WO2016126141A1 - Dna 추출 디스크 장치 및 이를 이용한 dna 추출 방법 - Google Patents

Dna 추출 디스크 장치 및 이를 이용한 dna 추출 방법 Download PDF

Info

Publication number
WO2016126141A1
WO2016126141A1 PCT/KR2016/001318 KR2016001318W WO2016126141A1 WO 2016126141 A1 WO2016126141 A1 WO 2016126141A1 KR 2016001318 W KR2016001318 W KR 2016001318W WO 2016126141 A1 WO2016126141 A1 WO 2016126141A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
dna
dna extraction
disk
temperature sensitive
Prior art date
Application number
PCT/KR2016/001318
Other languages
English (en)
French (fr)
Inventor
유재천
임다예슬
Original Assignee
매쓰파워 주식회사
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매쓰파워 주식회사, 성균관대학교 산학협력단 filed Critical 매쓰파워 주식회사
Publication of WO2016126141A1 publication Critical patent/WO2016126141A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the present invention relates to a DNA extraction disk device using a temperature sensitive material and a DNA extraction method using the same. More specifically, the present invention is to break down the cells (cells) and enzymes to extract DNA required for various nucleic acid analysis.
  • the present invention relates to a DNA extraction disk apparatus for heating and controlling a sample at an active temperature of and a DNA extraction method using the same.
  • chambers necessary for various functions are integrated together on the Disc. Only the chamber part responsible for cell destruction function during cell destruction must be selectively temperature controlled. Otherwise, during heating for cell destruction, sites unrelated to cell destruction may be heated or affected simultaneously, causing problems in overall performance.
  • the present invention provides a cell destruction chamber for storing an enzyme and at the same time storing an enzyme to help the cell destruction of the sample;
  • Feedback Provides a DNA extraction disk device that can separate the DNA contained in the cell by controlling and a DNA extraction method using the same.
  • an object of the present invention is to place a temperature sensitive material in the cell destruction chamber to directly measure the temperature of the sample in the cell destruction chamber and thereby to feed back the heating device.
  • the cell extraction process is performed chemically to provide a DNA extraction disk device for separating the DNA in the cell and a DNA extraction method using the same.
  • Another object of the present invention further comprising a silica membrane (silica membrane) for binding to the DNA in the disk to remove the debris (debri) contained in the cells destroyed in the cell destruction chamber by centrifugal force by the disk rotation
  • a silica membrane sica membrane
  • the present invention provides a DNA extraction disk device including a cell destruction step of destroying bacterial cells contained in a sample by a chemical method, a washing step of removing debris, and a DNA extraction step, and a DNA extraction method thereof.
  • DNA is a reverse transcription from deoxyribonucleic acid, RNA, which is obtained from bacteria, viruses, plants, animal body parts (hair, flesh, etc.) or secretions thereof (acupuncture, urine, etc.), blood or food samples. It is characterized in that it is any one selected from cDNA (Complementary DNA) samples obtained by reverse transcription)
  • Bacteria in the sample were taken from food according to Korean Food Standards Codex or FDA food code of the United States, and injected into 225 ml of liquid medium suitable for target pathogens for homogenization. 18-24 hours after enrichment culture, using a colony of separated cultures in a selective agar medium suitable for the target pathogen;
  • Centrifugation to porous filters using pellets of bacteria obtained by centrifugation after carrying out enrichment culture for the target pathogen, or homogenized by stomacher from food. preferably through a filter).
  • DNA extraction disk is used interchangeably with “disk”.
  • DNA extraction discs A drive controller for rotating and driving the DNA extraction disk; A heating device for adjusting the temperature of the cell disruption chamber of the DNA extraction disk; And an optical sensor for measuring the temperature of the cell destruction chamber,
  • the DNA extraction disk is a sample injection port for injecting a sample; And an enzyme for chemically destroying the cells contained in the sample while storing the injected sample, a heating film for absorbing the heat generated from the heating device or transferring the absorbed heat, and a temperature. And a cell disruption chamber consisting of a temperature sensitive chamber that stores a temperature sensitive material.
  • the temperature sensitive material is preferably a paper coated or dyed with a phase change material, a low-melting alloy, or a temperature sensitive fluorescence material.
  • the paper uses a porous membrane or art paper and art paper is preferred in the present invention.
  • the phase change material may be a paraffin-based, non-paraffin-based, inorganic-based divorce-based, metal-based, etc. among the materials that change from the solid phase to the liquid phase.
  • the low temperature melting alloy may be a kind of bismuth (Bismuth) alloy and has a characteristic that the melting temperature varies depending on the blending ratio.
  • Representative low-temperature melting alloys include Wood's metal, Field's metal, Cerrolow 136 and Cerrolow 117.
  • the composition of wood metal is bismuth 50%, lead 26.7%, indium 8.5% and cadmium 10%. It is melted at 70 °C.
  • the composition of the field metal is composed of bismuth 32.5%, tin 16.5%, indium 51%, and melts at 62 °C.
  • Cerrolow 136 alloy is composed of bismuth 29%, lead 18%, tin 12%, indium 21%, and melts at 58 °C.
  • the Cerrolow 117 alloy is composed of bismuth 44.7%, lead 22.6%, tin 8.3%, indium 19.1%, cadmium 5.3% and melts at 47.2 ° C. Fields metal is preferred in the present invention.
  • the temperature sensitive material is preferably arranged in an array in the cell disruption chamber.
  • the heating device is preferably a laser heating device or an induction heating device.
  • the heating film of the present invention is preferably a metal plate, it is further preferred to be heated by the laser heating device further comprises a black coating surface by black paint.
  • the black paint absorbs heat from the laser heater so that heat is transferred through the cell destruction chamber by the metal plate to heat the sample in the cell destruction chamber.
  • the black paint is preferably a heat resistant paint which is not melted by the laser heater.
  • the metal plate is preferably in the range of 0.01 to 0.1 mm aluminum (alumnium) to magnetic metal material.
  • the induction heating device generates a magnetic force line in the coil when an alternating current is sent to the coil, and the magnetic force line causes a eddy current to the metal plate placed on the coil by Faraday's law of electromagnetic induction. It generates and heats a metal plate.
  • the heating film is preferably a black film
  • the black film absorbs laser light from the laser heater to heat the sample in the DNA destruction chamber.
  • the black film is preferably a heat resistant film which is not melted by a laser heating device.
  • the heat resistant film is preferably an aramid film, a polyethylene terephthalate (PET) film, a polyimide film.
  • the heating film is a black coating layer formed on one surface of the cell destruction chamber by black paint.
  • Still another object of the present invention is a silica membrane for binding to DNA from the cells destroyed in the cell destruction chamber;
  • a washing chamber storing a washing solution for washing the silica membrane;
  • a waste chamber for storing debris from the cells destroyed in the cell destruction chamber or for storing impurities from the washing of the silica membrane;
  • An extraction buffer chamber configured to wash DNA bound to the silica membrane by the washing solution, and to store an extraction buffer for extracting DNA bound onto the silica membrane;
  • a DNA chamber for collecting DNA extracted from the silica membrane or for amplifying the collected DNA;
  • a channel for connecting the chambers to provide a passage through which the fluid can flow, and a valve for controlling the flow of the fluid.
  • the fluid is moved along the flow path by the centrifugal force due to the disk rotation.
  • the silica membrane is washed using the washing solution to remove impurities from the silica membrane, and finally, the extraction buffer is introduced into the silica membrane to obtain pure purified DNA when the extraction process is performed. Lose.
  • the purified DNA is moved to the DNA chamber to perform a DNA amplification process as needed.
  • the sample is preferably mixed with a buffer for enhancing the cell destruction mechanism and the silica membrane adsorption force of DNA, and injected into the cell destruction chamber.
  • the buffer aids cell destruction by combining EDTA, glucose, lysozyme, SDS, and the like, which are used for cell destruction, and contains guanidine hydrochloride, Tris-HCL, and the like to bind DNA on the silica membrane.
  • the buffer may be divided into a buffer for cell destruction and a buffer for DNA silica membrane adsorption.
  • the former is called a lysis buffer and the latter is called a binding buffer, but when the two functions are combined, it is usually called a binding buffer, and if necessary depending on the characteristics of the binding buffer.
  • Isopropanol can be added to proceed with bacterial destruction. Isopropanol is responsible for separating cellular proteins and DNA.
  • isopropanol is preferably mixed with a binding buffer and injected into a cell destruction chamber to proceed with cell destruction.
  • the enzyme RnaseA can be added to the sample.
  • Enzyme RnaseA induces the hydrolysis of RNA and removes false positive factors caused by RNA when analyzing DNA extraction results, helping to confirm pure DNA extraction results.
  • the silica membrane may be used in place of a positively charged material, such as a porous plastic or bead having a positive charge.
  • DNA is negatively charged due to the 5'-terminal phosphate group as a whole.
  • the DNA Due to the potential difference between the positively charged material and the negative charge of the DNA, the DNA is attracted to each other and the DNA is adsorbed onto the surface of the positively charged material.
  • the larger the potential difference the greater the electrostatic interaction, resulting in a larger adsorption efficiency.
  • the surface of the positively charged material is preferably introduced to increase the DNA adsorption efficiency by introducing an amine group having a large positive charge value.
  • Another object of the present invention is characterized in that the DNA chamber of the DNA extraction disk stores the enzyme and buffer solution required for the DNA amplification process and performs DNA amplification.
  • the DNA chamber stores a buffer solution containing various enzymes such as primers, including dNTP, and a separate polymer for storage of polymerase. It is preferred to have a laase chamber.
  • the DNA amplification process is performed by repeatedly performing a thermo cycle of a polymer chain reaction (PCR),
  • the PCR is denaturation ( ⁇ 95 o C), annealing ( ⁇ 50 o C), and extension ( ⁇ 72) o This is achieved by running a thermal cycle in the DNA chamber that periodically repeats the three temperatures consisting of C), but the isothermal amplification is performed for about 90 minutes at one specific temperature (eg 60 o C). By heating.
  • the DNA extraction disk device is characterized in that it further comprises a stirrer (stirrer) for mixing the sample of the cell disruption chamber.
  • a stirrer stirrer
  • the stirrer includes a stirring magnet in the cell disruption chamber for sample homogenization and circulation in the cell disruption chamber; And a stirring motor having a small permanent magnet attached to the stirring magnet to perform the stirring operation by exerting an attractive force and a reaction force.
  • the stirrer stores enzymes that assist cell destruction, such as proteinaseK, in a dry powder form or in a buffer solution in a cell destruction chamber, injects a sample into the cell destruction chamber and mixes and homogenizes the enzyme well during the cell destruction process. Be sure to
  • the DNA extraction disk device is characterized in that it further comprises a fluorescent sensor or turbidity sensor (turbidity meter) for quantitatively analyzing the DNA amplification product (product).
  • a fluorescent sensor or turbidity sensor for quantitatively analyzing the DNA amplification product (product).
  • the driving control unit includes a turn table for placing the DNA extraction disk; And a motor for rotating the DNA extraction disk on the turn table.
  • the disk diameter of the disk is preferably 120 mm, 80 mm, 60 mm or 32 mm, and the disc diameter is preferably 1.2 mm to 10 mm.
  • the optical sensor is a photodiode, a camera, a photodiode array, a spectrometer, a charge-coupled device (CCD), a complementary metal-oxide-semiconductor (CMOS) image sensor, a laser It is preferred that any one of the laser power meters is used.
  • the optical sensor may measure the temperature of the sample by measuring the amount of fluorescence from a temperature sensitive fluorescence dye installed in the cell destruction chamber or by measuring the fluidity or transparency of the temperature sensitive material installed in the cell destruction chamber.
  • the optical sensor is also preferably used as a fluorescence sensor or turbidity meter for quantitatively analyzing the DNA amplification product.
  • the temperature-sensitive fluorescent dye may measure the temperature of the sample by measuring the emission intensity of fluorescence according to the excitation of the light emitting diode with the optical sensor. Can be measured.
  • the amount of DNA can be quantitatively measured by measuring the emission intensity of fluorescence according to excitation of the light emitting diode with the optical sensor.
  • the amount of DNA can be quantitatively measured by measuring the turbidity according to excitation of the light emitting diode with the optical sensor.
  • the disk is made of a silicon wafer, polypropylene, polyacrylate, polyvinyl alcohol, polyethylene, polymethyl methacrylate (PMMA), cyclic olefin polymer (COC) and polycarbonate It may be formed of one or more selected from the group. However, plastics are preferred for economic reasons and for ease of processing.
  • the disk is preferably composed of an upper substrate, an intermediate substrate and a lower substrate, which are preferably bonded by an adhesive.
  • the disk is formed by laminating and bonding the upper substrate, the intermediate substrate and the lower substrate, and includes a double-sided adhesive tape for bonding each substrate.
  • the double-sided adhesive tape is surface treated with a special adhesive (gluing agent) on both sides of the release paper such as paper, vinyl, polyester film, polyethylene film, and other synthetic materials, and high sealing according to the conditions required It is possible to select and use a pressure-sensitive adhesive material which has characteristics such as sealing), buffering, vibration damping, impact resistance, heat resistance, adsorption, and adhesion.
  • the double-sided adhesive tape does not use a release paper or backing, and that an adhesive (gluing agent) itself forms the double-sided adhesive tape.
  • the double-sided adhesive tape is preferably in the form of an adhesive (gluing agent) without double-coating the adhesive on a release paper or using a release paper, the adhesive is hot melt (silicone, silicone, rubber, modified silicone, acrylic) , Materials such as polyamide, polyamide, polyolefin, teflon, polyester, epoxy, UV curable adhesive, UV adhesive, thermoplastic resin, and the like may be used.
  • Still another object of the present invention is a DNA extraction disk apparatus according to the present invention, comprising: injecting a sample into a cell destruction chamber through a sample inlet; Heating the cell destruction chamber by a heating device; A sample stirring step of rocking a stirring magnet during the heating step; A temperature measuring step of measuring the temperature of the cell destruction chamber by reading a change in temperature sensitive material (transparency, flowability, fluorescence amount or volume change) through an optical sensor; Controlling the on-off of the heating device according to the temperature value obtained in the temperature measuring step to maintain the activation temperature of the enzyme; Binding to the silica membrane while the DNA destroyed by the heating step passes through the silica membrane under centrifugal force due to disk rotation; A washing step of washing the DNA-bound silica membrane using a washing solution to send impurities to a waste chamber; And after the washing step, the DNA is separated from the silica membrane using an extraction buffer to extract DNA bound to the silica membrane, and then the extracted DNA is sent to a DNA chamber.
  • the DNA extraction method using the DNA extraction disk device is a DNA amplification step for increasing the number of DNA obtained in the extraction step; And a product analysis step of identifying an amplification product by turbidity and fluorescence measurement.
  • the DNA extraction method using the DNA extraction disk device is characterized in that it further comprises a disk authentication step of verifying whether the disc is genuine or reused over the Internet by embedding the RF IC on the disk.
  • the disc of the present invention should not be reused for single use.
  • the ID information of the disk is sent to the server and stored in each step of the disk authentication, so that the disk having the same ID information has been used in the past by checking the history information on the server when the disk is used, thereby reusing the disk. You can automatically check whether or not.
  • the DNA extraction method using the DNA extraction disk device is characterized in that it further comprises a result output step of displaying the result obtained in the output analysis step on the display unit, or providing to the outside through the Internet network. .
  • the DNA extraction method using the DNA extraction disk device after the results sending step, receiving the hygiene score from the public office (for example, the Ministry of Health, Welfare, Education, Food and Drug Administration) through the Internet network remotely billboard It characterized in that it further comprises a hygiene score disclosure step to display.
  • the public office for example, the Ministry of Health, Welfare, Education, Food and Drug Administration
  • the Internet network remotely billboard It characterized in that it further comprises a hygiene score disclosure step to display.
  • the hygiene score is a score indicating how clean the establishment is. Therefore, guests will choose the restaurant based on the sanitary scores of the billboards posted on the outside.
  • the hygiene score is preferably determined by the presence or absence of detection of target pathogens from food and the frequency of inspections of the establishment.
  • the mobile phone user can receive not only the location information of the restaurant, but also the sanitary score information of the restaurant when searching for a restaurant, which will further contribute to the restaurant user's choice of restaurant and the hygiene of the business.
  • the present invention relates to a DNA extraction disk apparatus using a temperature sensitive material and a DNA extraction method using the same. More particularly, the present invention relates to a cell destruction process, a DNA purification and extraction process, DNA, which are essential for a DNA analysis apparatus. Provided are a DNA extraction disk apparatus for performing DNA analysis more easily and efficiently by integrating an amplification process on one disk, and a DNA extraction method using the same.
  • 3 is another embodiment of a temperature sensitive chamber of a cell disruption chamber
  • 4 (a) and 4 (b) is an embodiment for performing the stirring operation by exerting attractive force and repulsive force on the stirring magnet in the sample stirring chamber for sample homogenization and circulation in the cell destruction chamber,
  • FIG. 5 is an embodiment of a DNA extraction disk apparatus including a drive control unit for driving a DNA extraction disk,
  • 6, 7, 8, and 9 are various embodiments of a DNA extraction disk incorporating a valve, a cell disruption process, a DNA purification process, a DNA extraction process, and a DNA amplification process,
  • FIG. 10 is a cross-sectional view showing an embodiment in which the valve is opened by a capes channel as another embodiment of the valve,
  • the cell disruption chamber 29 is engraved on the disk 100. Feed that may be used in the present invention is injected into the cell disruption chamber 29 through a sample inlet 28.
  • the cell destruction chamber 29 includes a heating film 30 covering the cell destruction chamber 29; A sample stirring chamber 32b; Sample stirring auxiliary chambers 32a and 32c; And a temperature sensitive chamber 16 filled with a temperature sensitive material 24.
  • Reference numeral 44 is a heating device for heating the heating film 30 by a non-contact method, preferably a laser heating device or an induction heating device.
  • the laser heating device 44 is preferably composed of one or more laser modules.
  • the heating film 30 is preferably a metal plate, and the metal plate has a black coating surface 30a coated on one side by black paint and heated by the laser heating device 44. Is preferred.
  • the black coating surface 30a absorbs the light generated from the laser heater 44 to transfer heat to the metal plate 30 to heat the sample in the cell destruction chamber 29.
  • the heating film 30 is preferably a magnetic metal plate
  • the induction heating device 44 sends an alternating current to a coil (not shown), a magnetic force line is generated in the coil, and the magnetic force line faces the coil by Faraday's law of electromagnetic induction.
  • the magnetic metal plate 30 By generating an eddy current in the magnetic metal plate 30 placed in position, the magnetic metal plate 30 is heated to heat the sample in the cell destruction chamber 29.
  • the cell disruption chamber 29 is an enzyme that breaks down proteins, and it is preferable to have an enzyme proteinaseK in the form of a powder in the chamber 29 for activating destruction of the cell membrane.
  • the temperature sensitive chamber 16 is preferably configured in which a chamber for storing a plurality of temperature sensitive materials 24 is arranged in an array form.
  • FIG. 1 shows one embodiment in which six chambers for storing temperature sensitive material 24 are arranged in an array.
  • Reference numeral 170 denotes a disk gap.
  • the temperature sensitive material 24 has a hysteresis phenomenon showing a characteristic difference between a temperature rise and a fall, and this hysteresis phenomenon is proportional to the volume of the temperature sensitive material 24, so that the temperature By dividing the sensitive material 24 into small amounts and arranging them in an array, there is an advantage in that the hysteresis phenomenon can be minimized.
  • the temperature sensitive material 24 is preferably a phase change material, preferably having a melting point of 55 ⁇ 65 °C.
  • the internal temperature of the cell destruction chamber 29 reaches 55-65 ° C., which is the temperature of the activity of the enzyme proteinaseK, cell destruction is most active and phase change in the temperature sensitive chamber 16 is achieved.
  • the phases change from solid to liquid, turning them from opaque white to transparent.
  • the optical sensor 46 installed below the temperature sensitive chamber 16 the temperature in the cell destruction chamber 29 can be measured in a non-contact manner.
  • the heating device 44 is turned on to heat the cell destruction chamber 29.
  • the temperature of the cell destruction chamber 29 is increased to reach the same temperature as the melting point of the phase change material 24. Is activated and the color of the phase change material 24 becomes transparent.
  • the heating device 44 is turned off or the driving voltage of the heating device 44 is adjusted to a low temperature of the cell destruction chamber 29 to 55-65 ° C., which is an appropriate temperature for activating the enzyme proteinaseK. Keep it.
  • the temperature sensitive material 24 is preferably a low-melting alloy, preferably having a melting point of 55-65 ° C.
  • the internal temperature of the cell destruction chamber 29 reaches 55-65 ° C., which is the active temperature of the enzyme proteinaseK
  • cell destruction is most active and low-temperature fusion alloy in the temperature sensitive chamber 16 low-melting alloys change from solid to liquid.
  • the temperature in the cell destruction chamber 29 can be measured in a non-contact manner by observing the liquidity of the low-temperature fusion alloy 24 by the optical sensor 46 installed below the temperature sensitive chamber 16. have.
  • the heating device 44 is turned on to heat the cell destruction chamber 29.
  • the temperature of the cell destruction chamber 29 is increased to reach the same temperature as the melting point of the low temperature fusion alloy 24. Is activated and the low-temperature melting alloy 24 melts into a liquid state.
  • the heating device 44 is turned off or the driving voltage is adjusted low to maintain the temperature of the cell destruction chamber 29 at 55-65 ° C., which is an appropriate temperature for activating the enzyme proteinaseK.
  • the temperature sensitive material 24 is preferably paper coated or dyed with a temperature sensitive fluorescence material.
  • the emitted fluorescence intensity from the paper 24 changes with the rise and fall of the internal temperature of the cell destruction chamber 29.
  • the temperature in the cell destruction chamber 29 can be measured in a non-contact manner.
  • the temperature sensitive fluorescent material 24 is preferably excited by a light emitting diode 48 having a wavelength of 465 nm and the optical sensor 46 has light passing through a wavelength between 550 nm and 625 nm. It is preferred to have a filter (not shown) in front of the optical sensor 46. The optical filter selectively passes a wavelength band belonging to the fluorescence emitted from the temperature sensitive fluorescent material 24.
  • the heating device 44 is turned on to turn on the cell destruction chamber. (29) is heated. In addition, as the heating device 44 heats the cell destruction chamber 29, the temperature of the cell destruction chamber 29 is increased, so that the fluorescence intensity emitted from the paper 24 is the upper limit temperature at which the enzyme proteinaseK is activated. If the temperature is higher than 65 (eg, 65), the heating device 44 may be turned off or the driving voltage may be adjusted to lower the internal temperature of the cell destruction chamber 29 to reduce the activity of the enzyme proteinaseK. It is kept at 55-65 degreeC which is the temperature which enables.
  • the lower limit temperature eg, 55 ° C.
  • the sample stirring chamber 32B is provided with a stirring magnet 31 moving by the magnetic force of the permanent magnet 47a, so that the stirring magnet 31 is rotated as the permanent magnet 47a rotates or moves. By rocking, the sample in the cell destruction chamber 29 is stirred.
  • the sample stirring auxiliary chambers 32a and 32c not only provide a passage through which the sample circulates during the stirring operation of the sample, but also provide a structure to prevent the stirring magnet 31 from being separated from the sample stirring chamber 32b.
  • the low-temperature melting alloy 24 is further provided with a magnetic bead (mangitc bead) to measure the fluidity of the low-temperature melting alloy 24 according to the movement of the permanent magnet 47a by the optical sensor 46 Is preferred.
  • a magnetic bead to measure the fluidity of the low-temperature melting alloy 24 according to the movement of the permanent magnet 47a by the optical sensor 46 Is preferred.
  • the low-temperature melting alloy in the temperature sensitive chamber 16 changes from solid to liquid. Therefore, since the magnetic beads move as the permanent magnet 47a moves, the low-temperature fusion alloy 24 may have fluidity and may be observed by the optical sensor 46.
  • the heating device is turned off, while when the low melting alloy 24 has lost its fluidity, the heating device 44 is turned on or By lowering the driving power to maintain a constant internal temperature of the cell destruction chamber 29 to 55 ⁇ 65 °C.
  • FIG. 2 shows a side view and a perspective view of various embodiments of the cell disruption chamber 29.
  • FIG. 2 (a) and 2 (c) show a case in which the temperature sensitive material 24 is arranged in an array in the temperature sensitive chamber 16, and FIG. 2 (b) shows a temperature on the upper surface of the temperature sensitive chamber 16.
  • FIG. The case where the sensitive material 24 is arrange
  • the temperature sensitive material 24 of FIG. 2 (b) is preferably a phase change material, preferably having a melting point of 55-65 ° C.
  • the internal temperature of the cell destruction chamber 29 reaches 55-65 ° C., which is the temperature of the activity of the enzyme proteinaseK, cell destruction is most active, and an image of the upper surface of the temperature sensitive chamber 16 is formed.
  • the change materials 24 undergo a phase change from solid to liquid to change from opaque white to transparent.
  • the optical sensor 46 installed below the temperature sensitive chamber 16 the temperature in the cell destruction chamber 29 can be measured in a non-contact manner.
  • the heating film 30 is a metal plate, and the metal plate has a black coating surface 30a coated on one side by black paint and is heated by the heating device 44. Is preferred.
  • the heating film 30 is a case where one side of the upper substrate 100a of the disc is implemented by a black coating layer 30 coated with black paint. It is preferred to be heated by the heating device 44.
  • thermometer 3 is another embodiment of the temperature sensitive chamber 16 of the cell destruction chamber 29 or the DNA chamber 50, in which the chamber is configured in the form of a thermometer in the temperature sensitive chamber 16 to form the temperature sensitive material 24. It shows an embodiment of storing the.
  • the temperature sensitive material 24 is preferably a material that changes in volume with temperature change, and a phase change material or a low-melting alloy is preferable. As the temperature rises in the cell destruction chamber 29 by the heating device 44, the temperature sensitive material 24 changes from solid to liquid phase and thus expands in volume.
  • Reference numeral 25a denotes a temperature sensitive channel providing a movement path of the temperature sensitive material 24 according to the volume expansion of the temperature sensitive material 24 due to the temperature rise, and reference numeral 25b denotes a scale indicating the degree of volume expansion.
  • the scale 25b is read by the optical sensor 46 to determine whether the internal temperature of the cell destruction chamber 29 is in the range of 55 to 65 ° C., which is the active temperature of the enzyme proteinaseK, and accordingly the heating Device 44 is feedback controlled.
  • the scale 25b is read by the optical sensor 46 to determine the internal temperature of the DNA chamber 50, whereby the heating device 44 is feedback controlled.
  • Figure 4 (a) and 4 (b) exert an attractive force and reaction force against the stirring magnet 31 in the sample stirring chamber 32b for homogenizing and circulating the sample in the cell destruction chamber 29, thereby stirring operation.
  • Figure 4 (a) is provided with a permanent magnet 47a on the slider 211 to perform the stirring operation, the stirring in accordance with the repetition of the forward and backward movement of the slider 211 With respect to the magnet 31, an embodiment for exerting an attractive force and a reaction force to perform a stirring operation on the sample in the cell destruction chamber 29 is shown.
  • the slider 211 is controlled to move in a radial direction according to the rotation of the slider motor 109 by worm gear connecting portions 109a and 109b connected to the slide motor 109 axis.
  • the slider 211 is moved back and forth to make the stirring magnet 31 swing.
  • the slider 211 is slidably moved using the slide arms 108a and 108b as guides.
  • the slide arms 108a and 108b are fastened to the body of the drive control unit via screws 110a, 110b, 110c and 110d.
  • Reference numeral 113 is a turn table for placing the disk.
  • Another aspect of this embodiment is to observe the transparency of the phase change material on the slider 211, to observe the liquidity (liquidity) of the low-temperature melting alloy, to observe the fluorescence intensity emitted from the paper, or the temperature
  • the volume change of the sensitive material it is characterized in that it is equipped with an optical sensor 46 capable of measuring the temperature in the cell destruction chamber 29 in a non-contact manner.
  • valve opening and closing means 49 for controlling the opening and closing of the valve on the disc is mounted on the slider 211. Space addressing of the valve is possible by adjusting the disk rotation angle and the radial distance of the slider 211.
  • valve opening and closing means 49 is preferably a laser diode, and first performs space addressing on the valve to be opened, and then turns on the laser diode 49 to turn on the valve. Melting and opening are more preferred.
  • FIG. 4 (b) shows a permanent magnet 47a attached to a shaft 300a of the stirring motor 300, so that the stirring magnet 31 in the chamber 32B for sample stirring during the rotation of the stirring motor 300, Exercising the attractive force and the reaction force is an embodiment for performing the stirring operation.
  • FIG. 5 shows an embodiment of the DNA extraction disk apparatus 200 including a drive control unit for driving the DNA extraction disk 100.
  • the driving control unit includes a turn table 113 for placing the DNA extraction disk; A brushless motor 102 for rotating the DNA extraction disk 100 on the turn table 113; And a central control unit 101.
  • a brushless motor suitable for low noise and high speed rotation is preferred as the disk rotation motor.
  • Reference numeral 211 denotes a slider which allows the movement in the radial direction, and the radial movement of the slider 211 is controlled by the step motor 109.
  • Reference numeral 322 is a sanitary score billboard for the central control unit 101 to remotely receive a hygiene score from a public office through an internet connection to display a sanitary score of a business.
  • the hygiene score is preferably displayed on the hygiene score billboard 322 via a wireless connection.
  • Reference numeral 350 denotes a body that supports the DNA extraction disk apparatus 200.
  • a circuit board 140 is jointly fastened to the body 350 at the bottom of the DNA extraction disk device 200, and the central control unit 101, the storage device 112, and the USB and the Internet are connected to the circuit board 140.
  • An input / output device 111 providing a connection is arranged and designed on the circuit board 140.
  • the central controller 101 controls the brushless motor 102 to rotate or stop the disk 100, the heating device 44, the optical sensor 46, the light emitting diode 48, In addition to controlling the valve opening and closing means 49, the stirring motor 300, and the hygiene score billboard 322, the optical sensor 46 and the valve opening and closing designed and arranged on the slider 211 by the control of the slide motor 109. The movement of the means 49 and the permanent magnet 47a is controlled.
  • the central controller 101 controls the display unit 320 and the button input unit 321 to provide a user interface to the DNA extraction disk device 200 to the user.
  • a unique ID of the disc 100 to the central control unit 101 preferably via the wireless RF IC 188 on the disc at the time of loading of the disc to the turntable 113.
  • the central control apparatus 101 recognizes that the DNA extraction disk 100 is loaded by transmitting the information wirelessly.
  • Reference numeral 104 is a crimping means of the disk 100 loaded in the disk cavity 170 is compressed by a magnetic attraction force with the turn table 113 is preferably designed to allow vertical movement and idling.
  • Reference numeral 108 denotes an RF power supply for supplying power to the RF IC 188 by electromagnetic induction.
  • FIG. 6, 7, 8, and 9 illustrate various embodiments of a DNA extraction disk 100 incorporating a cell disruption process, a DNA purification process, a DNA extraction process, and a DNA amplification process.
  • the DNA extraction disk 100 illustrated in FIGS. 6, 7, 8, and 9 includes a sample inlet 28 for injecting a sample; A cell destruction chamber (29) comprising an enzyme and a temperature sensitive chamber (24) for chemically destroying cells contained in the sample while storing the injected sample; The DNA and debris generated from the cells destroyed in the cell destruction chamber 29 are captured by the centrifugal force during the rotation of the disk 100 while the remaining debris is passed through as it is.
  • Silica membrane 51 A membrane chamber 51a on which the silica membrane 51 is fixed; Washing solution chamber 1 (58A) and washing solution storing washing solution 1 (washing solution 1) and washing solution 2 (washing solution 2) for washing the silica membrane (51) capturing the DNA, respectively Chamber 2 58B; Waste chamber for storing debris passing through the silica membrane 51 or for storing impurities generated during the purification and washing of the silica membrane 51 by the cleaning solution 1 and the cleaning solution 2. 52; An extraction solution chamber 59 storing an extraction buffer for extracting DNA bound to the silica membrane 51 washed by the washing solution 1 and the washing solution 2; And a DNA chamber 50 for storing DNA extracted from the silica membrane 51 by the extraction buffer or for amplifying the stored DNA.
  • Another aspect of the invention is to further comprise a porous plastic filter (not shown) in the membrane chamber (51a), it is preferred to mechanically support the silica membrane (51).
  • the porous plastic filter can prevent the silica membrane 51 from deforming mechanically by centrifugal force during the rotation of the disk 100.
  • the disc 100 has valves 56A, 56B, 56C, 56D at the outlet of the cell disruption chamber 29, the wash solution chamber 1 58A, the wash solution chamber 2 58B, and the extract solution chamber 59, respectively.
  • the liquids stored in these chambers are moved along the channel 57 by the centrifugal force generated during the rotation of the disk 100 when the valve is opened.
  • valves 56A, 56B, 56C, 56D, 71b are all initially closed and the valve 71a is opened from the beginning, so that the cell breaking process in the cell destruction chamber 29 is completed by the valve opening and closing means 49
  • the DNA is captured on the silica membrane 51 while the DNA and the debris generated in the cell destruction process are moved along the channel 57 by the centrifugal force according to the rotation of the disk 100.
  • the remaining debris is passed through and stored in the residue chamber 52.
  • valve 56B is opened, and then, by centrifugal force due to the rotation of the disk 100, the washing solution 1 stored in the washing solution chamber 1 58A moves along the channel 57 to capture the DNA. Clean the silica membrane 51. At this time, impurities generated during the cleaning process are stored in the residue chamber 52.
  • valve 56C is opened, and then, by centrifugal force due to the rotation of the disk 100, the washing solution 2 stored in the washing solution chamber 2 58B moves along the channel 57 to capture the DNA. Clean the silica membrane 51. At this time, the impurities generated during the cleaning process are stored in the waste chamber 52.
  • valve 71a is closed by the valve opening and closing means 49, and the valve 71b and the valve 56D are opened.
  • the extraction buffer stored in the extraction solution chamber 59 moves along the channel 57 to bind the DNA bound on the silica membrane 51. Extracted and moved to the DNA chamber 50.
  • reference numerals 71a and 71b denote valves.
  • the valve 71b is initially closed while the valve 71a is open from the beginning so that debris passed as it is without binding to the silica membrane 51 by centrifugal force during the rotation of the disc 100 is left.
  • impurities generated during the washing of the silica membrane 51 by the cleaning solution 1 and the cleaning solution 2 are transferred to the waste chamber 52 and stored.
  • valve 71b and valve 56D are opened while valve 71a is closed.
  • the extraction buffer stored in the extraction solution chamber 59 passes through the silica membrane 51 to extract DNA and transfer the DNA to the DNA chamber 50.
  • reference numeral 77 denotes a Coriolis channel, which is a channel using the Coriolis effect, which is a physical law, and is composed of channels 77a and 77b.
  • the channel 77b and the channel 77a are connected to the outlet of the membrane chamber 51a and branched in opposite directions to form an arch.
  • the channel 77b is connected to the waste chamber 52 and the channel 77a is the DNA.
  • the liquid collected in the membrane chamber 51a is transferred to the DNA chamber 50 via the channel 77a.
  • the debris passed as it is without binding to the silica membrane 51 is transferred to the dreg chamber 52 by centrifugal force during the rotation of the disc 100, or the washing solution 1 and the washing solution 2
  • the disk 100 is rotated counterclockwise.
  • the disk 100 is rotated clockwise.
  • the closing of the valves 56A, 56B, 56C, 56D, 71b is preferably to close the hole of the valve by the black membrane.
  • the black membrane is black vinyl, black polyester film, black paint coated PVDF, black hotmelt, black polyethylene film, black polypropylene, black PVC vinyl (polyvinyl chloride) , Black PET (Polyethylene Terephthalate, Poly-Ethylene-Terephthalate) film and other black synthetic materials are preferred, and the valve opening and closing means is preferably a laser diode.
  • the black membrane has a high absorbance and is easily heated and melted by irradiation of a laser beam by a laser diode to open the valve.
  • the DNA extraction disk 100 illustrated in FIG. 7 is an embodiment in which two pairs of the DNA extraction disk 100 illustrated in FIG. 6 are arranged in a symmetrical structure, and the disk is rotated when the disk 100 is rotated because of the symmetrical structure.
  • the overall weight balance of (100) provides the advantage of minimizing vibration and noise during high-speed rotation of the disk (100).
  • FIG. 9 is an embodiment in which the DNA extraction disk 100 illustrated in FIG. 9 is arranged in a symmetrical structure facing two pairs of the DNA extraction disk 100 illustrated in FIG. 8, when the disk 100 is rotated due to the symmetrical structure.
  • the overall weight balance of the disk 100 provides an advantage of minimizing vibration and noise during high-speed rotation of the disk 100.
  • FIG. 10 is a side view and a plan view of another embodiment in which the valve 71b is opened by a capes channel 72 as another embodiment of the valve 71b.
  • Fig. 10 (a) shows the case where valve 71b is closed by black vinyl 85, while Fig. 10 (b) shows the case where valve 71b is open.
  • the disk 100 is preferably made of an upper substrate 100a, an intermediate substrate 100b and a lower substrate 100c, which are preferably bonded by an adhesive.
  • the top view of FIG. 10 is drawn for the intermediate substrate 100b and the lower substrate 100c, except for the upper substrate 100a.
  • valve 71b is opened by forming a capillary channel 72 on the black vinyl 85 while melting the black vinyl 85 by the valve opening and closing means 49.
  • the liquid in the membrane chamber 51a may move to the DNA chamber 50 by the centrifugal force due to the rotation of the disk 100.
  • the capillary channel (72) extends from the outlet of the membrane chamber (51a) to the hole (71b) of the valve by black vinyl (85) to form a closing channel (closing channel);
  • the valve 71b is formed by turning on a laser diode 49 to melt the black vinyl 85 from the outlet of the membrane chamber 51a to the hole 71b of the valve, thereby forming an opening channel. It characterized in that the opening.
  • the channel 72 is named as a capillary channel.
  • the black vinyl is black polyester film, black hotmelt, black paint coated PVDF, black polyethylene film, black PP, black paint, black PVC vinyl ), Black PET (Polyethylene Terephthalate, Poly-Ethylene-Terephthalate) film and other black synthetic materials are preferred.
  • FIG. 11 is an embodiment of the valve 71a.
  • FIG. 11 (a) shows the case where the valve 71a is opened and
  • FIG. 11 (b) shows the case where the valve 71a is closed.
  • the valve 71a is initially opened as shown in FIG. 11A, so that the liquid collected in the membrane chamber 51a by centrifugal force can freely move to the dreg chamber 52.
  • the disk 100 is preferably made of an upper substrate 100a, an intermediate substrate 100b and a lower substrate 100c, which are preferably bonded by an adhesive.
  • the top view of FIG. 11 is drawn for the intermediate substrate 100b and the lower substrate 100c, except for the upper substrate 100a.
  • Reference numeral 78b denotes a PCM chamber which stores a phase change material 78, and when heated by the laser diode 49, the phase change material 78 changes from solid to liquid.
  • Reference numeral 79 denotes a black coating surface made of black paint, which is present on the bottom surface of the phase change material 78 so that when the laser diode 49 is turned on, the light emitted from the laser diode 49 is highly efficient. Can absorb. Accordingly, the black coating surface 79 is heated, and the phase change material 78 melts by this heat, and the phase change material 78 flows into the channel, thereby closing the valve 71a as shown in FIG. 11 (b). . After the phase change material 78 enters the channel, the laser diode is turned off, causing the phase change material 78 to turn into a solid state so that the valve 71a remains closed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 온도 감응물질을 세포 파괴 챔버 내에 위치하여 챔버 내의 시료의 온도를 직접 측정하고 이에 따라 가열 장치의 온오프를 피드백(feedback) 제어하여 세포 파괴 챔버 내의 온도를 제어함으로써, 시료의 세포 파괴 과정을 화학적으로 수행하여, 세포내의 DNA를 정제 및 추출하거나 상기 추출된 DNA를 증폭하는 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법을 제공한다.

Description

DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법
본 발명은 온도 감응 물질을 이용한 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법에 관한 것으로, 보다 상세하게, 본 발명은 각종 핵산 분석에 필요한 DNA를 추출하기 위해 세포(cell)를 파괴(lysis)하고 효소의 활성 온도로 시료를 가열 제어하기 위한 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법에 관한 것이다.
핵산을 이용한 분자진단법은 높은 정확성과 재현성, 신속성 등의 장점이 있어 최근 식품위생 분야와 법의학 분야에서 많은 이슈가 되고 있는 방법이다. 그러나 이런 장점에도 불구하고 여러 부가적인 측정 설비를 갖추어야 하기에 최근에는 이를 Lab on a Disc 형태로 구현하고자 하는 연구들이 많이 진행되어 있다. 이러한 핵산을 이용한 분자진단법을 Lab on a Disc상에서 구현하는 데 있어 가장 큰 장애물은 DNA를 추출하기 위한 세포 파괴(cell lysis) 공정의 집적화이다.
최근 세포 파괴를 위한 여러 집적 기술이 개발되어 효율성 및 경제성이 개선되었으며, 이러한 세포파괴 공정을 위한 장치는 미국 특허 문헌 US 7157049 (발명의 명칭: Optical bio-discs and fluidic circuits for analysis of cells and methods relating thereto") 에 잘 나타나 있다.
그러나 기존 Lab on a Disc 형태의 세포 파괴 방법은 물리적 세포 파괴를 이용한 방법으로, 외부 장치가 필요하여 화화적 세포 파괴 방법에 비해 핵산의 추출 효율성이 떨어지거나, 마이크로 단위의 세밀한 구조가 필요하여 제작이 매우 어렵다는 단점이 있다. 그럼에도 기존 Lab on a Disc 기반 방법들이 물리적인 세포 파괴 방법을 택한 이유는, 정밀한 온도 제어가 필요한 화학적 세포 파괴 방법에 비해 구현이 훨씬 수월하기 떄문이다. 화학적 세포 파괴 방법의 장점은 효소를 온도 제어에 의해 활성화 시킴으로써 세포파괴의 효율을 극대화 할 수 있다는 것이다.
따라서 화학적 세포 파괴 방법을 Lab on a Disc에 적용할 수 있는 기술 개발이 절실히 필요하다.
Lab on a Disc에 상기 화학적 세포 파괴 방법을 적용하기 위해서는 다음 두 가지 조건을 만족하여야 한다.
첫번째, Lab on a Disc에서는 Disc 상에 여러 기능에 필요한 챔버(chamber)들이 함께 집적되어 있는바, 세포 파괴 동안 세포 파괴 기능을 담당하는 챔버 부위만 선별적으로 온도 제어가 되어야만 한다. 그렇치 않으면 세포 파괴를 위한 가열 동안 세포 파괴와 관계없는 부위가 동시에 가열되거나 영향을 받아 전체 성능 상에 문제를 야기시킬수 있다.
두번째, 일반적으로 화학적 세포 파괴시 첨가되는 효소인 proteinaseK를 활성화시키기 위해서는 60도의 온도 제어가 필수적인데, Lab on a Disc의 경우 일련의 바이오 공정을 회전력에 의한 원심력으로 진행하므로, 상기 60도 온도 제어 및 계측은 비접촉식으로 이루어져야 한다.
이러한 상기 두 조건을 만족시키기 위해, 본발명은 시료를 저장하고 동시에 시료의 세포 파괴를 돕는 효소를 저장하고 있는 세포파괴 챔버; 상기 효소를 활성화하기 위한 가열장치; 상기 세포 파괴 챔버 내에 배치된 온도 감응 물질(Temperature sensitive material); 및 상기 온도 감응 물질의 투명도, 유동성(liquidity) 또는 형광량을 측정하여 상기 세포 파괴 챔버 내의 시료의 온도를 계측하기 위한 카메라를 구비하여, 상기 효소가 최적의 온도에서 활성화되도록 상기 가열장치를 피드백(feedback) 제어함으로써 상기 세포에 포함된 DNA을 분리할 수 있는 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법을 제공한다.
본 발명은 상기 종래기술의 문제점들을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 온도 감응물질을 세포 파괴 챔버 내에 위치하여 세포파괴 챔버 내의 시료의 온도를 직접 측정하고 이에 따라 가열 장치를 피드백(feedback) 제어하여 세포 파괴 챔버 내의 온도를 효소의 활성화 온도로 제어함으로써, 세포 파괴 과정을 화학적으로 수행하여 세포 속의 DNA를 분리하는 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법을 제공한다.
본 발명의 또 다른 목적은, 디스크 내에 DNA와 결합하는 실리카 멤브레인(silica membrane)을 더 구비하여 디스크 회전에 의한 원심력에 의해 상기 세포파괴 챔버에서 파괴된 세포에 포함된 찌꺼기(debri)를 제거하여 정제된 DNA를 얻기 위한 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법을 제공하는 것으로,
구체적으로는 시료에 포함된 박테리아 세포를 화학적 방법으로 파괴시키는 세포 파괴공정, 찌꺼기를 제거하는 세정공정 및 DNA 추출 공정이 포함된 DNA 추출 디스크 장치 및 이를 DNA 추출방법을 제공하는 것이다.
이하, 본 발명에서 DNA는 세균, 바이러스, 식물, 동물의 신체 일부(머리카락, 살점 등) 또는 그의 분비물(침, 소변 등), 혈액 또는 음식물 검체로부터 얻어진 디옥시리보 핵산 (deoxyribonucleic acid), RNA 로부터 역전사(reverse transcription)에 의해 얻어진 cDNA(Complementary DNA) 샘플 중 선택된 어느 하나 인 것을 특징으로 한다
상기 검체 중 세균은 한국 식품 공전 (Korean Food Standards Codex)또는 미국의 FDA food code 에 따라 식품으로부터 25g을 취하여 표적 세균(target pathogen)에 맞은 액체 배양 배지(liquid medium) 225ml에 주입하여 균질화(homogenization) 후 18~24시간의 증균배양(enrichment culture) 후, 표적 세균(target pathogen)에 맞는 선택 고체 배지(selective agar medium)에서 분리 배양(separate culture)된 세균 군집(colony)을 사용하거나;
표적 세균(target pathogen)에 맞는 증균배양(enrichment culture)을 실시 후 원심분리하여 얻은 세균의 펠렛(pellet)을 사용하거나, 음식물로부터 스토마커(stomacher)에 의해 균질화된 것을 원심분리 내지 다공성 필터(porous filter)를 통해 얻는 것이 바람직하다.
이하, 본 발명에서 "DNA 추출 디스크"는 "디스크"와 혼용한다.
본 발명에 따른 DNA 추출 디스크 (DNA extraction Disc) 장치는,
DNA 추출 디스크; 상기 DNA 추출 디스크를 회전 및 구동 제어하기 위한 구동 제어부; 상기 DNA 추출 디스크의 세포 파괴 챔버의 온도를 조절하기 위한 가열장치; 및 상기 세포 파괴 챔버의 온도를 측정하기 위한 광학 센서를 포함하며,
상기 DNA 추출 디스크는 시료를 주입하기 위한 시료 주입구; 및 상기 주입된 시료를 저장하는 동시에 상기 시료내 에 포함된 세포를 화학적으로 파괴하기 위한 효소, 상기 가열장치에서 발생된 열을 흡수하거나 흡수된 열을 전달을 위한 히팅 필름(heating film), 및 온도 감응 물질(Temperature sensitive material)을 저장하고 있는 온도 감응 챔버로 구성된 세포 파괴 챔버를 포함한다.
본 발명에서 상기 온도 감응 물질은 상변화 물질(phase change material), 저온융해합금(low-melting alloy) 또는 온도 민감 형광(temperature sensitive fluorescence) 물질이 코팅 내지 염색된 종이인 것이 선호된다.
상기 종이는 다공성 멤브레인(porous membrane) 또는 아트지(art paper)을 사용하며 본 발명에서는 아트지가 선호된다.
상기 상변화 물질은 고체상에서 액체상으로 변화하는 물질 중 유기계열로는 파라핀계, 비파라핀계, 무기계열로는 이혼화합물계, 메탈계 등이 사용 될 수 있으며, 상기 온도 민감 형광 물질은 메틸메타아크릴레이트(MMA) 또는 아크릴로니트릴 (acrylonitrile)을 주성분으로 하는 폴리아크릴계 안료, 다이아미노스틸벤(diaminostilbene)계 염료, 플루오레세인(fluorescein), 티오플라빈(thioflavin), 에오신(eosin), 로다민 B(Rhodamine B) 등이 있으며 본 발명에서는 아크릴로니트릴을 주성분으로 하는 폴리아크릴계 안료가 선호된다.
상기 저온용해합금은 비스무트(Bismuth) 합금의 일종이 될 수 있으며 배합 비율에 따라 융해 온도가 달라지는 특성이 있다. 대표적인 저온용해합금으로는 우드 메탈(Wood's metal), 필즈 메탈(Field's metal), Cerrolow 136, Cerrolow 117등이 있으며 우드 메탈의 조성비는 비스무트 50%, 납 26.7%, 인듐 8.5%, 카드뮴 10%로 구성되어 있으며 70℃에서 융해되는 특성이 있다. 필즈 메탈의 조성비는 비스무트 32.5%, 주석 16.5%, 인듐 51%로 이루어져 있으며 62℃에서 융해되는 특성이 있다. Cerrolow 136합금의 경우 비스무트 29%, 납 18%, 주석 12%, 인듐 21%로 이루어져 있으며 58℃에서 융해되는 특성이 있다. Cerrolow 117합금의 경우 비스무트 44.7%, 납 22.6%, 주석8.3%, 인듐 19.1%, 카드뮴 5.3%로 이루어져 있으며 47.2℃에서 융해되며, 본 발명에서는 필즈 메탈이 선호 된다.
상기 온도 감응 물질은 상기 세포 파괴 챔버 내에 어레이(array) 형태로 배열되는 것이 선호된다.
본 발명에서, 상기 가열 장치는 레이저 가열장치 내지 인덕션(induction) 가열 장치인 것이 선호된다.
본 발명의 상기 히팅 필름은 금속판이 선호되며, 검정색 페인트에 의한 검정색 코팅면을 더 구비하여 상기 레이저 가열장치에 의해 가열되는 것이 더욱 선호된다. 상기 검정색 페인트는 상기 레이저 가열장치로부터의 열을 흡수하여, 상기 금속판에 의해 열이 세포 파괴 챔버 전체에 전달에 되어 세포 파괴 챔버 내의 시료를 가열시킨다.
상기 검정색 페인트는 레이저 가열장치에 의해 녹지 않는 내열성 페인트가 선호된다.
상기 금속판은 0.01~0.1mm 두께의 알루미늄(alumnium) 내지 자성체 금속 재질이 선호 된다.
상기 인덕션 가열장치는 코일에 교류 전류를 보내면 코일에 자력선이 발생하고 이 자력선이 패러데이(faraday)의 전자기 유도(electromagnetic induction)의 법칙에 의해, 상기 코일 위에 놓인 상기 금속판에 와류 전류(eddy current)를 생성시켜 금속판을 가열하는 것을 특징으로 한다.
본 발명의 또 다른 측면은 상기 히팅 필름은 검정색 필름이 선호 되며
상기 검정색 필름은 레이저 가열장치로부터의 레이저 빛을 흡수하여 DNA 파괴 챔버 내의 시료를 가열한다.
상기 검정색 필름은 레이저 가열 장치에 의해 녹지 않는 내열성 필름이 선호된다.
상기 내열성 필름은 아라미드(aramid) 필름, PET(Polyethylene Terephthalate) 필름, 폴리이미드 필름(polyimide film)이 선호된다.
본 발명의 또 다른 측면은 상기 히팅 필름은 상기 세포파괴 챔버의 일면을 검정색 페인트에 의해 형성한 검정 코팅층인 것이 선호 된다.
본 발명의 또 다른 목적은, 상기 세포파괴 챔버에서 파괴된 세포에서 나온 DNA와 결합하는 실리카 멤브레인; 상기 실리카 멤브레인을 세척하기 위한 세척 용액(washing solution)를 저장하고 있는 세척 챔버; 상기 세포파괴 챔버에서 파괴된 세포에서 나온 찌꺼기를 저장하거나 상기 실리카 멤브레인을 세척는 과정에서 나온 불순물을 저장하기 위한 찌꺼기 챔버(waste chamber); 상기 세척 용액에 의해 상기 실리카 멤브레인에 결합된 DNA을 세척한후, 상기 실리카 멤브레인 상(上)에 결합된 DNA을 추출하기 위한 추출 버퍼(Elution buffer)를 저장하는 있는 추출 버퍼 챔버; 상기 실리카 멤브레인으로 부터 추출된 DNA를 모으거나 모아진 DNA을 증폭하기 DNA 챔버; 및 상기 챔버들을 연결하여 유체가 흐를 수 있는 통로를 제공하는 유로(channel) 및 유체의 흐름을 제어하는 밸브를 포함하는 DNA 추출 디스크를 제공하는 것이다.
상기 유체는 디스크 회전에 따른 원심력에 의해 유로를 따라 이동하게 된다.
상기 세척 용액을 이용하여 상기 실리카 멤브레인을 세척하여 실리카 멤브레인으로부터 불순물을 제거하고, 최종적으로 상기 추출 버퍼(Elution buffer)를 실리카 멤브레인에 유입시켜 추출(Elution) 과정이 수행하면 순수하게 정제된 DNA가 얻어진다. 상기 정제된 DNA는 DNA 챔버로 이동하여 필요에 따라 DNA 증폭 공정을 수행하게 된다.
본 발명에서, 상기 시료는 세포 파괴 기작(mechanism)과 DNA의 실리카 멤브레인 흡착력을 증강시키기 위한 버퍼와 혼합하여, 상기 세포 파괴 챔버에 주입하는 것이 선호된다,
상기 버퍼는 세포 파괴에 사용되는 물질인 EDTA, glucose, lysozyme, SDS 등을 배합하여 세포 파괴를 도우며 guanidine hydrochloride, Tris-HCL등을 함유하여 실리카 멤브레인상(上)에 DNA가 잘 결합되도록 한다.
상기 버퍼는 세포 파괴 기능을 담당하는 버퍼와 DNA 실리카 멤브레인 흡착 기능을 담당하는 버퍼로 따로 구분 될 수 있다. 이 경우 전자는 세포 파괴 버퍼(lysis buffer), 후자는 바인딩 버퍼(binding buffer)로 불리우나, 두 기능이 합쳐진 경우 통상 바인딩 버퍼(binding buffer)로 칭하며 바인딩 버퍼(binding buffer)의 특성에 따라 필요할 경우 아이소프로판놀(isopropanol)을 첨가하여 세균 파괴를 진행할 수 있다. 아이소프로판놀(isopropanol)은 세포 단백질과 DNA를 분리시키는 역할을 한다. 본 발명에서는 아이소프로판놀(isopropanol)을 바인딩 버퍼(binding buffer)와 혼합하여 세포 파괴 챔버에 주입하여 세포 파괴를 진행하는 것이 선호된다.
본 발명의 또 다른 측면은, 상기 시료에 효소 RnaseA를 첨가할 수 있다. 효소 RnaseA는 RNA의 가수분해를 유도하여 DNA 추출 결과물 분석 시 RNA로 인한 위양성 인자를 제거하여 순수한 DNA 추출 결과만 확인할 수 있도록 돕는다.
본 발명의 또 다른 측면은, 상기 실리카 멤브레인은 양전하(postive charge)을 띄는 물질, 예컨데 양전하(postive charge)을 띄는 다공성 플라스틱 내지 비드(bead)로 대체되어 사용될수 있다.
DNA는 전체적으로 5′말단의 포스페이트(phosphate) 그룹으로 인하여 음전하(negative charge)를 가지며
상기 양전하(postive charge)를 띄는 물질 과 DNA의 음전하 간의 전위 차이로 인해 서로 끌어 당겨서, 상기 양전하(postive charge)를 띄는 물질의 표면에 DNA가 흡착하게 되는 것이다. 전위차가 클수록 정전기적 상호작용은 더욱 커져서 흡착효율(adsorption efficiency)은 크게 나타나게 된다.
따라서 상기 양전하(postive charge)를 띄는 물질의 표면은 양전하 값이 큰 아민기를 도입하여 DNA 흡착효율을 증가시키는 것이 바람직하다.
본 발명의 또 다른 목적은 상기 DNA 추출 디스크의 DNA 챔버가 DNA 증폭 공정에 필요한 효소 및 버퍼 용액을 저장하고 있고 DNA 증폭(DNA amplification)을 수행하는 것을 특징으로 한다.
상기 DNA 추출 디스크의 DNA 증폭 공정을 위해, 상기 DNA 챔버는 dNTP를 비롯한 프라이머(Primer) 등 각종 효소(enzyme)들을 포함하는 버퍼 용액을 저장하고, 폴리머라아제(polymerase)의 저장을 위한 별도의 폴리머라아제 챔버를 구비하는 것이 선호된다.
본 발명에서 상기 DNA 증폭 공정은 PCR(Polymer Chain Reaction)의 써머 사이클(thermo cycle)을 반복적으로 수행함으로써 이루어지거나,
등온 증폭(isothermal amplification)에 의해 이루어지는 것을 특징으로 한다.
상기 PCR은 denaturation(~95 oC), annealing(~50 oC), 그리고 extension (~72 oC)으로 구성되는 세가지 온도를 주기적으로 반복하여 수행하는 써머 사이클을 DNA 챔버에서 진행함으로써 이루어지나, 상기 등온증폭은 한가지의 특정온도(예를 들면 60oC)로 약 90분 동안 DNA 챔버를 가열함으로써 이루어진다.
본 발명에서, 상기 DNA 추출 디스크 장치는 상기 세포 파괴 챔버의 시료를 섞어주기 위한 교반기(stirrer)을 더 구비한 것을 특징으로 한다.
상기 교반기는 상기 세포 파괴 챔버 내의 시료 균질화와 순환을 위해 상기 세포 파괴 챔버내에 교반 자석; 및 상기 교반자석에 대해 인력과 반반력을 발휘하여 교반 동작을 수행하는 소형 영구자석이 부착된 교반 모터로 구성되는 것이 선호된다.
상기 교반기는 세포 파괴 챔버 내에 proteinaseK와 같은 세포 파괴 작용을 돕는 효소를 건조 분말 형태 혹은 버퍼 용액에 희석된 상태로 저장하고, 상기 세포 파괴 챔버에 시료를 주입 후 세포 파괴 공정 동안 상기 효소와 잘 섞여 균질화 되도록 한다.
본 발명에서, 상기 DNA 추출 디스크 장치는 상기 DNA 증폭 산출물(product)을 정량적으로 분석하기 위한 형광 센서 내지 탁도 센서(turbidity meter)를 더 구비한 것을 특징으로 한다.
상기 구동 제어부는 상기 DNA 추출 디스크를 올려놓기 위한 턴 테이블(turn table); 상기 턴 테이블 상의 DNA 추출 디스크를 회전시키기 위한 모터로 구성되는 것을 특징으로 한다.
본 발명의 DNA 추출 디스크를 디스크의 직경은 120mm,80mm, 60mm 또는 32mm의 원형 디스크가 선호되며, 두께는 1.2mm ~ 10mm가 바람직하다.
본 발명에서 상기 광학 센서는 포토다이오드(photodiode), 카메라, 포토다이오드 어레이(photodiode array), 스펙트로미터(spectrometer), CCD(charge-coupled device), CMOS(Complementary metal-oxide-semiconductor) 이미지 센서, 레이저 파워 미터(laser power meter) 중 어느 한 가지가 사용되는 것이 선호된다.
상기 광학 센서는 세포 파괴 챔버 내에 설치된 온도 민감 형광(temperature sensitive fluorescence) 염료로부터의 형광량을 측정하거나, 세포 파괴 챔버 내에 설치된 온도 감응 물질의 유동성 내지 투명도를 측정하여 시료의 온도를 측정할 수 있다. 또한 상기 광학 센서는 상기 DNA 증폭 산출물(product)을 정량적으로 분석하기 위한 형광 센서 내지 탁도 센서(turbidity meter) 로 사용되는 것이 선호된다.
상기 온도 민감 형광 염료는 형광 염료의 방출 강도(emission intensity)가 세포 파괴 챔버 내의 시료 온도에 따라 변화하므로, 발광 다이오드의 여기(excitation)에 따른 형광의 방출 강도를 상기 광 센서로 측정함으로써 시료의 온도를 측정할 수 있다.
상기 DNA 증폭 산출물(product)을 형광 분석하는 경우, 발광 다이오드의 여기(excitation)에 따른 형광의 방출 강도를 상기 광 센서로 측정함으로써 DNA량을 정량적으로 측정할 수 있다.
상기 DNA 증폭 산출물(product)을 탁도 분석하는 경우, 발광 다이오드의 여기(excitation)에 따른 탁도를 상기 광 센서로 측정함으로써 DNA량을 정량적으로 측정할 수 있다.
바람직하게, 상기 디스크는 실리콘 웨이퍼, 폴리프로필렌, 폴리아크릴레이트, 폴리비닐알콜, 폴리에틸렌, 폴리메틸메타크릴레이트(PMMA: polymethyl methacrylate), 고리형 올레핀 고분자(COC: cyclic olefin copolymer) 및 폴리카보네이트로 이루어진 군에서 선택되는 하나 이상으로 형성될 수 있다. 그러나, 플라스틱이 경제적 이유, 가공의 용이성 때문에 바람직하다.
상기 디스크는 상부 기질, 중간 기질 및 하부 기질로 이루어지는 것이 선호되며, 이들은 점착제에 의해 접합되는 것이 바람직하다.
이 경우 상기 디스크는 상부 기질, 중간 기질 및 하부 기질이 적층 접합되어 이루어지고, 각 기질을 결합하는 양면 접착 테이프가 포함된다.
상기 양면 접착 테이프는 종이, 비닐, 폴리에스테르 필름, 폴리에틸렌 필름 및 기타 합성 재질과 같은 이형지의 양쪽 면에 특수한 점착제(adhesive; gluing agent)로 표면 처리가 되어 있고, 필요로 하는 조건에 따라 높은 실링(sealing) 및 완충, 진동 완화, 내충격성, 내열성, 흡착성, 접착력 등의 특징을 가진 점착제 재료를 선정하여 사용할 수 있다.
본 발명의 또 다른 측면은, 상기 양면 접착 테이프는 이형지 또는 백킹(backing)을 사용하지 않고 점착제(adhesive; gluing agent) 자체가 양면 접착 테이프를 형성하는 것이 선호된다.
상기 양면 접착 테이프는 이형지 상에 점착제를 양면 코팅하거나 이형지를 사용하지 않는 점착제(adhesive; gluing agent) 형태가 선호되며, 점착제는 핫 멜트(hot melt), 실리콘, 고무계, 변성 실리콘계, 아크릴계(acrylic), 폴리 아마이드(ployamide), 폴리오레핀(polyolefin), 테프론계, 폴리에스터(polyester), 에폭시, 자외선 감응 경화성 접착제(UV curable adhesive), UV접착제, 열 가소성 수지 등과 같은 재료가 사용될 수 있다.
본 발명의 또 다른 목적은, 본 발명을 따르는 DNA 추출 디스크 장치에 있어서, 시료 주입구를 통해 시료를 세포 파괴 챔버에 주입하는 단계; 가열 장치에 의한 상기 세포 파괴 챔버의 가열 단계; 상기 가열 단계 동안, 교반 자석을 요동시키는 시료 교반 단계; 광학 센서를 통해 온도 감응 물질의 변화 (투명도, 유동성, 형광량 또는 부피 변화)를 읽음으로써 상기 세포 파괴 챔버의 온도를 측정하는 온도 측정 단계; 효소의 활성화 온도를 유지하기 위해, 상기 온도 측정 단계에서 얻어진 온도 값에 따라 상기 가열 장치의 온오프(on-off)를 제어하는 단계; 상기 가열 단계에 의해 파괴된 DNA가 디스크 회전에 의한 원심력을 받아 실리카 멤브레인을 통과하면서 상기 실리카 멤브레인에 결합하는 단계; 상기 DNA가 결합된 실리카 멤브레인을 세척 용액을 사용하여 세척하여 불순물들을 찌꺼기 챔버로 보내는 세척 단계; 및 상기 세척 단계이후, 상기 실리카 멤브레인에 결합된 DNA를 추출하기 위해 추출 버퍼를 사용하여 DNA을 상기 실리카 멤브레인로부터 분리시킨후, 분리된 DNA를 DNA 챔버로 보내는 추출 단계를 포함하는 것을 특징으로 하는 DNA 추출 디스크 장치를 이용한 DNA 추출 방법을 제공하는 것이다.
본 발명에서, 상기 DNA 추출 디스크 장치를 이용한 DNA 추출 방법은 상기 추출 단계에서 얻어진 DNA 숫자를 증가시키기 위한 DNA 증폭 단계; 및 탁도, 형광 측정으로 증폭 산출물을 확인하는 산출물 분석 단계를 더 포함하는 것을 특징으로 한다.
본 발명에서, 상기 DNA 추출 디스크 장치를 이용한 DNA 추출 방법은 디스크상에 RF IC를 내장하여 인터넷을 통하여 디스크의 진품 여부를 확인하거나 재사용 여부를 확인하는 디스크 인증 단계를 더 포함하는 것을 특징으로 한다. 본 발명의 상기 디스크는 1회용으로 재사용을 해서는 안된다. 상기 디스크 인증 단계마다 디스크의 ID 정보가 서버(server)로 송출되어 저장되게 함으로서, 디스크 사용시 서버상의 이력정보의 조회를 통해, 같은 ID 정보를 가진 디스크가 과거에 사용되었는지 체크함으로써, 디스크의 재 사용 여부를 자동으로 체크할 수 있다.
본 발명에서, 상기 DNA 추출 디스크 장치를 이용한 DNA 추출 방법은 상기 산출물 분석 단계에서 얻어진 결과를 표시부에 디스플레이(display)하거나, 인터넷망을 통해 외부에 제공하는 결과 송출 단계를 더 포함하는 것을 특징으로 한다.
본 발명에서, 상기 DNA 추출 디스크 장치를 이용한 DNA 추출 방법은 상기 결과 송출 단계 이후, 인터넷 망을 통해 관공서(예를 들면 보건복지부, 교육부, 식품 의약 안전청) 로부터 위생 점수를 원격으로 피드백 받아 업소의 광고판에 표시하는 위생 점수 공개 단계를 더 포함하는 것을 특징으로 한다.
상기 위생 점수는 업소가 얼마나 청결을 유지하고 있는지는 나타내는 점수이다. 따라서, 손님들은 외부에 게시된 광고판의 위생 점수를 보고 식당을 선택할 것이다.
상기 위생점수는 음식물로부터 표적 세균(target pathogen)의 검출 유무 및 업소의 검사횟수의 빈도수에 의해 결정되는 것이 바람직하다.
또한, 본 발명에서, 휴대폰 사용자는 식당 검색시 식당의 위치 정보뿐만 아니라, 해당 식당의 위생점수 정보도 받을 수 있어, 식당 이용객의 식당 선택권 및 업소의 위생 유지에 한층 기여할 것으로 보인다.
이상에서 본 바와 같이 본 발명은 온도 감응물질을 이용한 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법에 관한 것으로, 보다 상세하게, 본 발명은 DNA 분석 장치에 필수적인 세포 파괴 공정, DNA 정제 및 추출 공정, DNA 증폭 공정을 하나의 디스크에 집적화함으로써 보다 손쉽게 효율적으로 DNA 분석을 수행하는 DNA 추출 디스크 장치 및 이를 이용한 DNA 추출 방법을 제공한다.
도 1은 세포 파괴 챔버가 디스크 상에 음각 설계된 것을 도시하고,
도 2는 세포 파괴 챔버(29)의 여러 실시예로 측면도 및 그의 투시도를 보이고,
도 3는 세포 파괴 챔버의 온도 감응 챔버에 대한 또 다른 실시예이고,
도 4(a)와 도 4(b)는 상기 세포 파괴 챔버 내의 시료 균질화와 순환을 위한 시료 교반용 챔버내의 교반 자석에 대해 인력과 반발력을 발휘하여 교반 동작을 수행하기 위한 실시예이고,
도 5는 DNA 추출 디스크를 구동하기 위한 구동 제어부를 포함하는 DNA 추출 디스크 장치의 일 실시예이고,
도 6, 도 7, 도 8 및 도 9은 밸브, 세포 파괴 공정, DNA 정제 공정, DNA 추출공정, 및 DNA 증폭 공정이 집적화된 DNA 추출 디스크의 여러 실시예이고,
도 10는 상기 밸브의 또 다른 실시예로 모세 채널(moses channel)에 의해 밸브가 개방되는 일 실시예를 보이는 단면도이며,
도 11은 상기 밸브에 대한 일 실시예이다.
이하 첨부된 도면을 사용하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.
도 1은 세포 파괴 챔버(29)가 디스크(100) 상에 음각 설계된 것을 도시한다. 본 발명에 사용될 수 있는 사료는 시료 주입구(28)를 통해 상기 세포 파괴 챔버(29) 내로 주입된다. 상기 세포 파괴 챔버(29)는 상기 세포 파괴 챔버(29) 위에 덮는 히팅 필름(heating film)(30); 시료 교반 챔버(32b); 시료 교반 보조 챔버(32a, 32c); 및 온도 감응 물질(24)로 채워진 온도 감응 챔버(16)로 구성된다.
도면 부호 44는 상기 히팅 필름(30)을 비접촉 방식에 의해 가열하기 위한 가열 장치로 레이저 가열장치 내지 인덕션(induction) 가열 장치인 것이 선호된다.
본 발명에서, 상기 레이저 가열장치(44)는 1개 이상의 레이저 모듈로 구성된 것이 선호된다.
본 발명의 일 실시예로 상기 히팅 필름(30)은 금속판이 선호되며, 상기 금속판은 한쪽 면이 검정색 페인트에 의해 코팅된 검정색 코팅면(30a)을 구비하여 상기 레이저 가열장치(44)에 의해 가열되는 것이 선호된다. 상기 검정색 코팅면(30a)은 레이저 가열장치(44)로부터 발생된 빛을 흡수하여 금속판(30)에 열(heat)을 전달시켜 상기 세포 파괴 챔버(29) 내의 시료를 가열한다.
본 발명의 또 다른 일실시예로 상기 히팅 필름(30)은 자성체 금속판이 선호되며,
상기 인턱션 가열 장치(44)는 코일(미도시)에 교류 전류를 보내면 코일에 자력선이 발생하고, 이 자력선이 패러데이(faraday)의 전자기 유도(electromagnetic induction)의 법칙에 의해, 상기 코일의 마주보는 위치에 놓인 상기 자성체 금속판(30)에 와류전류(eddy current)를 생성시켜, 상기 자성체 금속판(30)이 가열되어 상기 세포 파괴 챔버(29) 내의 시료를 가열한다.
본 발명에서 상기 세포 파괴 챔버(29)는 단백질을 분해하는 효소로서, 세포막의 파괴를 활성화 시키기 위한 효소 proteinaseK를 챔버(29) 내에 분말(powder) 형태로 구비한 것이 선호된다.
본 발명에서는 상기 온도 감응 챔버(16)은 복수개의 온도 감응 물질(24)을 저장하는 챔버가 어레이(array) 형태로 배열되어 구성되는 것이 선호된다.
도 1은 온도 감응 물질(24)을 저장하는 6개의 챔버가 어레이 형태로 배열된 일 실시예를 보인다.
도면 부호 170은 디스크 공극이다.
상기 온도 감응 챔버(16)를 어레이 형태로 배열할 경우, 상기 세포 파괴 챔버(29)가 균일하게 가열되고 있는지 여부를 복수개의 온도 감응 물질(24)로부터 파악할 수 있는 장점이 있다. 또한 상기 온도 감응 물질(24)은 온도 상승과 하강 간(間)에 특성 차를 보이는 히스테리시스(hysterisis) 현상이 있고, 이러한 히스테리시스 현상은 온도 감응 물질(24)의 용적(volume)에 비례함으로, 온도 감응 물질(24)을 소량으로 나누어 어레이 형태로 배열함으로써 히스테리시스 현상을 최소화할 수 있는 장점이 있다.
본 발명의 일 실시예로 상기 온도 감응 물질(24)은 상변화 물질이 선호되며, 55~65℃ 의 녹는점을 갖는 것이 선호된다.
이 경우, 상기 세포파괴 챔버(29)의 내부 온도가 상기 효소 proteinaseK의 활성에 온도인 55~65℃에 도달할 경우 세포 파괴가 가장 활발하게 이루어짐과 동시에, 상기 온도 감응 챔버(16) 내의 상변화 물질들이 고체에서 액체로 상변화가 일어나 불투명한 흰색에서 투명하게 바뀌게 된다. 이 때 상기 온도 감응 챔버(16)의 아래에 설치된 광학 센서(46)에 의해 상기 상변화 물질(24)의 투명도를 관찰함으로써 상기 세포 파괴 챔버(29)내의 온도를 비접촉식으로 측정할 수 있다.
즉, 만약 상변화 물질(24)의 색이 불투명 흰색인 경우 상기 가열장치(44)를 온(On)시켜 상기 세포 파괴 챔버(29)를 가열한다. 상기 가열장치(44)가 상기 세포 파괴 챔버(29)를 가열함에 따라 상기 세포 파괴 챔버(29)의 온도가 높아져 상기 상변화 물질(24)의 녹는점과 같은 온도에 도달하게 될 경우, 상기 효소는 활성화 되고 상변화 물질(24)의 색이 투명하게 변하게 된다. 이러한 경우 상기 가열장치(44)를 오프(off) 시키거나 가열장치(44)의 구동 전압을 낮게 조절하여 상기 세포 파괴 챔버(29)의 온도를 상기 효소 proteinaseK의 활성화 적정 온도인 55~65℃로 유지시킨다.
본 발명의 또 다른 실시예로, 상기 온도 감응 물질(24)은 저온융해합금(low-melting alloy)이 선호되며, 55~65℃의 녹는점을 갖는 것이 선호된다.
이 경우, 상기 세포파괴 챔버(29)의 내부 온도가 상기 효소 proteinaseK의 활성 온도인 55~65℃에 도달할 경우 세포 파괴가 가장 활발하게 이루어짐과 동시에 상기 온도 감응 챔버(16) 내의 저온융해합금(low-melting alloy) 이 고체에서 액체로 변한다. 이 때 상기 온도 감응 챔버(16)의 아래에 설치된 광학 센서(46)에 의해 상기 저온융해합금(24)의 유동성(liquidity)을 관찰함으로써 상기 세포 파괴 챔버(29) 내의 온도를 비접촉식으로 측정할 수 있다.
즉, 만약 저온융해합금(24)이 고체상일 경우 상기 가열장치(44)을 온(On)시켜 상기 세포 파괴 챔버(29)를 가열한다. 상기 가열장치(44)가 상기 세포 파괴 챔버(29)를 가열함에 따라 상기 세포 파괴 챔버(29)의 온도가 높아져 상기 저온융해합금(24)의 녹는점과 같은 온도에 도달하게 될 경우, 상기 효소는 활성화되고 저온융해합금(24)이 녹아 액체상(Liquid state)으로 된다. 이 경우 상기 가열장치(44)를 오프(off) 시키거나 구동 전압을 낮게 조절하여 상기 세포 파괴 챔버(29)의 온도를 상기 효소 proteinaseK의 활성화 적정 온도인 55~65℃로 유지시킨다.
본 발명의 또 다른 실시예로 상기 온도 감응 물질(24)은 온도 민감 형광(temperature sensitive fluorescence) 물질이 코팅 내지 염색된 종이가 선호된다.
이 경우, 상기 종이(24)로부터의 방사되는(emitted) 형광세기(fluorenscence intensity)가 세포파괴 챔버(29)의 내부 온도의 높낮이에 따라 변한다. 이 때 상기 온도 감응 챔버(16)의 아래에 설치된 광학 센서(46)에 의해 상기 종이(24)로부터의 방사되는 형광세기를 관찰함으로써 상기 세포 파괴 챔버(29) 내의 온도를 비접촉식으로 측정할 수 있다. 상기 온도 민감 형광 물질(24)은 파장 465nm을 갖는 발광 다이오드(light emitting diode)(48)에 의해 여기(excitation)되는 것이 선호되고 상기 광학 센서(46)는 550nm~625nm 사이의 파장을 통과시키는 광필터(미도시)를 광학 센서(46)의 앞단에 구비하는 것이 선호된다. 상기 광필터는 상기 온도 민감 형광 물질(24)으로부터 방사되는 형광에 속한 파장 대역을 선택적으로 통과시킨다.
만약 종이(24)로부터의 방사되는 형광세기가 효소 proteinaseK가 활성되는 하한치 온도 (예를 들면 55℃) 보다도 낮은 경우에 해당하는 경우, 상기 가열장치(44)을 온(On)하여 상기 세포 파괴 챔버(29)를 가열한다. 또한, 상기 가열장치(44)가 상기 세포 파괴 챔버(29)를 가열함에 따라 상기 세포 파괴 챔버(29)의 온도가 높아져 상기 종이(24)로부터의 방사되는 형광 세기가 효소 proteinaseK가 활성되는 상한치 온도(예를 들면 65) 보다도 높은 경우에 해당하는 경우, 상기 가열장치(44)를 오프(off) 시키거나 구동 전압을 낮게 조절하여 상기 세포 파괴 챔버(29)의 내부 온도를 상기 효소 proteinaseK의 활성을 가능하게 하는 온도인 55~65℃로 유지시킨다.
또한, 상기 시료 교반용 챔버(32B) 내에는 영구자석(47a)의 자력에 의해 움직이는 교반 자석(31)이 구비하여, 상기 영구자석(47a)이 회전 또는 움직임에 따라 상기 교반 자석(31)이 요동치게 함으로써 세포파괴 챔버(29)내의 시료를 교반하게 된다.
상기 시료 교반 보조 챔버(32a, 32c)는 시료의 교반 동작 동안 시료가 순환하는 통로를 제공할 뿐만 아니라, 교반 자석(31)이 시료 교반용 챔버(32b)로부터 이탈하지 않도록 하는 구조물을 제공한다.
본 발명에서, 상기 저온융해합금(24)은 자성체 비드(mangitc bead)를 더 구비하여 상기 영구자석(47a)이 움직임에 따른 저온융해합금(24)의 유동성을 광학 센서(46)로 측정하는 것이 선호된다.
예를 들면, 상기 세포파괴 챔버(29)의 내부 온도가 상기 효소 proteinaseK의 활성에 온도인 55~65℃에 도달할 경우, 상기 온도 감응 챔버(16) 내의 저온융해합금이 고체에서 액체로 변한다. 따라서 상기 영구자석(47a)이 움직임에 따라 상기 자성체 비드가 움직이기 때문에 상기 저온융해합금(24)이 유동성이 일어나 이를 광학 센서(46)로 관측할 수 있다. 저온융해합금(24)이 유동성이 강하게 일어나는 경우, 상기 가열 장치를 오프(off)시키고, 반면 상기 저온융해합금(24)의 유동성이 사라진 경우, 상기 가열 장치(44)를 온(on)시키거나 구동 전원을 낮추어 상기 세포 파괴 챔버(29)의 내부 온도를 55~65℃로 일정하게 유지시킨다.
도 2는 세포 파괴 챔버(29)의 여러 실시예로 측면도 및 그의 투시도를 보인다.
도 2(a) 와 도 2(c)는 온도 감응 챔버(16)에 온도 감응 물질(24)이 어레이 형태로 배열 한 경우이고, 도 2(b)는 온도 감응 챔버(16)의 윗면에 온도 감응 물질(24)을 배치한 경우를 보인다.
도 2(b)의 온도 감응 물질(24)은 상변화 물질이 선호되며, 55~65℃ 의 녹는점을 갖는 것이 선호된다.
이 경우, 상기 세포파괴 챔버(29)의 내부 온도가 상기 효소 proteinaseK의 활성에 온도인 55~65℃에 도달할 경우 세포 파괴가 가장 활발하게 이루어짐과 동시에, 상기 온도 감응 챔버(16) 윗면의 상변화 물질(24)들이 고체에서 액체로 상변화가 일어나 불투명한 흰색에서 투명하게 바뀌게 된다. 이 때 상기 온도 감응 챔버(16)의 아래에 설치된 광학 센서(46)에 의해 상기 상변화 물질(24)의 투명도를 관찰함으로써 상기 세포 파괴 챔버(29)내의 온도를 비접촉식으로 측정할 수 있다.
도 2(a)의 실시예에서는 히팅 필름(30)은 금속판으로, 상기 금속판은 한쪽 면이 검정색 페인트에 의해 코팅된 검정색 코팅면(30a)을 구비하여 상기 가열장치(44)에 의해 가열되는 것이 선호된다.
도 2(b) 와 도 2(c)의 실시예에서는 히팅 필름(30)은 디스크의 상부기질(100a)의 한쪽 면이 검정색 페인트에 의해 코팅된 검정색 코팅층(30)에 의해 구현된 경우로, 상기 가열장치(44)에 의해 가열되는 것이 선호된다.
도 3은 세포파괴 챔버(29) 또는 DNA 챔버(50)의 온도 감응 챔버(16)에 대한 또 다른 실시예로, 온도 감응 챔버(16) 내에 온도계 형상으로 챔버를 구성하여 온도 감응 물질(24)을 저장한 일 실시예를 보인다.
본 실시예에서 상기 온도 감응 물질(24)은 온도 변화함에 따라 부피가 많이 변하는 물질이 바람직하며, 상변화 물질(phase change material) 내지 저온융해합금(low-melting alloy)이 선호된다. 상기 가열 장치(44)에 의해 세포파괴 챔버(29)내의 온도 상승에 따라 상기 온도 감응 물질(24)은 고체에서 액상으로 변하고 이에 따라 부피가 팽창한다. 도면부호 25a는 온도 상승에 의한 온도 감응 물질(24)의 부피팽창에 따른 온도 감응 물질(24)의 이동 경로를 제공하는 온도 감응 채널이고, 도면 부호 25b는 부피 팽창 정도를 나타내는 눈금이다.
상기 광학 센서(46)에 의해 상기 눈금(25b)을 읽어, 상기 세포파괴 챔버(29)의 내부 온도가 효소 proteinaseK의 활성 온도인 55~65℃ 구간에 있는지의 여부를 판단하고, 이에 따라 상기 가열 장치(44)가 피드백(feedback) 제어된다.
또는, 상기 광학 센서(46)에 의해 상기 눈금(25b)을 읽어, 상기 DNA 챔버(50)의 내부 온도를 판단하고, 이에 따라 상기 가열 장치(44)가 피드백(feedback) 제어된다.
도 4(a)와 도 4(b)는 상기 세포 파괴 챔버(29) 내의 시료 균질화와 순환을 위한 시료 교반용 챔버(32b)내의 교반 자석(31)에 대해 인력과 반반력을 발휘하여 교반 동작을 수행하기 위한 실시예로서, 도 4(a)는 교반 동작을 수행하기 위해 슬라이더(211)상에 영구 자석(47a)을 구비하여, 슬라이더(211)의 전진 및 후진 이동의 반복에 따라 상기 교반 자석(31)에 대해, 인력과 반반력을 발휘하여 상기 세포 파괴 챔버(29) 내의 시료에 대해 교반 동작을 수행하기 위한 일 실시예를 나타낸다.
상기 슬라이더(211)는 슬라이드 모터(109) 축에 연결된 웜(worm) 기어 연결부(109a, 109b)에 의해, 슬라이더 모터(109)의 회전에 따라 방사 방향(radial direction)으로 이동 제어된다.
시료 교반용 챔버(32b)를 중심으로 해서, 상기 슬라이더(211)를 전후진 이동 반복하여 상기 교반 자석(31)을 요동치게 만든다.
상기 슬라이더(211)는 슬라이드 아암(108a, 108b)을 가이드(guide)로 사용하여 미끄러지듯 이동된다. 상기 슬라이드 아암(108a, 108b)은 나사(110a, 110b, 110c, 110d)를 통해 구동제어부의 몸체에 체결된다. 도면 부호 113은 디스크를 올려놓기 위한 턴 테이블(turn table)이다.
본 실시예의 또 다른 측면은 상기 슬라이더(211)상에 상기 상변화 물질의 투명도를 관찰하거나, 상기 저온융해합금 의 유동성(liquidity)를 관찰하거나, 상기 종이로부터 방사되는 형광 세기를 관찰하거나, 상기 온도 민감 물질의 부피 변화를 관찰함으로써 상기 세포 파괴 챔버(29)내의 온도를 비접촉식으로 측정할수 있는 광학 센서(46)를 탑재하는 것을 특징으로 한다.
본 실시예의 또 다른 측면은 디스크상의 밸브의 개폐를 제어하기 위한 밸브 개폐수단(49)을 상기 슬라이더(211) 상에 탑재하는 것을 특징으로 한다. 디스크 회전각과 슬라이더(211)의 방사 방향 거리 조절에 의해 밸브의 공간 어드레싱(space addressing)이 가능하다.
본 발명에서, 상기 밸브 개폐수단(49)은 레이저 다이오드가 선호되며, 개방하고자 하는 밸브에 대한 공간 어드레싱(space addressing)을 먼저 수행한 후, 레이저 다이오드(49)를 온(on)시켜 해당 밸브를 녹여서 개방하는 것이 더욱 선호된다.
도 4(b)는 교반 모터(300)의 축(300a)에 영구 자석(47a)이 부착되어 상기 교반 모터(300)의 회전동안 시료 교반용 챔버(32B)내의 교반 자석(31)에 대해, 인력과 반반력을 발휘하여 교반 동작을 수행하는 실시예이다.
도 5는 DNA 추출 디스크(100)를 구동하기 위한 구동제어부를 포함하는 DNA 추출 디스크 장치(200)의 일 실시예를 보인다.
상기 구동 제어부는 상기 DNA 추출 디스크를 올려놓기 위한 턴 테이블(113); 상기 턴 테이블(113) 상의 DNA 추출 디스크(100)를 회전시키기 위한 브러쉬리스 모터(brushless motor)(102); 및 중앙제어장치(101)로 구성된다. 본 실시예에서는 디스크 회전 모터로서 저소음 고속회전에 적당한 브러쉬리스 모터가 선호된다.
도면 부호 211은 방사 방향의 이동을 허여하는 슬라이더이고, 스텝 모터(109)에 의해 상기 슬라이더(211)의 방사방향 이동이 제어된다.
도면 부호 322는 중앙제어장치(101)가 인터넷 연결을 통해 관공서로부터 위생 점수(hygiene score)를 원격으로 피드백 받아 업소의 위생 점수를 표시하기 위한 위생 점수 광고판으로, 중앙 제어 장치(101)와 유선 혹은 무선으로 연결을 통해 위생 점수가 위생 점수 광고판(322) 상에 표시되는 것이 선호된다.
