WO2016126024A1 - Test socket having conductive particles in coupled form - Google Patents

Test socket having conductive particles in coupled form Download PDF

Info

Publication number
WO2016126024A1
WO2016126024A1 PCT/KR2016/000506 KR2016000506W WO2016126024A1 WO 2016126024 A1 WO2016126024 A1 WO 2016126024A1 KR 2016000506 W KR2016000506 W KR 2016000506W WO 2016126024 A1 WO2016126024 A1 WO 2016126024A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive particles
conductive
contact
opening
particle
Prior art date
Application number
PCT/KR2016/000506
Other languages
French (fr)
Korean (ko)
Inventor
권상준
오창수
김보현
Original Assignee
주식회사 티에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53505281&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016126024(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 티에스이 filed Critical 주식회사 티에스이
Publication of WO2016126024A1 publication Critical patent/WO2016126024A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor

Definitions

  • the present invention relates to an inspection socket, and more particularly, to an inspection socket for electrically connecting a terminal of a semiconductor device under test and a test board.
  • test socket for electrically connecting the test equipment and the semiconductor device is required.
  • the test socket is an intermediary component that allows the signal from the tester to pass through the test board to the semiconductor device under test in the test process. Inspection sockets require mechanical contact capability that allows individual semiconductor devices to move to the correct position, making accurate contact with the test board, and stable electrical contact capability to minimize signal distortion at the point of contact during signal transmission.
  • the conductive portion of the conventional inspection socket is composed of silicone rubber and conductive particles having a spherical shape, ie, an uneven shape, disposed thereon.
  • This electroconductive particle is a structure fixed by the silicone rubber.
  • Such uneven particles have a concentrated load because the contact portion of the semiconductor element under test is limited to a point contact, and the plating of the conductive particles is easily damaged and the shape is easily deformed and worn. As a result, the life of the inspection socket is drastically reduced.
  • the same phenomenon occurs between the conductive particles in the conductive portion as well as the portion in contact with the terminal of the semiconductor device under test, which is caused by the movement of the conductive particles due to the vertical movement of the semiconductor device under test. Since the change occurs and friction occurs between the conductive particles, the plating of the conductive particles is easily peeled off and the shape is easily deformed and worn. Therefore, the conductive part having the conductive particles having an uneven shape depending on the contact point due to the point has a problem in that the pressing is large by the terminal of the semiconductor device to be inspected, and the electrical property deteriorates rapidly when the number of times increases.
  • Figure 1 is a view showing a test socket according to the prior art
  • Figure 2 is a view showing a contact between the terminal and the conductive portion of the semiconductor device according to the prior art.
  • the inspection socket 10 has an insulating portion 13 serving as an insulating layer between the conductive portion 12 and the conductive portion 12 in contact with the terminal 15 of the semiconductor element 16. Is made of.
  • the upper and lower ends of the conductive portion 12 respectively contact the terminal 14 of the semiconductor element 16 and the conductive pad 15 of the test board 14 connected to the test equipment, so that the terminal 17 and the conductive pad 15 ) Is electrically connected.
  • the conductive portion 12 is hardened by mixing conductive particles (conductive metal powder, 12a) and silicone rubber 13a with silicon, and acts as a conductor through which electricity flows.
  • the conductive particles 12a are formed by spherical conductive particles 12a. Is used.
  • the conductive portion 12 of the test socket 10 is pressed upward and downward to increase contact characteristics during contact for a test of the semiconductor device 16.
  • the conductive portion 12 is pressed so that the spherical conductive particles 12a in the upper layer portion are pushed down, and the spherical conductive particles 12a in the middle layer portion are pushed aside.
  • the spherical, rugged, conductive particles 12a used in the conductive portion 12 of the conventional inspection socket 10 have a structure in which small particles are fixed by the silicone rubber 13a. Therefore, after performing a number of semiconductor tests, the spherical conductive particles 12a are separated from the conductive portion 12 or recessed, thereby deteriorating the electrical and mechanical properties of the test socket 10.
  • terminal 17 and the spherical conductive particles 12a have a problem in that electrical and mechanical properties are degraded due to damage of the contact portion as they are in contact with each other and are subjected to a concentrated load.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a conductive portion having conductive particles easily coupled to point, line, and surface contact, and to inspect the semiconductor device. It is to provide a test socket for preventing the resistance value is greatly increased by having a low and constant initial resistance value in contact with the liver and preventing the conductive particles from falling out or sinking even after long use.
  • the present invention comprises an insulating portion made of silicone rubber, and a plurality of conductive particles and at least one conductive portion formed to fuse through the insulating portion fused with the conductive particles and the silicone rubber, the conductive portion is an appearance And a first contact portion provided on one side of the body portion and contacting a terminal of a semiconductor device to be tested, wherein the first contact portion conductive particles included only in the first contact portion among the conductive particles have various pillar shapes.
  • the first contact portion conductive particles is the particle body forming the appearance Is formed so that one side of the body portion of the particle is opened, the other conductive particles At least one opening provided with a space to be coupled to each other, and a coupling portion provided to protrude from the opening and inserted into the opening of the other conductive particles so as to be coupled to each other, wherein the first contact portion is conductive
  • the bonding of the particles is such that the two conductive particles having the same shape has a height difference between the upper surface of the other conductive particles with respect to the upper surface of one conductive particle is inserted into the opening of the other conductive particles
  • the first contact portion conductive particles provide a test socket, characterized in that the width of the opening is formed 1um ⁇ 30um larger than the width of the coupling portion.
  • the conductive part may further include a second contact part provided on the other side of the body part to be in contact with the conductive pad of the test board.
  • the upper portion of the insulating portion is characterized in that it further comprises a guide plate provided with a guide hole to guide the contact position between the terminal and the first contact portion and to prevent the conductive particles from being separated and recessed to the outside.
  • the conductive particles are characterized in that the second contact portion also contains the same conductive particles as the first contact portion conductive particles.
  • the bonding of each of the first contact portion conductive particles is characterized in that the bonding portion of one of the conductive particles is bonded to the opening of the other conductive particles by any one of point, line, or surface contact.
  • the first contact portion conductive particles are characterized in that produced by the MEMS process.
  • the opening 122 of the first contact portion conductive particles 120 is characterized in that it is manufactured in at least one of a "U” shape, "V” shape or "c" shape.
  • the opening 122 of the first contact portion conductive particles 120 is characterized in that it is manufactured in at least one of the shape of "Woulle”, “W” or "d".
  • the conductive portion is characterized in that the weight of the conductive particles to the weight of the silicone rubber is composed of 0.5 to 10 times the ratio.
  • the first contact conductive particles are formed of a single material of any one of iron, copper, zinc, tin, chromium, nickel, cobalt, aluminum, rhodium, or formed of a double alloy of two or more of the above materials. do.
  • the conductive particles may include first conductive particles, second conductive particles having a different shape from the first conductive particles, and the first conductive particles may include a first particle body forming an appearance, and the first conductive particles.
  • One side of the particle body portion is formed to include an opening and at least one opening provided with a space for the second conductive particles can be coupled, wherein the second conductive particles and the second particle body forming the appearance and the second particle It is formed to include a coupling portion provided to protrude from the body rotor and inserted into each opening of the first conductive particles to be bonded to each other, wherein each of the conductive particles are second conductive particles with respect to the upper surface of the first conductive particles
  • the upper surface of the is characterized in that coupled to have a height difference.
  • the bonding of the conductive particles is characterized in that the bonding portion of the second conductive particles is bonded to the opening of the first conductive particles by any one of a line or a surface contact.
  • the opening width of the first conductive particles is characterized in that formed 1um ⁇ 30um larger than the width of the bonding portion of the second conductive particles.
  • the inspection socket according to the present invention provides a conductive particle which is easily bonded to each other by mechanical mixing, mechanical impact, and magnetic force, thereby increasing the contact area due to point, line, and surface contact with the terminal of the semiconductor device. It can provide the effect of obtaining a low initial resistance value.
  • the contact stability between the conductive particles and the semiconductor device is increased, and thus, it is possible to cope with the high frequency electric signal transmitted to the semiconductor device according to the technological development, and provide an effect that can cope with the dense pitch of the semiconductor device. have.
  • the conductive particles in the bonded state are applied to the conductive portion, point, line, and surface contact with the terminals of the semiconductor element are made, so that the concentrated load generated from the conventional spherical, ie irregular, conductive particles can be dispersed. It can provide an effect that can maintain the plating and shape of the conductive particles for a longer time.
  • the damage and the position of the portion where the conductive portion is contacted can be delayed as much as possible, and even if some deformation occurs, the bonding structure between the conductive particles is maintained so that the contact is more stable than the conventional conductive particles. It can enhance the effect that can maintain.
  • the bonded conductive particles may be manufactured by various materials as the bonded conductive particles are manufactured by the MEMS process, and may provide an effect of improving the durability of the conductive particles through the double plating process.
  • FIG. 1 is a view showing a test socket according to the prior art.
  • FIG. 2 is a view showing that a terminal and a conductive portion of a semiconductor element according to the prior art are in contact.
  • FIG 3 is a view showing a test socket according to an embodiment of the present invention.
  • FIG. 4 is a view showing conductive particles according to an embodiment of the present invention.
  • FIG. 5 is a view showing a state in which the conductive particles according to an embodiment of the present invention contained in the conductive portion.
  • FIG. 6 is a view showing an example in which the conductive particles according to an embodiment of the present invention in contact.
  • FIG. 7 is a view showing an example of the shape of the conductive particles according to an embodiment of the present invention.
  • FIG. 8 is a view showing another installation example of the conductive particles according to an embodiment of the present invention.
  • FIG. 9 is a view illustrating contact between a terminal and a conductive portion of a semiconductor device according to an exemplary embodiment of the present invention.
  • FIG. 10 is a view illustrating a state in which a terminal and an upper surface of a semiconductor device according to an embodiment of the present invention are changed when contacting conductive particles that are not identically coupled to each other;
  • FIG. 11 is a view showing conductive particles according to another embodiment of the present invention.
  • FIG. 12 is a view showing the resistance test results of the conductive particles and the conventional conductive particles according to an embodiment of the present invention.
  • FIG 3 is a view showing a test socket according to an embodiment of the present invention
  • Figure 4 is a view showing a conductive particle according to an embodiment of the present invention
  • Figure 5 is a conductive particle according to an embodiment of the present invention Is a view showing a state included in the conductive portion.
  • Figure 6 is a view showing an example in which the conductive particles in accordance with an embodiment of the present invention
  • Figure 7 is a view showing an example of the shape of the conductive particles according to an embodiment of the present invention
  • Figure 8 is the present invention Is a view showing another installation example of the conductive particles according to the embodiment.
  • FIG. 9 is a view illustrating a contact between a terminal and a conductive part of a semiconductor device according to an exemplary embodiment of the present invention, and FIG. 10 is not coupled to a terminal and an upper surface of the semiconductor device according to an embodiment of the present invention.
