WO2016127367A1 - 通信设备、通信***、信号发送方法及信号接收方法 - Google Patents

通信设备、通信***、信号发送方法及信号接收方法 Download PDF

Info

Publication number
WO2016127367A1
WO2016127367A1 PCT/CN2015/072919 CN2015072919W WO2016127367A1 WO 2016127367 A1 WO2016127367 A1 WO 2016127367A1 CN 2015072919 W CN2015072919 W CN 2015072919W WO 2016127367 A1 WO2016127367 A1 WO 2016127367A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time slot
length
subband
filter
Prior art date
Application number
PCT/CN2015/072919
Other languages
English (en)
French (fr)
Inventor
吴丹
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/072919 priority Critical patent/WO2016127367A1/zh
Publication of WO2016127367A1 publication Critical patent/WO2016127367A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communications, and in particular, to a communications device, a communications system, a signal transmitting method, and a signal receiving method.
  • Orthogonal Frequency Division Multiplexing is a widely used multi-carrier modulation technique. By dividing the data stream into multiple parallel sub-carriers, each sub-carrier can be used with lower frequency. The data rate, while generally achieving a higher transmission rate.
  • the main advantage of OFDM is that it can effectively combat frequency selective fading channels, and by introducing a cyclic prefix (CP), Inter Symbol Interference (ISI) can be eliminated.
  • CP cyclic prefix
  • ISI Inter Symbol Interference
  • OFDM Orthogonal frequency division multiplexing
  • IFFT Inverse Fast Fourier Transformation
  • CP CP addition
  • a low pass filter is used to limit the out-of-band leakage of the signal.
  • the above filtering is to filter the entire system bandwidth, and the out-of-band signal is limited.
  • the filtering suppresses the out-of-band, ISI is also introduced, which may cause the system performance to be degraded.
  • Embodiments of the present invention provide a communication device, a communication system, a signal transmission method, and a signal receiving method, which can reduce interference caused by a filter.
  • a first aspect of the present invention provides a communication device, including:
  • each subband configuration parameter includes a subcarrier spacing and a subband width ;
  • a guard interval adding module configured to add a guard interval to the to-be-transmitted signal on each sub-band;
  • the guard interval includes a first time slot and a second time slot; and the first time slot includes a tail of the to-be-transmitted signal a partial signal, the second time slot comprising a partial signal of the signal to be transmitted header or another partial signal of the tail;
  • a transmitting module configured to send a signal filtered by the filter.
  • the transmitting module is further configured to notify a user equipment of a length of the first time slot and a length of the second time slot, or Notifying the user equipment of the length of the first time slot and transmitting information related to the second time slot to the user equipment, so that the user equipment calculates the length of the second time slot;
  • the information includes the subcarrier spacing, the subband width, and the type of the filter for each subband.
  • the second time slot is separated by a subcarrier spacing, subband of the subband Depending on at least one of the width and filter type.
  • the length of the second time slot and the filter time domain The energy of the impulse response is primarily related; the energy portion of the filter impulse response is the portion of the impulse response for a continuous period of time in which the total energy exceeds a predetermined threshold.
  • the energy main portion of the filter time domain impulse response is different from the subband width and the filter type At least one factor is related; the larger the subband width, the smaller the length of the second time slot if the filter type is unchanged.
  • the subcarrier spacing is smaller, in the subband In the case where the width and the filter type are unchanged, the length of the second time slot is smaller.
  • the communications device further includes a merging module, configured to combine the filter-filtered signals on the at least one sub-band;
  • the module is configured to send a signal that is combined by the merge module.
  • the subband signal generating module is configured to: Decoding the transmission signal onto the corresponding sub-band; and performing inverse Fourier transform on the data to be transmitted mapped to the corresponding sub-band; the guard interval adding module is used for data of the corresponding sub-band after the inverse Fourier transform Add a guard interval.
  • the to-be-transmitted signal includes orthogonal frequency division multiplexing (OFDM) a symbol
  • the second time slot is located at a head of the OFDM symbol
  • the second time slot is filled with a signal whose tail of the OFDM symbol is equal to the length of the second time slot.
  • OFDM orthogonal frequency division multiplexing
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at the end of the OFDM symbol
  • the second time slot is filled with a signal whose OFDM symbol header is equal to the length of the second time slot.
  • a second aspect of the present invention provides a communication device, including:
  • a receiving module configured to receive a signal including a guard interval, where the guard interval includes a first time slot and a second time slot, where the first time slot includes a partial signal of the tail of the received signal, and the second time slot Include a partial signal of the received signal header or another partial signal of the tail; the second time slot is located at the head or the tail of the received signal;
  • the de-protection interval module is configured to perform de-protection interval processing on the filtered received signal to obtain a signal after the de-protection interval.
  • the de-protection interval module pairs the filtered received signal Performing the de-protection interval specifically includes removing the first time slot from the filtered received signal, and removing a signal that the filtered received signal tail is equal to the length of the second time slot; if the second time slot is located at the The de-protection interval of the filtered received signal by the de-protection interval module specifically includes removing the first time slot and the second time slot from the filtered received signal.
  • the communications device further includes an FFT (Fast Fourier Transformation, A fast Fourier transform module is configured to perform a Fourier transform on the signal after the de-protection interval.
  • FFT Fast Fourier Transformation
  • the FFT-transformed output has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; wherein k represents a subcarrier number, M represents a total number of subcarriers, and L represents a length of the second time slot; and the communication device further includes a signal detection module. Used to compensate for phase rotation after FFT transformation.
  • a third aspect of the present invention provides a signal sending method, including:
  • each subband configuration parameter includes a subcarrier spacing and a subband width
  • the guard interval includes a first time slot of the first time slot and a second time slot;
  • the first time slot includes a part of the signal of the tail of the to-be-transmitted signal,
  • the second time slot includes a partial signal of the signal to be transmitted header or another partial signal of the tail;
  • the signal filtered by the filter is transmitted.
  • the signal sending method further includes: notifying the user equipment of the length of the first time slot and the length of the second time slot, or Notifying the user equipment of the length of the first time slot and transmitting information related to the second time slot to the user equipment, so that the user equipment calculates the length of the second time slot;
  • the information includes subcarrier spacing, subband width, and filter type for each subband.
  • the second time slot is separated by a subcarrier spacing, a subband of the subband Depending on at least one of the width and filter type.
  • the length of the second time slot and the filter time domain The main part of the energy of the impulse response is related; the main part of the energy of the impulse response of the filter is the portion of the impulse response for a continuous period of time in which the total energy exceeds a preset threshold.
  • the energy main portion of the filter time domain impulse response and the subband width and the filter class At least one of the factors is related; the larger the sub-band width, the smaller the length of the second time slot if the filter type is unchanged.
  • the subcarrier spacing is smaller, in the subband In the case where the width and the filter type are unchanged, the length of the second time slot is smaller.
  • the signal transmitting method further includes combining the filter-filtered signals on the at least one sub-band.
  • Processing the data to generate a signal to be transmitted on the at least one subband includes: mapping the to-be-transmitted signal to a corresponding sub-band after generating the to-be-transmitted signal on the at least one sub-band; and mapping The data of the corresponding sub-band is inverse-Fourier-transformed after the signal to be transmitted on at least one sub-band.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second time A slot is located at a header of the OFDM symbol
  • adding a guard interval to a signal to be transmitted on the at least one subband includes filling a signal in the second slot that is equal to a length of the second slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second time The slot is located at the end of the OFDM symbol
  • adding a guard interval to the to-be-transmitted signal on the at least one sub-band includes filling a signal in the second slot that is equal to the length of the second slot.
  • a fourth aspect of the present invention provides a signal receiving method, including:
  • the guard interval includes a first time slot and a second time slot; the second time slot is located at a head or a tail of the received signal; the first time slot includes the received signal a partial signal of the tail, the second time slot comprising a partial signal of the received signal header or another partial signal of the tail;
  • the filtered received signal is subjected to a de-protection interval process to obtain a signal after the de-protection interval.
  • the performing de-protection interval processing on the filtered received signal specifically includes: Removing the first time slot from the filtered received signal, and removing a signal of the filtered received signal tail equal to a length of the second time slot; if the second time slot is located at a tail of the received signal.
  • the performing the de-protection interval processing on the filtered received signal specifically includes removing the first time slot and the second time slot from the filtered received signal.
  • the signal receiving method further includes performing a Fourier transform on the signal after the de-protection interval If the second time slot is located at the head of the received signal, the FFT-converted output signal has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; wherein k represents a subcarrier number and M represents a subcarrier The total number, L, represents the length of the second time slot; if the second time slot is located at the head of the received signal, the signal receiving method further includes the step of compensating for the phase rotation.
  • a fifth aspect of the present invention provides a transmitting end communication device, including:
  • a processor configured to generate a to-be-transmitted signal on the at least one sub-band according to the at least one sub-band configuration parameter; a configuration parameter of each sub-band includes a sub-carrier spacing and a sub-band width; and the processor is further configured to use the at least one a guard interval is added to the to-be-transmitted signal on the sub-band; the guard interval includes a first time slot and a second time slot;
  • a filter for filtering a signal after the guard interval on the at least one sub-band
  • a transmitter configured to send the signal including the guard interval to the receiving device.
  • the transmitter is further configured to notify the receiving device of the length of the first time slot and the length of the second time slot, or Notifying the user equipment of the length of the first time slot and transmitting information related to the second time slot to the user equipment, so that the user equipment calculates the length of the second time slot;
  • the information includes the subcarrier spacing, subband width, and type of filter for each subband.
  • the length of the second time slot is separated by a subcarrier of the subband Depending on at least one of the width and filter type.
  • the length of the second time slot and the filter time domain impact The main part of the energy of the response is related; the main part of the energy of the filter impulse response is the portion of the impulse response for a continuous period of time in which the total energy exceeds a preset threshold.
  • the energy main portion of the filter time domain impulse response is different from the subband width and the filter type One factor is related; the larger the subband width is, the smaller the length of the second time slot is when the filter type is unchanged.
  • the subband width and the filter type are unchanged In case, the smaller the subcarrier spacing, the smaller the length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at a head of the OFDM symbol
  • the second time slot is filled with a signal whose tail of the OFDM symbol is equal to the length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at the end of the OFDM symbol
  • the second time slot is filled with a signal whose OFDM symbol header is equal to the length of the second time slot.
  • the filter is integrated in the processor.
  • a sixth aspect of the present invention provides a receiving end communication device, including:
  • a receiver configured to receive a signal including a guard interval, where the guard interval includes a first time slot and a second time slot, the second time slot being located at a head or a tail of the received signal; a part of the signal including the tail of the signal to be transmitted, the second time slot includes a part of the signal of the signal to be transmitted header or another part of the signal of the tail; a filter for filtering the received signal; and
  • the processor is configured to perform deprotection interval processing on the filtered received signal.
  • the processor performs a de-protection interval on the filtered received signal.
  • the processing specifically includes removing the first time slot from the filtered received signal, and removing a signal that the filtered received signal tail is equal to a second time slot length; if the second time slot is located in the receiving At the tail of the signal, the processor performing de-protection interval processing on the filtered received signal specifically includes removing the first time slot and the second time slot from the filtered received signal.
  • the processor is further configured to perform a Fourier transform on the signal after the de-protection interval;
  • the second time slot is located at the tail of the received signal, and the FFT-transformed output signal has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; wherein k represents a subcarrier number, and M represents a total number of subcarriers.
  • L indicates the length of the second time slot; if the second time slot is a prefix time slot, the processor is further configured to compensate the FFT-transformed phase rotation factor.
  • the filter is integrated in the processor.
  • a seventh aspect of the present invention provides a communication system, comprising: the transmitting end communication device according to any one of the possible aspects of the fifth aspect or the fifth aspect of the present invention, and any of the sixth or sixth aspect of the present invention A receiving end communication device as described in one possible implementation.
  • a first aspect of the present invention provides a communication device, including:
  • a subband signal generating module configured to generate a to-be-transmitted signal on the at least one subband according to the at least one subband configuration parameter;
  • the configuration parameter of each subband includes a subcarrier spacing and a subband width;
  • a guard interval adding module configured to add a guard interval to the to-be-transmitted signal on the at least one sub-band;
  • the guard interval includes a cyclic prefix and a second time slot;
  • a filter configured to perform a filtering operation on the guarded interval signal on the at least one subband.
  • the communications device further includes a transmitting module, configured to notify the user equipment of a length of the cyclic prefix and a length of the second time slot, or Transmitting information related to the second time slot to the user equipment, so that the user equipment can learn or calculate the length of the second time slot; the information related to the second time slot includes a sub-band sub- Carrier spacing and subband width.
  • the length of the second time slot is determined by at least two factors of a subcarrier spacing, a subband width, and a filter type of the subband. set.
  • the length of the second time slot is determined by two sub-carrier spacings and sub-band widths of the sub-band to make sure.
  • the length of the second time slot is determined by three factors: a subcarrier spacing, a subband width, and a filter type. determine.
  • the length of the second time slot is determined according to a time domain diffusion degree of the filter; a filter time domain The extent of the time domain spread of the impulse response is related to the width of the subband.
  • the communications device further includes a merge module, configured to combine the filtered signals on the at least one subband.
  • the communications device further includes a subcarrier mapping module, And mapping a signal to be transmitted on the at least one sub-band.
  • the communications device further includes an IFFT transform module, configured to map the subcarrier mapping module The data of the corresponding sub-band is subjected to inverse Fourier transform, and the guard interval adding module is configured to add a guard interval process to the data of the corresponding sub-band after the inverse Fourier transform.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at a head of the OFDM symbol
  • the second time slot is filled with a signal whose tail of the OFDM symbol is equal to the length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at the end of the OFDM symbol
  • the second time slot is filled with a signal whose OFDM symbol header is equal to the length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second time slot is located at the tail of the OFDM symbol
  • the padding symbol in the second time slot is "0".
  • a second aspect of the present invention provides a communication device, including:
  • a receiving module configured to receive a signal including a guard interval;
  • the guard interval includes a cyclic prefix and a second time slot, where the second time slot is a special prefix time slot or a special suffix time slot;
  • the second time slot is a special suffix time slot, it is used to remove the cyclic prefix and the special suffix time slot.
  • the receiver further includes an FFT module, configured to perform a Fourier transform on the signal after the de-protection interval; if the second time slot is For the prefix slot, the FFT-transformed output signal has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; wherein k represents the subcarrier number, M represents the total number of subcarriers, and L represents the length of the second slot.
  • FFT module configured to perform a Fourier transform on the signal after the de-protection interval; if the second time slot is For the prefix slot, the FFT-transformed output signal has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; wherein k represents the subcarrier number, M represents the total number of subcarriers, and L represents the length of the second slot.
  • the receiver further includes a signal detecting module, if the second time slot is a prefix time slot, The signal detection module is configured to compensate the phase rotation factor after the FFT transformation.
  • the length of the second time slot is determined by at least two factors of a subcarrier spacing, a subband width, and a filter type of the subband .
  • the length of the second time slot is different from the subcarrier spacing and the subband width of the subband to make sure.
  • the length of the second time slot is determined by three factors: a subcarrier spacing, a subband width, and a filter type. determine.
  • the length of the second time slot is determined according to a time domain diffusion degree of the filter; a filter time domain The extent of the time domain spread of the impulse response is related to the width of the subband.
  • a third aspect of the present invention provides a signal sending method, including:
  • the configuration parameter of each sub-band includes a sub-carrier spacing and a sub-band width;
  • the guard interval includes a cyclic prefix and a second time slot
  • the signal sending method further includes: a length of the cyclic prefix and a length of the second time slot to notify the user equipment, or the second time
  • the slot related information is sent to the user equipment, so that the user equipment can learn or calculate the length of the second time slot;
  • the information related to the second time slot includes a subcarrier spacing and a subband width of each subband.
  • the length of the second time slot is determined by at least two factors of a subcarrier spacing, a subband width, and a filter type of the subband .
  • the length of the second time slot is determined by the sub-band Carrier spacing and subband width are determined by two factors.
  • the length of the second time slot is separated by a subcarrier, Subband width and filter type are determined by three factors.
  • the length of the second time slot is determined according to a time domain diffusion degree of the filter; a filter time domain The extent of the time domain spread of the impulse response is related to the width of the subband.
  • the signal transmitting method further includes combining the filtered signals on the at least one subband.
  • the signal sending method further includes generating at least one subband Mapping the to-be-transmitted signal on the at least one sub-band after the signal to be transmitted.
  • the signal sending method further includes: performing data of the corresponding subband after mapping the to-be-transmitted signal on the at least one sub-band Inverse Fourier transform.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at a head of the OFDM symbol
  • adding a guard interval to the to-be-transmitted signal on the at least one sub-band includes filling a signal in the second time slot that is equal to a length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second The time slot is located at the end of the OFDM symbol
  • adding a guard interval to the to-be-transmitted signal on the at least one sub-band includes filling a signal in the second time slot that is equal to the length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol, where The second time slot is located at the end of the OFDM symbol, and the padding symbol in the second time slot is "0".
  • a fourth aspect of the present invention provides a signal receiving method, including:
  • the guard interval includes a cyclic prefix and a second time slot, and the second time slot is a special prefix time slot or a special suffix time slot;
  • the second time slot is a prefix time slot, used to remove the cyclic prefix from the received signal, and remove a signal whose tail of the received signal is equal to the length of the second time slot; or a special suffix in the second time slot In the case of a time slot, it is used to remove the cyclic prefix and the special suffix time slot.
  • the received signal includes a signal of at least one subband
  • the signal receiving method further includes determining a configuration parameter of the at least one subband, the configuration The parameters include subcarrier spacing and subband width.
  • the signal receiving method further includes selecting a suitable filter according to the configuration parameter of the at least one subband.
  • the signal receiving method further includes performing a Fourier transform on the signal after the de-protection interval; if the second time slot is a prefix time slot, The FFT-transformed output signal has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; where k represents the subcarrier number, M represents the total number of subcarriers, and L represents the length of the second slot.
  • the signal receiving method further includes performing an FFT transformation The latter phase rotation factor is compensated.
  • a fifth aspect of the present invention provides a communication device, including:
  • a processor configured to generate a to-be-transmitted signal on the at least one sub-band according to the at least one sub-band configuration parameter; a configuration parameter of each sub-band includes a sub-carrier spacing and a sub-band width; and the processor is further configured to use the at least one a guard interval is added to the to-be-transmitted signal on the sub-band; the guard interval includes a cyclic prefix and a second time slot; the processor includes a filter, configured to perform a guard-protected signal on the at least one sub-band Filtering operation; and
  • a transmitter configured to send the signal including the guard interval to the receiving device.
  • the transmitter is further configured to notify the receiving device of the length of the cyclic prefix and the length of the second time slot, or The time slot related information is sent to the user equipment, so that the user equipment can learn or calculate the length of the second time slot; the information related to the second time slot includes the subcarrier spacing and the subband width of each subband. .
  • the length of the second time slot is determined by two factors of a subcarrier spacing and a subband width of the subband.
  • the length of the second time slot is determined by three factors: a subcarrier spacing, a subband width, and a filter type.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second A time slot is located at a head of the OFDM symbol
  • the second time slot is filled with a signal whose tail of the OFDM symbol is equal to the length of the second time slot.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second time The slot is located at the end of the OFDM symbol
  • the second slot is filled with a signal whose header of the OFDM symbol is equal to the length of the second slot.
  • a sixth aspect of the present invention provides a communication device, including:
  • a receiver configured to receive a signal including a guard interval;
  • the guard interval includes a cyclic prefix and a second time slot, the second time slot is a special prefix time slot or a special suffix time slot;
  • the receiver includes a filter, For filtering the signal including the guard interval;
  • the processor when the second time slot is a prefix time slot, is configured to remove the cyclic prefix from a received signal, and remove a signal whose tail of the received signal is equal to a length of the second time slot; or in the second time slot When it is a special suffix time slot, it is used to remove the cyclic prefix and the special suffix time slot.
  • the receiver receiving signal includes a signal of at least one subband
  • the processor is further configured to determine a configuration parameter of the at least one subband
  • the configuration parameters include subcarrier spacing and subband width.
  • the processor is further configured to perform a Fourier transform on the signal after the de-protection interval; if the second time slot is a prefix time slot, The FFT-transformed output signal has a phase rotation of e -j2 ⁇ kL/M with respect to the input signal; where k represents the subcarrier number, M represents the total number of subcarriers, and L represents the length of the second slot.
  • the processor is further configured to perform FFT The transformed phase rotation factor is compensated.
  • a seventh aspect of the present invention provides a communication device including a transmitter, a receiver, and a processor, the transmitter for transmitting a signal to be transmitted including at least one subcarrier, and the receiver for receiving at least one sub a signal to be received by the carrier; the processor includes a filter for performing filtering processing on the to-be-transmitted signal or the to-be-received signal, and the processor performs a guard interval processing on the to-be-transmitted signal or the to-be-processed
  • the received signal is subjected to a de-protection interval process, and the guard interval includes a cyclic prefix and a second time slot.
  • the second time slot is a special prefix time slot or a special suffix time slot.
  • the foregoing communication device and the signal transmitting and receiving method use a cyclic prefix to eliminate multipath interference, and use a special prefix time slot or a special suffix time slot to eliminate interference caused by filtering, which can effectively improve communication quality.
  • FIG. 1 is a functional block diagram of a communication device for transmitting downlink data according to Embodiment 1 of the present invention
  • 2 is a schematic structural diagram of an OFDM symbol, the head of the OFDM symbol having a cyclic prefix
  • 3A-3C are diagrams showing different time domain impulse responses of filters when different subcarrier spacings or subband widths are used;
  • Figure 4 shows a schematic diagram of the overlap between adjacent symbols
  • FIG. 5 is a diagram showing a comparison of BLER (Block Error Ratio) performance after adding only the first time slot and adding the first time slot and the second time slot;
  • BLER Block Error Ratio
  • FIG. 6 is a functional block diagram of a communication device for receiving downlink data according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of de-cyclicizing prefix and de-tailing data of an OFDM symbol when the communication device shown in FIG. 6 receives a signal;
  • FIG. 8 is a functional block diagram of a communication device for transmitting an uplink signal according to Embodiment 2 of the present invention.
  • FIG. 9 is a functional block diagram of a communication device for transmitting a signal according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic structural diagram of an OFDM symbol, the head and the tail of the OFDM symbol are respectively added with a cyclic prefix and a suffix;
  • FIG. 11 is a functional block diagram of a communication device for receiving a signal according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of de-ringing a prefix and a suffix of an OFDM symbol when the communication device shown in FIG. 11 receives a signal;
  • FIG. 13 is a flowchart of a signal sending method according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of a signal receiving method according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a communication device for transmitting a signal according to an embodiment of the present invention.
  • FIG. 16 is a structural diagram of a communication device for receiving a signal according to an embodiment of the present invention.
  • FIG. 17 is a structural diagram of a communication system according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication device and the communication method in the embodiments of the present invention may employ techniques such as OFDM, Discrete Fourier Transform Extended OFDM (referred to as DFT-S-OFDM).
  • a communication device 100 can be configured to send a signal to a peer device, including an acquisition module 105 , a subband signal generation module 110 , a cyclic prefix module 140 , a filter 150 , a merge module 160 , and The transmitting module 170.
  • the communication device 100 is configured to send The line signal is sent to a receiving device (such as a user device).
  • the communication device 100 may also be configured to transmit an uplink signal.
  • the acquisition module 105 is configured to acquire data to be sent, and the subband signal generation module 110 is configured to process the to-be-sent data to generate a to-be-transmitted signal on one or more sub-bands.
  • the subband signal generating module 110 is configured to determine configuration parameters of each subband, and generate data to be sent of each subband.
  • the configuration parameters include parameters such as subcarrier spacing and subband width.
  • the effective data bandwidth of the system is 18 MHz, and is equally divided into two sub-bands, wherein the sub-band 1 has a sub-carrier spacing of 15 kHz, occupying a continuous 9 MHz bandwidth representing low frequency;
  • the subcarrier spacing of Band 2 is 30 KHz, taking up a continuous 9 MHz bandwidth representing high frequencies.
  • the subband signal generation module 110 includes a subcarrier mapping module 120 and an IFFT (Inverse Fast Fourier Transform) transform module 130.
  • IFFT Inverse Fast Fourier Transform
  • the subcarrier mapping module 120 is configured to map data to be sent to a specific subcarrier, and the correspondence between the to-be-transmitted data and a specific subcarrier is generally determined by a resource scheduling function in the communication system. For example, in a cellular communication system, a base station typically schedules its data onto specific subcarriers based on the channel state information of the terminal. The subcarriers of the unmapped data are padded with 0, so that the data length after padding 0 is equal to the number of IFFT transform points, and is ready for the next IFFT transform.
  • each subband needs to be consistent.
  • each valid data subcarrier is mapped to the scheduled location, and other subcarriers that are not mapped with valid data are padded with 0s.
  • the IFFT conversion module 130 is configured to perform IFFT transformation on the data after subcarrier mapping.
  • the data of each subband is mapped by the subcarrier mapping module 120 before being subjected to IFFT conversion.
  • the number of points of the IFFT transform is determined by the system bandwidth and the subcarrier spacing of the subbands. For In order to make the subsequent processing simple, the appropriate IFFT transform points can be selected, so that the signal sampling rates of different sub-bands after IFFT transform are the same. In the above example, the number of IFFT conversion points of the subband 1 is 2048, and the number of IFFT conversion points of the subband 2 is 1024. After the IFFT transform, the sampling rates of the two subbands are the same. Otherwise, before the data of different sub-bands is merged, it is necessary to increase the module of the variable sampling rate so that the sampling rates of the respective sub-bands are consistent.
  • the cyclic prefix module 140 adds a cyclic prefix to the IFFT-transformed data of the corresponding sub-band.
  • the role of the cyclic prefix CP is to counter the ISI caused by the channel multipath delay, and its length is usually set to a value larger than the maximum multipath delay of the channel.
  • the filtering in addition to inter-symbol interference caused by multipath, the filtering itself will also cause intersymbol interference.
  • the ISI intensity caused by filtering is mainly related to three factors:
  • Subcarrier spacing This is because the length of the OFDM symbols other than the CP is the reciprocal of the subcarrier spacing. Under the premise of the filter determination, the shorter the OFDM symbol, the stronger the ISI brought by the filter, and vice versa.
  • Subband width According to the basic principle of the filter, the wider the passband, the smaller the degree of time domain diffusion of the filter's time domain impulse response, and vice versa.
  • the cyclic prefix CP includes a first time slot CP_C and a second time slot CP_F, which can be used not only to combat multipath interference but also to counter the ISI caused by the filter.
  • Figure 2 shows the CP diagram of one of the subbands. The CP is divided into two parts, where the cyclic prefix CP_C represents the ISI used to combat the channel multipath, and the special prefix slot CP_F is used to counter the filter. ISI.
  • the CP-filled signal is a signal that replicates the OFDM symbol tail equal to the total length of the CP.
  • the length of CP_C can be set according to the prior art, for example, the length of CP_C can be set.
  • the value is set to be greater than the maximum multipath delay of the channel; the length of the CP_F may be determined by the communication device 100, and the receiving device is notified, or the parameter related to the length of the CP_F is sent to the receiving device, and the receiving device calculates the CP_F according to the parameter. length.
  • CP_F The purpose of CP_F is to counter the ISI interference introduced by the filter.
  • the length of the filter's time domain impulse response can be selected as the CP_F length.
  • CP_F will be very long, and the overhead will increase due to the excessive CP_F. Therefore, the present invention only considers the main part of the energy response of the filter by the time domain.
  • the length of CP_F can be chosen to be close to the main part of the energy of the filter impulse response to isolate the interference, while at the same time eliminating most of the ISI.
  • the main part of the energy is the most powerful part of the filter impulse response center.
  • the filter impulse response here refers to the impulse response of the filter of the transmitting end communication device, or the combined impulse response of the filter of the transmitting end communication device and the receiving end communication device.
  • Fig. 3A shows a filter impulse response with a sampling rate of 30.72 MHz and a subband width of 0.9 MHz.
  • the length of CP_F can be set to 40 sampling intervals to isolate the ISI interference caused by the filter.
  • Figure 3A shows the response of a filter with a subband width of 0.9 MHz
  • Figure 3B shows the impulse response of the same filter with a subband width of 1.8 MHz. The main part of the energy becomes narrower, so a shorter CP_F length can be used.
  • Filter type Although the sub-band width has a great influence on the main part of the filter energy, the impact response of the filter designed by different filter design methods and different filter design parameters will still be different.
  • the subcarrier spacing is also a factor in setting CP_F. This is because the ISI strengths that can be tolerated at different subcarrier intervals are different. In general, the smaller the subcarrier spacing, the longer the time domain symbol, and the interference between symbols without the filter being unchanged. The resulting ISI is smaller. At this point you can choose a smaller CP_F length to reduce overhead. As shown in FIG. 3C, the filter in FIG. 3A is still used. If the subcarrier spacing is small at this time, the length of CP_F can be reduced. For example, the length of CP_F is only set to 20 sampling intervals.
  • the length of CP_F is mainly determined by at least one of three factors: subband width, filter type, and subcarrier spacing. In actual implementation, it can be determined by the following methods:
  • the length of CP_F is determined by the width of the subband.
  • the subband width is the most important factor affecting CP_F.
  • the time domain impulse response energy of the filter corresponding to the subband width is mainly Partial decision.
  • the length of CP_F is determined by the subband width and the subcarrier spacing.
  • the length of CP_F is primarily determined by the subband width and subcarrier spacing. As shown in Table (1): CP_F lengths with different subcarrier spacings and different subband widths can be defined in advance. The CP_F length can be obtained by the configuration of subcarrier spacing and subband width. L ij is expressed in Table (1). The subcarrier spacing represented by the i-th row and the j-th column corresponds to the CP_F length corresponding to the sub-band width.
  • Table (1) Determine the CP_F length based on the subband width and subcarrier spacing
  • the length of CP_F is determined by the subband width and the filter type:
  • the length of the CP_F can be determined jointly according to the subband width and the filter type. As shown in Table (2): CP_F length under different sub-band widths and different filter types can be defined in advance, and CP_F length can be obtained by sub-band width and filter type configuration. L ij in Table (1) Indicates the CP_F length corresponding to the filter type and subband width indicated by the i-th row and the j-th column.
  • Table (2) Determine the CP_F length based on the subband width and filter type
  • CP_F The length of CP_F is determined by the subband width, subcarrier spacing and filter type:
  • the filter itself may have multiple options, in which case different CP_F lengths can be configured for different filters.
  • the length of CP_F is determined by three factors. The length of the CP_F corresponding to the p-th filter corresponding to the sub-carrier spacing and the sub-band width indicated by the i-th row and the j-th column is indicated. The length of CP_F is determined according to three parameters of subcarrier width, subcarrier spacing, and filter type.