도면 부호 350은 상기 DNA 추출 디스크 장치(200)를 지지하고 있는 몸체이다. DNA 추출 디스크 장치(200)의 밑면에는 회로 기판(140)이 상기 몸체(350)에 이음 체결되어 있고, 회로 기판(140) 위에는 중앙제어 장치(101), 저장 장치(112), 및 USB 와 인터넷 연결을 제공하는 입출력 장치(111)가 상기 회로 기판(140) 위에 배치 설계되어 있다. 상기 중앙 제어 장치(101)는 상기 디스크(100)의 회전 또는 정지를 위해 상기 브러쉬리스 모터(102)를 제어하고, 상기의 가열장치(44), 광학 센서(46), 발광 다이오드(48), 밸브 개폐 수단(49), 교반 모터(300), 위생 점수 광고판(322)을 제어할 뿐만 아니라, 슬라이드 모터(109) 제어에 의해 슬라이더(211) 상에 설계 배치된 광학 센서(46), 밸브 개폐수단(49) 및 영구자석(47a)의 이동을 제어한다.
또한, 상기 중앙 제어 장치(101)는 표시부(320) 및 버튼 입력부(321)를 제어하여 사용자에게 DNA 추출 디스크 장치(200)에 대한 사용자 인터페이스를 제공한다.
본 발명에 있어서, 바람직하게는 턴 테이블(113)에 디스크가 로딩(loading) 시점에서 디스크 상의 무선 RF IC(188)를 통해, 상기 중앙 제어 장치(101)에 디스크(100)의 고유 ID(identity) 정보를 무선 송신토록 함으로써 DNA 추출 디스크(100)가 로딩되었음을 중앙 제어 장치(101)가 인식하도록 하는 것을 특징으로 한다.
도면 부호 104는 상기 디스크 공극(170)에 로딩된 디스크(100)의 압착 수단으로 턴 테이블(113)과의 자력 인력에 의해 압착하는 것으로 수직 이동과 공회전이 허여하도록 설계되는 것이 바람직하다. 도면 부호 108은 상기 RF IC(188)에 전원을 전자유도에 의해 공급하기 위한 RF 전원공급장치이다.
도 6, 도 7, 도 8 및 도 9는 세포 파괴 공정, DNA 정제 공정, DNA 추출 공정, 및 DNA 증폭 공정이 집적화된 DNA 추출 디스크(100)의 여러 실시예를 도시한다.
도 6, 도 7, 도 8 및 도 9에 예시된 DNA 추출 디스크(100)는 시료를 주입하기 위한 시료 주입구(28); 상기 주입된 시료를 저장하는 동시에 상기 시료 내에 포함된 세포를 화학적으로 파괴하기 위한 효소와 온도 감응 챔버(24)로 구성된 세포 파괴 챔버(29); 상기 세포 파괴 챔버(29)에서 파괴된 세포로부터 발생된 DNA와 찌꺼기에 대해, 상기 디스크(100)의 회전동안 원심력에 의해 통과되는 DNA를 캡쳐(capture)하고 반면 나머지 찌꺼기(debris)는 그대로 통과시키는 실리카 멤브레인(silica membrane)(51); 상기 실리카 멤브레인(51)이 고정되어 있는 멤브레인 챔버(51a); 상기 DNA를 캡쳐(capture)하고 있는 실리카 멤브레인(51)을 세척하기 위한 세척용액1(washing solution 1) 과 세척용액2(washing solution 2) 를 각각 저장하고 있는 세척 용액 챔버1(58A) 와 세척 용액 챔버2(58B); 상기 실리카 멤브레인(51)을 통과한 찌꺼기(debris)를 저장하거나, 상기 세척용액1과 세척용액2에 의해 실리카 멤브레인(51)을 정제 및 세척하는 동안 발생되는 불순물을 저장하기 위한 찌꺼기 챔버(waste chamber)(52); 상기 세척 용액1 과 세척 용액2에 의해 세척된 실리카 멤브레인(51)상(上)에 결합되어 있는 DNA를 추출하기 위한 추출 버퍼(elution buffer)를 저장하고 있는 추출 용액 챔버(59); 및 상기 추출 버퍼에 의해 실리카 멤브레인(51)으로 부터 추출된 DNA을 저장하거나 저장된 DNA를 증폭하기 위한 DNA 챔버(50)로 구성된다.
본 발명의 또 다른 측면은, 멤브레인 챔버(51a)에 다공성(porous) 플라스틱 필터(미도시)를 더 구비하여, 상기 실리카 멤브레인(51)을 기구적으로 지지하는 것이 선호된다. 상기 다공성 플라스틱 필터는 디스크(100)의 회전동안 원심력에 의해 실리카 멤브레인(51)이 기구적으로 변형되는 것을 막을수 있다.
상기 디스크(100)는 세포 파괴 챔버(29), 세척 용액 챔버1(58A), 세척 용액 챔버2(58B) 및 추출 용액 챔버(59)의 출구 각각에는 밸브들(56A, 56B, 56C, 56D)이 구비되어 있어, 밸브 개방시 디스크(100) 회전동안 발생한 원심력에 의해 이들 챔버내에 저장된 액체들이 채널(57)을 따라 이동하게 된다.
상기 밸브들(56A, 56B, 56C, 56D, 71b)은 처음에 모두 폐쇄되어 있으며 밸브 71a는 처음부터 개방되어, 상기 세포 파괴 챔버(29)에서 세포 파괴 공정이 끝나면 밸브 56a가 밸브 개폐수단(49)에 의해 개방되고, 이후 디스크(100)회전에 따른 원심력에 의해 상기 세포파괴공정에 생긴 DNA 와 찌꺼기가 채널(57)을 따라 이동하는 동안, DNA는 실리카 멤브레인(51)에 캡쳐(capture)되고 나머지 찌꺼기(debris)는 그대로 통과되어 찌꺼기 챔버(52)에 저장된다.
이후, 밸브 56B가 개방되고, 이후 디스크(100)의 회전에 따른 원심력에 의해, 세척 용액 챔버1(58A)에 저장된 세척용액 1이 채널(57)을 따라 이동하여 상기 DNA를 캡쳐(capture)하고 있는 실리카 멤브레인(51)을 세척한다. 이때 세척 과정에서 발생된 불순물은 찌꺼기 챔버(52)에 저장된다.
이후, 밸브 56C가 개방되고, 이후 디스크(100)의 회전에 따른 원심력에 의해, 세척 용액 챔버2(58B)에 저장된 세척용액 2가 채널(57)을 따라 이동하여 상기 DNA를 캡쳐(capture)하고 있는 실리카 멤브레인(51)을 세척한다. 이때 세척과정에서 발생된 불순물은 찌꺼기 챔버(52)에 저장된다.
이후, 밸브 71a를 밸브 개폐수단(49)에 의해 폐쇄하고, 밸브 71b 와 밸브 56D은 개방된다.
이후 디스크(100)의 회전에 따른 원심력에 의해, 추출 용액 챔버(59)에 저장되어 있는 추출 버퍼가 채널(57)을 따라 이동하여 상기 실리카 멤브레인(51) 상(上)에 결합되어 있는 DNA를 추출하여 DNA 챔버(50)로 이동시킨다.
도 6과 도 7에서 도면 부호 71a과 71b는 밸브이다. 밸브 71b는 초기에 폐쇄되어 있는 반면, 밸브 71a는 처음부터 개방되어 있어, 상기 디스크(100)의 회전 동안 원심력에 의해, 상기 실리카 멤브레인(51)에 결합하지 않고 그대로 통과된 찌꺼기(debris)가 찌꺼기 챔버(52)로 이송되어 저장될 뿐만 아니라, 상기 세척용액 1과 세척용액2에 의해 실리카 멤브레인(51)을 세척하는 동안 발생되는 불순물들이 찌꺼기 챔버(52)로 이송되어 저장된다.
이후, 밸브 71b와 밸브 56D는 개방되는 반면, 밸브 71a는 폐쇄된다.
이 경우 디스크(100)를 회전시키면 상기 추출 용액 챔버(59)에 저장되어 있는 추출 버퍼가 상기 실리카 멤브레인(51)을 통과하면서 DNA를 추출하여 DNA 챔버(50)로 이송시킨다.
도 8와 도 9에서 도면 부호 77은 코리올리 채널(Coriolis channel)을 나타내며, 물리법칙인 코리올리 효과(Coriolis effect)를 이용한 채널로 채널 77a 과 77b로 구성된다.
상기 채널77b 와 채널 77a는 멤브레인 챔버(51a)의 출구에 함께 연결되어 서로 반대방향으로 분기되어 호(arch) 형상로 이루며, 상기 채널77b는 찌꺼기 챔버(52)로 연결되고 상기 채널 77a는 상기 DNA 챔버(50)로 연결되고, 상기 디스크가 시계반대방향 회전시 상기 멤브레인 챔버(51a)에 모인 액체는 상기 채널 77b를 경유하여 찌꺼기 챔버(52)로 이동하고, 반면 상기 디스크가 시계방향 회전시 상기 멤브레인 챔버(51a)에 모인 액체는 상기 채널 77a를 경유하여 DNA 챔버(50)로 이동하게 된다.
따라서, 상기 디스크(100)의 회전 동안 원심력에 의해, 상기 실리카 멤브레인(51)에 결합하지 않고 그대로 통과된 찌꺼기(debris)가 찌꺼기 챔버(52)로 이송시키거나, 상기 세척용액 1과 세척용액 2 에 의해 실리카 멤브레인(51)을 세척하는 동안 발생되는 불순물들이 찌꺼기 챔버(52)로 이송시킬 때에는 디스크(100)를 시계 반대 방향으로 회전시킨다.
또한, 상기 추출 용액 챔버(59)에 저장되어 있는 추출 버퍼가 상기 실리카 멤브레인(51)을 통과하면서 DNA을 추출하여 DNA 챔버(50)로 이송시킬 때에는 디스크(100)를 시계 방향으로 회전시킨다.
상기 밸브들 (56A, 56B, 56C, 56D, 71b)의 폐쇄는 검정색 멤브레인에 의해 밸브의 구멍이 폐쇄되는 것이 선호된다.
상기 검정색 멤브레인은 검정 비닐, 검정 폴리에스터 필름(polyester film), 검정도료가 도포된 PVDF, 검정 핫멜트(hotmelt), 검정 폴리에틸렌 필름(Polyethylene film), 검정 PP(polypropylene), 검정 PVC 비닐(polyvinyl chloride), 검정 PET (폴리에틸렌테레프탈레이트, Poly-Ethylene-Terephthalate) 필름 및 기타 검정색 합성 물질 중 선택된 재질인 것이 선호되며, 상기 밸브 개폐수단은 레이저 다이오드가 선호된다.
상기 검정색 멤브레인은 흡광율이 커, 레이저 다이오드에 의한 레이저 빔의 조사에 의해 쉽게 가열되어 녹아 상기 밸브가 개방된다
도 7에 예시된 DNA 추출 디스크(100)는 도 6에 예시된 DNA 추출 디스크(100) 두쌍을 마주보는 대칭적 구조로 배치한 일실시예로, 대칭적 구조 때문에 디스크(100)의 회전시 디스크(100)의 전체적인 무게 균형을 맞아 디스크(100)의 고속 회전시 진동과 소음을 최소화할 수 있는 장점을 제공한다.
도 9에 예시된 DNA 추출 디스크(100)는 도 8에 예시된 DNA 추출 디스크(100) 두쌍을 마주보는 대칭적 구조로 배치한 일실시예로, 대칭적 구조 떄문에 디스크(100)의 회전시 디스크(100)의 전체적인 무게 균형을 맞아 디스크(100)의 고속 회전시 진동과 소음을 최소화할 수 있는 장점을 제공한다.
도 10은 상기 밸브(71b)의 또 다른 실시예로 모세 채널(moses channel)(72)에 의해 밸브 71b가 개방되는 일 실시예로 측면도와 평면도를 보인다. 도 10(a)는 밸브 71b가 검정색 비닐(85)에 의해 폐쇄된 경우를 보이고, 반면 도 10(b)는 밸브 71b가 개방된 경우를 보인다.
본 실시예에서, 디스크(100)는 상부 기질(100a), 중간 기질(100b) 및 하부 기질(100c)로 이루어지는 것이 선호되며, 이들은 점착제에 의해 접합되는 것이 바람직하다. 편의상, 상기 도 10의 평면도는 상부 기질(100a)을 제외한 채, 중간 기질(100b)과 하부 기질(100c)에 대해 그렸다.
도 10(a)의 경우, 밸브 71b의 폐쇄는 상부 기질(100a)과 중간 기질(100b)사이에 배치된 검정색 비닐(85)에 의해 폐쇄되며, 멤브레인 챔버(51a)에 있는 액체가 DNA 챔버(50)로 이동할 수 없다.
도 10(b)의 경우는, 밸브 개폐수단(49)에 의해 검정색 비닐(85)을 녹여가면서 검정색 비닐(85) 상에 모세 채널(72)을 형성함으로써 밸브71b가 개방되는 실시예를 보인다. 이경우, 디스크(100)의 회전에 따른 원심력에 의해 멤브레인 챔버(51a)에 있는 액체가 DNA 챔버(50)로 이동 할수 있다.
본 발명에서 상기 모세 채널(72)은 검정색 비닐(85)에 의해 상기 멤브레인 챔버(51a)의 출구로부터 상기 밸브의 구멍(71b) 까지 연장하여 연결함으로써 폐쇄 채널(closing channel)을 형성하고; 레이저 다이오드(49)를 온(on) 시켜 상기 검정색 비닐(85)을 상기 멤브레인 챔버(51a)의 출구로 부터 상기 밸브의 구멍(71b) 까지 녹여 가면서 개방 채널(opening channel)을 형성함으로써 상기 밸브 71b을 개방하는 것을 특징으로 한다.
모세(Moses)의 홍해 기적(The crossing of the Red Sea)에서 모세가 홍해(the Red Sea)를 가르듯이, 레이저 다이오드(49)가 검정색 비닐(85)을 갈라 검정색 비닐(85) 상에 채널을 형성하였고, 이에 따라 본 발명에서는 상기 채널 72을 모세 채널로 명명하였다.
상기 검정색 비닐은, 검정 폴리에스터 필름(polyester film), 검정 핫멜트(hotmelt), 검정도료가 도포된 PVDF, 검정 폴리에틸렌 필름(Polyethylene film), 검정 PP(polypropylene), 검정 페인트, 검정 PVC 비닐(polyvinyl chloride), 검정 PET (폴리에틸렌테레프탈레이트, Poly-Ethylene-Terephthalate) 필름 및 기타 검정색 합성 물질 중 선택된 재질인 것이 선호된다.
도 11은 상기 밸브 71a에 대한 일 실시예이다. 도 11(a)는 밸브 71a가 개방된 경우를 보이고, 도 11(b)는 밸브 71a가 폐쇄된 경우를 보인다. 밸브 71a는 처음에는 도 11(a)와 같이 개방되어 있어, 원심력에 의해 멤브레인 챔버(51a)에 모인 액체가 찌꺼기 챔버(52)로 자유로이 이동할 수 있다.
본 실시예에서, 디스크(100)는 상부 기질(100a), 중간 기질(100b) 및 하부 기질(100c)로 이루어지는 것이 선호되며, 이들은 점착제에 의해 접합되는 것이 바람직하다. 편의상, 도 11의 윗면도는 상부 기질(100a)을 제외한 채, 중간 기질(100b) 과 하부 기질(100c)에 대해 그렸다.
도면 부호 78b는 상변화 물질(phase change material)(78)을 저장하고 있는 PCM 챔버로서 상기 레이저 다이오드(49)에 의해 가열하면 상기 상변화 물질(78)이 고체에서 액체로 변하게 된다.
도면부호 79는 검정색 페인트에 의한 검정색 코팅면으로, 상기 상변화 물질(78) 밑면에 존재하기 때문에 상기 레이저 다이오드(49) 온(on)시, 레이저 다이오드(49)로부터 방출되는 빛을 높은 효율로 흡수할 수 있다. 이에 따라 상기 검정색 코팅면(79)은 가열되고, 이 열에 의해 상기 상변화 물질(78)이 녹아, 채널로 상변화 물질(78)이 유입되어, 도 11(b)와 같이 밸브 71a가 폐쇄된다. 상변화 물질(78)이 채널에 유입된 후에는 레이저 다이오드를 오프(off) 시켜, 상변화 물질(78)이 고체 상태로 변하도록 하여 밸브 71a가 폐쇄 상태가 유지되도록 한다.

Claims (22)

  1. 시료를 주입하기 위한 시료 주입구, 열을 흡수하여 상기 시료에 열을 전달하는 히팅 필름, 및 온도 감응 물질이 저장된 온도 감응 챔버로 구성된 세포 파괴 챔버를 포함하는 DNA 추출 디스크;
    상기 DNA 추출 디스크내의 유체흐름을 제어하기 위한 밸브;
    상기 DNA 추출 디스크가 장착되는 턴 테이블, 상기 턴 테이블을 회전시키기 위한 디스크 회전 모터, 및 상기 디스크 회전 모터를 구동 및 제어하는 중앙 제어 장치를 포함하는 구동 제어부;
    상기 히팅 필름을 가열하기 위한 레이저 가열 장치 또는 인덕션 가열 장치를 포함하는 가열 장치;
    상기 세포 파괴 챔버 안에 수용되는 교반 자석 과, 상기 교반 자석에 교반 움직임을 제공하는 영구자석이 부착된 교반 모터 또는 상기 DNA 추출 디스크의 방사(radial) 방향을 따라 이동하는 영구자석이 부착된 슬라이더를 포함하여, 상기 세포 파괴 챔버의 시료를 교반하기 위한 교반기;및
    상기 세포 파괴 챔버의 온도를 측정하기 위해 상기 온도 감응 물질의 투명도, 유동성(liquidity) 또는 형광량을 측정하기 위한 광학 센서;를 포함하는,
    DNA 추출 디스크 장치.
  2. 제 1 항에 있어서,
    상기 슬라이더 상에는 상기 광학 센서 또는 상기 밸브의 개폐를 제어하기 위한 밸브 개폐수단이 탑재되는,
    DNA 추출 디스크 장치.
  3. 제 1 항에 있어서,
    상기 온도 감응 물질은 온도 민감 형광 물질로 구비되며,
    상기 DNA 추출 디스크 장치는, 상기 온도 민감 형광 물질을 여기시키기 위해 광을 조사하는 발광 다이오드, 및 상기 광학 센서 앞에 상기 온도 민감 형광 물질로부터 방사되는 형광에 속한 파장 대역을 통과시키는 광필터를 더 포함하는,
    DNA 추출 디스크 장치.
  4. 제 1 항에 있어서,
    상기 세포 파괴 챔버에서 파괴된 세포로부터 나온 DNA는 캡쳐하고 찌꺼기는 통과시키는 실리카 멤브레인;
    상기 실리카 멤브레인이 내부에 장착되어 있으며 제1 유로를 통해 상기 세포 파괴 챔버에 연결된 멤브레인 챔버;
    상기 실리카 멤브레인의 세척을 위한 세척 용액을 저장하며 상기 제1 유로를 통해 상기 멤브레인 챔버에 연결된 적어도 하나의 세척 용액 챔버;
    상기 세척 용액에 의해 세척된 상기 실리카 멤브레인에 부착된 DNA를 추출하기 위한 추출 버퍼(elution buffer)를 저장하며 상기 제1 유로를 통해 상기 멤브레인 챔버에 연결된 추출 용액 챔버;
    상기 실리카 멤브레인을 통과한 상기 찌꺼기를 저장하며 제2 유로를 통해 상기 멤브레인 챔버와 연결된 찌꺼기 챔버; 및
    상기 추출 버퍼에 의해 상기 실리카 멤브레인으로부터 추출된 DNA를 저장하거나, 저장된 DNA에 대해 증폭 공정을 수행하는 제3 유로를 통해 상기 멤브레인 챔버에 연결된 DNA 챔버;를 더 포함하는,
    DNA 추출 디스크 장치.
  5. 제 4 항에 있어서,
    상기 세포 파괴 챔버의 출구, 상기 세척 용액 챔버의 출구, 및 상기 추출 용액 챔버의 출구에는 제1 밸브, 제2 밸브, 제3 밸브가 각각 구비되고, 상기 제3 유로에는 제5 밸브가 구비된,
    DNA 추출 디스크 장치.
  6. 제 1 항에 있어서,
    상기 밸브는 검정색 합성 물질을 포함하며, 상기 DNA 추출 디스크 장치는 레이저 다이오드에 의해 상기 검정색 합성 물질을 녹여 상기 밸브를 개방시키기 위한 밸브 개폐수단을 더 포함하는,
    DNA 추출 디스크 장치.
  7. 제 5 항에 있어서,
    상기 제5 밸브는, 상기 멤브레인 챔버와 상기 DNA 챔버를 연결하는 상기 제3 유로 상에 구비되며 검정색 합성 물질에 의해 상기 멤브레인 챔버의 출구로부터 상기 제5 밸브의 구멍까지 연장하여 연결함으로써 폐쇄 채널(closing channel)을 형성하고, 레이저 다이오드에 의해 상기 검정색 합성 물질을 상기 멤브레인 챔버의 출구로부터 상기 제5 밸브의 구멍까지 녹여 가면서 개방 채널(opening channel)을 형성함으로서 상기 제5밸브를 개방하는 모세 채널(Moses channel)을 더 포함하는,
    DNA 추출 디스크 장치.
  8. 제 1 항에 있어서,
    상기 밸브는,
    검정색 코팅면과 상기 검정색 코팅면과 접촉하도록 배치된 상변화 물질을 저장하는 PCM챔버를 포함하며,
    레이저 다이오드에 의해 상기 검정색 코팅면 가열 시 상기 유로는 액화된 상기 상변화 물질에 의해 폐쇄되는,
    DNA 추출 디스크 장치.
  9. 제 1 항에 있어서,
    상기 중앙제어장치에 의해 인터넷 연결을 통해 관공서로부터 위생 점수(hygiene score)를 원격으로 피드백 받아 위생점수를 표시하기 위한 위생점수 광고판을 더 구비한 것을 특징으로 하는,
    DNA 추출 디스크 장치.
  10. 시료가 주입되는 시료 주입구 및 온도 감응 물질이 저장된 온도 감응 챔버가 구비되는 세포 파괴 챔버를 포함하는 DNA 추출 디스크;
    상기 DNA 추출 디스크 내의 유체 흐름을 제어하기 위한 밸브;
    상기 DNA 추출 디스크의 회전을 구동 및 제어하는 구동 제어부;
    상기 세포 파괴 챔버를 가열하기 위한 가열 장치; 및
    상기 세포 파괴 챔버의 온도를 측정하기 위한 광학 센서;를 포함하며,
    상기 가열장치에 의해 가열되는 상기 온도 감응 물질의 변화가 상기 광학 센서에 의해 감지됨으로써 상기 세포 파괴 챔버의 온도가 측정되는,
    DNA 추출 디스크 장치.
  11. 제 10 항에 있어서,
    상기 온도 감응 물질은 상변화 물질 또는 온도 민감 형광 물질로 구비되며,
    상기 광학 센서에 의해 상기 온도 감응 물질의 투명도, 유동성(liquidity) 또는 형광량의 변화가 감지됨으로써 상기 세포 파괴 챔버의 온도가 측정되는,
    DNA 추출 디스크 장치.
  12. (a) DNA 추출 디스크의 세포 파괴 챔버에 시료를 주입하는 단계;
    (b) 가열 장치를 통해 상기 세포 파괴 챔버를 가열하면서, 상기 세포 파괴 챔버에 구비된 온도 감응 물질의 투명도, 유동성(liquidity) 또는 형광량의 변화를 광학 센서를 통해 감지함으로써 상기 세포 파괴 챔버의 온도를 측정하는 단계; 및
    (c) 측정되는 세포 파괴 챔버의 온도에 기초하여, 상기 세포 파괴 챔버 내의 온도가 상기 시료의 세포를 파괴하는 온도 범위 내에 유지되도록 상기 가열 장치를 제어하는 단계;를 포함하는,
    DNA 추출 방법.
  13. 제 12 항에 있어서,
    (d) 세포 파괴가 완료된 시료가 실리카 멤브레인을 통과하여 멤브레인 챔버를 향해 이동하도록 상기 세포 파괴 챔버의 밸브를 개방한 후 상기 DNA 추출 디스크를 회전시키는 단계;
    (e) 세척 챔버에 저장된 세척 용액이 상기 실리카 멤브레인을 통과하여 상기 멤브레인 챔버로 이동하도록 상기 세척 챔버의 밸브를 개방한 후 상기 DNA 추출 디스크를 회전시키는 단계;
    (f) 추출 용액 챔버에 저장된 추출 버퍼가 상기 실리카 멤브레인을 통과하여 상기 멤브레인 챔버로 이동하도록 상기 추출 용액 챔버의 밸브를 개방한 후 상기 DNA 추출 디스크를 회전시키는 단계;
    (g) 상기 실리카 멤브레인으로부터 추출되어 DNA 챔버에 수용된 DNA를 증폭시키는 단계;
    (h) 상기 DNA 챔버의 탁도 또는 형광을 측정하여 증폭된 DNA의 양을 산출하는 단계; 및
    (i) 상기 증폭된 DNA의 양을 산출하는 단계에서 얻어진 결과를 표시부에 디스플레이하거나, 인터넷망을 통해 외부에 제공하는 결과 송출단계; 를 더 포함하는,
    DNA 추출 방법.
  14. 제 13 항에 있어서,
    (j) 디스크상의 ID정보를 인터넷을 통하여 서버(server)에 송출하여 상기 서버로부터 디스크의 진품 여부를 확인하거나 디스크의 재사용 여부를 확인하는 디스크 인증 단계;를 더 포함하는,
    DNA 추출 방법.
  15. 제 13 항에 있어서,
    (k) 상기 결과 송출 단계 이후, 인터넷 망을 통해 관공서(예를 들면 보건복지부, 교육부, 식품 의약 안전청) 로부터 위생 점수를 원격으로 피드백 받아 상기 위생점수를 위생점수 광고판에 표시하는 위생점수 공개 단계;를 더 포함하는,
    DNA 추출 방법.
  16. 원형 디스크 몸체; 및
    상기 원형 디스크 몸체에 구비되는 적어도 하나의 세포 파괴 챔버 및 DNA 챔버;를 포함하며,
    상기 세포 파괴 챔버는,
    상기 세포 파괴 챔버에 시료를 주입하기 위한 시료 주입구;
    외부의 가열 장치에 의해 제공되는 열을 흡수하여 상기 챔버에 전달하는 히팅 필름; 및
    온도 감응 물질이 저장된 온도 감응 챔버;를 포함하는,
    DNA 추출 디스크.
  17. 제 16 항에 있어서,
    상기 챔버 내에는,
    상기 시료에 포함된 세포를 화학적으로 파괴하거나 증폭하기 위한 효소 또는
    상기 시료의 교반을 위한 교반 자석이 더 구비되는,
    DNA 추출 디스크.
  18. 제 16 항에 있어서,
    상기 온도 감응 물질은 상변화 물질, 저온융해합금, 온도 민감 형광 물질, 또는 온도 민감 형광 물질이 코팅 내지 염색된 종이로 구비되는,
    DNA 추출 디스크.
  19. 제 16 항에 있어서,
    상기 온도 감응 챔버로부터 연장되며, 상기 온도 감응 챔버로부터 온도증가에 따라 부피 팽창된 상기 온도 감응 물질이 유입되는 통로를 제공하는 온도 감응 채널; 및
    상기 온도 감응 물질의 부피 팽창 정도를 식별함으로써 상기 챔버의 온도를 감지하기 위한, 상기 온도 감응 채널에 구비된 눈금;을 포함하는,
    DNA 추출 디스크.
  20. 제 16 항에 있어서,
    상기 세포 파괴 챔버에서 파괴된 세포로부터 DNA는 캡쳐하고 찌꺼기는 통과시키는 실리카 멤브레인; 및 상기 실리카 멤브레인이 내부에 장착되어 있으며 제1 유로를 통해 상기 세포 파괴 챔버에 연결된 멤브레인 챔버;
    상기 실리카 멤브레인의 세척을 위한 세척 용액을 저장하며 상기 제1 유로를 통해 상기 멤브레인 챔버에 연결된 적어도 하나의 세척 용액 챔버;
    상기 세척 용액에 의해 세척된 상기 실리카 멤브레인에 부착된 DNA를 추출하기 위한 추출 버퍼 저장하며 상기 제1 유로를 통해 상기 멤브레인 챔버에 연결된 추출 용액 챔버;
    상기 실리카 멤브레인을 통과한 상기 찌꺼기를 저장하며 제2 유로를 통해 상기 멤브레인 챔버와 연결된 찌꺼기 챔버; 및
    상기 추출 버퍼에 의해 상기 실리카 멤브레인으로부터 추출된 DNA를 저장하거나, 저장된 DNA에 대해 증폭 공정을 수행하는 제3 유로를 통해 상기 멤브레인 챔버에 연결된 DNA 챔버; 및
    상기 세포 파괴 챔버의 출구, 상기 세척 용액 챔버의 출구, 및 상기 추출 용액 챔버의 출구에는 제1 밸브, 제2 밸브, 제3 밸브가 각각 구비된,
    DNA 추출 디스크.
  21. 제 20 항에 있어서,
    상기 제2 및 제3 유로는 상기 멤브레인 챔버의 출구에 함께 연결되어 서로 반대방향으로 분기되어 호(arch) 형상로 이루어 상기 제2 유로는 찌꺼기 챔버로 연결되고 상기 제3 유로는 상기 DNA 챔버로 연결되고, 상기 디스크가 시계반대방향 회전시 상기 멤브레인 챔버에 모인 액체는 상기 제2유로를 경유하여 찌꺼기 챔버로 이동하고, 반면 상기 디스크가 시계방향 회전시 상기 멤브레인 챔버에 모인 액체는 상기 제3유로를 경유하여 DNA 챔버로 이동하는 코리올리 채널(Coriolis channel)인,
    DNA 추출 디스크.
  22. 제 16 항 내지 제 21 항 중 어느 한 항에 따른 DNA 추출 디스크 두 쌍을 상기 원형 디스크 몸체 상에 서로 마주보는 대칭적으로 구조로 배치되어 집적화시킨 것을 특징으로 하는,
    DNA 추출 디스크.
PCT/KR2016/001318 2015-02-05 2016-02-05 Dna 추출 디스크 장치 및 이를 이용한 dna 추출 방법 WO2016126141A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150018078A KR101735083B1 (ko) 2015-02-05 2015-02-05 Dna 추출 디스크 장치 및 이를 이용한 dna 추출 방법
KR10-2015-0018078 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016126141A1 true WO2016126141A1 (ko) 2016-08-11

Family

ID=56564383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001318 WO2016126141A1 (ko) 2015-02-05 2016-02-05 Dna 추출 디스크 장치 및 이를 이용한 dna 추출 방법

Country Status (2)

Country Link
KR (1) KR101735083B1 (ko)
WO (1) WO2016126141A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998333A (zh) * 2017-05-16 2020-04-10 Sk电信有限公司 使用盒的核酸分析设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893784B1 (ko) 2016-09-19 2018-08-31 바이오뱅크 주식회사 메시구조체를 이용한 dna 추출시스템 및 이를 이용한 dna 추출방법
US20190242890A1 (en) * 2016-10-11 2019-08-08 Jim MANOLIOS Method for enhancing the incubation of samples, specimens and reagents using lasers
KR101967236B1 (ko) * 2017-05-16 2019-04-09 에스케이텔레콤 주식회사 핵산 추출용 전처리 챔버, 그를 이용한 카트리지 및 핵산 추출 방법
KR102013698B1 (ko) * 2017-12-20 2019-08-26 주식회사 씨디젠 검정색 열가소성 수지 밸브 및 비접촉 온도 센서를 이용한 랩온어 디스크 장치
US20230001409A1 (en) * 2019-11-18 2023-01-05 Bl Technologies, Inc. Bacterial endotoxin reader verification plates and methods of use
KR102300539B1 (ko) * 2021-05-04 2021-09-09 주식회사 에이아이바이오틱스 Rt-pcr 측정용 인터페이스 모듈 및 이를 포함하는 회전형 rt-pcr 디바이스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
KR20090035465A (ko) * 2006-08-02 2009-04-09 유재천 박막화학분석장치 및 이를 이용한 분석방법
KR20140001169A (ko) * 2012-06-27 2014-01-06 가부시키가이샤 발레오 재팬 경사판식 압축기용 미끄럼운동 부재의 표면 형상 측정 방법
KR20140092753A (ko) * 2012-12-27 2014-07-24 성균관대학교산학협력단 온도 민감 폴리머 합성체를 이용한 핵산 증폭 디스크 장치 및 이를 이용한 분석 방법
US20150001082A1 (en) * 2012-04-16 2015-01-01 Biological Dynamics, Inc. Nucleic acid sample preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157049B2 (en) 2001-11-20 2007-01-02 Nagaoka & Co., Ltd. Optical bio-discs and fluidic circuits for analysis of cells and methods relating thereto

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
KR20090035465A (ko) * 2006-08-02 2009-04-09 유재천 박막화학분석장치 및 이를 이용한 분석방법
US20150001082A1 (en) * 2012-04-16 2015-01-01 Biological Dynamics, Inc. Nucleic acid sample preparation
KR20140001169A (ko) * 2012-06-27 2014-01-06 가부시키가이샤 발레오 재팬 경사판식 압축기용 미끄럼운동 부재의 표면 형상 측정 방법
KR20140092753A (ko) * 2012-12-27 2014-07-24 성균관대학교산학협력단 온도 민감 폴리머 합성체를 이용한 핵산 증폭 디스크 장치 및 이를 이용한 분석 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998333A (zh) * 2017-05-16 2020-04-10 Sk电信有限公司 使用盒的核酸分析设备
EP3611508A4 (en) * 2017-05-16 2020-06-17 SK Telecom Co., Ltd. NUCLEIC ACID ANALYSIS APPARATUS USING A CARTRIDGE
US11717826B2 (en) 2017-05-16 2023-08-08 Sk Telecom Co., Ltd. Nucleic acid analysis apparatus using cartridge
CN110998333B (zh) * 2017-05-16 2023-08-25 Sk电信有限公司 使用盒的核酸分析设备

Also Published As

Publication number Publication date
KR101735083B1 (ko) 2017-05-25
KR20160096770A (ko) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2016126141A1 (ko) Dna 추출 디스크 장치 및 이를 이용한 dna 추출 방법
WO2014104830A1 (ko) 온도 민감 폴리머 합성체를 이용한 핵산 증폭 디스크 장치 및 이를 이용한 분석 방법
WO2014088312A1 (ko) 유공 폐쇄막을 이용한 박막 밸브 장치
WO2009093838A2 (ko) 박막 원심분리 분석 장치 및 이를 이용한 분석 방법
WO2020209638A1 (ko) 중합효소 연쇄반응 시스템
Yang et al. High sensitivity PCR assay in plastic micro reactors
Kovac et al. Intuitive, image-based cell sorting using optofluidic cell sorting
CN103403521B (zh) 流体向心装置
US11679387B2 (en) Cartridge for nucleic acid extraction and nucleic acid extraction method
WO2015030485A1 (ko) 입자의 이동에 의해 분석물질을 검출하는 장치 및 방법
WO2018139788A1 (ko) 고속 핵산증폭 장치 및 핵산증폭 반응의 온도조절 방법
KR20190074733A (ko) 검정색 열가소성 수지 밸브 및 비접촉 온도 센서를 이용한 랩온어 디스크 장치
CN112226350A (zh) 一种离心式核提扩增一体化***及检测方法
WO2015083965A1 (en) Biomaterial test apparatus and method of controlling the same
Pimenta et al. A multiplex PCR assay for simultaneous detection of Corynebacterium diphtheriae and differentiation between non-toxigenic and toxigenic isolates
WO2020111462A1 (ko) 회전식 유전자 진단용 통합 마이크로 디바이스
KR20100060477A (ko) 표적 물질 처리 시스템 및 방법
WO2019182407A1 (ko) 고속 중합효소 연쇄반응 분석 플레이트
WO2011037348A2 (ko) 미생물 분석 장치 및 이를 이용한 분석 방법
KR102043103B1 (ko) 전자동 유전자 검출장치
WO2019221537A1 (ko) 미토콘드리아 dna를 내부 기준 시료로 사용하는 마이코플라즈마 검출 방법
WO2022154254A1 (ko) 회전형 카트리지를 이용하는 분자 진단 장치
Lim et al. Chemical cell lysis system applicable to lab-on-a-disc
US20220305490A1 (en) Apparatuses and methods for sample-specific self-configuration
WO2017204512A1 (ko) 피씨알모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746882

Country of ref document: EP

Kind code of ref document: A1