WO2016128198A1 - Tof distance sensor - Google Patents

Tof distance sensor Download PDF

Info

Publication number
WO2016128198A1
WO2016128198A1 PCT/EP2016/051296 EP2016051296W WO2016128198A1 WO 2016128198 A1 WO2016128198 A1 WO 2016128198A1 EP 2016051296 W EP2016051296 W EP 2016051296W WO 2016128198 A1 WO2016128198 A1 WO 2016128198A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
distance sensor
substrate
charge carriers
gates
Prior art date
Application number
PCT/EP2016/051296
Other languages
German (de)
French (fr)
Inventor
Martin Popp
Original Assignee
Espros Photonics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espros Photonics Ag filed Critical Espros Photonics Ag
Priority to JP2017541848A priority Critical patent/JP6302146B1/en
Priority to KR1020177014106A priority patent/KR101828760B1/en
Priority to CN201680003613.8A priority patent/CN107003410B/en
Priority to EP16701177.4A priority patent/EP3191870B1/en
Publication of WO2016128198A1 publication Critical patent/WO2016128198A1/en
Priority to IL251735A priority patent/IL251735A/en
Priority to US15/596,293 priority patent/US9952324B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • TOF time of flight
  • the distance sensor according to the invention is a TOF distance sensor for detecting a distance to an object by receiving radiation reflected by the object from a radiation source modulated with a modulation frequency. It has a pixel matrix for recording a pixel image.
  • the pixel matrix consists of demodulation pixels which are designed for the backside reception of the radiation.
  • the demodulation pixels have a conversion region for the generation of charge carriers from the received radiation, as well as a separator for separating the charge carriers according to the modulation frequency, as well as a shutter for partitioning the conversion region from the separator with respect to the charge carriers and a shutter opening for the passage of the charge carriers Transformation area into the trermill.
  • the TOF range sensor can be designed so that in each case at least two demodulation pixels form a common aperture.
  • the common aperture can provide the advantage of increasing the sensitivity of the demodulation pixels and making the range sensor more effective.
  • the common aperture can also have the advantage that the Pixel sizes can be made smaller.
  • the pixel matrix can form the advantage of generating images, in particular 3-D images.
  • the formation of the demodulation pixel for the backside reception of the radiation means that the radiation incidence into the conversion area takes place from the side facing away from the separation device and the evaluation area.
  • the conversion range is from a thinned, e.g. 50 formed thick semiconductor layer, which forms on its front side the separator about in CCD technology.
  • the common aperture forms a closed periphery.
  • the demodulation pixels preferably each have an electronic evaluation range, with at least two demodulation pixels each forming a spatially common evaluation range.
  • demodulation pixels each form a common aperture.
  • demodulation pixels each form a spatially common evaluation range.
  • the apertures and evaluation areas preferably form a checkerboard pattern.
  • the pixel matrix is preferably substantially point-symmetrical with respect to the common aperture openings.
  • the pixel matrix is preferably substantially point-symmetrical in each case to the common evaluation regions. This can form the advantage that those charge carriers which were generated in the region below a demodulation pixel reach the demodulation pixel precisely for the separating device. This may provide the advantage that the carriers retain their location information relative to the single demodulation pixel. This can increase the resolution of the pixel matrix.
  • the conversion region comprises a doped substrate.
  • the conversion region comprises a transparent backside electrode.
  • the substrate is a semiconductor substrate.
  • the substrate is weakly n - doped. This can provide the advantage that the conversion region can be depleted, so that the electric photoelectric effect can be formed in it by radiation.
  • the separation device has a drift gate on the upper side of the substrate for attracting the charge carriers from the conversion region into the separation region.
  • the drift gate can also be formed by a plurality of drift gates, which in particular have an ever greater potential for attraction of the charge carriers in addition to the modulation gates.
  • a drift gate may be formed so that two modulation gates can be arranged at opposite locations.
  • the drift gate may be formed by the modulation gate (s), such as when the modulation gate (s) are applied with an additional, constant potential analogous to the drift gate.
  • the separating device has at least one, in particular two, modulation gates on the upper side of the substrate, in particular at opposite points of the drift gate, for alternately steering the charge carriers according to the modulation frequency from the drift gate to the modulation gates.
  • the separating device preferably has at least one, in particular two, storage gates on the upper side of the substrate, in each case assigned to the one or a modulation gate, for collecting the charge carriers directed to the assigned modulation gate.
  • the trermet device has at least one, in particular two transfer gates on the upper side of the substrate, in each case assigned to the one or a storage gate, for the shock-related transfer of the charge carriers collected at the storage gates to floating diffusion.
  • the separation device has at least one, in particular two floating, diffusion in the upper side of the substrate, in particular as n + doped well, respectively assigned to the one or a transfer gate, for receiving the charge carriers passed on by the transfer gates and for feeding them as voltage into the evaluation region.
  • said gates are separated from the substrate by a non-conductive layer.
  • the demodulation pixels form between aperture and gates, in particular between the diaphragm and the modulation gate, storage gate and transfer gate, a control channel for the charge carriers that can be controlled by the gates.
  • the gates control the charge carriers in the line channel in the manner of a CCD.
  • the line channel can provide meaningful backlighting which increases the efficiency of the demodulation pixel.
  • the separation device has a drift gate for attracting the charge carriers from the conversion region into the separation region, wherein the demodulation pixels forming a common diaphragm opening each form at least one common drift gate.
  • the common drift gate covers the region of the common aperture with substantially equal extension.
  • the common drift gate is supplemented by a driftgate individually assigned to the individual pixel.
  • the modulation gates are preferably assigned to an individually assigned drift gate.
  • the common drift gate consists of several common drift gates.
  • the diaphragm has a buried layer in the substrate.
  • the buried layer is a p + doped pSub layer.
  • the aperture forms a closed recess.
  • the evaluation area preferably has at least one source follower, reset switch and select transisor. Further features of the invention are indicated in the drawings.
  • Fig. 1 is a TOF range sensor system including object
  • 5 shows a pixel matrix of 6x6 demodulation pixels
  • FIG. 1 shows a TOF range sensor system 10 including object 22.
  • the object 22 is spaced from the TOF range sensor system 10.
  • the radiation source 20 is for example an LED or an arrangement of several LEDs.
  • the radiation source is driven by the electronic device 13, which operates the radiation source intensity modulated with a modulation frequency.
  • the radiation source emits, for example, monochromatic light 21, which is diffusely reflected on the object and impinges on the TOF distance sensor 40 as reflected radiation 23.
  • the received radiation generates in the TOF distance sensor a value course of induced photoelectrons and thus a signal curve for the received radiation.
  • the electronic device 13 and the TOF distance sensor 10 are integrated on a chip and implemented in a combined CMOS / CCD method.
  • the chip and the radiation source 20 are arranged on a common carrier 11 and surrounded by a housing 12.
  • the radiation source and the receiving device each have an optical device, not shown in the figure, which focuses in the direction of the space in which the removal of objects is to be determined.
  • the emitted radiation 21 has a wavelength of 860 nm and is pulsed with a sine signal or square wave signal of 20 MHz.
  • the reflected radiation received by the TOF range sensor 10 remains pulsed with a sine or square wave signal of 20 MHz and is out of phase with the modulation signal of the radiation emitted by the radiation source 20 by the time of the light path.
  • the phase shift between the transmitted and received square wave signal is twice the distance between the TOF range sensor and the object.
  • FIG. 2 shows a demodulation pixel 50 in schematic side section.
  • the lateral section follows in a non-proportional manner the section line 52 of the plan view of FIG. 3.
  • the demodulation pixel 50 has an approximately 50 micron thick, n-doped float zone silicon semiconductor substrate 61 with a surface resistivity of greater than or equal to 2000 ohm cm.
  • An aperture 80 is disposed between the gates and the transparent backside contact and shadows the storage gates, transfer gates and floating diffusion together with the underlying semiconductor substrate against the incident reflected radiation 23, the aperture having an aperture 81 in the region below the drift gate ,
  • the semiconductor substrate is depleted at least below the drift gate, in particular overall.
  • the drift gate is acted upon by a positive potential and forms a space charge zone in the semiconductor substrate.
  • the separator 70 includes the drift gate, the modulation gates, the storage gates, the transfer gates, the separation layer, the floating diffusion, the iris, the aperture, and the shutter and gate located substrate that is the same as the semiconductor substrate 61 in the conversion region 60
  • the conversion region 60 includes the semiconductor substrate 61, the backside electrode 62, and the aperture 80.
  • the substrate has a thickness of about 50 microns.
  • the photoelectrons are attracted to the drift gate by the space charge zone formed by the drift gate 71.
  • the drift gate has a potential of about 4V. The number of photoelectrons attracted is proportional to the received radiation intensity.
  • the modulation gates 73 can be acted upon by a modulated potential whose maximum lies between the potentials of the drift gate 71 and the storage gate 74 and whose minimum lies below that of the drift gate.
  • the potential of the modulation gate 73 modulates approximately between the values 0 V and 5 V.
  • the two modulation gates are operated to each other with inverse potentials, that is, the potential of one modulation gate is 0 V, if that of the other is positive and vice versa. Then one modulation gate is always provided with 0 V and the other modulation gate with 5 V potential.
  • a potential minimum, in this case 0 V leads to a potential barrier for the photoelectrons under the drift gate, so that no photoelectrons can reach the storage gate assigned to this modulation gate.
  • a potential maximum, in this case 5 V leads to an outflow of the photoelectrons under the drift gate past this modulation gate into its assigned storage gate.
  • the flux of the photoelectrons generated by the received radiation intensity is directed according to a switch.
  • the resulting flow of these photoelectrons under the modulation gates corresponds to a multiplication, that is to say a correlation of the corresponding sinusoidal signals or square-wave signals with the received radiation signal.
  • the sinusoidal or square wave signals here have the property of a correlating signal and are referred to here as a correlation signal.
  • the storage gates 74 are applied with a higher potential than the drift gate 71 and collect the photoelectrons 25 in accordance with the status of the modulation gates 73 mutually under.
  • the storage gates 74 have approximately the potential of 10 V.
  • the charges accumulated under the storage gates by the photoelectrons correspond to the correlation values.
  • the correlation values are thus present in the charge domain.
  • the accumulation of the photoelectrons under the corresponding storage gates corresponds to a temporal integration of the above-mentioned correlation of the correlation signal and the received radiation signal.
  • the potential of the modulation gates 73 is set to 0 V in order to form a potential barrier for the photoelectrons in the direction of the drift gate 71.
  • the potential of the transfer gates is raised to an average value, for example 6 V, in order to allow a conditional outflow of the photoelectrons in the direction of floating diffusion 76.
  • the positive potential of both storage gates 74 of about 10 V is lowered in parallel by means of a time ramp.
  • the changing added potential from the sinking positive potential applied to the storage gates and the negative potential of the charge below determines whether charge can flow off via the transfer gates 75.
  • the lowering process is divided into three phases. In a first phase of the time ramp, the said added potential is still more positive for both storage gates than the constant and equal positive potential of the transfer gates and it does not discharge any charge. In a subsequent second phase of the time ramp, the said added potential is more positive for a storage gate and more negative for the other storage gate than the constant and equal positive potential of the transfer gates.
  • the charge quantity of one charged floating diffusion is now converted into a corresponding voltage by means of source follower and further processed.
  • the source follower is part of the evaluation area of the demodulation pixel.
  • the evaluation area also includes a reset switch and a select transistor. From the corresponding voltage, the distance to the object can be calculated by means of a method. Such a method is described for example in EP 2 743 724 AI of the applicant.
  • FIG. 3 shows a demodulation pixel 50 in plan view.
  • the aperture 81 is covered by the approximately uniform first drift gate 72.
  • a second drift gate 71 overlaps electrically separately with the first drift gate.
  • the second and the first drift gate act as a single drift gate, wherein the second drift gate is applied to a higher potential than the first drift gate, so that photoelectrons are continued from the first to the second drift gate.
  • the demodulation pixel has two modulation gates 73 at opposite locations at one end of the second drift gate.
  • a respective storage gate 74 is arranged next to the modulation gates.
  • a transfer gate 75 is arranged in each case.
  • a respective floating diffusion 76 is arranged next to the transfer gates.
  • the floating diffusion are connected to the evaluation area and its source follower.
  • the section line 52 shows the schematic, non-proportional course of the side section of FIG. 2.
  • FIG. 4 shows four demodulation pixels 50 with a common aperture 82.
  • the demodulation pixels 50 arranged around the common aperture 82 correspond exactly to the demodulation pixel 50 shown in Fig. 3 and are each rotated by 90 °.
  • the common aperture 82 is superimposed on a common central drift gate 72 in the same shape.
  • Geometrically identical drawing objects correspond to the corresponding devices of FIG. 3.
  • FIG. 5 shows a pixel matrix 41 comprising 6 ⁇ 6 demodulation pixels 50.
  • the arrangement also forms common evaluation regions 91.
  • the common apertures 82 are each overlaid with a common central drift gate.
  • Geometrically identical drawing objects correspond to the corresponding devices of FIG. 4.
  • the backside electrode can by means of potential tunnel through the semiconductor substrate
  • the demodulation pixels can be implemented in analogue CCD technology and the evaluation ranges can be implemented in digital CMOS technology.
  • a method for the joint production of demodulation pixels (CCD) and evaluation range (CMOS) is described in Martin Popp, Beat De Coi, Marco Annese, US Pat. No. 8,802,566 B2 by the same Applicant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

The invention relates to a TOF distance sensor for detecting a distance to an object by receiving radiation which is reflected by the object and emanates from a radiated source modulated by a modulation frequency and having a pixel matrix for recording a pixel image. The pixel matrix consists of demodulation pixels which are designed to receive the radiation on the rear side. The demodulation pixels have a conversion region for generating charge carriers from the received radiation, and a separating device for separating the charge carriers according to the modulation frequency, and a diaphragm for partitioning the conversion region from the separating device with regard to the charge carriers and also a diaphragm opening to allow passage of the charge carriers from the conversion region into the separating device. The TOF distance sensor is designed such that in each case at least two demodulation pixels form a common diaphragm opening.

Description

TOF Entfernungssensor  TOF distance sensor
Die Erfindung betrifft einen TOF Entfernungssensor mit einem Pixelfeld The invention relates to a TOF distance sensor with a pixel field
Aus dem Stand der Technik sind TOF (Time of Flight) Entfernungssensoren bekannt, die die Phasenverschiebung von moduliertem Licht detektieren das auf ein Objekt ausgesandt und von diesem reflektiert wurde und die daraus die Entfernung zum Objekt ableiten. From the prior art TOF (time of flight) distance sensors are known which detect the phase shift of modulated light which has been emitted to and reflected by an object and which deduce therefrom the distance to the object.
Es ist Aufgabe der Erfindung, einen verbesserten Entfernungssensor bereit zu stellen. It is an object of the invention to provide an improved distance sensor.
Diese Aufgabe wird, ausgehend von einem Entfernungssensor der eingangs genannten Art, durch einen Entfernungssensor nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind in den weiteren abhängigen Ansprüchen angegeben. This object is achieved, starting from a distance sensor of the type mentioned, by a distance sensor according to claim 1. Advantageous embodiments are specified in the further dependent claims.
Der erfindungsgemäße Entfernungssensor ist ein TOF Entfernungssensor zur Erfassung einer Entfernung zu einem Objekt durch den Empfang von vom Objekt reflektierter Strahlung aus einer mit einer Modulationsfrequenz modulierten Strahlungsquelle. Er weist eine Pixelmatrix zur Aufnahme eines Pixelbildes auf. Die Pixelmatrix besteht aus Demodulationspixeln die zum rückseitigen Empfang der Strahlung ausgelegt sind. Die Demodulationspixel weisen einen Umwandlungsbereich zur Generation von Ladungsträgern aus der empfangenen Strahlung auf, sowie eine Trenneinrichtung zur Trennung der Ladungsträger entsprechend der Modulationsfrequenz, sowie eine Blende zur Abschottung des Umwandlungsbereichs von der Trenneinrichtung in Bezug auf die Ladungsträger und sowie eine Blendenöffnung zum Durchlass der Ladungsträger vom Umwandlungsbereich in die Trermeinrichtung. Vorzugsweise kann der TOF Entfernungssensor so ausgebildet sein, dass jeweils mindestens zwei Demodulationspixel eine gemeinsame Blendenöffnung ausbilden. The distance sensor according to the invention is a TOF distance sensor for detecting a distance to an object by receiving radiation reflected by the object from a radiation source modulated with a modulation frequency. It has a pixel matrix for recording a pixel image. The pixel matrix consists of demodulation pixels which are designed for the backside reception of the radiation. The demodulation pixels have a conversion region for the generation of charge carriers from the received radiation, as well as a separator for separating the charge carriers according to the modulation frequency, as well as a shutter for partitioning the conversion region from the separator with respect to the charge carriers and a shutter opening for the passage of the charge carriers Transformation area into the trermill. Preferably, the TOF range sensor can be designed so that in each case at least two demodulation pixels form a common aperture.
Die gemeinsame Blendenöffnung kann den Vorteil ausbilden, dass die Sensitivität der Demodulationspixel erhöht und der Entfernungssensor effektiver wird. Die gemeinsame Blendenöffnung kann auch den Vorteil aufweisen, dass die Pixelgrössen kleiner ausgestaltet werden können. Die Pixelmatrix kann den Vorteil ausbilden, Bilder, insbesondere 3-D-Bilder zu generieren. The common aperture can provide the advantage of increasing the sensitivity of the demodulation pixels and making the range sensor more effective. The common aperture can also have the advantage that the Pixel sizes can be made smaller. The pixel matrix can form the advantage of generating images, in particular 3-D images.
Die Ausbildung des Demodulationspixels zum rückseitigen Empfang der Strahlung bedeutet, dass der Strahlungseinfall in den Umwandlungsbereich von der der Trenneinrichtung und dem Auswertebereich abgewandten Seite erfolgt. Vorzugsweise ist der Umwandlungsbereich dazu von einer gedünnten, z.B. 50 um dicken Halbleiterschicht gebildet, die auf ihrer Vorderseite die Trenneinrichtung etwa in CCD Technologie ausbildet. The formation of the demodulation pixel for the backside reception of the radiation means that the radiation incidence into the conversion area takes place from the side facing away from the separation device and the evaluation area. Preferably, the conversion range is from a thinned, e.g. 50 formed thick semiconductor layer, which forms on its front side the separator about in CCD technology.
Vorzugsweise bildet die gemeinsame Blendenöffnung einen geschlossenen Umfang aus. Preferably, the common aperture forms a closed periphery.
Vorzugsweise weisen die Demodulationspixel jeweils einen elektronischen Auswertebereich auf, wobei jeweils mindestens zwei Demodulationspixel einen räumlich gemeinsamen Auswertebereich ausbilden. The demodulation pixels preferably each have an electronic evaluation range, with at least two demodulation pixels each forming a spatially common evaluation range.
Dies kann den Vorteil ausbilden, dass Teile des gemeinsamen Auswertebereichs gemeinsam genutzt werden und so Teile des Auswertebereichs reduziert werden können. This can form the advantage that parts of the common evaluation area are shared and thus parts of the evaluation area can be reduced.
Vorzugsweise bilden jeweils vier Demodulationspixel eine gemeinsame Blendenöffnung aus. Vorzugsweise bilden jeweils vier Demodulationspixel einen räumlich gemeinsamen Auswertebereich aus. Vorzugsweise bilden die Blendenöffnungen und Auswertebereiche ein Schachbrettmuster aus. Vorzugsweise ist die Pixelmatrix im Wesentlichen jeweils punktsymmetrisch zu den gemeinsamen Blendenöffnungen. Vorzugsweise ist die Pixelmatrix im Wesentlichen jeweils punktsymmetrisch zur den gemeinsamen Auswertebereichen. Dies kann den Vorteil ausbilden, dass diejenigen Ladungsträger, die im Bereich unterhalb eines Demodulationspixels generiert wurden, zur Trenneinrichtung genau dieses Demodulationspixels gelangen. Dies kann den Vorteil ausbilden, dass die Ladungsträger Ihre Ortsinformation in Bezug auf das einzelne Demodulationspixel behalten. Dies kann die Auflösung der Pixelmatrix erhöhen. Preferably, four demodulation pixels each form a common aperture. Preferably, four demodulation pixels each form a spatially common evaluation range. The apertures and evaluation areas preferably form a checkerboard pattern. The pixel matrix is preferably substantially point-symmetrical with respect to the common aperture openings. The pixel matrix is preferably substantially point-symmetrical in each case to the common evaluation regions. This can form the advantage that those charge carriers which were generated in the region below a demodulation pixel reach the demodulation pixel precisely for the separating device. This may provide the advantage that the carriers retain their location information relative to the single demodulation pixel. This can increase the resolution of the pixel matrix.
Vorzugsweise weist der Umwandlungsbereich ein dotiertes Substrat aus. Vorzugsweise weist der Umwandlungsbereich eine transparente Rückseitenelektrode aus. Vorzugsweise ist das Substrat ein Halbleitersubstrat. Vorzugsweise ist das Substrat schwach n - - dotiert. Dies kann den Vorteil ausbilden, dass der Umwandlungsbereich verarmt werden kann, sodass in ihm durch Strahlung der elektrische Photoeffekt ausgebildet werden kann. Preferably, the conversion region comprises a doped substrate. Preferably, the conversion region comprises a transparent backside electrode. Preferably, the substrate is a semiconductor substrate. Preferably, the substrate is weakly n - doped. This can provide the advantage that the conversion region can be depleted, so that the electric photoelectric effect can be formed in it by radiation.
Vorzugsweise weist die Trenneinrichtung ein Driftgate auf der Oberseite des Substrats zur Anziehung der Ladungsträger aus dem Umwandlungsbereich in den Trennbereich auf. Vorzugsweise kann das Driftgate auch durch mehrere Driftgates gebildet sein, die insbesondere zu den Modulationsgates hin ein immer stärkeres Potential zu Anziehung der Ladungsträger aufweisen. Vorzugsweise kann ein Driftgate so ausgebildet sein, dass zwei Modulationsgates an gegenüberliegenden Stellen angeordnet werden können. Gegebenenfalls kann das Driftgate durch das oder die Modulationsgates mit ausgebildet sein, etwa, wenn das oder die Modulationsgates mit einem zusätzlichen, konstanten Potential analog dem Driftgate beaufschlagt werden. Preferably, the separation device has a drift gate on the upper side of the substrate for attracting the charge carriers from the conversion region into the separation region. Preferably, the drift gate can also be formed by a plurality of drift gates, which in particular have an ever greater potential for attraction of the charge carriers in addition to the modulation gates. Preferably, a drift gate may be formed so that two modulation gates can be arranged at opposite locations. Optionally, the drift gate may be formed by the modulation gate (s), such as when the modulation gate (s) are applied with an additional, constant potential analogous to the drift gate.
Vorzugsweise weist die Trenneinrichtung mindestens ein, insbesondere zwei Modulationsgates auf der Oberseite des Substrats auf, insbesondere an gegenüberliegenden Stellen des Driftgates, zur abwechselnden Lenkung der Ladungsträger entsprechend der Modulationsfrequenz vom Driftgate hin zu den Modulationsgates. Preferably, the separating device has at least one, in particular two, modulation gates on the upper side of the substrate, in particular at opposite points of the drift gate, for alternately steering the charge carriers according to the modulation frequency from the drift gate to the modulation gates.
Vorzugsweise weist die Trenneinrichtung mindestens ein, insbesondere zwei Storagegates auf der Oberseite des Substrats auf, jeweils dem eine oder einem Modulationsgate zugeordnet, zur Sammlung der zu dem zugeordneten Modulationsgate hin gelenkten Ladungsträger. The separating device preferably has at least one, in particular two, storage gates on the upper side of the substrate, in each case assigned to the one or a modulation gate, for collecting the charge carriers directed to the assigned modulation gate.
Vorzugsweise weist die Trermeinrichtung mindestens ein, insbesondere zwei Transfergates auf der Oberseite des Substrats auf, jeweils dem einen oder einem Storagegate zugeordnet, zur stossweisen Weitergabe der an den Storagegates gesammelten Ladungsträger an Floating Diffusions. Preferably, the trermet device has at least one, in particular two transfer gates on the upper side of the substrate, in each case assigned to the one or a storage gate, for the shock-related transfer of the charge carriers collected at the storage gates to floating diffusion.
Vorzugsweise weist die Trenneinrichtung mindestens ein, insbesondere zwei Floating Diffusions in der Oberseite des Substrats auf, insbesondere als n+ dotiertes Well, jeweils dem einen oder einem Transfergate zugeordnet, zur Aufnahme der von den Transfergates weitergegebenen Ladungsträger und zur Einspeisung derselben als Spannung in den Auswertebereich. Vorzugsweise sind die genannten Gates vom Substrat durch eine nicht leitende Schicht getrennt. Vorzugsweise bilden die Demodulationspixel zwischen Blende und Gates, insbesondere zwischen Blende und Modulationsgate, Storagegate und Transfergate einen durch die Gates steuerbaren Leitungskanal für die Ladungsträger aus. Vorzugsweise steuern die Gates die Ladungsträger im Leitungskanal nach Art eines CCD. Der Leitungskanal kann eine sinnvolle Rückseitenbeleuchtung ermöglichen, die die Effizienz des Demodulationspixels erhöht. Vorzugsweise weist die Trenneinrichtung ein Driftgate zur Anziehung der Ladungsträger aus dem Umwandlungsbereich in den Trennbereich auf, wobei die eine gemeinsame Blendenöffnung ausbildenden Demodulationspixel jeweils mindestens ein gemeinsames Driftgate ausbilden. Vorzugsweise überdeckt das gemeinsame Driftgate den Bereich der gemeinsamen Blendenöffnung mit im Wesentlichen gleicher Ausdehnung. Vorzugsweise wird das gemeinsame Driftgate durch ein dem einzelnen Pixel individuell zugeordnetes Driftgate ergänzt. Vorzugsweise sind die Modulationsgates einem individuell zugeordneten Driftgate zugeordnet. Vorzugsweise besteht das gemeinsame Driftgate aus mehreren gemeinsamen Driftgates. Preferably, the separation device has at least one, in particular two floating, diffusion in the upper side of the substrate, in particular as n + doped well, respectively assigned to the one or a transfer gate, for receiving the charge carriers passed on by the transfer gates and for feeding them as voltage into the evaluation region. Preferably, said gates are separated from the substrate by a non-conductive layer. Preferably, the demodulation pixels form between aperture and gates, in particular between the diaphragm and the modulation gate, storage gate and transfer gate, a control channel for the charge carriers that can be controlled by the gates. Preferably, the gates control the charge carriers in the line channel in the manner of a CCD. The line channel can provide meaningful backlighting which increases the efficiency of the demodulation pixel. Preferably, the separation device has a drift gate for attracting the charge carriers from the conversion region into the separation region, wherein the demodulation pixels forming a common diaphragm opening each form at least one common drift gate. Preferably, the common drift gate covers the region of the common aperture with substantially equal extension. Preferably, the common drift gate is supplemented by a driftgate individually assigned to the individual pixel. The modulation gates are preferably assigned to an individually assigned drift gate. Preferably, the common drift gate consists of several common drift gates.
Dies kann den Vorteil ausbilden, dass der TOF Entfernungssensor noch effizienter wird. This can provide the benefit of making the TOF range sensor even more efficient.
Vorzugsweise weist die Blende einen vergrabenen Layer im Substrat auf. Vorzugsweise ist der vergrabene Layer ein p+ dotierter pSub Layer. Preferably, the diaphragm has a buried layer in the substrate. Preferably, the buried layer is a p + doped pSub layer.
Dies kann den Vorteil ausbilden, dass die generierten Elektronen zuverlässig vom Layer blockiert werden. Vorzugsweise bildet die Blendenöffnung eine geschlossene Ausnehmung aus. This can provide the advantage that the generated electrons are reliably blocked by the layer. Preferably, the aperture forms a closed recess.
Dies kann den Vorteil ausbilden, dass die Pixelgrösse besonders klein gestaltet werden kann. Der Junction FET Effekt kann dazu führen, dass die Blendenöffnung in Bezug auf die Substratdicke nicht beliebig klein ausgebildet werden kann. Durch die Zusammenlegung zu einer gemeinsamen Blendenöffnung kann die Pixelgrösse bei gegebener Mindestöffnung kleiner gestaltet werden als bei individuellen Blendenöffnungen. Vorzugsweise weist der Auswertebereich mindestens einen Source Follower, Reset Switch und Select Transisor auf. Weitere Merkmale der Erfindung sind in den Zeichnungen angegeben. This can provide the advantage that the pixel size can be made particularly small. The Junction FET effect can lead to the diaphragm opening not being arbitrarily small in relation to the substrate thickness. By merging into a common aperture, the pixel size can be made smaller for a given minimum opening than for individual apertures. The evaluation area preferably has at least one source follower, reset switch and select transisor. Further features of the invention are indicated in the drawings.
Die jeweils genannten Vorteile können sich auch für Merkmalskombinationen realisieren in deren Zusammenhang sie nicht genannt sind. Überblick über die Zeichnungen: The advantages mentioned in each case can also be realized for combinations of features in the context of which they are not mentioned. Overview of the drawings:
Ausfuhrungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher erläutert. Gleiche Bezugszeichen in den einzelnen Figuren bezeichnen dabei einander entsprechende Elemente. Es zeigen: Exemplary embodiments of the invention are illustrated in the drawings and will be explained in more detail below. The same reference numerals in the individual figures designate corresponding elements. Show it:
Fig. 1 ein TOF Entfernungsensor System samt Objekt Fig. 1 is a TOF range sensor system including object
Fig. 2 ein Demodulationspixel im schematischen Seitenschnitt 2 shows a demodulation pixel in schematic side section
Fig. 3 ein Demodulationspixel in Draufsicht 3 shows a demodulation pixel in plan view
Fig. 4 vier Demodulationspixel mit gemeinsamer Blendenöffnung 4 shows four demodulation pixels with a common aperture
Fig. 5 eine Pixelmatrix aus 6x6 Demodulationspixeln 5 shows a pixel matrix of 6x6 demodulation pixels
Detaillierte Beschreibung der Zeichnungen: Fig. 1 zeigt ein TOF Entfernungsensor System 10 samt Objekt 22. Detailed Description of the Drawings: FIG. 1 shows a TOF range sensor system 10 including object 22.
Das Objekt 22 ist vom TOF Entfernungssensor System 10 beabstandet. Die Strahlungsquelle 20 ist beispielsweise eine LED oder eine Anordnung von mehreren LEDs. Die Strahlungsquelle wird von der Elektronikeinrichtung 13 angesteuert, welche die Strahlungsquelle mit einer Modulationsfrequenz intensitätsmoduliert betreibt. Die Strahlungsquelle sendet beispielsweise monochromatisches Licht 21 aus, welches am Objekt diffus reflektiert wird und als reflektierte Strahlung 23 auf den TOF Entfernungssensor 40 trifft. Die empfangene Strahlung erzeugt in dem TOF Entfernungssensor einen Werteverlauf an induzierten Photoelektronen und damit einen Signalverlauf für die empfangene Strahlung. The object 22 is spaced from the TOF range sensor system 10. The radiation source 20 is for example an LED or an arrangement of several LEDs. The radiation source is driven by the electronic device 13, which operates the radiation source intensity modulated with a modulation frequency. The radiation source emits, for example, monochromatic light 21, which is diffusely reflected on the object and impinges on the TOF distance sensor 40 as reflected radiation 23. The received radiation generates in the TOF distance sensor a value course of induced photoelectrons and thus a signal curve for the received radiation.
Die Elektronikeinrichtung 13 und der TOF Entfernungsensor 10 sind auf einem Chip integriert und in einem kombinierten CMOS/CCD Verfahren ausgeführt. Der Chip und die Strahlungsquelle 20 sind an einem gemeinsamen Träger 11 angeordnet und von einem Gehäuse 12 umgeben. Die Strahlungsquelle und die Empfangseinrichtung weisen jeweils eine in der Figur nicht dargestellte Optikeinrichtung auf, die in Richtung des Raumes fokussiert, in dem die Entfernung von Objekten bestimmt werden soll. The electronic device 13 and the TOF distance sensor 10 are integrated on a chip and implemented in a combined CMOS / CCD method. The The chip and the radiation source 20 are arranged on a common carrier 11 and surrounded by a housing 12. The radiation source and the receiving device each have an optical device, not shown in the figure, which focuses in the direction of the space in which the removal of objects is to be determined.
Die ausgesandte Strahlung 21 weist eine Wellenlänge von 860 nm auf und ist mit einem Sinussignal oder Rechtecksignal von 20 MHz gepulst. Die vom TOF Entfernungsensor 10 empfangene reflektierte Strahlung bleibt mit einem Sinussignal oder Rechtecksignal von 20 MHz gepulst und ist gegenüber dem Modulationssignal der von der Strahlungsquelle 20 ausgesendeten Strahlung um die Zeit des Lichtweges phasenverschoben. Die Phasenverschiebung zwischen ausgesendetem und empfangenem Rechtecksignal entspricht der doppelten Entfernung zwischen TOF Entfernungsensor und Objekt. The emitted radiation 21 has a wavelength of 860 nm and is pulsed with a sine signal or square wave signal of 20 MHz. The reflected radiation received by the TOF range sensor 10 remains pulsed with a sine or square wave signal of 20 MHz and is out of phase with the modulation signal of the radiation emitted by the radiation source 20 by the time of the light path. The phase shift between the transmitted and received square wave signal is twice the distance between the TOF range sensor and the object.
Fig. 2 zeigt ein Demodulationspixel 50 im schematischen Seitenschnitt. FIG. 2 shows a demodulation pixel 50 in schematic side section.
Der Seitenschnitt folgt in nicht proportionaler Weise der Schnittlinie 52 der Draufsicht der Fig. 3. The lateral section follows in a non-proportional manner the section line 52 of the plan view of FIG. 3.
Das Demodulationspixel 50 weist ein etwa 50 Mikrometer dickes, n-dotiertes Float Zone Silizium Halbleitersubstrat 61 auf mit einem spezifischen elektrischen Flächenwiderstand von grösser oder gleich 2000 Ohm cm. An der Oberfläche des Halbleitersubstrats ist oberhalb einer nicht leitenden SiO Trennschicht 77 auf dem Substrat ein Driftgate 71 und beidseitig in symmetrischer Anordnung und jeweils voneinander mit Abstand jeweils ein Modulationsgate 73, ein Storagegate 74, ein Transfergate 75 und innerhalb des Substrats eine Floating Diffusion 76 angeordnet. Die dazu sinnvollen Layer und Kontakte sind nicht dargestellt. Eine Blende 80 ist zwischen den Gates und dem transparenten Rückseitenkontakt angeordnet und schattet die Storagegates, Transfergates und die Floating Diffusion samt dem unter den jeweiligen Gates liegenden Halbleitersubstrat gegenüber der einfallenden reflektierten Strahlung 23 ab, wobei die Blende eine Blendenöffnung 81 im Bereich unterhalb des Driftgates aufweist. Das Halbleitersubstrat ist mindestens unter dem Driftgate, insbesondere insgesamt verarmt. Das Driftgate ist mit positivem Potential beaufschlagt und bildet im Halbleitersubstrat eine Raumladungszone aus. Die Trenneinrichtung 70 umfasst das Driftgate, die Modulationsgates, die Storagegates, die Transfergates, die Trennschicht, die Floating Diffusions, die Blende, die Blendenöffnung sowie das zwischen Blende und den Gates befindliche Substrat, das von gleicher Art ist wie das Halbleitersubstrat 61 im Umwandlungsbereich 60. Der Umwandlungsbereich 60 umfasst das Halbleitersubstrat 61, die Rückseitenelektrode 62, und die Blende 80. Das Substrat weist eine Dicke von etwa 50 Mikrometer auf. The demodulation pixel 50 has an approximately 50 micron thick, n-doped float zone silicon semiconductor substrate 61 with a surface resistivity of greater than or equal to 2000 ohm cm. On the surface of the semiconductor substrate above a non-conductive SiO separation layer 77 on the substrate, a Driftgate 71 and on both sides in a symmetrical arrangement and each spaced from each other a modulation 73, a storage gate 74, a transfer gate 75 and within the substrate, a floating diffusion 76 is arranged , The meaningful layers and contacts are not shown. An aperture 80 is disposed between the gates and the transparent backside contact and shadows the storage gates, transfer gates and floating diffusion together with the underlying semiconductor substrate against the incident reflected radiation 23, the aperture having an aperture 81 in the region below the drift gate , The semiconductor substrate is depleted at least below the drift gate, in particular overall. The drift gate is acted upon by a positive potential and forms a space charge zone in the semiconductor substrate. The separator 70 includes the drift gate, the modulation gates, the storage gates, the transfer gates, the separation layer, the floating diffusion, the iris, the aperture, and the shutter and gate located substrate that is the same as the semiconductor substrate 61 in the conversion region 60 The conversion region 60 includes the semiconductor substrate 61, the backside electrode 62, and the aperture 80. The substrate has a thickness of about 50 microns.
Die über die transparente Rückseitenelektrode 62 in das Halbleitersubstrat 61 unter dem Driftgate eindringende reflektierte IR Strahlung 23 induziert im Halbleitersubstrat Elektronen-Lochpaare 24. Die Photoelektronen werden durch die vom Driftgate 71 ausgebildete Raumladungszone zum Driftgate hin angezogen. Das Driftgate weist ein Potential von etwa 4 V auf. Die Anzahl der angezogenen Photoelektronen ist proportional der empfangenen Strahlungsintensität. The reflected IR radiation 23 penetrating into the semiconductor substrate 61 under the drift gate via the transparent backside electrode 62 induces electron-hole pairs 24 in the semiconductor substrate. The photoelectrons are attracted to the drift gate by the space charge zone formed by the drift gate 71. The drift gate has a potential of about 4V. The number of photoelectrons attracted is proportional to the received radiation intensity.
Die Modulationsgates 73 können mit einem modulierten Potential beaufschlagt sein dessen Maximum zwischen den Potentialen des Driftgates 71 und des Storagegate 74 liegt und dessen Minimum unter dem des Driftgates liegt. Das Potential des Modulationsgates 73 moduliert etwa zwischen den Werten 0 V und 5 V. Die beiden Modulationsgates sind zueinander mit inversen Potentialen betrieben, das heisst, dass das Potential des einen Modulationsgates 0 V ist, wenn das des anderen positiv ist und umgekehrt. Dann ist stets das eine Modulationsgate mit 0 V und das andere Modulationsgate mit 5 V Potential versehen. Ein Potentialminimum, hier also 0 V, fuhrt zu einer Potentialbarriere für die Photoelektronen unter dem Driftgate, sodass keine Photoelektronen zum diesen Modulationsgate zugeordneten Storagegate gelangen können. Ein Potentialmaximum, hier also 5 V, führt zu einem Abfluss der Photoelektronen unter dem Driftgate an diesem Modulationsgate vorbei in dessen zugeordnete Storagegate. The modulation gates 73 can be acted upon by a modulated potential whose maximum lies between the potentials of the drift gate 71 and the storage gate 74 and whose minimum lies below that of the drift gate. The potential of the modulation gate 73 modulates approximately between the values 0 V and 5 V. The two modulation gates are operated to each other with inverse potentials, that is, the potential of one modulation gate is 0 V, if that of the other is positive and vice versa. Then one modulation gate is always provided with 0 V and the other modulation gate with 5 V potential. A potential minimum, in this case 0 V, leads to a potential barrier for the photoelectrons under the drift gate, so that no photoelectrons can reach the storage gate assigned to this modulation gate. A potential maximum, in this case 5 V, leads to an outflow of the photoelectrons under the drift gate past this modulation gate into its assigned storage gate.
Durch die Beaufschlagung der beiden Modulationsgates mit jeweils einem Potential das jeweils zueinander inversen Sinussignalen oder Rechtecksignalen entspricht, wird der Fluss der durch die empfangene Strahlungsintensität erzeugten Photoelektronen entsprechend einer Weiche gelenkt. Der so entstehende Fluss dieser Photoelektronen unter den Modulationsgates entspricht einer Multiplikation, das heisst einer Korrelation der entsprechenden Sinussignale oder Rechtecksignale mit dem empfangenen Strahlungssignal. Die Sinussignale oder Rechtecksignale haben hier die Eigenschaft eines korrelierenden Signals und sind hier als Korrelationssignal bezeichnet. Die Storagegates 74 sind mit einem höheren Potential als das Driftgate 71 beaufschlagt und sammeln die Photoelektronen 25 entsprechend dem Status der Modulationsgates 73 wechselseitig unter sich. Die Storagegates 74 haben etwa das Potential 10 V. Die unter den Storagegates durch die Photoelektronen angesammelten Ladungen entsprechen den Korrelationswerten. Die Korrelationswerte liegen somit in der Ladungsdomäne vor. Die Ansammlung der Photoelektronen unter den entsprechenden Storagegates entspricht einer zeitlichen Integration der oben erwähnten Korrelation von Korrelationssignal und empfangenen Strahlungssignal. By applying the two modulation gates, each having a potential corresponding to mutually inverse sinusoidal signals or rectangular signals, the flux of the photoelectrons generated by the received radiation intensity is directed according to a switch. The resulting flow of these photoelectrons under the modulation gates corresponds to a multiplication, that is to say a correlation of the corresponding sinusoidal signals or square-wave signals with the received radiation signal. The sinusoidal or square wave signals here have the property of a correlating signal and are referred to here as a correlation signal. The storage gates 74 are applied with a higher potential than the drift gate 71 and collect the photoelectrons 25 in accordance with the status of the modulation gates 73 mutually under. The storage gates 74 have approximately the potential of 10 V. The charges accumulated under the storage gates by the photoelectrons correspond to the correlation values. The correlation values are thus present in the charge domain. The accumulation of the photoelectrons under the corresponding storage gates corresponds to a temporal integration of the above-mentioned correlation of the correlation signal and the received radiation signal.
Zur Detektion der unter den Storagegates 74 angesammelten Photoelektronen 25 wird zum einen das Potential der Modulationsgates 73 auf 0 V gelegt, um eine Potentialbarriere für die Photoelektronen in Richtung Driftgate 71 zu bilden. Zum anderen wird das Potential der Transfergates auf einen mittleren Wert angehoben, beispielsweise 6 V, um einen bedingten Abfluss der Photoelektronen in Richtung Floating Diffusions 76 zu ermöglichen. For detecting the photoelectrons 25 accumulated under the storage gates 74, on the one hand the potential of the modulation gates 73 is set to 0 V in order to form a potential barrier for the photoelectrons in the direction of the drift gate 71. On the other hand, the potential of the transfer gates is raised to an average value, for example 6 V, in order to allow a conditional outflow of the photoelectrons in the direction of floating diffusion 76.
Nun wird das positive Potential beider Storagegates 74 von etwa 10 V mittels einer Zeitrampe parallel abgesenkt. Das sich dabei verändernde addierte Potential aus dem sinkenden an die Storagegates angelegten positiven Potential und dem negativen Potential der darunter befindlichen Ladung bestimmt, ob Ladung über die Transfergates 75 abfliessen kann. Der Absenkprozess teilt sich dabei in drei Phasen ein. In einer ersten Phase der Zeitrampe ist das genannte addierte Potential noch für beide Storagegates positiver als das konstant und gleich positive Potential der Transfergates und es fliest keine Ladung ab. In einer anschliessenden zweiten Phase der Zeitrampe ist das genannte addierte Potential für ein Storagegate positiver und für das andere Storagegate negativer als das konstant und gleich positive Potential der Transfergates. Dadurch fliesst Ladung unter dem Storagegate mit dem positiveren addierten Potential über das zugeordnete Transfergate in die zugeordnete Floating Diffusion ab, sodass das addierte Potential wieder gleich dem Potential des entsprechenden Transfergates ist. In einer abschliessenden dritten Phase der Zeitrampe sind die genannten addierten Potentiale beider Storagegates höher als die konstant gleichen Potentiale. Dadurch fliessen unter beiden Storagegates Ladungen über das jeweils zugeordnete Transfergate in die jeweils zugeordnete Floating Diffusion ab. Unmittelbar mit Beginn der dritten Phase wird die Zeitrampe gestoppt, d.h. das Potential der Storagegates wird nicht weiter abgesenkt, sodass im Wesentlichen nur der Ladungsabfluss aus der zweiten Phase relevant ist. Die nun im einen geladenen Floating Diffusion vorliegende Ladungsmenge entspricht somit der Differenz der Ladungsmenge aus den beiden Storagegates. Die Zeitrampe führt also eine Subtraktion der Ladungsmengen unter den beiden Storagegates durch. Die Ladungsmenge der einen geladenen Floating Diffusion entspricht nach Durchführung der oben beschriebenen Zeitrampe einem Wert der Phasendifferenz zwischen ausgesandter Strahlung 21 und reflektierter Strahlung 23. Now the positive potential of both storage gates 74 of about 10 V is lowered in parallel by means of a time ramp. The changing added potential from the sinking positive potential applied to the storage gates and the negative potential of the charge below determines whether charge can flow off via the transfer gates 75. The lowering process is divided into three phases. In a first phase of the time ramp, the said added potential is still more positive for both storage gates than the constant and equal positive potential of the transfer gates and it does not discharge any charge. In a subsequent second phase of the time ramp, the said added potential is more positive for a storage gate and more negative for the other storage gate than the constant and equal positive potential of the transfer gates. As a result, charge flows under the storage gate with the more positive added potential via the associated transfer gate in the associated floating diffusion, so that the added potential is equal again to the potential of the corresponding transfer gate. In a final third phase of the time ramp, the aforementioned added potentials of both storage gates are higher than the constant same potentials. As a result, charges flow under both storage gates via the respectively assigned transfer gate into the respective associated floating diffusion. Immediately at the beginning of the third phase, the time ramp is stopped, ie the potential of the storage gates is not further lowered, so that essentially only the charge discharge from the second phase is relevant. The now in a charged floating diffusion present The amount of charge thus corresponds to the difference in the amount of charge from the two storage gates. The time ramp thus performs a subtraction of the charge quantities under the two storage gates. The charge quantity of one charged floating diffusion corresponds to a value of the phase difference between emitted radiation 21 and reflected radiation 23 after the time ramp described above has been carried out.
Die Ladungsmenge der einen geladenen Floating Diffusion wird nun mittels Source Follower in eine entsprechende Spannung gewandelt und weiter verarbeitet. Der Source Follower ist Teil des Auswertebereichs des Demodulationspixels. Der Auswertbereich umfasst neben dem Source Follower auch noch einen Reset Switch und einen Selekt Transistor. Aus der entsprechenden Spannung kann über ein Verfahren der Abstand zum Objekt berechnet werden. Ein solches Verfahren ist etwa in EP 2 743 724 AI des Anmelders beschrieben. The charge quantity of one charged floating diffusion is now converted into a corresponding voltage by means of source follower and further processed. The source follower is part of the evaluation area of the demodulation pixel. In addition to the source follower, the evaluation area also includes a reset switch and a select transistor. From the corresponding voltage, the distance to the object can be calculated by means of a method. Such a method is described for example in EP 2 743 724 AI of the applicant.
Fig. 3 zeigt ein Demodulationspixel 50 in Draufsicht. Die Blendenöffnung 81 ist vom etwa gleichförmigen ersten Driftgate 72 überdeckt. Ein zweites Driftgate 71 überschneidet sich elektrisch getrennt mit dem ersten Driftgate. Das zweite und das erste Driftgate wirken wie ein einziges Driftgate, wobei das zweite Driftgate mit einem höheren Potential als das erste Driftgate beaufschlagt ist, sodass Photoelektronen vom ersten zum zweiten Driftgate weitergeführt werden. Das Demodulationspixel weist zwei Modulationsgates 73 an gegenüber liegenden Stellen an einem Ende des zweiten Driftgates auf. Dem zweiten Driftgate gegenüber liegend ist jeweils ein Storagegate 74 neben den Modulationsgates angeordnet. An einem Rand der Storagegates ist jeweils ein Tranfergate 75 angeordnet. Den Storagegates gegenüber liegend ist jeweils eine Floating Diffusion 76 neben den Transfergates angeordnet. Die Floating Diffusions sind mit dem Auswertebereich und dessen Source Follower verbunden. 3 shows a demodulation pixel 50 in plan view. The aperture 81 is covered by the approximately uniform first drift gate 72. A second drift gate 71 overlaps electrically separately with the first drift gate. The second and the first drift gate act as a single drift gate, wherein the second drift gate is applied to a higher potential than the first drift gate, so that photoelectrons are continued from the first to the second drift gate. The demodulation pixel has two modulation gates 73 at opposite locations at one end of the second drift gate. Opposite the second drift gate, a respective storage gate 74 is arranged next to the modulation gates. At one edge of the storage gates, a transfer gate 75 is arranged in each case. Opposite the storage gates, a respective floating diffusion 76 is arranged next to the transfer gates. The floating diffusion are connected to the evaluation area and its source follower.
Die Schnittlinie 52 zeigt den schematischen, nicht proportionalen Verlauf des Seitenschnitts der Fig. 2. The section line 52 shows the schematic, non-proportional course of the side section of FIG. 2.
Fig. 4 zeigt vier Demodulationspixel 50 mit gemeinsamer Blendenöffnung 82. Die um die gemeinsame Blendenöffnung 82 angeordneten Demodulationspixel 50 entsprechen genau dem in Fig. 3 gezeigten Demodulationspixel 50 und sind jeweils um 90° verdreht. Der gemeinsamen Blendenöffnung 82 ist ein gemeinsames zentrales Driftgate 72 formgleich überlagert. Geometrisch gleiche Zeichenobjekte entsprechen den entsprechenden Einrichtungen von Fig. 3. FIG. 4 shows four demodulation pixels 50 with a common aperture 82. The demodulation pixels 50 arranged around the common aperture 82 correspond exactly to the demodulation pixel 50 shown in Fig. 3 and are each rotated by 90 °. The common aperture 82 is superimposed on a common central drift gate 72 in the same shape. Geometrically identical drawing objects correspond to the corresponding devices of FIG. 3.
Fig. 5 zeigt eine Pixelmatrix 41 aus 6x6 Demodulationspixeln 50. Neben der gemeinsamen Blendenöffnung 82 bildet die Anordnung auch gemeinsame Auswertebereiche 91 aus. Den gemeinsamen Blendenöffnungen 82 ist jeweils ein gemeinsames zentrales Driftgate überlagert. Geometrisch gleiche Zeichenobjekte entsprechen den entsprechenden Einrichtungen von Fig. 4. FIG. 5 shows a pixel matrix 41 comprising 6 × 6 demodulation pixels 50. In addition to the common aperture 82, the arrangement also forms common evaluation regions 91. The common apertures 82 are each overlaid with a common central drift gate. Geometrically identical drawing objects correspond to the corresponding devices of FIG. 4.
Referenzen: References:
Ein Verfahren zur Auswertung des TOF Entfernungssensors ist in Dieter Huber, Markus Ledergerber, EP 2 743 724 AI des gleichen Anmelders beschrieben. A method for evaluating the TOF range sensor is described in Dieter Huber, Markus Ledergerber, EP 2 743 724 A1 of the same applicant.
Ein anderes Verfahren zur Auswertung des TOF Entfernungssensors ist beschrieben in Robert Lange, Peter Seitz, Alice Biber, Stefan Lauxtermann: Demodulation Pixels in CCD and CMOS Technologies for Time-of-Flight Ranging, IST/SPIE International Symposium on Electronic Imaging, Conference on Sensors, Cameras, and Systems for Scientific/Industrial Applications II, Proc. SPIE, Vol. 3965 A, San Jose, USA, 24th-25th January 2000 Another method of evaluating the TOF range sensor is described in Robert Lange, Peter Seitz, Alice Beaver, Stefan Lauxtermann: Demodulation Pixels in CCD and CMOS Technologies for Time-of-Flight Ranging, IST / SPIE International Symposium on Electronic Imaging, Conference on Sensors , Cameras, and Systems for Scientific / Industrial Applications II, Proc. SPIE, Vol. 3965 A, San Jose, USA, 24th-25th January 2000
Die Rückseitenelektrode kann mittels Potentialtunnel durch das HalbleitersubstratThe backside electrode can by means of potential tunnel through the semiconductor substrate
61 kontaktiert sein. Eine Vorrichtung zur Kontaktierung der Rückseitenelektrode61 be contacted. A device for contacting the backside electrode
62 des TOF Entfernungssensors mittels Potentialtunnel ist in Martin Popp, Beat De Coi, Marco Annese, US 8,901,690 B2 des gleichen Anmelders beschrieben. 62 of the TOF range sensor by means of potential tunnel is described in Martin Popp, Beat De Coi, Marco Annese, US 8,901,690 B2 of the same applicant.
Die Demodulationspixel können in analoger CCD Technologie und die Auswertebereiche können in digitaler CMOS Technologie ausgeführt sein. Ein Verfahren zur gemeinsamen Herstellung von Demodulationspixeln (CCD) und von Auswertebereich (CMOS) ist in Martin Popp, Beat De Coi, Marco Annese, US 8,802,566 B2 des gleichen Anmelders beschrieben. The demodulation pixels can be implemented in analogue CCD technology and the evaluation ranges can be implemented in digital CMOS technology. A method for the joint production of demodulation pixels (CCD) and evaluation range (CMOS) is described in Martin Popp, Beat De Coi, Marco Annese, US Pat. No. 8,802,566 B2 by the same Applicant.
Eine Art zur gemeinsamen Ausführung von Demodulationspixeln (CCD, analog) und Auswertebereich (CMOS, digital) auf einem Chip als System on Chip ist in De Coi, Martin Popp, EP 2 618 180 Bl des gleichen Anmelders beschrieben. Bezugszeichenliste: One way of jointly performing demodulation (CCD, analog) and evaluation (CMOS, digital) on a chip as a system on chip is described in De Coi, Martin Popp, EP 2 618 180 B1 of the same applicant. LIST OF REFERENCE NUMBERS
10 TOF Entfernungsensor System 11 Träger 10 TOF Distance Sensor System 11 Carrier
12 Gehäuse  12 housing
13 Elektronikeinrichtung  13 electronic device
20 Strahlungsquelle 20 radiation source
21 Ausgesandte Strahlung 21 Emissary radiation
22 Objekt 22 object
23 Reflektierte Strahlung  23 Reflected radiation
24 Elektronen-Lochpaare 24 electron-hole pairs
25 Photoelektronen 25 photoelectrons
40 TOF Entfernungssensor40 TOF distance sensor
41 Pixelmatrix 41 pixel matrix
50 Demodulationspixel 50 demodulation pixels
51 Grenze 51 border
52 Schnittlinie  52 cutting line
60 Umwandlungsbereich  60 conversion range
61 Halbleitersubstrat  61 semiconductor substrate
62 Rückseitenelektrode  62 rear side electrode
70 Trenneinrichtung 70 separating device
71 Driftgate  71 Driftgate
72 gemeinsames Driftgate 72 common driftgate
73 Modulationsgate 73 modulation gate
74 Storagegate  74 Storagegate
75 Transfergates 75 transfer gates
76 Floating Diffusions  76 Floating Diffusions
77 Trennschicht  77 separating layer
80 Blende  80 aperture
81 Blendenöffnung  81 aperture
82 Gemeinsame Blendenöffnung82 Common aperture
90 Auswertebereich 90 evaluation range
91 Gemeinsamer Auswertebereich  91 Common evaluation area

Claims

Ansprüche: Claims:
1. TOF Entfernungssensor (40) 1. TOF Distance Sensor (40)
- zur Erfassung einer Entfernung zu einem Objekt (22)  for detecting a distance to an object (22)
- durch den Empfang von vom Objekt reflektierter Strahlung (23)  by the reception of radiation (23) reflected by the object
- einer mit einer Modulationsfrequenz modulierten Strahlungsquelle (20) a radiation source modulated with a modulation frequency (20)
- mit einer Pixelmatrix (41) zur Aufnahme eines Pixelbildes - With a pixel matrix (41) for receiving a pixel image
- aus Demodulationspixeln (50)  - from demodulation pixels (50)
- zum rückseitigem Empfang der Strahlung mit jeweils  - To the rear side of the radiation with each
- einem Umwandlungsbereich (60)  a conversion area (60)
- zur Generation von Ladungsträger (25) aus der empfangenen Strahlung,  - to the generation of charge carriers (25) from the received radiation,
- einer Trenneinrichtung (70)  a separating device (70)
- zur Trennung der Ladungsträger nach der Modulationsfrequenz, for the separation of the charge carriers according to the modulation frequency,
- einer Blende (80) - an aperture (80)
- zur Abschottung des Umwandlungsbereichs von der Trenneinrichtung in Bezug auf die Ladungsträger und - mit einer Blendenöffnung (81)  for partitioning the transformation area from the separation device with respect to the charge carriers, and having a diaphragm opening 81
- zum Durchlass der Ladungsträger vom Umwandlungsbereich in die Trernieinrichtung  - For the passage of the charge carriers from the conversion area in the Trernieinrichtung
dadurch gekennzeichnet, dass  characterized in that
- jeweils mindestens zwei Demodulationspixel eine gemeinsame Blendenöffnung (82) ausbilden. - Form each at least two demodulation a common aperture (82).
2. TOF Entfernungssensor nach Anspruch 1, 2. TOF distance sensor according to claim 1,
dadurch gekennzeichnet, dass  characterized in that
die gemeinsame Blendenöffnung einen geschlossenen Umfang ausbildet.  the common aperture forms a closed perimeter.
TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass TOF distance sensor according to one of the preceding claims, characterized in that
- die Demodulationspixel jeweils einen elektronischen Auswertebereich (90) aufweisen und dass  - The demodulation each have an electronic evaluation area (90) and that
- jeweils mindestens zwei Demodulationspixel einen räumlich gemeinsamen Auswertebereich (91) ausbilden.  - Form each at least two demodulation a spatially common evaluation area (91).
TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass TOF distance sensor according to one of the preceding claims, characterized in that
- jeweils vier Demodulationspixel eine gemeinsame Blendenöffnung ausbilden und dass  - Form each four demodulation a common aperture and that
- jeweils vier Demodulationspixel einen räumlich gemeinsamen Auswertebereich ausbilden,  - Form each four demodulation a spatially common evaluation area,
- sodass insbesondere die Blendenöffnungen und Auswertebereiche ein Schachbrettmuster ausbilden.  - So that in particular the apertures and evaluation areas form a checkerboard pattern.
TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass TOF distance sensor according to one of the preceding claims, characterized in that
- dass der Umwandlungsbereich (60) gebildet ist aus  - That the conversion region (60) is formed from
- einem dotierten Substrat (61),  a doped substrate (61),
- insbesondere aus einem n~ dotiertem Halbleiter-Substrat, und/oder - In particular from an n ~ doped semiconductor substrate, and / or
- einer transparenten Rückseitenelektrode (62) a transparent back electrode (62)
- zur Verarmung des Substrats.  - To depletion of the substrate.
TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass TOF distance sensor according to one of the preceding claims, characterized in that
- die Trenneinrichtung (70) aufweist  - The separating device (70)
- mindestens ein Driftgate (71)  at least one drift gate (71)
- auf der Oberseite des Substrats (61)  on the top of the substrate (61)
- zur Anziehung der Ladungsträger (25) aus dem Umwandlungsbereich (60) in die Trenneinrichtung (70) und/oder  - For attracting the charge carriers (25) from the conversion region (60) in the separating device (70) and / or
- mindestens ein, insbesondere zwei Modulationsgates (73)  at least one, in particular two modulation gates (73)
- auf der Oberseite des Substrats  - on top of the substrate
- insbesondere an gegenüberliegenden Stellen des Driftgates  - Especially at opposite locations of the drift gate
- zur abwechselnden Lenkung der Ladungsträger entsprechend der Modulationsfrequenz vom Driftgate hin zu den Modulationsgates, und/oder  for alternately steering the charge carriers in accordance with the modulation frequency from the drift gate to the modulation gates, and / or
- mindestens ein, insbesondere zwei Storagegates (74)  at least one, in particular two storage gates (74)
- auf der Oberseite des Substrats  - on top of the substrate
- jeweils einem Modulationsgate zugeordnet  - Each assigned to a modulation gate
- zur Sammlung der zu dem zugeordneten Modulationsgate hin gelenkten Ladungsträger, und/oder  to collect the charge carriers directed to the assigned modulation gate, and / or
- mindestens ein, insbesondere zwei Transfergates (75)  at least one, in particular two transfer gates (75)
- auf der Oberseite des Substrats  - on top of the substrate
- jeweils einem Storagegate zugeordnet  - each assigned to a storage gate
- zur stossweisen Weitergabe der an den Storagegates gesammelten Ladungsträger an Floating Diffusions, und/oder  - For stoßweise transfer of the collected on the storage gates carriers to floating diffusion, and / or
- mindestens ein, insbesondere zwei Floating Diffusions (76)  at least one, in particular two floating diffusion (76)
- in der Oberseite des Substrats  - in the top of the substrate
- insbesondere als n+ dotiertes Well  - In particular as n + doped well
- jeweils einem Transfergate zugeordnet  - Each assigned to a transfer gate
- zur Aufnahme der von den Transfergates weitergegebenen Ladungsträger und  - To accept the transferred from the transfer gates and charge carriers
- zur Einspeisung derselben als Spannung in den Auswertebereich - For feeding the same as voltage in the evaluation area
- wobei insbesondere die Gates vom Substrat durch eine nicht leitende Schicht (77) getrennt sind. - In particular, the gates are separated from the substrate by a non-conductive layer (77).
TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass TOF distance sensor according to one of the preceding claims, characterized in that
- die Trenneinrichtung ein Driftgate zur Anziehung der Ladungsträger aus dem Umwandlungsbereich in den Trennbereich aufweist und  - The separator has a Driftgate for attracting the charge carriers from the conversion area in the separation area and
- dass die eine gemeinsame Blendenöffnung ausbildenden Demodulationspixel - That a common aperture forming demodulation pixels
- jeweils mindestens ein gemeinsames Driftgate (72) ausbilden, each form at least one common drift gate (72),
- insbesondere jeweils mindestens ein gemeinsames (72) und ein individuell zugeordnetes Driftgate (71) ausbilden.  In particular, each form at least one common (72) and one individually associated driftgate (71).
8. TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, 8. TOF distance sensor according to one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
- dass die Blende (80) einen vergrabenen Layer im Substrat aufweist,  - that the diaphragm (80) has a buried layer in the substrate,
- insbesondere eine durch einen p+ dotierten pSub Layer.  - In particular, a doped by a p + pSub layer.
9. TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, 9. TOF distance sensor according to one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
- dass ein Auswertebereich (90) im Demodulationspixel ausgebildet ist, mit - That an evaluation area (90) is formed in the demodulation, with
- Source Follower, - Source Follower,
- Reset Switch,  - Reset Switch,
- Select Transisor.  - Select Transisor.
10. TOF Entfernungssensor nach einem der vorhergehenden Ansprüche, 10. TOF distance sensor according to one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
- dass die Trenneinrichtung einen Leitungskanal ausbildet.  - That the separator forms a duct.
11. TOF Entfernungssensor nach Anspruch 6, 11. TOF distance sensor according to claim 6,
dadurch gekennzeichnet, dass  characterized in that
- dass die Trenneinrichtung einen Leitungskanal zwischen Blende und Modulationsgate und/oder Storagegate und/oder Transfergate ausbildet - That the separating device forms a duct between the aperture and the modulation gate and / or storage gate and / or transfer gate
- und dass die Blende insbesondere durch einen im Substrat vergrabenen Layer gebildet wird. - And that the aperture is formed in particular by a layer buried in the substrate.
PCT/EP2016/051296 2015-02-09 2016-01-22 Tof distance sensor WO2016128198A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017541848A JP6302146B1 (en) 2015-02-09 2016-01-22 TOF distance sensor
KR1020177014106A KR101828760B1 (en) 2015-02-09 2016-01-22 Tof distance sensor
CN201680003613.8A CN107003410B (en) 2015-02-09 2016-01-22 TOF range sensors
EP16701177.4A EP3191870B1 (en) 2015-02-09 2016-01-22 Tof distance sensor
IL251735A IL251735A (en) 2015-02-09 2017-04-13 Time of flight distance sensor
US15/596,293 US9952324B2 (en) 2015-02-09 2017-05-16 Time of flight (TOF) distance sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15154379.0 2015-02-09
EP15154379 2015-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/596,293 Continuation US9952324B2 (en) 2015-02-09 2017-05-16 Time of flight (TOF) distance sensor

Publications (1)

Publication Number Publication Date
WO2016128198A1 true WO2016128198A1 (en) 2016-08-18

Family

ID=52450028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/051296 WO2016128198A1 (en) 2015-02-09 2016-01-22 Tof distance sensor

Country Status (7)

Country Link
US (1) US9952324B2 (en)
EP (1) EP3191870B1 (en)
JP (1) JP6302146B1 (en)
KR (1) KR101828760B1 (en)
CN (1) CN107003410B (en)
IL (1) IL251735A (en)
WO (1) WO2016128198A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318891A1 (en) 2016-11-04 2018-05-09 Espros Photonics AG Receiving device, sensor device and method for distance measurement
WO2018119347A1 (en) * 2016-12-22 2018-06-28 Quantum-Si Incorporated Integrated photodetector with direct binning pixel
EP3392676A1 (en) * 2017-04-18 2018-10-24 Espros Photonics AG Optoelectronic sensor device and method for controlling the same
US10775305B2 (en) 2014-08-08 2020-09-15 Quantum-Si Incorporated Integrated device for temporal binning of received photons
US11344200B2 (en) 2016-02-17 2022-05-31 Tesseract Health, Inc. Sensor and device for lifetime imaging and detection applications
US11391626B2 (en) 2018-06-22 2022-07-19 Quantum-Si Incorporated Integrated photodetector with charge storage bin of varied detection time
US11573180B2 (en) 2020-04-08 2023-02-07 Quantum-Si Incorporated Integrated sensor with reduced skew
US11719639B2 (en) 2020-03-02 2023-08-08 Quantum-Si Incorporated Integrated sensor for multi-dimensional signal analysis
US11869917B2 (en) 2020-01-14 2024-01-09 Quantum-Si Incorporated Integrated sensor for lifetime characterization
US11885744B2 (en) 2020-01-14 2024-01-30 Quantum-Si Incorporated Sensor for lifetime plus spectral characterization

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046495B1 (en) 2015-12-30 2018-02-16 Stmicroelectronics (Crolles 2) Sas PIXEL FLIGHT TIME DETECTION
CN108445499A (en) * 2018-02-07 2018-08-24 余晓智 A kind of the ambient light suppression system and method for TOF sensor
KR102651130B1 (en) 2018-12-06 2024-03-26 삼성전자주식회사 Image sensor for distance measuring
KR20210074654A (en) * 2019-12-12 2021-06-22 에스케이하이닉스 주식회사 Image sensing device
JP2021097214A (en) * 2019-12-18 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Light-receiving device
EP3855162A1 (en) 2020-01-21 2021-07-28 Omya International AG Lwir imaging system for detecting an amorphous and/or crystalline structure of phosphate and/or sulphate salts on the surface of a substrate or within a substrate and use of the lwir imaging system
EP4267942A1 (en) 2020-12-23 2023-11-01 Omya International AG Method and apparatus for detecting an amorphous and/or crystalline structure of phosphate and/or sulphate salts on the surface of a substrate or within a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821974A1 (en) * 1998-05-18 1999-11-25 Rudolf Schwarte Phase and amplitude detector of electromagnetic waves from pixels operating in visible, UV and IR wavelengths
US20090224139A1 (en) * 2008-03-04 2009-09-10 Mesa Imaging Ag Drift Field Demodulation Pixel with Pinned Photo Diode
EP2290393A2 (en) * 2009-08-14 2011-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Concept for optical distance measurement
US20140145281A1 (en) * 2012-11-29 2014-05-29 Infineon Technologies Ag Controlling of photo-generated charge carriers
EP2743724A1 (en) * 2012-12-12 2014-06-18 Espros Photonics AG TOF distance sensor and method for operating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117712B1 (en) * 2009-07-24 2015-08-25 Mesa Imaging Ag Demodulation pixel with backside illumination and charge barrier
JP5620087B2 (en) * 2009-11-30 2014-11-05 浜松ホトニクス株式会社 Distance sensor and distance image sensor
JP2012083221A (en) * 2010-10-12 2012-04-26 Hamamatsu Photonics Kk Distance sensor and distance image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821974A1 (en) * 1998-05-18 1999-11-25 Rudolf Schwarte Phase and amplitude detector of electromagnetic waves from pixels operating in visible, UV and IR wavelengths
US20090224139A1 (en) * 2008-03-04 2009-09-10 Mesa Imaging Ag Drift Field Demodulation Pixel with Pinned Photo Diode
EP2290393A2 (en) * 2009-08-14 2011-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Concept for optical distance measurement
US20140145281A1 (en) * 2012-11-29 2014-05-29 Infineon Technologies Ag Controlling of photo-generated charge carriers
EP2743724A1 (en) * 2012-12-12 2014-06-18 Espros Photonics AG TOF distance sensor and method for operating the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775305B2 (en) 2014-08-08 2020-09-15 Quantum-Si Incorporated Integrated device for temporal binning of received photons
US11719636B2 (en) 2014-08-08 2023-08-08 Quantum-Si Incorporated Integrated device for temporal binning of received photons
US11209363B2 (en) 2014-08-08 2021-12-28 Quantum-Si Incorporated Integrated device for temporal binning of received photons
US11344200B2 (en) 2016-02-17 2022-05-31 Tesseract Health, Inc. Sensor and device for lifetime imaging and detection applications
JP7029275B2 (en) 2016-11-04 2022-03-03 エスプロス フォトニックス アーゲー Receiving device, sensor device, and method for distance determination
EP3318891A1 (en) 2016-11-04 2018-05-09 Espros Photonics AG Receiving device, sensor device and method for distance measurement
US10754014B2 (en) 2016-11-04 2020-08-25 Espros Photonics Ag Receiver device, sensor device and method for determining distances
JP2018109607A (en) * 2016-11-04 2018-07-12 エスプロス フォトニックス アーゲー Receiver device, sensor device and method for determining distance
KR20180050238A (en) * 2016-11-04 2018-05-14 에스프로스 포토닉스 아게 Receiver device, sensor device, and method for determining distances
CN108020845A (en) * 2016-11-04 2018-05-11 埃斯普罗光电股份公司 Reception device, sensor device and the method for determining distance
KR102423067B1 (en) * 2016-11-04 2022-07-21 에스프로스 포토닉스 아게 Receiver device, sensor device, and method for determining distances
US10845308B2 (en) 2016-12-22 2020-11-24 Quantum-Si Incorporated Integrated photodetector with direct binning pixel
US11112361B2 (en) 2016-12-22 2021-09-07 Quantum-Si Incorporated Integrated photodetector with direct binning pixel
EP4224530A1 (en) * 2016-12-22 2023-08-09 Quantum-si Incorporated Integrated photodetector with direct binning pixel
WO2018119347A1 (en) * 2016-12-22 2018-06-28 Quantum-Si Incorporated Integrated photodetector with direct binning pixel
US11719635B2 (en) 2016-12-22 2023-08-08 Quantum-Si Incorporated Integrated photodetector with direct binning pixel
EP3392676A1 (en) * 2017-04-18 2018-10-24 Espros Photonics AG Optoelectronic sensor device and method for controlling the same
US11175403B2 (en) 2017-04-18 2021-11-16 Espros Photonics Ag Optoelectronic sensor device and method for controlling same
US11391626B2 (en) 2018-06-22 2022-07-19 Quantum-Si Incorporated Integrated photodetector with charge storage bin of varied detection time
US11869917B2 (en) 2020-01-14 2024-01-09 Quantum-Si Incorporated Integrated sensor for lifetime characterization
US11885744B2 (en) 2020-01-14 2024-01-30 Quantum-Si Incorporated Sensor for lifetime plus spectral characterization
US11719639B2 (en) 2020-03-02 2023-08-08 Quantum-Si Incorporated Integrated sensor for multi-dimensional signal analysis
US11573180B2 (en) 2020-04-08 2023-02-07 Quantum-Si Incorporated Integrated sensor with reduced skew

Also Published As

Publication number Publication date
JP2018511039A (en) 2018-04-19
CN107003410A (en) 2017-08-01
IL251735A0 (en) 2017-05-29
EP3191870B1 (en) 2018-04-18
EP3191870A1 (en) 2017-07-19
KR101828760B1 (en) 2018-02-12
JP6302146B1 (en) 2018-03-28
KR20170065665A (en) 2017-06-13
US9952324B2 (en) 2018-04-24
CN107003410B (en) 2018-08-24
US20170293031A1 (en) 2017-10-12
IL251735A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
EP3191870B1 (en) Tof distance sensor
DE102016208347B4 (en) An optical sensor device and method for operating a runtime sensor
EP2743724B1 (en) TOF distance sensor and method for operating the same
DE102016208343B4 (en) Optical sensor device and method for producing the optical sensor device
EP1665382B1 (en) Optoelectronic sensor and device for 3d distance measurement
DE19857851B4 (en) Detection device for physical and / or chemical quantities
DE102009037596B4 (en) Pixel structure, system and method for optical distance measurement and control circuit for the pixel structure
DE112012006401B4 (en) Area sensor and area image sensor
DE102011076635B3 (en) Photodetector i.e. lateral drift field photodetector, for detecting electromagnetic radiation, has bus control electrode arranged in region of trough adjacent to connection doping regions, transfer control electrodes and detection region
DE19821974A1 (en) Phase and amplitude detector of electromagnetic waves from pixels operating in visible, UV and IR wavelengths
DE102014113037B4 (en) Imaging circuits and a method of operating an imaging circuit
EP3208850B1 (en) Hdr pixel
DE112017000381T5 (en) A detector device with majority current and isolation means
DE102016209319A1 (en) Pixel cell for a sensor and corresponding sensor
WO2013087608A1 (en) Semiconductor component with trench gate
DE4310915B4 (en) Solid state image sensor with high signal-to-noise ratio
DE60317133T2 (en) Hybrid photodetector array with isolated photogate pixels
DE112013005141T5 (en) Distance sensor and distance image sensor
DE112020006344T5 (en) Range imaging sensor and method of making this sensor
DE112015001877T5 (en) Range imaging sensor
DE112021002675T5 (en) optical sensor
DE3427476A1 (en) Semiconductor element
DE102018132683A1 (en) PIXEL STRUCTURE FOR OPTICAL DISTANCE MEASUREMENT ON AN OBJECT AND RELATED DISTANCE DETECTION SYSTEM
DE112012005967T5 (en) Area sensor and area image sensor
DE102013015403B4 (en) Manufacture of an image converting device and an image converting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701177

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016701177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 251735

Country of ref document: IL

Ref document number: 2016701177

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177014106

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017541848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE