WO2016129470A1 - Optical glass and method for producing same - Google Patents

Optical glass and method for producing same Download PDF

Info

Publication number
WO2016129470A1
WO2016129470A1 PCT/JP2016/053187 JP2016053187W WO2016129470A1 WO 2016129470 A1 WO2016129470 A1 WO 2016129470A1 JP 2016053187 W JP2016053187 W JP 2016053187W WO 2016129470 A1 WO2016129470 A1 WO 2016129470A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
optical glass
refractive index
raw material
Prior art date
Application number
PCT/JP2016/053187
Other languages
French (fr)
Japanese (ja)
Inventor
朋子 山田
太志 鈴木
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2016129470A1 publication Critical patent/WO2016129470A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, and more particularly to an optical glass having a high refractive index characteristic.
  • the content of SiO 2 and B 2 O 3 which are glass skeleton components is reduced, and rare earth oxides such as La 2 O 3 , Gd 2 O 3 and Ta 2 O 5 are used. or it is necessary to contain a large amount of Nb 2 O 5 and TiO 2. In this case, however, vitrification becomes difficult. This is because optical glass is generally produced by melting and cooling the raw material in a melting vessel such as a crucible, and in a glass system with a small glass skeleton component, crystallization starts from the contact interface with the melting vessel. It is because it becomes easy to progress.
  • a containerless solidification method (a containerless floating method) in which a raw material is melted and cooled in a suspended state is known.
  • a containerless solidification method a containerless floating method in which a raw material is melted and cooled in a suspended state.
  • this method since the molten glass hardly comes into contact with the melting vessel, crystallization starting from the interface with the melting vessel can be prevented, and vitrification becomes possible.
  • Patent Document 1 a glass containing only TiO 2 and BaO as a glass composition is produced by a containerless solidification method.
  • Patent Document 1 Since the glass described in Patent Document 1 is relatively easily devitrified, it is difficult to increase the diameter (for example, the minor axis is 2 mm or more) even when the containerless solidification method is used.
  • an object of the present invention is to provide a novel optical glass that has a high refractive index and can be easily increased in diameter.
  • the optical glass of the present invention contains, in mol%, TiO 2 40 to 85% (excluding 40%), La 2 O 3 10 to 40% (excluding 10% and 40%), Nb 2 O 5 It is characterized by containing 0 to 40% (excluding 0%).
  • the optical glass of the present invention further contains, in mol%, Ta 2 O 5 0-20%, ZrO 2 0-30%, Gd 2 O 3 0-20%, Y 2 O 3 0-20%, or Yb 2. It is preferable to contain 0 to 20% of O 3 .
  • the optical glass of the present invention preferably has a refractive index (nd) of 2.23 to 2.35.
  • the optical glass of the present invention has, for example, a spherical shape or a spheroid shape.
  • the minor axis is preferably 2 mm or more.
  • the optical glass manufacturing method of the present invention is a method for manufacturing the optical glass described above, and in a state where the glass raw material is suspended and held, the glass raw material is heated and melted to obtain a molten glass, and then melted. A step of cooling the glass is provided.
  • the optical glass of the present invention contains, in mol%, TiO 2 40 to 85% (excluding 40%), La 2 O 3 10 to 40% (excluding 10% and 40%), Nb 2 O 5 It is characterized by containing 0 to 40% (excluding 0%). The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified. "
  • TiO 2 is a component having a large effect of increasing the refractive index, and also has an effect of increasing chemical durability.
  • the content of TiO 2 is 40 to 85% (but not including 40%), preferably 41 to 80%, more preferably 42 to 79%. When the content of TiO 2 is too small, the effect is difficult to obtain. On the other hand, when the content of TiO 2 is too large, it tends to be devitrified. As a result, it tends to be difficult to increase the diameter.
  • La 2 O 3 is a component that increases the refractive index. It also has the effect of improving weather resistance.
  • the content of La 2 O 3 is 10 to 40% (however, 10% and 40% are not included), preferably 16 to 30%, more preferably 18 to 29%. When the content of La 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of La 2 O 3 is too large, it is difficult to vitrify.
  • Nb 2 O 5 is a component having a large effect of increasing the refractive index, and also has an effect of expanding the vitrification range.
  • the content of Nb 2 O 5 is preferably 0 to 40% (however, not including 0%), more preferably 3.1 to 40%, and further preferably 5 to 40%. When Nb 2 O 5 is not contained, the above effect is hardly obtained. On the other hand, when the content of Nb 2 O 5 is too large, it is difficult to vitrify.
  • the optical glass of the present invention may contain Ta 2 O 5 , Gd 2 O 3 , ZrO 2 , Y 2 O 3 or Yb 2 O 3 in addition to the above components. By introducing these components, a glass having desired optical properties can be easily produced.
  • Ta 2 O 5 is a component having a large effect of increasing the refractive index, and also has an effect of increasing chemical durability.
  • the content of Ta 2 O 5 is 0 to 20%, preferably 0 to 15%.
  • ZrO 2 is a component that increases the refractive index and also has the effect of increasing chemical durability. However, when the content of ZrO 2 is too large, it is difficult to vitrify. Therefore, the content of ZrO 2 is preferably 0-30%, more preferably 3-20%.
  • Gd 2 O 3 is a component that increases the refractive index. However, if the content of Gd 2 O 3 is too large, it is difficult to vitrify. Therefore, the content of Gd 2 O 3 is preferably 0 to 20%, more preferably 0 to 15%.
  • Y 2 O 3 is a component that increases the refractive index.
  • the content of Y 2 O 3 is preferably 0 to 20%, more preferably 0 to 15%.
  • Yb 2 O 3 is a component that increases the refractive index.
  • the content of Yb 2 O 3 is preferably 0 to 20%, more preferably 0 to 15%.
  • the optical glass of the present invention can contain the following components.
  • Al 2 O 3 is a component that forms a glass skeleton and widens the vitrification range.
  • the content of Al 2 O 3 is 0 to 20%, preferably 0 to 10%.
  • SiO 2 becomes a glass skeleton and is a component that widens the vitrification range. It also has the effect of improving weather resistance. However, when the content of SiO 2 is too large, the refractive index is hardly desired optical characteristics can be obtained by reduction. Therefore, the content of SiO 2 is 0 to 10%, preferably 0 to 5%.
  • B 2 O 3 becomes a glass skeleton and is a component that widens the vitrification range.
  • the content of B 2 O 3 is 0 to 10%, preferably 0 to 5%.
  • GeO 2 is a component that increases the refractive index and has the effect of expanding the vitrification range.
  • the content of GeO 2 is preferably 0 to 20%, more preferably 0 to 10%.
  • WO 3 has the effect of increasing the refractive index. Moreover, since a glass skeleton is formed as an intermediate oxide, there is an effect of widening the vitrification range. However, when the content of WO 3 is too large, there is a tendency that a large diameter becomes difficult to be devitrified. Therefore, the content of WO 3 is preferably 0 to 10%, more preferably 0 to 5%.
  • SnO 2 is a component having a large effect of increasing the refractive index. However, it is easily reduced and causes coloring. Accordingly, the SnO 2 content is preferably 0 to 5%, more preferably 0 to 3%.
  • P 2 O 5 is a component constituting a glass skeleton and has an effect of extending the vitrification range.
  • the content of P 2 O 5 is preferably 0 to 10%, more preferably 0 to 3%.
  • the content of these components is preferably 0 to 10%, more preferably 0 to 5%.
  • Li 2 O, Na 2 O, K 2 O and Cs 2 O have an effect of lowering the melting temperature, but in order to lower the refractive index, the total amount is preferably 0 to 10%, and 0 to 5% It is more preferable that
  • Sb 2 O 3 can be contained as a fining agent.
  • the content of Sb 2 O 3 is preferably 0.1% or less, more preferably substantially not contained, in order to avoid coloring or in consideration of environmental aspects.
  • PbO is not substantially contained in consideration of environmental load.
  • substantially does not contain means that it is not intentionally contained as a raw material, and does not exclude even inevitable contamination. More objectively, it means that the content is less than 0.1%.
  • the refractive index of the optical glass of the present invention is preferably 2.23 or more, more preferably 2.25 or more.
  • the lens can be made thinner as the refractive index is increased, which is advantageous for downsizing the optical device.
  • the upper limit of the refractive index is preferably 2.35 or less, more preferably 2.33 or less, considering the vitrification stability.
  • the Abbe number is not particularly limited, and may be appropriately adjusted within a range of 10 to 23, for example.
  • the optical glass of the present invention has, for example, a spherical shape or a spheroid shape.
  • the minor axis is 2 mm or more, 2.5 mm or more, particularly 3 mm or more. By doing so, it becomes easy to apply as an optical element such as a lens.
  • FIG. 1 is a schematic cross-sectional view showing an example of a production apparatus for producing a glass material by a containerless solidification method.
  • FIG. 1 is a schematic cross-sectional view showing an example of a production apparatus for producing a glass material by a containerless solidification method.
  • the manufacturing method of the optical glass of this invention is demonstrated, referring FIG.
  • the glass material manufacturing apparatus 1 has a mold 10.
  • the mold 10 also serves as a melting container.
  • the molding die 10 has a molding surface 10a and a plurality of gas ejection holes 10b opened in the molding surface 10a.
  • the gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b.
  • the type of gas is not particularly limited, and may be air or oxygen, or an inert gas such as nitrogen gas, argon gas, or helium gas.
  • the glass raw material lump 12 prepared so that it may become glass of the said composition is first arrange
  • the glass raw material block 12 for example, a raw material powder integrated by press molding or the like, a sintered body obtained by integrating the raw material powder by press molding or the like, and a composition equivalent to the target glass composition are used. For example, an aggregate of crystals.
  • the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in a state where it is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser light irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass.
  • the method of heating and melting may be radiant heating.
  • Tables 1 to 3 show examples of the present invention and comparative examples, respectively.
  • Each sample was prepared as follows. First, a glass raw material lump was produced using the raw material powder prepared so as to have the glass composition shown in the table.
  • the glass raw material lump was produced by press molding raw material powder and sintering at 1100 to 1400 ° C. for 12 hours.
  • the glass raw material lump was coarsely pulverized using a mortar and used in a state of 0.1 to 0.5 g pieces.
  • a substantially spherical glass material was produced by a containerless solidification method using an apparatus according to FIG.
  • a 100 W CO 2 laser oscillator was used as the heat source.
  • oxygen gas was used as a gas for suspending the glass raw material lump and supplied at a flow rate of 1 to 15 L / min.
  • the refractive index was evaluated by measuring the helium lamp with respect to the d-line (587.6 nm) using a KPR-2000 manufactured by Shimadzu Corporation after bonding a glass material on a 5 mm thick soda plate substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Provided is a novel optical glass having a high refractive index that is easy to increase in diameter. Optical glass characterized by containing, by mol%, TiO2 40-85% (however, not including 40%), La2O3 10-40% (however, not including 10% or 40%), Nb2O5 0-40% (however, not including 0%).

Description

光学ガラス及びその製造方法Optical glass and manufacturing method thereof
 本発明は光学ガラスに関し、特に高屈折率特性を有する光学ガラスに関する。 The present invention relates to an optical glass, and more particularly to an optical glass having a high refractive index characteristic.
 近年、カメラ、顕微鏡及び内視鏡等に用いられる光学系の小型化や軽量化に伴い、使用される光学レンズに用いられるガラスの光学特性として、より高屈折率が求められている。 In recent years, with the reduction in size and weight of optical systems used in cameras, microscopes, endoscopes, and the like, higher refractive indexes are demanded as optical characteristics of glass used in optical lenses used.
 ガラスをより高屈折率にするためには、ガラス骨格成分であるSiOやBの含有量を少なくし、La、Gd、Ta等の希土類酸化物またはNbやTiOを多量に含有させる必要がある。しかしながら、この場合ガラス化が困難になる。これは、一般に、光学ガラスは原料を坩堝等の溶融容器内で溶融し、冷却することで作製されるため、ガラス骨格成分が少ないガラス系では、溶融容器との接触界面を起点として結晶化が進行しやすくなるからである。 In order to make the glass have a higher refractive index, the content of SiO 2 and B 2 O 3 which are glass skeleton components is reduced, and rare earth oxides such as La 2 O 3 , Gd 2 O 3 and Ta 2 O 5 are used. or it is necessary to contain a large amount of Nb 2 O 5 and TiO 2. In this case, however, vitrification becomes difficult. This is because optical glass is generally produced by melting and cooling the raw material in a melting vessel such as a crucible, and in a glass system with a small glass skeleton component, crystallization starts from the contact interface with the melting vessel. It is because it becomes easy to progress.
 ガラス化しにくい組成であっても、溶融容器との界面での接触をなくすことによりガラス化が可能となる。このような方法として、原料を浮遊させた状態で溶融、冷却する無容器凝固法(無容器浮遊法)が知られている。当該方法を用いると、溶融ガラスが溶融容器にほとんど接触することがないため、溶融容器との界面を起点とする結晶化を防止することができ、ガラス化が可能となる。例えば、特許文献1では、無容器凝固法により、ガラス組成としてTiOとBaOのみを含有するガラスが作製されている。 Even if the composition is difficult to vitrify, it can be vitrified by eliminating contact at the interface with the melting vessel. As such a method, a containerless solidification method (a containerless floating method) in which a raw material is melted and cooled in a suspended state is known. When this method is used, since the molten glass hardly comes into contact with the melting vessel, crystallization starting from the interface with the melting vessel can be prevented, and vitrification becomes possible. For example, in Patent Document 1, a glass containing only TiO 2 and BaO as a glass composition is produced by a containerless solidification method.
特許第4789086号公報Japanese Patent No. 4789086
 特許文献1に記載のガラスは、比較的失透しやすいため、無容器凝固法を用いた場合であっても、大径化(例えば短径2mm以上)は困難である。 Since the glass described in Patent Document 1 is relatively easily devitrified, it is difficult to increase the diameter (for example, the minor axis is 2 mm or more) even when the containerless solidification method is used.
 以上に鑑み、本発明は、高屈折率であり、かつ大径化が容易である新規な光学ガラスを提供することを目的とする。 In view of the above, an object of the present invention is to provide a novel optical glass that has a high refractive index and can be easily increased in diameter.
 本発明の光学ガラスは、モル%で、TiO 40~85%(ただし40%を含まない)、La 10~40%(ただし10%、40%を含まない)、Nb 0~40%(ただし0%を含まない)を含有することを特徴とする。 The optical glass of the present invention contains, in mol%, TiO 2 40 to 85% (excluding 40%), La 2 O 3 10 to 40% (excluding 10% and 40%), Nb 2 O 5 It is characterized by containing 0 to 40% (excluding 0%).
 本発明の光学ガラスは、さらに、モル%で、Ta 0~20%、ZrO 0~30%、Gd 0~20%、Y 0~20%、またはYb 0~20%を含有することが好ましい。 The optical glass of the present invention further contains, in mol%, Ta 2 O 5 0-20%, ZrO 2 0-30%, Gd 2 O 3 0-20%, Y 2 O 3 0-20%, or Yb 2. It is preferable to contain 0 to 20% of O 3 .
 本発明の光学ガラスは、屈折率(nd)が2.23~2.35であることが好ましい。 The optical glass of the present invention preferably has a refractive index (nd) of 2.23 to 2.35.
 本発明の光学ガラスは、例えば球形状または回転楕円体形状である。またその場合、短径が2mm以上であることが好ましい。 The optical glass of the present invention has, for example, a spherical shape or a spheroid shape. In that case, the minor axis is preferably 2 mm or more.
 本発明の光学ガラスの製造方法は、上記の光学ガラスを製造するための方法であって、ガラス原料を浮遊させて保持した状態で、ガラス原料を加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却する工程を備えることを特徴とする。 The optical glass manufacturing method of the present invention is a method for manufacturing the optical glass described above, and in a state where the glass raw material is suspended and held, the glass raw material is heated and melted to obtain a molten glass, and then melted. A step of cooling the glass is provided.
 本発明によれば、従来よりも高屈折率であり、かつ大径化が容易である新規な光学ガラスを提供することが可能となる。 According to the present invention, it is possible to provide a novel optical glass that has a higher refractive index than conventional ones and can be easily increased in diameter.
本発明の光学ガラスを製造するための装置の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the apparatus for manufacturing the optical glass of this invention.
 本発明の光学ガラスは、モル%で、TiO 40~85%(ただし40%を含まない)、La 10~40%(ただし10%、40%を含まない)、Nb 0~40%(ただし0%を含まない)を含有することを特徴とする。ガラス組成範囲をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「モル%」を意味する。」 The optical glass of the present invention contains, in mol%, TiO 2 40 to 85% (excluding 40%), La 2 O 3 10 to 40% (excluding 10% and 40%), Nb 2 O 5 It is characterized by containing 0 to 40% (excluding 0%). The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified. "
 TiOは屈折率を高める効果が大きい成分であり、化学的耐久性を高める効果もある。TiOの含有量は40~85%(ただし40%を含まない)、好ましくは41~80%、より好ましくは42~79%である。TiOの含有量が少なすぎると、上記効果が得られにくくなる。一方、TiOの含有量が多すぎると、失透しやすくなる。結果として、大径化が困難になる傾向がある。 TiO 2 is a component having a large effect of increasing the refractive index, and also has an effect of increasing chemical durability. The content of TiO 2 is 40 to 85% (but not including 40%), preferably 41 to 80%, more preferably 42 to 79%. When the content of TiO 2 is too small, the effect is difficult to obtain. On the other hand, when the content of TiO 2 is too large, it tends to be devitrified. As a result, it tends to be difficult to increase the diameter.
 Laは屈折率を高める成分である。また、耐候性を向上させる効果もある。Laの含有量は10~40%(ただし10%、40%を含まない)であり、好ましくは16~30%、より好ましくは18~29%である。Laの含有量が少なすぎると、上記効果が得られにくくなる。一方、Laの含有量が多すぎると、ガラス化しにくくなる。 La 2 O 3 is a component that increases the refractive index. It also has the effect of improving weather resistance. The content of La 2 O 3 is 10 to 40% (however, 10% and 40% are not included), preferably 16 to 30%, more preferably 18 to 29%. When the content of La 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of La 2 O 3 is too large, it is difficult to vitrify.
 Nbは屈折率を高める効果が大きい成分であり、ガラス化範囲を広げる効果もある。Nbの含有量は、好ましくは0~40%(ただし0%を含まない)、より好ましくは3.1~40%、さらに好ましくは5~40%である。Nbを含有しない場合、上記効果が得られにくくなる。一方、Nbの含有量が多すぎると、ガラス化しにくくなる。 Nb 2 O 5 is a component having a large effect of increasing the refractive index, and also has an effect of expanding the vitrification range. The content of Nb 2 O 5 is preferably 0 to 40% (however, not including 0%), more preferably 3.1 to 40%, and further preferably 5 to 40%. When Nb 2 O 5 is not contained, the above effect is hardly obtained. On the other hand, when the content of Nb 2 O 5 is too large, it is difficult to vitrify.
 本発明の光学ガラスには、上記成分以外にも、Ta、Gd、ZrO、YまたはYbを含有させることができる。これらの成分を導入することで、所望の光学特性を有するガラスを容易に作製することができる。 The optical glass of the present invention may contain Ta 2 O 5 , Gd 2 O 3 , ZrO 2 , Y 2 O 3 or Yb 2 O 3 in addition to the above components. By introducing these components, a glass having desired optical properties can be easily produced.
 Taは屈折率を高める効果が大きい成分であり、化学的耐久性を高める効果も有する。ただし、Taの含有量が多すぎると、ガラス化しにくくなる。また、原料コストが高くなる傾向がある。従って、Taの含有量は0~20%であり、好ましくは0~15%である。 Ta 2 O 5 is a component having a large effect of increasing the refractive index, and also has an effect of increasing chemical durability. However, when the content of Ta 2 O 5 is too large, it is difficult to vitrify. In addition, raw material costs tend to be high. Therefore, the content of Ta 2 O 5 is 0 to 20%, preferably 0 to 15%.
 ZrOは屈折率を高める成分であり、化学的耐久性を高める効果も有する。ただし、ZrOの含有量が多すぎると、ガラス化しにくくなる。従って、ZrOの含有量は、好ましくは0~30%、より好ましくは3~20%である。 ZrO 2 is a component that increases the refractive index and also has the effect of increasing chemical durability. However, when the content of ZrO 2 is too large, it is difficult to vitrify. Therefore, the content of ZrO 2 is preferably 0-30%, more preferably 3-20%.
 Gdは屈折率を高める成分である。ただし、Gdの含有量が多すぎると、ガラス化しにくくなる。従って、Gdの含有量は、好ましくは0~20%、より好ましくは0~15%である。 Gd 2 O 3 is a component that increases the refractive index. However, if the content of Gd 2 O 3 is too large, it is difficult to vitrify. Therefore, the content of Gd 2 O 3 is preferably 0 to 20%, more preferably 0 to 15%.
 Yは屈折率を高める成分である。ただし、Yの含有量が多すぎると、ガラス化しにくくなる。従って、Yの含有量は、好ましくは0~20%、より好ましくは0~15%である。 Y 2 O 3 is a component that increases the refractive index. However, when the content of Y 2 O 3 is too large, it is difficult to vitrify. Therefore, the content of Y 2 O 3 is preferably 0 to 20%, more preferably 0 to 15%.
 Ybは屈折率を高める成分である。ただし、Ybの含有量が多すぎると、ガラス化しにくくなる。また、原料コストが高くなる傾向がある。従って、Ybの含有量は、好ましくは0~20%、より好ましくは0~15%である。 Yb 2 O 3 is a component that increases the refractive index. However, when the content of Yb 2 O 3 is too large, it is difficult to vitrify. In addition, raw material costs tend to be high. Therefore, the content of Yb 2 O 3 is preferably 0 to 20%, more preferably 0 to 15%.
 本発明の光学ガラスには、上記成分以外にも、以下の成分を含有させることができる。 In addition to the above components, the optical glass of the present invention can contain the following components.
 Alはガラス骨格を形成し、ガラス化範囲を広げる成分である。ただし、Alの含有量が多すぎると、屈折率が低下して所望の光学特性が得られにくくなる。従って、Alの含有量は0~20%であり、好ましくは0~10%である。 Al 2 O 3 is a component that forms a glass skeleton and widens the vitrification range. However, when the content of Al 2 O 3 is too large, the refractive index is hardly desired optical characteristics can be obtained by reduction. Therefore, the content of Al 2 O 3 is 0 to 20%, preferably 0 to 10%.
 SiOはガラス骨格となり、ガラス化範囲を広げる成分である。また、耐候性を向上させる効果もある。ただし、SiOの含有量が多すぎると、屈折率が低下して所望の光学特性が得られにくくなる。従って、SiOの含有量は0~10%であり、好ましくは0~5%である。 SiO 2 becomes a glass skeleton and is a component that widens the vitrification range. It also has the effect of improving weather resistance. However, when the content of SiO 2 is too large, the refractive index is hardly desired optical characteristics can be obtained by reduction. Therefore, the content of SiO 2 is 0 to 10%, preferably 0 to 5%.
 Bはガラス骨格となり、ガラス化範囲を広げる成分である。ただし、Bの含有量が多すぎると、屈折率が低下して所望の光学特性が得られにくくなる。従って、Bの含有量は0~10%であり、好ましくは0~5%である。 B 2 O 3 becomes a glass skeleton and is a component that widens the vitrification range. However, when the content of B 2 O 3 is too large, desired optical characteristics refractive index is lowered it is difficult to obtain. Therefore, the content of B 2 O 3 is 0 to 10%, preferably 0 to 5%.
 GeOは屈折率を高める成分であり、ガラス化範囲を広げる効果もある。ただし、GeOの含有量が多すぎると、原料コストが高くなる傾向がある。従って、GeOの含有量は、好ましくは0~20%、より好ましくは0~10%である。 GeO 2 is a component that increases the refractive index and has the effect of expanding the vitrification range. However, when the content of GeO 2 is too large, the raw material cost tends to increase. Accordingly, the content of GeO 2 is preferably 0 to 20%, more preferably 0 to 10%.
 WOは屈折率を高める効果がある。また、中間酸化物としてガラス骨格を形成するため、ガラス化範囲を広げる効果もある。ただし、WOの含有量が多すぎると、失透しやすくなり大径化が困難になる傾向がある。従って、WOの含有量は、好ましくは0~10%、より好ましくは0~5%である。 WO 3 has the effect of increasing the refractive index. Moreover, since a glass skeleton is formed as an intermediate oxide, there is an effect of widening the vitrification range. However, when the content of WO 3 is too large, there is a tendency that a large diameter becomes difficult to be devitrified. Therefore, the content of WO 3 is preferably 0 to 10%, more preferably 0 to 5%.
 SnOは屈折率を高める効果が大きい成分である。ただし、還元されやすく着色の原因となる。従って、SnOの含有量は、好ましくは0~5%、より好ましくは0~3%である。 SnO 2 is a component having a large effect of increasing the refractive index. However, it is easily reduced and causes coloring. Accordingly, the SnO 2 content is preferably 0 to 5%, more preferably 0 to 3%.
 Pはガラス骨格を構成する成分であり、ガラス化範囲を広げる効果がある。ただし、その含有量が多すぎると、分相しやすくなる。従って、Pの含有量は、好ましくは0~10%、より好ましくは0~3%である。 P 2 O 5 is a component constituting a glass skeleton and has an effect of extending the vitrification range. However, when the content is too large, phase separation tends to occur. Therefore, the content of P 2 O 5 is preferably 0 to 10%, more preferably 0 to 3%.
 ZnO、MgO、CaO、SrO及びBaOはガラス化を安定にしたり、化学的耐久性を高める効果がある。ただし、その含有量が多すぎると、屈折率が低下して所望の光学特性が得られにくくなる。従って、これらの成分の含有量は、それぞれ好ましくは0~10%、より好ましくは0~5%である。 ZnO, MgO, CaO, SrO and BaO are effective in stabilizing vitrification and improving chemical durability. However, if the content is too large, the refractive index is lowered and it becomes difficult to obtain desired optical characteristics. Accordingly, the content of these components is preferably 0 to 10%, more preferably 0 to 5%.
 LiO、NaO、KO及びCsOは溶融温度を低下させる効果があるが、屈折率を低下させるため、合量で0~10%であることが好ましく、0~5%であることがより好ましい。 Li 2 O, Na 2 O, K 2 O and Cs 2 O have an effect of lowering the melting temperature, but in order to lower the refractive index, the total amount is preferably 0 to 10%, and 0 to 5% It is more preferable that
 清澄剤としてSbを含有させることができる。ただし、着色を避けるため、あるいは環境面を考慮して、Sbの含有量は0.1%以下であることが好ましく、実質的に含有しないことがより好ましい。 Sb 2 O 3 can be contained as a fining agent. However, the content of Sb 2 O 3 is preferably 0.1% or less, more preferably substantially not contained, in order to avoid coloring or in consideration of environmental aspects.
 PbOは環境への負荷を考慮し、実質的に含有しないことが好ましい。 It is preferable that PbO is not substantially contained in consideration of environmental load.
 なお、本発明において「実質的に含有しない」とは、意図的に原料として含有させないことを意味し、不可避的不純物の混入までをも排除するものではない。より客観的には、含有量が0.1%未満であることを意味する。 In the present invention, “substantially does not contain” means that it is not intentionally contained as a raw material, and does not exclude even inevitable contamination. More objectively, it means that the content is less than 0.1%.
 本発明の光学ガラスの屈折率は、好ましくは2.23以上、より好ましくは2.25以上である。例えば、本発明の光学ガラスをレンズとして使用する場合、屈折率を高めるほどレンズを薄くすることが可能となり、光学デバイスを小型化する上で有利となる。なお、屈折率の上限は、ガラス化の安定性を考慮して、好ましくは2.35以下、より好ましくは2.33以下である。 The refractive index of the optical glass of the present invention is preferably 2.23 or more, more preferably 2.25 or more. For example, when the optical glass of the present invention is used as a lens, the lens can be made thinner as the refractive index is increased, which is advantageous for downsizing the optical device. The upper limit of the refractive index is preferably 2.35 or less, more preferably 2.33 or less, considering the vitrification stability.
 本発明の光学ガラスにおいてアッベ数は特に限定されず、例えば10~23の範囲で適宜調整される。 In the optical glass of the present invention, the Abbe number is not particularly limited, and may be appropriately adjusted within a range of 10 to 23, for example.
 本発明の光学ガラスは、例えば球形状や回転楕円体形状を有する。その場合、短径が2mm以上、2.5mm以上、特に3mm以上であることが好ましい。そのようにすれば、レンズ等の光学素子として適用しやすくなる。 The optical glass of the present invention has, for example, a spherical shape or a spheroid shape. In that case, it is preferable that the minor axis is 2 mm or more, 2.5 mm or more, particularly 3 mm or more. By doing so, it becomes easy to apply as an optical element such as a lens.
 本発明の光学ガラスは例えば無容器凝固法により作製することができる。図1は、無容器凝固法によりガラス材を作製するための製造装置の一例を示す模式的断面図である。以下、図1を参照しながら、本発明の光学ガラスの製造方法について説明する。 The optical glass of the present invention can be produced, for example, by a containerless solidification method. FIG. 1 is a schematic cross-sectional view showing an example of a production apparatus for producing a glass material by a containerless solidification method. Hereafter, the manufacturing method of the optical glass of this invention is demonstrated, referring FIG.
 ガラス材の製造装置1は成形型10を有する。成形型10は溶融容器としての役割も果たす。成形型10は、成形面10aと、成形面10aに開口している複数のガス噴出孔10bとを有する。ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。ガスの種類は特に限定されず、例えば、空気や酸素であってもよいし、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスであってもよい。 The glass material manufacturing apparatus 1 has a mold 10. The mold 10 also serves as a melting container. The molding die 10 has a molding surface 10a and a plurality of gas ejection holes 10b opened in the molding surface 10a. The gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b. The type of gas is not particularly limited, and may be air or oxygen, or an inert gas such as nitrogen gas, argon gas, or helium gas.
 製造装置1を用いてガラス材を製造するに際しては、まず、上記組成のガラスとなるように調製したガラス原料塊12を成形面10a上に配置する。ガラス原料塊12としては、例えば、原料粉末をプレス成形等により一体化したものや、原料粉末をプレス成形等により一体化した後に焼結させた焼結体や、目標ガラス組成と同等の組成を有する結晶の集合体等が挙げられる。 When manufacturing a glass material using the manufacturing apparatus 1, the glass raw material lump 12 prepared so that it may become glass of the said composition is first arrange | positioned on the molding surface 10a. As the glass raw material block 12, for example, a raw material powder integrated by press molding or the like, a sintered body obtained by integrating the raw material powder by press molding or the like, and a composition equivalent to the target glass composition are used. For example, an aggregate of crystals.
 次に、ガス噴出孔10bからガスを噴出させることにより、ガラス原料塊12を成形面10a上で浮遊させる。すなわち、ガラス原料塊12を、成形面10aに接触していない状態で保持する。その状態で、レーザー光照射装置13からレーザー光をガラス原料塊12に照射する。これによりガラス原料塊12を加熱溶融してガラス化させ、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。ガラス原料塊12を加熱溶融する工程と、溶融ガラス、さらにはガラス材の温度が少なくとも軟化点以下となるまで冷却する工程とにおいては、少なくともガスの噴出を継続し、ガラス原料塊12、溶融ガラス、さらにはガラス材と成形面10aとの接触を抑制することが好ましい。なお、加熱溶融する方法としては、レーザー光を照射する方法以外にも、輻射加熱であってもよい。 Next, the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in a state where it is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser light irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass. In the step of heating and melting the glass raw material lump 12 and the step of cooling until the temperature of the molten glass and further the glass material becomes at least the softening point or less, at least gas ejection is continued, and the glass raw material lump 12 and the molten glass Furthermore, it is preferable to suppress contact between the glass material and the molding surface 10a. In addition to the method of irradiating with laser light, the method of heating and melting may be radiant heating.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1~3は本発明の実施例及び比較例をそれぞれ示している。 Tables 1 to 3 show examples of the present invention and comparative examples, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 各試料は次のようにして調製した。まず表に示すガラス組成になるように調合した原料粉末を用いてガラス原料塊を作製した。ガラス原料塊は、原料粉末をプレス成型して1100~1400℃で12時間焼結する方法により作製した。なお、ガラス原料塊は、乳鉢を用いて粗粉砕し、0.1~0.5gの小片にした状態で用いた。 Each sample was prepared as follows. First, a glass raw material lump was produced using the raw material powder prepared so as to have the glass composition shown in the table. The glass raw material lump was produced by press molding raw material powder and sintering at 1100 to 1400 ° C. for 12 hours. The glass raw material lump was coarsely pulverized using a mortar and used in a state of 0.1 to 0.5 g pieces.
 上記で得られたガラス原料塊を用いて、図1に準じた装置を用いた無容器凝固法によって略球形状のガラス材を作製した。なお、熱源としては100W COレーザー発振器を用いた。また、ガラス原料塊を浮遊させるためのガスとして酸素ガスを用い、流量1~15L/minで供給した。 Using the glass raw material block obtained above, a substantially spherical glass material was produced by a containerless solidification method using an apparatus according to FIG. A 100 W CO 2 laser oscillator was used as the heat source. In addition, oxygen gas was used as a gas for suspending the glass raw material lump and supplied at a flow rate of 1 to 15 L / min.
 得られたガラス材について、屈折率(nd)及びアッベ数(νd)を測定した。結果を表1~3に示す。 The refractive index (nd) and Abbe number (νd) of the obtained glass material were measured. The results are shown in Tables 1 to 3.
 屈折率は、ガラス材を厚さ5mmのソーダ板基板上に接着後、直角研磨を行い、島津製作所製KPR-2000用いて、ヘリウムランプのd線(587.6nm)に対する測定値で評価した。 The refractive index was evaluated by measuring the helium lamp with respect to the d-line (587.6 nm) using a KPR-2000 manufactured by Shimadzu Corporation after bonding a glass material on a 5 mm thick soda plate substrate.
 アッベ数は上記d線に対する屈折率と、水素ランプのF線(486.1nm)及びC線(656.3nm)に対する屈折率の値を用い、アッベ数(νd)={(nd-1)/(nF-nC)}の式から算出した。 The Abbe number uses the refractive index for the d-line and the refractive index values for the F-line (486.1 nm) and C-line (656.3 nm) of the hydrogen lamp, and the Abbe number (νd) = {(nd−1) / It was calculated from the equation (nF-nC)}.
 表1及び2に示すように、実施例1~12では、屈折率が2.27071~2.32486と高く、短径が2.7~4.4mmと大きい試料が得られた。 As shown in Tables 1 and 2, in Examples 1 to 12, samples having a high refractive index of 2.27071 to 2.33486 and a short axis of 2.7 to 4.4 mm were obtained.
 一方、表3に示すように、比較例1~4の試料はガラス化しなかった。また、比較例5の試料は屈折率が2.22483と低かった。 On the other hand, as shown in Table 3, the samples of Comparative Examples 1 to 4 were not vitrified. Further, the sample of Comparative Example 5 had a low refractive index of 2.22483.
1:ガラス材の製造装置
10:成形型
10a:成形面
10b:ガス噴出孔
11:ガス供給機構
12:ガラス原料塊
13:レーザー光照射装置
1: Glass material manufacturing apparatus 10: Mold 10a: Molding surface 10b: Gas ejection hole 11: Gas supply mechanism 12: Glass raw material block 13: Laser beam irradiation apparatus

Claims (6)

  1.  モル%で、TiO 40~85%(ただし40%を含まない)、La 10~40%(ただし10%、40%を含まない)、Nb 0~40%(ただし0%を含まない)を含有することを特徴とする光学ガラス。 TiO 2 40 to 85% (excluding 40%), La 2 O 3 10 to 40% (excluding 10% and 40%), Nb 2 O 5 0 to 40% (excluding 0%) % Glass). An optical glass comprising:
  2.  さらに、モル%で、Ta 0~20%、ZrO 0~30%、Gd 0~20%、Y 0~20%、またはYb 0~20%を含有することを特徴とする請求項1に記載の光学ガラス。 Further, in mole percent, Ta 2 O 5 0-20%, ZrO 2 0-30%, Gd 2 O 3 0-20%, Y 2 O 3 0-20%, or Yb 2 O 3 0-20% The optical glass according to claim 1, which is contained.
  3.  屈折率(nd)が2.23~2.35であることを特徴とする請求項1または2に記載の光学ガラス。 3. The optical glass according to claim 1, wherein the refractive index (nd) is 2.23 to 2.35.
  4.  球形状または回転楕円体形状であることを特徴とする請求項1~3のいずれか一項に記載の光学ガラス。 The optical glass according to any one of claims 1 to 3, which has a spherical shape or a spheroid shape.
  5.  短径が2mm以上であることを特徴とする請求項4に記載の光学ガラス。 The optical glass according to claim 4, wherein the minor axis is 2 mm or more.
  6.  請求項1~5のいずれか一項に記載の光学ガラスを製造するための方法であって、
     ガラス原料を浮遊させて保持した状態で、前記ガラス原料を加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却する工程を備えることを特徴とする、光学ガラスの製造方法。
    A method for producing the optical glass according to any one of claims 1 to 5,
    An optical glass manufacturing method comprising a step of cooling the molten glass after the glass raw material is heated and melted to obtain molten glass in a state where the glass raw material is suspended and held.
PCT/JP2016/053187 2015-02-12 2016-02-03 Optical glass and method for producing same WO2016129470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-024977 2015-02-12
JP2015024977A JP6628021B2 (en) 2015-02-12 2015-02-12 Optical glass and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016129470A1 true WO2016129470A1 (en) 2016-08-18

Family

ID=56614703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053187 WO2016129470A1 (en) 2015-02-12 2016-02-03 Optical glass and method for producing same

Country Status (2)

Country Link
JP (1) JP6628021B2 (en)
WO (1) WO2016129470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226063A1 (en) * 2019-05-09 2020-11-12 日本電気硝子株式会社 Optical glass

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087113A (en) * 2016-11-30 2018-06-07 日本電気硝子株式会社 Method for producing glass material
JP7104494B2 (en) * 2016-11-30 2022-07-21 日本電気硝子株式会社 Manufacturing method of glass material
JP7076981B2 (en) * 2017-10-25 2022-05-30 キヤノン株式会社 Manufacturing method of optical glass, optical element, optical equipment and optical glass
JP2021098616A (en) * 2019-12-20 2021-07-01 日本電気硝子株式会社 Production method of optical glass material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032789A1 (en) * 2006-09-14 2008-03-20 Japan Aerospace Exploration Agency Titanium-containing oxide glass and method for production thereof
WO2010137276A1 (en) * 2009-05-25 2010-12-02 日本板硝子株式会社 Glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466955B2 (en) * 2005-07-15 2010-05-26 Hoya株式会社 Optical glass, glass gob for press molding, and optical element
JPWO2010071202A1 (en) * 2008-12-18 2012-05-31 日本板硝子株式会社 Glass and glass processing method
CN102503121B (en) * 2011-10-08 2013-09-18 成都光明光电股份有限公司 Optical glass and optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032789A1 (en) * 2006-09-14 2008-03-20 Japan Aerospace Exploration Agency Titanium-containing oxide glass and method for production thereof
WO2010137276A1 (en) * 2009-05-25 2010-12-02 日本板硝子株式会社 Glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226063A1 (en) * 2019-05-09 2020-11-12 日本電気硝子株式会社 Optical glass

Also Published As

Publication number Publication date
JP6628021B2 (en) 2020-01-08
JP2016147775A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5358888B2 (en) Optical glass and optical element
WO2016129470A1 (en) Optical glass and method for producing same
JP6869482B2 (en) Optical glass and its manufacturing method
JP6471894B2 (en) Optical glass and manufacturing method thereof
JP6462244B2 (en) Optical glass
JP6501054B2 (en) Optical glass
JP6462245B2 (en) Optical glass
JP6173224B2 (en) Optical glass
JP6869481B2 (en) Optical glass and its manufacturing method
JP6451199B2 (en) Optical glass and manufacturing method thereof
JP6340623B2 (en) Optical glass
JP2008179499A (en) Optical glass and optical device
JP6681013B2 (en) Optical glass and manufacturing method thereof
JP6516084B2 (en) Method of manufacturing glass material and glass material
JP6442952B2 (en) Optical glass and manufacturing method thereof
JP2018140928A (en) Optical glass
JP7472562B2 (en) Optical Glass
JP6701557B2 (en) Optical glass and manufacturing method thereof
JP6660607B2 (en) Optical glass and manufacturing method thereof
JP2014111521A (en) Optical glass, preform, and optical element
JP2013151402A (en) Optical glass, preform and optical element
WO2020226063A1 (en) Optical glass
JP2009286674A (en) Optical glass, preform for precision press molding, and optical element
JP2015151280A (en) optical glass
JP2020186161A (en) Optical glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749114

Country of ref document: EP

Kind code of ref document: A1