるか、又は、微生物燃料電池に用いられる微生物燃料電池用電極であり、他の特定の局面では、前記積層体は、水処理に用いられる水処理用部材である。 In a specific aspect of the laminate according to the present invention, the laminate is a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell. In this aspect, the laminate is a water treatment member used for water treatment.
 前記非導電性基材が、液を透過可能であることが好ましく、水を透過可能であることがより好ましい。前記非導電性基材が、メッシュ、織布、不織布又は細孔膜であることが好ましい。前記非導電性基材の材料が、樹脂であることが好ましい。 The non-conductive substrate is preferably permeable to liquid, and more preferably permeable to water. The non-conductive substrate is preferably a mesh, a woven fabric, a non-woven fabric or a pore membrane. The material of the non-conductive substrate is preferably a resin.
 本発明に係る積層体のある特定の局面では、前記導電部の内部又は前記導電部の表面上に配置された酸素還元触媒を備える。 In a specific aspect of the laminate according to the present invention, an oxygen reduction catalyst disposed inside the conductive part or on the surface of the conductive part is provided.
 本発明に係る積層体のある特定の局面では、前記積層体は、前記導電部を第2の導電部として備え、前記第2の導電部と異なる導電性を有する第1の導電部をさらに備える。 On the specific situation with the laminated body which concerns on this invention, the said laminated body is further equipped with the 1st electroconductive part which has the said electroconductive part as a 2nd electroconductive part, and has the electroconductivity different from the said 2nd electroconductive part. .
 本発明の広い局面によれば、上述した積層体と、水の流入口及び流出口を有する容器とを備え、前記容器内に、前記積層体が配列されており、前記容器は、前記容器内の前記積層体の下方に沈殿部を有する、水処理システムが提供される。 According to a wide aspect of the present invention, the laminate includes the above-described laminate and a container having an inlet and an outlet of water, the laminate is arranged in the container, and the container is disposed in the container. A water treatment system having a sedimentation portion below the laminate is provided.
 本発明に係る水処理システムのある特定の局面では、前記容器の前記沈殿部の容積が、前記容器の全容積の20%以上である。 In a specific aspect of the water treatment system according to the present invention, the volume of the sedimentation portion of the container is 20% or more of the total volume of the container.
 本発明に係る水処理システムのある特定の局面では、前記流入口が、前記容器の側面の上方に配置されており、前記容器は、平面視での前記流入口と前記積層体との間において、前記容器の前記流入口が配置された側面に対面しかつ前記容器の底面から離間した遮蔽部材を有する。 In a specific aspect of the water treatment system according to the present invention, the inflow port is disposed above a side surface of the container, and the container is disposed between the inflow port and the laminate in a plan view. And a shielding member facing a side surface of the container on which the inlet is disposed and spaced apart from the bottom surface of the container.
 本発明に係る水処理システムのある特定の局面では、前記容器は、平面視での前記積層体と前記流出口との間において、前記容器の上方に開放する越流堰を有する。 In a specific aspect of the water treatment system according to the present invention, the container has an overflow weir that opens above the container between the stacked body and the outlet in a plan view.
 本発明に係る水処理システムのある特定の局面では、前記容器の前記流出口の下流に、微生物を利用した廃水処理槽を備える。 In a specific aspect of the water treatment system according to the present invention, a wastewater treatment tank using microorganisms is provided downstream of the outlet of the container.
 本発明に係る水処理システムのある特定の局面では、前記積層体が、平面視において、前記容器内に、前記流入口から流出口に向かう方向に沿って配列されている。 In a specific aspect of the water treatment system according to the present invention, the laminated body is arranged in the container along a direction from the inlet to the outlet in a plan view.
 本発明に係る水処理システムのある特定の局面では、前記積層体が、前記容器内に、一定間隔で配列されている。 In a specific aspect of the water treatment system according to the present invention, the laminate is arranged in the container at regular intervals.
 本発明に係る積層体は、非導電性基材と、上記非導電性基材の少なくとも一方の表面を被覆している導電部とを備え、上記導電部が、導電性カーボン材料及び樹脂を含むので、長期に渡り耐腐食性を高くすることができる。 The laminate according to the present invention includes a non-conductive substrate and a conductive portion covering at least one surface of the non-conductive substrate, and the conductive portion includes a conductive carbon material and a resin. Therefore, the corrosion resistance can be increased over a long period of time.
図1は、本発明の第1の実施形態に係る積層体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a laminate according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る積層体を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a laminate according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る積層体を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a laminate according to the third embodiment of the present invention. 図4(a)~(d)は、積層体の形状の例を説明するための模式図である。4A to 4D are schematic views for explaining an example of the shape of the laminated body. 図5(a)及び(b)は、導電部の形成方法の例を説明するための模式図である。5A and 5B are schematic diagrams for explaining an example of a method for forming a conductive portion. 図6は、導電部の形成方法の他の例を説明するための模式図である。FIG. 6 is a schematic diagram for explaining another example of a method for forming a conductive portion. 図7(a)及び(b)は、図1に示す積層体を微生物燃料電池用電極として用いた微生物燃料電池を模式的に示す断面図である。7A and 7B are cross-sectional views schematically showing a microbial fuel cell using the laminate shown in FIG. 1 as a microbial fuel cell electrode. 図8(a)は、本発明の実施形態1の水処理システムを模式的に示す概略平面図であり、図8(b)は、図8(a)のA-A’線断面図であり、図8(c)は、図8(a)のC-C’線断面図である。FIG. 8 (a) is a schematic plan view schematically showing the water treatment system according to the first embodiment of the present invention, and FIG. 8 (b) is a cross-sectional view taken along the line AA ′ of FIG. 8 (a). FIG. 8C is a cross-sectional view taken along the line CC ′ of FIG. 図9(a)は、本発明の実施形態2の水処理システムを模式的に示す概略平面図であり、図9(b)は、図9(a)のB-B’線断面図である。FIG. 9A is a schematic plan view schematically showing a water treatment system according to Embodiment 2 of the present invention, and FIG. 9B is a cross-sectional view taken along the line BB ′ in FIG. 9A. . 図10は、本発明の実施形態3の水処理システムを水処理施設に組み合わせた構成を模式的に示す概略図である。FIG. 10 is a schematic diagram schematically showing a configuration in which the water treatment system according to the third embodiment of the present invention is combined with a water treatment facility. 図11(a)及び(b)はそれぞれ、本発明の他の実施形態の水処理システムに用いられる積層体を含む部材を模式的に示す概略側面図である。FIGS. 11A and 11B are schematic side views each schematically showing a member including a laminate used in a water treatment system according to another embodiment of the present invention. 図12は、本発明の他の実施形態の水処理システムに用いられる積層体を含む部材を模式的に示す概略断面図である。FIG. 12 is a schematic cross-sectional view schematically showing a member including a laminate used in a water treatment system according to another embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1は、本発明の第1の実施形態に係る積層体を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a laminate according to the first embodiment of the present invention.
 積層体1は、例えば、水処理に用いられる水処理用部材、及び、微生物燃料電池に用いられる微生物燃料電池用電極等に用いることができる。積層体1が微生物燃料電池用電極である場合に、該電極は、微生物燃料電池において、アノード及びカソードの内の少なくとも一方に用いられる。上記電極は、アノード及びカソードの双方に用いられることが好ましい。 The laminate 1 can be used for, for example, a water treatment member used for water treatment, a microbial fuel cell electrode used for a microbial fuel cell, and the like. When the laminate 1 is an electrode for a microbial fuel cell, the electrode is used for at least one of an anode and a cathode in the microbial fuel cell. The electrode is preferably used for both the anode and the cathode.
 積層体1は、非導電性基材11と、非導電性基材11の表面を被覆している導電部12とを備える。導電部12は、非導電性基材11の少なくとも一方の表面上に、非導電性基材11に接するように配置されている。 The laminate 1 includes a non-conductive substrate 11 and a conductive portion 12 that covers the surface of the non-conductive substrate 11. The conductive portion 12 is disposed on at least one surface of the nonconductive substrate 11 so as to be in contact with the nonconductive substrate 11.
 積層体1は、非導電性基材11が導電部12で被覆されることで構成されている。導電部12は、非導電性基材11の厚み方向の両側の表面上に配置されており、非導電性基材11の厚み方向の両側の表面を被覆している。導電部12は、例えば被膜である。なお、図示の便宜上、図1では、導電部12は、ある程度の厚みで図示されているが、導電部12の厚みは特に限定されない。 The laminate 1 is configured by a non-conductive substrate 11 being covered with a conductive portion 12. The conductive portion 12 is disposed on the surfaces on both sides in the thickness direction of the nonconductive substrate 11 and covers the surfaces on both sides in the thickness direction of the nonconductive substrate 11. The conductive part 12 is a film, for example. For convenience of illustration, in FIG. 1, the conductive portion 12 is illustrated with a certain thickness, but the thickness of the conductive portion 12 is not particularly limited.
 導電部12は、導電性カーボン材料及び樹脂を用いて形成されている。導電部12は、導電性カーボン材料及び樹脂を含む。非導電性基材が導電部で被覆されることで微生物燃料電池用電極が構成されている場合などにおいて、積層体の抵抗率は、10-4Ω・cm以上、10Ω・cm以下であることが好ましい。 The conductive portion 12 is formed using a conductive carbon material and a resin. The conductive part 12 includes a conductive carbon material and a resin. In the case where the electrode for a microbial fuel cell is formed by covering a non-conductive substrate with a conductive part, the resistivity of the laminate is 10 −4 Ω · cm or more and 10 4 Ω · cm or less. Preferably there is.
 図2は、本発明の第2の実施形態に係る積層体を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing a laminate according to the second embodiment of the present invention.
 図2に示す積層体1Aでは、導電部12Aが非導電性基材11の厚み方向の両側ではなく、非導電性基材11の片側の表面上のみに配置されている。導電部12Aが非導電性基材11の片側の表面上のみに配置されていることを除いては、積層体1Aは、積層体1と同様に形成されている。 In the laminated body 1A shown in FIG. 2, the conductive portion 12A is disposed not only on both sides in the thickness direction of the nonconductive substrate 11 but only on the surface of one side of the nonconductive substrate 11. The laminated body 1A is formed in the same manner as the laminated body 1 except that the conductive portion 12A is disposed only on the surface on one side of the nonconductive substrate 11.
 導電部は、非導電性基材の厚み方向の片側の表面上のみに配置されていてもよい。導電部は、非導電性基材の片側の表面の全体を被覆していてもよく、非導電性基材の片側の表面の一部を被覆していてもよい。導電部は、非導電性基材の両側の表面の全体を被覆していてもよく、非導電性基材の両側の表面の一部を被覆していてもよい。 The conductive part may be disposed only on the surface on one side in the thickness direction of the non-conductive substrate. The conductive part may cover the entire surface on one side of the non-conductive substrate, or may cover a part of the surface on one side of the non-conductive substrate. The electroconductive part may coat | cover the whole surface of the both sides of a nonelectroconductive base material, and may coat a part of surface of both sides of a nonelectroconductive base material.
 図3に示す積層体のように、上記積層体は、上記導電部を第2の導電部として備え、上記第2の導電部と異なる導電性を有する第1の導電部をさらに備えることが好ましい。 Like the laminated body shown in FIG. 3, the laminated body preferably includes the conductive portion as a second conductive portion, and further includes a first conductive portion having conductivity different from that of the second conductive portion. .
 カーボン材料は、導電性がさほど高くない。このため、カーボン材料を用いた電極を備える微生物燃料電池では、エネルギーの回収効率が低くなりやすい。一方で、カーボン材料の厚みを増加させれば導電性を向上することができるが、その場合、電極のコストが高くなる。また、従来の電極では、特に、微生物燃料電池を大型化したときに、エネルギーの回収効率が低くなる。また、カーボン材料を用いる場合に、長尺状の電極を得ることが難しいため、連続成形により電極を大量に得ることは困難である。 Carbon material is not very conductive. For this reason, in the microbial fuel cell provided with the electrode using a carbon material, the energy recovery efficiency tends to be low. On the other hand, if the thickness of the carbon material is increased, the conductivity can be improved, but in this case, the cost of the electrode is increased. In addition, the conventional electrode has low energy recovery efficiency, particularly when the microbial fuel cell is enlarged. In addition, when a carbon material is used, it is difficult to obtain a long electrode, and thus it is difficult to obtain a large amount of electrodes by continuous molding.
 また、WO2010/049936A1に記載のような導電性プラスチックシートのハンドリング性を高めるためには、導電性パウダーの含有量を多くすることは困難であり、かつ、導電性プラスチックシートの厚みを薄くすることも困難である。従って、導電性プラスチックシートを金属製導電体の両面にコーティングすることによって得られた電極では、導電性が低くなったり、厚みが厚くなったりするという問題がある。 Moreover, in order to improve the handling property of the conductive plastic sheet as described in WO2010 / 049936A1, it is difficult to increase the content of the conductive powder and to reduce the thickness of the conductive plastic sheet. It is also difficult. Therefore, the electrode obtained by coating the conductive plastic sheet on both surfaces of the metal conductor has a problem that the conductivity becomes low and the thickness becomes thick.
 上記積層体が、上記導電部を第2の導電部として備え、上記第2の導電部と異なる導電性を有する第1の導電部をさらに備えることで、積層体の耐腐食性を高めつつ、大型であっても、積層体を大量にかつ容易に得ることができる。 The laminate includes the conductive portion as a second conductive portion, and further includes a first conductive portion having a conductivity different from that of the second conductive portion, thereby improving the corrosion resistance of the laminate, Even if it is large-sized, a laminated body can be obtained in large quantities and easily.
 図3は、本発明の第3の実施形態に係る積層体を模式的に示す断面図である。 FIG. 3 is a cross-sectional view schematically showing a laminate according to the third embodiment of the present invention.
 図3に示す積層体1Bは、導電部12に対応する導電部を、導電部12B(第2の導電部)として備える。積層体1Bは、導電部12B(第2の導電部)と異なる導電性を有する導電部13B(第1の導電部)をさらに備える。 3 includes a conductive portion corresponding to the conductive portion 12 as a conductive portion 12B (second conductive portion). The stacked body 1B further includes a conductive portion 13B (first conductive portion) having conductivity different from that of the conductive portion 12B (second conductive portion).
 従って、積層体1Bは、導電部全体として、導電部12B(第2の導電部)と、導電部13B(第1の導電部)とを有する。導電部12Bと、導電部13Bとは、別の領域に形成されている。導電部12Bは導電部13Bに対して異なる導電性を有する。導電部12Bは導電部13Bよりも高い導電性を有することが好ましい。導電部12Bの材料は、導電性材料を含む。導電部13Bの材料は、導電性材料を含む。 Therefore, the laminated body 1B includes the conductive portion 12B (second conductive portion) and the conductive portion 13B (first conductive portion) as the entire conductive portion. The conductive portion 12B and the conductive portion 13B are formed in different regions. The conductive portion 12B has different conductivity with respect to the conductive portion 13B. The conductive portion 12B preferably has higher conductivity than the conductive portion 13B. The material of the conductive portion 12B includes a conductive material. The material of the conductive portion 13B includes a conductive material.
 積層体1Bは、非導電性基材11と導電部12Bと導電部13Bとで構成されている。 The laminate 1B is composed of a non-conductive substrate 11, a conductive part 12B, and a conductive part 13B.
 導電部13Bは、非導電性基材11の厚み方向の両側の表面上に配置されており、非導電性基材11の厚み方向の両側の表面を被覆している。導電部12Bは、導電部13Bを介して非導電性基材11の厚み方向の両側の表面上に配置されており、導電部13Bを介して非導電性基材11の厚み方向の両側の表面を被覆している。なお、図示の便宜上、図3では、導電部12B及び導電部13Bは、ある程度の厚みで図示されているが、導電部12B、及び導電部13Bの厚みは特に限定されない。 The conductive portion 13 </ b> B is disposed on the surfaces on both sides in the thickness direction of the non-conductive substrate 11 and covers the surfaces on both sides in the thickness direction of the non-conductive substrate 11. The conductive portions 12B are arranged on the surfaces on both sides in the thickness direction of the non-conductive substrate 11 via the conductive portions 13B, and the surfaces on both sides in the thickness direction of the non-conductive substrate 11 via the conductive portions 13B. Is covered. For convenience of illustration, in FIG. 3, the conductive portion 12B and the conductive portion 13B are illustrated with a certain thickness, but the thickness of the conductive portion 12B and the conductive portion 13B is not particularly limited.
 導電部13Bは、面状に形成されている。導電部13Bは、導電層である。導電部13Bは、非導電性基材11に接している。導電部13Bは、非導電性基材11の表面上の全体に形成されている。 The conductive portion 13B is formed in a planar shape. The conductive portion 13B is a conductive layer. The conductive portion 13 </ b> B is in contact with the nonconductive base material 11. The conductive portion 13 </ b> B is formed on the entire surface of the nonconductive base material 11.
 積層体1Bでは、導電部12B、導電部13B、非導電性基材11、導電部13B及び導電部12Bがこの順で並んで配置されている。 In the laminated body 1B, the conductive part 12B, the conductive part 13B, the nonconductive base material 11, the conductive part 13B, and the conductive part 12B are arranged in this order.
 導電部13Bの表面は、導電部12Bにより覆われている。例えば、導電部13Bが金属を含む材料により形成されている場合には、導電部13Bの腐食が生じやすい傾向がある。しかし、導電部13Bの表面を、導電部12Bにより覆うことで、導電部13Bの腐食を抑えることができる。 The surface of the conductive portion 13B is covered with the conductive portion 12B. For example, when the conductive portion 13B is formed of a material containing a metal, the conductive portion 13B tends to be corroded. However, the corrosion of the conductive portion 13B can be suppressed by covering the surface of the conductive portion 13B with the conductive portion 12B.
 本実施形態では、非導電性基材の両面を導電部が被覆する形態としたが、非導電性基材の片面を導電部が被覆していてもよい。本実施形態では、導電部は非導電性基材の表面の全体を被覆する形態としたが、非導電性基材の表面の一部を被覆していてもよい。 In the present embodiment, the conductive portion covers both surfaces of the non-conductive substrate, but the conductive portion may cover one surface of the non-conductive substrate. In this embodiment, although the electroconductive part was made into the form which coat | covers the whole surface of a nonelectroconductive base material, you may coat | cover a part of surface of a nonelectroconductive base material.
 本実施形態では、第1の導電部及び第2の導電部の両方が非導電性基材の表面の全体を被覆する形態としたが、第1の導電部と第2の導電部の両方又は片方が非導電性基材の表面の一部を被覆していてもよい。第1の導電部と第2の導電部を含む導電部は、非導電性基材の少なくとも一方の表面の一部又は全部を被覆していればよい。 In the present embodiment, both the first conductive portion and the second conductive portion cover the entire surface of the nonconductive base material, but both the first conductive portion and the second conductive portion or One side may coat a part of the surface of the non-conductive substrate. The conductive part including the first conductive part and the second conductive part only needs to cover part or all of at least one surface of the non-conductive substrate.
 第1の導電部は、非導電性基材の表面上において、直交する2方向に線状に延びていてもよく、パターン状に形成されていてもよく、網状に形成されていてもよい。第1の導電部は、非導電性基材の表面上の一部の領域に形成されていてもよい。第1の導電部が網状でありかつ一部の領域に形成されている場合には、積層体の第1の導電部における導電性材料の使用量は、積層体の第2の導電部における導電性材料の使用量よりも少なくすることができる。このため、コストを低減することができる。 The first conductive portion may extend linearly in two orthogonal directions on the surface of the non-conductive substrate, may be formed in a pattern, or may be formed in a net shape. The 1st electroconductive part may be formed in the one part area | region on the surface of a nonelectroconductive base material. In the case where the first conductive portion is net-like and formed in a part of the region, the amount of the conductive material used in the first conductive portion of the stacked body is the conductive amount in the second conductive portion of the stacked body. It can be made less than the usage amount of the functional material. For this reason, cost can be reduced.
 第2の導電部は、第1の導電部がない領域において、非導電性基材に接していてもよい。第2の導電部内に、第1の導電部が埋め込まれていてもよい。第2の導電部は、第1の導電部の表面上の全体に形成されていてもよい。第2の導電部は、非導電性基材の第1の導電部がない領域と第1の導電部との表面上の全体に形成されていてもよい。非導電性基材が樹脂基材である場合に、例えば導電性カーボン材料及び樹脂により形成された第2の導電部は、導電性材料により形成された第1の導電部と比べて、樹脂基材に対して強固に接合させることができる。 The second conductive portion may be in contact with the nonconductive base material in a region where the first conductive portion is not present. The first conductive part may be embedded in the second conductive part. The second conductive part may be formed on the entire surface of the first conductive part. The 2nd electroconductive part may be formed in the whole on the surface of the area | region without the 1st electroconductive part of a nonelectroconductive base material, and the 1st electroconductive part. When the non-conductive base material is a resin base material, for example, the second conductive portion formed of a conductive carbon material and a resin has a resin base compared to the first conductive portion formed of a conductive material. It can be firmly bonded to the material.
 積層体の形状は特に限定されない。図4(a)~(d)は、積層体の形状の例を説明するための模式図である。 The shape of the laminate is not particularly limited. 4A to 4D are schematic views for explaining an example of the shape of the laminated body.
 図4(a)に示すように、積層体1Cは、板状であってもよく、長尺状であってもよい。図4(b)に示すように、積層体1Dは、折り返し部を有していてもよく、ジグザグ状であってもよい。図4(c)に示すように、積層体1Eは、環状であってもよく、円環状であってもよい。図4(d)に示すように、積層体1Fは、渦巻き状であってもよい。積層体は、フレキシブル性を有することが好ましく、折り曲げ可能であることが好ましい。非導電性基材が金属板ではない場合には、積層体にフレキシブル性を付与し、積層体を折り曲げ可能にすることができる。 As shown in FIG. 4 (a), the laminate 1C may be plate-shaped or elongated. As illustrated in FIG. 4B, the stacked body 1D may have a folded portion or may have a zigzag shape. As shown in FIG.4 (c), the laminated body 1E may be cyclic | annular and may be annular | circular shaped. As shown in FIG. 4D, the laminated body 1F may be spiral. The laminate preferably has flexibility and is preferably bendable. When the non-conductive substrate is not a metal plate, flexibility can be imparted to the laminate, and the laminate can be bent.
 導電部は、導電性カーボン材料、樹脂及び有機溶剤を含む導電性カーボン材料含有液を、非導電性基材に塗布した後、上記有機溶剤を蒸発させて除去することにより形成されていることがより好ましい。積層体は、導電性カーボン材料、樹脂及び有機溶剤を含む導電性カーボン材料含有液を、非導電性基材に塗布した後、上記有機溶剤を蒸発させて除去することにより得られていることが好ましい。この場合に、積層体の抵抗率を、好ましい範囲にすることが容易である。 The conductive portion may be formed by applying a conductive carbon material-containing liquid containing a conductive carbon material, a resin and an organic solvent to a non-conductive substrate, and then evaporating and removing the organic solvent. More preferred. The laminate is obtained by applying a conductive carbon material-containing liquid containing a conductive carbon material, a resin and an organic solvent to a non-conductive base material, and then evaporating and removing the organic solvent. preferable. In this case, it is easy to make the resistivity of the laminated body within a preferable range.
 本発明に係る積層体は、非導電性基材と、上記非導電性基材の少なくとも一方の表面を被覆している導電部とを備え、上記導電部が、導電性カーボン材料及び樹脂を含むので、長期に渡り耐腐食性を高めることができる。さらに、導電性を高くし、かつ安価にすることができる。さらに、本発明では、積層体が微生物燃料電池用電極であるときに、該電極を用いた微生物燃料電池の電気エネルギーの回収効率を高めることができる。 The laminate according to the present invention includes a non-conductive substrate and a conductive portion covering at least one surface of the non-conductive substrate, and the conductive portion includes a conductive carbon material and a resin. Therefore, the corrosion resistance can be increased over a long period of time. Further, the conductivity can be increased and the cost can be reduced. Furthermore, in this invention, when a laminated body is an electrode for microbial fuel cells, the collection | recovery efficiency of the electrical energy of the microbial fuel cell using this electrode can be improved.
 積層体の腐食を効果的に抑え、電気エネルギーの回収効率をより一層高め、上記導電部の耐久性を高める観点からは、上記積層体の抵抗率は、好ましくは10-4Ω・cm以上、より好ましくは10-3Ω・cm以上、更に好ましくは10-2Ω・cm以上、好ましくは10Ω・cm以下、より好ましくは10Ω・cm以下、更に好ましくは10Ω・cm以下である。なお、上記抵抗率は、後述する評価の欄の記載に従って、測定することができる。 From the viewpoint of effectively suppressing corrosion of the laminate, further improving the recovery efficiency of electric energy, and enhancing the durability of the conductive part, the resistivity of the laminate is preferably 10 −4 Ω · cm or more, More preferably 10 −3 Ω · cm or more, further preferably 10 −2 Ω · cm or more, preferably 10 4 Ω · cm or less, more preferably 10 3 Ω · cm or less, still more preferably 10 2 Ω · cm or less. It is. In addition, the said resistivity can be measured according to description of the column of evaluation mentioned later.
 積層体の腐食を効果的に抑え、電気エネルギーの回収効率をより一層高め、積層体をより一層安価にすることができることから、上記第1の導電部において、抵抗率は、好ましくは10-5Ω・cm以上、より好ましくは10-4Ω・cm以上、更に好ましくは10-3Ω・cm以上で、好ましくは10Ω・cm以下である。また、上記第1の導電部において、厚みは好ましくは3μm以上、好ましくは500μm以下である。上記第1の導電部において、導電部を構成する導電材料の被覆重量は好ましくは5g/m以上、好ましくは2,000g/m以下である。 Since the corrosion of the laminated body can be effectively suppressed, the recovery efficiency of electric energy can be further increased, and the laminated body can be made more inexpensive, the resistivity in the first conductive part is preferably 10 −5. Ω · cm or more, more preferably 10 −4 Ω · cm or more, further preferably 10 −3 Ω · cm or more, and preferably 100 0 Ω · cm or less. In the first conductive part, the thickness is preferably 3 μm or more, and preferably 500 μm or less. In the first conductive portion, coating weight of the conductive material of the conductive portion is preferably 5 g / m 2 or more, preferably 2,000 g / m 2 or less.
 鋭意検討の結果、微生物を担持する導電部においては、導電部を構成する導電材料の被覆重量を大きくしすぎると、導電性が向上するものの、被膜が比較的平滑になるため、比表面積が低下し、高い電気エネルギーの回収効率が得にくいことが明らかになった。このため、電気エネルギーの回収効率をより一層高め、積層体をより一層安価にすることができることから、上記第2の導電部において、抵抗率は、好ましくは10Ω・cm以上、好ましくは10Ω・cm以下、より好ましくは10Ω・cm以下、更に好ましくは10Ω・cm以下である。また、上記第2の導電部において、厚みは好ましくは3μm以上、好ましくは500μm以下である。上記第2の導電部において、導電部を構成する導電材料の被覆重量は好ましくは5g/m以上、好ましくは1,000g/m以下である。また、上記第2の導電部の少なくとも一部が露出しており、上記第2の導電部の露出部分は、微生物燃料電池において有機物を含有する液と接触することが好ましい。 As a result of intensive studies, in the conductive part carrying microorganisms, increasing the coating weight of the conductive material constituting the conductive part improves the conductivity, but the specific surface area decreases because the coating becomes relatively smooth. However, it became clear that high electrical energy recovery efficiency was difficult to obtain. Therefore, the electrical energy recovery efficiency can be further increased, and the laminate can be made more inexpensive. Therefore, in the second conductive part, the resistivity is preferably 10 0 Ω · cm or more, preferably 10 5 Ω · cm or less, more preferably 10 4 Ω · cm or less, and further preferably 10 3 Ω · cm or less. In the second conductive part, the thickness is preferably 3 μm or more, and preferably 500 μm or less. In the second conductive part, the coating weight of the conductive material constituting the conductive part is preferably 5 g / m 2 or more, and preferably 1,000 g / m 2 or less. Moreover, it is preferable that at least a part of the second conductive portion is exposed, and the exposed portion of the second conductive portion is in contact with a liquid containing an organic substance in the microbial fuel cell.
 積層体をより一層安価にすることができることから、本発明では、非導電性基材の材料は、金属ではないことが好ましい。非導電性基材の材料は、導電性カーボン材料ではないことが好ましい。 In the present invention, the material of the non-conductive substrate is preferably not a metal because the laminate can be made even cheaper. The material of the non-conductive substrate is preferably not a conductive carbon material.
 従来、金属や、グラファイトペーパー、グラファイトフェルト及びグラファイトクロス等のカーボン材料が、導電性材料として用いられている。このような金属や、カーボン材料により形成された基材を用いた場合には、積層体のコストが高くなる。これに対して、本発明では、非導電性基材の表面上に配置する材料として、導電性カーボン材料を用いている。このため、積層体全体に含まれる導電性カーボン材料の使用量を少なくすることができる。この結果、積層体のコストがかなり低くなる。 Conventionally, carbon materials such as metals and graphite paper, graphite felt, and graphite cloth have been used as conductive materials. When such a metal or a base material formed of a carbon material is used, the cost of the laminate increases. On the other hand, in this invention, a conductive carbon material is used as a material arrange | positioned on the surface of a nonelectroconductive base material. For this reason, the usage-amount of the conductive carbon material contained in the whole laminated body can be decreased. As a result, the cost of the laminate is considerably reduced.
 非導電性基材の抵抗率は、一般に1010Ω・cm以上である。上記非導電性基材は、金属基材ではないことが好ましい。上記非導電性基材の材料は、金属ではないことが好ましい。上記金属には、金属の合金が含まれる。耐腐食性能に優れることから、上記非導電性基材は、非導電性樹脂基材、もしくは、非導電性ガラス基材であることが好ましい。上記非導電性基材の材料は、樹脂、もしくは、ガラスであることが好ましい。上記非導電性基材の材料である上記樹脂としては、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリアミド樹脂、メチルセルロース樹脂、エチルセルロース樹脂、ポリビニルアルコール樹脂、酢酸ビニル樹脂、フェノール樹脂、フッ素樹脂及びポリビニルブチラール樹脂等が挙げられる。耐腐食性能に優れることから、上記非導電性基材の材料である樹脂は、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂又はポリ塩化ビニル樹脂であることが好ましい。 The resistivity of the non-conductive substrate is generally 10 10 Ω · cm or more. The non-conductive substrate is preferably not a metal substrate. The material of the non-conductive substrate is preferably not a metal. The metal includes a metal alloy. In view of excellent corrosion resistance, the nonconductive substrate is preferably a nonconductive resin substrate or a nonconductive glass substrate. The material of the non-conductive substrate is preferably a resin or glass. Examples of the resin that is the material of the non-conductive substrate include polyolefin resin, polystyrene resin, polyester resin, polyvinyl chloride resin, acrylic resin, urethane resin, epoxy resin, polyamide resin, methyl cellulose resin, ethyl cellulose resin, and polyvinyl alcohol resin. , Vinyl acetate resin, phenol resin, fluororesin, and polyvinyl butyral resin. In view of excellent corrosion resistance, the resin that is the material of the non-conductive substrate is preferably a polyolefin resin, a polystyrene resin, a polyester resin, or a polyvinyl chloride resin.
 上記非導電性基材は、液を透過可能であることが好ましい。液を透過可能であり、かつ導電部の保持性に優れることから、上記非導電性基材は、メッシュ、織布、不織布又は細孔膜であることが好ましい。 The non-conductive substrate is preferably permeable to liquid. The non-conductive substrate is preferably a mesh, woven fabric, non-woven fabric, or pore membrane because it can permeate liquid and is excellent in retention of the conductive portion.
 上記導電性カーボン材料含有液は、上記導電性カーボン材料を含む。上記導電性カーボン材料含有液中に、上記導電性カーボン材料は分散されている。上記導電部は、上記導電性カーボン材料を含む。上記導電性カーボン材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The conductive carbon material-containing liquid contains the conductive carbon material. The conductive carbon material is dispersed in the conductive carbon material-containing liquid. The conductive portion includes the conductive carbon material. As for the said conductive carbon material, only 1 type may be used and 2 or more types may be used together.
 上記導電性カーボン材料としては、炭素繊維、チョップドカーボン、ミルドカーボン、カーボンブラック、活性炭、黒鉛、グラファイト及びカーボンナノチューブ等が挙げられる。積層体の導電性をより一層高くする観点からは、上記導電性カーボン材料は、炭素繊維、チョップドカーボン、ミルドカーボン、カーボンブラック、活性炭、黒鉛、グラファイト又はカーボンナノチューブであることが好ましい。これらの好ましい導電性カーボン材料を用いる場合に、導電性カーボン材料は2種以上が併用されてもよい。 Examples of the conductive carbon material include carbon fiber, chopped carbon, milled carbon, carbon black, activated carbon, graphite, graphite, and carbon nanotube. From the viewpoint of further increasing the conductivity of the laminate, the conductive carbon material is preferably carbon fiber, chopped carbon, milled carbon, carbon black, activated carbon, graphite, graphite, or carbon nanotube. When these preferable conductive carbon materials are used, two or more conductive carbon materials may be used in combination.
 上記導電性カーボン材料のアスペクト比は好ましくは3以上、より好ましくは10以上である。上記導電性カーボン材料のアスペクト比は、100以下であってもよく、10以下であってもよい。上記導電性カーボン材料のアスペクト比が大きいほど、導電性カーボン材料の含有量が同じであるときに、導電性がより一層高くなる。上記アスペクト比は、長軸長さの短軸長さに対する比を示す。 The aspect ratio of the conductive carbon material is preferably 3 or more, more preferably 10 or more. The aspect ratio of the conductive carbon material may be 100 or less, or 10 or less. The larger the aspect ratio of the conductive carbon material, the higher the conductivity when the content of the conductive carbon material is the same. The aspect ratio indicates the ratio of the major axis length to the minor axis length.
 上記導電性カーボン材料としては、例えば大阪ガスケミカル社製「ドナカーボ・ミルド S-244」、伊東黒鉛社製「PC99-300M」、日本ノリット社製「活性炭タイプSX」、東海カーボン社製「トーカブラック#5500」、及びライオン・スペシャリティー・ケミカルズ社製「カーボンECP」等が挙げられる。 As the conductive carbon material, for example, “Donna Carbo Mild S-244” manufactured by Osaka Gas Chemical Co., Ltd. “PC99-300M” manufactured by Ito Graphite Co., Ltd. “Activated Carbon Type SX” manufactured by Norit Japan Co., Ltd. “Toka Black” manufactured by Tokai Carbon Co., Ltd. # 5500 "and" Carbon ECP "manufactured by Lion Specialty Chemicals.
 上記導電性カーボン材料含有液において、上記樹脂100重量部に対して、上記導電性カーボン材料の含有量は好ましくは10重量部以上、より好ましくは30重量部以上、好ましくは1000重量部以下、より好ましくは500重量部以下である。上記導電部において、上記樹脂に由来する樹脂成分(樹脂)100重量部に対して、上記導電性カーボン材料の含有量は好ましくは10重量部以上、より好ましくは30重量部以上、好ましくは1000重量部以下、より好ましくは500重量部以下である。上記導電性カーボン材料の含有量が上記下限以上であると、積層体の導電性がより一層高くなる。上記導電性カーボン材料の含有量が上記上限以下であると、導電部が脆くなり難い。 In the conductive carbon material-containing liquid, the content of the conductive carbon material is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, preferably 1000 parts by weight or less, with respect to 100 parts by weight of the resin. The amount is preferably 500 parts by weight or less. In the conductive part, the content of the conductive carbon material is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, preferably 1000 parts by weight with respect to 100 parts by weight of the resin component (resin) derived from the resin. Part or less, more preferably 500 parts by weight or less. When the content of the conductive carbon material is not less than the above lower limit, the conductivity of the laminate is further increased. When the content of the conductive carbon material is not more than the above upper limit, the conductive part is difficult to become brittle.
 上記導電性カーボン材料含有液は、上記樹脂を含む。上記導電部を形成するために、上記樹脂を用いることが好ましい。上記第2の導電部を形成するために、上記樹脂を用いることが好ましい。上記樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The conductive carbon material-containing liquid contains the resin. In order to form the conductive part, it is preferable to use the resin. In order to form the second conductive portion, it is preferable to use the resin. As for the said resin, only 1 type may be used and 2 or more types may be used together.
 上記導電性カーボン材料含有液に含まれる上記樹脂としては、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリアミド樹脂、メチルセルロース樹脂、エチルセルロース樹脂、ポリビニルアルコール樹脂、酢酸ビニル樹脂、フェノール樹脂、フッ素樹脂及びポリビニルブチラール樹脂等が挙げられる。導電性カーボン材料の分散性がよく、水への溶解性が低く、水以外の多くの有機溶剤への溶解性が高く、蒸発除去が容易であり、更に微生物により分解されにくいため、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂又はポリビニルブチラール樹脂が好ましい。 Examples of the resin contained in the conductive carbon material-containing liquid include polyolefin resin, polystyrene resin, polyester resin, polyvinyl chloride resin, acrylic resin, urethane resin, epoxy resin, polyamide resin, methyl cellulose resin, ethyl cellulose resin, and polyvinyl alcohol resin. , Vinyl acetate resin, phenol resin, fluororesin, and polyvinyl butyral resin. The conductive carbon material has good dispersibility, low solubility in water, high solubility in many organic solvents other than water, is easy to remove by evaporation, and is not easily decomposed by microorganisms. Acrylic resin, urethane resin or polyvinyl butyral resin is preferred.
 上記導電性カーボン材料含有液に含まれる上記樹脂は、架橋性樹脂であることが好ましい。上記導電部を形成するために、上記架橋性樹脂を架橋させることが好ましい。上記第2の導電部を形成するために、上記架橋性樹脂を架橋させることが好ましい。上記有機溶剤を蒸発させて除去した後に、上記架橋性樹脂を架橋させることが好ましい。但し、上記有機溶剤を蒸発させる前又は蒸発させる時に、上記架橋性樹脂を架橋させてもよい。上記架橋性樹脂を架橋させることで、積層体の耐久性が高くなる。また、緻密な導電部を形成でき、導電部の非導電性基材の表面からの剥離を抑えることができ、更に積層体の導電性をより一層高めることができる。上記導電部は、上記樹脂(架橋性樹脂など)に由来する樹脂成分(架橋した樹脂などの樹脂)を含む。上記導電部は、上記架橋性樹脂が架橋した樹脂(樹脂成分)を含むことが好ましい。上記第2の導電部は、上記樹脂(架橋性樹脂など)に由来する樹脂成分(架橋した樹脂などの樹脂)を含むことが好ましい。上記第2の導電部は、上記架橋性樹脂が架橋した樹脂(樹脂成分)を含むことが好ましい。 The resin contained in the conductive carbon material-containing liquid is preferably a crosslinkable resin. In order to form the conductive part, it is preferable to crosslink the crosslinkable resin. In order to form the second conductive portion, it is preferable to crosslink the crosslinkable resin. It is preferable to crosslink the crosslinkable resin after removing the organic solvent by evaporation. However, the crosslinkable resin may be crosslinked before or when the organic solvent is evaporated. The durability of the laminate is increased by crosslinking the crosslinkable resin. In addition, a dense conductive portion can be formed, peeling of the conductive portion from the surface of the nonconductive substrate can be suppressed, and the conductivity of the laminate can be further enhanced. The conductive part includes a resin component (resin such as a crosslinked resin) derived from the resin (crosslinkable resin or the like). The conductive part preferably contains a resin (resin component) obtained by crosslinking the crosslinkable resin. The second conductive portion preferably includes a resin component (resin such as a crosslinked resin) derived from the resin (crosslinkable resin or the like). The second conductive portion preferably includes a resin (resin component) obtained by crosslinking the crosslinkable resin.
 上記架橋性樹脂を架橋させる方法としては特に限定されず、ラジカル開始剤を用いる架橋方法、紫外線、電子線又は放射線等の活性放射線による架橋方法、硬化剤を用いる架橋方法、並びに架橋剤を用いる架橋方法等が挙げられる。 The method for crosslinking the crosslinkable resin is not particularly limited. A crosslinking method using a radical initiator, a crosslinking method using active radiation such as ultraviolet rays, electron beams or radiation, a crosslinking method using a curing agent, and a crosslinking using a crosslinking agent. Methods and the like.
 上記導電性カーボン材料含有液は、上記有機溶剤を含む。上記有機溶剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The conductive carbon material-containing liquid contains the organic solvent. As for the said organic solvent, only 1 type may be used and 2 or more types may be used together.
 上記有機溶剤としては特に限定されず、例えば、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、n-オクタノール、エチレングリコール、ジエチレングリコール、ジエチレングリコールモノエチルエーテルアセテート、ジアセトンアルコール、ベンジルアルコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸-n-ブチル、エチルエーテル、ジオキサン、テトラヒドロフラン、ナフサ、n-ヘキサン、シクロヘキサン、メチレンクロライド、プロピレンクロライド、エチレンクロライド、クロロホルム、四塩化炭素、トルエン、キシレン、ピリジン、ジメチルスルホキシド、酢酸、テルピネオール、ブチルカルビトール及びブチルカルビトールアセテート等が挙げられる。なかでも、適度な温度で蒸発させることができ、更に導電性カーボン材料の分散性に優れていることから、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、ジエチレングリコールモノエチルエーテルアセテート、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン又はナフサが好ましい。 The organic solvent is not particularly limited. For example, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, n-octanol, ethylene glycol, diethylene glycol, diethylene glycol monoethyl ether acetate, diacetone alcohol , Benzyl alcohol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, acetic acid Methyl, ethyl acetate, isopropyl acetate, n-butyl acetate, ethyl ether, dioxane, tetrahydrofuran, naphtha, n-he Sun, cyclohexane, methylene chloride, propylene chloride, ethylene chloride, chloroform, carbon tetrachloride, toluene, xylene, pyridine, dimethyl sulphoxide, acetic acid, terpineol, butyl carbitol and butyl carbitol acetate. Among these, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, diethylene glycol monoethyl ether can be evaporated at an appropriate temperature and the dispersibility of the conductive carbon material is excellent. Acetate, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone or naphtha are preferred.
 上記導電性カーボン材料含有液において、上記樹脂100重量部に対して、上記有機溶剤の含有量は好ましくは30重量部以上、より好ましくは50重量部以上、好ましくは1000重量部以下、より好ましくは500重量部以下、更に好ましくは300重量部以下である。上記有機溶剤の含有量が上記下限以上であると、導電性カーボン材料含有液の粘度がより一層低くなり、導電性カーボン材料含有液の塗布性がより一層高くなる。上記有機溶剤の含有量が上記上限以下であると、有機溶剤を蒸発させるための時間がより一層短くなる。 In the conductive carbon material-containing liquid, the content of the organic solvent is preferably 30 parts by weight or more, more preferably 50 parts by weight or more, preferably 1000 parts by weight or less, more preferably 100 parts by weight of the resin. 500 parts by weight or less, more preferably 300 parts by weight or less. When the content of the organic solvent is not less than the above lower limit, the viscosity of the conductive carbon material-containing liquid is further reduced, and the coating property of the conductive carbon material-containing liquid is further improved. When the content of the organic solvent is not more than the above upper limit, the time for evaporating the organic solvent is further shortened.
 上記導電性カーボン材料含有液における有機溶剤の含有量は、導電性カーボン材料含有液を塗布する際に適用される塗布方法に適した粘度となるように適宜調整することができる。 The content of the organic solvent in the conductive carbon material-containing liquid can be appropriately adjusted so as to have a viscosity suitable for an application method applied when the conductive carbon material-containing liquid is applied.
 導電部を形成する材料は、金属もしくは少なくとも一部が金属で構成される材料であることが好ましい。上記第1の導電部は、導電性カーボン材料以外の導電性材料により形成されていることが好ましく、上記第1の導電部の材料は金属を含むことが好ましい。上記金属は、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、黄銅、カリウム、リチウム、鉄、白金、錫、クロム、鉛、チタン、水銀等、これらの少なくとも1つを含む合金、又は、ステンレス等であることが好ましい。耐腐食性を高める観点から、銀、金、タングステン、白金、錫、クロム、チタン、ステンレスがより好ましい。 It is preferable that the material forming the conductive portion is a metal or a material at least partly made of metal. The first conductive part is preferably formed of a conductive material other than a conductive carbon material, and the material of the first conductive part preferably contains a metal. The metal includes at least one of silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, brass, potassium, lithium, iron, platinum, tin, chromium, lead, titanium, mercury, and the like. An alloy or stainless steel is preferable. From the viewpoint of enhancing the corrosion resistance, silver, gold, tungsten, platinum, tin, chromium, titanium, and stainless steel are more preferable.
 上記非導電性基材又は上記第1の導電部に上記導電性カーボン材料含有液を塗布する方法は、特に限定されない。この塗布方法としては、スプレー塗布、カーテンフロー塗布、ロールコート、ハンドレイアップ、スプレーアップ、オフセット印刷、グラビア印刷、スクリーン印刷、フレキソ印刷、及びインクジェット印刷等が挙げられる。有機溶媒の蒸発による除去は常温で行われてもよく、加温により行われてもよい。 The method for applying the conductive carbon material-containing liquid to the non-conductive substrate or the first conductive part is not particularly limited. Examples of the coating method include spray coating, curtain flow coating, roll coating, hand lay-up, spray-up, offset printing, gravure printing, screen printing, flexographic printing, and inkjet printing. Removal by evaporation of the organic solvent may be performed at normal temperature or may be performed by heating.
 良好な導電部を形成可能であることから、上記非導電性基材上又は上記第1の導電部上に、導電部を形成するための上記導電性カーボン材料及び樹脂を配置する方法は、ロール・ツー・ロール方式であることが好ましい。 Since a good conductive part can be formed, a method of disposing the conductive carbon material and the resin for forming the conductive part on the non-conductive substrate or the first conductive part is a roll. -A two-roll system is preferable.
 図5(a)及び(b)は、導電部の形成方法の例を説明するための模式図である。 FIGS. 5A and 5B are schematic views for explaining an example of a method for forming a conductive portion.
 図5(a)に示すように、ロール状の非導電性基材42を展開し、非導電性基材42の表面上に、ロール状の第1の導電部43を展開することで、非導電性基材42の表面上に、第1の導電部43を形成してもよい。ここでは、第1の導電部43は、非導電性基材42の表面上において、直交する2方向に線状に延びており、網状に形成されている。 As shown in FIG. 5A, the roll-shaped non-conductive base material 42 is developed, and the roll-shaped first conductive portion 43 is developed on the surface of the non-conductive base material 42, thereby The first conductive portion 43 may be formed on the surface of the conductive base material 42. Here, the first conductive portion 43 extends linearly in two orthogonal directions on the surface of the non-conductive base material 42 and is formed in a net shape.
 次に、図5(b)に示すように、積層体41を得るために、第1の導電部43が形成された非導電性基材42上に、例えば導電性カーボン含有液を塗布し、非導電性基材42及び第1の導電部43の表面上に、第2の導電部44を形成してもよい。 Next, as shown in FIG. 5B, in order to obtain the laminated body 41, for example, a conductive carbon-containing liquid is applied onto the nonconductive base material 42 on which the first conductive portion 43 is formed. The second conductive portion 44 may be formed on the surfaces of the non-conductive base material 42 and the first conductive portion 43.
 図6は、導電部の形成方法の他の例を説明するための模式図である。 FIG. 6 is a schematic diagram for explaining another example of a method for forming a conductive portion.
 図6に示すように、積層体41Aを得るために、ロール状の非導電性基材42Aを展開し、非導電性基材42Aの表面上に、導電性カーボン材料含有液を塗布し、非導電性基材42Aの表面上に、導電部43Aを形成してもよい。 As shown in FIG. 6, in order to obtain a laminated body 41A, a roll-shaped non-conductive substrate 42A is developed, and a conductive carbon material-containing liquid is applied onto the surface of the non-conductive substrate 42A. The conductive portion 43A may be formed on the surface of the conductive base material 42A.
 上記非導電性基材の厚みは、好ましくは50μm以上、より好ましくは100μm以上、好ましくは500mm以下、より好ましくは200mm以下である。上記非導電性基材の厚みが上記下限以上であると、破損がより一層生じ難くなる。上記非導電性基材の厚みが上記上限以下であると、内部抵抗が低く、効率的に電気エネルギーを回収できる。 The thickness of the non-conductive substrate is preferably 50 μm or more, more preferably 100 μm or more, preferably 500 mm or less, more preferably 200 mm or less. When the thickness of the non-conductive substrate is equal to or greater than the lower limit, breakage is more difficult to occur. When the thickness of the non-conductive substrate is less than or equal to the above upper limit, the internal resistance is low and electric energy can be efficiently recovered.
 上記非導電性基材の上記導電性カーボン材料及び樹脂による被覆重量(上記非導電性基材の単位外形面積あたりの上記導電性カーボン材料及び樹脂による被覆重量)は好ましくは5g/m以上、好ましくは4,000g/m以下、より好ましくは1,000g/m以下である。上記非導電性基材の表面上において、上記導電性カーボン材料及び樹脂に起因して形成される導電部(第1の導電部及び第2の導電部の合計の厚み)の厚みは、好ましくは3μm以上、より好ましくは10μm以上、好ましくは2,000μm以下、より好ましくは500μm以下である。上記被覆重量及び上記導電部の厚みが上記下限以上であると、積層体の導電性がより一層高くなる。上記被覆重量及び上記導電部の厚みが上記上限以下であると、積層体のコストがより一層低くなる。また、上記導電性カーボン材料は、上記非導電性基材内に含まれてもよい。 The coating weight of the non-conductive substrate with the conductive carbon material and resin (the coating weight of the conductive carbon material and resin per unit outer area of the non-conductive substrate) is preferably 5 g / m 2 or more, Preferably it is 4,000 g / m 2 or less, more preferably 1,000 g / m 2 or less. On the surface of the non-conductive substrate, the thickness of the conductive part (total thickness of the first conductive part and the second conductive part) formed due to the conductive carbon material and the resin is preferably It is 3 μm or more, more preferably 10 μm or more, preferably 2,000 μm or less, more preferably 500 μm or less. When the coating weight and the thickness of the conductive part are equal to or greater than the lower limit, the conductivity of the laminate is further increased. When the coating weight and the thickness of the conductive part are not more than the upper limit, the cost of the laminate is further reduced. The conductive carbon material may be included in the non-conductive substrate.
 上記積層体又は上記第1の導電部の被覆重量は好ましくは5g/m以上、好ましくは2,000g/m以下である。上記積層体又は上記第1の導電部の表面上において、上記第2の導電部の厚みは、好ましくは3μm以上、好ましくは500μm以下である。上記被覆重量及び上記第2の導電部の厚みが上記下限以上であると、積層体の導電性がより一層高くなる。上記被覆重量及び上記第2の導電部の厚みが上記上限以下であると、積層体のコストがより一層低くなる。また、上記導電部を構成する材料は、上記非導電性基材内に含まれてもよい。 The laminate or the coating weight of the first conductive portion is preferably 5 g / m 2 or more, preferably 2,000 g / m 2 or less. On the surface of the laminate or the first conductive part, the thickness of the second conductive part is preferably 3 μm or more, and preferably 500 μm or less. When the coating weight and the thickness of the second conductive portion are equal to or more than the lower limit, the conductivity of the laminate is further increased. When the coating weight and the thickness of the second conductive part are not more than the upper limit, the cost of the laminate is further reduced. Moreover, the material which comprises the said electroconductive part may be contained in the said nonelectroconductive base material.
 上記非導電性基材には、酸素還元触媒が坦持又は塗布されていることが好ましい。上記積層体は、上記非導電性基材の内部又は上記非導電性基材の表面上に配置された酸素還元触媒を備えることが好ましい。上記積層体は、上記導電部の内部又は上記導電部の表面上に配置された酸素還元触媒を備えることが好ましい。 It is preferable that an oxygen reduction catalyst is carried or coated on the non-conductive substrate. It is preferable that the laminate includes an oxygen reduction catalyst disposed inside the nonconductive substrate or on the surface of the nonconductive substrate. It is preferable that the laminated body includes an oxygen reduction catalyst disposed inside the conductive part or on the surface of the conductive part.
 積層体における酸化還元性能をより一層高める観点からは、上記導電性カーボン材料含有液が、酸素還元触媒を含むことが好ましい。また、積層体における酸化還元性能をより一層高める観点からは、上記積層体は、上記有機溶剤を蒸発させて除去した後、酸素還元触媒を塗布することにより得られることが好ましい。積層体における酸化還元性能をより一層高める観点からは、上記積層体において、上記非導電性基材は、酸素還元触媒を担持していることが好ましい。上記酸化還元触媒は、上記導電部内に含まれることが好ましい。 From the viewpoint of further improving the oxidation-reduction performance in the laminate, the conductive carbon material-containing liquid preferably contains an oxygen reduction catalyst. Moreover, from the viewpoint of further improving the oxidation-reduction performance in the laminate, the laminate is preferably obtained by applying an oxygen reduction catalyst after evaporating and removing the organic solvent. From the viewpoint of further improving the oxidation-reduction performance of the laminate, in the laminate, the nonconductive substrate preferably supports an oxygen reduction catalyst. The oxidation-reduction catalyst is preferably included in the conductive part.
 上記酸素還元触媒としては、白金等の貴金属触媒、鉄系触媒、マンガン系触媒及びカーボンアロイ系触媒等が挙げられる。上記白金等の貴金属触媒を用いる場合には、酸化還元性能がより一層高くなる。上記鉄系触媒、上記マンガン系触媒及び上記カーボンアロイ系触媒を用いる場合には、コストがより一層低くなる。上記酸素還元触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the oxygen reduction catalyst include noble metal catalysts such as platinum, iron-based catalysts, manganese-based catalysts, and carbon alloy-based catalysts. When the noble metal catalyst such as platinum is used, the redox performance is further enhanced. When the iron-based catalyst, the manganese-based catalyst, and the carbon alloy-based catalyst are used, the cost is further reduced. As for the said oxygen reduction catalyst, only 1 type may be used and 2 or more types may be used together.
 上記積層体を微生物燃料電池用電極として用いる場合に、上記積層体の表面上に絶縁体を配置することにより、電極積層体を得ることができる。電極積層体は、積層体(電極)と、積層体の表面上に配置された絶縁体とを備える。 When using the laminate as an electrode for a microbial fuel cell, an electrode laminate can be obtained by disposing an insulator on the surface of the laminate. The electrode laminate includes a laminate (electrode) and an insulator disposed on the surface of the laminate.
 上記絶縁体の材料は樹脂であることが好ましい。上記絶縁体の材料である上記樹脂としては、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリアミド樹脂、メチルセルロース樹脂、エチルセルロース樹脂、ポリビニルアルコール樹脂、酢酸ビニル樹脂、フェノール樹脂、フッ素樹脂及びポリビニルブチラール樹脂等が挙げられる。絶縁性に優れることから、上記絶縁体の材料である樹脂は、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂又はポリ塩化ビニル樹脂であることが好ましい。 The material of the insulator is preferably a resin. Examples of the resin as the insulator material include polyolefin resin, polystyrene resin, polyester resin, polyvinyl chloride resin, acrylic resin, urethane resin, epoxy resin, polyamide resin, methyl cellulose resin, ethyl cellulose resin, polyvinyl alcohol resin, vinyl acetate. Examples thereof include resins, phenol resins, fluororesins, and polyvinyl butyral resins. Since it is excellent in insulation, the resin that is the material of the insulator is preferably a polyolefin resin, a polystyrene resin, a polyester resin, or a polyvinyl chloride resin.
 上記絶縁体は、液を透過可能であることが好ましい。上記絶縁体は、メッシュ、織布、不織布又は細孔膜であることが好ましい。 The insulator is preferably permeable to liquid. The insulator is preferably a mesh, a woven fabric, a nonwoven fabric or a pore membrane.
 絶縁体の剥離を抑える観点からは、上記絶縁体が、上記積層体と熱融着されていることが好ましい。 From the viewpoint of suppressing the peeling of the insulator, the insulator is preferably heat-sealed with the laminated body.
 上記非導電性基材の第1の表面が導電部で被覆され、上記非導電性基材の第2の表面において上記非導電性基材が露出していてもよい。上記非導電性基材の第1の表面が導電部で被覆され、上記非導電性基材の第2の表面において上記非導電性基材が露出していてもよい。上記の積層体を用いることで、絶縁体を用いることなく、アノードとカソードとの間の絶縁を維持したまま、アノードとカソードとから構成される電極積層体を形成することができる。また、上記非導電性基材の第2の表面において上記非導電性基材が露出していれば、上記導電性カーボン材料は、上記非導電性基材内に含まれてもよい。 The first surface of the non-conductive substrate may be covered with a conductive portion, and the non-conductive substrate may be exposed on the second surface of the non-conductive substrate. The first surface of the nonconductive substrate may be covered with a conductive portion, and the nonconductive substrate may be exposed on the second surface of the nonconductive substrate. By using the above laminate, an electrode laminate composed of an anode and a cathode can be formed without using an insulator and maintaining insulation between the anode and the cathode. In addition, the conductive carbon material may be included in the non-conductive substrate as long as the non-conductive substrate is exposed on the second surface of the non-conductive substrate.
 上記微生物燃料電池は、電極積層体と、アノードとカソードとを接続している導線とを備えることが好ましい。上記微生物燃料電池では、上記アノード及び上記カソードの内の少なくとも一方として、上述した電極積層体が用いられていることが好ましい。 The microbial fuel cell preferably includes an electrode stack and a conductive wire connecting the anode and the cathode. In the microbial fuel cell, it is preferable that the electrode laminate described above is used as at least one of the anode and the cathode.
 上記微生物燃料電池は、アノードと、カソードと、上記アノードと上記カソードとを接続している導線とを備えることが好ましく、上記アノード及び上記カソードの内の少なくとも一方が、上述した積層体であることが好ましい。上記アノード及び上記カソードの内の双方が、上述した積層体であることが好ましい。 The microbial fuel cell preferably includes an anode, a cathode, and a conductive wire connecting the anode and the cathode, and at least one of the anode and the cathode is the laminate described above. Is preferred. It is preferable that both of the anode and the cathode are the above-described laminate.
 図7(a)及び(b)は、図1に示す積層体を微生物燃料電池用電極として用いた微生物燃料電池を模式的に示す断面図である。 FIGS. 7A and 7B are cross-sectional views schematically showing a microbial fuel cell using the laminate shown in FIG. 1 as an electrode for a microbial fuel cell.
 図7(a)に示す微生物燃料電池21では、電極積層体31が用いられている。 In the microbial fuel cell 21 shown in FIG. 7 (a), an electrode laminate 31 is used.
 電極積層体31は、アノード32と、絶縁体33と、カソード34とを備える。アノード32と、絶縁体33と、カソード34とがこの順で並んで配置されている。絶縁体33は、アノード32の表面上に、アノード32に接するように配置されている。カソード34は、絶縁体33のアノード32側とは反対の表面上に、絶縁体33に接するように配置されている。アノード32及びカソード34の内の少なくとも一方として、例えば、図1~3に示すような積層体(微生物燃料電池用電極)1,1A,1Bを用いることができる。また、アノード32と絶縁体33は、非導電性基材の第1の表面が導電部で被覆され、上記非導電性基材の第2の表面において上記非導電性基材が露出しているアノードに置き換え、上記第2の表面がカソードと接するように配置してもよい。 The electrode stack 31 includes an anode 32, an insulator 33, and a cathode 34. The anode 32, the insulator 33, and the cathode 34 are arranged in this order. The insulator 33 is disposed on the surface of the anode 32 so as to be in contact with the anode 32. The cathode 34 is disposed on the surface opposite to the anode 32 side of the insulator 33 so as to be in contact with the insulator 33. As at least one of the anode 32 and the cathode 34, for example, laminates (microorganism fuel cell electrodes) 1, 1A, 1B as shown in FIGS. 1 to 3 can be used. In addition, the anode 32 and the insulator 33 are coated with the conductive portion on the first surface of the non-conductive substrate, and the non-conductive substrate is exposed on the second surface of the non-conductive substrate. Instead of the anode, the second surface may be disposed in contact with the cathode.
 微生物燃料電池21は、電極積層体31と、複数の空気供給部36とを備える。空気供給部36から、電極積層体31に、空気を供給可能である。空気供給部36は、空気室37と、空気室37を取り囲む透気性防水性フィルム38とを有する。透気性防水性フィルム38と空気室37と透気性防水性フィルム38とがこの順で並んで配置されている。2つの透気性防水性フィルム38の外周縁は密閉されている。電極積層体31は、複数の空気供給部36と接している。 The microbial fuel cell 21 includes an electrode stack 31 and a plurality of air supply units 36. Air can be supplied to the electrode laminate 31 from the air supply unit 36. The air supply unit 36 includes an air chamber 37 and a gas-permeable waterproof film 38 surrounding the air chamber 37. The air permeable waterproof film 38, the air chamber 37, and the air permeable waterproof film 38 are arranged in this order. The outer peripheral edges of the two air permeable waterproof films 38 are sealed. The electrode laminate 31 is in contact with the plurality of air supply units 36.
 複数の空気供給部36は間隔を隔てて、並んで配置されている。電極積層体31は、長尺状である。電極積層体31は、複数の空気供給部36をまたがるように、配置されている。第1の空気供給部36に接している電極積層体31は、第1の空気供給部36の隣の第2の空気供給部36に向かって延びており、第2の空気供給部36に接している。さらに、第2の空気供給部36に接している電極積層体31は、第2の空気供給部36の隣の第3の空気供給部36に向かって延びており、第3の空気供給部36に接している。さらに、第3の空気供給部36に接している電極積層体31は、第3の空気供給部36の隣の他の空気供給部36に向かって延びており、他の空気供給部36に接している。 The plurality of air supply units 36 are arranged side by side at intervals. The electrode laminate 31 has a long shape. The electrode laminated body 31 is arrange | positioned so that the several air supply part 36 may be straddled. The electrode laminate 31 in contact with the first air supply unit 36 extends toward the second air supply unit 36 adjacent to the first air supply unit 36 and is in contact with the second air supply unit 36. ing. Furthermore, the electrode stack 31 in contact with the second air supply unit 36 extends toward the third air supply unit 36 adjacent to the second air supply unit 36, and the third air supply unit 36. Is in contact with Further, the electrode stack 31 in contact with the third air supply unit 36 extends toward another air supply unit 36 adjacent to the third air supply unit 36 and is in contact with the other air supply unit 36. ing.
 微生物燃料電池21では、透気性防水性フィルム38に、カソード34が接している。透気性防水性フィルム38とカソード34とで、エアカソードが構成されている。 In the microbial fuel cell 21, the cathode 34 is in contact with the gas-permeable waterproof film 38. The air permeable waterproof film 38 and the cathode 34 constitute an air cathode.
 電極積層体31及び空気供給部36は、有機性物質を含む液の入った容器26内に配置されている。 The electrode laminated body 31 and the air supply part 36 are arrange | positioned in the container 26 containing the liquid containing an organic substance.
 図7(a)では、電極積層体31は略図的に示されている。電極積層体31のアノード32とカソード34とは、図示しない導線により接続されている。 In FIG. 7A, the electrode laminate 31 is schematically shown. The anode 32 and the cathode 34 of the electrode laminate 31 are connected by a lead wire (not shown).
 上記アノードでは、表面に微生物が付着していることで、微生物により有機性物質から水素イオン(H)及び電子(e)が生成可能になる。また、必要に応じて、上記アノードにメディエータ(電子伝達体)が担持されていてもよく、微生物にメディエータ(電子伝達体)を加えてもよい。 In the anode, since microorganisms are attached to the surface, hydrogen ions (H + ) and electrons (e ) can be generated from organic substances by the microorganisms. If necessary, a mediator (electron carrier) may be carried on the anode, and a mediator (electron carrier) may be added to the microorganism.
 微生物を効果的に担持可能であるように、アノードの比表面積が大きいことが好ましい。アノードの体積に対するアノードの面積の比率が大きいことが好ましい。また有機性物質を含む液を通過可能であるように、上記アノードは、孔を有することが好ましく、多孔質体であることが好ましい。上記微生物燃料電池用電極以外のアノードを用いる場合に、上記アノードの材料は、微生物を担持可能でありかつ導電性材料であれば特に限定されない。導電性材料としては、炭素繊維やチタンなどの各種の導電性金属が挙げられる。上記アノードの形態としては、網状体、織布、不織布、クロス及びフェルト等が挙げられる。アノードの具体例としては、カーボンペーパー、カーボンフェルト、ポーラスカーボン、カーボンクロス(炭素織布)、金属メッシュ、及び金属メッシュにカーボンブラック又は炭素繊維等をコーティングしたコーティング物等が挙げられ、上記金属メッシュとしては、ステンレス及びチタン等が挙げられる。上記アノードは、比表面積を高めるために表面処理されていてもよい。 It is preferable that the anode has a large specific surface area so that microorganisms can be supported effectively. The ratio of the anode area to the anode volume is preferably large. The anode preferably has pores and is preferably a porous body so that a liquid containing an organic substance can pass through. When an anode other than the microbial fuel cell electrode is used, the material of the anode is not particularly limited as long as it is capable of supporting microorganisms and is a conductive material. Examples of the conductive material include various conductive metals such as carbon fiber and titanium. Examples of the anode include nets, woven fabrics, nonwoven fabrics, cloths, felts, and the like. Specific examples of the anode include carbon paper, carbon felt, porous carbon, carbon cloth (carbon woven fabric), metal mesh, and a coated product obtained by coating the metal mesh with carbon black or carbon fiber. Examples include stainless steel and titanium. The anode may be surface treated to increase the specific surface area.
 上記アノードの厚みは、好ましくは50μm以上、より好ましくは100μm以上、好ましくは500mm以下、より好ましくは200mm以下である。上記アノードの厚みが上記下限以上であると、微生物をより一層効果的に担持可能である。上記アノードの厚みが上記上限以下であると、内部抵抗が低くなり、効率的に電気エネルギーを回収できる。 The thickness of the anode is preferably 50 μm or more, more preferably 100 μm or more, preferably 500 mm or less, more preferably 200 mm or less. When the thickness of the anode is equal to or more than the lower limit, microorganisms can be more effectively supported. When the thickness of the anode is not more than the above upper limit, the internal resistance becomes low, and the electric energy can be efficiently recovered.
 上記カソードの上記アノード側の表面と、上記アノードの上記カソード側の表面との間の間隔は、好ましくは500mm以下、より好ましくは200mm以下である。上記間隔が上記上限以下であると、内部抵抗が低くなり、効率的に電気エネルギーを回収できる。 The distance between the anode side surface of the cathode and the cathode side surface of the anode is preferably 500 mm or less, more preferably 200 mm or less. When the distance is less than or equal to the above upper limit, the internal resistance is lowered, and electric energy can be efficiently recovered.
 上記アノードと、上記カソードとの間に、絶縁体が配置されていることが好ましい。 It is preferable that an insulator is disposed between the anode and the cathode.
 上記絶縁体の材料は特に限定されない。上記絶縁体は、セパレータであってもよい。上記絶縁体は、イオン透過性膜であってもよい。上記イオン透過性膜は、セパレータとして機能することができる。上記イオン透過性膜としては、スルホン酸基を有するフッ素樹脂系イオン交換膜(陽イオン交換膜)が好ましく用いられる。これ以外のイオン透過性膜を用いてもよい。スルホン酸基は親水性があり、高い陽イオン交換能を持つ。また、より安価なイオン透過性膜として、主鎖部のみをフッ素化したフッ素樹脂系イオン交換膜や、芳香族炭化水素系膜も利用できる。有機性物質と上記カソードとを陽イオン交換膜で隔離した場合には、上記アノードでの反応で発生した水素イオンが、陽イオン交換膜を介して上記カソードに効果的に供給されて、上記カソードでの酸素の還元に効果的に用いられる。 The material for the insulator is not particularly limited. The insulator may be a separator. The insulator may be an ion permeable membrane. The ion permeable membrane can function as a separator. As the ion permeable membrane, a fluororesin ion exchange membrane (cation exchange membrane) having a sulfonic acid group is preferably used. Other ion permeable membranes may be used. The sulfonic acid group is hydrophilic and has a high cation exchange capacity. Further, as a cheaper ion permeable membrane, a fluororesin ion exchange membrane in which only the main chain portion is fluorinated, or an aromatic hydrocarbon membrane can be used. When the organic material and the cathode are separated by a cation exchange membrane, hydrogen ions generated by the reaction at the anode are effectively supplied to the cathode through the cation exchange membrane, and the cathode It is effectively used for the reduction of oxygen in
 上記イオン透過性膜の市販品としては、例えばデュポン社製「Nafion 115」、IONICS社製「NEPTON CR61AZL-389」、トクヤマ社製「NEOSEPTA CM-1」及び「CMB」、並びに旭硝子社製「Selemion CSV」等が挙げられる。 Commercially available products of the ion permeable membrane include, for example, “Nafion 115” manufactured by DuPont, “NEPTON CR61AZL-389” manufactured by IONICS, “NEOSEPTA CM-1” and “CMB” manufactured by Tokuyama, and “Selemion” manufactured by Asahi Glass. CSV "etc. are mentioned.
 また、上記イオン透過性膜の材料はイオン交換樹脂に限定されず、ろ紙等のイオンが透過可能な材料であってもよい。上記ろ紙の市販品としては、GE Healthcare Japan社製「ろ紙 Cat.No.1004-240」等が挙げられる。 Further, the material of the ion permeable membrane is not limited to the ion exchange resin, and may be a material such as filter paper that can transmit ions. Examples of commercially available filter paper include “Filter Paper Cat. No. 1004-240” manufactured by GE Healthcare Japan.
 上記イオン透過性膜の厚みは、好ましくは10μm以上、好ましくは1mm以下である。上記イオン透過性膜の厚みが上記下限以上であると、破損がより一層生じ難くなる。上記イオン透過性膜の厚みが上記上限以下であると、水素イオンがより一層効率的に移動する。 The thickness of the ion permeable membrane is preferably 10 μm or more, and preferably 1 mm or less. When the thickness of the ion permeable membrane is equal to or more than the lower limit, breakage is more difficult to occur. When the thickness of the ion permeable membrane is not more than the above upper limit, hydrogen ions move more efficiently.
 水素イオンの移動効率を高めるためには、上記カソードと上記イオン透過性膜との間の間隔はなるべく狭いほうがよく、上記カソードと上記イオン透過性膜とは接していることが好ましい。特に、上記イオン透過性膜の一部が上記カソードの多孔質構造内部の空隙内に網目状に侵入していると、多孔質構造中に含まれる空気と電解質膜などのイオン透過性膜に含まれる水とで形成される接触界面(水と空気との接触界面)の面積が飛躍的に増大する。このため、空気中の酸素を還元する反応効率が増大して、電気エネルギーの回収効率がかなり高くなる。 In order to increase the transfer efficiency of hydrogen ions, the interval between the cathode and the ion permeable membrane should be as narrow as possible, and the cathode and the ion permeable membrane are preferably in contact with each other. In particular, if a part of the ion permeable membrane penetrates into the voids inside the porous structure of the cathode, it is included in the ion permeable membrane such as air and electrolyte membrane contained in the porous structure. The area of the contact interface (the contact interface between water and air) formed with the generated water is dramatically increased. For this reason, the reaction efficiency which reduces oxygen in the air increases, and the recovery efficiency of electric energy becomes considerably high.
 上記有機性物質を含む液としては特に限定されないが、廃水、廃液、し尿、食品廃棄物、その他の有機性廃棄物及び汚泥等が挙げられる。上記微生物燃料電池は、電気エネルギーを回収可能な廃液処理装置として好適に用いられる。 The liquid containing the organic substance is not particularly limited, and examples thereof include waste water, waste liquid, human waste, food waste, other organic waste, and sludge. The microbial fuel cell is preferably used as a waste liquid treatment apparatus capable of recovering electrical energy.
 上記微生物としては、嫌気性微生物及び好気性微生物が挙げられる。微生物は、嫌気性微生物であることが好ましい。嫌気性微生物は、嫌気性下で生育可能である。微生物は、好気性微生物であってもよい。 The above microorganisms include anaerobic microorganisms and aerobic microorganisms. The microorganism is preferably an anaerobic microorganism. Anaerobic microorganisms can grow under anaerobic conditions. The microorganism may be an aerobic microorganism.
 上記微生物としては、微生物の細胞膜内で電子伝達系を終結しない微生物が望ましい。細胞膜外で電子をアノードで捕捉しやすく、アノードへの電子伝達を触媒する微生物を利用することが望ましい。上記微生物として、硫黄S(0)還元菌、三価鉄Fe(III)還元菌、二酸化マンガンMnO還元菌、及び脱塩素菌などが好ましく用いられる。上記微生物として、例えばDesulfuromonas sp.、Desulfitobacterium sp.、Geobivrio thiophilus sp.、Clostridium thiosulfatireducens sp.、Thermoterrabacterium ferrireducens sp.、Geothrix sp.、Geobacter sp.、Geoglobus sp.、及びShewanella putrefaciens sp.などが特に好ましく用いられる。これらの微生物は、有機性物質中において主要な微生物ではないことが多い。このため、アノードにこれらの微生物を植菌し、アノードにこれらの微生物を担持させてもよい。 The microorganism is preferably a microorganism that does not terminate the electron transfer system in the cell membrane of the microorganism. It is desirable to use a microorganism that easily captures electrons at the anode outside the cell membrane and catalyzes electron transfer to the anode. As the microorganism, sulfur S (0) reducing bacteria, trivalent iron Fe (III) reducing bacteria, manganese dioxide MnO 2 reducing bacteria, and dechlorinating bacteria are preferably used. Examples of the microorganism include Desulfuromonas sp. Desulfitobacterium sp. Geobivio thiophilus sp. Clostridium thiosulfatireducens sp. Thermoterabacterium ferrireducens sp. Geothrix sp. Geobacter sp. Geoglobus sp. , And Shewanella putrefaciens sp. Etc. are particularly preferably used. These microorganisms are often not major microorganisms in organic substances. Therefore, these microorganisms may be inoculated on the anode and these microorganisms may be supported on the anode.
 また、微生物燃料電池の使用開始時には微生物反応室内にこれらの微生物の増殖に適当な培地を供給することが望ましい。さらに、上記アノードの電位を高く維持することにより、上記アノードでのこれらの微生物の増殖を促すことがより望ましい。これらの微生物(群)を前培養もしくは微生物反応室内で培養するための方法として、スラリー状の硫黄、三価鉄、二酸化マンガンなどを電子受容体とする培地が各種報告されている。例えば、Ancylobacter/Spirosoma培地、Desulfuromonas培地、及びFe(III) Lactate Nutrient培地などが好ましく用いられる。 In addition, it is desirable to supply a medium suitable for the growth of these microorganisms in the microorganism reaction chamber at the start of use of the microbial fuel cell. Furthermore, it is more desirable to promote the growth of these microorganisms at the anode by keeping the potential of the anode high. As a method for culturing these microorganisms (groups) in a preculture or in a microbial reaction chamber, various media using slurry-like sulfur, trivalent iron, manganese dioxide or the like as an electron acceptor have been reported. For example, Ancylobacter / Spirosoma medium, Desulfuromonas medium, and Fe (III) lactate nutrient medium are preferably used.
 上記微生物燃料電池は、導電性が高く、耐腐食性が高く、かつ安価である微生物燃料電池用電極を備えていることから、電気エネルギーの回収効率が高く、長期使用に耐え、かつ安価であるという利点を有する。上記微生物燃料電池では、曝気の必要がなく、電気エネルギーの回収効率が高いので、省エネルギーの廃水処理装置として有効利用することができ、環境負荷の低減に大きく寄与する。 The microbial fuel cell has a high conductivity, corrosion resistance, and a low-cost microbial fuel cell electrode, so that it has high electrical energy recovery efficiency, can withstand long-term use, and is inexpensive. Has the advantage. The above microbial fuel cell does not require aeration and has a high electrical energy recovery efficiency, so that it can be effectively used as an energy-saving wastewater treatment device, and greatly contributes to reduction of environmental load.
 上記積層体は、生物処理に好適に用いられ、生物による処理に好適に用いられる。上記積層体は、微生物燃料電池に用いられる微生物燃料電池用電極以外にも、水処理に用いられる水処理用部材、並びに、電気合成微生物の培養槽等に用いることができる。上記積層体は、水処理に用いられる水処理用部材であるか、又は、微生物燃料電池に用いられる微生物燃料電池用電極であることが好ましい。上記積層体は、水処理に用いられる水処理用部材であってもよく、微生物燃料電池に用いられる微生物燃料電池用電極であってもよい。 The above laminate is suitably used for biological treatment and is suitably used for treatment by living organisms. In addition to the microbial fuel cell electrode used for the microbial fuel cell, the laminate can be used for a water treatment member used for water treatment, a culture vessel for electrosynthetic microorganisms, and the like. The laminate is preferably a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell. The laminate may be a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell.
 上記積層体は、該積層体と、廃水の流入口及び流出口を有する容器とを備える水処理システムに好適に用いることができる。上記容器内に、上記積層体が配列されていることが好ましい。上記容器は、上記容器内の上記積層体の下方に沈殿部を有することが好ましい。上記水処理システムは、上記容器の上記流出口の下流に、微生物を利用した廃水処理槽を備えることが好ましい。 The laminate can be suitably used in a water treatment system including the laminate and a container having a wastewater inlet and outlet. It is preferable that the laminate is arranged in the container. It is preferable that the said container has a precipitation part under the said laminated body in the said container. The water treatment system preferably includes a wastewater treatment tank using microorganisms downstream of the outlet of the container.
 〔水処理システムにおける容器〕
 上記容器は、積層体及び有機物を含有する水を収容し、積層体に水を接触させるための部材である。上記水としては、廃水等が挙げられる。上記廃水は、家庭及び産業廃液、し尿、食品廃棄物、その他の有機性廃棄物及び汚泥等を包含する。
[Containers in water treatment systems]
The said container is a member for accommodating the water containing a laminated body and organic substance, and making water contact a laminated body. Examples of the water include waste water. The waste water includes household and industrial waste liquid, human waste, food waste, other organic waste, sludge and the like.
 上記容器の大きさ及び形状等は特に限定されず、数リットルの実験室用の大きさから数千立方メートルの水処理プラントの大きさに適宜設定することができ、円、楕円又は多角形の柱状、錐状、錐台状等及びこれらに近似する形状に適宜設定することができる。上記容器の形状は、直方体、立方体等の四角柱の形状又はこれに近似する形状であることが好ましい。 The size and shape of the vessel are not particularly limited, and can be set as appropriate from a laboratory size of several liters to a water treatment plant size of several thousand cubic meters, a circular, elliptical, or polygonal column shape. , A cone shape, a frustum shape, and the like and a shape similar to these shapes can be appropriately set. The shape of the container is preferably a quadrangular prism shape such as a rectangular parallelepiped or a cube or a shape similar to this.
 上記容器として、水処理施設において設置されている種々の池、タンク、槽のいずれを利用してもよい。例えば、既存の水処理施設等にて、一般に活性汚泥法で用いられる沈砂池、最初沈殿池、反応タンク、最終沈殿池及びこれらに相当する槽等を利用することができる。最初沈殿池及びこれに相当する槽等が好ましい。上記容器として、既存の水処理施設における各種槽を利用することができる。このように、例えば、既設の最初沈殿池の上方に、積層体を設けることにより、水を処理することができ、例えば有機物の一部を分解させることができる。この結果、既存の水処理施設において、後段に生物処理槽(活性汚泥槽等)を設ける場合には、生物処理槽の必要容量を削減でき、より効率的に水処理を実現することができる。 Any of various ponds, tanks, and tanks installed in water treatment facilities may be used as the container. For example, in an existing water treatment facility or the like, a sand basin generally used in the activated sludge method, a first sedimentation basin, a reaction tank, a final sedimentation basin, and a tank corresponding to these can be used. A first settling basin and a tank corresponding to this are preferred. Various tanks in existing water treatment facilities can be used as the container. Thus, for example, by providing a laminated body above the existing first sedimentation basin, water can be treated, and for example, a part of the organic matter can be decomposed. As a result, in the existing water treatment facility, when a biological treatment tank (an activated sludge tank or the like) is provided in the subsequent stage, the required capacity of the biological treatment tank can be reduced, and water treatment can be realized more efficiently.
 上記容器は、鉛直方向における上方等が、開放されていてもよく、密閉されていなくてもよい。 The upper part in the vertical direction of the container may be opened or may not be sealed.
 上記容器は、水の流入口及び流出口を備える。流入口及び流出口はそれぞれ、複数あってもよい。水処理システムのシンプル化の観点から、流入口及び流出口はそれぞれ、1つであることが好ましい。流入口及び流出口の大きさ及び形状は、容器の大きさによって適宜設定することができる。 The container has a water inlet and outlet. There may be a plurality of inflow ports and outflow ports. From the viewpoint of simplification of the water treatment system, it is preferable that each of the inlet and the outlet is one. The size and shape of the inflow port and outflow port can be appropriately set depending on the size of the container.
 上記容器が四角柱又はこれに近似する形状である場合、流入口及び流出口は、容器の側面にそれぞれ配置されることが好ましく、特に、対向する側面にそれぞれ配置されることが好ましい。流入口及び流出口の位置は、鉛直方向及び水平方向において互いに異なっていてもよい。流入口及び流出口は、鉛直方向又は水平方向において同様の位置に配置されていることが好ましく、鉛直方向又は水平方向において同じ位置に配置されていることがより好ましい。流入口及び流出口は、容器の側面の上方に配置されていることが更に好ましい。 When the container is a quadrangular prism or a shape similar to this, the inlet and the outlet are preferably arranged on the side surfaces of the container, particularly preferably on the opposite side surfaces. The positions of the inlet and the outlet may be different from each other in the vertical direction and the horizontal direction. The inflow port and the outflow port are preferably arranged at the same position in the vertical direction or the horizontal direction, and more preferably arranged at the same position in the vertical direction or the horizontal direction. More preferably, the inlet and the outlet are arranged above the side surface of the container.
 上記容器は、その内部に配列された複数の積層体の下方に、沈殿部が設けられていることが好ましい。これにより、沈殿部で効果的に固形物等を沈殿させることができるため、積層体間及びこの積層体の内部(電極間など)等に、固形物が詰まることを防止することができる。 The above container is preferably provided with a precipitation portion below a plurality of laminated bodies arranged inside. Thereby, since a solid substance etc. can be effectively precipitated in a sedimentation part, it can prevent clogging of a solid substance between laminated bodies, the inside of this laminated body (between electrodes, etc.).
 積層体の下方とは、積層体の最下端よりも下側の部位を含み、積層体の最下端よりも上方又は最下端と同等の高さを含む部位であってもよい。沈殿部は、例えば、容器の注入口から導入される水の流れに起因する攪拌によって、沈殿物がかき上げられることがない程度に、容器の下方において、所定の深さで配置されることが好ましい。沈殿部の位置及び深さは、例えば、容器の大きさ、流入口から導入される水の速度等によって適宜調整することができる。沈殿部は、流入口側において、容器深さの最底から1/5~1/2程度の位置及び深さで配置されることが好ましい。容器の沈殿部の容積は、容器の全容積の20%以上であることが好ましい。また、容器の沈殿部の容積は、容器の全容積の50%以下であることが好ましい。 The lower part of the laminated body may include a part below the lowermost end of the laminated body, and may be a part that is higher than the lowermost end of the laminated body or includes a height equivalent to the lowermost end. The sedimentation part may be arranged at a predetermined depth below the container to such an extent that the sediment is not scraped up by stirring caused by the flow of water introduced from the inlet of the container, for example. preferable. The position and depth of the sedimentation part can be appropriately adjusted depending on, for example, the size of the container, the speed of water introduced from the inflow port, and the like. The sedimentation part is preferably arranged at a position and depth of about 1/5 to 1/2 from the bottom of the container depth on the inlet side. The volume of the sedimentation portion of the container is preferably 20% or more of the total volume of the container. Moreover, it is preferable that the volume of the precipitation part of a container is 50% or less of the total volume of a container.
 上記沈殿部は、例えば、底部等に固形物を一次貯留できる空間である。沈殿部の底面は、固形物が沈殿及び貯留しやすいように傾斜していることが好ましい。上記沈殿部の平面視での形状が四角形である場合には、上記沈殿部が、流出口側に向かうにつれて徐々に又は段階的に浅くなっていることが好ましい。上記沈殿部は、流出口側で急激に浅くなっていてもよい。また、上記沈殿部の平面視での形状が円形である場合には、上記沈殿部は、中央に向かうにつれて徐々に又は段階的に深くなっていることが好ましい。 The precipitation part is a space in which a solid matter can be primarily stored at the bottom part, for example. It is preferable that the bottom surface of the precipitation part is inclined so that the solid matter is easily precipitated and stored. When the shape of the settling portion in plan view is a quadrangle, it is preferable that the settling portion becomes gradually or stepwise shallower toward the outlet. The settling portion may be rapidly shallower on the outlet side. Moreover, when the shape of the precipitation part in a plan view is a circle, the precipitation part is preferably gradually or gradually deeper toward the center.
 上記容器は、容器内での水の流れを制御するための遮蔽部材を有していてもよい。上記容器は、越流堰を有していてもよい。 The container may have a shielding member for controlling the flow of water in the container. The container may have an overflow weir.
 上記遮蔽部材は、例えば、流入口から導入された水を、容器の水平方向又は鉛直方向に広げるために設けられる部材である。遮蔽部材は、邪魔板として機能する。遮蔽部材は、導入される水を容器の水平方向又は鉛直方向に効率的に広げるために、板状の形状を有することが好ましい。遮蔽部材は、流入口よりも大きな平面積を有し、流入口が配置された容器の一面の水平方向の幅と同程度以下の幅を有することが好ましい。遮蔽部材は、流入口が配置された容器の一面の鉛直方向の高さ(長さ)のうち、沈殿部として機能しない部位の80%(好ましくは70%、より好ましくは60%)程度以下の高さ(長さ)を有することが好ましい。通常、容器は、容器の下方に沈殿部を有し、沈殿部は、上述したように、容器深さの最底から1/5~1/2程度の位置及び深さで配置されることが好ましい。このため、遮蔽部材は、容器の流入口側では、容器の鉛直方向の全高さ(長さ)に対して、75%(好ましくは65%、より好ましくは60%)程度以下の高さ(長さ)に配置されていることが好ましい。 The said shielding member is a member provided in order to spread the water introduce | transduced from the inflow port in the horizontal direction or the vertical direction of a container, for example. The shielding member functions as a baffle plate. The shielding member preferably has a plate shape in order to efficiently spread the introduced water in the horizontal or vertical direction of the container. The shielding member preferably has a larger plane area than the inlet and has a width equal to or less than the horizontal width of one surface of the container in which the inlet is arranged. The shielding member is about 80% or less (preferably 70%, more preferably 60%) or less of the height (length) in the vertical direction of one surface of the container in which the inflow port is arranged, which does not function as a sedimentation part. It is preferable to have a height (length). Usually, a container has a sedimentation part below the container, and as described above, the sedimentation part may be arranged at a position and depth of about 1/5 to 1/2 from the bottom of the container depth. preferable. For this reason, the shielding member has a height (length) of about 75% (preferably 65%, more preferably 60%) or less with respect to the total height (length) in the vertical direction of the container on the inlet side of the container. It is preferable that it is arrange | positioned.
 遮蔽部材は、流入口の近傍において、流入口に対面し、かつ、流入口が配置された側面に対面して配置されていることが好ましく、流入口が配置された容器の側面に平行に配置されていることがより好ましい。また、遮蔽部材は、遮蔽部材の流入口からより遠い部位が容器から離間するように、特に、容器の底面から遮蔽部材が離間するように配置されていることが好ましい。 It is preferable that the shielding member is disposed in the vicinity of the inflow port so as to face the inflow port and to be opposed to the side surface on which the inflow port is disposed, and to be parallel to the side surface of the container in which the inflow port is disposed. More preferably. Further, the shielding member is preferably arranged so that a part farther from the inlet of the shielding member is separated from the container, and in particular, the shielding member is separated from the bottom surface of the container.
 流入口が容器の側面の上方に配置されている場合には、遮蔽部材は、平面視での流入口と積層体との間に配置され、容器の流入口が配置された側面に対面しかつ容器の底面と離間して配置されていることが好ましい。遮蔽部材は、容器の2つの対向する側面と連結するように配置されていることが好ましい。遮蔽部材の上端は、容器内に収容される水の水面より高い位置に配置されていることが好ましい。このような遮蔽部材によって、流入口から導入された水を、容器の水平方向又は鉛直方向に効率的に広げることができ、積層体に対して、水をより一層均一に、かつ、より一層大きな面積で接触させることができ、発電量を向上させることができる。 When the inflow port is disposed above the side surface of the container, the shielding member is disposed between the inflow port and the laminate in a plan view, and faces the side surface on which the inflow port of the container is disposed; It is preferable that the container is disposed apart from the bottom surface of the container. The shielding member is preferably arranged so as to be connected to two opposite side surfaces of the container. It is preferable that the upper end of the shielding member is disposed at a position higher than the level of water stored in the container. By such a shielding member, the water introduced from the inflow port can be efficiently spread in the horizontal direction or the vertical direction of the container, and the water is more uniformly and much larger than the laminated body. The area can be contacted, and the amount of power generation can be improved.
 上記越流堰は、例えば、流入口から導入され、容器の水平方向又は鉛直方向に広がった水の流れを、流出口の近傍まで維持する。上記越流堰は、水が、直接流出口に向かって流れないように、水の流れを緩和する。越流堰は、流出口から離間して、流出口の近傍において、流出口を水平方向及び鉛直方向において覆うように配置されていることが好ましい。例えば、越流堰は、流出口が配置された容器の一面の水平方向の幅と同程度以下の幅、流出口の直径(又は長さ)の500%程度以下の高さで水平方向において流出口を被覆し、かつ、流出口の直径(又は長さ)の500%程度以下の距離で鉛直方向において流出口を被覆していることが好ましい。 The above overflow weir is introduced, for example, from the inflow port and maintains the flow of water spreading in the horizontal or vertical direction of the container up to the vicinity of the outflow port. The overflow weir moderates the flow of water so that water does not flow directly toward the outlet. The overflow weir is preferably arranged so as to be separated from the outlet and to cover the outlet in the horizontal and vertical directions in the vicinity of the outlet. For example, the overflow weir flows in the horizontal direction with a width equal to or less than the horizontal width of one side of the container in which the outlet is arranged and a height equal to or less than about 500% of the diameter (or length) of the outlet. It is preferable that the outlet is covered and the outlet is covered in the vertical direction at a distance of about 500% or less of the diameter (or length) of the outlet.
 流出口が容器の側面の上方に配置されている場合には、越流堰は、平面視での積層体と流出口との間において、流出口が配置された側面と平行に対面し、かつ流出口が配置されていない容器の2つの対向する側面と連結するとともに、流出口が配置された面と垂直に連結し、かつ流出口の下方を覆うように配置されていることが好ましい。越流堰は、容器の上方において開放するように配置されていることが好ましい。このような越流堰によって、流入口から導入され、容器の水平方向又は鉛直方向に広げられた水を、より長時間又は長距離にわたって維持することができ、積層体に対して、水をより一層均一に、かつ、より一層大きな面積で接触させることができる。よって、発電量を向上させることができる。 When the outflow port is disposed above the side surface of the container, the overflow weir faces in parallel with the side surface on which the outflow port is disposed between the laminate in the plan view and the outflow port, and It is preferable to connect with two opposing side surfaces of the container in which the outlet is not disposed, to be connected perpendicularly to the surface on which the outlet is disposed, and to cover the lower side of the outlet. The overflow weir is preferably arranged to open above the container. By such an overflow weir, the water introduced from the inlet and spread in the horizontal or vertical direction of the container can be maintained for a longer time or longer distance, and more water is supplied to the laminate. The contact can be made more uniformly and with a larger area. Therefore, the power generation amount can be improved.
 本明細書において、平行及び垂直とはそれぞれ、基準となる面又は線に対して、±20度程度、好ましくは±10度程度の傾斜を許容する。また、平面視とは、容器の上方(例えば、開放された側)から見た場合を意味する。 In this specification, each of parallel and vertical allows an inclination of about ± 20 degrees, preferably about ± 10 degrees with respect to a reference plane or line. In addition, the plan view means a case when viewed from above the container (for example, the opened side).
 〔水処理システムにおける積層体〕
 上記容器内には、複数の積層体が収容されていることが好ましい。容器内において、沈殿部の上方に複数の積層体が配置されていることが好ましい。このような位置に積層体を配置することにより、沈殿部に沈殿した固形物が長時間滞留により可溶化し、溶出する。従って、発電効率を向上させることができる。
[Laminate in water treatment system]
It is preferable that a plurality of laminated bodies are accommodated in the container. In a container, it is preferable that the some laminated body is arrange | positioned above the sedimentation part. By arrange | positioning a laminated body in such a position, the solid substance which settled in the sedimentation part is solubilized by long-term residence, and is eluted. Therefore, power generation efficiency can be improved.
 上記積層体は、容器の平面視において、容器内に、流入口から流出口に向かう方向に沿って配列されていることが好ましい。水を容器の流入口から導入し、流出口から排出する場合に、その水の流れを遮断しない方向に配列されていることが好ましい。従って、積層体が、流入口及び流出口が容器の対向する面の水平方向において同様の位置に配置されている場合には、積層体は、平面視において、流入口と流出口とを結ぶ直線Aに平行に配置されていることが好ましい。積層体が、流入口及び流出口が容器の対向する面の水平方向において異なる位置に配置されている場合には、積層体は、平面視において、流入口と流出口とを結ぶ直線Aに平行に配置されていてもよい。積層体は、流入口及び流出口が形成された対向する側面の最短距離となる直線Bに平行に配置されていることが好ましい。このような積層体の配置によって、複数の積層体のいずれにおいても、流入口から導入される水における有機物濃度を同程度にすることができるため、複数の積層体において、積層体当たりの発電量の均一化を図ることができる。その結果、水処理システム全体での発電量を向上させることができる。 The laminate is preferably arranged in the container along the direction from the inlet to the outlet in a plan view of the container. When water is introduced from the inlet of the container and discharged from the outlet, it is preferably arranged in a direction that does not block the water flow. Therefore, when the laminated body has the inlet and the outlet arranged at the same position in the horizontal direction of the opposing surfaces of the container, the laminated body is a straight line connecting the inlet and the outlet in plan view. It is preferable that they are arranged in parallel with A. When the laminated body is disposed at different positions in the horizontal direction of the opposing surfaces of the container, the laminated body is parallel to a straight line A connecting the inlet and the outlet in plan view. May be arranged. It is preferable that the laminated body is arranged in parallel to a straight line B that is the shortest distance between the opposing side surfaces where the inlet and the outlet are formed. By arranging such a laminate, the organic matter concentration in the water introduced from the inflow port can be made the same in any of the plurality of laminates. Can be made uniform. As a result, the power generation amount in the entire water treatment system can be improved.
 複数の積層体は、それぞれ一定の間隔で配列されていることが好ましい。このような配置によって、複数の積層体に接触する水において、積層体当たりの発電量の均一化を図ることができる。間隔は、容器の大きさ、用いる積層体の大きさ、積層体を構成するアノード及びカソードの厚み等によって適宜設定することができる。 It is preferable that the plurality of laminated bodies are arranged at regular intervals. With such an arrangement, the amount of power generated per stacked body can be made uniform in water that contacts a plurality of stacked bodies. The interval can be appropriately set depending on the size of the container, the size of the laminate used, the thickness of the anode and the cathode constituting the laminate, and the like.
 以下、水処理システムの具体的な実施形態を説明する。 Hereinafter, specific embodiments of the water treatment system will be described.
 (実施形態1)
 図8(a)~(c)に示す水処理システム50は、容器51と、容器51中に収容された複数の積層体を含む部材52とを備える。積層体を含む部材52は、電極ユニットであってもよい。電極ユニットは、空気室を構成するように対面して配置されたカソードと、これらカソードと離間し、互いに対面して配置されたアノードとを含んでいてもよい。アノードとカソードとは、導線等で接続されていてもよい。上記アノート及び上記カソードの内の少なくとも一方が、上記積層体であることが好ましい。
(Embodiment 1)
A water treatment system 50 shown in FIGS. 8A to 8C includes a container 51 and a member 52 including a plurality of laminated bodies accommodated in the container 51. The member 52 including the laminated body may be an electrode unit. The electrode unit may include a cathode disposed to face the air chamber, and an anode spaced apart from the cathode and disposed to face each other. The anode and the cathode may be connected by a conducting wire or the like. It is preferable that at least one of the annot and the cathode is the laminate.
 容器51は、例えば、平面視において、長方形形状(4m×6m)を有する。容器51の上方は、開放されている。容器51の深さは、一方側で4mであり、他方側で2mである。容器51の深さは、一方側から他方側にかけて徐々に浅くなっている。 The container 51 has, for example, a rectangular shape (4 m × 6 m) in plan view. The upper part of the container 51 is open. The depth of the container 51 is 4 m on one side and 2 m on the other side. The depth of the container 51 is gradually reduced from one side to the other side.
 容器51では、水56用の流入口51a及び流出口51bがそれぞれ1つずつ、容器51の対面する側面に設けられている。流入口51a及び流出口51bは、いずれも、容器51の側面の水平方向の中央に配置されており、鉛直方向では上方に配置されている。流入口51a及び流出口51bの直径は、例えば、15cmである。 In the container 51, one inflow port 51a and one outflow port 51b for the water 56 are provided on the side surfaces of the container 51 facing each other. Both the inflow port 51a and the outflow port 51b are disposed at the horizontal center of the side surface of the container 51, and are disposed above in the vertical direction. The diameter of the inflow port 51a and the outflow port 51b is, for example, 15 cm.
 容器51内であって、容器51の下方(底部)には沈殿部51cが設けられている。沈殿部51cは、例えば、容器51の全容積の35%程度を占めている。沈殿部51の深さは、例えば、流入口51a側で2.1mであり、流出口51b側で0.1mである。沈殿部51cの深さは、一方側から他方側にかけて徐々に浅くなっている。 In the container 51, a sedimentation part 51c is provided below the container 51 (bottom part). The precipitation part 51c occupies about 35% of the total volume of the container 51, for example. The depth of the precipitation part 51 is 2.1 m on the inflow port 51a side, for example, and is 0.1 m on the outflow port 51b side. The depth of the precipitation part 51c is gradually shallow from one side to the other side.
 容器51内には、水56が収容されており、通常、水面は、積層体を含む部材52を略完全に浸漬する位置に配置されている。 The water 51 is accommodated in the container 51, and the water surface is normally disposed at a position where the member 52 including the laminate is substantially completely immersed.
 容器51では、流入口51aからの水56の流入速度は1m/秒程度に設定されており、8~24時間程度かけて流出口51bから水が流出される。沈殿部51cには、固形物が沈殿している。 In the container 51, the inflow speed of the water 56 from the inflow port 51a is set to about 1 m / second, and the water flows out from the outflow port 51b over about 8 to 24 hours. Solid matter is precipitated in the precipitation part 51c.
 容器51内に収容された積層体を含む部材52は、平面視において流入口51aから流出口51bに向かう方向に沿って配列されている。水を容器51の流入口51aから導入し、流出口51bから排出する場合に、積層体を含む部材52は、水の流れを遮断しない方向に配列されている。ここでは、複数の積層体を含む部材52は、いずれも流入口51aと流出口51bとを結ぶ直線に平行に配置されており、互いに一定間隔(例えば、10cm)で並んでいる。 The members 52 including the laminated body accommodated in the container 51 are arranged along the direction from the inlet 51a toward the outlet 51b in a plan view. When water is introduced from the inlet 51a of the container 51 and discharged from the outlet 51b, the members 52 including the laminate are arranged in a direction that does not block the flow of water. Here, all the members 52 including a plurality of stacked bodies are arranged in parallel to a straight line connecting the inflow port 51a and the outflow port 51b, and are arranged at a constant interval (for example, 10 cm).
 例えば、上述したように、容器の深さが2m、奥行きが6mである場合、積層体を含む部材52の大きさは、例えば、1.6m×3.6m程度である。 For example, as described above, when the depth of the container is 2 m and the depth is 6 m, the size of the member 52 including the stacked body is, for example, about 1.6 m × 3.6 m.
 (実施形態2)
 図9(a)及び(b)に示す水処理システム50Aは、下方に沈殿部61cを備えた容器61と、容器61の中に収容された複数の積層体を含む部材52とを備えて構成される。
(Embodiment 2)
A water treatment system 50A shown in FIGS. 9A and 9B includes a container 61 provided with a sedimentation portion 61c below, and a member 52 including a plurality of laminated bodies accommodated in the container 61. Is done.
 容器61は、容器51と同様の形状及び大きさを有し、同様の水56用の流入口61a及び流出口61bと、沈殿部61cとを備え、同様の積層体を含む部材52を収容している。容器61は、容器61内に、遮蔽部材61d及び越流堰61eを備える。 The container 61 has the same shape and size as the container 51, and includes the same inlet 56 a and outlet 61 b for water 56 and a precipitation portion 61 c, and accommodates a member 52 including the same laminate. ing. The container 61 includes a shielding member 61d and an overflow weir 61e in the container 61.
 遮蔽部材61dは、流入口61aから導入された水56を、容器61の水平方向及び鉛直方向に広げるために設けられる板状の部材である。遮蔽部材61dは、流入口61aが配置された容器61の側面の水平方向の幅と同程度の幅を有し、側面の鉛直方向の高さ(長さ)の80%程度の高さ(長さ)を有する。従って、遮蔽部材61dは、容器61の流入口61a及び流出口61bが配置されていない対向する2つの側面と連結し、かつ容器61の沈殿部の上面と20~50cm程度離間して配置されている。また、遮蔽部材61dは、流入口61aの近傍において、流入口61aが配置された容器61の側面に平行に、流入口61aに対面して配置されている。遮蔽部材61dの上端は、容器61内に収容される水56の水面より若干高い位置に配置されている。 The shielding member 61d is a plate-like member provided to spread the water 56 introduced from the inflow port 61a in the horizontal direction and the vertical direction of the container 61. The shielding member 61d has a width approximately the same as the horizontal width of the side surface of the container 61 in which the inflow port 61a is disposed, and has a height (length) of about 80% of the vertical height (length) of the side surface. A). Therefore, the shielding member 61d is connected to the two opposing side surfaces where the inlet 61a and the outlet 61b of the container 61 are not disposed, and is spaced from the upper surface of the sedimentation portion of the container 61 by about 20 to 50 cm. Yes. Further, the shielding member 61d is disposed in the vicinity of the inflow port 61a so as to face the inflow port 61a in parallel with the side surface of the container 61 in which the inflow port 61a is disposed. The upper end of the shielding member 61 d is disposed at a position slightly higher than the water surface of the water 56 accommodated in the container 61.
 遮蔽部材61dによって、流入口61aから導入された水56は、容器61内において、図9(b)中の矢印で示すように、水平方向及びは鉛直方向に効率的に広げることができ、積層体を含む部材52に対して、水56をより一層均一に、かつ、より一層大きな面積で接触させることができる。 The water 56 introduced from the inflow port 61a by the shielding member 61d can be efficiently spread in the horizontal direction and the vertical direction in the container 61 as indicated by arrows in FIG. The water 56 can be brought into contact with the member 52 including the body more uniformly and with a larger area.
 越流堰61eは、流入口61aから導入され、容器61の水平方向及び鉛直方向に広がった水56の流れを、流出口61bの近傍まで維持し、直接流出口61bに向かう流れとならないようにその流れを緩和する。越流堰61eは、流出口61bの近傍において、流出口61bから離間して、流出口61bを水平方向及び鉛直方向において覆うように配置されている。越流堰61eは、流出口61bが配置された容器の側面の水平方向の幅と同程度の幅、流出口61bの直径の200%程度の高さを有する。越流堰61eは、断面視L字状の縦線に相当するように、側面に平行に対面して、流出口61bを被覆している。越流堰61eは、流出口61bの直径の150%程度の距離で、断面視L字状の横線に相当するように、流出口61bが配置された側面に垂直に、流出口61bの下方を被覆している。 The overflow weir 61e is introduced from the inlet 61a, maintains the flow of the water 56 spreading in the horizontal and vertical directions of the container 61 to the vicinity of the outlet 61b, and does not flow directly toward the outlet 61b. Alleviate that flow. The overflow weir 61e is disposed in the vicinity of the outlet 61b so as to be separated from the outlet 61b and to cover the outlet 61b in the horizontal direction and the vertical direction. The overflow weir 61e has a width approximately the same as the horizontal width of the side surface of the container in which the outlet 61b is disposed, and a height of about 200% of the diameter of the outlet 61b. The overflow weir 61e faces the parallel to the side surface and covers the outflow port 61b so as to correspond to an L-shaped vertical line in cross section. The overflow weir 61e has a distance of about 150% of the diameter of the outlet 61b, and is perpendicular to the side surface on which the outlet 61b is arranged so as to correspond to an L-shaped horizontal line in cross section, below the outlet 61b. It is covered.
 越流堰61eによって、流入口61aから導入され、図9(b)の矢印で示すように容器61の水平方向及び鉛直方向に広げられた水56を、より長時間又は長距離にわたって維持することができる。 Maintaining the water 56 introduced from the inlet 61a by the overflow weir 61e and spread in the horizontal and vertical directions of the container 61 as shown by the arrows in FIG. 9B for a longer time or longer distance. Can do.
 (実施形態3)
 図10に示す水処理システム50Bは、図8(a)~(c)に示す水処理システムと比べて、容器71の沈殿部71cが、中央で深くなり、外周に向かって徐々に浅くなる形状を有する点で異なる。容器71は、流入口71a及び流出口71bを有する。
(Embodiment 3)
The water treatment system 50B shown in FIG. 10 has a shape in which the sedimentation portion 71c of the container 71 becomes deeper at the center and gradually becomes shallower toward the outer periphery, compared to the water treatment systems shown in FIGS. 8 (a) to 8 (c). It is different in having. The container 71 has an inlet 71a and an outlet 71b.
 水処理システム50Bの容器71は、水処理施設の既存の沈殿槽として設けられている。具体的には、水処理施設の、例えば、最初沈殿池として、水処理システム50Bの容器71を配置し、その下流に、反応タンク53として活性汚泥槽を配置し、活性汚泥槽の下流に、最終沈殿池54を配置している。 The container 71 of the water treatment system 50B is provided as an existing sedimentation tank of a water treatment facility. Specifically, for example, as a first sedimentation basin of a water treatment facility, a container 71 of a water treatment system 50B is arranged, an activated sludge tank is arranged as a reaction tank 53 downstream thereof, and a downstream of the activated sludge tank, A final sedimentation basin 54 is arranged.
 (他の実施形態)
 水処理システムでは、図11(a)又は図11(b)のいずれか及び図12に示すような積層体を備える部材(電極ユニットなど)を用いてもよい。
(Other embodiments)
In a water treatment system, you may use the member (electrode unit etc.) provided with a laminated body as shown in either FIG. 11 (a) or FIG.11 (b), and FIG.
 図11(a)又は図11(b)のに示す積層体を含む部材74A,74Bは、エアカソードである。積層体を含む部材74A,74Bは、第1のカソード75及び第2のカソード76と、空気送入部77と、空気送出部78と、板状の仕切り部材79と、枠材72を備える。枠材72を介して、第1のカソード75と第2のカソード76とが対向して配置されている。第1のカソード75と第2のカソード76との間に内部空間が存在する。内部空間が、空気室73を形成している。 The members 74A and 74B including the laminate shown in FIG. 11A or FIG. 11B are air cathodes. The members 74 </ b> A and 74 </ b> B including the laminated body include a first cathode 75 and a second cathode 76, an air inlet portion 77, an air outlet portion 78, a plate-like partition member 79, and a frame member 72. The first cathode 75 and the second cathode 76 are arranged to face each other with the frame member 72 interposed therebetween. An internal space exists between the first cathode 75 and the second cathode 76. The internal space forms an air chamber 73.
 エアカソード74A,74Bの一端側に、空気送入部77及び空気送出部78が配置されている。空気送入部77は、空気室73内に空気を送り込むために設けられている。空気送出部78は、空気室73内から空気を送り出すために設けられている。積層体を含む部材74A,74Bは、複数の空気送入部77及び複数の空気送出部78を有する。仕切り部材79により、空気送出部が複数であっても、空気室内で空気を充分に移動させることができる。 The air feeding part 77 and the air sending part 78 are arrange | positioned at the one end side of air cathode 74A, 74B. The air inlet 77 is provided to send air into the air chamber 73. The air delivery part 78 is provided to send air out of the air chamber 73. The members 74 </ b> A and 74 </ b> B including the laminated body have a plurality of air feeding parts 77 and a plurality of air sending parts 78. Even if there are a plurality of air delivery sections, the partition member 79 can sufficiently move the air in the air chamber.
 空気送入部77及び空気送出部78の数及びその順序は、図11(a)又は図11(b)に示すように、任意に変更することができる。 The number and order of the air inlets 77 and the air outlets 78 can be arbitrarily changed as shown in FIG. 11 (a) or FIG. 11 (b).
 以下、実施例を挙げて本発明を更に詳しく説明する。本発明は以下の実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited only to the following examples.
 実施例1~10及び比較例1の欄に記載の評価結果は、以下の評価方法により評価されている。 The evaluation results described in the columns of Examples 1 to 10 and Comparative Example 1 are evaluated by the following evaluation methods.
 (抵抗率の評価)
 抵抗率の測定:
 得られた電極の電気抵抗率を、下記の独自の手順に従って測定した。
(Evaluation of resistivity)
Resistivity measurement:
The electrical resistivity of the obtained electrode was measured according to the following original procedure.
 4探針法の測定の原理に関しては、JIS K7194-1994の図2に示されるように、試験片に4本の針状の電極を直線上に設置した。探針Aと探針Dとの間に電流(I)を流したときに、探針Bと探針Cとの間に生じる電位差(V)を測定し、その抵抗(V/I)を求めた。次に、求めた抵抗(R)と試験片の厚さ(電極の厚さ)(t)とを乗じて、抵抗率(ρ)を算出した。 Regarding the measurement principle of the four-probe method, as shown in FIG. 2 of JIS K7194-1994, four needle-shaped electrodes were placed on a straight line. When a current (I) is passed between the probe A and the probe D, the potential difference (V) generated between the probe B and the probe C is measured, and the resistance (V / I) is obtained. It was. Next, the resistivity (ρ) was calculated by multiplying the obtained resistance (R) and the thickness of the test piece (electrode thickness) (t).
 試験装置は、JIS K7194-1994の図3に示されるように、定電流源、電圧計、探針及び切替スイッチにより構成した。 The test apparatus was composed of a constant current source, a voltmeter, a probe, and a changeover switch as shown in FIG. 3 of JIS K7194-1994.
 定電流源は、試験片の抵抗によって印加電流Iを流すことのできる電流源である。印加電流Iの決め方は、次の通りとした。電流Iを探針Aから探針Dに向かって流したとき、探針Bと探針Cとの間に生じる電位差をVとすると、抵抗は、V/Iとなる。この抵抗に対応する電流を選び、これを印加電流Iとした。印加電流Iは、試験片の抵抗によって選び、200mΩ未満のとき100mA、200mΩ以上、20Ω未満のとき10mA、20Ω以上、2kΩ未満のとき1mA、2kΩ以上、20kΩ未満のとき100μA、20kΩ以上、200kΩ未満のとき10μA、200kΩ以上、2MΩ未満のとき1μAを選んだ。 The constant current source is a current source that can flow the applied current I 0 by the resistance of the test piece. How to determine the applied current I 0 is, were as follows. When the current I flows from the probe A toward the probe D, assuming that the potential difference generated between the probe B and the probe C is V, the resistance is V / I. Select a current corresponding to the resistance, which was used as the applied current I 0. The applied current I 0 is selected according to the resistance of the test piece. When it is less than 200 mΩ, 100 mA, 200 mΩ or more, 10 mA when it is less than 20 Ω, 20 Ω or more, 1 mA when it is less than 2 kΩ, 2 kΩ or more, 100 μA when it is less than 20 kΩ, 20 kΩ or more, 200 kΩ When it was less than 10 μA, 200 kΩ or more, and when it was less than 2 MΩ, 1 μA was selected.
 探針は、直径が0.5~0.8mmの金属製の棒であり、棒の先端を球面状に加工した探針とした。4本の探針は、一直線状に等間隔に配列し、球面状に加工した一端を試験片に接触させた。隣り合う探針の間隔は5mmとし、隣り合う探針間の絶縁抵抗は1010Ω以上とした。測定中、各探針には、適切な力、例えば、1~2Nの力を加えた。探針が試験片に深くめり込むような場合には、各探針に加える力を減じた。 The probe was a metal rod having a diameter of 0.5 to 0.8 mm, and the tip of the rod was processed into a spherical shape. The four probes were arranged in a straight line at equal intervals, and one end processed into a spherical shape was brought into contact with the test piece. The interval between adjacent probes was 5 mm, and the insulation resistance between adjacent probes was 10 10 Ω or more. During the measurement, an appropriate force, for example, a force of 1 to 2N, was applied to each probe. When the probe was deeply embedded in the test piece, the force applied to each probe was reduced.
 試験片の形状及び寸法に関しては、長さ80.0±0.2mm、幅50.0±0.2mm及び厚さ20mm以下の直方体とした。なお、今回は上記寸法にて測定したが、上記寸法の試験片が得られない場合、寸法を変更することも可能である。ただし、寸法を変更した場合、寸法に応じて抵抗率を補正する必要がある。 Regarding the shape and dimensions of the test piece, a rectangular parallelepiped having a length of 80.0 ± 0.2 mm, a width of 50.0 ± 0.2 mm, and a thickness of 20 mm or less. In addition, although it measured by the said dimension this time, when the test piece of the said dimension is not obtained, it is also possible to change a dimension. However, when the dimensions are changed, it is necessary to correct the resistivity according to the dimensions.
 抵抗率の測定方法に関しては、JIS K7194-1994の図3に示された測定回路を用いて、印加電流Iを探針Aから探針Dに向かって流し、探針Bと探針Cとの間に生じる電位差Vを測定した。このときの探針Bと探針Cとの間の抵抗RはV/lとなる。次に、切替スイッチによって印加電流Iを逆方向(探針Dから探針A)に流し、探針Bと探針Cとの間に生じる電位差Vを測定した。このときの抵抗Rは、V/lの絶対値となる。探針Bと探針Cとの間の抵抗Rは、RとRの平均値とした。この抵抗Rは、抵抗率を算出するときに用いた。なお、印加電流Iの方向を切り替えると、電位差Vは負の値として電圧計に表示される。この場合、抵抗Rとして、V/Iの絶対値を採用する。 With respect to the resistivity measurement method, the applied current I 0 is passed from the probe A to the probe D using the measurement circuit shown in FIG. 3 of JIS K7194-1994, and the probe B, the probe C, The potential difference V 1 occurring between the two was measured. Resistance R 1 between the probe B and probe C at this time is V 1 / l 0. Next, the applied current I 0 was passed in the reverse direction (from the probe D to the probe A) by the changeover switch, and the potential difference V 2 generated between the probe B and the probe C was measured. Resistance R 2 at this time is the absolute value of V 2 / l 0. The resistance R between the probe B and the probe C was an average value of R 1 and R 2 . This resistance R was used when calculating the resistivity. When the direction of the applied current I 0 is switched, the potential difference V 2 is displayed on the voltmeter as a negative value. In this case, the absolute value of V 2 / I 0 is adopted as the resistor R 2 .
 被膜と導電性基材とで構成される電極の抵抗率(ρ)は、式(1)により求めた。測定は、5つの試験片について行い、平均値を抵抗率として採用した。 The resistivity (ρ) of the electrode composed of the coating and the conductive substrate was determined by the formula (1). The measurement was performed on five test pieces, and the average value was adopted as the resistivity.
 ρ=t・R    (1)
 (ρ:抵抗率(Ω・cm)、t:試験片の厚さ(cm)、R:抵抗(Ω))
ρ = t · R (1)
(Ρ: resistivity (Ω · cm), t: thickness of test piece (cm), R: resistance (Ω))
 本測定手順は独自の手法であり、JIS K7194-1994を参考にしているが、補正係数(F)を用いない点はJIS K7194-1994と異なる。一方、明示していない部分はJIS K7194-1994に従う。 This measurement procedure is an original method and refers to JIS K7194-1994, but is different from JIS K7194-1994 in that the correction factor (F) is not used. On the other hand, the parts that are not specified follow JIS K7194-1994.
 (電気エネルギーの回収効率の評価)
 得られた電極をアノードとして用い、下記の手順に従って微生物燃料電池の出力密度を測定した。出力密度が高いほど、電気エネルギーの回収効率は高い。カソードとして、カーボンペーパー(東レ社製、カーボンペーパー「TGP-H-120」)にポリテトラフルオロエチレン層を焼結させたエアカソードを用いた。カソードの触媒として、白金触媒(田中貴金属社製、TEC10E70TPM)を用い、触媒のバインダーとして、ナフィオン溶液(シグマアルドリッチジャパン社製、Nafion perfluorinated resin solution)を用いた。白金は担持量が4mg/cmになるように、上記カソードのイオン透過性膜側に塗布した。上記イオン透過性膜として、ろ紙(GE Healthcare Japan, Cat.No.1004-240)を用いた。
(Evaluation of recovery efficiency of electrical energy)
Using the obtained electrode as an anode, the output density of the microbial fuel cell was measured according to the following procedure. The higher the power density, the higher the electrical energy recovery efficiency. As a cathode, an air cathode obtained by sintering a polytetrafluoroethylene layer on carbon paper (carbon paper “TGP-H-120” manufactured by Toray Industries, Inc.) was used. A platinum catalyst (manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM) was used as the cathode catalyst, and a Nafion solution (manufactured by Sigma Aldrich Japan, Nafion perfluorinated resin solution) was used as the catalyst binder. Platinum was applied to the ion permeable membrane side of the cathode so that the supported amount was 4 mg / cm 2 . As the ion permeable membrane, filter paper (GE Healthcare Japan, Cat. No. 1004-240) was used.
 アノードとカソードとの間にイオン透過性膜をそれぞれ接触するように配置して、膜・電極接合構造体を得た。得られた膜・電極接合構造体を用いて微生物燃料電池を作製し、スターチ等の有機性高分子を含む人工廃水(BOD濃度:800mg/L)を、上記アノードに接触するように30日間にわたり連続的に流入させた。流量は、アノードの外形面積当たりのBOD負荷量であるBOD面積負荷が、16g/m/日になるように設定した。上記人工廃水中には、発電を担う嫌気性微生物として土壌微生物を植種した。このときの負荷回路の両端における電位差を測定した。出力密度は式(2)により求めた。 An ion permeable membrane was disposed between the anode and the cathode so as to be in contact with each other to obtain a membrane / electrode bonded structure. A microbial fuel cell is produced using the obtained membrane-electrode assembly structure, and artificial wastewater (BOD concentration: 800 mg / L) containing an organic polymer such as starch is brought into contact with the anode for 30 days. It was allowed to flow continuously. The flow rate was set so that the BOD area load, which is the BOD load amount per outer area of the anode, was 16 g / m 2 / day. In the artificial wastewater, soil microorganisms were inoculated as anaerobic microorganisms responsible for power generation. The potential difference at both ends of the load circuit at this time was measured. The power density was determined by equation (2).
 P=V/R/A    (2)
 (P:出力密度、V:負荷回路の両端における電位差、R:負荷回路の抵抗値、A:アノードの外形面積)
P = V 2 / R / A (2)
(P: output density, V: potential difference at both ends of load circuit, R: resistance value of load circuit, A: outer area of anode)
 (実施例1)
 下記の手順にて、不織布(東洋紡績社製、3401A)の表面に、導電性カーボン材料(粉体状の炭素)を固定した。
(Example 1)
The conductive carbon material (powdered carbon) was fixed to the surface of the nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8(十条ケミカル社製、粉体状の炭素を含有、樹脂を含有、有機溶剤を含有)を用意した。 As a conductive carbon material-containing liquid, JELCON CH-8 (manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent) was prepared.
 上記JELCON CH-8を上記不織布の表面に塗布し、120℃のオーブン内にて15分間静置することで、微生物燃料電池用電極を作製した。得られた微生物燃料電池用電極では、不織布の上記粉体状の炭素と上記樹脂とによる被覆重量は60g/mであった。 The JELCON CH-8 was applied to the surface of the non-woven fabric and allowed to stand in an oven at 120 ° C. for 15 minutes to produce a microbial fuel cell electrode. In the obtained microbial fuel cell electrode, the coating weight of the powdery carbon of the nonwoven fabric and the resin was 60 g / m 2 .
 抵抗率ρは、3.1×10Ω・cmであった。出力密度Pは、170mW/mであった。得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The resistivity ρ was 3.1 × 10 0 Ω · cm. The power density P was 170 mW / m 2 . The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例2)
 下記の手順にて、不織布(東洋紡績社製、3401A)の表面に、導電性カーボン材料(粉体状の炭素)を固定した。
(Example 2)
The conductive carbon material (powdered carbon) was fixed to the surface of the nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8(十条ケミカル社製、粉体状の炭素を含有、樹脂を含有、有機溶剤を含有)を用意した。 As a conductive carbon material-containing liquid, JELCON CH-8 (manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent) was prepared.
 上記JELCON CH-8を上記不織布の表面に塗布し、120℃のオーブン内にて15分間静置することで、微生物燃料電池用電極を作製した。得られた微生物燃料電池用電極では、不織布の上記粉体状の炭素と上記樹脂とによる被覆重量は110g/mであった。 The JELCON CH-8 was applied to the surface of the non-woven fabric and allowed to stand in an oven at 120 ° C. for 15 minutes to produce a microbial fuel cell electrode. In the obtained microbial fuel cell electrode, the coating weight of the nonwoven fabric with the powdery carbon and the resin was 110 g / m 2 .
 抵抗率ρは、9.1×10-1Ω・cmであった。出力密度Pは、130mW/mであった。得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The resistivity ρ was 9.1 × 10 −1 Ω · cm. The power density P was 130 mW / m 2 . The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例3)
 下記の手順にて、不織布(東洋紡績社製、3401A)の表面に、導電性カーボン材料(粉体状の炭素)を固定した。
(Example 3)
The conductive carbon material (powdered carbon) was fixed to the surface of the nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8(十条ケミカル社製、粉体状の炭素を含有、樹脂を含有、有機溶剤を含有)を用意した。 As a conductive carbon material-containing liquid, JELCON CH-8 (manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent) was prepared.
 上記JELCON CH-8を上記不織布の表面に塗布し、120℃のオーブン内にて15分間静置することで、微生物燃料電池用電極を作製した。得られた微生物燃料電池用電極では、不織布の上記粉体状の炭素と上記樹脂とによる被覆重量は230g/mであった。 The JELCON CH-8 was applied to the surface of the non-woven fabric and allowed to stand in an oven at 120 ° C. for 15 minutes to produce a microbial fuel cell electrode. In the obtained microbial fuel cell electrode, the coating weight of the nonwoven fabric with the powdery carbon and the resin was 230 g / m 2 .
 抵抗率ρは、6.6×10-1Ω・cmであった。出力密度Pは、110mW/mであった。得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The resistivity ρ was 6.6 × 10 −1 Ω · cm. The power density P was 110 mW / m 2 . The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (比較例1)
 不織布の粉体状炭素と樹脂とによる被覆重量を6g/mとしたこと以外は実施例1と同じである微生物燃料電池用電極をアノードに用いて、抵抗率ρと電気エネルギーの回収効率を評価した。
(Comparative Example 1)
The electrode for a microbial fuel cell, which is the same as in Example 1, except that the coating weight of the non-woven powdery carbon and resin is 6 g / m 2 is used for the anode, and the resistivity ρ and the recovery efficiency of electric energy are evaluated.
 抵抗率ρは、1.2×10Ω・cm以上であった。出力密度Pは、10mW/mであった。 The resistivity ρ was 1.2 × 10 2 Ω · cm or more. The power density P was 10 mW / m 2 .
 (実施例4)
 上記導電性カーボン材料として、炭素繊維を細かく粉砕したミルドカーボン(大阪ガス社製、ドナカーボ・ミルド S-244、繊維径13μm、平均繊維長0.7mm、アスペクト比54)を用意した。
Example 4
As the conductive carbon material, milled carbon obtained by finely pulverizing carbon fibers (Osaka Gas Co., Ltd., DonaCarbo Mild S-244, fiber diameter 13 μm, average fiber length 0.7 mm, aspect ratio 54) was prepared.
 上記導電性カーボン材料であるミルドカーボン330重量部と、上記樹脂であるポリビニルブチラール(積水化学工業社製、エスレックB・K BL-1)100重量部と、上記有機溶剤であるエタノール1000重量部とを撹拌し、混合することにより、導電性カーボン材料が分散された導電性カーボン材料含有液を得た。 330 parts by weight of milled carbon, which is the conductive carbon material, 100 parts by weight of polyvinyl butyral (Sekisui Chemical Co., Ltd., ESREC BK BL-1), which is the resin, and 1000 parts by weight of ethanol, which is the organic solvent, Were mixed by stirring to obtain a conductive carbon material-containing liquid in which the conductive carbon material was dispersed.
 得られたカーボン材料含有液中に、不織布(ユニチカ社製、10606WTD)を浸してすくいあげた後、80℃のオーブン内に10分間静置して有機溶媒を蒸発させて除去することにより、微生物燃料電池用電極を作製した。また、得られた微生物燃料電池用電極では、導電性基材の上記導電性カーボン材料による被覆重量は63g/mであった。 A non-woven fabric (manufactured by Unitika Ltd., 10606WTD) is dipped in the obtained carbon material-containing liquid and scooped up, and then left in an oven at 80 ° C. for 10 minutes to evaporate and remove the organic solvent, thereby removing microbial fuel. A battery electrode was prepared. In the obtained microbial fuel cell electrode, the coating weight of the conductive base material with the conductive carbon material was 63 g / m 2 .
 得られた微生物燃料電池用電極をアノードとして用い、実施例1と同様に微生物燃料電池を作製した。 Using the obtained microbial fuel cell electrode as an anode, a microbial fuel cell was produced in the same manner as in Example 1.
 得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例5)
 上記導電性カーボン材料である黒鉛(伊東黒鉛社製、PC99-300M、平均粒径42μm)330重量部と、上記樹脂であるポリビニルブチラール(積水化学工業社製、エスレックB・K BL-1)100重量部と、白金触媒(白金の重量含有率67%)と、上記有機溶剤であるエタノール1000重量部を撹拌し、混合することにより、導電性カーボン材料及び白金触媒が分散された導電性カーボン材料含有液を得た。
(Example 5)
330 parts by weight of graphite as the conductive carbon material (PC99-300M, average particle size 42 μm) manufactured by Ito Graphite Co., Ltd. and polyvinyl butyral (Sekisui Chemical Co., Ltd., ESREC B · K BL-1) 100 as the resin described above. Conductive carbon material and conductive carbon material in which platinum catalyst is dispersed by stirring and mixing parts by weight, platinum catalyst (platinum weight content 67%), and 1000 parts by weight of ethanol as the organic solvent. A containing liquid was obtained.
 得られたカーボン材料含有液中に、不織布(東洋紡績社製、3401A)を浸してすくいあげた後、80℃のオーブン内に10分間静置して有機溶媒を蒸発させて除去することにより、微生物燃料電池用電極を作製した。また、得られた微生物燃料電池用電極では、導電性基材の上記導電性カーボン材料による被覆重量は63g/mであった。 A non-woven fabric (manufactured by Toyobo Co., Ltd., 3401A) is dipped in the obtained carbon material-containing liquid and scooped up, and then left in an oven at 80 ° C. for 10 minutes to evaporate and remove the organic solvent, thereby removing microorganisms. A fuel cell electrode was prepared. In the obtained microbial fuel cell electrode, the coating weight of the conductive base material with the conductive carbon material was 63 g / m 2 .
 実施例1で得られた微生物燃料電池用電極をアノードとして用い、実施例5で得られた微生物燃料電池用電極に白金塗布量が4mg/cmとなるよう白金触媒を塗布した電極をエアカソードとして用い、実施例1と同様に微生物燃料電池を作製した。 The electrode for microbial fuel cell obtained in Example 1 was used as an anode, and the electrode obtained by applying a platinum catalyst to the electrode for microbial fuel cell obtained in Example 5 so that the amount of platinum applied was 4 mg / cm 2 was used as an air cathode. A microbial fuel cell was prepared in the same manner as in Example 1.
 得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例6)
 下記の手順にて、ポリエステル製不織布(東洋紡績社製、3401A)の表面に、第1の導電部である導電性カーボン材料(粉体状の炭素)を固定した。
(Example 6)
The conductive carbon material (powdered carbon), which is the first conductive part, was fixed to the surface of a polyester nonwoven fabric (Toyobo Co., Ltd., 3401A) by the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8(十条ケミカル社製、粉体状の炭素を含有、樹脂を含有、有機溶剤を含有)を用意した。 As a conductive carbon material-containing liquid, JELCON CH-8 (manufactured by Jujo Chemical Co., Ltd., containing powdery carbon, resin, and organic solvent) was prepared.
 上記JELCON CH-8を上記不織布の表面において、直行する2方向に線状に延びた格子パターン状に塗布した。上記線の太さは2mm、上記線の中心線と、上記線と平行に隣り合った線の中心線との間隔は10mmとし、直行する2方向とも、線の太さ及び線の間隔は同一とした。120℃のオーブン内にて15分間静置することで、上記不織布上に第1の導電部を形成した。得られた第1の導電部では、上記粉体状の炭素と上記樹脂とによる被覆重量(線の部分の目付量)は240g/mであった。下記に記述した方法で測定した第1の導電部の抵抗率は6.2×10-1Ω・cmであった。 The JELCON CH-8 was applied to the surface of the nonwoven fabric in a lattice pattern extending linearly in two orthogonal directions. The thickness of the line is 2 mm, the distance between the center line of the line and the center line of the line adjacent to the line is 10 mm, and the line thickness and the line spacing are the same in the two orthogonal directions. It was. The 1st electroconductive part was formed on the said nonwoven fabric by standing still in 120 degreeC oven for 15 minutes. In the obtained first conductive part, the coating weight (weight per unit area of the line part) of the powdery carbon and the resin was 240 g / m 2 . The resistivity of the first conductive part measured by the method described below was 6.2 × 10 −1 Ω · cm.
 続いて、下記の手順にて上記第1の導電部上に、第2の導電部である導電性カーボン材料を固定した。 Subsequently, a conductive carbon material as a second conductive part was fixed on the first conductive part by the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8を用意した。上記JELCON CH-8を上記第1の導電部の表面に塗布した。120℃のオーブン内にて15分間静置することで、第2の導電部を形成し、微生物燃料電池用電極を作製した。得られた第2の導電部では、上記粉体状の炭素と上記樹脂とによる被覆重量は、17g/mであった。下記に記述した方法で測定した第2の導電部の抵抗率は2.1×10Ω・cmであった。 JELCON CH-8 was prepared as a conductive carbon material-containing liquid. The JELCON CH-8 was applied to the surface of the first conductive part. By leaving it in an oven at 120 ° C. for 15 minutes, a second conductive part was formed, and an electrode for a microbial fuel cell was produced. In the obtained second conductive part, the coating weight of the powdery carbon and the resin was 17 g / m 2 . The resistivity of the second conductive part measured by the method described below was 2.1 × 10 1 Ω · cm.
 実施例6では、抵抗率ρは、6.2×10-1Ω・cm(第1の導電部の線上)から、2.1×10Ω・cm(第1の導電部の線上ではない部分)であった。出力密度Pは、110mW/mであった。得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 In Example 6, the resistivity ρ varies from 6.2 × 10 −1 Ω · cm (on the first conductive portion line) to 2.1 × 10 1 Ω · cm (not on the first conductive portion line). Part). The power density P was 110 mW / m 2 . The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例7)
 下記の手順にて、ポリエステル製不織布(東洋紡績社製、3401A)の表面に、第2の導電部である導電性カーボン材料(粉体状の炭素)を固定した。
(Example 7)
In the following procedure, a conductive carbon material (powdered carbon) as a second conductive part was fixed to the surface of a polyester nonwoven fabric (manufactured by Toyobo Co., Ltd., 3401A).
 導電性カーボン材料含有液として、JELCON CH-8を用意した。上記JELCON CH-8を上記不織布の表面に塗布した。120℃のオーブン内にて15分間静置することで、第2の導電部を形成し、微生物燃料電池用電極を作製した。得られた第2の導電部では、上記粉体状の炭素と上記樹脂とによる被覆重量は、40g/mであった。抵抗率は5.3×10Ω・cmであった。 JELCON CH-8 was prepared as a conductive carbon material-containing liquid. The JELCON CH-8 was applied to the surface of the nonwoven fabric. By leaving it in an oven at 120 ° C. for 15 minutes, a second conductive part was formed, and an electrode for a microbial fuel cell was produced. In the obtained second conductive part, the coating weight of the powdery carbon and the resin was 40 g / m 2 . The resistivity was 5.3 × 10 0 Ω · cm.
 続いて、下記の手順にて上記第2の導電部上に、第1の導電部である導電性カーボン材料を固定した。 Then, the conductive carbon material which is a 1st electroconductive part was fixed on the said 2nd electroconductive part with the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8を用意した。 JELCON CH-8 was prepared as a conductive carbon material-containing liquid.
 上記JELCON CH-8を上記第2の導電部の表面において、直行する2方向に線状に延びた格子パターン状に塗布した。上記格子パターンは、実施例6と同一の形状とした。120℃のオーブン内にて15分間静置することで、上記第2の導電部上に第1の導電部を形成した。得られた第1の導電部では、上記粉体状の炭素と上記樹脂とによる被覆重量(線の部分の目付量)は240g/mであった。抵抗率は6.6×10-1Ω・cmであった。 The JELCON CH-8 was applied on the surface of the second conductive portion in a lattice pattern extending linearly in two directions perpendicular to the surface. The lattice pattern had the same shape as in Example 6. The first conductive part was formed on the second conductive part by standing in an oven at 120 ° C. for 15 minutes. In the obtained first conductive part, the coating weight (weight per unit area of the line part) of the powdery carbon and the resin was 240 g / m 2 . The resistivity was 6.6 × 10 −1 Ω · cm.
 抵抗率ρは、6.6×10-1Ω・cm(第1の導電部の線上)から、5.3×10Ω・cm(第1の導電部の線上ではない部分)であった。出力密度Pは、200mW/mであった。得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The resistivity ρ was 6.6 × 10 −1 Ω · cm (on the first conductive portion line) to 5.3 × 10 0 Ω · cm (the portion not on the first conductive portion line). . The power density P was 200 mW / m 2 . The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electrical energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例8)
 下記の手順にて、ポリエステル製不織布(ユニチカ社製、10606WTD)の表面に、第1の導電部である導電性金属含有材料(Chemitronics社製、Conductive Epoxy)を固定した。
(Example 8)
The conductive metal-containing material (Chemtronics, Conductive Epoxy), which is the first conductive part, was fixed to the surface of the polyester nonwoven fabric (Unitika, 10606WTD) by the following procedure.
 上記導電性金属含有材料を上記不織布の表面に塗布した。上記線の太さは2mm、上記線の中心線と、上記線と平行に隣り合った線の中心線との間隔は10mmとし、直行する2方向とも、線の太さ及び線の間隔は同一とした。室温において1日間静置することで、上記不織布上に第1の導電部を形成した。得られた第1の導電部では、被覆重量(線の部分の目付量)は1,000g/mであった。下記に記述した方法で測定した第1の導電部の抵抗率は3.1×10-3Ω・cmであった。 The conductive metal-containing material was applied to the surface of the nonwoven fabric. The thickness of the line is 2 mm, the distance between the center line of the line and the center line of the line adjacent to the line is 10 mm, and the line thickness and the line spacing are the same in the two orthogonal directions. It was. The 1st electroconductive part was formed on the said nonwoven fabric by leaving still at room temperature for 1 day. In the obtained first conductive portion, the coating weight (the basis weight of the line portion) was 1,000 g / m 2 . The resistivity of the first conductive part measured by the method described below was 3.1 × 10 −3 Ω · cm.
 続いて、下記の手順にて上記第1の導電部上に第2の導電部である導電性カーボン材料を固定した。 Subsequently, a conductive carbon material as a second conductive portion was fixed on the first conductive portion by the following procedure.
 導電性カーボン材料含有液として、JELCON CH-8を用意した。上記JELCON CH-8を上記第1の導電部の表面に塗布した。120℃のオーブン内にて15分間静置することで、第2の導電部を形成し、微生物燃料電池用電極を作製した。 JELCON CH-8 was prepared as a conductive carbon material-containing liquid. The JELCON CH-8 was applied to the surface of the first conductive part. By leaving it in an oven at 120 ° C. for 15 minutes, a second conductive part was formed, and an electrode for a microbial fuel cell was produced.
 得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例9)
 実施例8と同様の方法で、ポリエステル製不織布(ユニチカ社製、10606WTD)の表面に、第1の導電部である導電性金属含有材料(Chemitronics社製、Conductive Epoxy)を固定した。
Example 9
In the same manner as in Example 8, a conductive metal-containing material (Conductive Epoxy, manufactured by Chemtronics) as a first conductive part was fixed to the surface of a polyester nonwoven fabric (manufactured by Unitika Ltd., 10606WTD).
 上記第1の導電部の表面に、下記の方法にて第2の導電部を形成した。 The second conductive part was formed on the surface of the first conductive part by the following method.
 導電性カーボン材料として、黒鉛(伊東黒鉛社製、PC99-300M、平均粒径42μm)330重量部と、上記樹脂であるポリビニルブチラール(積水化学工業社製、エスレックB・K BL-1)100重量部と、白金触媒(田中貴金属社製、TEC10E70TPM)と、上記有機溶剤であるエタノール1000重量部を撹拌し、混合することにより、導電性カーボン材料及び白金触媒が分散された導電性カーボン材料含有液を得た。 As a conductive carbon material, 330 parts by weight of graphite (manufactured by Ito Graphite Co., PC99-300M, average particle size 42 μm) and 100 wt. Part, platinum catalyst (manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM) and 1000 parts by weight of ethanol as the organic solvent are mixed and mixed to obtain a conductive carbon material-containing liquid in which the conductive carbon material and the platinum catalyst are dispersed. Got.
 得られたカーボン材料含有液を上記不織布上に形成された第1の導電部上に塗布した後、80℃のオーブン内に10分間静置して有機溶媒を蒸発させて除去することにより、微生物燃料電池用電極を作製した。得られた第2の導電部では、導電性基材の上記導電性カーボン材料による被覆重量は63g/mであった。 After the obtained carbon material-containing liquid is applied on the first conductive part formed on the nonwoven fabric, it is left in an oven at 80 ° C. for 10 minutes to evaporate and remove the organic solvent, thereby removing microorganisms. A fuel cell electrode was prepared. In the obtained second conductive part, the coating weight of the conductive base material with the conductive carbon material was 63 g / m 2 .
 実施例6で得られた微生物燃料電池用電極をアノードとして用い、実施例9で得られた微生物燃料電池用電極をエアカソードとして用い、微生物燃料電池を作製した。 A microbial fuel cell was produced using the microbial fuel cell electrode obtained in Example 6 as an anode and the microbial fuel cell electrode obtained in Example 9 as an air cathode.
 得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 (実施例10)
 下記の手順にて、透気性防水性フィルムに不織布が積層されたシート(積水化学工業社製、セルポア NWE08、不織布を保持している)において、上記不織布の表面に、第2の導電部である導電性カーボン材料を固定した。
(Example 10)
In the following procedure, in the sheet in which the nonwoven fabric is laminated on the air-permeable waterproof film (Sekisui Chemical Co., Ltd., Cellpore NWE08, holding the nonwoven fabric), the surface of the nonwoven fabric is the second conductive part. A conductive carbon material was fixed.
 導電性カーボン材料として、黒鉛(伊東黒鉛社製、PC99-300M、平均粒径42μm)330重量部と、上記樹脂であるポリビニルブチラール(積水化学工業社製、エスレックB・K BL-1)100重量部と、白金触媒(田中貴金属社製、TEC10E70TPM)と、上記有機溶剤であるエタノール1000重量部を撹拌し、混合することにより、導電性カーボン材料及び白金触媒が分散された導電性カーボン材料含有液を得た。 As a conductive carbon material, 330 parts by weight of graphite (manufactured by Ito Graphite Co., PC99-300M, average particle size 42 μm) and 100 wt. Part, platinum catalyst (manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E70TPM) and 1000 parts by weight of ethanol as the organic solvent are mixed and mixed to obtain a conductive carbon material-containing liquid in which the conductive carbon material and the platinum catalyst are dispersed. Got.
 続いて、下記の手順にて上記第2の導電部上に、第2の導電部である導電性カーボン材料を固定した。 Subsequently, a conductive carbon material as the second conductive portion was fixed on the second conductive portion by the following procedure.
 上記第2の導電部の表面において、直行する2方向に線状に延びた格子パターン状に塗布した。上記線の太さは2mm、上記線の中心線と、上記線と平行に隣り合った線の中心線との間隔は10mmとし、直行する2方向とも、線の太さ及び線の間隔は同一とした。120℃のオーブン内にて15分間静置することで、上記不織布上に第1の導電部を形成した。 It was applied in a lattice pattern extending linearly in two directions perpendicular to the surface of the second conductive part. The thickness of the line is 2 mm, the distance between the center line of the line and the center line of the line adjacent to the line is 10 mm, and the line thickness and the line spacing are the same in the two orthogonal directions. It was. The 1st electroconductive part was formed on the said nonwoven fabric by standing still in 120 degreeC oven for 15 minutes.
 実施例6で得られた微生物燃料電池用電極をアノードとして用い、実施例10で得られた微生物燃料電池用電極をエアカソードとして用い、微生物燃料電池を作製した。 A microbial fuel cell was produced using the microbial fuel cell electrode obtained in Example 6 as an anode and the microbial fuel cell electrode obtained in Example 10 as an air cathode.
 得られた微生物燃料電池では、導電性に優れており、耐腐食性が高く、電気エネルギーの回収効率が高かった。また、得られた微生物燃料電池は、優れた有機物除去性能を示した。 The obtained microbial fuel cell had excellent conductivity, high corrosion resistance, and high electric energy recovery efficiency. Further, the obtained microbial fuel cell showed excellent organic substance removal performance.
 上述した実施例1~10では、積層体を微生物燃料電池用電極として用いた例を示した。そして、実施例1~10の積層体では、得られた微生物燃料電池が優れた有機物除去性能を示すことから、電極の耐腐食性が高いことが確認された。実施例1~10の積層体は、耐腐食性に優れることから、耐腐食性が高いことが求められる用途に広く用いることができる。実施例1~10の積層体は、耐腐食性に優れることから、例えば、水処理に用いられる水処理部材に用いることができる。 In Examples 1 to 10 described above, examples in which the laminate was used as an electrode for a microbial fuel cell were shown. In the laminates of Examples 1 to 10, it was confirmed that the obtained microbial fuel cell exhibited excellent organic substance removal performance, and thus the electrode had high corrosion resistance. Since the laminates of Examples 1 to 10 have excellent corrosion resistance, they can be widely used for applications that require high corrosion resistance. Since the laminates of Examples 1 to 10 are excellent in corrosion resistance, they can be used, for example, for water treatment members used for water treatment.
 1,1A,1B,1C,1D,1E,1F…積層体
 11…非導電性基材
 12,12A…導電部
 12B…導電部(第2の導電部)
 13B…導電部(第1の導電部)
 21…微生物燃料電池
 26…有機性物質を含む液の入った容器
 31…電極積層体
 32…アノード
 33…絶縁体
 34…カソード
 36…空気供給部
 37…空気室
 38…透気性防水性フィルム
 41,41A…積層体
 42,42A…非導電性基材
 43…第1の導電部
 43A…導電部
 44…第2の導電部
 50,50A,50B…水処理システム
 51,61,71…容器
 51a,61a,71a…流入口
 51b,61b,71b…流出口
 51c,61c,71c…沈殿部
 52…積層体を含む部材
 53…反応タンク
 54…最終沈殿池
 56…水
 61d…遮蔽部材
 61e…超流堰
 72…枠材
 73…空気室
 74A,74B…エアカソード
 75…第1のカソード
 76…第2のカソード
 77…空気送入部
 78…空気送出部
 79…仕切り部材
1, 1A, 1B, 1C, 1D, 1E, 1F ... Laminate 11 ... Non-conductive substrate 12, 12A ... Conductive part 12B ... Conductive part (second conductive part)
13B: Conductive part (first conductive part)
DESCRIPTION OF SYMBOLS 21 ... Microbial fuel cell 26 ... Container containing the liquid containing an organic substance 31 ... Electrode laminated body 32 ... Anode 33 ... Insulator 34 ... Cathode 36 ... Air supply part 37 ... Air chamber 38 ... Air-permeable waterproof film 41, 41A ... Laminate 42, 42A ... Non-conductive substrate 43 ... First conductive part 43A ... Conductive part 44 ... Second conductive part 50, 50A, 50B ... Water treatment system 51, 61, 71 ... Containers 51a, 61a , 71a ... Inlet 51b, 61b, 71b ... Outlet 51c, 61c, 71c ... Sedimentation part 52 ... Member including laminated body 53 ... Reaction tank 54 ... Final sedimentation basin 56 ... Water 61d ... Shielding member 61e ... Super-flow weir 72 ... Frame material 73 ... Air chambers 74A, 74B ... Air cathode 75 ... First cathode 76 ... Second cathode 77 ... Air inlet part 78 ... Air outlet part 79 ... Partition member

Claims (15)

  1.  非導電性基材と、
     前記非導電性基材の少なくとも一方の表面を被覆している導電部とを備え、
     前記導電部が、導電性カーボン材料及び樹脂を含む、積層体。
    A non-conductive substrate;
    A conductive portion covering at least one surface of the non-conductive substrate;
    A laminate in which the conductive portion includes a conductive carbon material and a resin.
  2.  水処理に用いられる水処理用部材であるか、又は、微生物燃料電池に用いられる微生物燃料電池用電極である、請求項1に記載の積層体。 The laminate according to claim 1, which is a water treatment member used for water treatment or a microbial fuel cell electrode used for a microbial fuel cell.
  3.  水処理に用いられる水処理用部材である、請求項2に記載の積層体。 The laminate according to claim 2, which is a water treatment member used for water treatment.
  4.  前記非導電性基材が、液を透過可能である、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the non-conductive substrate is permeable to liquid.
  5.  前記非導電性基材が、メッシュ、織布、不織布又は細孔膜である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the non-conductive substrate is a mesh, a woven fabric, a non-woven fabric, or a porous membrane.
  6.  前記非導電性基材の材料が、樹脂である、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the material of the non-conductive substrate is a resin.
  7.  前記導電部の内部又は前記導電部の表面上に配置された酸素還元触媒を備える、請求項1~6のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 6, further comprising an oxygen reduction catalyst disposed inside the conductive part or on a surface of the conductive part.
  8.  前記導電部を第2の導電部として備え、
     前記第2の導電部と異なる導電性を有する第1の導電部をさらに備える、請求項1~7のいずれか1項に記載の積層体。
    The conductive portion is provided as a second conductive portion,
    The laminate according to any one of claims 1 to 7, further comprising a first conductive portion having conductivity different from that of the second conductive portion.
  9.  請求項1~8のいずれか1項に記載の積層体と、
     水の流入口及び流出口を有する容器とを備え、
     前記容器内に、前記積層体が配列されており、
     前記容器は、前記容器内の前記積層体の下方に沈殿部を有する、水処理システム。
    A laminate according to any one of claims 1 to 8,
    A container having a water inlet and a water outlet,
    The laminate is arranged in the container,
    The said container is a water treatment system which has a sedimentation part under the said laminated body in the said container.
  10.  前記容器の前記沈殿部の容積が、前記容器の全容積の20%以上である、請求項9に記載の水処理システム。 The water treatment system according to claim 9, wherein the volume of the sedimentation portion of the container is 20% or more of the total volume of the container.
  11.  前記流入口が、前記容器の側面の上方に配置されており、
     前記容器は、平面視での前記流入口と前記積層体との間において、前記容器の前記流入口が配置された側面に対面しかつ前記容器の底面から離間した遮蔽部材を有する、請求項9又は10に記載の水処理システム。
    The inflow port is disposed above a side surface of the container;
    The said container has the shielding member which faced the side surface where the said inlet of the said container is arrange | positioned between the said inlet and the said laminated body in planar view, and was spaced apart from the bottom face of the said container. Or the water treatment system of 10.
  12.  前記容器は、平面視での前記積層体と前記流出口との間において、前記容器の上方に開放する越流堰を有する、請求項9~11のいずれか1項に記載の水処理システム。 The water treatment system according to any one of claims 9 to 11, wherein the container has an overflow weir that opens above the container between the stacked body and the outlet in a plan view.
  13.  前記容器の前記流出口の下流に、微生物を利用した廃水処理槽を備える、請求項9~12のいずれか1項に記載の水処理システム。 The water treatment system according to any one of claims 9 to 12, further comprising a wastewater treatment tank using microorganisms downstream of the outlet of the container.
  14.  前記積層体が、平面視において、前記容器内に、前記流入口から流出口に向かう方向に沿って配列されている、請求項9~13のいずれか1項に記載の水処理システム。 The water treatment system according to any one of claims 9 to 13, wherein the laminate is arranged in the container along a direction from the inlet to the outlet in a plan view.
  15.  前記積層体が、前記容器内に、一定間隔で配列されている、請求項9~14のいずれか1項に記載の水処理システム。 The water treatment system according to any one of claims 9 to 14, wherein the laminate is arranged in the container at regular intervals.
PCT/JP2016/054149 2015-02-12 2016-02-12 Laminate and water treatment system WO2016129678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574862A JPWO2016129678A1 (en) 2015-02-12 2016-02-12 Laminate and water treatment system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015025490 2015-02-12
JP2015-025490 2015-02-12
JP2015031845 2015-02-20
JP2015-031845 2015-02-20
JP2015033181 2015-02-23
JP2015-033181 2015-02-23

Publications (1)

Publication Number Publication Date
WO2016129678A1 true WO2016129678A1 (en) 2016-08-18

Family

ID=56614732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054149 WO2016129678A1 (en) 2015-02-12 2016-02-12 Laminate and water treatment system

Country Status (2)

Country Link
JP (1) JPWO2016129678A1 (en)
WO (1) WO2016129678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205971A (en) * 2018-05-29 2019-12-05 積水化学工業株式会社 Wastewater treatment apparatus using gas permeable membrane
JP2019212575A (en) * 2018-06-08 2019-12-12 東洋インキScホールディングス株式会社 Conductive substrate for enzyme power generation device, electrode for enzyme power generation device and enzyme power generation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326397A (en) * 1989-06-21 1991-02-04 Ishikawajima Harima Heavy Ind Co Ltd Waste water treating device
JP2008204945A (en) * 2007-01-23 2008-09-04 Japan Vilene Co Ltd Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP2008210725A (en) * 2007-02-28 2008-09-11 Tomoegawa Paper Co Ltd Gas diffusion electrode, membrane-electrode assembly and its manufacturing method, and solid polymer fuel cell
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2013098077A (en) * 2011-11-02 2013-05-20 Sony Corp Manufacturing method of fuel cell, fuel cell, and electronic device
JP2013546149A (en) * 2010-12-14 2013-12-26 エメフシー リミテッド Microbial fuel cell wound in a spiral
US20140037915A1 (en) * 2012-07-31 2014-02-06 E I Du Pont De Nemours And Company Membranes for flexible microbial fuel cell cathodes and other applications
JP2014213211A (en) * 2013-04-22 2014-11-17 パナソニック株式会社 Liquid treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326397A (en) * 1989-06-21 1991-02-04 Ishikawajima Harima Heavy Ind Co Ltd Waste water treating device
JP2008204945A (en) * 2007-01-23 2008-09-04 Japan Vilene Co Ltd Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP2008210725A (en) * 2007-02-28 2008-09-11 Tomoegawa Paper Co Ltd Gas diffusion electrode, membrane-electrode assembly and its manufacturing method, and solid polymer fuel cell
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2013546149A (en) * 2010-12-14 2013-12-26 エメフシー リミテッド Microbial fuel cell wound in a spiral
JP2013098077A (en) * 2011-11-02 2013-05-20 Sony Corp Manufacturing method of fuel cell, fuel cell, and electronic device
US20140037915A1 (en) * 2012-07-31 2014-02-06 E I Du Pont De Nemours And Company Membranes for flexible microbial fuel cell cathodes and other applications
JP2014213211A (en) * 2013-04-22 2014-11-17 パナソニック株式会社 Liquid treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205971A (en) * 2018-05-29 2019-12-05 積水化学工業株式会社 Wastewater treatment apparatus using gas permeable membrane
JP7084205B2 (en) 2018-05-29 2022-06-14 積水化学工業株式会社 Wastewater treatment equipment using gas permeable membrane
JP2019212575A (en) * 2018-06-08 2019-12-12 東洋インキScホールディングス株式会社 Conductive substrate for enzyme power generation device, electrode for enzyme power generation device and enzyme power generation device
JP7063128B2 (en) 2018-06-08 2022-05-09 東洋インキScホールディングス株式会社 Conductive substrate for enzyme power generation device, electrode for enzyme power generation device and enzyme power generation device

Also Published As

Publication number Publication date
JPWO2016129678A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Yang et al. Single-step fabrication using a phase inversion method of poly (vinylidene fluoride)(PVDF) activated carbon air cathodes for microbial fuel cells
Logan et al. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells
JP6386399B2 (en) Microbial fuel cell electrode, method for producing microbial fuel cell electrode, microbial fuel cell, and method for producing microbial fuel cell
Pant et al. Evaluation of bioelectrogenic potential of four industrial effluents as substrate for low cost Microbial Fuel Cells operation.
EP2459491B1 (en) Method of manufacturing a functional electrode
US9685676B2 (en) Modular bioelectrochemical systems and methods
Rikame et al. Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal
Khan et al. Investigation of CNT/PPy-modified carbon paper electrodes under anaerobic and aerobic conditions for phenol bioremediation in microbial fuel cells
EP2770565A1 (en) Method of manufacturing gas diffusion electrodes
CN106660837A (en) An apparatus for conducting an electro-fenton reaction for decomposing organic chemical compounds
KR101599920B1 (en) Sediment type microbial fuel cell
Aftab et al. Marketability prospects of microbial fuel cells for sustainable energy generation
CN111003788B (en) Tubular porous titanium membrane-ozone contact reaction device and water treatment method thereof
Walter et al. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell
Yang et al. Substantial humic acid adsorption to activated carbon air cathodes produces a small reduction in catalytic activity
Chatterjee et al. A brief review on recent advances in air-cathode microbial fuel cells.
KR20180081578A (en) Method and apparatus for converting chemical energy stored in wastewater
Lin et al. Enhancement of power generation with concomitant removal of toluene from artificial groundwater using a mini microbial fuel cell with a packed-composite anode
Cristiani et al. Biochar-terracotta conductive composites: new design for bioelectrochemical systems
WO2016129678A1 (en) Laminate and water treatment system
JP2016157532A (en) Electrode laminate body for microorganism fuel battery and microorganism fuel battery
Li et al. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment
KR20150125696A (en) Microbial fuel cell having electrically conductive foam electrode
US20180013161A1 (en) Microbial fuel cell system
JP2016147227A (en) Microbial fuel cell wastewater treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749321

Country of ref document: EP

Kind code of ref document: A1