WO2016126033A1 - 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치 - Google Patents

풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016126033A1
WO2016126033A1 PCT/KR2016/000714 KR2016000714W WO2016126033A1 WO 2016126033 A1 WO2016126033 A1 WO 2016126033A1 KR 2016000714 W KR2016000714 W KR 2016000714W WO 2016126033 A1 WO2016126033 A1 WO 2016126033A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
measurement
terminals
terminal
idi
Prior art date
Application number
PCT/KR2016/000714
Other languages
English (en)
French (fr)
Inventor
노광석
고현수
최국헌
김동규
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201680009262.1A priority Critical patent/CN107211307B/zh
Priority to US15/546,869 priority patent/US10506610B2/en
Publication of WO2016126033A1 publication Critical patent/WO2016126033A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a resource allocation method and apparatus therefor in consideration of interference between terminals in a full-duplex wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connects an access gateway (AG) connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of a network node for the user registration of the AG and the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • TA tracking area
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the terminal reports the current channel state information periodically and / or aperiodically to the base station in order to assist efficient operation of the base station wireless communication system. Since the state information of the reported channel may include the results calculated in consideration of various situations, a more efficient reporting method is required.
  • Inter-Device Interference is measured for a method for allocating a resource of a base station in a wireless communication system supporting full-duplex communication, which is an aspect of the present invention for solving the above problems.
  • Transmitting measurement information including measurement sub-band information and time information, to a plurality of terminals; Receiving an inter-terminal interference measurement result measured according to the measurement information from the plurality of terminals; And performing resource allocation for the plurality of terminals based on the inter-terminal interference measurement result.
  • the candidate subband information includes, for each of the plurality of terminals, a channel between the base station and the terminal. And at least one candidate subband set based on the measurement.
  • the measurement information may be transmitted through one of a downlink control channel, a downlink data channel, or higher layer signaling.
  • the time information may include time offset information for transmitting a measurement signal for the candidate subband set for each of the plurality of terminals. Further, the time offset information is used to determine the unit time of the candidate subband based on the number of measurement terminals accumulated before the inter- terminal interference (IDI) measurement for the candidate subband. It may be characterized by.
  • IDI inter- terminal interference
  • the measurement information may further include information on the average number of terminals for measuring the inter- terminal interference (IDI) for the candidate subband and offset information of the number of measurement terminals for each candidate subband. have.
  • IDI inter- terminal interference
  • the measurement information may further include starting point movement information of an IDI measurement unit time set for each of the candidate subbands.
  • the starting point movement information may be indicated as a unit time in which the first unit time set in the candidate subband where the measurement ends and the second unit time for the candidate subband in which the measurement starts overlap. .
  • the method may further include transmitting an IDI reference value, and the UE-to-UE interference measurement result may be set to be fed back only when the IDI reference value is greater than or equal to the IDI reference value.
  • the result of the interference measurement between the terminals may be transmitted using channel reciprocity.
  • a base station for performing resource allocation in a wireless communication system that supports full-duplex communication which is another aspect of the present invention for solving the above problems, comprising: a radio frequency unit; And a processor, wherein the processor transmits measurement information to a plurality of terminals, the candidate subband information and time information for measuring inter-device interference (IDI); Receive an inter-terminal interference measurement result measured according to the measurement information from the plurality of terminals, and perform resource allocation for the plurality of terminals based on the inter-terminal interference measurement result,
  • the candidate subband information may include at least one candidate subband configured for each of the plurality of terminals based on channel measurement between the base station and the terminal.
  • resource allocation for a terminal may be efficiently performed in a full-duplex wireless communication system.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 illustrates a structure of a radio frame used in an LTE system.
  • 5 illustrates a resource grid for a downlink slot.
  • FIG. 6 illustrates a structure of a downlink radio frame used in an LTE system.
  • FIG. 7 illustrates a structure of an uplink subframe used in an LTE system.
  • FDR 8 illustrates a Full-Duplex Radio (FDR) communication system.
  • FIG. 10 illustrates multiple access of a terminal in an FDR system.
  • FIG. 11 illustrates a gain ratio according to a full-duplex (FD) / half-duplex (HD) communication method according to a location of a UE.
  • FD full-duplex
  • HD half-duplex
  • FIG. 12 illustrates a case where a plurality of users in a full-duplex (FD) mode is selected when there are a plurality of users.
  • FD full-duplex
  • FIG. 13 is a reference diagram for explaining a conventional technology of collecting a user device location.
  • 14 and 15 are reference diagrams for explaining a distance arrangement using a circle centered around a base station to locate base stations and terminals.
  • 16 to 19 illustrate an embodiment of a position measuring method for a terminal according to the present invention.
  • 21 is a reference diagram for explaining an embodiment of the present invention considering an error region due to quantization.
  • FIG. 22 is a diagram for explaining a method of determining a terminal in which a measurement error occurs in a half-duplex (HD) mode according to an embodiment of the present invention.
  • FIG. 23 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the user equipment that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S301.
  • the user equipment receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the user equipment receives the physical downlink control channel (PDCCH) and the physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S302. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station.
  • the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and responds to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the message may be received (S304).
  • contention resolution procedures such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) may be performed. .
  • UCI uplink control information
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the user equipment moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), a guard period (GP) and It consists of a special subframe including an Uplink Pilot Time Slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS Uplink Pilot Time Slot
  • DwPTS is used for initial cell search, synchronization or channel estimation at the user equipment.
  • UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the current 3GPP standard document defines a configuration as shown in Table 1 below.
  • Table 1 In the case of DwPTS and UpPTS, the remaining area is set as a protection interval.
  • the structure of the type 2 radio frame that is, UL / DL configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 2 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • 5 illustrates a resource grid for a downlink slot.
  • the downlink slot is in the time domain Contains OFDM symbols and in the frequency domain Contains resource blocks.
  • the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index.
  • the number of resource blocks included in the downlink slot ( ) depends on the downlink transmission bandwidth set in the cell.
  • FIG. 6 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared Channel (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI includes resource allocation information and other control information for the user device or user device group.
  • the DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual user devices in a group of user devices, Tx power It carries control commands and activation instruction information of Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the user equipment may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit data signals such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CSI Channel State Information
  • the CSI includes a channel quality indicator (CQI), and the feedback information related to multiple input multiple output (MIMO) includes a rank indicator (RI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and the like. 20 bits are used per subframe.
  • CQI channel quality indicator
  • MIMO multiple input multiple output
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • the amount of control information (UCI) that a user equipment can transmit in a subframe depends on the number of SC-FDMAs available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • a data transmission channel and an inter-device interference (IDI) between a base station and a terminal are used.
  • IDI inter-device interference
  • the FDR refers to a system for simultaneously transmitting and receiving using the same resource in a transmitting device (eg, a terminal or a base station).
  • the same resource means a radio resource having the same time and the same frequency.
  • two kinds of interference may exist as Intra-device interference and Inter-device interference as the FDR is supported.
  • intra-device interference refers to a case in which a signal transmitted from a transmitting antenna acts as interference by being received by a receiving antenna within one base station or a terminal
  • inter-device interference refers to an uplink transmitted by a base station / terminal or the like. It is a case where a link signal is received by an adjacent base station / terminal and acts as an interference.
  • IDI inter-device interference
  • IDI is interference caused only in FDR due to using the same radio resource in one cell.
  • FIG. 9 shows that the base station is in full-duplex (FD) mode (ie, in the same resource).
  • IDI generated when using simultaneous transmit / receive mode using the same frequency and when UE uses full-duplex (FD) mode or half-duplex (HD) mode (i.e., half-duplex mode such as conventional FDD and TDD) Represents a conceptual diagram for.
  • FIG. 9 illustrates only 2 UEs for ease of IDI description, the present invention can be applied to the case where two or more UEs exist.
  • IDI occurs because signals are transmitted and received using frequency division duplex (FDD) or time division duplex (TDD), that is, signals are transmitted and received using different transmission and reception resources. Did not do it.
  • FDD frequency division duplex
  • TDD time division duplex
  • 10 is a reference diagram for explaining multiple access of a terminal in an FDR system.
  • FDR system not only a full-duplex scheme using the same resource but also a full-duplex scheme not using the same resource may exist.
  • 10 illustrates an example of FDMA and TDMA operations when a base station operates in a full-duplex (FD) mode on the same resource and multiple terminals perform multiple accesses.
  • FD full-duplex
  • TDD time division duplex
  • a frame configuration for transmitting interference between asynchronous devices, a signal transmission between devices, and Assume that a listen attempt setting is performed. Under these assumptions, simultaneous transmission and reception is possible in a cell through UE-specific configuration, which is a method of differently assigning configuration for each terminal in each cell.
  • a unique signature may be given to each terminal or each terminal group in order to measure IDI between devices and reduce or eliminate the measured IDI.
  • a signal for measuring interference that can be distinguished between terminals is defined as a signature signal.
  • the terminal uses the received signature signal to determine the signal strength, terminal or signature index, phase, and the like for the terminal causing the IDI and timing information. (timing information) and the like.
  • the signature signal may be in any form, for example, a code sequence or a puncturing pattern, which may distinguish the terminal or the terminal group. That is, unique scramble or interleaving of a terminal / terminal group may be applied using a code sequence, and a signature signal is transmitted exclusively in only one terminal / terminal group to facilitate interference measurement at a receiving terminal. May be In this case, an exclusive unit may be a minimum OFDM symbol.
  • the present invention assumes that a UE group classification (grouping) method for scheduling IDI-generated UEs and an IDI measurement and reporting technique for grouping may be applied in an FDR system. That is, UE groups may be classified using only the order of IDI sizes measured by each UE, and IDI size-based UE groups in consideration of IDI removal / mitigation capability of each UE, not the number of UEs sharing the same resource. Classification techniques may be applied.
  • FD 10 may be divided into a total of two groups performing full-duplex (FD) operation on the same resource.
  • One group is a group including UE1 and UE2, and the other group is a group including UE3 and UE4. That is, since IDI is generated in each group, UEs with less IDI can be formed as a group.
  • a group may be formed of UE1 and UE2 as shown in FIG. 10.
  • UE2 and UE1 may not necessarily use the same resource.
  • FDMA frequency division multiple access
  • UE3 and UE4 groups may be allocated the same frequency, and UE1 and UE2 may be allocated different frequencies, that is, a total of three frequency bands. This increases resource consumption but allows more efficient transmission in terms of overall performance, for example throughput.
  • each terminal may be allocated resources in units of subbands, and when allocating subband resources, resource allocation needs to be made in consideration of not only IDI but also a channel between the base station and the terminal. .
  • a technique of measuring inter-cell interference or selecting a cell according to the interference has been applied on a CoMP (Coordinated Multi-Point) system.
  • CoMP Coordinatd Multi-Point
  • interference in CoMP communication refers to a signal of several cells that affect a single terminal.
  • terminals do not share resources between terminals, there is a difference in not considering IDI for neighboring terminals.
  • the Inter-Device Interference (IDI) size or the inter-terminal channel in the system using full-duplex communication within the same resource, not only the Inter-Device Interference (IDI) size or the inter-terminal channel, but also between the base station and the terminal.
  • IPI Inter-Device Interference
  • a resource allocation method in sub-band units considering a channel will be described. Specifically, the interval size (window) of the successive terminals in which interference measurement is performed for each sub-band and the time point for each terminal to transmit the measurement signal in the corresponding sub-band, the corresponding window (window) It will be described in detail a method for notifying the starting point of the UE from the base station.
  • a process of grouping the terminals conceptually / logically on a specific basis is defined as grouping.
  • the base station identifies candidate terminals to be set as a group, and the IDI measurement refers to measuring RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality) and the like.
  • the size may be defined by a function such as Equation 1.
  • a device for example, a base station or a terminal for operating / supporting a full-duplex (FD) mode (simultaneous transmission / reception mode using the same frequency) in the same resource
  • an FDR device or a base station or terminal may be referred to as an FDR device or a base station or terminal.
  • the FDR device may include a self-interference canceller, and the FDR device including the same may be operated / supported for the full-duplex (FD) mode in the same resource.
  • the FDR device without the magnetic interference canceller may not operate in the full-duplex mode on the same resource, but may support information transmission with the FDR device operating in the full-duplex mode in the same resource.
  • the FDR device may perform IDI measurement and reporting.
  • the base station is an FDR device that includes a magnetic interference canceller
  • UE1 and UE2 shows an example of an FDR device that does not include a magnetic interference canceller.
  • the FDR is intended to increase (eg, double) transmission capacity by simultaneously performing data transmission between a base station and terminals.
  • the actual transmission capacity can be reduced to less than the desired increase (e.g., 2 times), and thus the resource allocation based on the existing technology can well avoid or eliminate IDI.
  • the present invention focuses on embodiments for allocating resources in consideration of channel-to-terminal interference (IDI) size / channel as well as a channel between a base station and a terminal.
  • IDI channel-to-terminal interference
  • FIG. 11 illustrates a case in which five bands f1 to f5 respectively divided among the bands used in the FDR are allocated to five terminals # 1 to # 5 according to an embodiment of the present invention. For reference only.
  • the base station can measure a channel with the terminal for the entire band, and can also measure the interference between the terminals for the entire band in order to measure the interference between the terminals.
  • the base station may allocate resources to the terminals based on the measured IDI size / channel.
  • resources may be allocated as shown in FIG. 11, a problem may occur that may increase rapidly as the number of terminals and corresponding bands corresponding thereto are increased. Accordingly, a method of reducing IDI measurement time is required.
  • the base station is a candidate subband having a high allocation possibility, that is, having a good channel environment, based on a channel (hereinafter, referred to as a desired channel) measurement between the base station and the terminal.
  • a channel hereinafter, referred to as a desired channel
  • IDI measurement may be instructed to each terminal corresponding to only a sub-band selected by the base station for each terminal.
  • each terminal needs to measure only a band indicated by the measurement.
  • ID1 measurement may be instructed at f1, f2, f4, and f5 for terminal # 1, and measurement may be instructed at f1, f3, and f4 for terminal # 2.
  • the UE may inform the IDI measurement signal transmission / reception band and time of the UE through PDCCH / EPDCCH, PDSCH, and high-layer signaling.
  • the number of UEs to be measured for each band is reported through cell-specific high-layer signaling. That is, by using cell-specific higher layer signaling, f1 signals the number of UEs to be measured for each band in the form of 3 and f2 equals to 3, and for each UE, PDCCH / EPDCCH, PDSCH, UE-specific higher layer signaling ( By using UE specific high-layer signaling, it is possible to transmit information on how many unit times each UE should transmit / receive at a corresponding frequency. In this case, the measurement time may take as much as the total number of measurement terminals from f1 to f5.
  • PDSCH UE-specific high-layer signaling (UE specific high-layer signaling) can be used to transmit the offset (offset) of the measurement signal transmission time to each terminal.
  • each terminal grasps the number of terminals allocated to each frequency of FIG. 12 or 13, and transmits / receives measurement signals as shown in FIG. 14 based on a time offset (assuming signal transmission is sequentially performed from f1).
  • UE # 2 transmits a signal through the f1 band at the (0 + 2) th unit time and the remaining unit time except for its offset position (eg, (0 + 1), (0+ 3) the second unit time) can receive a signal.
  • x represents the number of measurement terminals accumulated up to the measurement band before
  • y represents the transmission time offset of the measurement terminal in the corresponding band.
  • UE # 2 can transmit a signal through the f3 band at the (6 + 1) th unit time and receive the signal at the remaining unit time (eg, the (6 + 2) th unit time) except for its offset position. have.
  • the information transmitted through the above-described cell-specific higher layer signaling is an example according to an embodiment of the present invention, and the present invention is not limited thereto. That is, the average number of terminals to be measured in f1 to f5 is informed, and the number of terminals to be measured in each band f1 to f5 is offset (that is, the average number of measurement terminals for f1 to f5-the number of terminals to be measured in each band). You can also send using. Alternatively, the corresponding information may be transmitted using PDCCH / EPDCCH, PDSCH, and UE-specific high-layer signaling, without being limited to cell-specific high-layer signaling. .
  • the measurement signal transmission power of the terminal is sufficient, such as when the measurement signal transmission or signal measurement is possible for several bands at the same time (unit time), PDCCH / EPDCCH, PDSCH, higher layer signaling (high Through -layer signaling, the IDI measurement signal transmission / reception band and measurement time of the corresponding UE can be informed.
  • PDCCH / EPDCCH PDSCH
  • higher layer signaling high Through -layer signaling, the IDI measurement signal transmission / reception band and measurement time of the corresponding UE can be informed.
  • FIG. 15 illustrates measurement signal transmission time shifted in unit time according to the present embodiment.
  • the measurement information transmission may use information in the form of FIG. 12 or FIG. 13.
  • information that can move the start point of the unit time of the corresponding band may be transmitted through higher layer signaling or the like.
  • 16 exemplifies information for moving a start point of a unit time for each band. Referring to FIG. 16, when the order of each band is sequentially maintained as shown in FIG. 12 (f1 to f5 order), a moving unit time value may be transmitted.
  • measurement terminal information may be transmitted for each band instead of for each terminal, and a unit time value overlapping with a band in a previous order may be transmitted.
  • 17 and 18 are reference diagrams for explaining the number of unit times overlapping with a previous sequence band to form the measurement signal time flow chart of FIG. 15.
  • the order of the measurement bands may be changed for each band, and the terminal information (in order) to be measured may be transmitted in the form as shown in FIG. 17, and the order of the rows indicates the priority of the bands. That is, when the measurement band is f1, the UE # 3, the UE # 1, and the UE # 2 sequentially measure the IDI, and in the case of the next band f4, the IDI is measured from the UE # 1 overlapping the band f1 in the previous order. Indicates.
  • the number of unit times overlapping the previous order band may be represented, and the overlapping unit time may be represented based on the last time of the unit time of the previous order band.
  • Equation (2) the total unit time can be predicted in the form of Equation (2).
  • Equation 2 x in (x-y) represents the number of terminals to be measured in the corresponding band, and it can be known when receiving the measurement terminal information for each band of FIG. y represents the number of band unit times in the next order overlapping with the corresponding band.
  • this represents an information configuration that can implement the minimum measurement overhead and the minimum measurement time.
  • the base station when measuring multiple bands in one unit time or when the measurement signal transmission power of the terminal is different, the base station should perform power normalization based on feedback from the terminal. For example, if the measurement signal transmission power per unit time of all terminals are the same, the IDI measurement power for the # 3 terminal per unit band is twice as large as the IDI measurement power of the # 4 terminal is required to reduce the process by half.
  • the measurement terminal may report IDI measurement information through PUSCH, PUCCH, etc., and may have a procedure similar to the present invention even when using the entire band. However, even in this case, there is a difference in transmitting IDI measurement information for all bands as IDI measurement information for each measured band.
  • the measurement terminal may transmit a band order to report to the base station, which may be preset. Furthermore, the measurement terminal may transmit the IDI measurement information by i) quantization or ii) index or offset.
  • the measurement terminal measures the IDI from the signal transmission terminal, for example, does not satisfy a specific condition, for example, information about a band having an IDI value greater than or equal to a specific value, or a band having an IDI value less than or equal to a specific value, to the base station. You may not report it. At this time, since the base station can wait for feedback in the corresponding band, the terminal can inform the base station how many bands are not reported to the base station.
  • a specific condition for example, information about a band having an IDI value greater than or equal to a specific value, or a band having an IDI value less than or equal to a specific value
  • the base station may request feedback for a specific situation from the terminal. For example, when resource management is performed because a band with a small IDI is allocated, the base station may transmit only a reference value of the IDI to the corresponding UE and request only feedback on an IDI size having an IDI less than or equal to the reference value. In other words.
  • the base station may transmit the IDI reference value and the identifier above / below the IDI reference value, the IDI reference value may be in the form of an offset of the IDI value transmitted by the terminal in the previous reporting period.
  • the base station may perform resource allocation for a band that satisfies the form of Equation (3).
  • f (UE1), f (UE2),... f (UEn) may indicate a capacity that can be transmitted when a corresponding band is allocated to each UE.
  • f (IDI) is an element for determining resource allocation based on IDI information between terminals in a corresponding band.
  • F ⁇ represents a function for determining whether to allocate resources based on each element, and when a condition is satisfied between a and b, the corresponding band may be allocated to the corresponding terminal.
  • FIG. 19 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 풀-듀플렉스(Full-Duplex) 통신을 지원하는 무선 통신 시스템에서 기지국의 자원 할당 방법 및 장치에 관한 것이다. 구체적으로, 단말간 간섭(Inter-Device Interference, IDI)을 측정하기 위한 후보 서브밴드(sub-band) 정보 및 시간 정보를 포함하는, 측정 정보를 다수의 단말들로 송신하는 단계, 다수의 단말들로부터, 측정 정보에 따라 측정된 단말간 간섭 측정 결과를 수신하는 단계 및 단말간 간섭 측정 결과에 기반하여, 다수의 단말들에 대한 자원 할당을 수행하는 단계를 포함하며, 후보 서브밴드 정보는, 다수의 단말들 각각에 대하여, 기지국과 단말간 채널 측정에 기반하여 설정된 적어도 하나의 후보 서브밴드를 포함하는 것을 특징으로 한다.

Description

[규칙 제91조에 의한 정정 22.02.2016] 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment, UE)과 기지국(eNode B, eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway, AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink, DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink, UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network, CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
단말은 기지국의 무선 통신 시스템의 효율적인 운용을 보조하기 위하여, 현재 채널의 상태 정보를 기지국에게 주기적 및/또는 비주기적으로 보고한다. 이렇게 보고되는 채널의 상태 정보는 다양한 상황을 고려하여 계산된 결과들을 포함할 수 있기 때문에, 보다 더 효율적인 보고 방법이 요구되고 있는 실정이다.
상술한 바와 같은 논의를 바탕으로 이하에서는, 보다 상세하게는 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 문제점을 해결하기 위한 본 발명의 일 양상인 풀-듀플렉스(Full-Duplex) 통신을 지원하는 무선 통신 시스템에서 기지국의 자원 할당 방법에 대하여, 단말간 간섭(Inter-Device Interference, IDI)을 측정하기 위한 후보 서브밴드(sub-band) 정보 및 시간 정보를 포함하는, 측정 정보를 다수의 단말들로 송신하는 단계; 상기 다수의 단말들로부터, 상기 측정 정보에 따라 측정된 단말간 간섭 측정 결과를 수신하는 단계; 및 상기 단말간 간섭 측정 결과에 기반하여, 상기 다수의 단말들에 대한 자원 할당을 수행하는 단계를 포함하는, 상기 후보 서브밴드 정보는, 상기 다수의 단말들 각각에 대하여, 상기 기지국과 단말간 채널 측정에 기반하여 설정된 적어도 하나의 후보 서브밴드를 포함하는 것을 특징으로 한다.
나아가, 상기 측정 정보는, 하향링크 제어 채널, 하향링크 데이터 채널 혹은 상위 계층 시그널링 중 하나를 통하여 전송되는 것을 특징으로 할 수 있다.
나아가, 상기 시간 정보는, 상기 다수의 단말들 각각에 대하여 설정된, 상기 후보 서브밴드에 대한 측정 신호 송신을 위한 시간 오프셋(time offset) 정보를 포함하는 것을 특징으로 할 수 있다. 더 나아가, 상기 시간 오프셋 정보는, 후보 서브밴드에 대한 단말간 간섭(IDI) 측정 이전에 누적된 측정 단말의 개수에 기반하여, 상기 후보 서브밴드의 단위 시간(unit time)을 결정하기 위하여 사용되는 것을 특징으로 할 수 있다.
나아가, 상기 측정 정보는, 상기 후보 서브밴드에 대한 단말간 간섭(IDI)를 측정할 단말의 평균 개수 정보 및 상기 후보 서브밴드 각각에 대한 측정 단말 개수의 오프셋 정보를 더 포함하는 것을 특징으로 할 수 있다.
나아가, 상기 측정 정보는, 상기 후보 서브밴드 각각에 대하여 설정된, 단말간 간섭(IDI) 측정 단위 시간의 시작점 이동 정보를 더 포함하는 것을 특징으로 할 수 있다. 더 나아가, 상기 시작점 이동 정보는, 측정이 종료되는 후보 서브밴드에 설정된 제 1 단위 시간과 측정이 시작되는 후보 서브밴드에 대한 제 2 단위 시간이 겹쳐지는 단위 시간으로 지시되는 것을 특징으로 할 수 있다.
나아가, 단말간 간섭(IDI) 참조 값을 송신하는 단계를 더 포함하며, 상기 단말간 간섭 측정 결과는, 단말간 간섭(IDI) 참조 값 이상인 경우에만 피드백되도록 설정된 것을 특징으로 할 수 있다.
나아가, 상기 단말간 간섭 측정 결과는, 채널 상호관계(channel reciprocity)를 이용하여 전송되는 것을 특징으로 할 수 있다.
상술한 문제점을 해결하기 위한 본 발명의 다른 양상인 풀-듀플렉스(Full-Duplex) 통신을 지원하는 무선 통신 시스템에서 자원 할당을 수행하는 기지국에 있어서, 무선 주파수 유닛; 및 프로세서를 포함하며, 상기 프로세서는, 단말간 간섭(Inter-Device Interference, IDI)을 측정하기 위한 후보 서브밴드(sub-band) 정보 및 시간 정보를 포함하는, 측정 정보를 다수의 단말들로 송신하고, 상기 다수의 단말들로부터, 상기 측정 정보에 따라 측정된 단말간 간섭 측정 결과를 수신하며, 상기 단말간 간섭 측정 결과에 기반하여, 상기 다수의 단말들에 대한 자원 할당을 수행하도록 구성되고, 상기 후보 서브밴드 정보는, 상기 다수의 단말들 각각에 대하여, 상기 기지국과 단말간 채널 측정에 기반하여 설정된 적어도 하나의 후보 서브밴드를 포함하는 것을 특징으로 한다.
본 발명의 실시예에 따르면 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 단말에 대한 자원 할당이 효율적으로 수행될 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 예시한다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 예시한다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시한다.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.
도 6은 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시한다.
도 7은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 8은 풀-듀플렉스 무선(Full-Duplex Radio, FDR) 통신 시스템을 나타낸다.
도 9 는 Inter-device interference 를 나타낸다.
도 10은 FDR 시스템에서 단말의 다중 접속을 나타낸다.
도 11은 단말(UE)의 위치에 따른 풀-듀플렉스(FD)/하프-듀플렉스(HD) 통신 방식에 따른 이득 비율을 나타낸다.
도 12는 다수의 사용자가 존재하는 경우 풀-듀플렉스(FD) 모드 방식의 다수의 사용자를 선택하는 경우를 나타낸다.
도 13은 사용자 기기 위치를 수집하는 종래 기술을 설명하기 위한 참고도이다.
도 14 및 도 15는 기지국과 단말들의 위치를 기지국을 중심으로 한 원을 이용하여 거리 배치를 설명하기 위한 참고도이다.
도 16 내지 도 19는 본 발명에 따른 단말에 대한 위치 측정 방법의 일 실시예를 나타낸다.
도 20은 양자화로 인한 오차(round-off error)를 고려하여 후보 집합을 지정하는 경우를 나타낸다.
도 21은 양자화로 인한 오차 영역을 고려한 본 발명의 일 실시예를 설명하기 위한 참고도이다.
도 22는 본 발명의 일 실시예에 따라, 측정 오차가 발생한 단말을 하프-듀플렉스(HD) 모드로 결정하는 방법을 설명하기 위한 참고도이다.
도 23은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 사용자 기기는 단계 S301에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 사용자 기기는 단계 S302에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S303 내지 단계 S306과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S303), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S305) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S306)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S307) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S308)을 수행할 수 있다. 사용자 기기가 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도4의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 사용자 기기가 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도4의 (b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP) 및UpPTS(Uplink Pilot Time Slot)을 포함하는 특별 서브프레임(special subframe)으로 구성된다.
상기 특별 서브프레임에서, DwPTS는 사용자 기기에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 사용자 기기의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1과 같이 설정을 정의하고 있다. 표 1에서
Figure PCTKR2016000714-appb-I000001
인 경우 DwPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
표 1
Figure PCTKR2016000714-appb-T000001
한편, 타입 2 무선 프레임의 구조, 즉 TDD 시스템에서 상향링크/하향링크 서브프레임 설정(UL/DL configuration)은 아래의 표 2와 같다.
표 2
Figure PCTKR2016000714-appb-T000002
상기 표 2에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2는 각각의 시스템에서 상향링크/하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.
상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.
도 5를 참조하면, 하향링크 슬롯은 시간 영역에서
Figure PCTKR2016000714-appb-I000002
OFDM 심볼을 포함하고 주파수 영역에서
Figure PCTKR2016000714-appb-I000003
자원블록을 포함한다. 각각의 자원블록이
Figure PCTKR2016000714-appb-I000004
부반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서
Figure PCTKR2016000714-appb-I000005
×
Figure PCTKR2016000714-appb-I000006
부반송파를 포함한다. 도 5는 하향링크 슬롯이 7 OFDM 심볼을 포함하고 자원블록이 12 부반송파를 포함하는 것으로 예시하고 있지만 반드시 이로 제한되는 것은 아니다. 예를 들어, 하향링크 슬롯에 포함되는 OFDM 심볼의 개수는 순환전치(Cyclic Prefix; CP)의 길이에 따라 변형될 수 있다.
자원그리드 상의 각 요소를 자원요소(Resource Element; RE)라 하고, 하나의 자원 요소는 하나의 OFDM 심볼 인덱스 및 하나의 부반송파 인덱스로 지시된다. 하나의 RB는
Figure PCTKR2016000714-appb-I000007
×
Figure PCTKR2016000714-appb-I000008
자원요소로 구성되어 있다. 하향링크 슬롯에 포함되는 자원블록의 수(
Figure PCTKR2016000714-appb-I000009
)는 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 6은 하향링크 서브프레임의 구조를 예시한다.
도 6을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 사용자 기기 또는 사용자 기기 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 상향/하향링크 스케줄링 정보, 상향링크 전송(Tx) 파워 제어 명령 등을 포함한다.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel,UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 사용자 기기 그룹 내의 개별 사용자 기기들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 사용자 기기는 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 사용자 기기에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 사용자 기기를 위한 것일 경우, 해당 사용자 기기의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system Information block, SIC))를 위한 것일 경우, SI-RNTI(system Information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.
도 7은 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 7을 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터영역은 PUSCH를 포함하고 음성등의 데이터 신호를 전송하는데 사용된다. 제어영역은 PUCCH를 포함하고 상향링크 제어정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK:PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. CSI는 CQI(Channel Quality Indicator)를 포함하고, MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding 타입 Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.
사용자 기기가 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다.
이하에서는 전술한 내용을 바탕으로, 본 발명에서는 동일 자원 내 풀-듀플렉스(Full-duplex) 통신을 사용하는 시스템에 있어, 기지국과 단말간 데이터 전송 채널과 단말-간 간섭(Inter-Device Interference, IDI)을 동시에 고려한 자원 할당 방법 및 이를 위한 장치를 설명한다.
도 8은 본 발명에서의 풀-듀플렉스 무선(Full-Duplex Radio, FDR) 통신 시스템을 설명하기 위한 참고도이다. 도 8을 참조하여, FDR 은 전송 장치(예, 단말, 기지국)에서 같은 자원을 이용하여 송수신을 동시에 수행하는 시스템을 의미한다. 여기서, 같은 자원이란 동일한 시간, 동일한 주파수를 가지는 무선 자원을 의미한다. 도 8에서와 같이, FDR을 지원하는 단말과 기지국이 존재할 수 있으며, 이러한 경우, FDR을 지원함에 따라 Intra-device interference 와 Inter-device interference 로 크게 2종류의 간섭이 존재할 수 있다. 먼저, Intra-device interference 는, 하나의 기지국 혹은 단말 내에서, 송신 안테나에서 송신되는 신호가 수신 안테나로 수신됨으로써 간섭으로 작용되는 경우를 의미하며, Inter-device interference 는, 기지국/단말 등에서 송신한 상향링크 신호가 인접하게 위치한 기지국/단말에게 수신되어 간섭으로 작용되는 경우를 나타낸다.
이하에서는 설명의 편의를 위하여, Inter-device interference(이하, IDI)를 중심으로 설명한다.
도 9 는 Inter-device interference 를 설명하기 위한 참고도이다. 도 9를 참조하여 설명하면, IDI는 하나의 셀(cell) 내에서 동일 무선 자원을 사용함으로 인해 FDR에서만 발생하는 간섭으로, 도 9는 기지국이 동일 자원 내 풀-듀플렉스(FD) 모드(즉, 동일 주파수를 이용한 동시 송수신 모드) 사용 시, 그리고 단말이 풀-듀플렉스(FD) 모드 또는 하프-듀플렉스(HD) 모드(즉, 기존 FDD, TDD와 같은 half-duplex 모드)를 사용함에 의해 발생하는 IDI에 대한 개념도를 나타낸다. 도 9는 IDI 설명의 용이를 위해 2 UE만을 나타내었으나, 본 발명은 2 이상의 UE가 존재하는 경우에도 적용될 수 있음은 물론이다.
기존 풀-듀플렉스(Full-duplex, FD)를 사용하는 통신시스템에서는 FDD (frequency division duplex) 또는 TDD (time division duplex)를 사용하여 신호를 송수신, 즉 송수신 자원을 달리하여 신호를 송수신하므로 IDI가 발생하지 않았다. 또한, 기존 통신 시스템 상의 인접 셀의 간섭은 FDR 시스템에서도 여전히 유효하긴 하나, 이는 본 발명에서는 설명의 편의를 위하여 언급하지 않는다.
도 10은 FDR 시스템에서 단말의 다중 접속을 설명하기 위한 참고도이다. 도 10을 참조하여 설명하면, FDR 시스템에서는 동일 자원을 사용하는 풀-듀플렉스(full-duplex) 방식뿐만 아니라, 동일 자원을 사용하지 않는 풀-듀플렉스(full-duplex) 방식도 존재할 수 있다. 도 10에서는 기지국이 동일 자원 상에서 풀-듀플렉스(FD) 모드로 동작하고, 다수의 단말들이 다중 접속을 수행하는 경우, FDMA와 TDMA 동작의 예시를 나타낸다.
또한, 본 발명에서는 동일 자원 상에서의 풀-듀플렉스(full-duplex) 통신을 사용하는 TDD(Time division duplex) 시스템에 있어서, 비동기 기기 간 간섭 측정을 위한 프레임 설정(frame configuration), 기기간 구별 신호 전송 및 청취 시도 설정이 수행됨을 가정한다. 이러한 가정하에, 각 셀 내에서 단말 별로 설정(configuration)을 달리 할당 받는 방법인 UE-특정 설정(UE-specific configuration)을 통하여 셀 내에서 동시 송수신이 가능하도록 한다.
즉, 본 발명에서는 기기간의 IDI를 측정하여, 측정된 IDI를 줄이거나 없애기 위해, 각 단말 또는 각 단말 그룹에 대해 고유한 서명(signature)이 부여될 수 있다. 이 때, 단말간 구별될 수 있는 간섭 측정을 위한 신호를 서명(signature) 신호라고 정의한다.
따라서, 단말은 수신된 서명 신호(signature)를 통하여, IDI를 유발시키는 단말에 대한 신호 강도(strength), 단말 또는 서명(signature) 인덱스, 위상(phase) 등과 같은 채널 벡터(channel vector), 타이밍 정보(timing information) 등을 알 수 있다. 나아가, 서명(Signature) 신호는 단말 또는 단말 그룹을 구별할 수 있는, 예를 들어, 코드 시퀀스(code sequence) 또는 펑처링(puncturing) 패턴 등 어떤 형태든지 가능하다. 즉, 코드 시퀀스(Code sequence)를 이용하여 단말/단말 그룹의 고유 스크램블 또는 인터리빙이 적용될 수 있으며, 수신 단말에서 간섭 측정을 용이하기 위해 서명(signature) 신호는 배타적으로 하나의 단말/단말 그룹에서만 전송될 수도 있다. 이 때, 배타적인 단위는 최소 OFDM 심볼이 될 수 도 있다.
또한, 본 발명에서는 FDR 시스템에서 IDI 발생 단말들의 스케줄링을 위한 단말 그룹 분류(그룹핑) 방법과 그룹핑을 위한 IDI 측정 및 보고 기법이 적용될 수 있음을 가정한다. 즉, 각 단말이 측정한 IDI 크기의 순서만을 이용하여 단말 그룹이 분류될 수 도 있고, 동일 자원을 공유하는 단말의 개수가 아닌 각 단말의 IDI 제거/완화 능력을 고려한 방식의 IDI 크기 기반 단말 그룹 분류 기법이 적용될 수 도 있다.
도 10은 동일 자원 상에서 풀-듀플렉스(FD) 동작을 하는 그룹이 총 2 개로 구분될 수 있다. 하나의 그룹은 UE1, UE2를 포함하는 그룹이며, 다른 하나의 그룹은 UE3, UE4를 포함하는 그룹이다. 즉, 각각의 그룹 내에서 IDI가 발생하게 되므로, IDI가 적게 발생하는 UE들을 그룹으로 형성할 수 있다.
예를 들어, UE2로 인해 발생하는 간섭은 UE1에 비해 UE4에 더 큰 영향을 미치므로, 도 10과 같은 형태의 UE1, UE2로 그룹이 구성될 수 있다. 또한, UE2로 인한 IDI가 너무 커서 UE1에 악영향을 끼친다면, UE2와 UE1은 반드시 동일 자원을 사용하지 않을 수 도 있다. 예를 들어 FDMA(Frequency Division Multiple Access)인 경우, UE3, UE4 그룹이 동일한 하나의 주파수를, UE1과 UE2 는 각각 서로 다른 주파수, 즉, 총 3개의 주파수 밴드가 할당될 수 있다. 이로 인해, 자원 소비는 증가하게 되지만 전체적인 성능, 예를 들어 처리율(throughput) 면에서는 오히려 더 효율적인 전송이 가능하게 된다.
따라서, 동일 자원 내 풀-듀플렉스(FD) 동작을 수행하는 그룹에 어떠한 단말을 포함시킬지 여부를 정의할 필요가 있으며, 이에 대하여, 기존에는 광대역(wideband) 사용을 전제로 IDI 크기 또는 IDI 채널만을 고려하여 자원 할당이 이루어졌다. 그러나, 각 단말은 서브밴드(sub-band)단위로 자원 할당될 수 있으며, 서브밴드(sub-band) 자원 할당 시에는 IDI 뿐만 아니라 기지국과 단말 사이의 채널을 고려하여 자원 할당이 이루어질 필요가 있다.
본 발명이 적용되는 기술 분야와 유사하게, 셀(cell)간 간섭을 측정하거나, 간섭에 따라 셀을 선택하는 기술은 CoMP(Coordinated Multi-Point) 시스템 상에서 적용되었으나, 이는 본 발명에 비하여 셀 간 경계에 위치한 단말이 주변 셀들의 간섭을 측정하여 기지국을 결정한다는 차이점이 있다. 또한, CoMP 통신에서의 간섭은 한 단말에게 미치는 여러 셀의 신호를 의미하며, CoMP 시스템에서 단말은 단말간 자원을 공유하지 않으므로 주변 단말에 대한 IDI를 고려하지 않는 차이점이 존재한다.
따라서, 이하 본 발명에서는 동일 자원 내 풀-듀플렉스(Full-duplex) 통신을 사용하는 시스템에 있어 단말-간 간섭(Inter-Device Interference, IDI) 크기 혹은 단말-간 채널뿐만 아니라, 기지국과 단말 사이의 채널을 고려한, 서브밴드(sub-band) 단위의 자원 할당 방법을 설명한다. 구체적으로, 각 서브밴드(sub-band)별로 간섭 측정이 이루어지는 연속적인 단말들의 구간크기(window)와 해당 서브밴드(sub-band)에서 각 단말이 측정 신호 전송에 필요한 시점, 해당 구간(window)의 시작점을 기지국으로부터 단말들로 알려주는 방법에 대해 상세히 설명한다.
먼저 본 발명에서는 설명의 편의를 위하여, 상술한 바와 같이 단말들을 특정 기준으로 개념상/논리상 묶는 과정을 그룹핑으로 정의한다. 또한, 기지국이 그룹으로 설정될 후보 단말들을 파악하도록 가정될 수 있으며, IDI 측정은 RSRP(Reference Signal Received Power) 또는 RSRQ(Reference Signal Received Quality) 등을 측정하는 것을 말하며, 각 대상 단말에 대한 IDI의 크기는 수학식 1과 같은 함수로 정의될 수 있다.
수학식 1
Figure PCTKR2016000714-appb-M000001
또한, 본 발명에서는 동일 자원 내 풀-듀플렉스(FD) 모드(동일 주파수를 이용한 동시 송수신 모드)에 대한 동작/지원하는 장치(예를 들어, 기지국 또는 단말)는 FDR 장치 또는 기지국, 단말이라 명명될 수 있다. 나아가, FDR 장치는 자기 간섭 제거기(self-interference canceller)를 포함하고 있을 수 있으며, 이를 포함한 FDR 장치는 동일 자원 내 풀-듀플렉스(FD) 모드에 대해 동작/지원이 가능하다. 자기 간섭 제거기가 포함되지 않은 FDR 장치는 동일 자원 상에서 풀-듀플렉스 모드로 동작할 수는 없지만, 동일 자원 내 풀-듀플렉스 모드로 동작하는 FDR 장치와 정보 전송이 가능하도록 지원할 수 있다. 또한, FDR 장치는 IDI 측정 및 보고 등을 수행할 수 있다. 도 9의 경우, 기지국은 자기 간섭 제거기가 포함된 FDR 장치이며, UE1과 UE2는 자기 간섭 제거기가 포함되지 않은 FDR 장치의 예시를 나타낸다.
먼저, 본 발명에서 동일 자원 내 풀-듀플렉스 모드 동작이 수행 가능한 상황에서, 셀 내의 어떠한 장치들끼리 동일 자원을 공유해야 하는지에 대한 초기 그룹 설정 방법을 설명한다.
도 9를 참조하여 설명하면, FDR은 기지국과 단말들 간의 데이터 전송을 동시에 수행하여 전송 용량을 증가(예를 들어, 2배)시킴을 목적으로 한다. 그러나, IDI 발생으로 인해 실제 전송 용량은 목적했던 증가량(예, 2배) 이하로 줄어들 수 있으며, 따라서 기존 기술은 IDI를 잘 회피하거나 제거할 수 있음을 기반으로 한 자원 할당이 이루어졌다. 그러나, IDI를 잘 회피하거나 제거할 수 있다 하더라도 해당 (주파수) 밴드 가 기지국과 단말들 간에 매우 좋지 않은 채널 상태라면, 실제 FDR 목적을 달성할 수 없다. 따라서, 본 발명에서는 단말-간 간섭(IDI) 크기/채널뿐만 아니라 기지국과 단말 사이의 채널을 고려한 자원 할당하기 위한 실시예들을 중심으로 설명한다.
도 11은 본 발명의 일 실시예에 따라 FDR에서 사용하는 밴드(band) 중 각각 구분된 5개 밴드(f1~f5)를 총 5개 단말(#1~#5)에게 할당하는 경우를 설명하기 위한 참고도이다.
도 11에서 기지국은 전체 밴드에 대해 단말과의 채널을 측정할 수 있으며, 동일하게 단말-간 간섭을 측정하기 위해 단말들간에 간섭을 전체 밴드에 대해 측정할 수 있다. IDI 측정은 측정의 정확도를 위해 특정 단위 시간(unit time) 당 하나의 단말이 측정할 신호를 전송하고, 나머지 단말들이 해당 특정 단위 시간(unit time)에 신호를 측정한다. 따라서, 단말들이 IDI 측정을 완료하기 위해서는 총 (단말 개수)x(구분된 밴드 수)만큼의 (예, 5 x 5 =25) 단위 시간이 필요하게 된다.
따라서, 기지국은 측정된 IDI 크기/채널을 기반으로 단말들에게 자원을 할당할 수 있다. 그러나, 도 11과 같이 할당되는 경우에는, 단말 및 이에 대응하여 구분된 밴드의 수가 증가될수록 급격히 증가될 수 있는 문제점이 발생할 수 있으며, 따라서, IDI 측정 시간을 줄일 수 있는 방안이 요구된다.
따라서, 전송 용량을 증가시키고자 하는 FDR 목적을 고려하여, 기지국은 기지국과 단말간의 채널(이하, desired channel) 측정을 기반으로 할당 가능성이 높은, 즉 채널 환경이 좋은 후보 서브밴드(sub- band)들을 각 단말에 따라 선택한다. 그 후, 각 단말에 대해서 기지국에 의해 선택된 서브밴드(sub-band)에 대해서만 그에 대응되는 각 단말에게 IDI 측정을 지시할 수 있다. 이 때, 각 단말은 측정 오버헤드를 감소시키기 위해, 자신에게 측정 지시된 밴드(band)에 대해서만 측정을 할 필요가 있다.
도 12는 기지국이 각각의 단말에게 측정해야 할 밴드를 지시하는 경우를 설명하기 위한 참고도이다. 예를 들어, 단말 #1에 대하여는 f1, f2, f4 및 f5에서 IDI 측정을 지시하고, 단말 #2에 대하여는 f1, f3 및 f4에서 측정을 지시할 수 있다.
본 발명의 일 실시예에 따르면, 각 단말에게 PDCCH/EPDCCH, PDSCH, 상위 계층 시그널링(high-layer signaling)을 통해 해당 단말의 IDI 측정 신호 송/수신 밴드(band)와 시간을 알려줄 수 있다.
예를 들어, 셀-특정 상위 계층 시그널링(Cell specific high-layer signaling)를 통해 각 밴드(band) 별로 측정할 단말의 개수를 알려준다. 즉, 셀-특정 상위 계층 시그널링을 이용하여 f1은 3, f2는 3과 같은 형태로 각 밴드별로 측정할 단말의 개수를 시그널링하며, 각 단말 별로는 PDCCH/EPDCCH, PDSCH, UE-특정 상위 계층 시그널링(UE specific high-layer signaling)을 이용하여 각 단말이 해당 주파수에서 몇 번째 단위 시간상에서 송/수신 해야 하는지에 대한 정보를 전송할 수 있다. 이러한 경우에는, f1~f5까지의 총 측정 단말의 수만큼 측정 시간이 소요될 수 있다.
즉, 도 12의 경우는 도 13과 같이 나타낼 수 있다. 도 13에서 나타난 바와 같이 기지국은 셀-특정 상위 계층 시그널링을 통해 f1=3, f2=3, f3=2, f4=3, f5=3로 각 밴드별로 측정할 단말의 개수를 알려주고, PDCCH/EPDCCH, PDSCH, UE-특정 상위 계층 시그널링(UE specific high-layer signaling)을 이용하여 각 단말에게 측정 신호 송신 시간의 오프셋(offset)을 전송할 수 있다.
따라서, 각 단말은 도 12 혹은 도 13의 각 주파수에 할당된 단말 개수를 파악하고, (f1부터 순차적으로 신호 전송을 가정하는 경우) 시간 오프셋에 기반하여 도 14와 같이 측정 신호 송/수신이 가능하게 된다. 예를 들어, UE #2는 (0+2)번째 단위 시간(unit time)에서 f1 밴드를 통해 신호를 전송하고 자신의 오프셋 위치를 제외한 나머지 단위 시간(예, (0+1), (0+3)번째 단위 시간)에서는 신호를 수신할 수 있다. 여기서, (x+y) 형태에서 x는 측정 밴드 이전까지 누적된 측정 단말 개수를 나타내고, y는 해당 밴드에서 측정 단말의 송신 시간 오프셋을 나타낸다. 따라서, UE #2는 (6+1)번째 단위 시간에서 f3 밴드를 통해 신호를 전송하고 자신의 오프셋 위치를 제외한 나머지 단위 시간(예, (6+2)번째 단위 시간)에서 신호를 수신할 수 있다.
나아가, 상술한 셀-특정 상위 계층 시그널링을 통해 전송하는 정보는 본 발명의 일 실시예에 따른 예시이며, 이에 한정해서는 아니될 것이다. 즉, f1~f5에서 측정할 단말의 평균 개수를 알려주고, 각 밴드 f1~f5에서 측정할 단말의 개수를 오프셋(즉, f1~f5에 대한 측정 단말의 평균 개수-각 밴드에서 측정할 단말 개수)을 이용해 전송할 수도 있다. 또는, 해당 정보를 셀-특정 상위 계층 시그널링(Cell specific high-layer signaling)에 한정하지 않고, PDCCH/EPDCCH, PDSCH, UE-특정 상위 계층 시그널링(UE specific high-layer signaling)을 이용하여 전송할 수도 있다.
만약, 단말의 측정 신호 송신 전력이 충분한 경우와 같이 단위 시간(unit time)에서 여러 개의 밴드에 대해 동시에 측정 신호 전송 또는 신호 측정이 가능한 경우, 각 단말에게 PDCCH/EPDCCH, PDSCH, 상위 계층 시그널링(high-layer signaling)을 통해 해당 단말의 IDI 측정 신호 송/수신 밴드와 측정 시간을 알려줄 수 있다. 이러한 경우에는, 여러 개의 밴드를 동시에 측정하기 위해, 각 밴드의 측정 단위 시간에 대한 시작점 이동이 필요할 수 있다.
도 15는 본 실시예에 따라 단위 시간(unit time)을 이동한 측정 신호 송신 시간을 예시한다. 도 15에서는 UE #1, UE #2, UE #4는 동시에 2개 이상 밴드, UE #3과 UE #5 단말은 1개 밴드만을 측정할 수 있음을 가정하였다. 이러한 경우에도, 측정 정보 전달은 도 12혹은 도 13와 같은 형태의 정보도 이용될 수 있다. 나아가, 해당 밴드의 단위 시간의 시작점을 이동할 수 있는 정보를 상위 계층 시그널링 등을 통해 전송할 수 있다.
도 16은 밴드별 단위 시간의 시작점을 이동하기 위한 정보를 예시한다. 도 16을 참조하여 설명하면, 도 12와 같이 각 밴드의 순서가 순차적으로 유지되는 경우(f1~f5 순서)에, 이동하는 단위 시간 값을 전송할 수 있다.
또는, 도 12 혹은 도 13와는 다르게, 단말 별이 아니라 밴드 별로 측정 단말 정보를 전송할 수 있으며, 추가적으로 이전 순서의 밴드와 겹쳐지는 단위 시간 값이 전송될 수 있다.
도 17및 도 18은, 도 15의 측정 신호 시간 순서도를 구성하기 위해 이전 순서 밴드와 겹쳐지는 단위 시간(unit time) 개수를 설명하기 위한 참고도이다.
도 17을 예로 들어 설명하면, 측정 밴드의 순서는 밴드 별로 변경하여 측정할 단말 정보(순서대로)를 도 17과 같은 형태로 전송할 수 있으며, 행의 순서가 밴드(band)의 우선 순위를 나타낸다. 즉, 측정 밴드가 f1인 경우 UE#3, UE #1, UE #2가 순차적으로 IDI를 측정하며, 그 다음 밴드인 f4의 경우에는 이전 순서의 밴드 f1과 겹치는 UE #1부터 IDI를 측정함을 나타낸다.
또한, 도 18에서는 이전 순서 밴드와 겹쳐지는 단위 시간 개수를 나타내며, 겹쳐지는 단위 시간은 이전 순서 밴드의 단위 시간의 제일 마지막 시간을 기준으로 나타낼 수 있다.
따라서, 수학식 2와 같은 형태로 전체 단위 시간을 예측할 수 있다.
수학식 2
Figure PCTKR2016000714-appb-M000002
수학식 2에서, (x-y)에서 x는 해당 밴드에서 측정할 단말 개수를 나타내며, 도 17의 밴드 별 측정 단말 정보를 수신하면 알 수 있다. y는 해당 밴드와 겹쳐지는 다음 순서의 밴드 단위 시간 개수를 나타낸다. 따라서, 이는 최소 측정 오버헤드 및 최소 측정 시간을 구현할 수 있는 정보 구성을 나타낸다.
나아가, 하나의 단위 시간에서 여러 밴드를 측정하는 경우 또는 단말의 측정 신호 전송 전력이 다른 경우, 기지국에서는 단말로부터의 피드백을 기반으로 전력 정규화(power normalization)를 수행해야 한다. 예를 들어, 모든 단말의 단위 시간당 측정 신호 전송 전력이 같은 경우, 단위 밴드 당 #3 단말에 대한 IDI 측정 파워는 #4 단말의 IDI 측정 power 보다 2배 크기 때문에 절반으로 낮추는 과정이 필요하다.
이하에서는 기지국으로부터 측정 지시를 받은 후, IDI 측정 결과에 대한 기지국으로의 보고 방법을 설명한다. 여기서, 측정 단말은 PUSCH, PUCCH 등을 통해 IDI 측정 정보를 보고할 수 있으며, 전체 밴드를 사용하는 경우에도 본 발명과 유사한 절차를 가질 수 있다. 그러나, 이 경우에도 전체 밴드에 대한 IDI 측정 정보를 각 측정한 밴드 별 IDI 측정 정보로 전송한다는 차이점이 존재한다.
측정 단말은 기지국으로 보고할 밴드 순서를 전달할 수 있으며, 이는 미리 설정될 수 있다. 나아가, 측정 단말은 IDI 측정 정보를 i)양자화시켜 전송하거나 ii)인덱스 또는 오프셋을 이용하여 전송할 수 있다.
또한, 측정 단말은 신호 전송 단말로부터의 IDI를 측정하여 특정 조건을 만족하지 않는, 예를 들어 특정 값 이상의 IDI값을 가지는 밴드거나, 또는 특정 값 이하의 IDI값을 가지는 밴드에 대한 정보를 기지국으로 보고하지 않을 수 있다. 이 때, 기지국에서 해당 밴드에서의 피드백을 기다릴 수 있으므로, 단말은 기지국으로 보고하지 않는 밴드가 몇 개인지를 기지국에 알려줄 수 있다.
또한, 기지국은 단말에게 특정 상황에 맞는 피드백을 요구할 수 있다. 예를 들어 IDI가 작은 밴드가 할당되어 자원 운영이 이루어지고 있는 경우, 기지국은 해당 단말에게 IDI의 참조 값을 전송하여 IDI가 참조 값 이하인 IDI 크기에 대한 피드백만을 요구할 수 있다. 즉. 기지국은 IDI 참조 값 및 IDI 참조 값 이상/이하 구분자를 전송할 수 있으며, IDI 참조 값은 단말이 이전 보고 주기에 전송한 IDI 값의 오프셋 형태로도 가능하다.
여기서, 각 단말의 피드백 정보는 (측정 밴드(band) 수)x(단말 수-1) 만큼 필요하므로, 피드백 량을 줄이기 위해서는 채널 상호관계(channel reciprocity)를 이용할 수 있다. 즉, 종래에는 광대역 사용(즉, 측정 서브밴드 수=1)한 경우의 채널 상호관계(channel reciprocity)기법이 적용되었으나, 본 발명에서는 각 서브밴드(sub-band) 별로 채널 상호관계(channel reciprocity)를 사용할 수 있다.
피드백된 측정 결과에 기반하여, 기지국은 수학식 3과 같은 형태를 만족하는 밴드에 대해 자원 할당을 수행할 수 있다.
수학식 3
Figure PCTKR2016000714-appb-M000003
이 때, f(UE1), f(UE2),… f(UEn)은 각 단말에 대해 해당 밴드 할당 시 전송 가능한 용량을 나타낼 수 있다. f(IDI)는 해당 밴드 내 단말들 간 IDI 정보를 기반으로 자원 할당을 결정하는 요소가 된다. F{·}는 각 요소를 기반으로 자원 할당 여부를 결정하는 함수를 나타내며, 조건 a와 b 사이를 만족하는 경우에 해당 단말에게 해당 밴드를 할당할 수 있다.
도 19는 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.
무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.
도 19를 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency, RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 RF 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. 기지국(110) 및/또는 단말(120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNodeB(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다.
상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 단말간 간섭 기반 자원 할당 방법 및 이를 위한 장치 는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 풀-듀플렉스(Full-Duplex) 통신을 지원하는 무선 통신 시스템에서 기지국의 자원 할당 방법에 대하여,
    단말간 간섭(Inter-Device Interference, IDI)을 측정하기 위한 후보 서브밴드(sub-band) 정보 및 시간 정보를 포함하는, 측정 정보를 다수의 단말들로 송신하는 단계;
    상기 다수의 단말들로부터, 상기 측정 정보에 따라 측정된 단말간 간섭 측정 결과를 수신하는 단계; 및
    상기 단말간 간섭 측정 결과에 기반하여, 상기 다수의 단말들에 대한 자원 할당을 수행하는 단계를 포함하는,
    상기 후보 서브밴드 정보는,
    상기 다수의 단말들 각각에 대하여, 상기 기지국과 단말간 채널 측정에 기반하여 설정된 적어도 하나의 후보 서브밴드를 포함하는 것을 특징으로 하는,
    자원 할당 방법.
  2. 제 1 항에 있어서,
    상기 측정 정보는,
    하향링크 제어 채널, 하향링크 데이터 채널 혹은 상위 계층 시그널링 중 하나를 통하여 전송되는 것을 특징으로 하는,
    자원 할당 방법.
  3. 제 1 항에 있어서,
    상기 시간 정보는,
    상기 다수의 단말들 각각에 대하여 설정된, 상기 후보 서브밴드에 대한 측정 신호 송신을 위한 시간 오프셋(time offset) 정보를 포함하는 것을 특징으로 하는,
    자원 할당 방법.
  4. 제 3 항에 있어서,
    상기 시간 오프셋 정보는,
    후보 서브밴드에 대한 단말간 간섭(IDI) 측정 이전에 누적된 측정 단말의 개수에 기반하여, 상기 후보 서브밴드의 단위 시간(unit time)을 결정하기 위하여 사용되는 것을 특징으로 하는,
    자원 할당 방법.
  5. 제 1 항에 있어서,
    상기 측정 정보는,
    상기 후보 서브밴드에 대한 단말간 간섭(IDI)를 측정할 단말의 평균 개수 정보 및 상기 후보 서브밴드 각각에 대한 측정 단말 개수의 오프셋 정보를 더 포함하는 것을 특징으로 하는,
    자원 할당 방법.
  6. 제 1 항에 있어서,
    상기 측정 정보는,
    상기 후보 서브밴드 각각에 대하여 설정된, 단말간 간섭(IDI) 측정 단위 시간의 시작점 이동 정보를 더 포함하는 것을 특징으로 하는,
    자원 할당 방법.
  7. 제 6 항에 있어서,
    상기 시작점 이동 정보는,
    측정이 종료되는 후보 서브밴드에 설정된 제 1 단위 시간과 측정이 시작되는 후보 서브밴드에 대한 제 2 단위 시간이 겹쳐지는 단위 시간으로 지시되는 것을 특징으로 하는,
    자원 할당 방법.
  8. 제 1 항에 있어서,
    단말간 간섭(IDI) 참조 값을 송신하는 단계를 더 포함하며,
    상기 단말간 간섭 측정 결과는,
    단말간 간섭(IDI) 참조 값 이상인 경우에만 피드백되도록 설정된 것을 특징으로 하는,
    자원 할당 방법.
  9. 제 1 항에 있어서,
    상기 단말간 간섭 측정 결과는,
    채널 상호관계(channel reciprocity)를 이용하여 전송되는 것을 특징으로 하는,
    자원 할당 방법.
  10. 풀-듀플렉스(Full-Duplex) 통신을 지원하는 무선 통신 시스템에서 자원 할당을 수행하는 기지국에 있어서,
    무선 주파수 유닛; 및
    프로세서를 포함하며,
    상기 프로세서는, 단말간 간섭(Inter-Device Interference, IDI)을 측정하기 위한 후보 서브밴드(sub-band) 정보 및 시간 정보를 포함하는, 측정 정보를 다수의 단말들로 송신하고,
    상기 다수의 단말들로부터, 상기 측정 정보에 따라 측정된 단말간 간섭 측정 결과를 수신하며,
    상기 단말간 간섭 측정 결과에 기반하여, 상기 다수의 단말들에 대한 자원 할당을 수행하도록 구성되고,
    상기 후보 서브밴드 정보는,
    상기 다수의 단말들 각각에 대하여, 상기 기지국과 단말간 채널 측정에 기반하여 설정된 적어도 하나의 후보 서브밴드를 포함하는 것을 특징으로 하는,
    기지국.
PCT/KR2016/000714 2015-02-08 2016-01-22 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치 WO2016126033A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680009262.1A CN107211307B (zh) 2015-02-08 2016-01-22 全双工无线通信***中通过考虑设备间干扰分配资源的方法及其装置
US15/546,869 US10506610B2 (en) 2015-02-08 2016-01-22 Method for allocating resource by considering inter-device interference in full-duplex wireless communication system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562113519P 2015-02-08 2015-02-08
US62/113,519 2015-02-08

Publications (1)

Publication Number Publication Date
WO2016126033A1 true WO2016126033A1 (ko) 2016-08-11

Family

ID=56564318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000714 WO2016126033A1 (ko) 2015-02-08 2016-01-22 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US10506610B2 (ko)
CN (1) CN107211307B (ko)
WO (1) WO2016126033A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201906A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 通信方法、设备和***
WO2018228421A1 (zh) * 2017-06-14 2018-12-20 ***通信有限公司研究院 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点
CN112534739A (zh) * 2018-05-11 2021-03-19 弗劳恩霍夫应用研究促进协会 与空间分集相关联的点到多点共享接入全双工无线双工方案
CN114557008A (zh) * 2019-10-11 2022-05-27 株式会社Ntt都科摩 基站
CN115842607A (zh) * 2018-11-02 2023-03-24 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210153031A1 (en) * 2018-07-11 2021-05-20 Sony Corporation Communication management device, communication device, communication management method, and communication method
US11329790B2 (en) 2019-06-24 2022-05-10 Qualcomm Incorporated Bandwidth part full-duplex communication techniques
US11848897B2 (en) * 2020-04-10 2023-12-19 Qualcomm Incorporated Methods and apparatus for subband full-duplex
US11722907B2 (en) * 2020-05-18 2023-08-08 Electronics And Telecommunications Research Institute Method and apparatus for determining operating conditions for frequency coexistence
US12010668B2 (en) * 2020-07-07 2024-06-11 Qualcomm Incorporated Techniques for supporting wideband array operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222525A1 (en) * 2007-08-09 2011-09-15 Panasonic Corporation Terminal device, base station device, and frequency resource allocation method
US20120134275A1 (en) * 2009-07-21 2012-05-31 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a wireless communication system
US20130310099A1 (en) * 2008-08-08 2013-11-21 Futurewei Technologies, Inc. System and Method for Synchronized and Coordinated Beam Switching and Scheduling in a Wireless Communications System
US20140126402A1 (en) * 2012-11-02 2014-05-08 Samsung Electronics Co., Ltd. Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
KR20140059031A (ko) * 2012-11-07 2014-05-15 삼성전자주식회사 이동통신 시스템에서 셀간 간섭 관리 방법 및 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140206367A1 (en) * 2000-06-13 2014-07-24 Comcast Cable Communications, Llc Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US7818013B2 (en) * 2006-03-20 2010-10-19 Intel Corporation Downlink channel parameters determination for a multiple-input-multiple-output (MIMO) system
EP2440000B8 (en) * 2008-12-18 2016-01-06 Nec Corporation MU-MIMO OFDMA systems and methods for servicing overlapping co-scheduled users
WO2013134930A1 (en) 2012-03-13 2013-09-19 Renesas Mobile Corporation Method and apparatus for reducing radio interferences
WO2015095844A1 (en) * 2013-12-20 2015-06-25 Ping Liang Adaptive precoding in a mimo wireless communication system
CN105101283B (zh) * 2014-05-19 2020-03-10 北京三星通信技术研究有限公司 在免许可频段上的干扰检测方法及设备
WO2015190677A1 (ko) * 2014-06-12 2015-12-17 엘지전자 주식회사 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치
CN105934893B (zh) * 2014-12-30 2019-10-01 华为技术有限公司 一种传输信号的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222525A1 (en) * 2007-08-09 2011-09-15 Panasonic Corporation Terminal device, base station device, and frequency resource allocation method
US20130310099A1 (en) * 2008-08-08 2013-11-21 Futurewei Technologies, Inc. System and Method for Synchronized and Coordinated Beam Switching and Scheduling in a Wireless Communications System
US20120134275A1 (en) * 2009-07-21 2012-05-31 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a wireless communication system
US20140126402A1 (en) * 2012-11-02 2014-05-08 Samsung Electronics Co., Ltd. Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
KR20140059031A (ko) * 2012-11-07 2014-05-15 삼성전자주식회사 이동통신 시스템에서 셀간 간섭 관리 방법 및 장치

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201906A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 通信方法、设备和***
CN108810930A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 通信方法、设备和***
CN108810930B (zh) * 2017-05-05 2022-02-11 华为技术有限公司 通信方法、设备和***
WO2018228421A1 (zh) * 2017-06-14 2018-12-20 ***通信有限公司研究院 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点
CN112534739A (zh) * 2018-05-11 2021-03-19 弗劳恩霍夫应用研究促进协会 与空间分集相关联的点到多点共享接入全双工无线双工方案
CN115842607A (zh) * 2018-11-02 2023-03-24 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质
CN115842607B (zh) * 2018-11-02 2024-06-11 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质
CN114557008A (zh) * 2019-10-11 2022-05-27 株式会社Ntt都科摩 基站

Also Published As

Publication number Publication date
CN107211307B (zh) 2020-10-09
US10506610B2 (en) 2019-12-10
US20180020457A1 (en) 2018-01-18
CN107211307A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2016126033A1 (ko) 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치
WO2018169327A1 (ko) 무선 통신 시스템에서 ack/nack 송수신 방법 및 이를 위한 장치
WO2014107033A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 모니터링 방법 및 이를 위한 장치
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2014007593A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2016056877A2 (ko) D2d 동기화 신호의 송신 방법 및 이를 위한 단말
WO2013043008A2 (ko) 무선 통신 시스템에서 랜덤 액세스 방법 및 장치
WO2016018068A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 자원 정보 송신 송신 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2016018069A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 제어 정보 송신 방법 및 이를 위한 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016048112A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치
WO2016048111A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 모니터링 방법 및 이를 위한 장치
WO2018004296A2 (ko) 무선 통신 시스템에서 v2x 통신을 위한 ack/nack 전송 방법 및 이를 위한 장치
WO2016018075A1 (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2016018132A1 (ko) 무선 통신 시스템에서 d2d 통신을 지원하는 방법 및 이를 위한 장치
WO2018101738A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 이를 위한 장치
WO2019031946A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2017043947A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2014119939A1 (ko) 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
WO2016036103A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 신호 송수신 방법 및 이를 위한 장치
WO2019070098A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2017023150A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746774

Country of ref document: EP

Kind code of ref document: A1