  • FIG. 11 is a view illustrating a changed state when the conductive particles are contacted, and FIG. 11 is a view showing conductive particles according to another embodiment of the present invention.
  • Figure 12 is a view showing the resistance test results of the conductive particles and the conventional conductive particles according to an embodiment of the present invention.
  • the test socket 100 may include an insulating part 130 and a conductive part 110.
  • the insulating part 130 is formed of a silicone rubber 131 to form a body of the test socket 100, and serves to support each conductive part 110 to be described later when receiving a contact load.
  • the insulating part 130 absorbs contact force to protect each terminal 150 and 170 and the conductive part 110. It plays a role.
  • the silicone rubber 131 used for the insulating portion 130 includes diene rubbers such as polybutadiene, natural rubber, polyisoprene, SBR, NBR, and hydrogen compounds thereof, and styrene butadiene block, copolymer, and styrene isoprene block copolymer. And other block copolymers such as chloroprene, urethane rubber, polyethylene rubber, epichlorohydrin rubber, ethylene-propylene copolymer, ethylene propylene diene copolymer, and the like, and hydrogen compounds thereof.
  • the conductive part 110 is formed by fusion of the plurality of conductive particles 120 and the silicone rubber 131 and is installed to penetrate the insulating part 130.
  • the conductive particles 120 according to an embodiment of the present invention is formed in a variety of columnar shape, at least one of the two or more conductive particles 120 by at least one of the mechanical mixing, mechanical impact and magnetic force applied to the conductive portion It characterized in that formed to be coupled to.
  • conductive parts 110 including conductive particles 120 are provided in the insulating part 130, at least one or more conductive parts 110 are formed to suit the size of the semiconductor test device. It is also possible, but not limited to.
  • the conductive portion 110 is provided on one side of the body portion 111 and the body portion 111 forming an appearance
  • the first contact portion 112 is in contact with the terminal 170 of the semiconductor device 160
  • the body portion The second contact part 113 may be provided on the other side of the 111 to contact the conductive pad 150 of the test board 140. That is, the first contact portion 112 is provided to contact the terminal 170, the second contact portion 113 is provided to contact the conductive pad 150, and the body portion 111 is the first contact portion 112. And to connect the second contact portion 113.
  • the guide plate 180 having the guide hole 181 may be further included on the upper portion of the insulation unit 130.
  • the first contact portion 112 is inserted into the guide hole 181 of the guide plate 180 to guide the contact position between the terminal 170 and the first contact portion 112 of the semiconductor device to be tested.
  • the conductive particles 120 of the first contact portion 112 are prevented from coming off or sinking by the impact of the terminal 170.
  • the conductive particles 120 include a particle body 121 forming an appearance, an opening 122, and a coupling part 123. Can be done.
  • the opening 122 is formed so that one side of the particle body 121 is opened to form a space so that the other conductive particles 120 can be coupled, the coupling portion 123 is formed to protrude around the opening 122 To be inserted into the openings 122 of the other conductive particles 120 to be coupled to each other.
  • each conductive particle 120 is bonded by the contact portion 123 of one conductive particle 120 by any one of point, line or surface contact to the opening 122 of the other conductive particle 120. Can be.
  • the opening 122 of the conductive particles 120 has a first contact surface 122a provided to contact one side of the coupling part 123 about a space, and a second contact surface provided to contact the other side of the coupling part 123 ( 122b) is preferably provided.
  • the coupling portion 123 of the conductive particles 120 when the coupling portion 123 of the conductive particles 120 is coupled to the opening 122 of the other conductive particles 120, the coupling portion 123 is formed in the opening 122. Coupling by any one of point, line or surface contact to the first contact surface 122a, or Coupling by any one of point, line or surface contact to the first contact surface 122a and the second contact surface 122b. Can be. Accordingly, the contact area between the conductive particles 120 to be bonded is increased to increase the binding force between the conductive particles 120.
  • each of the conductive particles 120 included in the conductive part 110 is in a state in which a pillar is erected, that is, a flat surface portion of the bonded conductive particles 120 is a terminal 170 of the semiconductor device.
  • the pillars are laid in the manufacturing process, that is, the pillar surface portion of the bonded conductive particles 120 may be disposed in contact with the terminal 170 of the semiconductor device, but in the process of coupling the respective conductive particles 120
  • the preferred phenomenon is that more conductive particles 120 are placed in a vertical state.
  • the resistance value is constant and has a low resistance value to improve the life of the product, and further it is possible to prevent the phenomenon of the separation and depression of each conductive particles 120 by increasing the contact area.
  • each conductive particle 120 is bonded so that the upper surface 120a of the other conductive particle 120 has a height difference with respect to the upper surface 120a of one conductive particle 120.
  • the upper surface (120a) any one of both surfaces of the conductive particles 120 is referred to as the upper surface (120a) for convenience of description. Therefore, when the combined conductive particles 120 are disposed upside down, the lower surface may be referred to as an upper surface.
  • the conductive particles 120 bonded in this state are caused by the elastic force of the silicone rubber 131 bound to the conductive particles 120 coupled with the contact load of the terminal 170 pressed from the upper side when contacted with the terminal 170 of the semiconductor device.
  • Each top surface 120a may be moved to the same planar state without a height difference.
  • the conductive particles 120 may be manufactured through a MEMS process, and a micro electro mechanical system (MEMS) process mainly uses a photomask process and an imprint technique of a semiconductor integrated circuit manufacturing technology.
  • MEMS micro electro mechanical system
  • the conductive particles 120 are manufactured by the MEMS process, the conductive particles 120 having a uniform size and shape may be manufactured to obtain electrical stability of the conductive particles 120.
  • the conductive particles 120 of various shapes different from the conventional spherical shape, that is, the rugged shape of the conductive particles, and in particular, because they are in a mutually bonded state, the contact area is increased so that the silicone rubber 131 and the conductive particles ( 120) can increase the binding force between.
  • the contact range with the silicone rubber 131 can be formed wider than the conventional spherical conductive particles, and the contact range with the terminal 170 of the semiconductor element is wider to derive a low initial resistance value, and also to the contact impact of the terminal. As a result, detachment and depression of the conductive particles 120 from the silicone rubber 131 can be prevented.
  • the conductive particles 120 may be manufactured from various materials, and durability of the conductive particles 120 may be secured through a double plating process.
  • the conductive particles 120 according to the exemplary embodiment of the present invention show that the particles are manufactured in a shape having one opening 122 and a shape having two openings 122.
  • the conductive particles 120 are formed to have one opening 122 in a column shape having both sides, and the opening 122 is formed in a “U” shape, a “V” shape, or It may be produced in any one of the "c" shape.
  • the conductive particles 120 may be formed to have two openings 122, and may be manufactured in at least one of a “null” shape, a “W” shape, or a “d” shape.
  • the shape of the conductive particles 120 is not shown, mutual coupling such as a cross shape, a slot shape, a lego shape, a spring shape, a pipe shape, and an irregular shape having at least one opening 122 and a coupling part 123 may be provided. It is possible to manufacture in any form as long as possible structure, it is preferable to manufacture in the above-mentioned formation for the convenience of manufacturing.
  • the conductive particles 120 may not be manufactured by a conventional mechanical manufacturing method. That is, the conductive particles 120 having a size of several tens of um are possible by the MEMS process.
  • Size tolerance of the conductive particles 120 is preferably formed in a uniform shape within the range of -10um ⁇ + 10um, the conductive portion 110 is coupled to the weight of the silicone rubber 131 It is preferable to comprise the weight of the type
  • the conductive particles 120 are preferably formed with a width (a) of the opening 122 is greater than 1um ⁇ 30um than the width (b) of the coupling portion 123. This is a range in which stable contact with the point, line, and surface of each conductive particle 120 can be made by external force due to mechanical mixing, mechanical shock, and magnetic force, and a contact load is applied to the terminal 170 of the semiconductor device. It is a range for generating a play so that it can be moved between the coupled conductive particles 120 upon receipt.
  • the conductive particles 120 may be formed of a single material of any one of iron, copper, zinc, tin, chromium, nickel, silver, cobalt, and aluminum rhodium, or may be formed of a double alloy of two or more of these materials. .
  • Conductive particles 120 according to an embodiment of the present invention can improve the strength and durability through rhodium plating.
  • the method for plating rhodium on the conductive particles 120 is not particularly limited, but may be plated by, for example, chemical plating or electroplating.
  • the conductive particles 120 may be included in at least one of the first contact portion 112 and the second contact portion 113.
  • the conductive particles 120 are included in the first contact portion 112 and include the first contact 112 portion and the second contact portion 113. Is presented. Although not shown, the conductive particles 120 may be formed only on the second contact portion 113, or may be formed on the entire conductive portion 110.
  • each of the conductive particles has the conductive particles having the same shape and bonded to each other, but in another embodiment of the present invention, the conductive particles to be bonded to each other is formed to have a different shape.
  • the conductive particles according to another embodiment of the present invention may include the first conductive particles 210 and the second conductive particles 220.
  • the first conductive particles 210 are formed so that one side of the first particle body portion 211 and the first particle body portion 211 forming an opening may have a space such that the second conductive particles 220 may be coupled to each other. At least one opening 212 may be provided.
  • the second conductive particles 220 are formed to protrude from the second particle body portion 221 and the second particle body portion 221 forming the external appearance and are inserted into the openings 212 of the first conductive particles 220 to each other. It may include a coupling portion 222 provided to be coupled to each other.
  • first conductive particles 210 are formed to have the concave opening 212
  • second conductive particles 220 are formed to have the convex coupling portion 222. To provide a mutual coupling.
  • the bonding of the conductive particles 210 and 220 may be performed by the coupling portion 22 of the second conductive particles 220 contacting the opening 212 of the first conductive particles 210 by any one of point, line, or surface contact. Can be combined.
  • the upper surface 220a of the second conductive particles 220 may be coupled to the upper surface 210a of the first conductive particles 210 to have a height difference.
  • the width of the opening 220 of the first conductive particles 210 is preferably formed 1um ⁇ 30um larger than the width of the coupling portion 123 of the second conductive particles.
  • the openings are manufactured in the “U” shape and the “c” shape, but the first conductive particles 210 or the second conductive particles 220 are provided.
  • the conductive particles having an opening 212 and the other conductive particle has a coupling portion 222 can be produced in any shape.
  • a test board 140 in which the test socket 100 is installed is prepared.
  • the conductive part 110 of the test socket 100 includes conductive particles coupled such that the upper surface 120a of the conductive particles 120 have the same plane, and conductive particles that are not bonded the same.
  • the second contact portion 113 of the conductive portion 110 is in contact with the conductive pad 141 of the test board 140 is electrically connected.
  • the conductive particles 120 included in the conductive portion 110 are bonded by mechanical mixing, mechanical impulse, and electrically connected magnetic force.
  • FIG. 10A is a view showing conductive particles in which the upper surface is not identically bonded
  • FIG. 10B is a cross-sectional view of FIG. 10A
  • FIG. 10A is a view showing conductive particles in which the upper surface is not identically bonded
  • test signal is transmitted to the semiconductor device 160 through the test socket 100 through the test board 140 to perform a test process.
  • FIG. 12 is a graph illustrating a result of a resistance test between a conventional grip part, that is, conductive particles having through holes formed therein and the conductive particles 120 according to an embodiment of the present invention, in which the vertical axis represents a resistance value and the horizontal axis represents an angle. The test point of electroconductive particle is shown.
  • the conventional conductive particles do not have a constant resistance value and the splashing value repeatedly appears, while the conductive particles 120 according to the embodiment of the present invention have a constant resistance value and at the same time the conventional conductive particles.
  • the results showed that the resistance value was lower than that of.

Abstract

The purpose of the present invention is to provide a test socket, which: provides a conduction unit having conductive particles easily coupled by dot, line, and surface contact, and thus, when a semiconductor device is tested, has a lower and constant initial resistance value while the conduction unit and a terminal make contact; and can prevent the conductive particles from being separated from the conduction unit or sinking even if used for a long time, thereby preventing a significant increase of a resistance value. To this end, the present invention comprises: an insulation unit formed from silicone rubber; a plurality of conductive particles; and at least one conduction unit having a silicone rubber fused thereto so as to be formed to penetrate the insulation unit, wherein the conductive particles are formed in various column shapes, and two or more conductive particles are formed to be coupled in at least one direction by at least one of mechanical mixing, mechanical impact, and a magnetic force applied to the conduction unit.

Description

결합 형상의 도전성 입자를 가지는 검사용 소켓Inspection socket with bonded conductive particles
본 발명은 검사용 소켓에 관한 것으로, 더욱 상세하게는 테스트를 받는 반도체 소자의 단자와 테스트 보드(test board)를 전기적으로 연결 시켜주는 검사용 소켓에 관한 것이다.The present invention relates to an inspection socket, and more particularly, to an inspection socket for electrically connecting a terminal of a semiconductor device under test and a test board.
반도체소자의 제조공정이 끝나면 반도체소자에 대한 테스트가 필요하다. 반도체소자의 테스트를 수행할 때에는 테스트장비와 반도체소자 간을 전기적으로 연결시키는 검사용 소켓이 필요하다. 검사용 소켓은 테스트 공정에서 테스터에서 나온 신호가 테스트보드를 거쳐 피검사 대상물인 반도체 소자로 전달될 수 있도록 하는 매개 부품이다. 검사용 소켓은 개별 반도체 소자가 정확한 위치로 이동하여 테스트보드와 정확하게 접촉하는 기계적 접촉 능력과 신호 전달시 접촉점에서의 신호 왜곡이 최소가 될 수 있도록 안정적인 전기적 접촉능력이 요구된다.After the manufacturing process of the semiconductor device is finished, a test on the semiconductor device is required. When performing a test of a semiconductor device, an inspection socket for electrically connecting the test equipment and the semiconductor device is required. The test socket is an intermediary component that allows the signal from the tester to pass through the test board to the semiconductor device under test in the test process. Inspection sockets require mechanical contact capability that allows individual semiconductor devices to move to the correct position, making accurate contact with the test board, and stable electrical contact capability to minimize signal distortion at the point of contact during signal transmission.
종래의 검사용 소켓의 도전부는 실리콘 고무와 이에 배치되는 구형 즉, 울퉁불퉁한 형상을 가지는 도전성 입자로 구성되어 있다. 이 도전성 입자는 실리콘 고무에 의해 고정되어 있는 구조이다.The conductive portion of the conventional inspection socket is composed of silicone rubber and conductive particles having a spherical shape, ie, an uneven shape, disposed thereon. This electroconductive particle is a structure fixed by the silicone rubber.
이러한 울퉁불퉁한 형상의 입자는 피검사 반도체 소자의 단자와 접촉되는 부분이 점 접점으로 한정되어 있기 때문에 집중 하중이 발생되며, 도전성 입자의 도금이 쉽게 손상되고 형상이 쉽게 변형되고 마모된다. 그에 따라 검사용 소켓의 수명이 급격하게 떨어진다.Such uneven particles have a concentrated load because the contact portion of the semiconductor element under test is limited to a point contact, and the plating of the conductive particles is easily damaged and the shape is easily deformed and worn. As a result, the life of the inspection socket is drastically reduced.
또한, 피검사 반도체 소자의 단자에 접촉되는 부분뿐만 아니라 도전부 내의 도전성 입자들 간에도 이와 동일한 현상이 발생되는데 이는 피검사 반도체 소자의 상하운동에 따른 도전성 입자의 움직임에 의해 도전성 입자가 실리콘 내부에서 위치 변화가 일어나고 도전성 입자 간에 마찰이 발생하게 되기 때문에 도전성 입자의 도금이 쉽게 벗겨지고 형상이 쉽게 변형 되고 마모 된다. 그러므로 점에 의한 접점에 의지하는 울퉁불퉁한 형상의 도전성 입자를 가진 도전부는 검사 하고자 하는 반도체소자의 단자에 의해서 눌림이 크고, 횟수가 많아지면 전기적 특성이 급격하게 나빠지는 문제점을 가지고 있다. In addition, the same phenomenon occurs between the conductive particles in the conductive portion as well as the portion in contact with the terminal of the semiconductor device under test, which is caused by the movement of the conductive particles due to the vertical movement of the semiconductor device under test. Since the change occurs and friction occurs between the conductive particles, the plating of the conductive particles is easily peeled off and the shape is easily deformed and worn. Therefore, the conductive part having the conductive particles having an uneven shape depending on the contact point due to the point has a problem in that the pressing is large by the terminal of the semiconductor device to be inspected, and the electrical property deteriorates rapidly when the number of times increases.
도 1은 종래 기술에 따른 검사용 소켓을 나타내는 도면이고, 도 2는 종래 기술에 따른 반도체 소자의 단자와 도전부가 접촉하는 것을 나타낸 도면이다.1 is a view showing a test socket according to the prior art, Figure 2 is a view showing a contact between the terminal and the conductive portion of the semiconductor device according to the prior art.
종래 기술에 따른 검사용 소켓(10)은 반도체 소자(16)의 단자(ball lead ; 15)와 접촉하는 도전부(12)와 도전부(12) 사이에서 절연층 역할을 하는 절연부(13)로 이루어진다.The inspection socket 10 according to the related art has an insulating portion 13 serving as an insulating layer between the conductive portion 12 and the conductive portion 12 in contact with the terminal 15 of the semiconductor element 16. Is made of.
도전부(12)의 상단부와 하단부는 각각 반도체 소자(16)의 단자(14)와 테스트장비와 연결된 테스트 보드(14)의 도전 패드(15)와 접촉하여, 단자(17)와 도전 패드(15)를 전기적으로 연결해준다.The upper and lower ends of the conductive portion 12 respectively contact the terminal 14 of the semiconductor element 16 and the conductive pad 15 of the test board 14 connected to the test equipment, so that the terminal 17 and the conductive pad 15 ) Is electrically connected.
도전부(12)는 실리콘에 도전성 입자(도전성 금속 파우더, 12a) 및 실리콘 고무(13a)를 혼합하여 굳힌 것으로서 전기가 흐르는 도체로 작용하며, 상기 도전성 입자(12a)는 구형 도전성 입자(12a)가 이용된다.The conductive portion 12 is hardened by mixing conductive particles (conductive metal powder, 12a) and silicone rubber 13a with silicon, and acts as a conductor through which electricity flows. The conductive particles 12a are formed by spherical conductive particles 12a. Is used.
도 2를 참조하면, 검사용 소켓(10)의 도전부(12)는 반도체 소자(16)의 테스트를 위한 접촉 시 접촉특성을 높이기 위해 상하로 압력을 받는다. 도전부(12)가 가압되어 상층부의 구형 도전성 입자(12a)는 아래로 밀려나고 중층부의 구형 도전성 입자(12a)는 옆으로 조금씩 밀려난다.Referring to FIG. 2, the conductive portion 12 of the test socket 10 is pressed upward and downward to increase contact characteristics during contact for a test of the semiconductor device 16. The conductive portion 12 is pressed so that the spherical conductive particles 12a in the upper layer portion are pushed down, and the spherical conductive particles 12a in the middle layer portion are pushed aside.
이러한 종래의 검사용 소켓(10)의 도전부(12)에 이용되는 구형 즉, 울퉁불퉁 형상의 도전성 입자(12a)는 작은 크기의 입자가 실리콘 고무(13a)에 의해 고정된 구조이다. 따라서 수많은 반도체 테스트를 수행한 후에는 구형 도전성 입자(12a)가 도전부(12)에서 이탈하거나 함몰되어, 검사용 소켓(10)의 전기적, 기계적인 특성이 저하되는 문제점이 있었다.The spherical, rugged, conductive particles 12a used in the conductive portion 12 of the conventional inspection socket 10 have a structure in which small particles are fixed by the silicone rubber 13a. Therefore, after performing a number of semiconductor tests, the spherical conductive particles 12a are separated from the conductive portion 12 or recessed, thereby deteriorating the electrical and mechanical properties of the test socket 10.
또한, 단자(17)와 구형 도전성 입자(12a)는 접촉 시 서로 점 접촉되어 집중 하중을 받게 됨에 따라 접촉부위의 손상으로 인한 전기적, 기계적 특성이 저하되는 문제점이 있었다.In addition, the terminal 17 and the spherical conductive particles 12a have a problem in that electrical and mechanical properties are degraded due to damage of the contact portion as they are in contact with each other and are subjected to a concentrated load.
본 발명은 상기와 같은 종래 문제를 해결하고자 창출된 것으로, 본 발명의 목적은 점, 선, 면 접촉이 용이하게 결합된 도전성 입자를 가진 도전부를 제공하여 반도체 소자를 검사할 경우, 도전부와 단자간의 접촉 시 낮고 일정한 초기저항 값을 가지며 장시간 사용에도 도전성 입자들이 도전부로부터 이탈되거나 함몰되는 것을 방지할 수 있도록 한 것에 의해 저항 값이 크게 증가하지 않도록 하기 위한 검사용 소켓을 제공하고자 한 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a conductive portion having conductive particles easily coupled to point, line, and surface contact, and to inspect the semiconductor device. It is to provide a test socket for preventing the resistance value is greatly increased by having a low and constant initial resistance value in contact with the liver and preventing the conductive particles from falling out or sinking even after long use.
상기와 같은 목적을 달성하기 위하여, 본 발명은 실리콘 고무로 이루어진 절연부와, 복수의 도전성 입자 및 실리콘 고무가 융합되어 상기 절연부를 관통하도록 형성된 적어도 하나의 도전부를 포함하여 이루어지되, 상기 도전부는 외관을 이루는 몸체부 및 상기 몸체부의 일측에 제공되어 테스트를 받을 반도체 소자의 단자와 접촉되는 제1 접촉부를 포함하며, 상기 도전성 입자 중 상기 제 1 접촉부에만 포함되는 제 1 접촉부 도전성 입자는, 다양한 기둥 모양으로 형성되되, 상기 도전부에 인가되는 기계적 혼합, 기계적 충격 및 자기력 중 적어도 하나에 의해 2개 이상의 도전성 입자가 적어도 한 방향으로 결합되도록 형성되되, 상기 제 1 접촉부 도전성 입자는 외관을 이루는 입자 몸통부, 상기 입자 몸통부 일측이 개구되도록 형성되어 다른 도전성 입자가 결합될 수 있도록 공간이 마련된 적어도 하나의 개구부 그리고, 상기 개구부를 중심으로 돌출 형성되어 상기 다른 도전성 입자의 개구부로 삽입시켜 상호간에 결합될 수 있도록 제공된 결합부를 포함하여 이루어지며, 상기 제 1 접촉부 도전성 입자의 결합은 동일한 형상을 가지는 두 도전성 입자가 하나의 도전성 입자의 상부면에 대해 다른 도전성 입자의 상부면이 높이 차를 가지도록 상기 하나의 도전성 입자의 결합부가 상기 다른 도전성 입자의 개구부에 삽입되어 이루어지며, 상기 제1 접촉부 도전성 입자는 개구부의 폭이 결합부의 폭 보다 1um ~ 30um 크게 형성된 것을 특징으로 하는 검사용 소켓을 제공한다.In order to achieve the above object, the present invention comprises an insulating portion made of silicone rubber, and a plurality of conductive particles and at least one conductive portion formed to fuse through the insulating portion fused with the conductive particles and the silicone rubber, the conductive portion is an appearance And a first contact portion provided on one side of the body portion and contacting a terminal of a semiconductor device to be tested, wherein the first contact portion conductive particles included only in the first contact portion among the conductive particles have various pillar shapes. Is formed so that, by at least one of mechanical mixing, mechanical impact and magnetic force applied to the conductive portion is formed so that the two or more conductive particles are coupled in at least one direction, the first contact portion conductive particles is the particle body forming the appearance Is formed so that one side of the body portion of the particle is opened, the other conductive particles At least one opening provided with a space to be coupled to each other, and a coupling portion provided to protrude from the opening and inserted into the opening of the other conductive particles so as to be coupled to each other, wherein the first contact portion is conductive The bonding of the particles is such that the two conductive particles having the same shape has a height difference between the upper surface of the other conductive particles with respect to the upper surface of one conductive particle is inserted into the opening of the other conductive particles It is made, the first contact portion conductive particles provide a test socket, characterized in that the width of the opening is formed 1um ~ 30um larger than the width of the coupling portion.
이때 상기 도전부는 상기 몸체부의 타측에 제공되어 테스트 보드의 도전 패드와 접촉되는 제2 접촉부를 더 포함하는 것을 특징으로 한다.In this case, the conductive part may further include a second contact part provided on the other side of the body part to be in contact with the conductive pad of the test board.
한편 상기 절연부 상단에는 상기 단자와 제1 접촉부 간의 접촉 위치를 안내함과 더불어 도전성 입자가 외부로 이탈 및 함몰되는 것을 방지하기 위해 가이드홀이 마련된 가이드 플레이트가 더 포함된 것을 특징으로 한다.On the other hand, the upper portion of the insulating portion is characterized in that it further comprises a guide plate provided with a guide hole to guide the contact position between the terminal and the first contact portion and to prevent the conductive particles from being separated and recessed to the outside.
이때 상기 도전성 입자는 제 2 접촉부에도 상기 제 1 접촉부 도전성 입자와 동일한 도전성 입자가 포함된 것을 특징으로 한다.In this case, the conductive particles are characterized in that the second contact portion also contains the same conductive particles as the first contact portion conductive particles.
이때 상기 각 제 1 접촉부 도전성 입자의 결합은 하나의 도전성 입자의 결합부가 다른 도전성 입자의 개구부에 점, 선, 또는 면 접촉 중 어느 하나의 접촉에 의해 결합되는 것을 특징으로 한다.At this time, the bonding of each of the first contact portion conductive particles is characterized in that the bonding portion of one of the conductive particles is bonded to the opening of the other conductive particles by any one of point, line, or surface contact.
이때 상기 제 1 접촉부 도전성 입자는 MEMS 공정에 의해 제조된 것을 특징으로 한다.In this case, the first contact portion conductive particles are characterized in that produced by the MEMS process.
한편 상기 제 1 접촉부 도전성 입자(120)의 개구부(122)는 "U" 형상, "V" 형상 또는 "ㄷ" 형상 중 적어도 어느 하나의 형상으로 제조된 것을 특징으로 한다.On the other hand, the opening 122 of the first contact portion conductive particles 120 is characterized in that it is manufactured in at least one of a "U" shape, "V" shape or "c" shape.
또한 상기 제 1 접촉부 도전성 입자(120)의 개구부(122)는 "너울" 형상, "W" 형상 또는 "ㄹ" 형상 중 적어도 하나의 형상으로 제조된 것을 특징으로 한다.In addition, the opening 122 of the first contact portion conductive particles 120 is characterized in that it is manufactured in at least one of the shape of "Woulle", "W" or "d".
또한 상기 도전부는 상기 실리콘 고무의 중량 대비 상기 도전성 입자의 중량이 0.5~10배 비율로 구성되는 것을 특징으로 한다.In addition, the conductive portion is characterized in that the weight of the conductive particles to the weight of the silicone rubber is composed of 0.5 to 10 times the ratio.
또한 상기 제 1 접촉부 도전성 입자는 철, 구리, 아연, 주석, 크롬, 니켈, 코발트, 알루미늄, 로듐 중 어느 하나의 단일 소재로 형성되거나, 상기 소재 중 두 가지 이상 소재의 이중 합금으로 형성된 것을 특징으로 한다.In addition, the first contact conductive particles are formed of a single material of any one of iron, copper, zinc, tin, chromium, nickel, cobalt, aluminum, rhodium, or formed of a double alloy of two or more of the above materials. do.
한편 상기 도전성 입자는 제1 도전성 입자와, 상기 제1 도전성 입자와 다른 형상을 가지는 제2 도전성 입자를 포함하여 이루어지되, 상기 제1 도전성 입자는 외관을 이루는 제1 입자 몸통부와, 상기 제1 입자 몸통부 일측이 개구되도록 형성되어 상기 제2 도전성 입자가 결합될 수 있도록 공간이 마련된 적어도 하나의 개구부를 포함하며, 상기 제2 도전성 입자는 외관을 이루는 제2 입자 몸통부와, 상기 제2 입자 몸통부로터 돌출 형성되어 상기 제1 도전성 입자의 각 개구부로 삽입시켜 상호 간에 결합될 수 있도록 제공된 결합부를 포함하여 이루어지며, 상기 각 도전성 입자는 상기 제1 도전성 입자의 상부면에 대해 제2 도전성 입자의 상부면이 높이 차를 가지도록 결합되는 것을 특징으로 한다.Meanwhile, the conductive particles may include first conductive particles, second conductive particles having a different shape from the first conductive particles, and the first conductive particles may include a first particle body forming an appearance, and the first conductive particles. One side of the particle body portion is formed to include an opening and at least one opening provided with a space for the second conductive particles can be coupled, wherein the second conductive particles and the second particle body forming the appearance and the second particle It is formed to include a coupling portion provided to protrude from the body rotor and inserted into each opening of the first conductive particles to be bonded to each other, wherein each of the conductive particles are second conductive particles with respect to the upper surface of the first conductive particles The upper surface of the is characterized in that coupled to have a height difference.
이때 상기 도전성 입자의 결합은 상기 제2 도전성 입자의 결합부가 상기 제1 도전성 입자의 개구부에 선 또는 면 접촉 중 어느 하나의 접촉에 의해 결합되는 것을 특징으로 한다.In this case, the bonding of the conductive particles is characterized in that the bonding portion of the second conductive particles is bonded to the opening of the first conductive particles by any one of a line or a surface contact.
이때 상기 제1 도전성 입자의 개구부 폭이 상기 제2 도전성 입자의 결합부 폭 보다 1um ~ 30um 크게 형성된 것을 특징으로 한다.At this time, the opening width of the first conductive particles is characterized in that formed 1um ~ 30um larger than the width of the bonding portion of the second conductive particles.
본 발명에 따른 검사용 소켓은 기계적 혼합, 기계적 충격 및 자기력에 의해 서로 용이하게 결합된 도전성 입자를 제공함에 따라 반도체 소자의 단자와 접촉 시 점, 선, 면 접촉으로 인한 접촉 면적이 증대되어 일정하고 낮은 초기저항 값을 얻을 수 있는 효과를 제공할 수 있다.The inspection socket according to the present invention provides a conductive particle which is easily bonded to each other by mechanical mixing, mechanical impact, and magnetic force, thereby increasing the contact area due to point, line, and surface contact with the terminal of the semiconductor device. It can provide the effect of obtaining a low initial resistance value.
이에 따라, 도전성 입자와 반도체 소자간의 접촉 안정성이 증대되어, 기술발전에 따른 반도체 소자에 전송되는 고주파 전기신호에 대응할 수 있으며, 반도체 소자의 조밀한 피치(Pitch)에 대응할 수 있는 효과를 제공할 수 있다.As a result, the contact stability between the conductive particles and the semiconductor device is increased, and thus, it is possible to cope with the high frequency electric signal transmitted to the semiconductor device according to the technological development, and provide an effect that can cope with the dense pitch of the semiconductor device. have.
또한 본 발명에 의하면 도전부에 결합상태의 도전성 입자가 적용됨에 따라 반도체 소자의 단자와 접촉 시 점, 선, 면 접촉이 이루어져 종래 구형 즉, 불규칙한 형상의 도전성 입자에서 발생된 집중 하중을 분산 시킬 수 있는 효과를 제공하여 도전성 입자의 도금 및 형상을 더 오래 유지할 수 있는 효과를 제공할 수 있다.In addition, according to the present invention, as the conductive particles in the bonded state are applied to the conductive portion, point, line, and surface contact with the terminals of the semiconductor element are made, so that the concentrated load generated from the conventional spherical, ie irregular, conductive particles can be dispersed. It can provide an effect that can maintain the plating and shape of the conductive particles for a longer time.
이에 따라 접점이 빈번하게 발생되더라도 도전부가 접촉되는 부분의 손상 및 위치가 변형되는 것을 최대한 지연할 수 있으며, 일부 변형이 발생하여도 도전성 입자간의 결합 구조는 유지되어 종래의 도전성 입자에 비해 안정적으로 접점을 유지할 수 있는 효과를 제고할 수 있다. Accordingly, even if the contact occurs frequently, the damage and the position of the portion where the conductive portion is contacted can be delayed as much as possible, and even if some deformation occurs, the bonding structure between the conductive particles is maintained so that the contact is more stable than the conventional conductive particles. It can enhance the effect that can maintain.
또한 본 발명에 의하면 결합형 도전성 입자를 MEMS 공정에 의해 제조함에 따라 다양한 소재로 결합형 도전성 입자를 제조할 수 있으며, 이중 도금 공정을 통한 도전성 입자의 내구성을 향상시키는 효과를 제공할 수 있다.In addition, according to the present invention, the bonded conductive particles may be manufactured by various materials as the bonded conductive particles are manufactured by the MEMS process, and may provide an effect of improving the durability of the conductive particles through the double plating process.
도 1은 종래 기술에 따른 검사용 소켓을 나타내는 도면.1 is a view showing a test socket according to the prior art.
도 2는 종래 기술에 따른 반도체 소자의 단자와 도전부가 접촉하는 것을 나타내는 도면.2 is a view showing that a terminal and a conductive portion of a semiconductor element according to the prior art are in contact.
도 3은 본 발명의 일 실시예에 따른 검사용 소켓을 나타내는 도면.3 is a view showing a test socket according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 도전성 입자를 나타내는 도면.4 is a view showing conductive particles according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 도전성 입자가 도전부에 포함된 상태를 나타낸 도면.5 is a view showing a state in which the conductive particles according to an embodiment of the present invention contained in the conductive portion.
도 6은 본 발명의 일 실시예에 따른 도전성 입자가 접촉된 예를 나타낸 도면.6 is a view showing an example in which the conductive particles according to an embodiment of the present invention in contact.
도 7은 본 발명의 일 실시예에 따른 도전성 입자 형상의 예를 나타낸 도면.7 is a view showing an example of the shape of the conductive particles according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 도전성 입자의 다른 설치 예를 나타낸 도면.8 is a view showing another installation example of the conductive particles according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 반도체 소자의 단자와 도전부가 접촉하는 것을 나타내는 도면.9 is a view illustrating contact between a terminal and a conductive portion of a semiconductor device according to an exemplary embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 반도체 소자의 단자와 상부면이 동일하지 않게 결합된 도전성 입자가 접촉될 경우 변화되는 상태를 예시한 도면.FIG. 10 is a view illustrating a state in which a terminal and an upper surface of a semiconductor device according to an embodiment of the present invention are changed when contacting conductive particles that are not identically coupled to each other; FIG.
도 11은 본 발명의 다른 실시예에 따른 도전성 입자를 나타낸 도면.11 is a view showing conductive particles according to another embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 도전성 입자와 종래 도전성 입자의 저항 테스트 결과를 나타낸 도면.12 is a view showing the resistance test results of the conductive particles and the conventional conductive particles according to an embodiment of the present invention.
이하, 상기 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예가 첨부된 도면을 참조하여 설명된다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 하기에서 생략된다.Hereinafter, preferred embodiments of the present invention, in which the above object can be specifically realized, are described with reference to the accompanying drawings. In describing the present embodiment, the same name and the same reference numerals are used for the same configuration and additional description thereof will be omitted below.
도 3은 본 발명의 일 실시예에 따른 검사용 소켓을 나타내는 도면이고, 도 4는 본 발명의 일 실시예에 따른 도전성 입자를 나타내는 도면이며, 도 5는 본 발명의 일 실시예에 따른 도전성 입자가 도전부에 포함된 상태를 나타낸 도면이다.3 is a view showing a test socket according to an embodiment of the present invention, Figure 4 is a view showing a conductive particle according to an embodiment of the present invention, Figure 5 is a conductive particle according to an embodiment of the present invention Is a view showing a state included in the conductive portion.
다음, 도 6은 본 발명의 일 실시예에 따른 도전성 입자가 접촉된 예를 나타낸 도면이고, 도 7은 본 발명의 일 실시예에 따른 도전성 입자 형상의 예를 나타낸 도면이며, 도 8은 본 발명의 일 실시예에 따른 도전성 입자의 다른 설치 예를 나타낸 도면이다.Next, Figure 6 is a view showing an example in which the conductive particles in accordance with an embodiment of the present invention, Figure 7 is a view showing an example of the shape of the conductive particles according to an embodiment of the present invention, Figure 8 is the present invention Is a view showing another installation example of the conductive particles according to the embodiment.
다음, 도 9는 본 발명의 일 실시예에 따른 반도체 소자의 단자와 도전부가 접촉하는 것을 나타내는 도면이고, 도 10은 본 발명의 일 실시예에 따른 반도체 소자의 단자와 상부면이 동일하지 않게 결합된 도전성 입자가 접촉될 경우 변화되는 상태를 예시한 도면이며, 도 11은 본 발명의 다른 실시예에 따른 도전성 입자를 나타낸 도면이다.Next, FIG. 9 is a view illustrating a contact between a terminal and a conductive part of a semiconductor device according to an exemplary embodiment of the present invention, and FIG. 10 is not coupled to a terminal and an upper surface of the semiconductor device according to an embodiment of the present invention. FIG. 11 is a view illustrating a changed state when the conductive particles are contacted, and FIG. 11 is a view showing conductive particles according to another embodiment of the present invention.
다음, 도 12는 본 발명의 일 실시예에 따른 도전성 입자와 종래 도전성 입자의 저항 테스트 결과를 나타낸 도면이다.Next, Figure 12 is a view showing the resistance test results of the conductive particles and the conventional conductive particles according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 검사용 소켓(100)은 절연부(130)와 도전부(110)를 포함하여 이루어질 수 있다.As shown in FIG. 3, the test socket 100 according to the exemplary embodiment of the present invention may include an insulating part 130 and a conductive part 110.
절연부(130)는 실리콘 고무(131)로 형성되어 검사용 소켓(100)의 몸체를 이루며, 후술하는 각 도전부(110)가 접촉 하중을 받을 때 지지하는 역할을 한다. The insulating part 130 is formed of a silicone rubber 131 to form a body of the test socket 100, and serves to support each conductive part 110 to be described later when receiving a contact load.
더욱 구체적으로 실리콘 고무(131)로 형성된 절연부(130)는 단자(170) 또는 도전 패드(150)가 접촉될 경우, 접촉력을 흡수하여 각 단자(150, 170) 및 도전부(110)를 보호하는 역할을 한다. More specifically, when the terminal 170 or the conductive pad 150 is in contact with the insulating part 130 formed of the silicone rubber 131, the insulating part 130 absorbs contact force to protect each terminal 150 and 170 and the conductive part 110. It plays a role.
절연부(130)에 사용되는 실리콘 고무(131)는 폴리부타디엔, 자연산 고무, 폴리이소프렌, SBR, NBR등 및 그들의 수소화합물과 같은 디엔형 고무와, 스티렌 부타디엔 블럭, 코폴리머, 스티렌 이소프렌 블럭 코폴리머등, 및 그들의 수소 화합물과 같은, 블럭 코폴리머와, 클로로프렌, 우레탄 고무, 폴리에틸렌형 고무, 에피클로로히드린 고무, 에틸렌-프로필렌 코폴리머, 에틸렌 프로필렌 디엔 코폴리머 중 어느 하나가 사용될 수 있다.The silicone rubber 131 used for the insulating portion 130 includes diene rubbers such as polybutadiene, natural rubber, polyisoprene, SBR, NBR, and hydrogen compounds thereof, and styrene butadiene block, copolymer, and styrene isoprene block copolymer. And other block copolymers such as chloroprene, urethane rubber, polyethylene rubber, epichlorohydrin rubber, ethylene-propylene copolymer, ethylene propylene diene copolymer, and the like, and hydrogen compounds thereof.
도전부(110)는 복수의 도전성 입자(120) 및 실리콘 고무(131)가 융합되어 이루어지며 절연부(130)를 관통하도록 설치된다. 이때 본 발명의 실시예에 따른 도전성 입자(120)는 다양한 기둥 모양으로 형성되되, 도전부에 인가되는 기계적 혼합, 기계적 충격 및 자기력 중 적어도 하나에 의해 2개 이상의 도전성 입자(120)가 적어도 한 방향에 있어 결합되도록 형성된 것을 특징으로 한다.The conductive part 110 is formed by fusion of the plurality of conductive particles 120 and the silicone rubber 131 and is installed to penetrate the insulating part 130. At this time, the conductive particles 120 according to an embodiment of the present invention is formed in a variety of columnar shape, at least one of the two or more conductive particles 120 by at least one of the mechanical mixing, mechanical impact and magnetic force applied to the conductive portion It characterized in that formed to be coupled to.
본 발명의 일 실시예에 따른 도전성 입자(120)가 포함된 도전부(110)는 절연부(130)에 3개 설치된 것이 제시되었지만, 반도체 테스트 소자의 크기에 적합하도록 적어도 하나 이상 복수개가 형성되는 것도 가능하여 이에 한정하지는 않는다.Although three conductive parts 110 including conductive particles 120 according to an exemplary embodiment of the present invention are provided in the insulating part 130, at least one or more conductive parts 110 are formed to suit the size of the semiconductor test device. It is also possible, but not limited to.
이때 도전부(110)는 외관을 이루는 몸체부(111)와, 몸체부(111)의 일측에 제공되어 반도체 소자(160)의 단자(170)와 접촉되는 제1 접촉부(112), 그리고 몸체부(111)의 타측에 제공되어 테스트 보드(140)의 도전 패드(150)와 접촉되는 제2 접촉부(113)를 포함하여 이루어질 수 있다. 즉 제1 접촉부(112)는 단자(170)와 접촉시키기 위해 제공된 것이고, 제2 접촉부(113)는 도전 패드(150)와 접촉시키기 위해 제공된 것이며, 몸체부(111)는 제1 접촉부(112)와 제2 접촉부(113)를 연결시키기 위해 제공된 것이다.In this case, the conductive portion 110 is provided on one side of the body portion 111 and the body portion 111 forming an appearance, the first contact portion 112 is in contact with the terminal 170 of the semiconductor device 160, and the body portion The second contact part 113 may be provided on the other side of the 111 to contact the conductive pad 150 of the test board 140. That is, the first contact portion 112 is provided to contact the terminal 170, the second contact portion 113 is provided to contact the conductive pad 150, and the body portion 111 is the first contact portion 112. And to connect the second contact portion 113.
한편 절연부(130) 상단에는 가이드 홀(181)이 마련된 가이드 플레이트(180)가 더 포함될 수 있다. 이는 가이드 플레이트(180)의 가이드 홀(181)에 제1 접촉부(112)가 삽입 설치되어, 테스트를 받을 반도체 소자의 단자(170)와 제1 접촉부(112) 간의 접촉 위치를 안내는 것과 더불어 상호간 접촉 시, 단자(170)의 충격에 의해 제1 접촉부(112)의 도전성 입자(120)가 외부로 이탈되거나 함몰되는 것을 방지하기 위해 제공된 것이다.Meanwhile, the guide plate 180 having the guide hole 181 may be further included on the upper portion of the insulation unit 130. The first contact portion 112 is inserted into the guide hole 181 of the guide plate 180 to guide the contact position between the terminal 170 and the first contact portion 112 of the semiconductor device to be tested. At the time of contact, the conductive particles 120 of the first contact portion 112 are prevented from coming off or sinking by the impact of the terminal 170.
본 발명의 일 실시예에 따른 도전성 입자(120)는 도 4 및 도 5에 도시된 바와 같이, 외관을 이루는 입자 몸통부(121)와, 개구부(122), 그리고 결합부(123)를 포함하여 이루어질 수 있다. As shown in FIGS. 4 and 5, the conductive particles 120 according to the exemplary embodiment of the present invention include a particle body 121 forming an appearance, an opening 122, and a coupling part 123. Can be done.
이때 개구부(122)는 입자 몸통부(121) 일측이 개구되도록 형성되어 다른 도전성 입자(120)가 결합될 수 있도록 공간 상태로 형성되며, 결합부(123)는 개구부(122)를 중심으로 돌출 형성되어 다른 도전성 입자(120)의 개구부(122)로 삽입시켜 상호간에 결합될 수 있도록 제공된 것이다.At this time, the opening 122 is formed so that one side of the particle body 121 is opened to form a space so that the other conductive particles 120 can be coupled, the coupling portion 123 is formed to protrude around the opening 122 To be inserted into the openings 122 of the other conductive particles 120 to be coupled to each other.
한편 각 도전성 입자(120)의 결합은 하나의 도전성 입자(120)의 결합부(123)가 다른 도전성 입자(120)의 개구부(122)에 점, 선 또는 면 접촉 중 어느 하나의 접촉에 의해 결합될 수 있다.On the other hand, the bonding of each conductive particle 120 is bonded by the contact portion 123 of one conductive particle 120 by any one of point, line or surface contact to the opening 122 of the other conductive particle 120. Can be.
이때 도전성 입자(120)의 개구부(122)는 공간을 중심으로 결합부(123)의 일측이 접촉되도록 제공된 제1 접촉면(122a)과, 결합부(123)의 타측이 접촉되도록 제공된 제2 접촉면(122b)이 마련되는 것이 바람직하다.In this case, the opening 122 of the conductive particles 120 has a first contact surface 122a provided to contact one side of the coupling part 123 about a space, and a second contact surface provided to contact the other side of the coupling part 123 ( 122b) is preferably provided.
더욱 구체적으로 도 6에 도시된 바와 같이, 도전성 입자(120)의 결합부(123)가 다른 도전성 입자(120)의 개구부(122)에 결합될 경우, 결합부(123)가 개구부(122)의 제1 접촉면(122a)에 점, 선 또는 면 접촉 중 어느 하나의 접촉에 의해 결합되거나, 제1 접촉면(122a) 및 제2 접촉면(122b)에 점, 선 또는 면 중 어느 하나의 접촉에 의해 결합될 수 있다. 이에 따라 결합되는 도전성 입자(120)간의 접촉 면적이 증가하여 상호간의 결속력이 증대되는 것이다.More specifically, as shown in FIG. 6, when the coupling portion 123 of the conductive particles 120 is coupled to the opening 122 of the other conductive particles 120, the coupling portion 123 is formed in the opening 122. Coupling by any one of point, line or surface contact to the first contact surface 122a, or Coupling by any one of point, line or surface contact to the first contact surface 122a and the second contact surface 122b. Can be. Accordingly, the contact area between the conductive particles 120 to be bonded is increased to increase the binding force between the conductive particles 120.
한편 도전부(110)를 제조하는 과정에서 도전부(110)에 포함된 각 도전성 입자(120)는 기둥이 세워진 상태 즉, 결합된 도전성 입자(120)의 평평한 면 부분이 반도체 소자의 단자(170)와 접촉될 수 있도록 배치되는 것이 바람직하다. 물론 제조과정에서 기둥이 누워진 상태 즉, 결합된 도전성 입자(120)의 기둥면 부분이 반도체 소자의 단자(170)와 접촉되는 상태로 배치될 수도 있으나, 각 도전성 입자(120)가 결합되는 과정에서 자연적으로 더 많은 도전성 입자(120)들이 수직 상태로 배치되는 바람직한 현상이 도출 되었다.Meanwhile, in the process of manufacturing the conductive part 110, each of the conductive particles 120 included in the conductive part 110 is in a state in which a pillar is erected, that is, a flat surface portion of the bonded conductive particles 120 is a terminal 170 of the semiconductor device. Is preferably arranged to be in contact with Of course, the pillars are laid in the manufacturing process, that is, the pillar surface portion of the bonded conductive particles 120 may be disposed in contact with the terminal 170 of the semiconductor device, but in the process of coupling the respective conductive particles 120 Naturally, the preferred phenomenon is that more conductive particles 120 are placed in a vertical state.
이에 따라 반도체 소자의 단자(170)와 결합된 도전성 입자(120)간에도 점, 선 또는 면 접촉 중 어느 한 접촉으로 접촉되는 바, 접촉 하중이 분산되어 도전성 입자(120)로 전달되는 충격이 완화된다. 따라서 저항 값이 일정하면서 낮은 저항 값을 가지게 되어 제품의 수명이 향상시킬 수 있으며 더 나아가 접촉 면적의 증가로 각 도전성 입자(120)의 이탈 및 함몰되는 현상을 방지할 수 있게 된다.As a result, contact between the conductive particles 120 and the conductive particles 120 coupled to the terminal 170 of the semiconductor element is in contact with any one of point, line, or surface contact, and thus the contact load is dispersed to alleviate the impact transmitted to the conductive particles 120. . Therefore, the resistance value is constant and has a low resistance value to improve the life of the product, and further it is possible to prevent the phenomenon of the separation and depression of each conductive particles 120 by increasing the contact area.
또한 도 10에 도시된 바와 같이, 각 도전성 입자(120)는 하나의 도전성 입자(120)의 상부면(120a)에 대해 다른 도전성 입자(120)의 상부면(120a)이 높이 차를 가지도록 결합될 수 있다. 이때 설명의 편의를 위해 도전성 입자(120)의 양면 중 어느 한 면을 상부면(120a)이라고 칭한다. 따라서 결합된 도전성 입자(120)가 거꾸로 배치될 경우에는 하부에 있는 면을 상부면이라 칭할 수 있는 것이다.In addition, as shown in FIG. 10, each conductive particle 120 is bonded so that the upper surface 120a of the other conductive particle 120 has a height difference with respect to the upper surface 120a of one conductive particle 120. Can be. At this time, any one of both surfaces of the conductive particles 120 is referred to as the upper surface (120a) for convenience of description. Therefore, when the combined conductive particles 120 are disposed upside down, the lower surface may be referred to as an upper surface.
이러한 상태로 결합된 도전성 입자(120)는 반도체 소자의 단자(170)와 접촉 시 상부에서 누르는 단자(170)의 접촉 하중과 결합된 도전성 입자(120)와 결속된 실리콘 고무(131)의 탄성력 의해 높이 차가 없이 각 상부면(120a)이 동일한 평면 상태로 이동될 수 있다.The conductive particles 120 bonded in this state are caused by the elastic force of the silicone rubber 131 bound to the conductive particles 120 coupled with the contact load of the terminal 170 pressed from the upper side when contacted with the terminal 170 of the semiconductor device. Each top surface 120a may be moved to the same planar state without a height difference.
이러한 도전성 입자(120)는 MEMS 공정을 통해 제조될 수 있으며, MEMS(micro electro mechanical system) 공정은 주로 반도체 집적회로 제작기술의 포토 마스크(photomask) 공정 및 임프린트(imprint) 기술을 이용한다.The conductive particles 120 may be manufactured through a MEMS process, and a micro electro mechanical system (MEMS) process mainly uses a photomask process and an imprint technique of a semiconductor integrated circuit manufacturing technology.
도전성 입자(120)를 MEMS 공정에 의해 제조됨에 따라 균일한 크기 및 모양의 도전성 입자(120)를 제조할 수 있어 도전성 입자(120)의 전기적 안정성을 얻을 수 있다.As the conductive particles 120 are manufactured by the MEMS process, the conductive particles 120 having a uniform size and shape may be manufactured to obtain electrical stability of the conductive particles 120.
또한 종래의 구형 즉, 울퉁불퉁한 형상의 도전성 입자와는 다른 다양한 형상의 도전성 입자(120)를 제조할 수 있으며, 특히 상호 결합된 상태이기 때문에 접촉 면적이 증가하여 실리콘 고무(131)와 도전성 입자(120) 간의 결속력을 증대시킬 수 있다.In addition, it is possible to manufacture the conductive particles 120 of various shapes different from the conventional spherical shape, that is, the rugged shape of the conductive particles, and in particular, because they are in a mutually bonded state, the contact area is increased so that the silicone rubber 131 and the conductive particles ( 120) can increase the binding force between.
또한 종래의 구형 도전성 입자보다 실리콘 고무(131)와의 접촉 범위를 넓게 형성할 수 있어, 반도체 소자의 단자(170)와 접촉 범위가 넓어 낮은 초기 저항 값을 도출할 수 있는 것과 더불어 단자의 접촉 충격에 의해 실리콘 고무(131)로부터 도전성 입자(120)의 이탈 및 함몰을 방지할 수 있다.In addition, the contact range with the silicone rubber 131 can be formed wider than the conventional spherical conductive particles, and the contact range with the terminal 170 of the semiconductor element is wider to derive a low initial resistance value, and also to the contact impact of the terminal. As a result, detachment and depression of the conductive particles 120 from the silicone rubber 131 can be prevented.
또한 다양한 소재로 도전성 입자(120)를 제조할 수 있으며, 이중 도금 공정을 통한 도전성 입자(120)의 내구성 확보할 수 있다.In addition, the conductive particles 120 may be manufactured from various materials, and durability of the conductive particles 120 may be secured through a double plating process.
본 발명의 실시예에 따른 도전성 입자(120)는 하나의 개구부(122)를 가지는 형상으로 제조된 것과 두 개의 개구부(122)를 가지는 형상으로 제조된 것을 제시한다. The conductive particles 120 according to the exemplary embodiment of the present invention show that the particles are manufactured in a shape having one opening 122 and a shape having two openings 122.
더욱 구체적으로 도 7에 도시된 바와 같이, 도전성 입자(120)는 양면을 가진 기둥 모양으로 하나의 개구부(122)를 가지도록 형성되되, 개구부(122)는 "U" 형상, "V" 형상 또는 "ㄷ" 형상 중 어느 하나의 형상으로 제조될 수 있다.More specifically, as shown in FIG. 7, the conductive particles 120 are formed to have one opening 122 in a column shape having both sides, and the opening 122 is formed in a “U” shape, a “V” shape, or It may be produced in any one of the "c" shape.
또한 도전성 입자(120)는 두 개의 개구부(122)를 가지도록 형성되되, "너울" 형상, "W" 형상 또는 "ㄹ" 형상 중 적어도 하나의 형상으로 제조될 수 있다. In addition, the conductive particles 120 may be formed to have two openings 122, and may be manufactured in at least one of a “null” shape, a “W” shape, or a “d” shape.
물론 도전성 입자(120)의 형상은 도시되지는 않았지만, 적어도 하나의 개구부(122) 및 결합부(123)가 마련된 십자 형상, 슬롯 형상, 레고 형상, 스프링 형상, 파이프 형상 및 불규칙한 모양 등 상호 결합이 가능한 구조라면 어떠한 형태로도 제조할 수도 있으나, 제조 편의상 위에서 전술한 형성으로 제조하는 것이 바람직한 것이다.Of course, although the shape of the conductive particles 120 is not shown, mutual coupling such as a cross shape, a slot shape, a lego shape, a spring shape, a pipe shape, and an irregular shape having at least one opening 122 and a coupling part 123 may be provided. It is possible to manufacture in any form as long as possible structure, it is preferable to manufacture in the above-mentioned formation for the convenience of manufacturing.
전술한 바와 같은 도전성 입자(120)는 종래의 기계적 제조방법으로 제조하는 것이 불가능하다. 즉 수십 um 크기의 도전성 입자(120)는 MEMS 공정에 의해 가능한 것이다.As described above, the conductive particles 120 may not be manufactured by a conventional mechanical manufacturing method. That is, the conductive particles 120 having a size of several tens of um are possible by the MEMS process.
본 발명의 일 실시예에 따른 도전성 입자(120)의 크기 공차가 -10um ~ +10um 범위 내에서 균일한 형상으로 형성되는 것이 바람직하며, 도전부(110)는 실리콘 고무(131)의 중량 대비 결합형 도전성 입자(120)의 중량은 0.5~10배 비율로 구성하는 것이 바람직하다. 즉 도전성 입자(120)를 실리콘 고무 중량 대비 10배 이상의 비율로 구성할 경우 실리콘 고무(131)의 양 부족으로 도전성 입자(120)가 이탈되는 문제점이 발생할 수 있기 때문이다.Size tolerance of the conductive particles 120 according to an embodiment of the present invention is preferably formed in a uniform shape within the range of -10um ~ + 10um, the conductive portion 110 is coupled to the weight of the silicone rubber 131 It is preferable to comprise the weight of the type | mold electroconductive particle 120 in 0.5 to 10 times ratio. That is, when the conductive particles 120 are formed at a ratio of 10 times or more to the weight of the silicone rubber, the conductive particles 120 may be separated due to the lack of the amount of the silicone rubber 131.
또한 도전성 입자(120)는 개구부(122)의 폭(a)이 결합부(123)의 폭(b) 보다 1um ~ 30um 크게 형성되는 것이 바람직하다. 이는 기계적 혼합, 기계적 충격 및 자기력에 의한 외력에 의해 각 도전성 입자(120)간의 결합 시 점, 선 및 면에 대한 안정적인 접촉이 이루어질 수 있는 범위이며, 반도체 소자의 단자(170)에 대해 접촉 하중을 받을 시 결합된 도전성 입자(120) 간에 이동될 수 있도록 유격을 발생시키기 위한 범위이다. In addition, the conductive particles 120 are preferably formed with a width (a) of the opening 122 is greater than 1um ~ 30um than the width (b) of the coupling portion 123. This is a range in which stable contact with the point, line, and surface of each conductive particle 120 can be made by external force due to mechanical mixing, mechanical shock, and magnetic force, and a contact load is applied to the terminal 170 of the semiconductor device. It is a range for generating a play so that it can be moved between the coupled conductive particles 120 upon receipt.
도전성 입자(120)는 철, 구리, 아연, 주석, 크롬, 니켈, 은, 코발트, 알루미늄 로듐 중 어느 하나의 단일 소재로 형성되거나 이들 소재의 2개 또는 그 이상 소재의 이중 합금으로 형성될 수 있다.The conductive particles 120 may be formed of a single material of any one of iron, copper, zinc, tin, chromium, nickel, silver, cobalt, and aluminum rhodium, or may be formed of a double alloy of two or more of these materials. .
본 발명의 일 실시예에 따른 도전성 입자(120)는 로듐 도금을 통해 강도 및 내구성을 향상시킬 수 있다. 한편 도전성 입자(120)에 로듐을 도금하는 방법은 특별히 한정되지 않으나, 예를 들면 화학도금 또는 전해 도금법에 의해 도금시킬 수 있다. Conductive particles 120 according to an embodiment of the present invention can improve the strength and durability through rhodium plating. On the other hand, the method for plating rhodium on the conductive particles 120 is not particularly limited, but may be plated by, for example, chemical plating or electroplating.
본 발명의 일 실시예에 따른 도전성 입자(120)는 제1 접촉부(112) 및 제2 접촉부(113) 중 적어도 어느 한 곳에 포함될 수 있다.The conductive particles 120 according to the exemplary embodiment of the present invention may be included in at least one of the first contact portion 112 and the second contact portion 113.
다시 도 3 및 도 8에 도시된 바와 같이, 본 발명의 실시예에서는 도전성 입자(120)가 제1 접촉부(112)에 포함된 것과 제1 접촉(112)부 및 제2 접촉부(113)의 포함된 것이 제시된다. 도시되지는 않았지만 도전성 입자(120)는 제2 접촉부(113)만 형성할 수도 있고, 도전부(110) 전체에 형성할 수도 있다. 3 and 8, in the embodiment of the present invention, the conductive particles 120 are included in the first contact portion 112 and include the first contact 112 portion and the second contact portion 113. Is presented. Although not shown, the conductive particles 120 may be formed only on the second contact portion 113, or may be formed on the entire conductive portion 110.
본 발명의 일 실시예에서는 각 도전성 입자가 동일한 형상의 구조가 상호 결합된 도전성 입자를 제시하였으나, 본 발명의 다른 실시예에서는 상호 결합되는 도전성 입자가 다른 형상으로 형성된 것을 제시한다.In one embodiment of the present invention, each of the conductive particles has the conductive particles having the same shape and bonded to each other, but in another embodiment of the present invention, the conductive particles to be bonded to each other is formed to have a different shape.
이때 본 발명의 일 실시예에서 제시된 동일한 특징 예를 들면, 각 도전성 입자의 제조 방법, 크기, 중량비, 소재 등에 대한 구체적인 설명은 생략 한다At this time, for the same features presented in the embodiment of the present invention, for example, a detailed description of the manufacturing method, size, weight ratio, material, etc. of each conductive particle will be omitted.
즉, 도 11에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 도전성 입자는 제1 도전성 입자(210)와, 제2 도전성 입자(220)를 포함하여 이루어질 수 있다.That is, as shown in FIG. 11, the conductive particles according to another embodiment of the present invention may include the first conductive particles 210 and the second conductive particles 220.
이때 제1 도전성 입자(210)는 외관을 이루는 제1 입자 몸통부(211)와, 제1 입자 몸통부(211) 일측이 개구되도록 형성되어 제2 도전성 입자(220)가 결합될 수 있도록 공간이 마련된 적어도 하나의 개구부(212)를 포함할 수 있다.In this case, the first conductive particles 210 are formed so that one side of the first particle body portion 211 and the first particle body portion 211 forming an opening may have a space such that the second conductive particles 220 may be coupled to each other. At least one opening 212 may be provided.
제2 도전성 입자(220)는 외관을 이루는 제2 입자 몸통부(221)와, 제2 입자 몸통부(221)로터 돌출 형성되어 제1 도전성 입자(220)의 각 개구부(212)로 삽입시켜 상호 간에 결합될 수 있도록 제공된 결합부(222)를 포함할 수 있다.The second conductive particles 220 are formed to protrude from the second particle body portion 221 and the second particle body portion 221 forming the external appearance and are inserted into the openings 212 of the first conductive particles 220 to each other. It may include a coupling portion 222 provided to be coupled to each other.
즉 본 발명의 다른 실시예에 따른 제1 도전성 입자(210)는 오목한 형상의 개구부(212)를 가지도록 형성된 것이고, 제2 도전성 입자(220)는 볼록한 형상의 결합부(222)를 가지도록 형성되어 상호 간의 결합이 이루어질 수 있도록 제공된 것이다.That is, the first conductive particles 210 according to another embodiment of the present invention are formed to have the concave opening 212, and the second conductive particles 220 are formed to have the convex coupling portion 222. To provide a mutual coupling.
이때 각 도전성 입자(210,220)의 결합은 제2 도전성 입자(220)의 결합부(22)가 제1 도전성 입자(210)의 개구부(212)에 점, 선 또는 면 접촉 중 어느 하나의 접촉에 의해 결합될 수 있다.In this case, the bonding of the conductive particles 210 and 220 may be performed by the coupling portion 22 of the second conductive particles 220 contacting the opening 212 of the first conductive particles 210 by any one of point, line, or surface contact. Can be combined.
또한 제1 도전성 입자(210)의 상부면(210a)에 대해 제2 도전성 입자(220)의 상부면(220a)이 높이 차를 가지도록 결합될 수 있다.In addition, the upper surface 220a of the second conductive particles 220 may be coupled to the upper surface 210a of the first conductive particles 210 to have a height difference.
또한 제1 도전성 입자(210)의 개구부(220) 폭이 상기 제2 도전성 입자의 결합부(123) 폭 보다 1um ~ 30um 크게 형성되는 것이 바람직하다.In addition, the width of the opening 220 of the first conductive particles 210 is preferably formed 1um ~ 30um larger than the width of the coupling portion 123 of the second conductive particles.
한편 본 발명의 다른 실시예에서는 다시 도 11에 도시된 바와 같이, 개구부가 "U" 형상 및 "ㄷ"형상으로 제조된 것을 제시하였으나, 제1 도전성 입자(210) 또는, 제2 도전성 입자(220) 중 어느 한 도전성 입자가 개구부(212)를 가지고 있고 다른 도전성 입가가 결합부(222)를 가지고 있는 형상이라면 모든 형상으로 제조가 가능함은 물론이다.Meanwhile, in another embodiment of the present invention, as shown in FIG. 11, the openings are manufactured in the “U” shape and the “c” shape, but the first conductive particles 210 or the second conductive particles 220 are provided. Of course, if any one of the conductive particles having an opening 212 and the other conductive particle has a coupling portion 222 can be produced in any shape.
이상 전술한 바와 같은 본 발명의 다른 실시예에서도 본 발명의 일 실시예와 동일한 작용 및 효과를 도출할 수 있어 자세한 설명은 생략한다.As described above, other embodiments of the present invention can derive the same operations and effects as those of the embodiment of the present invention, and thus detailed description thereof will be omitted.
도 9 및 도 10을 참조하여, 본 발명의 일 실시예에 따른 결합된 도전성 입자를 가지는 검사용 소켓의 작용을 설명하면 이하와 같다. 9 and 10, the operation of the inspection socket having the bonded conductive particles according to an embodiment of the present invention will be described as follows.
먼저 검사용 소켓(100)이 설치된 테스트 보드(140)가 준비된다. 이때 검사용 소켓(100)의 도전부(110)에는 도전성 입자(120)의 상부면(120a)이 동일한 평면을 가지도록 결합된 도전성 입자와, 동일하지 않게 결합된 도전성 입자를 포함한다.First, a test board 140 in which the test socket 100 is installed is prepared. In this case, the conductive part 110 of the test socket 100 includes conductive particles coupled such that the upper surface 120a of the conductive particles 120 have the same plane, and conductive particles that are not bonded the same.
다음 도전부(110)의 제2 접촉부(113)는 테스트 보드(140)의 도전 패드(141)에 접촉하여 전기적으로 연결된다. 이때 도전부(110)에 포함된 도전성 입자(120)는 기계적 혼합, 기계적 충동 및 전기적으로 연결된 자기력에 의해 결합이 이루어진다.Next, the second contact portion 113 of the conductive portion 110 is in contact with the conductive pad 141 of the test board 140 is electrically connected. At this time, the conductive particles 120 included in the conductive portion 110 are bonded by mechanical mixing, mechanical impulse, and electrically connected magnetic force.
다음 도 9에 도시된 바와 같이, 검사용 소켓(100)의 상부로 이송된 반도체 소자(160)의 단자(170)는 도전부(110)의 제1 접촉부(112)를 소정의 압력으로 가압하여 탄성적으로 접촉됨으로써 전기적으로 연결된다. 이때 도 10a 내지 10c에 도시된 바와 같이, 상부면(120a)이 동일하지 않게 결합된 도전성 입자는 단자(170)의 접촉 하중과 실리콘 고무의 탄성력에 의해 서로 동일한 평면을 가진 상태로 충격을 받으며 변형이 이루어진다. 여기서 도 10a는 상부면이 동일하지 않게 결합된 도전성 입자를 나타내는 도면이고, 도 10b는 도 10a의 단면도 이며, 도 10c는 단자와 접촉 시 도전성 입자가 변형되는 상태를 나타낸 도면이다.Next, as shown in FIG. 9, the terminal 170 of the semiconductor device 160 transferred to the upper portion of the inspection socket 100 presses the first contact portion 112 of the conductive portion 110 to a predetermined pressure. It is electrically connected by elastic contact. At this time, as shown in Figures 10a to 10c, the conductive particles, the upper surface (120a) is not equally coupled deformed while being impacted in the same plane with each other by the contact load of the terminal 170 and the elastic force of the silicone rubber. This is done. Here, FIG. 10A is a view showing conductive particles in which the upper surface is not identically bonded, FIG. 10B is a cross-sectional view of FIG. 10A, and FIG.
이와 같은 상태에서 테스트 보드(140)를 통하여 테스트 신호가 검사용 소켓(100)을 매개로 반도체 소자(160)로 전달되어 테스트 공정이 이루어진다. In this state, the test signal is transmitted to the semiconductor device 160 through the test socket 100 through the test board 140 to perform a test process.
한편 도 12는 종래의 그립부 즉, 관통공이 형성된 도전성 입자와 본 발명의 일 실시예에 따른 도전성 입자(120) 간의 저항 테스트를 한 결과를 나타내내는 그래프로서, 세로축은 저항 값을 나타낸 것이고 가로축은 각 도전성 입자의 테스트 포인트를 나타낸 것이다.12 is a graph illustrating a result of a resistance test between a conventional grip part, that is, conductive particles having through holes formed therein and the conductive particles 120 according to an embodiment of the present invention, in which the vertical axis represents a resistance value and the horizontal axis represents an angle. The test point of electroconductive particle is shown.
그래프에서 나타난 바와 같이, 종래의 도전성 입자는 저항 값이 일정하지 않고 튀는 값이 반복적으로 나타나는 반면, 본 발명의 일 실시예에 따른 도전성 입자(120)는 저항 값이 일정하게 나타나는 것과 동시에 종래 도전성 입자에 비해 낮은 저항 값이 나타나는 결과를 얻을 수 있었다. As shown in the graph, the conventional conductive particles do not have a constant resistance value and the splashing value repeatedly appears, while the conductive particles 120 according to the embodiment of the present invention have a constant resistance value and at the same time the conventional conductive particles. The results showed that the resistance value was lower than that of.
이상 설명한 바와 같이, 본 발명은 상술한 특정한 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하고 이러한 변형은 본 발명의 범위에 속한다.As described above, the present invention is not limited to the above-described specific preferred embodiments, and various modifications may be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims. It is possible and such variations are within the scope of the present invention.

Claims (13)

  1. 실리콘 고무(131)로 이루어진 절연부(130)와, An insulating part 130 made of silicon rubber 131,
    복수의 도전성 입자 및 실리콘 고무(131)가 융합되어 상기 절연부(130)를 관통하도록 형성된 적어도 하나의 도전부(110)를 포함하여 이루어지되,A plurality of conductive particles and the silicone rubber 131 is fused to include at least one conductive portion 110 formed to penetrate the insulating portion 130,
    상기 도전부(110)는 외관을 이루는 몸체부(111) 및 상기 몸체부의 일측에 제공되어 테스트를 받을 반도체 소자(160)의 단자(170)와 접촉되는 제1 접촉부(112);를 포함하며,The conductive portion 110 includes a body portion 111 forming an appearance and a first contact portion 112 provided on one side of the body portion to be in contact with the terminal 170 of the semiconductor device 160 to be tested.
    상기 도전성 입자 중 상기 제 1 접촉부(112)에만 포함되는 제 1 접촉부 도전성 입자(120)는, 다양한 기둥 모양으로 형성되되, 상기 도전부에 인가되는 기계적 혼합, 기계적 충격 및 자기력 중 적어도 하나에 의해 2개 이상의 도전성 입자(120)가 적어도 한 방향으로 결합되도록 형성되되,The first contact portion conductive particles 120 included only in the first contact portion 112 among the conductive particles are formed in various columnar shapes, and are formed by at least one of mechanical mixing, mechanical impact, and magnetic force applied to the conductive portion. More than one conductive particle 120 is formed to be bonded in at least one direction,
    상기 제 1 접촉부 도전성 입자(120)는The first contact conductive particles 120 is
    외관을 이루는 입자 몸통부(121);Particle body 121 forming the appearance;
    상기 입자 몸통부(121) 일측이 개구되도록 형성되어 다른 도전성 입자(120)가 결합될 수 있도록 공간이 마련된 적어도 하나의 개구부(122); 그리고,At least one opening 122 formed at one side of the particle body part 121 to have a space to allow the other conductive particles 120 to be coupled; And,
    상기 개구부(122)를 중심으로 돌출 형성되어 상기 다른 도전성 입자(120)의 개구부(122)로 삽입시켜 상호간에 결합될 수 있도록 제공된 결합부(123);를 포함하여 이루어지며, And a coupling part 123 formed to protrude from the opening 122 to be inserted into the opening 122 of the other conductive particles 120 to be coupled to each other.
    상기 제 1 접촉부 도전성 입자(120)의 결합은 동일한 형상을 가지는 두 도전성 입자가 하나의 도전성 입자(120)의 상부면(120a)에 대해 다른 도전성 입자(120)의 상부면(120a)이 높이 차를 가지도록 상기 하나의 도전성 입자의 결합부가 상기 다른 도전성 입자의 개구부에 삽입되어 이루어지며,In the bonding of the first contact portion conductive particles 120, two conductive particles having the same shape differ in height from the upper surface 120a of the other conductive particle 120 with respect to the upper surface 120a of the one conductive particle 120. The bonding portion of the one conductive particles is inserted into the opening of the other conductive particles to have a,
    상기 제1 접촉부 도전성 입자(120)는 개구부(122)의 폭이 결합부(123)의 폭 보다 1um ~ 30um 크게 형성된 것을 특징으로 하는 검사용 소켓.The first contact portion conductive particles 120 is a test socket, characterized in that the width of the opening 122 is formed 1um ~ 30um larger than the width of the coupling portion (123).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 도전부(110)는The conductive portion 110
    상기 몸체부(111)의 타측에 제공되어 테스트 보드(140)의 도전 패드(150)와 접촉되는 제2 접촉부(113);를 더 포함하는 것을 특징으로 하는 검사용 소켓.And a second contact portion (113) provided on the other side of the body portion (111) to be in contact with the conductive pad (150) of the test board (140).
  3. 제 2 항에 있어서,The method of claim 2,
    상기 절연부(130) 상단에는 On the top of the insulating portion 130
    상기 단자(170)와 제1 접촉부(111) 간의 접촉 위치를 안내함과 더불어 도전성 입자(120)가 외부로 이탈 및 함몰되는 것을 방지하기 위해 가이드홀(181)이 마련된 가이드 플레이트(180)가 더 포함된 것을 특징으로 하는 검사용 소켓.The guide plate 180 provided with the guide hole 181 is further provided to guide the contact position between the terminal 170 and the first contact portion 111 and to prevent the conductive particles 120 from being separated and recessed to the outside. Inspection socket, characterized in that included.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 2 접촉부(113)에도 상기 제 1 접촉부 도전성 입자와 동일한 도전성 입자가 포함되는 것을 특징으로 하는 검사용 소켓.Inspection socket, characterized in that the second contact portion 113 also includes the same conductive particles as the first contact portion conductive particles.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 각 제 1 접촉부 도전성 입자(120)의 결합은Each of the first contact portion conductive particles 120 is bonded
    하나의 도전성 입자(120)의 결합부(123)가 다른 도전성 입자(120)의 개구부(122)에 점, 선, 또는 면 접촉 중 어느 하나의 접촉에 의해 결합되는 것을 특징으로 하는 검사용 소켓.An inspection socket, characterized in that the coupling portion 123 of one conductive particle 120 is bonded to the opening 122 of the other conductive particle 120 by any one of point, line, or surface contact.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제 1 접촉부 도전성 입자(120)는 MEMS 공정에 의해 제조된 것을 특징으로 하는 검사용 소켓.The first contact conductive particles 120 is an inspection socket, characterized in that produced by the MEMS process.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 접촉부 도전성 입자(120)의 개구부(122)는 "U" 형상, "V" 형상 또는 "ㄷ" 형상 중 적어도 어느 하나의 형상으로 제조된 것을 특징으로 하는 검사용 소켓.The opening 122 of the first contact portion conductive particles 120 is formed in at least one of a "U" shape, "V" shape or "c" shape, characterized in that the socket for inspection.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 접촉부 도전성 입자(120)의 개구부(122)는 "너울" 형상, "W" 형상 또는 "ㄹ" 형상 중 적어도 하나의 형상으로 제조된 것을 특징으로 하는 검사용 소켓.The opening 122 of the first contact portion conductive particles 120 is formed in at least one of a "nut" shape, a "W" shape or a "d" shape.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 도전부(110)는The conductive portion 110
    상기 실리콘 고무의 중량 대비 상기 도전성 입자(120)의 중량이 0.5~10배 비율로 구성되는 것을 특징으로 하는 검사용 소켓.Inspection socket, characterized in that the weight of the conductive particles 120 to 0.5 to 10 times the weight of the silicone rubber composition.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 접촉부 도전성 입자(120)는 철, 구리, 아연, 주석, 크롬, 니켈, 은, 코발트, 알루미늄, 로듐 중 어느 하나의 단일 소재로 형성되거나, 상기 소재 중 두 가지 이상 소재의 이중 합금으로 형성된 것을 특징으로 하는 검사용 소켓.The first contact conductive particles 120 may be formed of a single material of any one of iron, copper, zinc, tin, chromium, nickel, silver, cobalt, aluminum, and rhodium, or may be a double alloy of two or more of the above materials. Inspection socket, characterized in that formed.
  11. 실리콘 고무(131)로 이루어진 절연부(130)와, An insulating part 130 made of silicon rubber 131,
    복수의 도전성 입자(120) 및 실리콘 고무(131)가 융합되어 상기 연부(130)를 관통하도록 형성된 적어도 하나의 도전부(110)를 포함하여 이루어지되,A plurality of conductive particles 120 and the silicone rubber 131 is fused to include at least one conductive portion 110 formed to penetrate the edge portion 130,
    상기 도전성 입자(120)는, 다양한 기둥 모양으로 형성되되, 상기 도전부에 인가되는 기계적 혼합, 기계적 충격 및 자기력 중 적어도 하나에 의해 2개 이상의 도전성 입자(120)가 적어도 한 방향으로 결합되도록 형성되되,The conductive particles 120 may be formed in various pillar shapes, and the two or more conductive particles 120 may be coupled in at least one direction by at least one of mechanical mixing, mechanical impact, and magnetic force applied to the conductive part. ,
    상기 도전성 입자(120)는The conductive particles 120
    제1 도전성 입자(210)와, 상기 제1 도전성 입자와 다른 형상을 가지는 제2 도전성 입자(220)를 포함하여 이루어지되, Including the first conductive particles 210, and the second conductive particles 220 having a different shape from the first conductive particles,
    상기 제1 도전성 입자(210)는 외관을 이루는 제1 입자 몸통부(211)와, 상기 제1 입자 몸통부(211) 일측이 개구되도록 형성되어 상기 제2 도전성 입자(220)가 결합될 수 있도록 공간이 마련된 적어도 하나의 개구부(212)를 포함하며, The first conductive particles 210 are formed so that one side of the first particle body portion 211 forming an appearance and one side of the first particle body portion 211 is opened so that the second conductive particles 220 can be combined. At least one opening 212 provided with a space,
    상기 제2 도전성 입자(220)는 외관을 이루는 제2 입자 몸통부(221)와, 상기 제2 입자 몸통부(221)로부터 돌출 형성되어 상기 제1 도전성 입자(210)의 각 개구부(212)로 삽입시켜 상호 간에 결합될 수 있도록 제공된 결합부(222)를 포함하여 이루어지며,The second conductive particles 220 are formed to protrude from the second particle body 221 and the second particle body 221 forming an appearance to each opening 212 of the first conductive particles 210. It comprises a coupling portion 222 provided to be coupled to each other by inserting,
    상기 각 도전성 입자(210,220)는 상기 제1 도전성 입자(210)의 상부면(210a)에 대해 제2 도전성 입자(220)의 상부면(220a)이 높이 차를 가지도록 결합되는 것을 특징으로 하는 검사용 소켓.Each of the conductive particles 210 and 220 may be coupled to the upper surface 220a of the second conductive particle 220 with respect to the upper surface 210a of the first conductive particle 210 to have a height difference. Socket.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 각 도전성 입자(210,220)의 결합은 The combination of each of the conductive particles (210, 220)
    상기 제2 도전성 입자(220)의 결합부(222)가 상기 제1 도전성 입자(210)의 개구부(212)에 점, 선 또는 면 접촉 중 어느 하나의 접촉에 의해 결합되는 것을 특징으로 하는 검사용 소켓.Inspection unit, characterized in that the coupling portion 222 of the second conductive particles 220 is bonded to the opening 212 of the first conductive particles 210 by any one of point, line or surface contact. socket.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 제1 도전성 입자(210)의 개구부(212) 폭이 상기 제2 도전성 입자(220)의 결합부(222) 폭 보다 1um ~ 30um 크게 형성된 것을 특징으로 하는 검사용 소켓. Inspection opening, characterized in that the width of the opening (212) of the first conductive particles 210 is formed 1um ~ 30um larger than the width of the coupling portion (222) of the second conductive particles (220).
PCT/KR2016/000506 2015-02-03 2016-01-18 Test socket having conductive particles in coupled form WO2016126024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150016984A KR101525520B1 (en) 2015-02-03 2015-02-03 Testing socket including conductive particles having combinable shape
KR10-2015-0016984 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016126024A1 true WO2016126024A1 (en) 2016-08-11

Family

ID=53505281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000506 WO2016126024A1 (en) 2015-02-03 2016-01-18 Test socket having conductive particles in coupled form

Country Status (3)

Country Link
KR (1) KR101525520B1 (en)
TW (1) TWI547043B (en)
WO (1) WO2016126024A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782604B1 (en) * 2016-02-02 2017-09-27 (주)티에스이 Test Socket
KR101748184B1 (en) 2016-02-02 2017-06-19 (주)티에스이 Test socket and fabrication method of conductive powder for test socket
KR101769882B1 (en) * 2016-02-15 2017-09-05 (주)티에스이 Test Socket
KR101830935B1 (en) * 2016-03-18 2018-02-22 주식회사 오킨스전자 Device and method for manufacturing conductive particle of test socket using wire bonding and press
KR101739536B1 (en) * 2016-05-11 2017-05-24 주식회사 아이에스시 Test socket and conductive particle
KR101739537B1 (en) * 2016-05-11 2017-05-25 주식회사 아이에스시 Test socket and conductive particle
KR101805834B1 (en) * 2016-05-11 2017-12-07 주식회사 아이에스시 Test socket and conductive particle
KR101885714B1 (en) * 2016-11-08 2018-08-06 주식회사 대성엔지니어링 Test socket
KR102006161B1 (en) * 2017-03-16 2019-08-01 (주)티에스이 Test socket
KR101901982B1 (en) 2017-07-19 2018-09-27 주식회사 아이에스시 Test socket and conductive particle
KR20190067389A (en) 2017-12-07 2019-06-17 (주)티에스이 Rubber socket for test having projecting conductive part and manufacturing method thereof
KR101973609B1 (en) 2018-02-19 2019-04-29 (주)티에스이 Rubber socket for semiconductor test including conductive part mixed regular conductive particles and irregular conductive particles
KR102444643B1 (en) 2018-11-06 2022-09-19 (주)티에스이 Conductive particle and data signal transmission connector having the same
KR102622022B1 (en) * 2019-03-19 2024-01-10 주식회사 아이에스시 Conductive powder and connector for electrical connection including same
WO2021040451A1 (en) * 2019-08-29 2021-03-04 주식회사 아이에스시 Inspection socket
KR102466454B1 (en) * 2019-08-29 2022-11-14 주식회사 아이에스시 test socket
KR102393083B1 (en) 2020-08-21 2022-05-03 주식회사 스노우 Conductive particle and testing socket comprsing the same
KR102474337B1 (en) * 2020-08-28 2022-12-07 주식회사 아이에스시 Connector for electrical connection
KR102582710B1 (en) * 2021-12-29 2023-09-26 주식회사 아이에스시 Fabrication method of conductive particle and conductive particle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422879B2 (en) * 2000-02-23 2002-07-23 Nec Corporation IC socket for surface-mounting semiconductor device
KR20110002584A (en) * 2009-07-02 2011-01-10 남재우 Test socket fabricated by mems technology for using to test of semiconductor devices
KR101339166B1 (en) * 2012-06-18 2013-12-09 주식회사 아이에스시 Test socket with conductive powder having through-hole and fabrication method thereof
KR101378505B1 (en) * 2009-12-02 2014-03-31 주식회사 오킨스전자 Contact for semiconductor chip package test
KR101471116B1 (en) * 2014-02-13 2014-12-12 주식회사 아이에스시 Test socket with high density conduction section

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422879B2 (en) * 2000-02-23 2002-07-23 Nec Corporation IC socket for surface-mounting semiconductor device
KR20110002584A (en) * 2009-07-02 2011-01-10 남재우 Test socket fabricated by mems technology for using to test of semiconductor devices
KR101378505B1 (en) * 2009-12-02 2014-03-31 주식회사 오킨스전자 Contact for semiconductor chip package test
KR101339166B1 (en) * 2012-06-18 2013-12-09 주식회사 아이에스시 Test socket with conductive powder having through-hole and fabrication method thereof
KR101471116B1 (en) * 2014-02-13 2014-12-12 주식회사 아이에스시 Test socket with high density conduction section

Also Published As

Publication number Publication date
KR101525520B1 (en) 2015-06-03
TWI547043B (en) 2016-08-21
TW201630280A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
WO2016126024A1 (en) Test socket having conductive particles in coupled form
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
WO2014129784A1 (en) Test socket with high density conduction section
WO2018105896A1 (en) Test socket apparatus
WO2019216503A1 (en) Semiconductor device test socket
WO2017196094A1 (en) Testing socket and conductive particles
WO2015182885A1 (en) Socket for inspecting semiconductor package and substrate, flexible contact pin used therein, and method for manufacturing flexible contact pin
KR101769882B1 (en) Test Socket
WO2023128428A1 (en) Test socket for signal loss protection
KR101193556B1 (en) Test socket formed with a pcb
WO2017196093A1 (en) Testing socket and conductive particles
WO2021002690A1 (en) Test socket
WO2014204161A2 (en) Insert for inspection
WO2017196092A1 (en) Testing socket and conductive particles
WO2019066365A1 (en) Conductive contact portion and anisotropic conductive sheet comprising same
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
KR102357723B1 (en) Signal Loss Prevented Test Socket
WO2020096238A1 (en) Electroconductive particles and signal-transmitting connector having same
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2019045426A1 (en) Test socket and conductive particles
WO2016167412A1 (en) Bidirectional conductive socket for testing high-frequency device, bidirectional conductive module for testing high-frequency device, and manufacturing method thereof
WO2019245153A1 (en) Plate spring-type connecting pin
WO2020145493A1 (en) Signal transmission connector and manufacturing method therefor
WO2013077671A1 (en) Test socket provided with stopper portion
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746765

Country of ref document: EP

Kind code of ref document: A1