  • CP_F The length of CP_F is determined by the subband width, subcarrier spacing and filter type.
  • the filter 150 filters each sub-band to control interference between sub-bands at an acceptable level. As shown in FIG. 4, after filtering, the OFDM symbols are expanded, and both sides are smeared and overlapped with adjacent symbols. This filtering causes ISI.
  • the merge module 160 adds the signals of the respective sub-bands. It should be pointed out that since each sub-band adopts different sub-carrier spacing and CP length parameters, the symbol lengths are no longer the same, and strict symbol synchronization cannot be achieved between sub-bands. In the case of merging, it is only necessary to add samples by sampling in chronological order, regardless of the symbol alignment relationship.
  • the transmitting module 170 is configured to send a signal synthesized by the combining module 160 to the receiving device, and notify the user equipment of the length of the cyclic prefix CP_C against the multipath interference and the length of the special prefix slot CP_F, or The parameters related to the length of the CP_C and the length of the CP_F are sent to the user equipment, and the user equipment can determine the length of the CP_C and the length of the CP_F according to the parameters.
  • the transmitting module 170 includes one or more antennas.
  • Figure 5 shows a simulation result. Compared with the scheme with only the first time slot CP_C, the performance of the BLER (Block Error Ratio) is significantly improved after the second time slot CP_F is added.
  • BLER Block Error Ratio
  • a communication device 200 is configured to receive a signal sent by the communication device 100.
  • the communication device 200 includes a receiving module 210, a filter 220, a de-cyclic prefix module 230, and an FFT (Fast Fourier Transformation). , Fast Fourier Transform) transform module 240 and signal detection module 250.
  • the communication device 200 is configured to receive a downlink signal. In other embodiments of the present invention, the communication device 200 may also be configured to receive an uplink signal.
  • the receiving module 210 is configured to receive a signal transmitted by the communication device 100, where the signal is a composite signal of each sub-band signal.
  • the receiving module 210 includes one or more antennas.
  • the receive signal of the receiving module 210 can be divided into one or more sub-band signals corresponding to the sub-band signals of the transmitting end, so that the sub-band signals are independently processed.
  • the filter 220 filters each subband signal.
  • the filter may be a matched filter corresponding to the transmitter filter, or any filter corresponding to the corresponding subband width.
  • the de-cycle prefix module 230 removes the CP_C against the channel multipath, while the CP_F of the CP backend is reserved. Correspondingly, the signal at the end of the OFDM symbol equal to the length of CP_F is also removed to maintain the original symbol length. As shown in Figure 7, after the CP is removed, the remaining signal portion of the FFT block contains the complete information of an OFDM symbol, and the trailing letter of the adjacent symbol. Most of the energy of the number is excluded from the FFT block.
  • the above-mentioned de-CP process is equivalent to performing a cyclic right shift of the L CP_F point for a valid symbol of the transmitting end, and L CP_F indicates the length of the CP-F. Therefore, the FFT transforms to the frequency domain symbol with respect to the signal at the transmitting end. Phase rotation. Where k is the subcarrier number and M is the total number of subcarriers.
  • the FFT module 240 is configured to perform FFT transformation on signals of the corresponding subbands.
  • the number of points of the FFT transformation is the same as that of the transmitting end.
  • the signal detection module 250 is configured to detect the quality of each sub-band signal and compensate for the phase rotation during signal detection.
  • a communication device 300 can be configured to send a signal to a peer device, including an acquisition module 360 for acquiring a signal to be transmitted, a subband signal generation module 370, and the subband signal generation module 370.
  • the subcarrier mapping module 310 for mapping data to be transmitted and the IFFT conversion module 320 for performing IFFT transformation on the mapped data are included.
  • the communication device 300 further includes a cyclic prefix module 330 for adding a cyclic prefix to the IFFT-transformed data, a filter 340, and a transmitting module 350 for transmitting signals.
  • the functions and principles of the modules of the communication device 300 are similar to those of the corresponding modules of the communication device 100 (see FIG. 1) in the first embodiment, and will not be described in detail.
  • the communication device 300 may be a user equipment UE, configured to send uplink data.
  • the data of multiple UEs is not combined and uplink transmission is performed separately.
  • the structure of the communication device at the receiving end is basically the same as that of the communication device 200 (see FIG. 6) described in the first embodiment, and details are not described herein.
  • a communication device 500 includes an acquisition module 505 , a sub-band signal generation module 510 , a cyclic prefix and suffix module 540 , a filter 550 , a merge module 560 , and a transmission module 570 .
  • the subband signal generating module 510 includes a subcarrier mapping module 520 and an IFFT transform module 530.
  • the communications device 500 is configured to send a downlink signal to a peer device (such as a user device). In other embodiments of the present invention, the communication device 500 can also be used to transmit an uplink signal.
  • the communication device 100 introduced in the above embodiment 1 adopts the ISI added by the cyclic prefix module 140 against the multipath and the ISI caused by the anti-filter; and the communication device 500 shown in FIG. 9 adopts the cyclic prefix and the suffix.
  • the module 540 is designed to counter the ISI caused by multipath and the ISI caused by the filter.
  • the method of adding the cyclic prefix CPre is to copy a segment of the signal at the end of the OFDM symbol to the front of the symbol; and adding the cyclic suffix CPost is to copy a segment of the signal of the OFDM symbol to the back of the symbol (see FIG. 10 for details), determining the length of the CPost.
  • the method is the same as the method for determining the length of the CP-F described in the first embodiment.
  • the cyclic suffix CPost may also be obtained without data copying of the OFDM symbol header, but directly adding "0", which may also have the effect of against the ISI introduced by the filtering.
  • the structure of the communication device 600 at the receiving end is as shown in FIG. 11, which includes a receiving module 610, a filter 620, a de-cyclic prefix and suffix module 630, an FFT conversion module 640, and a signal detecting module. 650.
  • the difference from the communication device 200 of the receiving end described in the first embodiment is that the de-cyclic prefix module is replaced with the de-cyclic prefix and suffix module 630.
  • the de-cyclic prefix and suffix are implemented by removing the cyclic prefix and the cyclic suffix of the received signal. After the de-cyclic prefix and the de-circulating suffix, the main part of the signal is completely preserved, and the tailing of the tail from the next symbol is removed from the main part of the energy.
  • the communication device at the transmitting end may be a network side device or a user equipment
  • the user equipment at the receiving end may be a user equipment or a network side device
  • the signal transmitted by the transmitting end and the receiving end may be an OFDM signal and a discrete Fourier transforms extend OFDM signals or other types of signals.
  • the communication device at the transmitting end adds a module by using a guard interval (such as the above The cyclic prefix module 140 or the cyclic prefix and suffix module 540) adds a guard interval to the signal to be transmitted, and the guard interval includes a first time slot against multipath interference (such as CP_C shown in FIG. 2 or FIG. 10). CPre) and a second time slot (such as CP_F as shown in FIG. 2 or CPost shown in FIG. 10) for combating interference caused by filtering.
  • a guard interval such as the above The cyclic prefix module 140 or the cyclic prefix and suffix module 540
  • the guard interval includes a first time slot against multipath interference (such as CP_C shown in FIG. 2 or FIG. 10).
  • CPre CPre
  • CP_F as shown in FIG. 2 or CPost shown in FIG. 10
  • the receiving end communication device performs deprotection interval processing on the received signal by using a de-protection interval module (such as the above-described de-cyclic prefix module 230 or the de-cyclic prefix and suffix module 630), for example, the guard interval is a cyclic prefix CP (see FIG. 2).
  • the guard interval includes a cyclic prefix and a suffix (see FIG. 10)
  • the cyclic prefix and the suffix are removed ( See Figure 12).
  • the interference caused by the multipath of the channel can be reduced, the interference caused by the filtering can be reduced, and the communication quality can be effectively improved.
  • a method for transmitting a signal by using the foregoing communication device includes the following steps:
  • step S02 Process the data to be sent according to the at least one subband configuration parameter to generate a to-be-transmitted signal on the at least one subband; each subband configuration parameter includes a subcarrier spacing and a subband width, etc.; step S02 further includes :
  • the data to be sent is mapped to the corresponding subcarrier according to the scheduled result, and the subcarriers of the unmapped data are padded with 0, so that the data length after the padding is equal to the number of IFFT transform points, and is ready for the next IFFT transformation;
  • the IFFT transform is performed on the data of the corresponding subbands through the subcarrier mapping.
  • the number of points of the IFFT transform is determined by the system bandwidth and the subcarrier spacing of the subbands.
  • the principle is that the signal sampling rates of the different subbands after IFFT conversion are the same;
  • S03 Add a guard interval to the data of the corresponding sub-band after the IFFT transform.
  • the guard interval includes a cyclic prefix against multipath interference and a special prefix slot or special for combating interference caused by filtering.
  • S06 notify the receiving device of the length of the guard interval, the length of the guard interval including the length of the first time slot against multipath interference and the length of the second time slot used to counter the interference caused by the filtering; or the first Notifying the user equipment of the length of the time slot and transmitting information related to the second time slot to the user equipment, so that the user equipment can calculate the length of the second time slot;
  • the information related to the second time slot includes Information such as subcarrier spacing, subband width, and filter type for each subband.
  • a method for receiving a signal by using the foregoing communication device includes the following steps:
  • S11 receiving, by the transmitting end, a signal that includes a guard interval, where the guard interval includes a first time slot against multipath interference and a second time slot for preventing interference caused by filtering; the second time slot is located in the Receiving a header or a tail of the signal; the first time slot includes a partial signal of the tail of the received signal, and the second time slot includes a partial signal of the received signal header or another partial signal of the tail;
  • S12 Determine configuration parameters of at least one subband, where the configuration parameters include a subcarrier spacing and a subband width.
  • S13 Select an appropriate filter according to the configuration parameter of the at least one subband; if the subband configuration information has a corresponding relationship with the filter used by the transmitting end, the receiving end may select the same filter as the transmitting end according to the subband configuration information. In addition, the receiving end can also select the filter by itself.
  • the passband width of the filter should be equal to the subband width, and have a narrow transition band and appropriate out-of-band attenuation, so that the filtered signal contains less other Subband interference;
  • S15 Perform deprotection interval processing on the filtered signal, for example, when the guard interval is a cyclic prefix CP (see FIG. 2), remove the CP_C component of the cyclic prefix CP and remove the data of the tail equal to the length of the CP_F (see FIG. 6). ); or when the guard interval is the cyclic prefix CPre and the suffix CPost (see Figure 9), remove the cyclic prefix and suffix (see Figure 11);
  • S16 Perform FFT transformation on the signal of the corresponding subband; if the second time slot is the cyclic prefix CP_F, the FFT transforms to the signal of the frequency domain symbol relative to the transmitting end. Phase rotation; if the second time slot is the suffix CPost, no phase rotation is generated;
  • a transmitting communication device 100A is configured to transmit a signal to a peer device, including a transmitter 10A, a processor 20A, and a memory 30A.
  • the transmitter 10A is configured to transmit a signal including a guard interval; the guard interval includes a first time slot against multipath interference (CP_C as shown in FIG. 2 or CPre shown in FIG. 10) and used for anti-filtering
  • the second time slot of the interference (CP_F as shown in Figure 2 or CPost shown in Figure 10).
  • the second time slot is a special prefix time slot or a special suffix time slot, and can be set at the head or the tail of the signal to be transmitted.
  • the processor 20A is configured to generate a to-be-transmitted signal on the at least one sub-band according to the at least one sub-band configuration parameter; the configuration parameter of each sub-band includes a sub-carrier spacing and a sub-band width; the processor is further configured to: A guard interval is added to the to-be-transmitted signal on the at least one sub-band; the guard interval includes a cyclic prefix for combating multipath interference and a second time slot for combating interference caused by filtering.
  • the transmitting communication device 100A further includes a filter for performing a filtering operation on the signal including the guard interval.
  • the filter may be installed in the form of hardware in the transmitting communication device 100A; the filter may also be integrated in the processor 20A to process signals at the processor 20A The signal is filtered during the process.
  • the length of the second time slot is determined by at least one of a subcarrier spacing, a subband width, and a filter type of the subband.
  • the length of the second time slot is related to a main part of the energy of the filter time domain impulse response; the main part of the energy of the filter impulse response refers to a continuous time period in which the total energy exceeds a preset threshold value. Response section.
  • the energy main portion of the filter time domain impulse response is related to at least one of the subband width and the filter type; the larger the subband width is, the second is the filter type unchanged, the second The smaller the length of the time slot.
  • the memory 30A is used to store various parameters of a signal to be transmitted, a signal processing program, and the like.
  • the transmitter 10A is further configured to notify the receiving device of the length of the cyclic prefix and the length of the second time slot, or notify the user equipment of the length of the first time slot and associate with the second time slot.
  • the information is sent to the user equipment, so that the user equipment can calculate the length of the second time slot; the information related to the second time slot includes subcarrier spacing, subband width and filter type of each subband.
  • the to-be-transmitted signal includes an OFDM symbol
  • the second time slot is located at a header of the OFDM symbol
  • the second time slot is filled with the OFDM symbol tail equal to the second time slot length signal of.
  • the second time slot is located at a tail of the OFDM symbol, and the second time slot is filled with a signal that the OFDM symbol header is equal to the second time slot length or at the second time Fill the gap with 0.
  • a receiving end communication device 100B is configured to receive signals of a peer device, including a receiver 10B, a processor 20B, and a memory 30B.
  • the receiver 10B is configured to receive a signal including a guard interval; the guard interval includes a cyclic prefix for combating multipath interference and a second time slot for combating interference caused by filtering, the second time slot is A special prefix time slot or a special suffix time slot is provided at the head or the tail of the received signal.
  • the processor 20B when the second time slot is a prefix time slot, is configured to remove the cyclic prefix for combating multipath interference from the received signal, and remove the tail of the received signal equal to the length of the second time slot. a signal; or when the second time slot is a special suffix time slot, for removing the cyclic prefix and the special suffix time slot for combating multipath interference.
  • the receiving end communication device 100B further includes a filter for performing a filtering operation on the received signal including the guard interval.
  • the filter may be installed in the receiving end communication device 100B in hardware form; the filter may also be integrated in the processor 20B to filter the signal during processing of the signal by the processor 20B.
  • the memory 30B is used to store various parameters of a received signal, a signal processing program, and the like.
  • the receiver 10B receives a signal including at least one subband, and the processor is further configured to determine configuration parameters of the at least one subband, the configuration parameters including a subcarrier spacing and a subband width.
  • the processor is further configured to perform a Fourier transform on the signal after the de-protection interval; if the second time slot is a prefix time slot, the FFT-transformed output signal has an e- j2 ⁇ kL/M with respect to the input signal. Phase rotation; where k represents the subcarrier number, M represents the total number of subcarriers, and L represents the length of the second slot.
  • the processor is further configured to compensate for the phase-rotation factor after the FFT transformation if the second time slot is a prefix time slot.
  • a communication system includes a transmitting communication device 100A and a receiving communication device 100B, and the transmitting communication device 100A can be configured to transmit a signal including a guard interval; the guard interval includes The first time slot against the multipath interference and the second time slot used to counter the interference caused by the filtering, the second time slot is a special prefix time slot or a special suffix time slot; the receiving end communication device 100B can And receiving the signal including the guard interval and performing de-protection interval processing on the received signal.
  • the specific components and functions of the transmitting end communication device 100A and the receiving end communication device 100B are described in detail in the foregoing embodiments, and are not described again.
  • DFT-s-OFDM is a low PAPR signal transmission technology based on OFDM technology. Different from OFDM, DFT-s-OFDM needs to be processed before subcarrier mapping. The DFT transform is to be performed on the signal to be transmitted. Operations such as subcarrier mapping, IFFT conversion, and addition of a cyclic prefix are the same as those of the OFDM technique.
  • the technical solutions related to the present invention can be used in the DFT-s-OFDM technology, and the difference between the OFDM and the OFDM is only whether the signal to be transmitted in the sub-band signal generating module is DFT-transformed, and the other operations are two.
  • the people are all the same.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信设备及信号发送、接收方法,利用循环前缀消除多径干扰,并利用特殊前缀时隙或特殊后缀时隙消除滤波带来的干扰,能有效提高通信质量。所述通信设备包括子带信号生成模组、保护间隔添加模组、滤波器及发射模组。所述子带信号生成模组用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;所述保护间隔添加模组用于对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括用于对抗多径干扰的循环前缀及用于对抗滤波带来的干扰的第二时隙;所述用于对所述至少一个子带上的加保护间隔后的信号进行滤波操作;所述发射模组,用于将所述对抗多径干扰的循环前缀的长度及第二时隙的长度通知用户设备。

Description

通信设备、通信***、信号发送方法及信号接收方法 技术领域
本发明涉及通信领域,尤其涉及一种通信设备、通信***、信号发送方法及信号接收方法。
背景技术
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是一种获得了广泛应用的多载波调制技术,通过把数据流分成多个并行的子载波进行传输,每个子载波上可以采用较低的数据速率,而总体上则达到较高的传输速率。OFDM的主要优点在于,可以有效对抗频率选择性衰落信道,并且通过引入循环前缀(cyclic prefix,CP),可以消除符号间干扰(Inter Symbol Interference,ISI)。
通常,在采用OFDM的***中,对频谱模板或邻带泄露都有严格的规定。为了满足这一规定,OFDM***通常采用滤波器对带外泄露进行限制。例如,在IFFT(Inverse Fast Fourier Transformation,反傅里叶变换)变换和加CP之后,采用一个低通滤波器对信号的带外泄露进行限制。
然而,上述滤波是对整个***带宽进行滤波,对带外信号进行了限制,滤波对带外进行抑制的同时,也会引入ISI,这些干扰可能会导致***性能的降低。
发明内容
本发明实施例提供了一种通信设备、通信***、信号发送方法及信号接收方法,能减小滤波器带来的干扰。
本发明第一方面提供了一种通信设备,包括:
获取模组,用于获待发送的数据;
子带信号生成模组,用于根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号;每个子带配置参数包括子载波间隔及子带宽度;
保护间隔添加模组,用于对每个子带上的待发送信号添加保护间隔;所述保护间隔包括第一时隙及第二时隙;所述第一时隙包括所述待发送信号尾部的部分信号,所述第二时隙包括所述待发送信号头部的部分信号或尾部的另一部分信号;
滤波器,用于对每个子带上的添加保护间隔后的信号进行滤波;及
发射模组,用于发送经过所述滤波器滤波后的信号。
结合第一方面,在第一方面的第一种可能的实施方式中,所述发射模组还用于将所述第一时隙的长度及第二时隙的长度通知用户设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,以使用户设备计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及所述滤波器的类型。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
结合第一方面或第一方面的第一至第二其中任意一种可能的实施方式,在第一方面的第三种可能的实施方式中,所述第二时隙的长度与滤波器时域冲击响应的能量主要部分相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
结合第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式中,所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
结合第一方面或第一方面的第一至第四其中任意一种可能的实施方式,在第一方面的第五种可能的实施方式中,所述子载波间隔越小,在所述子带宽度及滤波器类型不变的情况下,所述第二时隙的长度越小。
结合第一方面,在第一方面的第六种可能的实施方式中,所述通信设备还包括合并模组,用于合并所述至少一个子带上经过滤波器滤波后的信号;所述发送模组,用于发送经过所述合并模组合并后的信号。
结合第一方面或第一方面的第一至第六其中任意一种可能的实施方式,在第一方面的第七种可能的实施方式中,所述子带信号生成模组用于:将所述待发送信号映射到相应的子带上;及对映射到相应子带上的待发送数据进行反傅立叶变换;所述保护间隔添加模组用于对经过反傅立叶变换后的相应子带的数据添加保护间隔。
结合第一方面或第一方面的第一至第七其中任意一种可能的实施方式,在第一方面的第八种可能的实施方式中,所述待发送信号包括正交频分复用OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
结合第一方面或第一方面的第一至第七其中任意一种可能的实施方式,在第一方面的第九种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号。
本发明第二方面提供了一种通信设备,包括:
接收模组,用于接收包含保护间隔的信号;所述保护间隔包括第一时隙及第二时隙,所述第一时隙包括所述接收信号尾部的部分信号,所述第二时隙包括所述接收信号头部的部分信号或尾部的另一部分信号;所述第二时隙位于所述接收信号的头部或尾部;
滤波器,用于对所述接收信号进行滤波;及
去保护间隔模组,用于对滤波后的接收信号进行去保护间隔处理以得到去保护间隔后的信号。
结合第二方面,在第二方面的第一种可能的实施方式中,如果所述第二时隙位于所述接收信号的头部,所述去保护间隔模组对所述滤波后的接收信号进行去保护间隔具体包括从所述滤波后的接收信号中去除所述第一时隙,并去除所述滤波后接收信号尾部等于第二时隙长度的信号;如果所述第二时隙位于所述接收信号的尾部,所述去保护间隔模组对所述滤波后的接收信号进行去保护间隔具体包括从所述滤波后的接收信号中去除所述第一时隙及第二时隙。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述通信设备还包括FFT(Fast Fourier Transformation, 快速傅里叶变换)模组,用于对所述去保护间隔后的信号进行傅立叶变换。
结合第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,如果所述第二时隙位于所述接收信号的头部;则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度;所述通信设备还包括信号检测模组,用于对经过FFT变换后的相位旋转进行补偿。
本发明第三方面提供了一种信号发送方法,包括:
获取待发送的数据;
根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号;每个子带配置参数包括子载波间隔及子带宽度;
对每个子带上的待发送信号添加保护间隔;所述保护间隔包括第一时隙第一时隙及第二时隙;所述第一时隙包括所述待发送信号尾部的部分信号,所述第二时隙包括所述待发送信号头部的部分信号或尾部的另一部分信号;
通过滤波器对每个子带上的加保护间隔后的信号进行滤波;及
发送经过所述滤波器滤波后的信号。
结合第三方面,在第三方面的第一种可能的实施方式中,所述信号发送方法还包括将所述第一时隙的长度及第二时隙的长度通知用户设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,以使用户设备计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及滤波器类型。
结合第三方面或第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
结合第三方面或第三方面的第一至第二其中任意一种可能的实施方式,在第三方面的第三种可能的实施方式中,所述第二时隙的长度与滤波器时域冲击响应的能量主要部分来相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
结合第三方面的第二种可能的实施方式,在第三方面的第四种可能的实施方式中,所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类 型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
结合第三方面或第三方面的第一至第四其中任意一种可能的实施方式,在第三方面的第五种可能的实施方式中,所述子载波间隔越小,在所述子带宽度及滤波器类型不变的情况下,所述第二时隙的长度越小。
结合第三方面,在第三方面的第六种可能的实施方式中,所述信号发送方法还包括合并所述至少一个子带上经过滤波器滤波后的信号。
结合第三方面或第三方面第一至第六其中任意一种可能的实施方式,在第三方面的第七种可能的实施方式中,所述根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号的步骤包括:在生成至少一个子带上的待发送信号后将所述待发送信号映射到相应的子带上;及在映射所述至少一个子带上的待发送信号后对相应子带的数据进行反傅立叶变换。
结合第三方面或第三方面第一至第七其中任意一种可能的实施方式,在第三方面的第八种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,所述对至少一个子带上的待发送信号添加保护间隔包括在该第二时隙内填充该OFDM符号尾部等于该第二时隙长度的信号。
结合第三方面或第三方面第一至第七其中任意一种可能的实施方式,在第三方面的第九种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,所述对至少一个子带上的待发送信号添加保护间隔包括在该第二时隙内填充该OFDM符号头部等于该第二时隙长度的信号。
本发明第四方面提供了一种信号接收方法,包括:
接收包含保护间隔的信号;所述保护间隔包括第一时隙及第二时隙;所述第二时隙位于所述接收信号的头部或尾部;所述第一时隙包括所述接收信号尾部的部分信号,所述第二时隙包括所述接收信号头部的部分信号或尾部的另一部分信号;
对所述接收信号进行滤波;及
对滤波后的接收信号进行去保护间隔处理以得到去保护间隔后的信号。
结合第四方面,在第四方面的第一种可能的实施方式中,如果所述第二时隙位于所述接收信号的头部,所述对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙,并去除所述滤波后的接收信号尾部等于第二时隙长度的信号;如果所述第二时隙位于所述接收信号的尾部时,所述对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙及第二时隙。
结合第四方面或第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述信号接收方法还包括对所述去保护间隔后的信号进行傅立叶变换;如果所述第二时隙位于接收信号的头部,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度;如果所述第二时隙位于接收信号的头部,所述信号接收方法还包括对所述相位旋转进行补偿的步骤。
本发明第五方面提供了一种发送端通信设备,包括:
处理器,用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;所述处理器还用于对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括第一时隙及第二时隙;
滤波器,用于对所述至少一个子带上的加保护间隔后的信号进行滤波操作;及
发射机,用于发送所述包含保护间隔的信号至接收设备。
结合第五方面,在第五方面的第一种可能的实施方式中,所述发射机还用于将所述第一时隙的长度及第二时隙的长度通知接收设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,以使用户设备计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及滤波器的类型。
结合第五方面或第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
结合第五方面或第五方面第一至第二其中任意一种可能的实施方式,在第五方面的第三种可能的实施方式中,所述第二时隙的长度与滤波器时域冲击响应的能量主要部分来相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
结合第五方面的三种可能的实施方式,在第五方面的第四种可能的实施方式中,所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
结合第五方面或第五方面的第一至第四其中任意一种可能的实施方式,在第五方面的第五种可能的实施方式中,在所述子带宽度及滤波器类型不变的情况下,所述子载波间隔越小,所述第二时隙的长度越小。
结合第五方面或第五方面的第一至第五其中任意一种可能的实施方式,在第五方面的第六种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
结合第五方面或第五方面的第一至第五其中任意一种可能的实施方式,在第五方面的第七种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号。
结合第五方面或第五方面的第一至第七其中任意一种可能的实施方式,在第五方面的第八种可能的实施方式中,所述滤波器集成于所述处理器中。
本发明第六方面提供了一种接收端通信设备,包括:
接收机,用于接收包含保护间隔的信号;所述保护间隔包括第一时隙及第二时隙,所述第二时隙位于所述接收信号的头部或尾部;所述第一时隙包括所述待发送信号尾部的部分信号,所述第二时隙包括所述待发送信号头部的部分信号或尾部的另一部分信号;滤波器,用于对所述接收信号进行滤波处理;及
处理器,用于对滤波后的接收信号进行去保护间隔处理。
结合第六方面,在第六方面的第一种可能的实施方式中,如果所述第二时隙位于所述接收信号的头部,所述处理器对滤波后的接收信号进行去保护间隔 处理具体包括从所述滤波后的接收信号中去除所述第一时隙,并去除所述滤波后的接收信号尾部等于第二时隙长度的信号;如果所述第二时隙位于所述接收信号的尾部,所述处理器对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙及第二时隙。
结合第六方面或第六方面的第一种可能的实施方式,在第六方面的第二种可能的实施方式中,所述处理器还用于对去保护间隔后的信号进行傅立叶变换;如果所述第二时隙位于所述接收信号的尾部,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度;如果所述第二时隙是前缀时隙,则所述处理器还用于对经过FFT变换后的相位旋转因子进行补偿。
结合第六方面或第六方面的第一至第二其中任意一种可能的实施方式,在第六方面的第三种可能的实施方式中,所述滤波器集成于所述处理器中。
本发明第七方面提供了一种通信***,包括本发明第五方面或第五方面的任意一种可能的实施方式中所述的发送端通信设备及本发明第六方面或第六方面的任意一种可能的实施方式中所述的接收端通信设备。
本发明第一方面提供了一种通信设备,包括:
子带信号生成模组;用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;
保护间隔添加模组,用于对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括循环前缀及第二时隙;
滤波器,用于对所述至少一个子带上的加保护间隔后的信号进行滤波操作。
结合第一方面,在第一方面的第一种可能的实施方式中,所述通信设备还包括发射模组,用于将所述循环前缀的长度及第二时隙的长度通知用户设备,或将与所述第二时隙相关的信息发送给用户设备,使用户设备能够获知或计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔及子带宽度。
结合第一方面,在第一方面的第二种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型其中至少两个因素来确 定。
结合第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔及子带宽度两个因素来确定。
结合第一方面的第二种可能的实施方式,在第一方面的第四种可能的实施方式中,所述第二时隙的长度由子载波间隔、子带宽度、滤波器类型三个因素来确定。
结合第一方面的第二种可能的实施方式,在第一方面的第五种可能的实施方式中,所述第二时隙的长度根据滤波器的时域扩散程度来决定;滤波器时域冲击响应的时域扩散程度与所述子带宽度相关。
结合第一方面,在第一方面的第六种可能的实施方式中,所述通信设备还包括合并模组,用于合并所述至少一个子带上的滤波后的信号。
结合第一方面或第一方面的第一至第六其中任意一种可能的实施方式,在第一方面的第七种可能的实施方式中,所述通信设备还包括子载波映射模组,用于映射所述至少一个子带上的待发送信号。
结合第一方面的第七种可能的实施方式,在第一方面的第八种可能的实施方式中,所述通信设备还包括IFFT变换模组,用于对所述子载波映射模组映射的相应子带的数据进行反傅立叶变换,所述保护间隔添加模组用于对经过反傅立叶变换后的相应子带的数据进行添加保护间隔处理。
结合第一方面或第一方面的第一至第八其中任意一种可能的实施方式,在第一方面的第九种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
结合第一方面或第一方面的第一至第八其中任意一种可能的实施方式,在第一方面的第十种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号。
结合第一方面或第一方面的第一至第八其中任意一种可能的实施方式,在第一方面的第十一种可能的实施方式中,所述待发送信号包括OFDM符号, 所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内的填充符号是“0”。
本发明第二方面提供了一种通信设备,包括:
接收模组,用于接收包含保护间隔的信号;所述保护间隔包括循环前缀及第二时隙,所述第二时隙是特殊前缀时隙或特殊后缀时隙;
滤波器,用于对所述包含保护间隔的信号进行滤波操作;及
去保护间隔模组,在所述第二时隙是前缀时隙时,用于从接收信号中去除所述循环前缀,并去除接收信号尾部等于第二时隙长度的信号;或在所述第二时隙是特殊后缀时隙时,用于去除所述循环前缀及特殊后缀时隙。
结合第二方面,在第二方面的第一种可能的实施方式中,所述接收机还包括FFT模组,用于对去保护间隔后的信号进行傅立叶变换;如果所述第二时隙是前缀时隙,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度。
结合第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述接收机还包括信号检测模组,如果所述第二时隙是前缀时隙,则所述信号检测模组用于对经过FFT变换后的相位旋转因子进行补偿。
结合第二方面,在第二方面的第三种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型其中至少两个因素来确定。
结合第二方面的第三种可能的实施方式,在第二方面的第四种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔及子带宽度两个因素来确定。
结合第二方面的第三种可能的实施方式,在第二方面的第五种可能的实施方式中,所述第二时隙的长度由子载波间隔、子带宽度、滤波器类型三个因素来确定。
结合第二方面的第三种可能的实施方式,在第二方面的第六种可能的实施方式中,所述第二时隙的长度根据滤波器的时域扩散程度来决定;滤波器时域冲击响应的时域扩散程度与所述子带宽度相关。
本发明第三方面提供了一种信号发送方法,包括:
用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;
对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括循环前缀及第二时隙;
对所述至少一个子带上的加保护间隔后的信号进行滤波操作。
结合第三方面,在第三方面的第一可能的实施方式中,所述信号发送方法还包括所述循环前缀的长度及第二时隙的长度通知用户设备,或将与所述第二时隙相关的信息发送给用户设备,使用户设备能够获知或计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔及子带宽度。
结合第三方面,在第三方面的第二种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型其中至少两个因素来确定。
结合第三方面的第二种可能的实施方式,在第三方面的第三种可能的实施方式中,当滤波器的类型选定时,所述第二时隙的长度由该子带的子载波间隔及子带宽度两个因素来确定。
结合第三方面的第二种可能的实施方式,在第三方面的第四种可能的实施方式中,当滤波器的类型有多种选择时,所述第二时隙的长度由子载波间隔、子带宽度、滤波器类型三个因素来确定。
结合第三方面的第二种可能的实施方式,在第三方面的第五种可能的实施方式中,所述第二时隙的长度根据滤波器的时域扩散程度来决定;滤波器时域冲击响应的时域扩散程度与所述子带宽度相关。
结合第三方面,在第三方面的第六种可能的实施方式中,所述信号发送方法还包括合并所述至少一个子带上的滤波后的信号。
结合第三方面或第三方面的第一至第六其中任意一种可能的实施方式,在第三方面的第七种可能的实施方式中,所述信号发送方法还包括在生成至少一个子带上的待发送信号后映射所述至少一个子带上的待发送信号。
结合第三方面,在第三方面的第八种可能的实施方式中,所述信号发送方法还包括在映射所述至少一个子带上的待发送信号后对相应子带的数据进行 反傅立叶变换。
结合第三方面或第三方面的第一至第八其中任意一种可能的实施方式,在第三方面的第九种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,所述对至少一个子带上的待发送信号添加保护间隔包括在该第二时隙内填充该OFDM符号尾部等于该第二时隙长度的信号。
结合第三方面或第三方面的第一至第八其中任意一种可能的实施方式,在第三方面的第十种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,所述对至少一个子带上的待发送信号添加保护间隔包括在该第二时隙内填充该OFDM符号头部等于该第二时隙长度的信号。
结合第三方面或第三方面的第一至第八其中任意一种可能的实施方式,在第三方面的第十一种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内的填充符号是“0”。
本发明第四方面提供了一种信号接收方法,包括:
接收包含保护间隔的信号;所述保护间隔包括循环前缀及第二时隙,所述第二时隙是特殊前缀时隙或特殊后缀时隙;
对所述包含保护间隔的信号进行滤波操作;及
在所述第二时隙是前缀时隙时,用于从接收信号中去除所述循环前缀,并去除接收信号尾部等于第二时隙长度的信号;或在所述第二时隙是特殊后缀时隙时,用于去除所述循环前缀及特殊后缀时隙。
结合第四方面,在第四方面的第一种可能的实施方式中,所述接收信号包括至少一个子带的信号,所述信号接收方法还包括确定至少一个子带的配置参数,所述配置参数包括子载波间隔及子带宽度。
结合第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述信号接收方法还包括根据所述至少一个子带的配置参数选择合适的滤波器。
结合第四方面,在第四方面的第三种可能的实施方式中,所述信号接收方 法还包括对去保护间隔后的信号进行傅立叶变换;如果所述第二时隙是前缀时隙,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度。
结合第四方面的第三种可能的实施方式,在第四方面的第四种可能的实施方式中,如果所述第二时隙是前缀时隙,所述信号接收方法还包括对经过FFT变换后的相位旋转因子进行补偿。
本发明第五方面提供了一种通信设备,包括:
处理器,用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;所述处理器还用于对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括循环前缀及第二时隙;所述处理器包括滤波器,用于对所述至少一个子带上的加保护间隔后的信号进行滤波操作;及
发射机,用于发送所述包含保护间隔的信号至接收设备。
结合第五方面,在第五方面的第一可能的实施方式中,所述发射机还用于将所述循环前缀的长度及第二时隙的长度通知接收设备,或将与所述第二时隙相关的信息发送给用户设备,使用户设备能够获知或计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔及子带宽度。
结合第五方面,在第五方面的第二种可能的实施方式中,所述第二时隙的长度由该子带的子载波间隔及子带宽度两个因素来确定。
结合第五方面,在第五方面的第三种可能的实施方式中,所述第二时隙的长度由子载波间隔、子带宽度、滤波器类型三个因素来确定。
结合第五方面或第五方面的第一至第三其中任意一种可能的实施方式,在第五方面的第四种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
结合第五方面或第五方面第一至第三其中任意一种可能的实施方式,在第五方面的第五种可能的实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号。
本发明第六方面提供了一种通信设备,包括:
接收机,用于接收包含保护间隔的信号;所述保护间隔包括循环前缀及第二时隙,所述第二时隙是特殊前缀时隙或特殊后缀时隙;所述接收机包括滤波器,用于对所述包含保护间隔的信号进行滤波操作;及
处理器,在所述第二时隙是前缀时隙时,用于从接收信号中去除所述循环前缀,并去除接收信号尾部等于第二时隙长度的信号;或在所述第二时隙是特殊后缀时隙时,用于去除所述循环前缀及特殊后缀时隙。
结合第六方面,在第六方面的第一种可能的实施方式中,所述接收机接收信号包括至少一个子带的信号,所述处理器还用于确定至少一个子带的配置参数,所述配置参数包括子载波间隔及子带宽度。
结合第六方面,在第六方面的第二种可能的实施方式中,所述处理器还用于对去保护间隔后的信号进行傅立叶变换;如果所述第二时隙是前缀时隙,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度。
结合第六方面的第二种可能的实施方式,在第六方面的第三种可能的实施方式中,如果所述第二时隙是前缀时隙,则所述处理器还用于对经过FFT变换后的相位旋转因子进行补偿。
本发明第七方面提供了一种通信设备,包括发射机、接收机及处理器,所述发射机用于发送包括至少一个子载波的待发送信号;所述接收机用于接收包括至少一个子载波的待接收信号;所述处理器包括滤波器,用于对所述待发送信号或待接收信号进行滤波处理,所述处理器对所述待发送信号进行加保护间隔处理或对所述待接收信号进行去保护间隔处理,所述保护间隔包括循环前缀及第二时隙。
结合第七方面,在第七方面的第一种可能的实施方式中,所述第二时隙是特殊前缀时隙或特殊后缀时隙。
相较于现有技术,上述通信设备及信号发送、接收方法采用循环前缀消除多径干扰、采用特殊前缀时隙或特殊后缀时隙消除滤波带来的干扰,能有效提高通信质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种用于传输下行数据的通信设备的功能模块图;
图2是一OFDM符号的结构示意图,该OFDM符号的头部有循环前缀;
图3A-3C示出了采用不同的子载波间隔或子带宽度时滤波器不同的时域冲击响应示意图;
图4示出了相邻的符号之间产生交叠的示意图;
图5示出了仅添加第一时隙及添加第一时隙和第二时隙后的BLER(Block Error Ratio,块误码率)性能对比图;
图6为本发明实施例一提供的一种用于接收下行数据的通信设备的功能模块图;
图7为图6所示的通信设备接收信号时对OFDM符号进行去循环前缀及去尾部数据的示意图;
图8为本发明实施例二提供的用于发送上行信号的通信设备的功能模块图;
图9为本发明实施例三提供的一种发送信号的的通信设备的功能模块图;
图10是一OFDM符号的结构示意图,该OFDM符号的头部及尾部分别加有循环前缀及后缀;
图11为本发明实施例三提供的一种用于接收信号的通信设备的功能模块图;
图12为图11所示的通信设备接收信号时对OFDM符号进行去循环前缀及后缀的示意图;
图13为本发明实施例提供的一种信号发送方法的流程图;
图14为本发明实施例提供的一种信号接收方法的流程图;
图15为本发明实施例提供的一种用于发送信号的通信设备的组成图;
图16为本发明实施例提供的一种用于接收信号的通信设备的组成图;
图17为本发明实施例提供的一种通信***的组成图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、LTE-A***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***,高频通信***,或未来演进的PLMN(Public Land Mobile Network,公共陆地移动网络)网络等。本发明实施例中的通信设备及通信方法可采用OFDM、离散傅里叶变换扩展的OFDM(简称DFT-S-OFDM)等技术。
实施例一
请参阅图1,一种通信设备100,可用于发送信号给对端设备,包括获取模组105、子带信号生成模组110、加循环前缀模组140、滤波器150、合并模组160及发射模组170。在本发明实施例一中,所述通信设备100用于发送下 行信号给接收设备(如用户设备)。在本发明其它实施例中,所述通信设备100也可以用于发送上行信号。
所述获取模组105用于获取待发送的数据,所述子带信号生成模组110用于对所述待发送数据进行处理而生成一个或多个子带上的待发送信号。具体地,所述子带信号生成模组110用于确定各子带的配置参数,并生成各个子带的待发送数据。所述配置参数包含了子载波间隔、子带宽度等参数。为了便于理解,以具体例子来说明:假设***有效的数据带宽为18MHz,且被平均分成了两个子带,其中子带1的子载波间隔为15KHz,占用了表示低频的连续的9MHz带宽;子带2的子载波间隔为30KHz,占用了表示高频的连续的9MHz带宽。
所述子带信号生成模组110包括子载波映射模组120、IFFT(Inverse FastFourier Transformation,反傅里叶变换)变换模组130。
所述子载波映射模组120用于将待发送数据映射到特定的子载波上,所述待发送数据和特定的子载波之间的对应关系通常由通信***中的资源调度功能来决定。例如,在蜂窝通信***中,基站通常根据终端的信道状态信息将其数据调度到一些特定的子载波上。未映射数据的子载波填充0,使填0后的数据长度等于IFFT变换点数,为下一步的IFFT变换做好准备。
由于各个子带的信号最终在基带进行合并,因此各个子带的采样速率需要保持一致。对于子带1来说,其总共占用9MHz/15KHz=600个子载波,IFFT点数选取为2048,则采样率为2048×15KHz=30.72MHz;对于子带2来说,其总共占用9MHz/30KHz=300个子载波,IFFT点数应选取为1024,这样采样率同样为1024×30KHz=30.72MHz。在子载波映射中,每个有效的数据子载波被映射到被调度的位置,其它未映射有效数据的子载波则用0填充。
所述IFFT变换模组130用于对经过子载波映射后的数据进行IFFT变换。在一实施方式中,每一子带的数据通过所述子载波映射模组120映射之后再进行IFFT变换。IFFT变换的点数由***带宽和子带的子载波间隔共同确定。为 了使后续的处理简单,可以选取适当的IFFT变换点数,使不同子带经过IFFT变换后的信号采样率是相同的。上述例子中,子带1的IFFT变换点数是2048,子带2的IFFT变换点数是1024。经过IFFT变换后,两个子带的采样率是相同的。否则,则在不同子带的数据进行合并之前,还需要增加变采样速率的模块,使各个子带的采样率一致。
所述加循环前缀模组140对相应子带经过IFFT变换后的数据加循环前缀。在传统的OFDM***中,循环前缀CP的作用是用于对抗信道多径时延带来的ISI,其长度通常设置为一个大于信道的最大多径时延的值。而在本发明实施例中,除了多径造成的符号间干扰,滤波本身也将造成符号间干扰。滤波造成的ISI强度主要和三个因素有关:
子载波间隔。这是因为除CP之外的OFDM符号的长度为子载波间隔的倒数。在滤波器确定的前提下,OFDM符号越短,滤波器带来的ISI越强,反之则越弱。
子带宽度。根据滤波器的基本原理,通带越宽,则滤波器时域冲击响应的时域扩散程度越小,反之则越大。
滤波器类型。不同的滤波器的时域冲击响应不同,滤波器的时域扩散程度受子带宽度影响很大,但同样的子带宽度下,不同的滤波器设计方法仍将产生出不同的滤波器时域冲击响应,他们在时域上也表现出不同的扩散程度,这也会影响ISI的干扰范围和干扰强度。
本发明实施例中,所述循环前缀CP包括第一时隙CP_C及第二时隙CP_F,不仅可用来对抗多径干扰,同时也被用来对抗滤波器造成的ISI。图2给出了其中一个子带的CP示意图,CP被分成了两个部分,其中循环前缀CP_C表示用来对抗信道多径带来的ISI,而特殊前缀时隙CP_F表示用来对抗滤波器造成的ISI。CP填充的信号是复制OFDM符号尾部等于CP总长度的信号而来的。
所述CP_C的长度及CP_F的长度均需要通知接收设备,使接收设备能够进行去CP操作。CP_C的长度可按照现有技术设置,例如,CP_C的长度可设 置为一个大于信道的最大多径时延的值;CP_F的长度可以由通信设备100确定,并通知接收设备,或将与CP_F的长度相关的参数发送给接收设备,接收设备根据参数计算出CP_F的长度。确定CP_F的长度的方法有以下几种:
CP_F的目的是用来对抗滤波器引入的ISI干扰,理论上可以选择滤波器时域冲击响应的长度作为CP_F长度,但这时CP_F会很长,而由于过长的CP_F会导致开销增大,因此本发明只考虑由滤波器时域冲击响应的能量主要部分,CP_F的长度可以选取一个和滤波器冲击响应的能量主要部分接近的数值以隔离这种干扰,同时又使大部分ISI被消除。所述能量主要部分是滤波器冲击响应中心的功率最强的部分。需要指出的是,这里的滤波器冲击响应是指发射端通信设备的滤波器的冲击响应,或是指发射端通信设备及接收端通信设备的滤波器的联合冲击响应。
如图3A给出了一个示例,它表示采样率为30.72MHz,子带宽度为0.9MHz时的一个滤波器冲击响应,考虑到滤波器冲击响应的能量主要集中在中心的40个采样点上,因此可以将CP_F的长度设置为40个采样间隔,以隔离滤波器造成的ISI干扰。
影响滤波器冲击响应的能量主要部分的因素较多,但最重要的因素包括两个:
1).子带宽度:图3A给出的是子带宽度为0.9MHz时的一个滤波器时域冲击响应,而图3B给出的是同样滤波器在子带宽度为1.8MHz时的冲击响应图,其能量主要部分变得更窄,因此可以用一个更短的CP_F长度。
2).滤波器类型:虽然子带宽度对滤波器能量主要部分影响较大,但不同的滤波器设计方法以及不同的滤波器设计参数设计出的滤波器,其冲击响应仍会有差异。
此外,除了滤波器能量主要部分,子载波间隔也是设置CP_F的一个因素。这是因为,不同子载波间隔下所能容忍的ISI强度是不同的。通常情况下,子载波间隔越小,时域符号就越长,那么在滤波器不变的情况下,符号间的干扰 造成的ISI就越小。此时可以选择一个更小的CP_F长度以减小开销。如图3C所示,仍然采用图3A中的滤波器,如果此时子载波间隔较小,则可以减小CP_F的长度,例如,CP_F的长度仅设置为20个采样间隔。
综上所述,CP_F的长度主要由子带宽度、滤波器类型和子载波间隔三个因素中的至少一个决定。在实际实现中,可以由以下几种方法来决定:
1、CP_F的长度由子带宽度决定。在子载波间隔变化不大,且滤波器类型比较固定时,子带宽度是影响CP_F的最主要因素,可以根据上文所述的方法根据子带宽度对应的滤波器的时域冲击响应能量主要部分决定。
2、CP_F的长度由子带宽度和子载波间隔决定。
在滤波器选定的情况下,如上文介绍的方法,CP_F的长度主要由子带宽度和子载波间隔决定。如表(1)所示:可以事先定义好不同子载波间隔和不同子带宽度下的CP_F长度,通过子载波间隔和子带宽度的配置即可获知其CP_F长度,表(1)中Lij表示第i行第j列所表示的子载波间隔和子带宽度所对应的CP_F长度。
Figure PCTCN2015072919-appb-000001
表(1):根据子带宽度和子载波间隔确定CP_F长度
3、CP_F的长度由子带宽度和滤波器类型共同决定:
当子载波间隔变化较小或者忽略子载波间隔对ISI的影响时,可以根据子带宽度和滤波器类型来共同决定CP_F的长度。如表(2)所示:可以事先定义好不同子带宽度和不同滤波器类型条件下的CP_F长度,通过子带宽度和滤波器类型的配置即可获知CP_F长度,表(1)中Lij表示第i行第j列所表示的滤波器类型和子带宽度所对应的CP_F长度。
Figure PCTCN2015072919-appb-000002
表(2):根据子带宽度和滤波器类型确定CP_F长度
4、CP_F的长度由子带宽度、子载波间隔和滤波器类型共同决定:
在实际应用时,滤波器本身也可能有多种选择,这种情况下可以针对不同滤波器来配置不同的CP_F长度。如表(3)所示,CP_F的长度由三个因素共同决定,
Figure PCTCN2015072919-appb-000003
表示第i行第j列所表示的子载波间隔和子带宽度所对应的第p种滤波器所对应的CP_F长度。根据子载波宽度、子载波间隔及滤波器类型这三个参数来确定CP_F的长度。
Figure PCTCN2015072919-appb-000004
表(3):由子带宽度、子载波间隔和滤波器类型共同决定CP_F的长度
所述滤波器150对各个子带进行滤波,使子带间的干扰控制在可以接受的水平上。如图4所示,经过滤波之后,OFDM符号产生了扩展,两侧产生了拖尾并且和相邻符号交叠在一起,这种滤波造成了ISI。
所述合并模组160将各个子带的信号进行相加。需要指出的是,由于各个子带采用了不同的子载波间隔和CP长度等参数,符号长度不再相同,子带间无法做到严格的符号同步。在合并时,只需要按照时间顺序逐采样相加即可,无须考虑符号对齐关系。
所述发射模组170用于发射所述合并模组160合成的信号至接收设备,并将所述对抗多径干扰的循环前缀CP_C的长度及特殊前缀时隙CP_F的长度通知用户设备,或将与CP_C的长度及CP_F的长度相关的参数发送给用户设备,用户设备可根据参数确定CP_C的长度及CP_F的长度。所述发射模组170包括一个或多个天线。
图5给出了一个仿真结果,相对于仅有第一时隙CP_C的方案,增加了第二时隙CP_F之后BLER(Block Error Ratio,块误码率)性能有明显的改善。
请继续参阅图6,一种通信设备200,用于接收所述通信设备100发送的信号,该通信设备200包括接收模组210、滤波器220、去循环前缀模组230、FFT(Fast Fourier Transformation,快速傅里叶变换)变换模组240及信号检测模组250。在本发明实施例一中,所述通信设备200用于接收下行信号。在本发明其它实施例中,所述通信设备200也可以用于接收上行信号。
所述接收模组210用于接收所述通信设备100发射的信号,该信号是各路子带信号的合成信号。所述接收模组210包括一个或多个天线。所述接收模组210接收信号可分为与发射端的各子带信号对应的一个或多个子带信号,以便对个子带信号进行独立处理。
所述滤波器220对各个子带信号进行滤波。滤波器可以选用和发射端滤波器对应的匹配滤波器,也可以选择和相应子带宽度对应的任意一种滤波器。
所述去循环前缀模组230将对抗信道多径的CP_C去掉,而CP后端的CP_F则被保留。对应的,OFDM符号尾部的等于CP_F长度的信号也被去掉,以维持原来的符号长度不变。如图7所示,去CP之后,剩下的标记为FFT block的信号部分包含了一个OFDM符号的完整的信息,并且,相邻符号的拖尾信 号的大部分能量被排除在了FFT block之外。
需要指出的是,上述去CP过程相当于对发射端的一个有效符号进行了LCP_F点的循环右移,LCP_F表示CP-F的长度。因此,FFT变换到频域符号相对于发射端的信号有一个
Figure PCTCN2015072919-appb-000005
的相位旋转。其中,k表示子载波编号,M表示子载波总数。
所述FFT模组240用于对相应子带的信号进行FFT变换。FFT变换的点数和发射端相同。
所述信号检测模组250用于检测各子带信号的质量,并在信号检测的过程中,对上述相位旋转进行补偿。
实施例二
请参阅图8,一种通信设备300,可用于发送信号至对端设备,包括用于获取待发送信号的获取模组360,子带信号生成模组370,所述子带信号生成模组370包括用于映射待发送数据的子载波映射模组310及用于对经过映射后的数据进行IFFT变换的IFFT变换模组320。所述通信设备300还包括用于对经过IFFT变换后的数据添加循环前缀的加循环前缀模组330、滤波器340及用于发送信号的发射模组350。该通信设备300的各模块的功能及原理与上述实施例一介绍通信设备100(见图1)的各相应模块的功能及原理类同,不再详述。
在实施例二中,所述通信设备300可以是用户设备UE,用于发送上行数据。多个UE的数据不进行合并,分别进行上行传输。
接收所述通信设备300发送的上行数据时,接收端的通信设备的结构与上述实施例一介绍的通信设备200(见图6)结构基本一致,不再赘述。
实施例三
请参阅图9,一种通信设备500,包括获取模组505、子带信号生成模组510、加循环前缀和后缀模组540、滤波器550、合并模组560及发射模组570。所述子带信号生成模组510包括子载波映射模组520及IFFT变换模组530。 在本发明实施例三中,所述通信设备500用于发送下行信号给对端设备(如用户设备)。在本发明其它实施例中,所述通信设备500也可以用于发送上行信号。
上述实施例一介绍的通信设备100采用的是加循环前缀模组140对抗多径带来的ISI以及抗滤波器造成的ISI;而图9所示的通信设备500采用的是加循环前缀和后缀模组540来对抗多径带来的ISI以及抗滤波器造成的ISI。其中,加循环前缀CPre的方法是复制OFDM符号尾部的一段信号到符号的前面;而加循环后缀CPost则是复制OFDM符号头部的一段信号到符号的后面(具体参见图10),确定CPost长度的方法和上述实施例一介绍的确定CP-F长度的方法相同。在其它实施方式中,循环后缀CPost也可以不采用OFDM符号头部的数据复制得到,而是直接添加“0”,同样可以起到对抗滤波引入的ISI的效果。
在本实施例三中,接收端的通信设备600的结构如图11所示,其包括接收模组610、滤波器620、去循环前缀和后缀模组630、FFT变换模组640及信号检测模组650。和实施例一介绍的接收端的通信设备200的区别在于将去循环前缀模块替换成了去循环前缀和后缀模块630。
如图12所示,去循环前缀和后缀的实现方法是将接收信号的循环前缀和循环后缀去掉。经过去循环前缀和去循环后缀之后,信号的主体部分被完整保留了下来,而信号尾部的来自于下一个符号的拖尾的干扰则被去掉了能量的主要部分。
在上述实施例中,所述发射端的通信设备可以是网络侧设备或用户设备,所述接收端的用户设备可以是用户设备或网络侧设备,发射端与接收端传输的信号可以是OFDM信号、离散傅立叶变换扩展OFDM信号或其它类型的信号。
在上述实施例中,所述发射端的通信设备利用保护间隔添加模组(如上述 加循环前缀模组140或加循环前缀和后缀模组540)对待发送信号添加加保护间隔,该保护间隔包括对抗多径干扰的第一时隙(如图2所示的CP_C或图10所示的CPre)以及用于对抗滤波带来的干扰的第二时隙(如图2所示的CP_F或图10所示的CPost)。接收端的通信设备通过去保护间隔模组(如上述去循环前缀模组230或去循环前缀和后缀模组630)对接收信号进行去保护间隔处理,如在保护间隔是循环前缀CP(见图2)时,去除该循环前缀CP的CP_C成分及去除尾部的等于CP_F的长度的数据(见图7);或在保护间隔包括循环前缀和后缀(见图10)时,去除该循环前缀及后缀(见图12)。通过上述方式,既可以减少信道多径带来的干扰,还可以减少由滤波带来的干扰,能够有效提高通信质量。
请参阅图13,在一实施方式中,一种利用上述通信设备发送信号的方法,包括以下步骤:
S01:获取待发送的数据;
S02:根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号;每个子带配置参数包括子载波间隔及子带宽度等;步骤S02还具体包括:
将待发送数据按照调度的结果映射到对应的子载波上,并将未映射数据的子载波填充0,使填0后的数据长度等于IFFT变换点数,为下一步的IFFT变换做好准备;
对相应子带经过子载波映射的数据进行IFFT变换。IFFT变换的点数由***带宽和子带的子载波间隔共同确定,原则是使不同子带经过IFFT变换后的信号采样率是相同的;
S03:对相应子带经过IFFT变换后的数据添加保护间隔。该保护间隔包括对抗多径干扰的循环前缀以及用于对抗滤波带来的干扰的特殊前缀时隙或特 殊后缀时隙;
S04:通过滤波器对每个子带上的加保护间隔后的信号进行滤波操作;
S05:当待合并的子带数量大于或等于2时,将各个子带的经过滤波后的信号进行相加并发送至接收设备;如果只有一个子带,则本步骤可以省略;及
S06:通知接收设备保护间隔的长度,该保护间隔的长度包括对抗多径干扰的第一时隙的长度及用于对抗滤波带来的干扰的第二时隙的长度;或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,使用户设备能计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及滤波器类型等信息。前述实施例中已详细记载添加第一时隙及第二时隙、以及确定第二时隙长度的方法,在此不再赘述。
请参阅图14,在一实施方式中,一种利用上述通信设备接收信号的方法,包括以下步骤:
S11:接收发射端发送的包括保护间隔的信号;该保护间隔包括对抗多径干扰的第一时隙以及用于对抗滤波带来的干扰的第二时隙;所述第二时隙位于所述接收信号的头部或尾部;所述第一时隙包括所述接收信号尾部的部分信号,所述第二时隙包括所述接收信号头部的部分信号或尾部的另一部分信号;
S12:确定至少一个子带的配置参数,所述配置参数包括子载波间隔及子带宽度;
S13:根据所述至少一个子带的配置参数选择合适的滤波器;若子带配置信息和发射端使用的滤波器有对应关系,则接收端可以根据子带配置信息选取和发射端相同的滤波器;此外,接收端也可以自行选择滤波器,所述滤波器的通带宽度应等于子带宽度,且具有较窄的过渡带和适当的带外衰减,使滤波后的信号含有较少的其他子带的干扰;
S14:对各个子带信号进行滤波;
S15:对滤波后的信号进行去保护间隔处理,如在保护间隔是循环前缀CP(见图2)时,去除该循环前缀CP的CP_C成分及去除尾部的等于CP_F的长度的数据(见图6);或在保护间隔是循环前缀CPre和后缀CPost(见图9)时,去除该循环前缀及后缀(见图11);
S16:对相应子带的信号进行FFT变换;如果第二时隙是循环前缀CP_F,则FFT变换到频域符号相对于发射端的信号有一个
Figure PCTCN2015072919-appb-000006
的相位旋转;如果第二时隙是所述后缀CPost,则不产生相位旋转;
S17:检测各子带信号的质量,如果存在上述相位旋转,则对上述相位旋转进行补偿。
请参阅图15,在一实施例中,一种发送端通信设备100A,用于发送信号至对端设备,包括发射机10A、处理器20A及存储器30A。
所述发射机10A用于发射包含保护间隔的信号;该保护间隔包括对抗多径干扰的第一时隙(如图2所示的CP_C或图10所示的CPre)以及用于对抗滤波带来的干扰的第二时隙(如图2所示的CP_F或图10所示的CPost)。所述第二时隙是特殊前缀时隙或特殊后缀时隙,可设置于待发送信号的头部或尾部。
所述处理器20A用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;所述处理器还用于对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括用于对抗多径干扰的循环前缀及用于对抗滤波带来的干扰的第二时隙。
所述发送端通信设备100A还包括滤波器,用于对所述包含保护间隔的信号进行滤波操作。所述滤波器可以硬件的形式安装于所述发送端通信设备100A中;所述滤波器还可集成于所述处理器20A中,在处理器20A处理信号 的过程中对信号进行滤波处理。其中,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
所述第二时隙的长度与滤波器时域冲击响应的能量主要部分来相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
在所述子带宽度及滤波器类型不变的情况下,所述子载波间隔越小,所述第二时隙的长度越小。
所述存储器30A用于存储待发送信号的各项参数以及信号处理程序等。
所述发射机10A还用于将所述循环前缀的长度及第二时隙的长度通知接收设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,使用户设备能计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及滤波器类型。
在一实施方式中,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
在另一实施方式中,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号或在该第二时隙内填充0。
请参阅图16,在一实施例中,一种接收端通信设备100B,用于接收对端设备的信号,包括接收机10B、处理器20B及存储器30B。
所述接收机10B用于接收包含保护间隔的信号;所述保护间隔包括用于对抗多径干扰的循环前缀及用于对抗滤波带来的干扰的第二时隙,所述第二时隙是特殊前缀时隙或特殊后缀时隙,设置于所述接收信号的头部或尾部。
所述处理器20B,在所述第二时隙是前缀时隙时,用于从接收信号中去除所述用于对抗多径干扰的循环前缀,并去除接收信号尾部等于第二时隙长度的信号;或在所述第二时隙是特殊后缀时隙时,用于去除所述用于对抗多径干扰的循环前缀及特殊后缀时隙。
所述接收端通信设备100B还包括滤波器,用于对所述包含保护间隔的接收信号进行滤波操作。所述滤波器可以硬件的形式安装于所述接收端通信设备100B中;所述滤波器还可集成于所述处理器20B中,在处理器20B处理信号的过程中对信号进行滤波处理。
所述存储器30B用于存储接收信号的各项参数以及信号处理程序等。
所述接收机10B接收信号包括至少一个子带的信号,所述处理器还用于确定至少一个子带的配置参数,所述配置参数包括子载波间隔及子带宽度。
所述处理器还用于对去保护间隔后的信号进行傅立叶变换;如果所述第二时隙是前缀时隙,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度。
如果所述第二时隙是前缀时隙,则所述处理器还用于对经过FFT变换后的相位旋转因子进行补偿。
请参阅图17,在一实施例中,一通信***包括发送端通信设备100A及接收端通信设备100B,所述发送端通信设备100A能用于发射包含保护间隔的信号;所述保护间隔包括用于对抗多径干扰的第一时隙及用于对抗滤波带来的干扰的第二时隙,所述第二时隙是特殊前缀时隙或特殊后缀时隙;所述接收端通信设备100B能用于接收所述包含保护间隔的信号并对接收信号进行去保护间隔处理。所述发送端通信设备100A及接收端通信设备100B的具体组成及功能在上述实施例中已详细记载,不再赘述。
需要指出的是,本发明上述实施例中使用的术语OFDM也包含了DFT-s-OFDM技术。DFT-s-OFDM是基于OFDM技术的一种低PAPR信号传输技术。和OFDM所不同的是,DFT-s-OFDM在进行子载波映射之前,还需 要对待发送的信号进行DFT变换。除此之外的子载波映射、IFFT变换和加循环前缀等操作和OFDM技术相同。因此,本发明所涉及的技术方案均可用于DFT-s-OFDM技术,和OFDM的区别仅在于子带信号生成模组中的待发送信号是否进行了DFT变换,除此之外的操作对二者都是相同的。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (41)

  1. 一种通信设备,其特征在于,包括:
    获取模组,用于获取待发送的数据;
    子带信号生成模组,用于根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号;每个子带配置参数包括子载波间隔及子带宽度;
    保护间隔添加模组,用于对每个子带上的待发送信号添加保护间隔;所述保护间隔包括第一时隙及第二时隙;所述第一时隙包括所述待发送信号尾部的部分信号,所述第二时隙包括所述待发送信号头部的部分信号或尾部的另一部分信号;
    滤波器,用于对每个子带上的添加保护间隔后的信号进行滤波;及
    发射模组,用于发送经过所述滤波器滤波后的信号。
  2. 如权利要求1所述的通信设备,其特征在于,所述发射模组还用于将所述第一时隙的长度及第二时隙的长度通知用户设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,以使用户设备计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及所述滤波器的类型。
  3. 如权利要求1-2任意一项所述的通信设备,其特征在于,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
  4. 如权利要求1-3任意一项所述的通信设备,其特征在于,所述第二时隙的长度与滤波器时域冲击响应的能量主要部分相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
  5. 如权利要求4所述的通信设备,其特征在于,所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
  6. 如权利要求1-5任意一项所述的通信设备,其特征在于,所述子载波间隔越小,在所述子带宽度及滤波器类型不变的情况下,所述第二时隙的长度越小。
  7. 如权利要求1所述的通信设备,其特征在于,所述通信设备还包括合并模组,用于合并所述至少一个子带上经过滤波器滤波后的信号;所述发送模组,用于发送经过所述合并模组合并后的信号。
  8. 如权利要求1-7任意一项所述的通信设备,其特征在于,所述子带信号生成模组用于:将所述待发送信号映射到相应的子带上;及对映射到相应子带上的待发送数据进行反傅立叶变换;所述保护间隔添加模组用于对经过反傅立叶变换后的相应子带的数据添加保护间隔。
  9. 如权利要求1-8任意一项所述的通信设备,其特征在于,所述待发送信号包括正交频分复用OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
  10. 如权利要求1-8任意一项所述的通信设备,其特征在于,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号。
  11. 一种通信设备,其特征在于,包括:
    接收模组,用于接收包含保护间隔的信号;所述保护间隔包括第一时隙及 第二时隙,所述第一时隙包括所述接收信号尾部的部分信号,所述第二时隙包括所述接收信号头部的部分信号或尾部的另一部分信号;所述第二时隙位于所述接收信号的头部或尾部;
    滤波器,用于对所述接收信号进行滤波;及
    去保护间隔模组,用于对滤波后的接收信号进行去保护间隔处理以得到去保护间隔后的信号。
  12. 如权利要求11所述的通信设备,其特征在于,如果所述第二时隙位于所述接收信号的头部,所述去保护间隔模组对所述滤波后的接收信号进行去保护间隔具体包括从所述滤波后的接收信号中去除所述第一时隙,并去除所述滤波后接收信号尾部等于第二时隙长度的信号;如果所述第二时隙位于所述接收信号的尾部,所述去保护间隔模组对所述滤波后的接收信号进行去保护间隔具体包括从所述滤波后的接收信号中去除所述第一时隙及第二时隙。
  13. 如权利要求11-12任意一项所述的通信设备,其特征在于,所述通信设备还包括FFT(Fast Fourier Transformation,快速傅里叶变换)模组,用于对所述去保护间隔后的信号进行傅立叶变换。
  14. 如权利要求13所述的通信设备,其特征在于,如果所述第二时隙位于所述接收信号的头部;则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度;所述通信设备还包括信号检测模组,用于对经过FFT变换后的相位旋转进行补偿。
  15. 一种信号发送方法,包括:
    获取待发送的数据;
    根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号;每个子带配置参数包括子载波间隔及子带宽度;
    对每个子带上的待发送信号添加保护间隔;所述保护间隔包括第一时隙第 一时隙及第二时隙;所述第一时隙包括所述待发送信号尾部的部分信号,所述第二时隙包括所述待发送信号头部的部分信号或尾部的另一部分信号;
    通过滤波器对每个子带上的加保护间隔后的信号进行滤波;及
    发送经过所述滤波器滤波后的信号。
  16. 如权利要求15所述的信号发送方法,其特征在于,所述信号发送方法还包括将所述第一时隙的长度及第二时隙的长度通知用户设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,以使用户设备计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及滤波器类型。
  17. 如权利要求15-16任意一项所述的信号发送方法,其特征在于,所述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
  18. 如权利要求15-17任意一项所述的信号发送方法,其特征在于,所述第二时隙的长度与滤波器时域冲击响应的能量主要部分来相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
  19. 如权利要求17所述的信号发送方法,其特征在于,所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
  20. 如权利要求15-19任意一项所述的信号发送方法,其特征在于,所述子载波间隔越小,在所述子带宽度及滤波器类型不变的情况下,所述第二时隙的长度越小。
  21. 如权利要求15所述的信号发送方法,其特征在于,所述信号发送方法还包括合并所述至少一个子带上经过滤波器滤波后的信号。
  22. 如权利要求15-21任意一项所述的信号发送方法,其特征在于,所述根据至少一个子带配置参数对所述待发送的数据进行处理以生成至少一个子带上的待发送信号的步骤包括:在生成至少一个子带上的待发送信号后将所述待发送信号映射到相应的子带上;及
    在映射所述至少一个子带上的待发送信号后对相应子带的数据进行反傅立叶变换。
  23. 如权利要求15-22任意一项所述的信号发送方法,其特征在于,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,所述对至少一个子带上的待发送信号添加保护间隔包括在该第二时隙内填充该OFDM符号尾部等于该第二时隙长度的信号。
  24. 如权利要求15-22任意一项所述的信号发送方法,其特征在于,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,所述对至少一个子带上的待发送信号添加保护间隔包括在该第二时隙内填充该OFDM符号头部等于该第二时隙长度的信号。
  25. 一种信号接收方法,包括:
    接收包含保护间隔的信号;所述保护间隔包括第一时隙及第二时隙;所述第二时隙位于所述接收信号的头部或尾部;所述第一时隙包括所述接收信号尾部的部分信号,所述第二时隙包括所述接收信号头部的部分信号或尾部的另一部分信号;
    对所述接收信号进行滤波;及
    对滤波后的接收信号进行去保护间隔处理以得到去保护间隔后的信号。
  26. 如权利要求25所述的信号接收方法,其特征在于,如果所述第二时 隙位于所述接收信号的头部,所述对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙,并去除所述滤波后的接收信号尾部等于第二时隙长度的信号;如果所述第二时隙位于所述接收信号的尾部时,所述对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙及第二时隙。
  27. 如权利要求25-26任意一项所述的信号接收方法,其特征在于,所述信号接收方法还包括对所述去保护间隔后的信号进行傅立叶变换;如果所述第二时隙位于接收信号的头部,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度;如果所述第二时隙位于接收信号的头部,所述信号接收方法还包括对所述相位旋转进行补偿的步骤。
  28. 一种发送端通信设备,其特征在于,包括:
    处理器,用于根据至少一个子带配置参数生成至少一个子带上的待发送信号;每个子带的配置参数包括子载波间隔及子带宽度;所述处理器还用于对所述至少一个子带上的待发送信号添加保护间隔;所述保护间隔包括第一时隙及第二时隙;
    滤波器,用于对所述至少一个子带上的加保护间隔后的信号进行滤波操作;及
    发射机,用于发送所述包含保护间隔的信号至接收设备。
  29. 如权利要求28所述的发送端通信设备,其特征在于:所述发射机还用于将所述第一时隙的长度及第二时隙的长度通知接收设备,或将所述第一时隙的长度通知用户设备并将与所述第二时隙相关的信息发送给用户设备,以使用户设备计算出所述第二时隙的长度;所述与第二时隙相关的信息包括每一子带的子载波间隔、子带宽度及滤波器的类型。
  30. 如权利要求28-29任意一项所述的发送端通信设备,其特征在于,所 述第二时隙的长度由该子带的子载波间隔、子带宽度及滤波器类型中至少一个因素来确定。
  31. 如权利要求28-30任意一项所述的发送端通信设备,其特征在于,所述第二时隙的长度与滤波器时域冲击响应的能量主要部分来相关;所述滤波器冲击响应的能量主要部分是指总能量超过预设的门限值的一段连续时间内的冲击响应部分。
  32. 如权利要求31所述的发送端通信设备,其特征在于,所述滤波器时域冲击响应的能量主要部分与所述子带宽度、滤波器类型其中至少一个因素相关;所述子带宽度越大,在滤波器类型不变的情况下,所述第二时隙的长度越小。
  33. 如权利要求28-32任意一项所述的发送端通信设备,其特征在于,在所述子带宽度及滤波器类型不变的情况下,所述子载波间隔越小,所述第二时隙的长度越小。
  34. 如权利要求28-33任意一项所述的发送端通信设备,其特征在于,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的头部,且该第二时隙内填充有该OFDM符号尾部等于该第二时隙长度的信号。
  35. 如权利要求28-33任意一项所述的发送端通信设备,其特征在于,所述待发送信号包括OFDM符号,所述第二时隙位于所述OFDM符号的尾部,且该第二时隙内填充有该OFDM符号头部等于该第二时隙长度的信号。
  36. 如权利要求28-35任意一项所述的发送端通信设备,其特征在于,所述滤波器集成于所述处理器中。
  37. 一种接收端通信设备,其特征在于,包括:
    接收机,用于接收包含保护间隔的信号;所述保护间隔包括第一时隙及第二时隙,所述第二时隙位于所述接收信号的头部或尾部;所述第一时隙包括所述待发送信号尾部的部分信号,所述第二时隙包括所述待发送信号头部的部分信号或尾部的另一部分信号;滤波器,用于对所述接收信号进行滤波处理;及
    处理器,用于对滤波后的接收信号进行去保护间隔处理。
  38. 如权利要求37所述的接收端通信设备,其特征在于,如果所述第二时隙位于所述接收信号的头部,所述处理器对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙,并去除所述滤波后的接收信号尾部等于第二时隙长度的信号;如果所述第二时隙位于所述接收信号的尾部,所述处理器对滤波后的接收信号进行去保护间隔处理具体包括从所述滤波后的接收信号中去除所述第一时隙及第二时隙。
  39. 如权利要求37-38任意一项所述的接收端通信设备,其特征在于,所述处理器还用于对去保护间隔后的信号进行傅立叶变换;如果所述第二时隙位于所述接收信号的尾部,则经过FFT变换后的输出信号相对于输入信号有一个e-j2πkL/M的相位旋转;其中,k表示子载波编号,M表示子载波总数,L表示第二时隙的长度;如果所述第二时隙是前缀时隙,则所述处理器还用于对经过FFT变换后的相位旋转因子进行补偿。
  40. 如权利要求37-39任意一项所述的发送端通信设备,其特征在于,所述滤波器集成于所述处理器中。
  41. 一种通信***,包括如权利要求28-36任意一项所述的发送端通信设备及如权利要求37-40任意一项所述的接收端通信设备。
PCT/CN2015/072919 2015-02-12 2015-02-12 通信设备、通信***、信号发送方法及信号接收方法 WO2016127367A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072919 WO2016127367A1 (zh) 2015-02-12 2015-02-12 通信设备、通信***、信号发送方法及信号接收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072919 WO2016127367A1 (zh) 2015-02-12 2015-02-12 通信设备、通信***、信号发送方法及信号接收方法

Publications (1)

Publication Number Publication Date
WO2016127367A1 true WO2016127367A1 (zh) 2016-08-18

Family

ID=56614008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072919 WO2016127367A1 (zh) 2015-02-12 2015-02-12 通信设备、通信***、信号发送方法及信号接收方法

Country Status (1)

Country Link
WO (1) WO2016127367A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067663A (zh) * 2021-03-23 2021-07-02 海能达通信股份有限公司 一种通信方法、***及相关设备及存储介质
CN114584174A (zh) * 2022-01-22 2022-06-03 北京睿信丰科技有限公司 基于频域聚焦与合成傅里叶变换的信号捕获方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885844A (zh) * 2005-06-20 2006-12-27 中国科学院上海微***与信息技术研究所 基于正交复用多载波传输降低峰均比的装置及其方法
CN101336006A (zh) * 2007-06-26 2008-12-31 上海无线通信研究中心 在传输时隙内多个随机接入信号的时分复用接入方法
US20120082274A1 (en) * 2010-10-01 2012-04-05 Intel Mobile Communications Technology Dresden GmbH Method for processing received ofdm data symbols and ofdm baseband receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885844A (zh) * 2005-06-20 2006-12-27 中国科学院上海微***与信息技术研究所 基于正交复用多载波传输降低峰均比的装置及其方法
CN101336006A (zh) * 2007-06-26 2008-12-31 上海无线通信研究中心 在传输时隙内多个随机接入信号的时分复用接入方法
US20120082274A1 (en) * 2010-10-01 2012-04-05 Intel Mobile Communications Technology Dresden GmbH Method for processing received ofdm data symbols and ofdm baseband receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067663A (zh) * 2021-03-23 2021-07-02 海能达通信股份有限公司 一种通信方法、***及相关设备及存储介质
CN113067663B (zh) * 2021-03-23 2023-03-10 海能达通信股份有限公司 一种通信方法、***及相关设备及存储介质
CN114584174A (zh) * 2022-01-22 2022-06-03 北京睿信丰科技有限公司 基于频域聚焦与合成傅里叶变换的信号捕获方法
CN114584174B (zh) * 2022-01-22 2022-12-06 北京睿信丰科技有限公司 基于频域聚焦与合成傅里叶变换的信号捕获方法

Similar Documents

Publication Publication Date Title
US20200213168A1 (en) Pulse-shaped orthogonal frequency division multiplexing
US11824629B2 (en) Method and a system for transmitting DFT-s-OFDM symbols
CN107306238B (zh) 载波调制信号的接收、发送方法及相应接收机与发射机
CN107222442B (zh) 基于滤波的载波调制***中的信号发送、接收方法和装置
US10476544B2 (en) Signal transmission and receiving method, system and apparatus based on filter bank
US9692629B2 (en) Resource block based multicarrier modulations for agile spectrum
EP2494754B1 (en) Method and apparatus for mutiplexing reference signal and data in a wireless communication system
US8730933B2 (en) Method and apparatus for multiplexing data and reference signal in a wireless communication system
US10869319B2 (en) Method and apparatus for controlling interference in wireless communication system
CN116170264A (zh) 基于滤波的信号发送、接收方法及相应的发射机与接收机
US8634487B2 (en) Method and system for diversity and mask matching in channel estimation in OFDM communication networks using circular convolution
EP2449740B1 (en) Integrated circuit with channel estimation module and method therefor
CN101682588A (zh) 用于ofdm***的信道估计器
CN106161316B (zh) 导频序列参考信号发送、接收方法及其装置
WO2018028378A1 (zh) 一种通信的方法及装置
KR20160088792A (ko) 필터 뱅크 멀티 캐리어 변조 기반의 통신 방법 및 장치
EP3665878A1 (en) Inter-carrier interference compensation
WO2016127367A1 (zh) 通信设备、通信***、信号发送方法及信号接收方法
US10361898B2 (en) Complexity reduction for OFDM signal transmissions
EP3338421B1 (en) Filter bank multicarrier modulation-based signal transmitting method, signal receiving method and device
Selvakumar et al. Analysis of LTE Radio Frame by eliminating Cyclic Prefix in OFDM and comparison of QAM and Offset-QAM
Kumar et al. Time-domain equalization technique for intercarrier interference suppression in OFDM systems
US9019809B2 (en) Noise power estimation method
CN107438037B (zh) 一种数据传输方法和相关装置
Wang Wireless signal modulation technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881529

Country of ref document: EP

Kind code of ref document: A1