WO2016129082A1 - Thin-film thermoelectric conversion module and method for manufacturing same - Google Patents

Thin-film thermoelectric conversion module and method for manufacturing same Download PDF

Info

Publication number
WO2016129082A1
WO2016129082A1 PCT/JP2015/053813 JP2015053813W WO2016129082A1 WO 2016129082 A1 WO2016129082 A1 WO 2016129082A1 JP 2015053813 W JP2015053813 W JP 2015053813W WO 2016129082 A1 WO2016129082 A1 WO 2016129082A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
thermoelectric conversion
conversion material
material thin
conversion module
Prior art date
Application number
PCT/JP2015/053813
Other languages
French (fr)
Japanese (ja)
Inventor
直人 深谷
聡悟 西出
洋輔 黒崎
早川 純
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/053813 priority Critical patent/WO2016129082A1/en
Publication of WO2016129082A1 publication Critical patent/WO2016129082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thin film thermoelectric conversion module and a manufacturing method thereof.
  • thermoelectric conversion module As a typical thermoelectric conversion material used for the thermoelectric conversion module, for example, a thermoelectric conversion module using a material having a bulk form shown in FIG. 1 (hereinafter referred to as a bulk type thermoelectric conversion module) is known.
  • a bulk type thermoelectric conversion module the process cost in the module assembling process is likely to be high, and there is a concern about the joint breakdown between the bulk material and the electrode.
  • about 70% of the thermal energy discharged in power generation using fossil fuels is widely distributed as low-temperature exhaust heat of less than 200 ° C. In order to utilize such low-temperature exhaust heat as a heat source, Flexibility is required to enable installation in a narrow space and installation on a heat source member having various shapes, and there is a limit to the correspondence with bulk thermoelectric conversion modules.
  • thermoelectric conversion module using a thin film thermoelectric conversion material or an organic material (hereinafter referred to as a thin film thermoelectric conversion module) is known as a thermoelectric conversion module that replaces the bulk type thermoelectric conversion module.
  • the thin film type thermoelectric conversion module has the shape shown in FIG. 2 and is inferior to the bulk type thermoelectric conversion module in terms of conversion efficiency, but its assembly process cost is low and flexibility is high. It is growing. Therefore, a thin film thermoelectric conversion material that can be applied to a thin film thermoelectric conversion module and has high thermoelectric conversion efficiency is demanded.
  • an iron full Heusler alloy thin film represented by Fe 2 VAl is known as a thermoelectric conversion material thin film capable of generating power with a low-temperature heat source of less than 200 ° C.
  • Full Heusler alloy thin films are composed of elements that are non-toxic, inexpensive, and have a large amount of reserves, and have attracted attention in recent years from the viewpoint of environmental impact.
  • Full-Heusler alloy has a high output factor as a thermoelectric performance, while it has a high thermal conductivity. In general, it is necessary to improve the crystallinity in order to increase the output factor.
  • Patent Document 1 discloses a thermoelectric conversion element in which the crystallinity of a full Heusler alloy thin film is improved and a method for manufacturing the same.
  • Patent Document 1 it is considered that the output factor is increased by improving the crystallinity of the full-Heusler alloy thin film as the thermoelectric conversion material thin film, and a high Seebeck coefficient and a low electrical resistivity are realized.
  • the electrical resistivity decreases, the thermal conductivity contributed by the carriers inevitably increases. For this reason, in order to improve the thermoelectric performance, it is necessary to lower the thermal conductivity contributed by the crystal lattice.
  • the thermal conductivity contributed by the crystal lattice tends to be reduced as the crystal grain size is reduced. Therefore, in order to reduce the thermal conductivity while realizing a high output factor in the thermoelectric conversion material thin film, it is high. It is necessary to control the crystal grain size to a desired size while maintaining crystallinity.
  • an object of the present invention is to obtain a thin film thermoelectric conversion module and a manufacturing method that are excellent in thermoelectric conversion efficiency while reducing the thermal conductivity while maintaining a high output factor in the thermoelectric conversion material thin film.
  • a substrate having two or more kinds of alignment regions having different crystal orientations on the surface, and a cubic crystal structure formed on the substrate are provided.
  • an electrode bonded to the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film, and the first thermoelectric conversion material thin film, the second thermoelectric conversion material thin film, and the above In the insulating layer two or more kinds of alignment regions having different crystal orientations are formed adjacent to each other at positions corresponding to the positions of the alignment regions of the substrate, and the first thermoelectric conversion material thin film, the first In the thermoelectric conversion material thin film 2 and the insulating layer, Boundary between serial alignment region, a thin film thermoelectric conversion module, characterized by being formed along the boundary between the alignment regions of the substrate.
  • a buffer layer is formed on a single crystal substrate, and the buffer layer formed on the single crystal substrate is annealed to have two or more different crystal orientations.
  • a step of forming a substrate having an alignment region on the surface thereof, a step of forming a first thermoelectric conversion material thin film having a cubic crystal structure on the substrate, and a step of forming on the first thermoelectric conversion material thin film A step of forming an insulating layer and an electrode; a step of forming a second thermoelectric conversion material thin film having a cubic crystal structure on the insulating layer and the electrode; and the first layer formed on the substrate. And a step of annealing the laminated body having the thermoelectric conversion material thin film, the insulating layer, and the second thermoelectric conversion material thin film.
  • thermoelectric conversion module and a manufacturing method that are excellent in thermoelectric conversion efficiency by reducing thermal conductivity while maintaining a high output factor in the thermoelectric conversion material thin film.
  • thermoelectric conversion module 200 It is a schematic diagram of a bulk type thermoelectric conversion module. It is a schematic diagram of a thin film type thermoelectric conversion module.
  • 1 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 200 according to Example 1.
  • FIG. It is the schematic diagram which looked at the base
  • Fe 2 VAl thin film on the MgO seed layer is a cross-section of TEM image of a film has been laminated body. It is a graph which shows the relationship between the period D of a base
  • FIG. 6 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 300 according to Example 2.
  • FIG. 6 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 400 according to Example 3.
  • FIG. 6 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 400 according to Example 3.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the thin film thermoelectric conversion module 200 according to the first embodiment.
  • an amorphous buffer layer 202 and a crystalline buffer layer 203 are stacked in this order on a single crystal substrate 201.
  • the amorphous buffer layer 202 is a layer for preventing the crystal orientation of the single crystal substrate 201 from being transmitted to a layer formed above the amorphous buffer layer 202.
  • the amorphous buffer layer 202 and the crystalline buffer layer 203 are A plurality of rows are provided on the single crystal substrate 201 at intervals D to form a base body 220.
  • thermoelectric conversion material thin film 204 On the substrate 220, a first thermoelectric conversion material thin film 204, an insulating layer 206, a second thermoelectric conversion material thin film 208, and an insulating layer 209 are laminated in this order.
  • the second thermoelectric conversion material thin film 208 is p-type when the first thermoelectric conversion material thin film 204 is n-type, and is n-type when the first thermoelectric conversion material thin film 204 is p-type. is there.
  • the insulating layer 206 is provided with an electrode 207 at the end in the width direction of the interval D, and the insulating layer 209 is provided with an electrode 210 at the end in the width direction on the side facing the electrode 207.
  • the electrode 207 and the electrode 210 are both provided to be joined to the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, and the first thermoelectric conversion material is formed by the electrode 207 and the electrode 210.
  • the conductivity between the thin film 204 and the second thermoelectric conversion material thin film 208 is ensured.
  • the thin film thermoelectric conversion module 200 has a periodic structure with the first thermoelectric conversion material thin film 204, the insulating layer 206 and the electrode 207, the second thermoelectric conversion material thin film 208, the insulating layer 209 and the electrode 210 as a lamination unit. Yes.
  • a lower electrode 205 is provided at one end of the single crystal substrate 201, and is formed on the uppermost layer (on the second thermoelectric conversion material thin film 208 in FIG. 3) of the periodic structure formed on the single crystal substrate 201.
  • Each is provided with an upper electrode 211.
  • the lower electrode 205 is provided so as to be adjacent to the amorphous buffer layer 202 and the crystalline buffer layer 203, and the lower electrode 205 and the upper electrode 211 are configured so that module power can be taken out.
  • the thin film thermoelectric conversion element 200 shown in FIG. 3 A specific configuration example of the thin film thermoelectric conversion element 200 shown in FIG. 3 will be described below.
  • the single crystal substrate 201 a 0.5 mm thick MgO substrate having a (111) crystal orientation plane in the perpendicular direction is used.
  • the amorphous buffer layer 202 is a Ta layer having a thickness of about 5 nm
  • the crystalline buffer layer 203 is an MgO layer having a crystal orientation plane of (100) and a thickness of about 3 nm.
  • the single crystal substrate 201 only needs to have a crystal orientation different from that of the crystalline buffer layer 203. Therefore, when MgO of the crystalline buffer layer 203 has a (100) crystal orientation plane, the single crystal substrate 201 is For example, it may have a crystal orientation plane such as (110).
  • the crystalline buffer layer 203 is formed on the single crystal substrate 201 via the amorphous buffer layer 202, so that the crystalline buffer layer 203 is formed as a layer grown without being affected by the crystal orientation of the single crystal substrate 201. Yes.
  • a region having a (111) crystal orientation plane of the single crystal substrate 201 hereinafter referred to as a (111) orientation region
  • a (100) crystal of the crystalline buffer layer 203 are provided on the surface of the substrate 201.
  • Regions having orientation planes hereinafter referred to as (100) orientation regions
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are each formed of a full Heusler alloy obtained by substituting a part of Fe 2 VAl with Si and Ti, respectively. It is a thin film of about 200 nm.
  • the insulating layers 206 and 209 are all MgO layers having a thickness of about 3 nm, and the lower electrode 205, the upper electrode 211, the electrode 207, and the electrode 210 are all Cu layers having a thickness of about 3 nm.
  • the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209 are all formed on the substrate 220 immediately below the first thermoelectric conversion material thin film 204. It has the same crystal orientation as the orientation region.
  • the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209 that are located immediately above the (111) orientation region in which the surface of the base body 220 is the single crystal substrate 201.
  • Each region is a region having a crystal orientation of (111) ((111) orientation region).
  • the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209 existing immediately above the (100) orientation region whose surface of the substrate 220 is the crystalline buffer layer 203. These regions are all regions having a (100) crystal orientation ((100) orientation region).
  • the (111) orientation region and the (100) orientation region are formed adjacent to each other. .
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are formed of a thermoelectric conversion material having a cubic crystal structure having different carriers.
  • thermoelectric conversion material for forming the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film has a cubic crystal structure and a large Seebeck coefficient, for example, a full Heusler system or a half Heusler system.
  • a Heusler alloy or a chalcogenite-based alloy material can be used, and among these, a full Heusler alloy can be preferably used.
  • Heusler alloys include at least one element selected from the group consisting of Fe, V, Ru, Cr, Mn, Nb, Ti, Zr, Hf, Co, and Ir, and Al, Si, Ga, Ge, Sn, In A combination of at least one element selected from the group consisting of can be used.
  • Fe 2 VAl or an alloy obtained by substituting a part of the constituent elements of Fe 2 VAl with another metal element can be used.
  • the constituent elements of Fe 2 VAl are replaced with other metal elements.
  • Fe and V of Fe 2 VAl are any of Ru, Cr, Mn, Nb, Ti, Zr, Hf, Co, and Ir.
  • Al substituted with any of Si, Ga, Ge, Sn, and In can be used.
  • a part of the constituent elements of Fe 2 VAl substituted with Si and Ti can be suitably used.
  • thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are crystallized even when heat-treated at a film thickness of less than 1 nm.
  • the film thicknesses of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are not less than the minimum film thickness at which crystallization is caused by heat treatment in each thin film, and film breakage due to stress strain accompanying crystallization is caused. Set to less than the minimum film thickness that results.
  • the film thicknesses of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are preferably 1 nm or more and 1 ⁇ m or less.
  • Single crystal substrate 201 and crystalline buffer layer 203 form part of the surface of substrate 220 and are seed films for promoting crystal growth of first thermoelectric conversion material thin film 204 or second thermoelectric conversion material thin film 208. It will be.
  • the single crystal substrate 201 and the crystalline buffer layer 203 are lattice-matched with a cubic thermoelectric conversion material such as a full Heusler alloy that forms the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208.
  • An insulator having a good crystal structure can be used. Specifically, for example, any crystal structure selected from the group consisting of a perovskite structure typified by SrTiO 3 and KTaO 3 , a spinel structure typified by MgAl 2 O 4 , and a rock salt structure typified by MgO is used. The insulator which has can be used.
  • the thickness of the single crystal substrate 201 is not particularly limited, but is preferably 1 mm or less from the viewpoint of ensuring the flexibility of the thin film thermoelectric conversion module 200 as a whole.
  • the thickness of the crystalline buffer layer 203 is not particularly limited, but is preferably 1 nm or more and 100 nm or less from the viewpoint of maintaining stable crystallinity while ensuring the flexibility of the thin film thermoelectric conversion module 200 as a whole.
  • a metal material or an inorganic material capable of forming an amorphous structure without being affected by the crystal orientation plane of the single crystal substrate 201 can be used.
  • a metal material or an inorganic material capable of forming an amorphous structure without being affected by the crystal orientation plane of the single crystal substrate 201 can be used.
  • Ta, Cu, Ru, Al 2 O 3 and SiO 2 are preferably used.
  • the thickness of the amorphous buffer layer 202 is not particularly limited, the crystalline buffer layer 203 is not affected by the crystal orientation of the single crystal substrate 201 while ensuring the flexibility of the thin film thermoelectric conversion module 200 as a whole. From the viewpoint of securing a sufficient thickness for crystal growth, the thickness is preferably 1 nm or more and 100 nm or less.
  • the insulating layers 206 and 209 ensure the insulation between the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, and the first thermoelectric conversion material thin film 204 or the second thermoelectric conversion material. This is a layer that becomes a seed film of the thin film 208.
  • thermoelectric conversion material such as a full Heusler alloy constituting the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 is used.
  • An insulator having a crystal structure with favorable lattice matching can be used. Specifically, for example, an insulator having a crystal structure selected from the group consisting of a perovskite structure typified by SrTiO 3 or KTaO 3 , a spinel structure typified by MgAl 2 O 4 , or a rock salt structure typified by MgO Can be used.
  • the electrodes 207 and 210 ensure electrical conductivity between the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, and the lower electrode 205 and the upper electrode 211 are formed of a thin film thermoelectric conversion module. It is for taking out electric power from 200 outside.
  • a metal material such as Cu can be suitably used from the viewpoint of ensuring good electrical conductivity.
  • thermoelectric conversion element module 200 shown in FIG. 3 First, an amorphous buffer layer 202 and a crystalline buffer layer 203 are formed in this order on the single crystal substrate 201 at regular intervals D. Specifically, first, a resist is applied on a single crystal substrate 201 having a crystal orientation plane of (111) in a perpendicular direction, and the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed by electron beam lithography or photolithography. The resist is removed only in the film formation region. An amorphous buffer layer 202 and a crystalline buffer layer 203 are formed in this order by sputtering in the region where the resist is removed.
  • the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed using an RF sputtering apparatus or a DC sputtering apparatus, and Ar gas is introduced under an ultrahigh vacuum state of 1.0 ⁇ 10 ⁇ 5 Pa or less, Sputter deposition is performed using a target of a constituent material corresponding to each layer.
  • the remaining resist on the single crystal substrate 201 is removed.
  • the amorphous buffer layer 202 and the crystalline buffer layer 203 remain on the single crystal substrate 201, and the surface of the single crystal substrate 201 is exposed in the region where the resist is applied.
  • the crystalline buffer layer 203 formed on the single crystal substrate 201 is annealed. As a result, a crystalline buffer layer 203 having a crystal orientation of (100) different from the crystal orientation (111) of the single crystal substrate 201 is formed, and a substrate having two or more types of orientation regions having different crystal orientations on the surface 220 is obtained.
  • the first thermoelectric conversion material thin film 204 is formed by sputtering on the substrate 220 thus formed, and the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed on one end of the single crystal substrate 201.
  • the lower electrode 205 is formed by sputtering so as to be bonded to the substrate.
  • the insulating layer 206 and the electrode 207 are sequentially sputtered on the first thermoelectric conversion material thin film 204 after patterning with a resist.
  • the electrode 210 is formed on the second thermoelectric conversion material thin film 208 at a position facing the electrode 207.
  • the insulating layer 209 and the electrode 210 are sequentially formed by sputtering.
  • thermoelectric conversion material thin film 204 the insulating layer 206 and the electrode 207
  • the second thermoelectric conversion material thin film 208 the insulating layer 209
  • the electrode 210 are used as constituent units, and lamination by sputtering is repeated many times.
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 at this time may have any structure of an amorphous structure, a polycrystalline structure, and a plane-oriented film.
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are each not less than the minimum film thickness at which crystallization is caused by heat treatment in each thin film and less than the minimum film thickness at which film breakage due to stress strain accompanying crystallization occurs.
  • the film thickness is, for example, 1 nm or more and 1 ⁇ m or less.
  • the upper electrode 211 is formed by sputtering on the top of the stacked body (second thermoelectric conversion material thin film 208 in FIG. 3).
  • the heating temperature during the annealing treatment can be approximately 800 ° C.
  • the heating temperature is a temperature sufficient for crystallization of a thermoelectric conversion material having a cubic crystal structure such as a full-Heusler alloy constituting the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 and heat. What is necessary is just to perform in the temperature range which does not decompose
  • the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, and the insulating layers 206 and 209 have the same crystal orientation as the respective orientation regions of the base body 220 existing immediately below. Crystallization is performed with the crystal orientation, and the period of the crystal orientation of the substrate 220 is inherited by the stacked body thereon.
  • the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, and the insulating layers 206 and 209 are located immediately above the exposed surface ((111) orientation region) of the single crystal substrate 201 of the base body 220.
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film are crystallized with a crystal orientation of (111) ((111) orientation region) and are located immediately above the crystalline buffer layer 203 in the substrate 201.
  • crystallization is performed with the crystal orientation of (100) ((100) orientation region).
  • the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, and the insulating layers 206 and 209 are formed with boundaries between the alignment regions along the boundaries between the alignment regions of the substrate 220. .
  • thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 using the base body 220 as a seed crystal growth of a thermoelectric conversion material such as a full Heusler alloy occurs. Crystallinity is maintained.
  • the heat treatment can produce a similar structure even when crystal growth is performed with the substrate temperature raised at the time of forming each layer, but as described above, annealing is performed after forming each layer. Is preferable.
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 using the thermoelectric conversion material having the Seebeck effect that generates the potential difference by applying the temperature gradient are stacked, and further, the uppermost portion is the upper portion.
  • the electrode 211 for example, when one surface of the module is heated by a heat source and the other surface is cooled by water cooling or air cooling, a temperature difference is applied to the entire module, thereby connecting to the lower electrode 205. Thus, it can be taken out as electric power.
  • thermoelectric conversion efficiency of a thermoelectric conversion material is defined by a figure of merit (ZT) represented by the following formula (1).
  • T is the absolute temperature
  • S is the Seebeck coefficient
  • is the electrical resistivity
  • is the thermal conductivity
  • thermoelectric performance in order to obtain excellent thermoelectric performance, it is effective to improve the output factor represented by the following formula (2) and reduce the thermal conductivity.
  • FIG. 4 shows a schematic view of the substrate 220 of the thin film thermoelectric conversion module 200 shown in FIG. 3 as viewed from above.
  • a single crystal substrate 201 ((111) orientation region) and a crystalline buffer layer 203 ((100) orientation region) are formed with a width D on the surface of the base 220, These are alternately adjacent to the direction of the heat flow from the high temperature part to the low temperature part (the direction of the temperature gradient applied to the thin film thermoelectric conversion module 200 during thermoelectric conversion) to form a periodic structure.
  • thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 the interface between the alignment regions formed along the periodic structure of the substrate 220 is perpendicular to the direction of heat flow. It is formed to extend. Therefore, in the thin film thermoelectric conversion module 200, the heat flow is efficiently scattered by these interfaces, and the heat conductivity in the heat flow direction of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 is reduced. . For this reason, as shown by the above formula (1), the figure of merit (ZT) of thermoelectric conversion is increased as much as the thermal conductivity is reduced.
  • the width of the exposed surface of the single crystal substrate 201 shown in FIG. 4 and the widths of the amorphous buffer layer 202 and the crystalline buffer layer 203 are referred to as a base period D, and the base 220 is formed by the period.
  • the width of each orientation region of the full Heusler alloy thin film in the heat flow direction is defined as the grain size of the full Heusler alloy.
  • Example 1 although the width of the exposed surface of the single crystal substrate 201 and the widths of the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed with the same width period D, the present invention shows It is not necessarily limited to the form in which these are formed with the same width, and the exposed surface of the single crystal substrate 201 is formed with a width larger than the width of the amorphous buffer layer 202 and the crystalline buffer layer 203 or with a small width. The formed form may be sufficient.
  • thermoelectric conversion material thin film 204 the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 and the thermal conductivity.
  • the crystal grain size dependence of thermal conductivity is expressed by the following formula (3).
  • ⁇ b is the thermal conductivity inside the particle
  • Ri is the interface resistance
  • d is the crystal grain size.
  • thermoelectric conversion material thin film formed on the substrate will be described in more detail with reference to FIG.
  • a region 101 and a region 102 having crystal orientation planes different from each other are formed on the single crystal substrate 110.
  • the region 104 formed on the region 101 and the region 105 formed on the region 102 have different crystal orientations. Columnar grains having properties are formed.
  • each columnar grain is substantially the same as the width of the region 101 and the region 102 existing immediately below in the width direction of the substrate 120. For this reason, the width of the columnar grains of the first thermoelectric conversion material thin film 103 can be arbitrarily controlled by controlling the sizes of the region 101 and the region 102 formed in the base 120. Further, since crystal growth occurs in the first thermoelectric conversion material thin film 103 using the substrate 220 as a seed, high crystallinity is maintained in the columnar grains.
  • the above formula (3) is obtained.
  • the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 have each columnar grain so that a desired thermal conductivity can be obtained. What is necessary is just to estimate the width (the width of each alignment region).
  • the width of the columnar grains of the thermoelectric conversion material thin films 204 and 208 (the width of each orientation region) is equal to the width of the period D of the base 120 existing immediately below each region, the first thermoelectric conversion material thin film 204, The desired thermal conductivity can be obtained by adjusting the width of the period D of the base 120 so that the target columnar grain width can be obtained in the second thermoelectric conversion material thin film 208.
  • FIG. 6 shows a TEM image of a cross section of a laminate in which an Fe 2 VAl thin film (200 nm) is formed on an MgO seed film (thickness 3 nm).
  • FIG. 6 shows the formation of Fe 2 VAl on this MgO seed film by sputtering. It is a cross-sectional image of the laminated body obtained by annealing at a predetermined temperature.
  • columnar grains having different crystal orientation planes are alternately formed adjacent to each other in the Fe 2 VAl thin film.
  • the columnar grains grow in the direction immediately above the crystal grains of each orientation region of the MgO seed film, and the columnar grains of the Fe 2 VAl thin film extend along the boundaries of the orientation regions of the MgO seed film. A grain boundary as a boundary is formed. Therefore, by controlling the width of each orientation region of the substrate (for example, in FIG. 4, the width of the region where the single crystal substrate 201 is exposed and the width of the region where the crystalline buffer layer 203 is formed) It can be confirmed that the particle size (width of columnar grains) of the thermoelectric conversion material thin film such as a Heusler alloy thin film grown thereon can be controlled.
  • the columnar grains form an alignment region corresponding to the crystal orientation of each columnar grain in the Fe 2 VAl thin film, and the grain boundary of the columnar grains is synonymous with the boundary of each alignment region.
  • FIG. 7 shows the relationship between the period D of the substrate and the particle size of a thermoelectric conversion material thin film (hereinafter referred to as a full Heusler alloy thin film) made of a full Heusler alloy.
  • the particle diameter of the full-Heusler alloy thin film is almost the same value as the period D of the substrate, and by modulating the period D of the substrate, it can be confirmed that an arbitrary particle size can be obtained in the full-Heusler alloy thin film.
  • the particle size of the full Heusler alloy thin film is the width of the columnar grain measured from a TEM image obtained by imaging the full Heusler alloy thin film with a TEM.
  • FIG. 8 shows the relationship between the particle size of the full-Heusler alloy thin film and the thermal conductivity.
  • black circles are measured values (examples) of the thermal conductivity of the full Heusler alloy thin film formed on the substrate having the periodic structure of the period D, and the triangular marks are the period on the single crystal substrate. It is a measured value (comparative example) of the thermal conductivity of a full Heusler alloy thin film when a full Heusler alloy thin film is laminated
  • the thermal conductivity is about 10 ⁇ m (comparative example). Compared with the thermal conductivity at that time, it decreased to 4.5 W / mK, which is about 1/6.
  • FIG. 9 shows the relationship between the particle size of the full-Heusler alloy thin film and the integrated values of thermal conductivity and electrical resistivity.
  • the integrated values of thermal conductivity and electrical resistivity decrease monotonically with decreasing grain size of the full Heusler alloy thin film, and electrical resistance with decreasing grain size (increasing the number of grain boundaries) of the full Heusler alloy thin film.
  • the increase in rate has little effect on the integrated value of thermal conductivity and electrical resistivity, and by reducing the particle size, the figure of merit (ZT) of the full Heusler alloy thin film is improved from the above formula (1). It can be confirmed.
  • thermoelectric conversion module 200 In the thin film thermoelectric conversion module 200 according to the first embodiment described above, two or more types of orientation regions having different crystal orientations are formed on the surface of the base body 220, and the first thermoelectric layer laminated on the base body 220 is formed.
  • the conversion material thin film 204 and the second thermoelectric conversion material thin film 208 two or more types of alignment regions having different crystal orientations are formed for each alignment region of the substrate 220, and between these alignment regions, A boundary extending along the boundary between the alignment regions is formed.
  • thermoelectric conversion material thin film full Heusler alloy thin film
  • thermoelectric conversion efficiency of the thin film type thermoelectric conversion module 200 with the substrate period D set to 30 nm is about 4 when the low temperature heat source is set to 50 ° C. and the high temperature heat source is set to 200 ° C. 0.0%.
  • a P-type thermoelectric conversion material thin film (first thermoelectric conversion material thin film) is used instead of a substitute of Fe 2 VAl with Si and Ti.
  • Fe 2 VAl with about 2% less Fe was used.
  • the first thermoelectric conversion material thin film 204 is formed without forming the amorphous buffer layer 202 and the crystalline buffer layer 203. Otherwise, the thin film type thermoelectric conversion shown in FIG.
  • the thin film thermoelectric conversion module having the same configuration as that of the module 200 has a thermoelectric conversion efficiency of about 0.2%. That is, in the structure in which the periodic structure is formed on the base body 220, the thermoelectric conversion efficiency is increased by 3.8% compared to the structure in which the periodic structure is not formed.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of the thin film thermoelectric conversion module 300 according to the second embodiment.
  • an amorphous buffer layer 302 and a crystalline buffer layer 303 are embedded in this order in a single crystal substrate 301.
  • the amorphous buffer layer 302 and the crystalline buffer layer 303 are embedded in a plurality of rows at intervals D in the width direction of the single crystal substrate 301, and the surface of the crystalline buffer layer 303 is combined with the surface of the single crystal substrate 301.
  • a base 320 is formed so as to form a flat surface.
  • thermoelectric conversion material thin film 304 is formed on the surface of the base 320 formed flat in this way, on which an insulating layer 306 and an electrode 307, a second thermoelectric conversion material thin film 308, an insulating layer are formed. 309 and the electrode 310 are stacked in this order.
  • a periodic structure is formed using the first thermoelectric conversion material thin film 304, the insulating layer 306 and the electrode 307, the second thermoelectric conversion material thin film 308, the insulating layer 309 and the electrode 310 as a lamination unit.
  • a lower electrode 305 is provided at one end of the single crystal substrate 301, and an upper electrode 311 is provided on the uppermost layer (on the second thermoelectric conversion material thin film 308 in FIG. 10) of the periodic structure formed on the single crystal substrate 301.
  • the lower electrode 305 and the upper electrode 311 are configured so that the power of the module can be taken out.
  • the film thickness of the full Heusler alloy thin film 304 is set to the film thickness of the amorphous buffer layer 302 and the film thickness of the crystalline buffer layer 303. Even when it is smaller than the total film thickness, the thin film thermoelectric conversion module 300 having the base 320 and the periodic structure of the laminate formed on the base 320 can be obtained. Further, according to the thin film thermoelectric conversion module 300 of the second embodiment, the first thermoelectric conversion material thin film 304 can be formed on the base 320 having a flat surface, so that the outermost surface of the thin film thermoelectric conversion module 300 is flat. And the reliability as a product can be improved.
  • each layer The functions and constituent materials of each layer are the same as those of the thin film thermoelectric conversion module 200 (see FIG. 3) of the first embodiment, and the description thereof is omitted.
  • an amorphous buffer layer 302 and a crystalline buffer layer 303 are formed by sputtering in a recess formed by polishing a single crystal substrate 301 by an ion milling method.
  • the first thermoelectric conversion material thin film 304, the insulating layer 306 and the electrode 307, the second thermoelectric conversion material thin film 308, the insulating layer 309 and the electrode 310, the lower electrode 305, and the upper electrode 311 are sputtered on the substrate 320. It can be obtained by forming a film.
  • FIG. 11 is a schematic cross-sectional view illustrating an example of the thin film thermoelectric conversion module 400 according to the third embodiment.
  • an amorphous buffer layer 402 and an orientation control layer 404 are alternately stacked adjacent to each other on a single crystal substrate 401, and the crystalline buffer layer 402 is formed on the amorphous buffer layer 402.
  • the crystalline buffer layer 405 is laminated on the orientation control layer 404 and the layer 403.
  • the amorphous buffer layer 402 is a layer for preventing the crystal orientation of the single crystal substrate 401 from being transmitted to the layer formed on the upper side.
  • the orientation control layer 404 transmits the crystal orientation of the single crystal substrate 201 to, for example, a layer formed on the upper side of the orientation control layer 404, thereby forming a layer formed on the upper side of the orientation control layer 404.
  • This is a layer for making the crystal orientation plane different from the crystal orientation plane of the crystalline buffer layer 403.
  • the orientation control layer 404 it is only necessary that the crystal orientation plane of the crystalline buffer layer 405 formed thereon can be different from the crystal orientation plane of the crystalline buffer layer 403.
  • the single crystal substrate 401 The crystal orientation plane can be transferred to the crystalline buffer layer 405 and can be a layer made of Fe, Co, Ag, Pt, or a mixture thereof.
  • the stacked body including the amorphous buffer layer 402 and the crystalline buffer layer 403 and the stacked body including the orientation control layer 404 and the crystalline buffer layer 405 are alternately adjacent to each other with a period D on the single crystal substrate 401.
  • a base body 420 having a flat surface is formed.
  • thermoelectric conversion material thin film 407 On the base 420, a first thermoelectric conversion material thin film 407, an insulating layer 408 and an electrode 409, a second thermoelectric conversion material thin film 410, an insulating layer 412 and an electrode 411 are laminated in this order.
  • a periodic structure is formed using the first thermoelectric conversion material thin film 407, the insulating layer 408 and the electrode 409, the second thermoelectric conversion material thin film 410, the insulating layer 412 and the electrode 411 as a lamination unit.
  • a lower electrode 406 is provided at one end of the single crystal substrate 401, and is formed on the uppermost layer (on the second thermoelectric conversion material thin film 410 in FIG. 11) of the periodic structure formed on the single crystal substrate 401.
  • Each is provided with an upper electrode 413, and the lower electrode 406 and the upper electrode 413 are configured so that the power of the module can be taken out.
  • each layer other than the orientation control layer 404 is the same as those of the thin film thermoelectric conversion module 200 (see FIG. 3) of Example 1, and the description thereof is omitted.
  • the thin film thermoelectric conversion module 400 shown in FIG. 11 As the single crystal substrate 401, a 0.5 mm thick MgO substrate having a (111) crystal orientation plane in the perpendicular direction is used.
  • the amorphous buffer layer 402 is a Ta layer having a thickness of about 5 nm
  • the crystalline buffer layer 403 is MgO having a (100) crystal orientation plane and a thickness of about 3 nm.
  • the orientation control layer 404 is an Fe layer having a (111) crystal orientation plane and a thickness of about 5 nm
  • the crystalline buffer layer 405 is an MgO layer having a (111) crystal orientation plane and a thickness of about 3 nm. is there.
  • the crystalline buffer layer 403 has a crystalline region having the same crystal orientation as the region having the (100) crystal orientation plane ((100) orientation region) and the crystal orientation of the single crystal substrate 401.
  • the regions having the (111) crystal orientation plane of the buffer layer 405 ((111) orientation regions) are alternately formed with a period D.
  • the first thermoelectric conversion material thin film 407 and the second thermoelectric conversion material thin film 410 are each formed of a full Heusler alloy obtained by substituting a part of Fe 2 VAl with Si and Ti, respectively, and each has a thickness. It is a thin film of about 200 nm.
  • the film thicknesses of the first thermoelectric conversion material thin film 407 and the second thermoelectric conversion material thin film 410 are equal to or greater than the minimum film thickness at which crystallization is caused by heat treatment in each thin film, as in Example 1, and the stress accompanying crystallization. It is preferable to set the film thickness to be less than the minimum film thickness at which film breakage due to strain occurs.
  • the film thickness is preferably 1 nm to 1 ⁇ m.
  • the insulating layers 408 and 412 are all MgO layers having a thickness of about 3 nm, and the lower electrode 406, the upper electrode 413, the electrode 409, and the electrode 411 are all Cu layers having a thickness of about 3 nm.
  • thermoelectric conversion module 400 the first thermoelectric conversion material thin film 407, the second thermoelectric conversion material thin film 410, and the insulating layers 408 and 412 are all formed with the crystal orientation plane of the base 420 existing immediately below. Grows in the same crystal orientation plane.
  • crystallization is performed with a crystal orientation of (111) by annealing after the stacked body is formed.
  • thermoelectric conversion material thin film 407 the first thermoelectric conversion material thin film 407, the second thermoelectric conversion material thin film 410, and the insulating layers 408 and 412 have respective crystallographic regions whose boundaries are formed on the surface of the base 420. It is formed along the boundary.
  • the above-described thin film thermoelectric conversion module 400 can be produced by the same method as the thin film thermoelectric conversion module 200 of Example 1, and the description thereof is omitted.
  • thermoelectric conversion efficiency of the thin film thermoelectric conversion module 400 with the substrate period D set to 30 nm was about 4.0% when the low temperature heat source was set to 50 ° C. and the high temperature heat source was set to 200 ° C.
  • thermoelectric conversion material thin film 407 and the second thermoelectric conversion material thin film 410 are replaced with a P-type thermoelectric conversion material thin film (first thermoelectric conversion material thin film) instead of a substitute of Fe 2 VAl with Si and Ti.
  • first thermoelectric conversion material thin film a substitute of Fe 2 VAl with Si and Ti.
  • Fe: V: Al 2: 1: the Fe 2 VAl of Fe is one used after about 2% more, N-type thermoelectric conversion material film (second thermoelectric conversion material thin film 410 ) Fe 2 VAl with about 2% less Fe was used.
  • the first thermoelectric conversion material thin film 407 is formed on the single crystal substrate 401 without forming the amorphous buffer layer 402, the crystalline buffer layer 403, the orientation control layer 404, and the crystalline buffer layer 405.
  • the thermoelectric conversion efficiency was about 0.2%. That is, in the structure in which the periodic structure is formed on the base body 420, the thermoelectric conversion efficiency is increased by 3.8% compared to the structure in which the periodic structure is not formed.
  • thermoelectric conversion module 400 of Example 3 since the first thermoelectric conversion material thin film 407 can be formed on the base 420 having a flat surface, the flatness of the outermost surface of the thin film thermoelectric conversion module 400 is improved. The reliability of the product can be improved.

Abstract

Obtained is a thin-film thermoelectric conversion module which has excellent thermoelectric conversion efficiency by decreasing the thermal conductivity of a thermoelectric conversion material thin film, while maintaining high output factor thereof. A thin-film thermoelectric conversion module 200 which comprises: a base 220 that has two or more orientation regions in the surface, said orientation regions having different crystal orientations from each other; a first thermoelectric conversion material thin film 204 that is formed on the base 220 and has a cubic crystal structure; a second thermoelectric conversion material thin film 208; an insulating layer 206 that is formed on the first thermoelectric conversion material thin film 204; and electrodes 207, 210. The first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208 and the insulating layer 206 are respectively provided with two or more orientation regions, which are formed adjacent to each other and have different crystal orientations from each other, at positions corresponding to the orientation regions of the base 220; and the boundaries between the orientation regions are formed along the boundary between the orientation regions of the base 220.

Description

薄膜熱電変換モジュールおよびその製造方法Thin film thermoelectric conversion module and manufacturing method thereof
 本発明は薄膜熱電変換モジュール及びその製造方法に関する。 The present invention relates to a thin film thermoelectric conversion module and a manufacturing method thereof.
 熱エネルギーを電気エネルギーに直接変換する技術として熱電変換モジュールがある。熱電変換モジュールに用いられる典型的な熱電変換材料は、例えば図1に示すバルク形態を有する材料を用いた熱電変換モジュール(以下、バルク型熱電変換モジュールと呼ぶ。)が知られている。バルク型熱電変換モジュールでは、モジュールの組立工程におけるプロセスコストが高くなりやすく、またバルク材料と電極との間での接合破壊などが懸念される。また、例えば化石燃料を用いた発電において排出される熱エネルギーの約70%は200℃未満の低温排熱として広範囲に分布しており、このような低温排熱を熱源として活用するためには、狭い空間への設置や、多様な形状を有する熱源部材への設置を可能とするためのフレキシブル性が求められ、バルク型熱電変換モジュールでの対応には限界がある。 There is a thermoelectric conversion module as a technology that directly converts thermal energy into electrical energy. As a typical thermoelectric conversion material used for the thermoelectric conversion module, for example, a thermoelectric conversion module using a material having a bulk form shown in FIG. 1 (hereinafter referred to as a bulk type thermoelectric conversion module) is known. In the bulk type thermoelectric conversion module, the process cost in the module assembling process is likely to be high, and there is a concern about the joint breakdown between the bulk material and the electrode. In addition, for example, about 70% of the thermal energy discharged in power generation using fossil fuels is widely distributed as low-temperature exhaust heat of less than 200 ° C. In order to utilize such low-temperature exhaust heat as a heat source, Flexibility is required to enable installation in a narrow space and installation on a heat source member having various shapes, and there is a limit to the correspondence with bulk thermoelectric conversion modules.
 一方、バルク型熱電変換モジュールに代わる熱電変換モジュールとして、薄膜熱電変換材料や有機材料を用いた熱電変換モジュール(以下、薄膜型熱電変換モジュールと示す。)が知られている。薄膜型熱電変換モジュールは、図2に示す形状を有しており、変換効率の点ではバルク型熱電変換モジュールに劣るものの、組立てプロセスコストが低く、またフレキシブル性が高いため、近年、そのニーズが高まっている。このため、薄膜型熱電変換モジュールに適用可能であり、かつ熱電変換効率の高い薄膜熱電変換材料が求められている。 Meanwhile, a thermoelectric conversion module using a thin film thermoelectric conversion material or an organic material (hereinafter referred to as a thin film thermoelectric conversion module) is known as a thermoelectric conversion module that replaces the bulk type thermoelectric conversion module. The thin film type thermoelectric conversion module has the shape shown in FIG. 2 and is inferior to the bulk type thermoelectric conversion module in terms of conversion efficiency, but its assembly process cost is low and flexibility is high. It is growing. Therefore, a thin film thermoelectric conversion material that can be applied to a thin film thermoelectric conversion module and has high thermoelectric conversion efficiency is demanded.
 200℃未満の低温熱源で発電可能な熱電変換材料薄膜として、例えばFeVAlに代表される鉄フルホイスラー合金薄膜が知られている。フルホイスラー合金薄膜は、無毒かつ安価で、埋蔵量の多い元素から構成されており、環境負荷の観点からも近年注目されている。 For example, an iron full Heusler alloy thin film represented by Fe 2 VAl is known as a thermoelectric conversion material thin film capable of generating power with a low-temperature heat source of less than 200 ° C. Full Heusler alloy thin films are composed of elements that are non-toxic, inexpensive, and have a large amount of reserves, and have attracted attention in recent years from the viewpoint of environmental impact.
 フルホイスラー合金は、熱電性能として高い出力因子を有する一方、高い熱伝導率を有している。一般に、出力因子を高めるには結晶性を向上させることが必要であり、例えば特許文献1には、フルホイスラー合金薄膜の結晶性を向上させた熱電変換素子及びその製造方法が開示されている。 Full-Heusler alloy has a high output factor as a thermoelectric performance, while it has a high thermal conductivity. In general, it is necessary to improve the crystallinity in order to increase the output factor. For example, Patent Document 1 discloses a thermoelectric conversion element in which the crystallinity of a full Heusler alloy thin film is improved and a method for manufacturing the same.
特開2006-086510号公報JP 2006-086510 A
 特許文献1では、熱電変換材料薄膜としてのフルホイスラー合金薄膜の結晶性を向上させることで、出力因子が高められ、高いゼーベック係数と低い電気抵抗率が実現されていると考えられる。一方、電気抵抗率が低くなると、必然的にキャリアが寄与する熱伝導率が高くなる。このため、熱電性能を向上させるためには結晶格子が寄与する熱伝導率を低くする必要がある。 In Patent Document 1, it is considered that the output factor is increased by improving the crystallinity of the full-Heusler alloy thin film as the thermoelectric conversion material thin film, and a high Seebeck coefficient and a low electrical resistivity are realized. On the other hand, when the electrical resistivity decreases, the thermal conductivity contributed by the carriers inevitably increases. For this reason, in order to improve the thermoelectric performance, it is necessary to lower the thermal conductivity contributed by the crystal lattice.
 結晶格子が寄与する熱伝導率は、結晶粒径を小さくするほど低減される傾向にあることから、熱電変換材料薄膜において高い出力因子を実現しつつ、熱伝導率を低減するためには、高い結晶性を維持しつつ、その結晶粒径を所望の大きさに制御することが必要となる。 The thermal conductivity contributed by the crystal lattice tends to be reduced as the crystal grain size is reduced. Therefore, in order to reduce the thermal conductivity while realizing a high output factor in the thermoelectric conversion material thin film, it is high. It is necessary to control the crystal grain size to a desired size while maintaining crystallinity.
 そこで、本発明の目的は、熱電変換材料薄膜において高い出力因子を維持しつつ、熱伝導率を低減し、熱電変換効率に優れた薄膜熱電変換モジュール及び製造方法を得ることを目的とする。 Therefore, an object of the present invention is to obtain a thin film thermoelectric conversion module and a manufacturing method that are excellent in thermoelectric conversion efficiency while reducing the thermal conductivity while maintaining a high output factor in the thermoelectric conversion material thin film.
 上記課題を解決するための本発明の一実施形態としては、結晶配向が互いに異なる二種以上の配向領域を表面に有する基体と、前記基体上に形成された、立方晶系の結晶構造を有する第1の熱電変換材料薄膜と、前記第1の熱電変換材料薄膜上に形成された絶縁層と、前記絶縁層上に形成された、立方晶系の結晶構造を有する第2の熱電変換材料薄膜と、前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜に接合する電極と、を有しており、前記第1の熱電変換材料薄膜、前記第2の熱電変換材料薄膜及び前記絶縁層には、前記基体の各配向領域の位置に対応する位置に、結晶配向が互いに異なる二種以上の配向領域が隣接して形成されており、前記第1の熱電変換材料薄膜、前記第2の熱電変換材料薄膜及び前記絶縁層には、前記配向領域間の境界が、前記基体の配向領域間の境界に沿って形成されていることを特徴とする薄膜熱電変換モジュールとする。 As an embodiment of the present invention for solving the above-mentioned problems, a substrate having two or more kinds of alignment regions having different crystal orientations on the surface, and a cubic crystal structure formed on the substrate are provided. A first thermoelectric conversion material thin film, an insulating layer formed on the first thermoelectric conversion material thin film, and a second thermoelectric conversion material thin film formed on the insulating layer and having a cubic crystal structure And an electrode bonded to the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film, and the first thermoelectric conversion material thin film, the second thermoelectric conversion material thin film, and the above In the insulating layer, two or more kinds of alignment regions having different crystal orientations are formed adjacent to each other at positions corresponding to the positions of the alignment regions of the substrate, and the first thermoelectric conversion material thin film, the first In the thermoelectric conversion material thin film 2 and the insulating layer, Boundary between serial alignment region, a thin film thermoelectric conversion module, characterized by being formed along the boundary between the alignment regions of the substrate.
 また、本発明の一実施形態としては、単結晶基板上にバッファ層を形成する工程と、前記単結晶基板上に形成された前記バッファ層をアニール処理して、結晶配向が互いに異なる二種以上の配向領域を表面に有する基体を形成する工程と、前記基体上に、立方晶系の結晶構造を有する第1の熱電変換材料薄膜を形成する工程と、前記第1の熱電変換材料薄膜上に絶縁層及び電極を形成する工程と、前記絶縁層及び前記電極上に、立方晶系の結晶構造を有する第2の熱電変換材料薄膜を形成する工程と、前記基体上に形成された前記第1の熱電変換材料薄膜、前記絶縁層、前記第2の熱電変換材料薄膜を有する積層体をアニール処理する工程と、を有することを特徴とする薄膜熱電変換モジュールの製造方法とする。 In one embodiment of the present invention, a buffer layer is formed on a single crystal substrate, and the buffer layer formed on the single crystal substrate is annealed to have two or more different crystal orientations. A step of forming a substrate having an alignment region on the surface thereof, a step of forming a first thermoelectric conversion material thin film having a cubic crystal structure on the substrate, and a step of forming on the first thermoelectric conversion material thin film A step of forming an insulating layer and an electrode; a step of forming a second thermoelectric conversion material thin film having a cubic crystal structure on the insulating layer and the electrode; and the first layer formed on the substrate. And a step of annealing the laminated body having the thermoelectric conversion material thin film, the insulating layer, and the second thermoelectric conversion material thin film.
 本発明によれば、熱電変換材料薄膜において高い出力因子を維持しつつ、熱伝導率を低減し、熱電変換効率に優れた薄膜熱電変換モジュール及び製造方法を実現することができる。 According to the present invention, it is possible to realize a thin film thermoelectric conversion module and a manufacturing method that are excellent in thermoelectric conversion efficiency by reducing thermal conductivity while maintaining a high output factor in the thermoelectric conversion material thin film.
バルク型熱電変換モジュールの模式図である。It is a schematic diagram of a bulk type thermoelectric conversion module. 薄膜型熱電変換モジュールの模式図である。It is a schematic diagram of a thin film type thermoelectric conversion module. 実施例1に係る薄膜熱電変換モジュール200の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 200 according to Example 1. FIG. 図3に示す薄膜熱電変換モジュール200の基体220を上面からみた模式図である。It is the schematic diagram which looked at the base | substrate 220 of the thin film thermoelectric conversion module 200 shown in FIG. 第1の熱電変換材料薄膜の柱状粒の模式図である。It is a schematic diagram of the columnar grain of the 1st thermoelectric conversion material thin film. MgOシード膜上にFeVAl薄膜が製膜された積層体の断面のTEM画像である。 Fe 2 VAl thin film on the MgO seed layer is a cross-section of TEM image of a film has been laminated body. 基体の周期Dと、フルホイスラー合金薄膜の粒径との関係を示すグラフである。It is a graph which shows the relationship between the period D of a base | substrate, and the particle size of a full Heusler alloy thin film. フルホイスラー合金薄膜の粒径と熱伝導率との関係を示すグラフである。It is a graph which shows the relationship between the particle size of a full Heusler alloy thin film, and thermal conductivity. フルホイスラー合金薄膜の粒径と、熱伝導率と電気抵抗率の積算値との関係を示すグラフである。It is a graph which shows the relationship between the particle size of a full Heusler alloy thin film, and the integrated value of thermal conductivity and electrical resistivity. 実施例2に係る薄膜型熱電変換モジュール300の一例を示す模式的断面図である。6 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 300 according to Example 2. FIG. 実施例3に係る薄膜熱電変換モジュール400の一例を示す概略断面図である。6 is a schematic cross-sectional view showing an example of a thin film thermoelectric conversion module 400 according to Example 3. FIG.
 図3は、実施例1に係る薄膜熱電変換モジュール200の一例を示す概略断面図である。図3において、単結晶基板201上には、非晶質バッファ層202及び結晶質バッファ層203がこの順に積層されている。非晶質バッファ層202は、その上側に形成される層に、単結晶基板201の結晶配向性が伝達されないようにするための層であり、非晶質バッファ層202及び結晶質バッファ層203が、単結晶基板201上に間隔Dを空けて複数列設けられて、基体220が構成されている。 FIG. 3 is a schematic cross-sectional view illustrating an example of the thin film thermoelectric conversion module 200 according to the first embodiment. In FIG. 3, an amorphous buffer layer 202 and a crystalline buffer layer 203 are stacked in this order on a single crystal substrate 201. The amorphous buffer layer 202 is a layer for preventing the crystal orientation of the single crystal substrate 201 from being transmitted to a layer formed above the amorphous buffer layer 202. The amorphous buffer layer 202 and the crystalline buffer layer 203 are A plurality of rows are provided on the single crystal substrate 201 at intervals D to form a base body 220.
 基体220上には、第1の熱電変換材料薄膜204、絶縁層206、第2の熱電変換材料薄膜208、絶縁層209がこの順で積層されている。第2の熱電変換材料薄膜208は、第1の熱電変換材料薄膜204がn型である場合にはp型であり、第1の熱電変換材料薄膜204がp型である場合にはn型である。 On the substrate 220, a first thermoelectric conversion material thin film 204, an insulating layer 206, a second thermoelectric conversion material thin film 208, and an insulating layer 209 are laminated in this order. The second thermoelectric conversion material thin film 208 is p-type when the first thermoelectric conversion material thin film 204 is n-type, and is n-type when the first thermoelectric conversion material thin film 204 is p-type. is there.
 絶縁層206には、間隔Dの幅方向端部に電極207が設けられており、絶縁層209には、電極207と対向する側の幅方向端部に、電極210が設けられている。電極207及び電極210は、いずれも第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208と接合するように設けられており、これら電極207、電極210により、第1の熱電変換材料薄膜204と第2の熱電変換材料薄膜208との導電性が確保されている。 The insulating layer 206 is provided with an electrode 207 at the end in the width direction of the interval D, and the insulating layer 209 is provided with an electrode 210 at the end in the width direction on the side facing the electrode 207. The electrode 207 and the electrode 210 are both provided to be joined to the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, and the first thermoelectric conversion material is formed by the electrode 207 and the electrode 210. The conductivity between the thin film 204 and the second thermoelectric conversion material thin film 208 is ensured.
 薄膜熱電変換モジュール200は、これら第1の熱電変換材料薄膜204、絶縁層206及び電極207、第2の熱電変換材料薄膜208、絶縁層209及び電極210を積層単位として、周期構造が形成されている。 The thin film thermoelectric conversion module 200 has a periodic structure with the first thermoelectric conversion material thin film 204, the insulating layer 206 and the electrode 207, the second thermoelectric conversion material thin film 208, the insulating layer 209 and the electrode 210 as a lamination unit. Yes.
 単結晶基板201の一方の端部には下部電極205が設けられており、単結晶基板201上に形成された周期構造の最上層(図3においては第2の熱電変換材料薄膜208上)には上部電極211がそれぞれ設けられている。下部電極205は、非晶質バッファ層202及び結晶質バッファ層203と隣接するように設けられており、これら下部電極205、上部電極211により、モジュールの電力が取り出せるように構成されている。 A lower electrode 205 is provided at one end of the single crystal substrate 201, and is formed on the uppermost layer (on the second thermoelectric conversion material thin film 208 in FIG. 3) of the periodic structure formed on the single crystal substrate 201. Each is provided with an upper electrode 211. The lower electrode 205 is provided so as to be adjacent to the amorphous buffer layer 202 and the crystalline buffer layer 203, and the lower electrode 205 and the upper electrode 211 are configured so that module power can be taken out.
 図3に示す薄膜熱電変換素子200の具体的な構成例を以下に説明する。薄膜型熱電変換モジュール200において、単結晶基板201としては、面直方向に(111)の結晶配向面を有する厚さ0.5mmのMgO基板が用いられている。非晶質バッファ層202は、厚さ約5nmのTa層であり、結晶質バッファ層203は、(100)の結晶配向面を有する厚さ約3nmのMgO層である。なお、単結晶基板201は、結晶質バッファ層203と異なる結晶配向を有していればよいため、結晶質バッファ層203のMgOが(100)の結晶配向面を有する場合、単結晶基板201は、例えば(110)などの結晶配向面を有するものであってもよい。 A specific configuration example of the thin film thermoelectric conversion element 200 shown in FIG. 3 will be described below. In the thin film thermoelectric conversion module 200, as the single crystal substrate 201, a 0.5 mm thick MgO substrate having a (111) crystal orientation plane in the perpendicular direction is used. The amorphous buffer layer 202 is a Ta layer having a thickness of about 5 nm, and the crystalline buffer layer 203 is an MgO layer having a crystal orientation plane of (100) and a thickness of about 3 nm. Note that the single crystal substrate 201 only needs to have a crystal orientation different from that of the crystalline buffer layer 203. Therefore, when MgO of the crystalline buffer layer 203 has a (100) crystal orientation plane, the single crystal substrate 201 is For example, it may have a crystal orientation plane such as (110).
 結晶質バッファ層203は、非晶質バッファ層202を介して単結晶基板201上に設置されることで、単結晶基板201の結晶配向性の影響を受けずに結晶成長した層として形成されている。これにより、基体201の表面には、単結晶基板201の(111)の結晶配向面を有する領域(以下、(111)配向領域と示す。)と、結晶質バッファ層203の(100)の結晶配向面を有する領域(以下、(100)配向領域と示す。)が、間隔D毎に交互に形成されている。 The crystalline buffer layer 203 is formed on the single crystal substrate 201 via the amorphous buffer layer 202, so that the crystalline buffer layer 203 is formed as a layer grown without being affected by the crystal orientation of the single crystal substrate 201. Yes. Thus, on the surface of the substrate 201, a region having a (111) crystal orientation plane of the single crystal substrate 201 (hereinafter referred to as a (111) orientation region) and a (100) crystal of the crystalline buffer layer 203 are provided. Regions having orientation planes (hereinafter referred to as (100) orientation regions) are alternately formed at intervals D.
 第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208は、それぞれFeVAlの一部を、それぞれSiとTiで置換してなるフルホイスラー合金により形成されており、いずれも厚さ200nm程度の薄膜である。 The first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are each formed of a full Heusler alloy obtained by substituting a part of Fe 2 VAl with Si and Ti, respectively. It is a thin film of about 200 nm.
 絶縁層206、209は、いずれも厚さ約3nmのMgO層であり、下部電極205、上部電極211、電極207及び電極210は、いずれも厚さ約3nmのCu層である。 The insulating layers 206 and 209 are all MgO layers having a thickness of about 3 nm, and the lower electrode 205, the upper electrode 211, the electrode 207, and the electrode 210 are all Cu layers having a thickness of about 3 nm.
 図3に示す薄膜型熱電変換モジュール200において、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、絶縁層209は、いずれも、その直下に存在する基体220の配向領域と同じ結晶配向を有している。 In the thin film thermoelectric conversion module 200 shown in FIG. 3, the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209 are all formed on the substrate 220 immediately below the first thermoelectric conversion material thin film 204. It has the same crystal orientation as the orientation region.
 すなわち、基体220の表面が単結晶基板201である、(111)配向領域の直上に存在する第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、絶縁層209の領域は、いずれも(111)の結晶配向を有する領域((111)配向領域)となっている。また、基体220の表面が結晶質バッファ層203である、(100)配向領域の直上に存在する第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、絶縁層209の領域は、いずれも(100)の結晶配向を有する領域((100)配向領域)となっている。第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、絶縁層209においては、この(111)配向領域と(100)配向領域とが互いに隣接して形成されている。 That is, the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209 that are located immediately above the (111) orientation region in which the surface of the base body 220 is the single crystal substrate 201. Each region is a region having a crystal orientation of (111) ((111) orientation region). In addition, the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209 existing immediately above the (100) orientation region whose surface of the substrate 220 is the crystalline buffer layer 203. These regions are all regions having a (100) crystal orientation ((100) orientation region). In the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layer 206, and the insulating layer 209, the (111) orientation region and the (100) orientation region are formed adjacent to each other. .
 第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208は、互いに異なるキャリアを有する立方晶系の結晶構造を有する熱電変換材料で形成されている。 The first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are formed of a thermoelectric conversion material having a cubic crystal structure having different carriers.
 第1の熱電変換材料薄膜及び第2の熱電変換材料薄膜を形成する熱電変換材料は、立方晶系の結晶構造を有しかつ大きいゼーベック係数を有するものとして、例えばフルホイスラー系又はハーフホイスラー系のホイスラー合金、又はカルゴゲナイト系の合金材料を用いることができ、これらの中でも、フルホイスラー合金を好適に用いることができる。 The thermoelectric conversion material for forming the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film has a cubic crystal structure and a large Seebeck coefficient, for example, a full Heusler system or a half Heusler system. A Heusler alloy or a chalcogenite-based alloy material can be used, and among these, a full Heusler alloy can be preferably used.
 ホイスラー合金としては、Fe、V,Ru、Cr、Mn、Nb、Ti、Zr、Hf、Co、Irからなる群から選択される少なくとも一種の元素と、Al、Si、Ga、Ge、Sn、Inからなる群から選択される少なくとも一種の元素と、を組み合わせてなるものを用いることができる。 Heusler alloys include at least one element selected from the group consisting of Fe, V, Ru, Cr, Mn, Nb, Ti, Zr, Hf, Co, and Ir, and Al, Si, Ga, Ge, Sn, In A combination of at least one element selected from the group consisting of can be used.
 フルホイスラー合金としては、例えばFeVAlや、FeVAlの構成元素の一部を他の金属元素で置換したものを用いることができる。FeVAlの構成元素の一部を他の金属元素で置換したものとしては、例えばFeVAlのFeとVをRu、Cr、Mn、Nb、Ti、Zr、Hf、Co、Irのいずれかで置換し、AlをSi、Ga、Ge、Sn、Inのいずれかで置換したものを用いることができる。具体的には、例えばFeVAlの構成元素一部をSiとTiで置換したものを好適に用いることができる。 As the full Heusler alloy, for example, Fe 2 VAl or an alloy obtained by substituting a part of the constituent elements of Fe 2 VAl with another metal element can be used. For example, the constituent elements of Fe 2 VAl are replaced with other metal elements. For example, Fe and V of Fe 2 VAl are any of Ru, Cr, Mn, Nb, Ti, Zr, Hf, Co, and Ir. And Al substituted with any of Si, Ga, Ge, Sn, and In can be used. Specifically, for example, a part of the constituent elements of Fe 2 VAl substituted with Si and Ti can be suitably used.
 第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208を構成する、フルホイスラー合金等の立方晶系の熱電変換材料からなる薄膜は、1nm未満の膜厚では熱処理しても結晶化せず、また1μmを超える膜厚では、結晶化に伴う応力歪みの影響を受けて膜破壊が起きることが知られている。このため、第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208の膜厚は、各薄膜において熱処理により結晶化が生じる最低膜厚以上でかつ結晶化に伴う応力歪みによる膜破壊が生じる最低膜厚未満に設定する。具体的には、第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208の膜厚は、1nm以上1μm以下の膜厚とすることが好ましい。 A thin film made of a cubic thermoelectric conversion material such as a full Heusler alloy constituting the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 is crystallized even when heat-treated at a film thickness of less than 1 nm. In addition, when the film thickness exceeds 1 μm, it is known that the film breakage occurs under the influence of stress strain accompanying crystallization. For this reason, the film thicknesses of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are not less than the minimum film thickness at which crystallization is caused by heat treatment in each thin film, and film breakage due to stress strain accompanying crystallization is caused. Set to less than the minimum film thickness that results. Specifically, the film thicknesses of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are preferably 1 nm or more and 1 μm or less.
 単結晶基板201及び結晶質バッファ層203は、基体220においてその表面の一部を形成し、第1の熱電変換材料薄膜204又は第2の熱電変換材料薄膜208の結晶成長を促すためのシード膜となるものである。 Single crystal substrate 201 and crystalline buffer layer 203 form part of the surface of substrate 220 and are seed films for promoting crystal growth of first thermoelectric conversion material thin film 204 or second thermoelectric conversion material thin film 208. It will be.
 単結晶基板201及び結晶質バッファ層203としては、第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208を構成するフルホイスラー合金等の立方晶系の熱電変換材料と格子整合性の良好な結晶構造を有する絶縁体を用いることができる。具体的には、例えばSrTiOやKTaOに代表されるペロブスカイト構造、MgAlに代表されるスピネル構造、又はMgOに代表される岩塩構造からなる群から選択されるいずれかの結晶構造を有する絶縁体を用いることができる。 The single crystal substrate 201 and the crystalline buffer layer 203 are lattice-matched with a cubic thermoelectric conversion material such as a full Heusler alloy that forms the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208. An insulator having a good crystal structure can be used. Specifically, for example, any crystal structure selected from the group consisting of a perovskite structure typified by SrTiO 3 and KTaO 3 , a spinel structure typified by MgAl 2 O 4 , and a rock salt structure typified by MgO is used. The insulator which has can be used.
 単結晶基板201の厚さは、特に限定されないが、薄膜熱電変換モジュール200全体としてのフレキシブル性を確保する観点から、1mm以下であることが好ましい。結晶質バッファ層203の厚さは、特に限定されないが、薄膜熱電変換モジュール200全体としてのフレキシブル性を確保しつつ、安定した結晶性を維持する観点から、1nm以上100nm以下であることが好ましい。 The thickness of the single crystal substrate 201 is not particularly limited, but is preferably 1 mm or less from the viewpoint of ensuring the flexibility of the thin film thermoelectric conversion module 200 as a whole. The thickness of the crystalline buffer layer 203 is not particularly limited, but is preferably 1 nm or more and 100 nm or less from the viewpoint of maintaining stable crystallinity while ensuring the flexibility of the thin film thermoelectric conversion module 200 as a whole.
 非晶質バッファ層202としては、単結晶基板201の結晶配向面の影響を受けずにアモルファス構造を形成可能な金属材料や無機材料を用いることができ、例えばTa、Cu、Ru、Al、SiOが好適に用いられる。 As the amorphous buffer layer 202, a metal material or an inorganic material capable of forming an amorphous structure without being affected by the crystal orientation plane of the single crystal substrate 201 can be used. For example, Ta, Cu, Ru, Al 2 O 3 and SiO 2 are preferably used.
 非晶質バッファ層202の厚さは、特に限定されないが、薄膜熱電変換モジュール200全体としてのフレキシブル性を確保しつつ、単結晶基板201の結晶配向性の影響を受けずに結晶質バッファ層203が結晶成長するのに十分な厚さを確保する観点から、1nm以上100nm以下であることが好ましい。 Although the thickness of the amorphous buffer layer 202 is not particularly limited, the crystalline buffer layer 203 is not affected by the crystal orientation of the single crystal substrate 201 while ensuring the flexibility of the thin film thermoelectric conversion module 200 as a whole. From the viewpoint of securing a sufficient thickness for crystal growth, the thickness is preferably 1 nm or more and 100 nm or less.
 絶縁層206、209は、第1の熱電変換材料薄膜204と第2の熱電変換材料薄膜208との間の絶縁性を確保し、かつ第1の熱電変換材料薄膜204又は第2の熱電変換材料薄膜208のシード膜となる層である。 The insulating layers 206 and 209 ensure the insulation between the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, and the first thermoelectric conversion material thin film 204 or the second thermoelectric conversion material. This is a layer that becomes a seed film of the thin film 208.
 絶縁層206、209としては、結晶質バッファ層203と同様、第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208を構成する、フルホイスラー合金等の立方晶系の熱電変換材料と格子整合性の良好な結晶構造を有する絶縁体を用いることができる。具体的には、例えばSrTiOやKTaOに代表されるペロブスカイト構造、MgAlに代表されるスピネル構造、又はMgOに代表される岩塩構造からなる群から選択される結晶構造を有する絶縁体を用いることができる。 As the insulating layers 206 and 209, similarly to the crystalline buffer layer 203, a cubic thermoelectric conversion material such as a full Heusler alloy constituting the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 is used. An insulator having a crystal structure with favorable lattice matching can be used. Specifically, for example, an insulator having a crystal structure selected from the group consisting of a perovskite structure typified by SrTiO 3 or KTaO 3 , a spinel structure typified by MgAl 2 O 4 , or a rock salt structure typified by MgO Can be used.
 電極207、210は、第1の熱電変換材料薄膜204と第2の熱電変換材料薄膜208との間の電導性を確保するものであり、また下部電極205及び上部電極211は、薄膜熱電変換モジュール200から外部に電力を取り出すためのものである。電極207、210、下部電極205及び上部電極211は、良好な電気伝導性を確保する観点から、例えばCu等の金属材料を好適に用いることができる。 The electrodes 207 and 210 ensure electrical conductivity between the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, and the lower electrode 205 and the upper electrode 211 are formed of a thin film thermoelectric conversion module. It is for taking out electric power from 200 outside. For the electrodes 207 and 210, the lower electrode 205, and the upper electrode 211, for example, a metal material such as Cu can be suitably used from the viewpoint of ensuring good electrical conductivity.
 次に、図3に示す熱電変換素子モジュール200の製造方法について説明する。まず、単結晶基板201上に、一定の間隔D毎に非晶質バッファ層202及び結晶質バッファ層203をこの順に成膜する。具体的には、まず面直方向の結晶配向面が(111)の単結晶基板201上にレジストを塗布し、電子ビームリソグラフィまたはフォトリソグラフィにより、非晶質バッファ層202及び結晶質バッファ層203の成膜領域のみレジストを除去する。レジストを除去した領域に、非晶質バッファ層202及び結晶質バッファ層203を、この順にスパッタリングにより製膜する。非晶質バッファ層202及び結晶質バッファ層203の製膜は、RFスパッタリング装置又はDCスパッタリング装置を使用し、1.0×10-5Pa以下の超高真空状態下でArガスを導入し、各層に対応する構成材料のターゲットを用いてスパッタ成膜する。 Next, a method for manufacturing the thermoelectric conversion element module 200 shown in FIG. 3 will be described. First, an amorphous buffer layer 202 and a crystalline buffer layer 203 are formed in this order on the single crystal substrate 201 at regular intervals D. Specifically, first, a resist is applied on a single crystal substrate 201 having a crystal orientation plane of (111) in a perpendicular direction, and the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed by electron beam lithography or photolithography. The resist is removed only in the film formation region. An amorphous buffer layer 202 and a crystalline buffer layer 203 are formed in this order by sputtering in the region where the resist is removed. The amorphous buffer layer 202 and the crystalline buffer layer 203 are formed using an RF sputtering apparatus or a DC sputtering apparatus, and Ar gas is introduced under an ultrahigh vacuum state of 1.0 × 10 −5 Pa or less, Sputter deposition is performed using a target of a constituent material corresponding to each layer.
 非晶質バッファ層202及び結晶質バッファ層203をスパッタ成膜した後、単結晶基板201上の残ったレジストを除去する。これにより、単結晶基板201上には非晶質バッファ層202及び結晶質バッファ層203のみが残り、レジストが塗布されていた領域には単結晶基板201の表面が露出する。 After the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed by sputtering, the remaining resist on the single crystal substrate 201 is removed. As a result, only the amorphous buffer layer 202 and the crystalline buffer layer 203 remain on the single crystal substrate 201, and the surface of the single crystal substrate 201 is exposed in the region where the resist is applied.
 この状態で、単結晶基板201上に形成された結晶質バッファ層203をアニール処理する。これにより、単結晶基板201の結晶配向(111)とは異なる、(100)の結晶配向を有する結晶質バッファ層203が形成され、結晶配向が互いに異なる二種以上の配向領域を表面に有する基体220が得られる。 In this state, the crystalline buffer layer 203 formed on the single crystal substrate 201 is annealed. As a result, a crystalline buffer layer 203 having a crystal orientation of (100) different from the crystal orientation (111) of the single crystal substrate 201 is formed, and a substrate having two or more types of orientation regions having different crystal orientations on the surface 220 is obtained.
 次いで、このように形成された基体220上に、第1の熱電変換材料薄膜204をスパッタリングにより製膜するとともに、単結晶基板201上の一端に、非晶質バッファ層202及び結晶質バッファ層203と接合するように、下部電極205をスパッタ成膜する。次いで、第1の熱電変換材料薄膜204上に、絶縁層206及び電極207を、レジストによるパターニングを行った上で順次スパッタ製膜する。 Next, the first thermoelectric conversion material thin film 204 is formed by sputtering on the substrate 220 thus formed, and the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed on one end of the single crystal substrate 201. The lower electrode 205 is formed by sputtering so as to be bonded to the substrate. Next, the insulating layer 206 and the electrode 207 are sequentially sputtered on the first thermoelectric conversion material thin film 204 after patterning with a resist.
 絶縁層206及び電極207上に、さらに第2の熱電変換材料薄膜208をスパッタ製膜した後、この第2の熱電変換材料薄膜208上に、電極207と対向する位置に電極210が形成されるようにレジストによるパターニングを行った上で、絶縁層209及び電極210を順次スパッタ製膜する。 After the second thermoelectric conversion material thin film 208 is further formed on the insulating layer 206 and the electrode 207 by sputtering, the electrode 210 is formed on the second thermoelectric conversion material thin film 208 at a position facing the electrode 207. Thus, after patterning with a resist, the insulating layer 209 and the electrode 210 are sequentially formed by sputtering.
 さらに、第1の熱電変換材料薄膜204、絶縁層206及び電極207、第2の熱電変換材料薄膜208、絶縁層209及び電極210を構成単位として、スパッタ成膜による積層を多数回繰り返す。 Furthermore, the first thermoelectric conversion material thin film 204, the insulating layer 206 and the electrode 207, the second thermoelectric conversion material thin film 208, the insulating layer 209, and the electrode 210 are used as constituent units, and lamination by sputtering is repeated many times.
 第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、209、電極207、210、下部電極205を製膜する際のスパッタリングは、非晶質バッファ層202及び結晶質バッファ層203の製膜時と同様、RFスパッタリング装置又はDCスパッタリング装置を使用し、1.0×10-5Pa以下の超高真空状態下でArガスを導入し、各層に対応する構成材料のターゲットを用いてスパッタ成膜する。このときの第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208は、アモルファス構造、多結晶構造、面直配向膜のいずれの構造でもよい。 Sputtering for forming the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, the insulating layers 206 and 209, the electrodes 207 and 210, and the lower electrode 205 is performed by the amorphous buffer layer 202 and the crystalline material. As in the case of forming the buffer layer 203, using an RF sputtering apparatus or a DC sputtering apparatus, Ar gas was introduced under an ultrahigh vacuum state of 1.0 × 10 −5 Pa or less, and the constituent materials corresponding to the respective layers were Sputter deposition is performed using a target. The first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 at this time may have any structure of an amorphous structure, a polycrystalline structure, and a plane-oriented film.
 第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208は、各薄膜において熱処理により結晶化が生じる最低膜厚以上でかつ結晶化に伴う応力歪みによる膜破壊が生じる最低膜厚未満の膜厚、例えば1nm以上1μm以下の膜厚に形成する。 The first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are each not less than the minimum film thickness at which crystallization is caused by heat treatment in each thin film and less than the minimum film thickness at which film breakage due to stress strain accompanying crystallization occurs. The film thickness is, for example, 1 nm or more and 1 μm or less.
 構成単位の積層を終了した後、積層体の最上部(図3においては第2の熱電変換材料薄膜208)に、上部電極211をスパッタ成膜する。 After completing the stacking of the structural units, the upper electrode 211 is formed by sputtering on the top of the stacked body (second thermoelectric conversion material thin film 208 in FIG. 3).
 全ての層を製膜した後、アニール処理を行い、結晶化を行う。アニール処理の際の加熱温度は、概ね800℃程度で行うことができる。加熱温度は、第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208を構成するフルホイスラー合金等の立方晶系の結晶構造を有する熱電変換材料の結晶化に十分な温度でかつ熱分解が起こらない温度範囲で行えばよく、300℃以上1000℃以下で行うことが好ましい。 After forming all the layers, annealing is performed and crystallization is performed. The heating temperature during the annealing treatment can be approximately 800 ° C. The heating temperature is a temperature sufficient for crystallization of a thermoelectric conversion material having a cubic crystal structure such as a full-Heusler alloy constituting the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 and heat. What is necessary is just to perform in the temperature range which does not decompose | disassemble, and it is preferable to carry out at 300 to 1000 degreeC.
 このようにアニール処理することで、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、209は、その直下に存在する基体220の各配向領域の結晶配向と同じ結晶配向で結晶化し、基体220の結晶配向の周期が、その上の積層体に承継される。 By performing the annealing process in this way, the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, and the insulating layers 206 and 209 have the same crystal orientation as the respective orientation regions of the base body 220 existing immediately below. Crystallization is performed with the crystal orientation, and the period of the crystal orientation of the substrate 220 is inherited by the stacked body thereon.
 このため、基体220の単結晶基板201の露出面((111)配向領域)の直上に位置する、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、209の領域では、(111)の結晶配向で結晶化し((111)配向領域)、基体201における結晶質バッファ層203の直上に位置する、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、209の領域では、(100)の結晶配向で結晶化する((100)配向領域)。これにより、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208、絶縁層206、209には、各配向領域の境界が、基体220の配向領域間の境界に沿って形成される。 For this reason, the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, and the insulating layers 206 and 209 are located immediately above the exposed surface ((111) orientation region) of the single crystal substrate 201 of the base body 220. In the region, the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film are crystallized with a crystal orientation of (111) ((111) orientation region) and are located immediately above the crystalline buffer layer 203 in the substrate 201. In the region of 208 and the insulating layers 206 and 209, crystallization is performed with the crystal orientation of (100) ((100) orientation region). As a result, the first thermoelectric conversion material thin film 204, the second thermoelectric conversion material thin film 208, and the insulating layers 206 and 209 are formed with boundaries between the alignment regions along the boundaries between the alignment regions of the substrate 220. .
 また、基体220をシードとした第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208において、フルホイスラー合金等の熱電変換材料の結晶成長が起こるため、各結晶配向の領域内では高い結晶性が維持される。なお、熱処理は、各層の製膜時に基板温度を上げた状態で結晶成長させた場合でも同様の構造を作製することが可能であるが、上記したように、各層を製膜後にアニール処理を行う方が望ましい。 Further, in the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 using the base body 220 as a seed, crystal growth of a thermoelectric conversion material such as a full Heusler alloy occurs. Crystallinity is maintained. The heat treatment can produce a similar structure even when crystal growth is performed with the substrate temperature raised at the time of forming each layer, but as described above, annealing is performed after forming each layer. Is preferable.
 このように、温度勾配を印加することにより電位差を生じるゼーベック効果を有する熱電変換材料を用いた第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208を積層し、さらに最上部に上部電極211を成膜することで、例えばモジュールの片側の面を熱源により加熱し、他方面を水冷もしくは空冷で冷却する等によりモジュール全体に温度差が印加されたときに、下部電極205と接続することで、電力として取り出すことが出来る。 As described above, the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 using the thermoelectric conversion material having the Seebeck effect that generates the potential difference by applying the temperature gradient are stacked, and further, the uppermost portion is the upper portion. By forming the electrode 211, for example, when one surface of the module is heated by a heat source and the other surface is cooled by water cooling or air cooling, a temperature difference is applied to the entire module, thereby connecting to the lower electrode 205. Thus, it can be taken out as electric power.
 一般に、熱電変換材料の熱電変換効率は、下記式(1)で表される性能指数(ZT)によって規定される。 Generally, the thermoelectric conversion efficiency of a thermoelectric conversion material is defined by a figure of merit (ZT) represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、Tは絶対温度、Sはゼーベック係数、ρは電気抵抗率、κは熱伝導率を示す。 In the above formula (1), T is the absolute temperature, S is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity.
 すなわち、優れた熱電性能を得るためには、下記式(2)で示す出力因子を向上させるとともに、熱伝導率を低減することが有効である。 That is, in order to obtain excellent thermoelectric performance, it is effective to improve the output factor represented by the following formula (2) and reduce the thermal conductivity.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 出力因子を高めるには、フルホイスラー合金薄膜の結晶性を向上させることが有効である。一方、上記したように、出力因子の向上に伴い電気抵抗率が低減すると、必然的にキャリアが寄与する熱伝導率が高くなる。このため、熱電性能を向上させるためには結晶格子が寄与する熱伝導率を低くする必要がある。 高 め る To increase the output factor, it is effective to improve the crystallinity of the full Heusler alloy thin film. On the other hand, as described above, when the electrical resistivity is reduced as the output factor is improved, the thermal conductivity contributed by the carrier is inevitably increased. For this reason, in order to improve the thermoelectric performance, it is necessary to lower the thermal conductivity contributed by the crystal lattice.
 図4に、図3に示す薄膜熱電変換モジュール200の基体220を上面からみた模式図を示す。図4に示すように、基体220の表面には、単結晶基板201((111)配向領域)と結晶質バッファ層203((100)配向領域)とが、それぞれ幅Dで形成されており、これらが高温部から低温部に向かう熱流の方向(熱電変換時に薄膜熱電変換モジュール200に印加される温度勾配の方向)に交互に隣接して、周期構造が形成されている。 FIG. 4 shows a schematic view of the substrate 220 of the thin film thermoelectric conversion module 200 shown in FIG. 3 as viewed from above. As shown in FIG. 4, a single crystal substrate 201 ((111) orientation region) and a crystalline buffer layer 203 ((100) orientation region) are formed with a width D on the surface of the base 220, These are alternately adjacent to the direction of the heat flow from the high temperature part to the low temperature part (the direction of the temperature gradient applied to the thin film thermoelectric conversion module 200 during thermoelectric conversion) to form a periodic structure.
 第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208では、このような基体220の周期構造に沿って形成される各配向領域の界面が、熱流の進行方向に対して垂直方向に延在するように形成されている。このため、薄膜熱電変換モジュール200では、これらの界面により熱流が効率的に散乱され、第1の熱電変換材料薄膜204や第2の熱電変換材料薄膜208の熱流方向の熱伝導率が低減される。このため、上記式(1)で示されるように、熱伝導率が低減した分、熱電変換の性能指数(ZT)が高められる。 In the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, the interface between the alignment regions formed along the periodic structure of the substrate 220 is perpendicular to the direction of heat flow. It is formed to extend. Therefore, in the thin film thermoelectric conversion module 200, the heat flow is efficiently scattered by these interfaces, and the heat conductivity in the heat flow direction of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 is reduced. . For this reason, as shown by the above formula (1), the figure of merit (ZT) of thermoelectric conversion is increased as much as the thermal conductivity is reduced.
 これ以降、図4で示される単結晶基板201の露出面の幅と非晶質バッファ層202及び結晶質バッファ層203の幅を基体の周期Dと呼び、その周期によって形成された、基体220上のフルホイスラー合金薄膜の各配向領域の熱流方向の幅をフルホイスラー合金の粒径と定義する。なお、実施例1では、単結晶基板201の露出面の幅と非晶質バッファ層202及び結晶質バッファ層203の幅を、同じ幅の周期Dで形成した例を示したが、本発明は必ずしもこれらが同じ幅で形成される形態に限定されず、単結晶基板201の露出面を、非晶質バッファ層202及び結晶質バッファ層203の幅より大きい幅で形成した形態や、小さい幅で形成した形態であってもよい。 Hereinafter, the width of the exposed surface of the single crystal substrate 201 shown in FIG. 4 and the widths of the amorphous buffer layer 202 and the crystalline buffer layer 203 are referred to as a base period D, and the base 220 is formed by the period. The width of each orientation region of the full Heusler alloy thin film in the heat flow direction is defined as the grain size of the full Heusler alloy. In Example 1, although the width of the exposed surface of the single crystal substrate 201 and the widths of the amorphous buffer layer 202 and the crystalline buffer layer 203 are formed with the same width period D, the present invention shows It is not necessarily limited to the form in which these are formed with the same width, and the exposed surface of the single crystal substrate 201 is formed with a width larger than the width of the amorphous buffer layer 202 and the crystalline buffer layer 203 or with a small width. The formed form may be sufficient.
 次に、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208の粒径と、熱伝導率との関係について説明する。熱伝導率の結晶粒径依存性は、下記式(3)で表わされる。 Next, the relationship between the particle size of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 and the thermal conductivity will be described. The crystal grain size dependence of thermal conductivity is expressed by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(3)において、κbは粒子内部の熱伝導率、Riは界面抵抗、dは結晶粒径を示している。 In the above formula (3), κb is the thermal conductivity inside the particle, Ri is the interface resistance, and d is the crystal grain size.
 図5を用いて、基体上に形成された第1の熱電変換材料薄膜の構成をさらに詳細に説明する。図5に示すように、単結晶基板110上には、互いに結晶配向面の異なる領域101と領域102が形成されている。領域101、領域102上に形成された第1の熱電変換材料薄膜103において、領域101の上に形成された領域104と、領域102の上に形成された領域105には、それぞれ互いに異なる結晶配向性を有する柱状粒が形成されている。 The configuration of the first thermoelectric conversion material thin film formed on the substrate will be described in more detail with reference to FIG. As shown in FIG. 5, a region 101 and a region 102 having crystal orientation planes different from each other are formed on the single crystal substrate 110. In the first thermoelectric conversion material thin film 103 formed on the region 101 and the region 102, the region 104 formed on the region 101 and the region 105 formed on the region 102 have different crystal orientations. Columnar grains having properties are formed.
 各柱状粒の幅は、基体120の幅方向において、それぞれその直下に存在する領域101、領域102の幅と略同等の幅となる。このため、基体120に形成する領域101、領域102の大きさを制御することにより、第1の熱電変換材料薄膜103の柱状粒の幅を任意に制御することができる。また基体220をシードとした第1の熱電変換材料薄膜103での結晶成長が起こるため、柱状粒内では高い結晶性が維持される。 The width of each columnar grain is substantially the same as the width of the region 101 and the region 102 existing immediately below in the width direction of the substrate 120. For this reason, the width of the columnar grains of the first thermoelectric conversion material thin film 103 can be arbitrarily controlled by controlling the sizes of the region 101 and the region 102 formed in the base 120. Further, since crystal growth occurs in the first thermoelectric conversion material thin film 103 using the substrate 220 as a seed, high crystallinity is maintained in the columnar grains.
 薄膜熱電変換モジュール200において、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208の各配向領域の柱状粒の幅を、粒径dとして評価すると、上記式(3)で示されるように、粒径が低減するほど熱伝導率が低減するため、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208において所望の熱伝導率が得られるように、各柱状粒の幅(各配向領域の幅)を見積もればよい。 In the thin film thermoelectric conversion module 200, when the widths of the columnar grains in each orientation region of the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 are evaluated as the particle diameter d, the above formula (3) is obtained. As described above, since the thermal conductivity decreases as the particle size decreases, the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208 have each columnar grain so that a desired thermal conductivity can be obtained. What is necessary is just to estimate the width (the width of each alignment region).
 熱電変換材料薄膜204、208の柱状粒の幅(各配向領域の幅)は、各領域の直下に存在する基体120の周期Dの幅と同等となるため、第1の熱電変換材料薄膜204、第2の熱電変換材料薄膜208において狙いの柱状粒の幅を得られるように、基体120の周期Dの幅を調整することで、所望の熱伝導率を得ることができる。 Since the width of the columnar grains of the thermoelectric conversion material thin films 204 and 208 (the width of each orientation region) is equal to the width of the period D of the base 120 existing immediately below each region, the first thermoelectric conversion material thin film 204, The desired thermal conductivity can be obtained by adjusting the width of the period D of the base 120 so that the target columnar grain width can be obtained in the second thermoelectric conversion material thin film 208.
 図6に、MgOシード膜(厚さ3nm)上にFeVAl薄膜(200nm)が製膜された積層体の断面のTEM画像を示す。 FIG. 6 shows a TEM image of a cross section of a laminate in which an Fe 2 VAl thin film (200 nm) is formed on an MgO seed film (thickness 3 nm).
 なお、図6に示すMgOシード膜は、互いに異なる結晶配向面を有する配向領域が、交互に隣接して形成されており、図6は、このMgOシード膜上にFeVAlをスパッタリングにより製膜した後、所定の温度でアニール処理して得られた積層体の断面画像である。 In the MgO seed film shown in FIG. 6, alignment regions having different crystal orientation planes are alternately formed adjacent to each other, and FIG. 6 shows the formation of Fe 2 VAl on this MgO seed film by sputtering. It is a cross-sectional image of the laminated body obtained by annealing at a predetermined temperature.
 図6において、FeVAl薄膜には、互いに異なる結晶配向面を有する柱状粒が、交互に隣接して形成されている。この柱状粒は、MgOシード膜の各配向領域の結晶粒に沿って、その直上の方向に成長しており、MgOシード膜の各配向領域の境界に沿って、FeVAl薄膜の柱状粒の境界としての粒界が形成されている。従って、基体の各配向領域の幅(例えば図4においては、単結晶基板201が露出している領域の幅と、結晶質バッファ層203が形成されている領域の幅)を制御することにより、その上に成長するホイスラー合金薄膜等の熱電変換材料薄膜の粒径(柱状粒の幅)が制御可能であることが確認できる。なお、柱状粒は、FeVAl薄膜において、各柱状粒の結晶配向性に対応した配向領域を形成するものであり、柱状粒の粒界は、各配向領域の境界と同義である。 In FIG. 6, columnar grains having different crystal orientation planes are alternately formed adjacent to each other in the Fe 2 VAl thin film. The columnar grains grow in the direction immediately above the crystal grains of each orientation region of the MgO seed film, and the columnar grains of the Fe 2 VAl thin film extend along the boundaries of the orientation regions of the MgO seed film. A grain boundary as a boundary is formed. Therefore, by controlling the width of each orientation region of the substrate (for example, in FIG. 4, the width of the region where the single crystal substrate 201 is exposed and the width of the region where the crystalline buffer layer 203 is formed) It can be confirmed that the particle size (width of columnar grains) of the thermoelectric conversion material thin film such as a Heusler alloy thin film grown thereon can be controlled. The columnar grains form an alignment region corresponding to the crystal orientation of each columnar grain in the Fe 2 VAl thin film, and the grain boundary of the columnar grains is synonymous with the boundary of each alignment region.
 図7に、基体の周期Dと、フルホイスラー合金からなる熱電変換材料薄膜(以下、フルホイスラー合金薄膜と示す。)の粒径との関係を示す。フルホイスラー合金薄膜の粒径は、基体の周期Dとほぼ同等の値となっており、基体の周期Dを変調することで、フルホイスラー合金薄膜において任意の粒径が得られることが確認できる。なお、図7において、フルホイスラー合金薄膜の粒径は、フルホイスラー合金薄膜をTEMで撮像したTEM画像から実測される、柱状粒の幅である。 FIG. 7 shows the relationship between the period D of the substrate and the particle size of a thermoelectric conversion material thin film (hereinafter referred to as a full Heusler alloy thin film) made of a full Heusler alloy. The particle diameter of the full-Heusler alloy thin film is almost the same value as the period D of the substrate, and by modulating the period D of the substrate, it can be confirmed that an arbitrary particle size can be obtained in the full-Heusler alloy thin film. In FIG. 7, the particle size of the full Heusler alloy thin film is the width of the columnar grain measured from a TEM image obtained by imaging the full Heusler alloy thin film with a TEM.
 図8に、フルホイスラー合金薄膜の粒径と熱伝導率との関係を示す。図8において、黒丸印は、周期Dの周期構造を有する基体上に形成されたフルホイスラー合金薄膜の熱伝導率の測定値(実施例)であり、三角印は、単結晶基板上に、周期構造を形成することなく直接フルホイスラー合金薄膜を積層したときの、フルホイスラー合金薄膜の熱伝導率の測定値(比較例)である。また、図8における「フルホイスラー合金の粒径」は、実施例については、フルホイスラー合金薄膜の柱状粒の幅をTEM画像から実測した値であり、従来例については、フルホイスラー合金薄膜の粒子の径を、TEM画像から実測した値である。 FIG. 8 shows the relationship between the particle size of the full-Heusler alloy thin film and the thermal conductivity. In FIG. 8, black circles are measured values (examples) of the thermal conductivity of the full Heusler alloy thin film formed on the substrate having the periodic structure of the period D, and the triangular marks are the period on the single crystal substrate. It is a measured value (comparative example) of the thermal conductivity of a full Heusler alloy thin film when a full Heusler alloy thin film is laminated | stacked directly, without forming a structure. Further, “full Heusler alloy particle size” in FIG. 8 is a value obtained by actually measuring the width of the columnar grain of the full Heusler alloy thin film from the TEM image in the example, and in the conventional example, the particle of the full Heusler alloy thin film. Is a value measured from a TEM image.
 図8に示すように、フルホイスラー合金薄膜の粒径が小さくなるほど熱伝導率は明らかに減少しており、粒径が100nm程度のときの熱伝導率は、粒径が10μm程度(比較例)のときの熱伝導率と比較して、1/6程度となる4.5W/mKまで減少した。 As shown in FIG. 8, the smaller the particle size of the full Heusler alloy thin film, the more clearly the thermal conductivity decreases. When the particle size is about 100 nm, the thermal conductivity is about 10 μm (comparative example). Compared with the thermal conductivity at that time, it decreased to 4.5 W / mK, which is about 1/6.
 なお、柱状粒の境界の数を増加させると、熱伝導率が低減すると同時に、電気抵抗率も上昇する。このため、粒径の減少に伴う電気抵抗率上昇の影響を次に図9において評価する。 When the number of columnar grain boundaries is increased, the thermal conductivity is reduced and the electrical resistivity is also increased. For this reason, the influence of the increase in electrical resistivity accompanying the decrease in particle size is next evaluated in FIG.
 図9は、フルホイスラー合金薄膜の粒径と、熱伝導率と電気抵抗率の積算値との関係を示す。熱伝導率と電気抵抗率の積算値は、フルホイスラー合金薄膜の粒径の減少に伴い単調に減少しており、フルホイスラー合金薄膜の粒径の減少(粒界数の増加)に伴う電気抵抗率の上昇は、熱伝導率と電気抵抗率の積算値には、殆ど影響がなく、粒径を小さくすることで、上記式(1)より、フルホイスラー合金薄膜の性能指数(ZT)が向上することが確認できる。 FIG. 9 shows the relationship between the particle size of the full-Heusler alloy thin film and the integrated values of thermal conductivity and electrical resistivity. The integrated values of thermal conductivity and electrical resistivity decrease monotonically with decreasing grain size of the full Heusler alloy thin film, and electrical resistance with decreasing grain size (increasing the number of grain boundaries) of the full Heusler alloy thin film. The increase in rate has little effect on the integrated value of thermal conductivity and electrical resistivity, and by reducing the particle size, the figure of merit (ZT) of the full Heusler alloy thin film is improved from the above formula (1). It can be confirmed.
 上記した実施例1に係る薄膜型熱電変換モジュール200は、基体220の表面に、結晶配向が互いに異なる二種以上の配向領域が形成されており、この基体220上に積層された第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208には、結晶配向が互いに異なる二種以上の配向領域が、基体220の配向領域毎に形成され、またこれらの配向領域間には、基体の配向領域間の境界に沿って延在する境界が形成されている。 In the thin film thermoelectric conversion module 200 according to the first embodiment described above, two or more types of orientation regions having different crystal orientations are formed on the surface of the base body 220, and the first thermoelectric layer laminated on the base body 220 is formed. In the conversion material thin film 204 and the second thermoelectric conversion material thin film 208, two or more types of alignment regions having different crystal orientations are formed for each alignment region of the substrate 220, and between these alignment regions, A boundary extending along the boundary between the alignment regions is formed.
 この様に、基体の周期構造と、この基体の周期構造に従って結晶成長した熱電変換材料薄膜(フルホイスラー合金薄膜)とを組み合わせることで、高い出力因子を維持したまま熱伝導率を低減する事が可能となり、薄膜型熱電変換モジュールの変換効率を向上させる事が可能となる。 In this way, by combining the periodic structure of the substrate and the thermoelectric conversion material thin film (full Heusler alloy thin film) grown according to the periodic structure of the substrate, the thermal conductivity can be reduced while maintaining a high output factor. It becomes possible, and it becomes possible to improve the conversion efficiency of a thin film type thermoelectric conversion module.
 例えば図3に示す薄膜型熱電変換モジュール200において、基体の周期Dを30nmに設定した薄膜型熱電変換モジュール200の熱電変換効率は、低温熱源50℃、高温熱源200℃に設定したとき、約4.0%であった。なお、このとき、第1の熱電変換材料薄膜204及び第2の熱電変換材料薄膜208としは、FeVAlのSi及びTiによる置換体に代えて、P型熱電変換材料薄膜(第1の熱電変換材料薄膜204)として、Fe:V:Al=2:1:1であるFeVAlのFeを約2%多くしたものを用い、N型熱電変換材料薄膜(第2の熱電変換材料薄膜208)として、FeVAlのFeを約2%少なくしたものを使用した。 For example, in the thin film type thermoelectric conversion module 200 shown in FIG. 3, the thermoelectric conversion efficiency of the thin film type thermoelectric conversion module 200 with the substrate period D set to 30 nm is about 4 when the low temperature heat source is set to 50 ° C. and the high temperature heat source is set to 200 ° C. 0.0%. At this time, as the first thermoelectric conversion material thin film 204 and the second thermoelectric conversion material thin film 208, a P-type thermoelectric conversion material thin film (first thermoelectric conversion material thin film) is used instead of a substitute of Fe 2 VAl with Si and Ti. As the conversion material thin film 204), an Fe 2 VAl Fe of about 2% Fe: V: Al = 2: 1: 1 is used, and an N-type thermoelectric conversion material thin film (second thermoelectric conversion material thin film 208) is used. ) Fe 2 VAl with about 2% less Fe was used.
 一方、単結晶基板201上に、非晶質バッファ層202、結晶質バッファ層203を形成せずに第1の熱電変換材料薄膜204を形成し、それ以外は、図3に示す薄膜型熱電変換モジュール200と同様の構成とした薄膜型熱電変換モジュールでは、熱電変換効率が約0.2%であった。すなわち、基体220に周期構造を形成した構造では、周期構造を形成していない構造と比較して、熱電変換効率が3.8%上昇した。 On the other hand, on the single crystal substrate 201, the first thermoelectric conversion material thin film 204 is formed without forming the amorphous buffer layer 202 and the crystalline buffer layer 203. Otherwise, the thin film type thermoelectric conversion shown in FIG. The thin film thermoelectric conversion module having the same configuration as that of the module 200 has a thermoelectric conversion efficiency of about 0.2%. That is, in the structure in which the periodic structure is formed on the base body 220, the thermoelectric conversion efficiency is increased by 3.8% compared to the structure in which the periodic structure is not formed.
 図10は、実施例2に係る薄膜型熱電変換モジュール300の一例を示す模式的断面図である。図10において、単結晶基板301には、非晶質バッファ層302、結晶質バッファ層303がこの順で埋設されている。非晶質バッファ層302及び結晶質バッファ層303は、単結晶基板301の幅方向に間隔Dを空けて複数列埋設されており、結晶質バッファ層303の表面が、単結晶基板301の表面とともに平坦な表面を形成するように設けられ、基体320が構成されている。 FIG. 10 is a schematic cross-sectional view illustrating an example of the thin film thermoelectric conversion module 300 according to the second embodiment. In FIG. 10, an amorphous buffer layer 302 and a crystalline buffer layer 303 are embedded in this order in a single crystal substrate 301. The amorphous buffer layer 302 and the crystalline buffer layer 303 are embedded in a plurality of rows at intervals D in the width direction of the single crystal substrate 301, and the surface of the crystalline buffer layer 303 is combined with the surface of the single crystal substrate 301. A base 320 is formed so as to form a flat surface.
 このように平坦に形成された基体320の表面には、第1の熱電変換材料薄膜304が形成されており、この上に絶縁層306及び電極307、第2の熱電変換材料薄膜308、絶縁層309及び電極310がこの順で積層されている。これら第1の熱電変換材料薄膜304、絶縁層306及び電極307、第2の熱電変換材料薄膜308、絶縁層309及び電極310を積層単位として周期構造が形成されている。 A first thermoelectric conversion material thin film 304 is formed on the surface of the base 320 formed flat in this way, on which an insulating layer 306 and an electrode 307, a second thermoelectric conversion material thin film 308, an insulating layer are formed. 309 and the electrode 310 are stacked in this order. A periodic structure is formed using the first thermoelectric conversion material thin film 304, the insulating layer 306 and the electrode 307, the second thermoelectric conversion material thin film 308, the insulating layer 309 and the electrode 310 as a lamination unit.
 単結晶基板301の一方の端部には下部電極305が、単結晶基板301上に形成された周期構造の最上層(図10においては第2の熱電変換材料薄膜308上)には上部電極311がそれぞれ設けられており、これら下部電極305、上部電極311により、モジュールの電力が取り出せるように構成されている。 A lower electrode 305 is provided at one end of the single crystal substrate 301, and an upper electrode 311 is provided on the uppermost layer (on the second thermoelectric conversion material thin film 308 in FIG. 10) of the periodic structure formed on the single crystal substrate 301. Are provided, and the lower electrode 305 and the upper electrode 311 are configured so that the power of the module can be taken out.
 実施例2の薄膜熱電変換モジュール300によれば、上記構造を採用することにより、フルホイスラー合金薄膜304の膜厚が、非晶質バッファ層302の膜厚と結晶質バッファ層303の膜厚の合計膜厚よりも小さい場合でも、基体320と、この基体320上に形成された積層体の周期構造を有する薄膜型熱電変換モジュール300を得ることができる。また、実施例2の薄膜熱電変換モジュール300によれば、第1の熱電変換材料薄膜304を、表面がフラットに形成された基体320上に形成できるため、薄膜熱電変換モジュール300の最表面の平坦性が高められ、製品としての信頼性を向上させることができる。 According to the thin film thermoelectric conversion module 300 of the second embodiment, by adopting the above structure, the film thickness of the full Heusler alloy thin film 304 is set to the film thickness of the amorphous buffer layer 302 and the film thickness of the crystalline buffer layer 303. Even when it is smaller than the total film thickness, the thin film thermoelectric conversion module 300 having the base 320 and the periodic structure of the laminate formed on the base 320 can be obtained. Further, according to the thin film thermoelectric conversion module 300 of the second embodiment, the first thermoelectric conversion material thin film 304 can be formed on the base 320 having a flat surface, so that the outermost surface of the thin film thermoelectric conversion module 300 is flat. And the reliability as a product can be improved.
 なお、各層の機能及び構成材料は、実施例1の薄膜熱電変換モジュール200(図3参照)と同様であり、その説明は省略する。 The functions and constituent materials of each layer are the same as those of the thin film thermoelectric conversion module 200 (see FIG. 3) of the first embodiment, and the description thereof is omitted.
 図10に示す薄膜熱電変換モジュール300は、単結晶基板301をイオンミリング法により研磨して形成した凹部に、非晶質バッファ層302と結晶質バッファ層303をスパッタ成膜した後、実施例1と同様にして、基体320上に第1の熱電変換材料薄膜304、絶縁層306及び電極307、第2の熱電変換材料薄膜308、絶縁層309及び電極310、下部電極305、上部電極311をスパッタ成膜することにより得ることができる。 In the thin film thermoelectric conversion module 300 shown in FIG. 10, an amorphous buffer layer 302 and a crystalline buffer layer 303 are formed by sputtering in a recess formed by polishing a single crystal substrate 301 by an ion milling method. Similarly, the first thermoelectric conversion material thin film 304, the insulating layer 306 and the electrode 307, the second thermoelectric conversion material thin film 308, the insulating layer 309 and the electrode 310, the lower electrode 305, and the upper electrode 311 are sputtered on the substrate 320. It can be obtained by forming a film.
 図11は、実施例3に係る薄膜熱電変換モジュール400の一例を示す概略断面図である。図11において、単結晶基板401上には、非晶質バッファ層402と配向性制御層404とが、互いに隣接して交互に積層されており、非晶質バッファ層402上には結晶質バッファ層403が、配向性制御層404上には結晶質バッファ層405がそれぞれ積層されている。 FIG. 11 is a schematic cross-sectional view illustrating an example of the thin film thermoelectric conversion module 400 according to the third embodiment. In FIG. 11, an amorphous buffer layer 402 and an orientation control layer 404 are alternately stacked adjacent to each other on a single crystal substrate 401, and the crystalline buffer layer 402 is formed on the amorphous buffer layer 402. The crystalline buffer layer 405 is laminated on the orientation control layer 404 and the layer 403.
 非晶質バッファ層402は、その上側に形成される層に、単結晶基板401の結晶配向性が伝達されないようにするための層である。また、配向性制御層404は、例えば配向性制御層404の上側に形成される層に、単結晶基板201の結晶配向性を伝達し、これにより配向性制御層404の上側に形成される層の結晶配向面を、結晶質バッファ層403の結晶配向面と異なるものとするための層である。 The amorphous buffer layer 402 is a layer for preventing the crystal orientation of the single crystal substrate 401 from being transmitted to the layer formed on the upper side. In addition, the orientation control layer 404 transmits the crystal orientation of the single crystal substrate 201 to, for example, a layer formed on the upper side of the orientation control layer 404, thereby forming a layer formed on the upper side of the orientation control layer 404. This is a layer for making the crystal orientation plane different from the crystal orientation plane of the crystalline buffer layer 403.
 配向性制御層404としては、その上に形成される結晶質バッファ層405の結晶配向面を、結晶質バッファ層403の結晶配向面と異なるものとすることができればよく、例えば、単結晶基板401の結晶配向面を結晶質バッファ層405に伝達できるものとして、Fe、Co、Ag、Ptや、これらの混合物からなる層とすることができる。 As the orientation control layer 404, it is only necessary that the crystal orientation plane of the crystalline buffer layer 405 formed thereon can be different from the crystal orientation plane of the crystalline buffer layer 403. For example, the single crystal substrate 401 The crystal orientation plane can be transferred to the crystalline buffer layer 405 and can be a layer made of Fe, Co, Ag, Pt, or a mixture thereof.
 非晶質バッファ層402及び結晶質バッファ層403からなる積層体と、配向性制御層404及び結晶質バッファ層405からなる積層体とは、単結晶基板401上に周期Dで交互に隣接するように設けられており、これにより平坦な表面を有する基体420が構成されている。 The stacked body including the amorphous buffer layer 402 and the crystalline buffer layer 403 and the stacked body including the orientation control layer 404 and the crystalline buffer layer 405 are alternately adjacent to each other with a period D on the single crystal substrate 401. Thus, a base body 420 having a flat surface is formed.
 基体420上には、第1の熱電変換材料薄膜407、絶縁層408及び電極409、第2の熱電変換材料薄膜410、絶縁層412及び電極411がこの順で積層されている。これら第1の熱電変換材料薄膜407、絶縁層408及び電極409、第2の熱電変換材料薄膜410、絶縁層412及び電極411を積層単位として周期構造が形成されている。 On the base 420, a first thermoelectric conversion material thin film 407, an insulating layer 408 and an electrode 409, a second thermoelectric conversion material thin film 410, an insulating layer 412 and an electrode 411 are laminated in this order. A periodic structure is formed using the first thermoelectric conversion material thin film 407, the insulating layer 408 and the electrode 409, the second thermoelectric conversion material thin film 410, the insulating layer 412 and the electrode 411 as a lamination unit.
 単結晶基板401の一方の端部には下部電極406が設けられており、単結晶基板401上に形成された周期構造の最上層(図11においては第2の熱電変換材料薄膜410上)には上部電極413がそれぞれ設けられており、これら下部電極406、上部電極413により、モジュールの電力が取り出せるように構成されている。 A lower electrode 406 is provided at one end of the single crystal substrate 401, and is formed on the uppermost layer (on the second thermoelectric conversion material thin film 410 in FIG. 11) of the periodic structure formed on the single crystal substrate 401. Each is provided with an upper electrode 413, and the lower electrode 406 and the upper electrode 413 are configured so that the power of the module can be taken out.
 なお、配向性制御層404以外の各層の機能及び構成材料は、実施例1の薄膜熱電変換モジュール200(図3参照)と同様であり、その説明は省略する。 The functions and constituent materials of each layer other than the orientation control layer 404 are the same as those of the thin film thermoelectric conversion module 200 (see FIG. 3) of Example 1, and the description thereof is omitted.
 図11に示す薄膜熱電変換モジュール400の具体的な構成例を以下に説明する。薄膜型熱電変換モジュール400において、単結晶基板401としては、面直方向に(111)の結晶配向面を有する厚さ0.5mmのMgO基板が用いられている。非晶質バッファ層402は、厚さ約5nmのTa層であり、結晶質バッファ層403は、(100)の結晶配向面を有する厚さ約3nmのMgOである。配向性制御層404は、(111)の結晶配向面を有する厚さ約5nmのFe層であり、結晶質バッファ層405は、(111)の結晶配向面を有する厚さ約3nmのMgO層である。 A specific configuration example of the thin film thermoelectric conversion module 400 shown in FIG. 11 will be described below. In the thin film thermoelectric conversion module 400, as the single crystal substrate 401, a 0.5 mm thick MgO substrate having a (111) crystal orientation plane in the perpendicular direction is used. The amorphous buffer layer 402 is a Ta layer having a thickness of about 5 nm, and the crystalline buffer layer 403 is MgO having a (100) crystal orientation plane and a thickness of about 3 nm. The orientation control layer 404 is an Fe layer having a (111) crystal orientation plane and a thickness of about 5 nm, and the crystalline buffer layer 405 is an MgO layer having a (111) crystal orientation plane and a thickness of about 3 nm. is there.
 これにより、基体420の表面には、結晶質バッファ層403の(100)の結晶配向面を有する領域((100)配向領域)と、単結晶基板401の結晶配向と同じ結晶配向を有する結晶質バッファ層405の(111)の結晶配向面を有する領域((111)配向領域)が、周期Dで交互に形成される。 As a result, on the surface of the base body 420, the crystalline buffer layer 403 has a crystalline region having the same crystal orientation as the region having the (100) crystal orientation plane ((100) orientation region) and the crystal orientation of the single crystal substrate 401. The regions having the (111) crystal orientation plane of the buffer layer 405 ((111) orientation regions) are alternately formed with a period D.
 第1の熱電変換材料薄膜407及び第2の熱電変換材料薄膜410は、それぞれFeVAlの一部を、それぞれSiとTiで置換してなるフルホイスラー合金により形成されており、いずれも厚さ200nm程度の薄膜である。なお、第1の熱電変換材料薄膜407及び第2の熱電変換材料薄膜410の膜厚は、実施例1と同様、各薄膜において熱処理により結晶化が生じる最低膜厚以上でかつ結晶化に伴う応力歪みによる膜破壊が生じる最低膜厚未満に設定することが好ましく、具体的には、1nm以上1μm以下の膜厚とすることが好ましい。 The first thermoelectric conversion material thin film 407 and the second thermoelectric conversion material thin film 410 are each formed of a full Heusler alloy obtained by substituting a part of Fe 2 VAl with Si and Ti, respectively, and each has a thickness. It is a thin film of about 200 nm. The film thicknesses of the first thermoelectric conversion material thin film 407 and the second thermoelectric conversion material thin film 410 are equal to or greater than the minimum film thickness at which crystallization is caused by heat treatment in each thin film, as in Example 1, and the stress accompanying crystallization. It is preferable to set the film thickness to be less than the minimum film thickness at which film breakage due to strain occurs. Specifically, the film thickness is preferably 1 nm to 1 μm.
 絶縁層408、412は、いずれも厚さ約3nmのMgO層であり、下部電極406、上部電極413、電極409及び電極411は、いずれも厚さ約3nmのCu層である。 The insulating layers 408 and 412 are all MgO layers having a thickness of about 3 nm, and the lower electrode 406, the upper electrode 413, the electrode 409, and the electrode 411 are all Cu layers having a thickness of about 3 nm.
 上記した薄膜型熱電変換モジュール400において、第1の熱電変換材料薄膜407、第2の熱電変換材料薄膜410、絶縁層408、412は、いずれも、その直下に存在する基体420の結晶配向面と同じ結晶配向面で成長している。 In the thin film type thermoelectric conversion module 400 described above, the first thermoelectric conversion material thin film 407, the second thermoelectric conversion material thin film 410, and the insulating layers 408 and 412 are all formed with the crystal orientation plane of the base 420 existing immediately below. Grows in the same crystal orientation plane.
 すなわち、基体420における結晶質バッファ層403の直上に位置する、第1の熱電変換材料薄膜407、第2の熱電変換材料薄膜410、絶縁層408、412の領域では、積層体形成後のアニール処理により、(100)の結晶配向で結晶化し、基体420における結晶質バッファ層405の直上に位置する、第1の熱電変換材料薄膜407、第2の熱電変換材料薄膜410、絶縁層408、412の領域では、積層体形成後のアニール処理により、(111)の結晶配向で結晶化する。これにより、第1の熱電変換材料薄膜407、第2の熱電変換材料薄膜410、絶縁層408、412には、それぞれの結晶配向の領域の境界が、基体420の表面に形成された各配向領域の境界に沿って形成されている。 That is, in the region of the first thermoelectric conversion material thin film 407, the second thermoelectric conversion material thin film 410, and the insulating layers 408 and 412 located immediately above the crystalline buffer layer 403 in the base body 420, the annealing treatment after forming the stacked body Of the first thermoelectric conversion material thin film 407, the second thermoelectric conversion material thin film 410, and the insulating layers 408 and 412 which are crystallized with a crystal orientation of (100) and are located immediately above the crystalline buffer layer 405 in the substrate 420. In the region, crystallization is performed with a crystal orientation of (111) by annealing after the stacked body is formed. As a result, the first thermoelectric conversion material thin film 407, the second thermoelectric conversion material thin film 410, and the insulating layers 408 and 412 have respective crystallographic regions whose boundaries are formed on the surface of the base 420. It is formed along the boundary.
 上記した薄膜熱電変換モジュール400は、実施例1の薄膜熱電変換モジュール200と同様の方法で作成することができ、その説明は省略する。 The above-described thin film thermoelectric conversion module 400 can be produced by the same method as the thin film thermoelectric conversion module 200 of Example 1, and the description thereof is omitted.
 例えば、基体の周期Dを30nmに設定した薄膜型熱電変換モジュール400の熱電変換効率は、低温熱源50℃、高温熱源200℃に設定したとき、約4.0%であった。 For example, the thermoelectric conversion efficiency of the thin film thermoelectric conversion module 400 with the substrate period D set to 30 nm was about 4.0% when the low temperature heat source was set to 50 ° C. and the high temperature heat source was set to 200 ° C.
 なお、このとき、第1の熱電変換材料薄膜407及び第2の熱電変換材料薄膜410としは、FeVAlのSi及びTiによる置換体に代えて、P型熱電変換材料薄膜(第1の熱電変換材料薄膜407)として、Fe:V:Al=2:1:1であるFeVAlのFeを約2%多くしたものを用い、N型熱電変換材料薄膜(第2の熱電変換材料薄膜410)として、FeVAlのFeを約2%少なくしたものを使用した。 At this time, the first thermoelectric conversion material thin film 407 and the second thermoelectric conversion material thin film 410 are replaced with a P-type thermoelectric conversion material thin film (first thermoelectric conversion material thin film) instead of a substitute of Fe 2 VAl with Si and Ti. as the conversion material thin film 407), Fe: V: Al = 2: 1: the Fe 2 VAl of Fe is one used after about 2% more, N-type thermoelectric conversion material film (second thermoelectric conversion material thin film 410 ) Fe 2 VAl with about 2% less Fe was used.
 一方、単結晶基板401上に、非晶質バッファ層402、結晶質バッファ層403、配向制御層404、結晶質バッファ層405を形成せずに第1の熱電変換材料薄膜407を形成し、それ以外は、上記した薄膜型熱電変換モジュール400と同様の構成とした薄膜型熱電変換モジュールでは、熱電変換効率が約0.2%であった。すなわち、基体420に周期構造を形成した構造では、周期構造を形成していない構造と比較して、熱電変換効率が3.8%上昇した。 On the other hand, the first thermoelectric conversion material thin film 407 is formed on the single crystal substrate 401 without forming the amorphous buffer layer 402, the crystalline buffer layer 403, the orientation control layer 404, and the crystalline buffer layer 405. In the thin film type thermoelectric conversion module having the same configuration as the above thin film type thermoelectric conversion module 400, the thermoelectric conversion efficiency was about 0.2%. That is, in the structure in which the periodic structure is formed on the base body 420, the thermoelectric conversion efficiency is increased by 3.8% compared to the structure in which the periodic structure is not formed.
 実施例3の薄膜熱電変換モジュール400によれば、第1の熱電変換材料薄膜407を、表面が平坦に形成された基体420上に形成できるため、薄膜熱電変換モジュール400の最表面の平坦性が高められ、製品としての信頼性を向上させることができる。 According to the thin film thermoelectric conversion module 400 of Example 3, since the first thermoelectric conversion material thin film 407 can be formed on the base 420 having a flat surface, the flatness of the outermost surface of the thin film thermoelectric conversion module 400 is improved. The reliability of the product can be improved.
200、300、400…薄膜熱電変換モジュール
201、301、401…単結晶基板
202、302、402…非晶質バッファ層
203、303、403、405…結晶質バッファ層
404…配向性制御層
120、220、320、420…基体
204、304、407…第1の熱電変換材料薄膜
206、209、306、309、408、412…絶縁層
208、308、410…第2の熱電変換材料薄膜
207、210、307、310、409、411…電極
205、305、406…下部電極
211、311、413…上部電極
101、102、104、105…領域
D…周期
200, 300, 400 ... thin film thermoelectric conversion modules 201, 301, 401 ... single crystal substrates 202, 302, 402 ... amorphous buffer layers 203, 303, 403, 405 ... crystalline buffer layer 404 ... orientation control layer 120, 220, 320, 420 ... base 204, 304, 407 ... first thermoelectric conversion material thin film 206, 209, 306, 309, 408, 412 ... insulating layer 208, 308, 410 ... second thermoelectric conversion material thin film 207, 210 , 307, 310, 409, 411 ... electrodes 205, 305, 406 ... lower electrodes 211, 311, 413 ... upper electrodes 101, 102, 104, 105 ... region D ... period

Claims (13)

  1.  結晶配向が互いに異なる二種以上の配向領域を表面に有する基体と、
     前記基体上に形成された、立方晶系の結晶構造を有する第1の熱電変換材料薄膜と、
     前記第1の熱電変換材料薄膜上に形成された絶縁層と、
     前記絶縁層上に形成された、立方晶系の結晶構造を有する第2の熱電変換材料薄膜と、
     前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜に接合する電極と、を有しており、
     前記第1の熱電変換材料薄膜、前記第2の熱電変換材料薄膜及び前記絶縁層には、前記基体の各配向領域の位置に対応する位置に、結晶配向が互いに異なる二種以上の配向領域が隣接して形成されており、
     前記第1の熱電変換材料薄膜、前記第2の熱電変換材料薄膜及び前記絶縁層には、前記配向領域間の境界が、前記基体の配向領域間の境界に沿って形成されていることを特徴とする薄膜熱電変換モジュール。
    A substrate having two or more types of alignment regions with different crystal orientations on the surface;
    A first thermoelectric conversion material thin film having a cubic crystal structure formed on the substrate;
    An insulating layer formed on the first thermoelectric conversion material thin film;
    A second thermoelectric conversion material thin film having a cubic crystal structure formed on the insulating layer;
    An electrode bonded to the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film,
    The first thermoelectric conversion material thin film, the second thermoelectric conversion material thin film, and the insulating layer have two or more types of alignment regions having different crystal orientations at positions corresponding to the positions of the alignment regions of the substrate. Are formed adjacent to each other,
    In the first thermoelectric conversion material thin film, the second thermoelectric conversion material thin film, and the insulating layer, a boundary between the alignment regions is formed along a boundary between the alignment regions of the substrate. Thin film thermoelectric conversion module.
  2. 請求項1に記載の薄膜熱電変換モジュールにおいて、
     前記基体が、単結晶基板と、前記単結晶基板表面の一部の領域に形成された、該単結晶基板と異なる結晶配向を有するバッファ層とからなることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 1,
    The thin film thermoelectric conversion module, wherein the base is composed of a single crystal substrate and a buffer layer formed in a partial region of the surface of the single crystal substrate and having a crystal orientation different from that of the single crystal substrate.
  3. 請求項2に記載の薄膜熱電変換モジュールにおいて、
     前記単結晶基板及び前記バッファ層が、ペロブスカイト構造、岩塩構造及びスピネル構造からなる群から選択されるいずれかの結晶構造を有する絶縁体であることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 2,
    The thin film thermoelectric conversion module, wherein the single crystal substrate and the buffer layer are insulators having any crystal structure selected from the group consisting of a perovskite structure, a rock salt structure, and a spinel structure.
  4. 請求項1に記載の薄膜熱電変換モジュールにおいて、
     前記基体が、前記単結晶基板と、該単結晶基板上に隣接して形成された、結晶配向が互いに異なる二種以上のバッファ層とからなることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 1,
    The thin film thermoelectric conversion module, wherein the base is composed of the single crystal substrate and two or more types of buffer layers formed adjacently on the single crystal substrate and having different crystal orientations.
  5. 請求項4に記載の薄膜熱電変換モジュールにおいて、
     前記バッファ層がペロブスカイト構造、岩塩構造、スピネル構造からなる群から選択されるいずれかの結晶構造を有する絶縁体であることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 4,
    The thin film thermoelectric conversion module, wherein the buffer layer is an insulator having any crystal structure selected from the group consisting of a perovskite structure, a rock salt structure, and a spinel structure.
  6. 請求項1に記載の薄膜熱電変換モジュールにおいて、
     前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜は、Fe、V,Ru、Cr、Mn、Nb、Ti、Zr、Hf、Co、Irからなる群から選択される少なくとも一種の元素と、Al、Si、Ga、Ge、Sn、Inからなる群から選択される少なくとも一種の元素と、を組み合わせてなるホイスラー合金からなることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 1,
    The first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film are at least one selected from the group consisting of Fe, V, Ru, Cr, Mn, Nb, Ti, Zr, Hf, Co, and Ir. A thin film thermoelectric conversion module comprising a Heusler alloy formed by combining an element and at least one element selected from the group consisting of Al, Si, Ga, Ge, Sn, and In.
  7. 請求項1に記載の薄膜熱電変換モジュールにおいて、
     前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜が、フルホイスラー合金からなることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 1,
    The thin film thermoelectric conversion module, wherein the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film are made of a full Heusler alloy.
  8. 請求項1に記載の薄膜熱電変換モジュールにおいて、
     前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜の膜厚が1nm以上10μm以下であることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 1,
    The thin film thermoelectric conversion module, wherein the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film have a thickness of 1 nm to 10 μm.
  9. 請求項1に記載の薄膜熱電変換モジュールにおいて、
     前記基体の表面には、結晶配向が互いに異なる前記配向領域同士が、熱電変換時に印加される温度勾配の方向に交互に隣接するように設けられていることを特徴とする薄膜熱電変換モジュール。
    In the thin film thermoelectric conversion module according to claim 1,
    The thin film thermoelectric conversion module, wherein the alignment regions having different crystal orientations are provided on the surface of the base so as to be alternately adjacent to each other in a direction of a temperature gradient applied during thermoelectric conversion.
  10.  単結晶基板上にバッファ層を形成する工程と、
     前記単結晶基板上に形成された前記バッファ層をアニール処理して、結晶配向が互いに異なる二種以上の配向領域を表面に有する基体を形成する工程と、
     前記基体上に、立方晶系の結晶構造を有する第1の熱電変換材料薄膜を形成する工程と、
     前記第1の熱電変換材料薄膜上に絶縁層及び電極を形成する工程と、
     前記絶縁層及び前記電極上に、立方晶系の結晶構造を有する第2の熱電変換材料薄膜を形成する工程と、
     前記基体上に形成された前記第1の熱電変換材料薄膜、前記絶縁層、前記第2の熱電変換材料薄膜を有する積層体をアニール処理する工程と、を有することを特徴とする薄膜熱電変換モジュールの製造方法。
    Forming a buffer layer on the single crystal substrate;
    Annealing the buffer layer formed on the single crystal substrate to form a substrate having two or more types of orientation regions with different crystal orientations on the surface;
    Forming a first thermoelectric conversion material thin film having a cubic crystal structure on the substrate;
    Forming an insulating layer and an electrode on the first thermoelectric conversion material thin film;
    Forming a second thermoelectric conversion material thin film having a cubic crystal structure on the insulating layer and the electrode;
    A thin film thermoelectric conversion module comprising: annealing the laminated body having the first thermoelectric conversion material thin film, the insulating layer, and the second thermoelectric conversion material thin film formed on the substrate. Manufacturing method.
  11. 請求項10に記載の薄膜熱電変換モジュールの製造方法において、
     前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜を、Fe、V,Ru、Cr、Mn、Nb、Ti、Zr、Hf、Co、Irからなる群から選択される少なくとも一種の元素と、Al、Si、Ga、Ge、Sn、Inからなる群から選択される少なくとも一種の元素と、を組み合わせてなるホイスラー合金で形成することを特徴とする薄膜熱電変換モジュールの製造方法。
    In the manufacturing method of the thin film thermoelectric conversion module according to claim 10,
    The first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film are at least one selected from the group consisting of Fe, V, Ru, Cr, Mn, Nb, Ti, Zr, Hf, Co, and Ir. A method for manufacturing a thin film thermoelectric conversion module, comprising: forming a Heusler alloy formed by combining an element and at least one element selected from the group consisting of Al, Si, Ga, Ge, Sn, and In.
  12. 請求項10に記載の薄膜熱電変換モジュールの製造方法において、
     前記第1の熱電変換材料薄膜及び前記第2の熱電変換材料薄膜を、該第1の熱電変換材料薄膜及び該第2の熱電変換材料薄膜において熱処理により結晶化が生じる最低膜厚以上でかつ結晶化に伴う応力歪みによる膜破壊が生じる最低膜厚未満の膜厚に形成することを特徴とする薄膜熱電変換モジュールの製造方法。
    In the manufacturing method of the thin film thermoelectric conversion module according to claim 10,
    The first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film have a thickness greater than or equal to a minimum film thickness that causes crystallization by heat treatment in the first thermoelectric conversion material thin film and the second thermoelectric conversion material thin film. A method for producing a thin film thermoelectric conversion module, characterized in that the film is formed to a thickness less than the minimum thickness at which film breakage occurs due to stress strain accompanying the conversion.
  13. 請求項10に記載の薄膜熱電変換モジュールの製造方法において、
     前記アニール処理を、300℃以上1000℃以下の温度で熱処理して行うことを特徴とする薄膜熱電変換モジュールの製造方法。
    In the manufacturing method of the thin film thermoelectric conversion module according to claim 10,
    A method of manufacturing a thin film thermoelectric conversion module, wherein the annealing treatment is performed by heat treatment at a temperature of 300 ° C. or higher and 1000 ° C. or lower.
PCT/JP2015/053813 2015-02-12 2015-02-12 Thin-film thermoelectric conversion module and method for manufacturing same WO2016129082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053813 WO2016129082A1 (en) 2015-02-12 2015-02-12 Thin-film thermoelectric conversion module and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053813 WO2016129082A1 (en) 2015-02-12 2015-02-12 Thin-film thermoelectric conversion module and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016129082A1 true WO2016129082A1 (en) 2016-08-18

Family

ID=56615445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053813 WO2016129082A1 (en) 2015-02-12 2015-02-12 Thin-film thermoelectric conversion module and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016129082A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287037A1 (en) * 2017-03-30 2018-10-04 Tdk Corporation Laminate and thermoelectric conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522861A (en) * 2011-02-22 2013-06-13 パナソニック株式会社 Thermoelectric conversion element and manufacturing method thereof
WO2013114592A1 (en) * 2012-02-01 2013-08-08 富士通株式会社 Thermoelectric conversion element and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522861A (en) * 2011-02-22 2013-06-13 パナソニック株式会社 Thermoelectric conversion element and manufacturing method thereof
WO2013114592A1 (en) * 2012-02-01 2013-08-08 富士通株式会社 Thermoelectric conversion element and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287037A1 (en) * 2017-03-30 2018-10-04 Tdk Corporation Laminate and thermoelectric conversion element
US10629796B2 (en) 2017-03-30 2020-04-21 Tdk Corporation Laminate and thermoelectric conversion element

Similar Documents

Publication Publication Date Title
US20130127293A1 (en) Method for producing piezoelectric thin-film element, piezoelectric thin-film element, and member for piezoelectric thin-film element
JP6907323B2 (en) Multilayer thin film and its preparation
WO2007020775A1 (en) Thermoelectric conversion device and cooling method and power generating method using same
JP5230116B2 (en) Method for forming highly oriented silicon thin film, method for manufacturing three-dimensional semiconductor element, and three-dimensional semiconductor element
WO2016153073A1 (en) Nitride thermoelectric conversion material and manufacturing method therefor and thermoelectric conversion element
JP6502193B2 (en) Silicon microcrystalline composite film, thermoelectric material and method for producing them
US20190198313A1 (en) Flexible Single-Crystal Semiconductor Heterostructures and Methods of Making Thereof
WO2016129082A1 (en) Thin-film thermoelectric conversion module and method for manufacturing same
US20110100408A1 (en) Quantum well module with low K crystalline covered substrates
US20100269879A1 (en) Low-cost quantum well thermoelectric egg-crate module
WO2012140971A1 (en) Perovskite-type manganese oxide thin film
KR101837828B1 (en) Thermoelectric material, method of fabricating the same, and thermoelectric device
JP3626169B2 (en) Thermoelectric conversion material and method for producing the same
CN101969096B (en) Nanostructured thermoelectric material and device and production method thereof
JP2018142564A (en) Thermoelectric conversion material and manufacturing method of the same
JP2015079881A (en) Structure of semiconductor device having p-type semiconductor layer composed of cuprous oxide film, and manufacturing method thereof
JPH11330569A (en) Thermoelectric transducer and its manufacture
JP5834871B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP7076096B2 (en) Silicon-based thin film and its manufacturing method
JP6177588B2 (en) Method for manufacturing metal oxide semiconductor substrate and method for manufacturing light-emitting device
JP2010087362A (en) Thermoelectric conversion material and manufacturing method thereof
JP6869590B2 (en) Thermoelectric structure, thermoelectric element and its manufacturing method
JP6910631B2 (en) Membrane structure and its manufacturing method
CN112864300A (en) Bismuth telluride-based alloy thin film-perovskite type oxide heterojunction composite thermoelectric material and preparation and application thereof
JP5472534B2 (en) Thermoelectric conversion structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP