WO2016125870A1 - 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法 - Google Patents

液晶配向剤、液晶表示素子及び液晶表示素子の製造方法 Download PDF

Info

Publication number
WO2016125870A1
WO2016125870A1 PCT/JP2016/053413 JP2016053413W WO2016125870A1 WO 2016125870 A1 WO2016125870 A1 WO 2016125870A1 JP 2016053413 W JP2016053413 W JP 2016053413W WO 2016125870 A1 WO2016125870 A1 WO 2016125870A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
component
group
display element
polyimide
Prior art date
Application number
PCT/JP2016/053413
Other languages
English (en)
French (fr)
Inventor
暁子 若林
耕平 後藤
章吾 檜森
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680008962.9A priority Critical patent/CN107209423B9/zh
Priority to JP2016573424A priority patent/JP6662306B2/ja
Priority to KR1020237005293A priority patent/KR102607979B1/ko
Priority to KR1020177023922A priority patent/KR102502321B1/ko
Publication of WO2016125870A1 publication Critical patent/WO2016125870A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal display element, and a method for manufacturing a liquid crystal display element that can be used for manufacturing a vertical alignment type liquid crystal display element manufactured by irradiating liquid crystal molecules with ultraviolet rays.
  • a voltage is applied to the liquid crystal molecules during the manufacturing process.
  • Some include a step of irradiating with ultraviolet rays.
  • a photopolymerizable compound is added to a liquid crystal composition in advance and used together with a vertical alignment film such as polyimide to irradiate ultraviolet rays while applying a voltage to a liquid crystal cell.
  • a PSA (Polymer sustained Alignment) element (see Patent Document 1 and Non-Patent Document 1) is known which has a high response speed of liquid crystal.
  • the tilting direction of the liquid crystal molecules in response to the electric field is controlled by a protrusion provided on the substrate, a slit provided in the display electrode, or the like.
  • the response speed of the liquid crystal display element is faster than the method of controlling the tilt direction of the liquid crystal molecules only by the protrusions and slits.
  • the deterioration of the residual DC characteristics causes burn-in that leads to the deterioration of the display characteristics (afterimage) of the liquid crystal display element.
  • Conventional methods for improving residual DC are known to promote charge transfer by electrostatic interaction such as salt formation or hydrogen bonding between a carboxy group and a nitrogen-containing aromatic heterocycle.
  • Patent Documents 10 to 12 there are few knowledges on how to improve the residual DC when using alkenyl liquid crystals.
  • An object of the present invention is to improve the response speed of a vertical alignment type liquid crystal display device, and further to use a liquid crystal composition containing an electrical property and a residual DC property of the obtained liquid crystal display device, particularly an alkenyl liquid crystal.
  • the present invention provides a liquid crystal aligning agent, a liquid crystal alignment film, a liquid crystal display element, and a method for manufacturing a liquid crystal display element that can improve residual DC characteristics.
  • a liquid crystal aligning agent applied to a conductive film of a pair of substrates having a conductive film and heated to form a coating film on a liquid crystal cell disposed opposite to the coating film so that the coating film faces the liquid crystal layer.
  • a liquid crystal aligning agent for a liquid crystal display element formed by irradiation and containing the following component (A), component (B), and an organic solvent.
  • Component (B) a polyimide precursor which is a reaction product of a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride selected from the following formulas (1) and (1 ′) and a diamine component, and the polyimide At least one polymer selected from the group consisting of polyimides that are imidized precursors.
  • the component (B) may be the same polymer as the component (A) when it has a side chain for vertically aligning the liquid crystal. (Wherein j and k are each independently 0 or 1, and x and y are each independently a single bond, carbonyl, ester, phenylene, sulfonyl or amide group.) 2.
  • the side chain for vertically aligning the liquid crystal in the component (A) is represented by the following formula (a): 4.
  • R 1 represents an alkylene group having 2 to 6 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH.
  • R 2 , R 3 and R 4 each independently represents a phenylene group, a fluorine-containing phenylene group or a cycloalkylene group
  • R 5 is a hydrogen atom
  • a liquid crystal display device comprising the liquid crystal alignment film as described in 5 above. 7).
  • the liquid crystal aligning agent containing the following (A) component, (B) component, and an organic solvent is apply
  • a method for manufacturing a liquid crystal display element comprising a third step of irradiating light.
  • Component (A) at least one polymer selected from the group consisting of a polyimide precursor having a side chain for vertically aligning liquid crystal and polyimide which is an imidized product of this polyimide precursor.
  • Component (B) a polyimide which is a reaction product of a tetracarboxylic dianhydride component containing at least one tetracarboxylic dianhydride selected from the group consisting of the following formulas (1) and (1 ′) and a diamine At least one polymer selected from the group consisting of a precursor and a polyimide which is an imidized product of this polyimide precursor.
  • the component (B) may be the same polymer as the component (A) when it has a side chain for vertically aligning the liquid crystal. (Wherein j, k, x and y are as described above.) 8).
  • the liquid crystal layer is a liquid crystal layer containing a liquid crystalline compound having an alkenyl liquid crystal.
  • the ultraviolet irradiation amount is 1 to 50 J / cm 2 .
  • 10. 10 The method for producing a liquid crystal display element according to any one of 7 to 9, wherein the liquid crystal display element is a vertical alignment type display element.
  • the liquid crystal aligning agent used for the manufacturing method of this invention is a liquid crystal aligning agent for vertical alignment type liquid crystal display elements containing the said (A) component, (B) component, and an organic solvent.
  • the component (B) may be the same polymer as the component (A).
  • the liquid crystal alignment agent is a solution for producing a liquid crystal alignment film
  • the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction, in the present invention, in the vertical direction. .
  • the liquid crystal aligning agent of the present invention comprises, as component (A), at least one heavy selected from the group consisting of a polyimide precursor having a side chain for vertically aligning liquid crystals and a polyimide that is an imidized product of this polyimide precursor. Contains coalescence.
  • the side chain for vertically aligning the liquid crystal is not limited as long as the liquid crystal can be aligned vertically with respect to the substrate.
  • a long-chain alkyl group a group having a ring structure or a branched structure in the middle of a long-chain alkyl group, a steroid group, a group in which some or all of hydrogen atoms of these groups are replaced with fluorine atoms, and the like can be mentioned.
  • the side chain that vertically aligns the liquid crystal may be directly bonded to the main chain of polyamic acid or polyimide, or may be bonded through an appropriate bonding group. Examples of the side chain for vertically aligning the liquid crystal include those represented by the following formula (a).
  • l, m and n each independently represents an integer of 0 or 1
  • R 1 represents an alkylene group having 2 to 6 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms
  • R 2 , R 3 , and R 4 each independently represent a phenylene group, a fluorine-containing phenylene group, or a cycloalkylene group.
  • R 5 is a hydrogen atom, an alkyl group having 2 to 24 carbon atoms, a fluorine-containing alkyl group having 2 to 24 carbon atoms, a monovalent aromatic ring, a monovalent aliphatic ring, a monovalent heterocyclic ring, or a combination thereof. Represents a monovalent macrocyclic substituent.
  • R 1 in the above formula (a) is preferably —O—, —COO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms from the viewpoint of ease of synthesis.
  • R 2 , R 3 and R 4 in formula (a) are l, m, n, R 2 and R shown in Table 1 below from the viewpoint of ease of synthesis and ability to align liquid crystals vertically. A combination of 3 and R 4 is preferred.
  • R 5 in formula (a) is preferably a hydrogen atom, an alkyl group having 2 to 14 carbon atoms, or a fluorine-containing alkyl group having 2 to 14 carbon atoms. And more preferably a hydrogen atom, an alkyl group having 2 to 12 carbon atoms, or a fluorine-containing alkyl group having 2 to 12 carbon atoms.
  • R 5 is preferably an alkyl group having 12 to 22 carbon atoms, a fluorine-containing alkyl group having 12 to 22 carbon atoms, a monovalent aromatic ring, a monovalent fatty acid.
  • the content of the side chain for vertically aligning the liquid crystal is not particularly limited as long as the liquid crystal alignment film can vertically align the liquid crystal.
  • the content of the side chain that vertically aligns the liquid crystal within the range in which the vertical alignment can be maintained is possible. As few as possible is preferable.
  • the ability of a polymer having a side chain that vertically aligns the liquid crystal to vertically align the liquid crystal varies depending on the structure of the side chain that vertically aligns the liquid crystal. Generally, as the content of the side chain that vertically aligns the liquid crystal increases, the ability to align the liquid crystal vertically increases, and decreases as the content decreases. In addition, side chains having a cyclic structure tend to have a higher ability to orient liquid crystal vertically than side chains having no cyclic structure.
  • a component (A) which is at least one polymer selected from the group consisting of a polyimide precursor having a side chain for vertically aligning such a liquid crystal and a polyimide obtained by imidizing this polyimide precursor is produced.
  • the method is not particularly limited.
  • a diamine having a side chain for vertically aligning liquid crystals may be copolymerized with the tetracarboxylic dianhydride.
  • Examples of the diamine having a side chain for vertically aligning the liquid crystal include a long-chain alkyl group, a group having a ring structure or a branched structure in the middle of the long-chain alkyl group, a steroid group, and part or all of hydrogen atoms of these groups
  • a diamine having a side chain with a group in which is substituted with a fluorine atom for example, a diamine having a side chain represented by the above formula (a). More specifically, for example, diamines represented by the following formulas (2), (3), (4) and (5) can be exemplified, but the invention is not limited thereto.
  • a 10 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • a 11 represents a single bond or a phenylene group
  • a represents the same structure as a side chain for vertically aligning the liquid crystal represented by the above formula (a)
  • a ′ is represented by the above formula (a). (This represents a divalent group having a structure in which one hydrogen atom or the like is removed from the same structure as the side chain for vertically aligning the liquid crystal.)
  • a 14 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 15 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • a 16 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 15 )
  • a 17 is an oxygen atom or —COO— * (where “*” Is a bond with (CH 2 ) a 2 ).
  • a 1 is 0 or an integer of 1
  • a 2 is an integer of 2 to 10
  • a 3 is 0 Or an integer of 1.
  • Binding positions of the two amino group (-NH 2) in equation (2) is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • a 1 is an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group having 2 to 24 carbon atoms.
  • a 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • 3 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group having 1 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • a 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or —CH 2 —
  • a 5 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • a 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O—, or —NH—
  • a 7 represents fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy Group or hydroxyl group.
  • a 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .
  • a 9 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .
  • diamine represented by the formula (3) examples include diamines represented by the following formulas [A-25] to [A-30], but are not limited thereto.
  • a 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or It indicates -NH-, a 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms of 1 to 22 carbon atoms.
  • diamine represented by the formula (4) examples include diamines represented by the following formulas [A-31] to [A-32], but are not limited thereto.
  • [A-1], [A-2], [A-3], [A-4], [A-5], from the viewpoint of the ability to align the liquid crystal vertically and the response speed of the liquid crystal Diamines of [A-25], [A-26], [A-27], [A-28], [A-29], or [A-30] are preferred.
  • the above diamines can be used alone or in combination of two or more depending on the liquid crystal alignment properties, pretilt angle, voltage holding characteristics, accumulated charge and the like when the liquid crystal alignment film is formed.
  • Such a diamine having a side chain for vertically aligning the liquid crystal is preferably used in an amount of 5 to 50 mol% of the diamine component used for the synthesis of the component (A) which is a polyamic acid, more preferably 10 to It is 40 mol%, particularly preferably 15 to 30 mol%.
  • the amount of the diamine having a side chain for vertically aligning the liquid crystal is 5 to 50 mol% of the diamine component used for the synthesis of the polyamic acid, it is particularly excellent in terms of the ability to fix the vertical alignment.
  • diamines other than the diamine which has the side chain which orients the said liquid crystal vertically can be used together as a diamine component for polyamic acid.
  • diamines having a photoreactive side chain containing at least one selected from a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group, and a cinnamoyl group, and decomposed by ultraviolet irradiation And a diamine having a site where a radical is generated in the side chain.
  • examples of the diamine having a photoreactive side chain include, but are not limited to, the diamine represented by the following general formula (6).
  • R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • R 7 is a single bond, unsubstituted or substituted with a fluorine atom and having 1 to 20 carbon atoms
  • R 7 is a single bond, unsubstituted or substituted with a fluorine atom and having 1 to 20 carbon atoms
  • R 7 is a single bond, unsubstituted or substituted with a fluorine atom and having 1 to 20 carbon atoms
  • R 7 is a single bond, unsubstituted or substituted with a fluorine atom and having 1 to 20 carbon atoms
  • —CH 2 — in the alkylene group may be optionally replaced by
  • the bonding position of the two amino groups (—NH 2 ) in Formula (6) is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • diamine having a photoreactive group including at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group, and a cinnamoyl group are as follows. Examples include, but are not limited to, compounds.
  • J 1 is a single bond, a bonding group selected from —O—, —COO—, —NHCO—, or —NH—
  • J 2 is a single bond, or is unsubstituted or substituted by a fluorine atom.
  • Examples of the diamine having a side chain that is decomposed by irradiation with ultraviolet rays and generating a radical include the diamine represented by the following general formula (7), but are not limited thereto.
  • Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, which may be substituted with an organic group, and a hydrogen atom may be replaced with a halogen atom.
  • R 9 And R 10 are each independently an alkyl group or alkoxy group having 1 to 10 carbon atoms
  • T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, — OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • the bonding position of the two amino groups (—NH 2 ) in the above formula (7) is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable. In view of easiness of synthesis, high versatility, characteristics and the like, the structure represented by the following formula is most preferable, but is not limited thereto. (In the formula, n is an integer of 2 to 8.)
  • the above-mentioned other diamines can be used alone or in combination of two or more according to properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is formed.
  • the tetracarboxylic dianhydride to be reacted with the diamine component in the synthesis of polyamic acid is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-di Carboxyphenyl) methan
  • a raw material diamine also referred to as “diamine component”
  • a raw material tetracarboxylic dianhydride also referred to as “tetracarboxylic dianhydride component”
  • the synthesis method can be used.
  • a diamine component and a tetracarboxylic dianhydride component are reacted in an organic solvent.
  • the reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid dissolves. Furthermore, even if it is an organic solvent in which a polyamic acid does not melt
  • organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ - Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component.
  • the method of adding alternately etc. is mentioned, You may use any of these methods.
  • the diamine component or tetracarboxylic dianhydride component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually.
  • the body may be mixed and reacted to form a high molecular weight body.
  • the temperature at the time of reacting the diamine component and the tetracarboxylic dianhydride component can be selected arbitrarily, and is, for example, in the range of ⁇ 20 to 150 ° C., preferably ⁇ 5 to 100 ° C.
  • the reaction can be performed at an arbitrary concentration.
  • the total amount of the diamine component and the tetracarboxylic dianhydride component is 1 to 50% by mass, preferably 5 to 30% by mass with respect to the reaction solution. .
  • the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component can be selected according to the molecular weight of the polyamic acid to be obtained. Similar to the normal polycondensation reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0. A preferred range is 0.8 to 1.2.
  • the method for synthesizing the polyamic acid used in the present invention is not limited to the above-described method, and, like the general polyamic acid synthesis method, instead of the tetracarboxylic dianhydride, a tetra-structure having a corresponding structure is used.
  • the corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid derivative such as carboxylic acid or tetracarboxylic acid dihalide.
  • Examples of the method for imidizing the polyamic acid to obtain a polyimide include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the imidation ratio from polyamic acid to polyimide is preferably 30% or more, more preferably 50 to 99%, since the voltage holding ratio can be increased.
  • 70% or less is preferable from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish. In consideration of both characteristics, 50 to 80% is more preferable.
  • the temperature is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferably performed while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 to 250 ° C., preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group
  • the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation generation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the liquid crystal aligning agent of the present invention comprises, as component (B), a tetracarboxylic dianhydride component containing at least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (1) and (1 ′), It contains at least one polymer selected from the group consisting of a polyimide precursor obtained by reaction with diamine and a polyimide obtained by imidizing this polyimide precursor.
  • the light irradiation causes a gap between the liquid crystal and the liquid crystal alignment film.
  • the residual DC characteristics can be improved by the interaction that appears to occur.
  • the tetracarboxylic dianhydride selected from the above formulas (1) and (1 ′) include, but are not limited to, the following compounds.
  • At least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (1-1) to (1-5) is a tetracarboxylic dianhydride component used for the synthesis of the component (B) which is a polyamic acid. It is preferable to use an amount of 10 to 100% of the above. More preferably, 10 to 60% is used. More preferably, since the voltage holding ratio can be increased, at least one tetracarboxylic dianhydride selected from the group consisting of formula (1-1), formula (1-3), and formula (1-5) is used.
  • the total amount of the tetracarboxylic dianhydride components used for the synthesis of the component (B) is preferably 10 to 40 mol%, more preferably 20 to 40 mol%.
  • tetracarboxylic dianhydrides described in the component (A) may be used as a raw material for the component (B).
  • the tetracarboxylic dianhydride having an aliphatic group or an alicyclic group is used in an amount of 0 to 90 mol% of the tetracarboxylic dianhydride component used for the synthesis of the component (B) that is a polyamic acid. It is preferable.
  • the polymer as the component (B) may be made from at least one diamine selected from the group consisting of the following formulas (B-1) to (B-5) as a raw material.
  • Y 1 represents a monovalent organic group having a secondary amine, tertiary amine, or heterocyclic structure
  • Y 2 is a divalent organic having a secondary amine, tertiary amine, or heterocyclic structure. Represents a group.
  • At least one diamine having a specific structure with high polarity selected from the above formulas (B-1) to (B-5) is used, or a diamine having a carboxy group and a nitrogen-containing aromatic heterocyclic ring.
  • charge transfer is promoted by electrostatic interactions such as salt formation and hydrogen bonding, so that the residual DC characteristics can be improved.
  • Examples of at least one diamine selected from the group consisting of the formulas (B-1) to (B-5) include, but are not limited to, the following diamines.
  • the polymer which is the component (B) is obtained by using the diamine having a side chain for vertically aligning the liquid crystal used in the component (A) or the other diamine described in the section of the component (A). Also good.
  • At least one diamine selected from the group consisting of the above formulas (B-1) to (B-5) is used in an amount of 10 to 80 mol% of the diamine component used for the synthesis of the component (B) which is a polyamic acid. It is preferably used, and more preferably 20 to 70 mol%. More preferably, since the voltage holding ratio can be increased, the diamine exemplified above is selected from the group consisting of 3,5-diaminobenzoic acid and 3,5-diamino-N- (pyridin-3-ylmethyl) benzamide. At least one diamine component is preferably used in an amount of 20 to 70 mol% of the total diamine components used for the synthesis of component (B).
  • At least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (1) and (1 ′), and, if necessary, other tetracarboxylic acids A tetracarboxylic dianhydride component containing a dianhydride can be reacted with a diamine component to obtain a polyimide precursor or a polyimide.
  • the method for producing the component (B) is based on the above-mentioned “component (A)” except that at least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (1) and (1 ′) is used as a raw material. It is the same as “Manufacturing method”.
  • the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of a polyimide precursor having a side chain for vertically aligning liquid crystals and a polyimide which is an imidized product of this polyimide precursor.
  • the total content of the component (A) and the component (B) in the liquid crystal aligning agent of the present invention is not particularly limited, but is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably Is 3 to 10% by mass.
  • the content ratio of the component (A) and the component (B) is not particularly limited.
  • the component (B) may have the same polymer as the component (A) by having a side chain for vertically aligning the liquid crystal.
  • the liquid crystal aligning agent of this invention may contain other polymers other than (A) component and (B) component.
  • the content of the other polymer in all the components of the polymer is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass.
  • the molecular weight of the polymer of the liquid crystal aligning agent is GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal aligning film obtained by applying the liquid crystal aligning agent, workability when forming the coating film, uniformity of the coating film, etc. ),
  • the weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it can dissolve or disperse components such as the component (A) and the component (B).
  • combination of said polyamic acid can be mentioned.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble.
  • N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.
  • Solvents that improve the uniformity and smoothness of the coating include, for example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Thor, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, prop
  • the liquid crystal aligning agent may contain components other than those described above. Examples include a compound that improves the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, a compound that improves the adhesion between the liquid crystal aligning film and the substrate, and the film strength of the liquid crystal aligning film is further improved. Compound etc. are mentioned.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the ratio of use thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent. 1 part by mass.
  • compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. Also good. When these compounds are used, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent.
  • liquid crystal aligning agent is added with a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. May be.
  • the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of a polyimide precursor having side chains for vertically aligning liquid crystals and a polyimide obtained by imidizing this polyimide precursor (A ) Component and a polyimide precursor obtained by reaction with a tetracarboxylic dianhydride component containing at least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (1) and (1 ′), and Since the component (B) which is at least 1 type of polymer chosen from the group which consists of a polyimide obtained by imidating this polyimide precursor is contained, a residual DC characteristic can be made favorable.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • the method for applying the liquid crystal aligning agent is not particularly limited, and examples thereof include a screen printing method, an offset printing method, a flexographic printing method, an inkjet method, a dip method, a roll coater, a slit coater, and a spinner.
  • the baking temperature of the coating film formed by applying the liquid crystal aligning agent is not limited, and can be performed at any temperature of, for example, 100 to 350 ° C., preferably 120 to 300 ° C., more preferably 150-250 ° C. This baking can be performed with a hot plate, a hot-air circulating furnace, an infrared furnace, or the like.
  • the thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • the liquid crystal display element of the present invention is formed of two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer.
  • the liquid crystal display element of a vertical alignment system comprising a liquid crystal cell having a liquid crystal alignment film formed.
  • the liquid crystal alignment agent of the present invention is applied onto two substrates and baked to form a liquid crystal alignment film, and the two substrates are arranged so that the liquid crystal alignment films face each other.
  • This is a vertical alignment type liquid crystal display element comprising a liquid crystal cell produced by sandwiching a liquid crystal layer composed of liquid crystal between the two substrates and irradiating with ultraviolet rays.
  • the liquid crystal alignment film formed of the liquid crystal alignment agent of the present invention by using the liquid crystal alignment film formed of the liquid crystal alignment agent of the present invention and irradiating the liquid crystal alignment film and the liquid crystal layer with ultraviolet rays, an interaction occurs between the liquid crystal and the liquid crystal alignment film of the present invention.
  • the liquid crystal display element has a small liquid crystal residual DC and is unlikely to cause image sticking.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal is formed.
  • substrate described with the said liquid crystal aligning film can be mentioned.
  • the liquid crystal display element of the present invention may use a substrate provided with a conventional electrode pattern or protrusion pattern, but by having a liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention, Operation is possible even if a substrate with a structure in which 1 to 10 ⁇ m line / slit electrode pattern is formed on one side substrate and no slit pattern or projection pattern is formed on the opposite substrate, and the process at the time of device fabrication is simplified And high transmittance can be obtained.
  • a high-performance element such as a TFT type element
  • an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
  • a transmissive liquid crystal display element the above-described substrate is generally used.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used. is there. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
  • the liquid crystal alignment film is formed by applying the liquid crystal aligning agent of the present invention on this substrate and baking it, and the details are as described above.
  • nematic liquid crystal having negative dielectric anisotropy can be used as the liquid crystal composition used in the liquid crystal display element of the present invention.
  • dicyanobenzene liquid crystal, pyridazine liquid crystal, Schiff base liquid crystal, azoxy liquid crystal, biphenyl liquid crystal, phenylcyclohexane liquid crystal, and terphenyl liquid crystal can be used.
  • an alkenyl liquid crystal in combination A conventionally well-known thing can be used as such an alkenyl type liquid crystal.
  • a compound represented by the following formula can be exemplified, but the present invention is not limited thereto.
  • the liquid crystal composition constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited as long as it is a liquid crystal material used in a vertical alignment method.
  • MLC-6608, MLC-6609, etc. which are liquid crystal compositions having negative dielectric anisotropy, manufactured by Merck & Co., Inc. can be used.
  • MLC-3022, MLC-3023 (including photopolymerizable compound (RM)) manufactured by Merck Co., Ltd. which are liquid crystal compositions containing alkenyl liquid crystals and having negative dielectric anisotropy, can be used. .
  • a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and an adhesive is applied around the substrate, and then a liquid crystal alignment film is formed. There is a method in which the other side is bonded so that the surface on the inner side becomes the inner side, and liquid crystal is injected under reduced pressure for sealing.
  • a liquid crystal cell can also be manufactured by a method in which the other substrate is bonded and sealed with the other surface facing inward.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the step of manufacturing the liquid crystal cell by irradiating the liquid crystal alignment film and the liquid crystal layer with ultraviolet rays may be performed at any time after the liquid crystal is sealed.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J / cm 2 , preferably 40 J / cm 2 or less, and the smaller the irradiation amount of ultraviolet rays, the lower the reliability caused by the destruction of the members constituting the liquid crystal display element.
  • the wavelength of the ultraviolet rays used is preferably 300 to 500 nm, more preferably 300 to 400 nm.
  • the irradiation of the liquid crystal alignment film and the liquid crystal layer with ultraviolet rays may be performed while applying a voltage and maintaining the electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p.
  • the liquid crystal aligning agent is not only useful as a liquid crystal aligning agent for producing a vertical alignment type liquid crystal display element such as a PSA type liquid crystal display or an SC-PVA type liquid crystal display, but also by a rubbing process or a photo-alignment process. It can also be suitably used for producing a liquid crystal alignment film to be formed.
  • NMP N-methyl-2-pyrrolidone.
  • BCS Butyl cellosolve.
  • ⁇ Polyimide molecular weight measurement> Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd. Column: Column manufactured by Shodex (KD-803, KD-805), Column temperature: 50 ° C.
  • N N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) at 10 ml / L), Flow rate: 1.0 ml / min, Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight about 9,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and polyethylene glycol (molecular weight about 12,000, molecular weight manufactured by Polymer Laboratories) 4,000 and 1,000).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one proton.
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • NMP (18.0 g) was added to the obtained polyimide powder A (2.0 g), and dissolved by stirring at 70 ° C. for 12 hours.
  • BCS (13.3g) was added to this solution, and liquid crystal aligning agent A1 was obtained by stirring at room temperature for 2 hours.
  • a liquid crystal aligning agent U1 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder B (2.0 g) was used instead of the polyimide powder A. Then, BODA (3.75 g, 15 mmol), DA-3 (1.90 g, 4.99 mmol), m-PDA (2.16 g, 20.0 mmol), were dissolved in NMP (29.7 g), and 60 After reacting at 4 ° C. for 4 hours, PMDA (2.10 g, 9.63 mmol) and NMP (9.92 g) were added and reacted at 40 ° C.
  • a liquid crystal aligning agent L1 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder C (2.0 g) was used instead of the polyimide powder A.
  • the liquid crystal aligning agent U1 thus obtained was mixed as a first component with 5.0 g, and the liquid crystal aligning agent L1 as a second component was mixed with 5.0 g to obtain a liquid crystal aligning agent A2.
  • a liquid crystal aligning agent U2 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder D (2.0 g) was used instead of the polyimide powder A.
  • BODA 123 g, 491 mmol
  • DBA 127 g, 837 mmol
  • DA-1 60.7 g, 148 mmol
  • polyimide powder E The imidation ratio of this polyimide was 73%, the number average molecular weight was 13000 and the weight average molecular weight was 39000.
  • a liquid crystal aligning agent L2 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder E (2.0 g) was used instead of the polyimide powder A.
  • the obtained liquid crystal aligning agent U2 was mixed with 5.0 g as the first component, and 5.0 g was mixed with the liquid crystal aligning agent L2 as the second component to obtain a liquid crystal aligning agent A3.
  • a liquid crystal aligning agent U3 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder F (2.0 g) was used instead of the polyimide powder A.
  • BODA (3.15 g, 12.6 mmol)
  • DA-3 (2.40 g, 6.31 mmol)
  • DBA (1.28 g, 8.40 mmol)
  • 3AMPDA (1.25 g, 6.31 mmol)
  • NMP 30.4 g
  • PMDA (1.79 g, 8.19 mmol
  • NMP (10.14 g) were added and reacted at room temperature for 4 hours to obtain a polyamic acid solution.
  • a liquid crystal aligning agent L3 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder G (2.0 g) was used instead of the polyimide powder A.
  • the obtained liquid crystal aligning agent U3 was mixed as a first component with 5.0 g, and the liquid crystal aligning agent L3 as a second component was mixed with 5.0 g to obtain a liquid crystal aligning agent A4.
  • a liquid crystal aligning agent L4 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder H (2.0 g) was used instead of the polyimide powder A.
  • the liquid crystal aligning agent U1 obtained in Synthesis Example 2 was mixed as a first component with 5.0 g, and the liquid crystal aligning agent L4 as a second component was mixed with 5.0 g to obtain a liquid crystal aligning agent A5.
  • a liquid crystal aligning agent L5 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder J (2.0 g) was used instead of the polyimide powder A.
  • Synthesis Example 3 5.0 g of the obtained liquid crystal aligning agent U2 as a first component and 5.0 g of the liquid crystal aligning agent L5 as a second component were mixed to obtain a liquid crystal aligning agent A8.
  • a liquid crystal aligning agent L6 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder L (2.0 g) was used instead of the polyimide powder A.
  • Synthesis Example 3 5.0 g of liquid crystal aligning agent U2 obtained as a first component and 5.0 g of liquid crystal aligning agent L6 as a second component were mixed to obtain liquid crystal aligning agent A9.
  • a liquid crystal aligning agent U4 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder M (2.0 g) was used instead of the polyimide powder A.
  • BODA (1.20 g, 4.80 mmol
  • DBA (1.46 g, 9.59 mmol
  • 3AMPDA (1.74 g, 7.18 mmol
  • DA-3 (2.74 g, 7.20 mmol) were then added to NMP.
  • (28.58 g) was dissolved and reacted at 60 ° C. for 2 hours.
  • PMDA (1.05 g, 4.81 mmol
  • NMP (4.19 g) were added and reacted at room temperature for 4 hours.
  • CBDA (2.78 g, 14.18 mmol) and NMP ( 11.1 g) was added and reacted at room temperature for 4 hours to obtain a polyamic acid solution.
  • NMP NMP
  • acetic anhydride 8.90 g
  • pyridine 2.76 g
  • This reaction solution was poured into methanol (472 g), and the resulting precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain polyimide powder N.
  • a liquid crystal aligning agent L7 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder N (2.0 g) was used instead of the polyimide powder A. 3.0 g of the obtained liquid crystal aligning agent U4 as a first component and 7.0 g of the liquid crystal aligning agent L7 as a second component were mixed to obtain a liquid crystal aligning agent A10.
  • a liquid crystal aligning agent L8 was obtained in the same manner as in Synthesis Example 1 except that the obtained polyimide powder O (2.0 g) was used instead of the polyimide powder A.
  • the liquid crystal aligning agent U4 obtained in Synthesis Example 10 was mixed as a first component with 3.0 g, and the liquid crystal aligning agent L8 as a second component was mixed with 7.0 g to obtain a liquid crystal aligning agent A11.
  • NMP (18.0 g) was added to the obtained polyimide powder P (2.0 g), and the mixture was dissolved by stirring at 70 ° C. for 12 hours.
  • BCS (13.3g) was added to this solution, and it stirred at room temperature for 2 hours, and obtained liquid crystal aligning agent A12.
  • Example A Using the liquid crystal aligning agent A1 obtained in Synthesis Example 1, a liquid crystal cell was prepared according to the procedure shown below.
  • the liquid crystal aligning agent A1 obtained in Synthesis Example 1 is spin-coated on the ITO surface of the ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line / space of 5 ⁇ m is formed, and is 80 ° C. After drying for 90 seconds on the hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 20 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
  • liquid crystal aligning agent A1 is spin-coated on the ITO surface on which no electrode pattern is formed, dried on an 80 ° C. hot plate for 90 seconds, and then baked in a 200 ° C. hot air circulation oven for 20 minutes.
  • a 100 nm liquid crystal alignment film was formed.
  • the sealing compound solvent type thermosetting type epoxy resin
  • the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.), which is a liquid crystal composition containing no alkenyl-based liquid crystal, was injected into this empty cell by a reduced pressure injection method to produce a liquid crystal cell.
  • the obtained liquid crystal cell was annealed (realignment treatment) for 30 minutes in a circulation oven at 110 ° C. Thereafter, the liquid crystal cell was irradiated with light under the following conditions, and the voltage holding ratio and residual DC were measured under the following conditions. For comparison, the voltage holding ratio and residual DC were also measured under the same conditions for a liquid crystal cell that was not irradiated with light.
  • UV Light irradiation
  • UV was passed through a 365 nm bandpass filter and irradiated with 6 J / cm 2 (the lamp used was a USHIO Super High Pressure Mercury Lamp LL, ORC UV Light Measure Model UV-M03A (attachment: UV The illuminance was measured at ⁇ 35).
  • the obtained liquid crystal cell was measured by applying a voltage of 1 V for 60 ⁇ s at a temperature of 60 ° C. using a VHR-1A manufactured by Toyo Technica Co., Ltd., and measuring a voltage holding ratio after 1667 ms. .
  • Example B Comparative Example A, Reference Example A
  • a liquid crystal cell irradiated with light was manufactured by performing the same operation as in Example A, and the voltage holding ratio and residual DC were measured. .
  • Example 1 A light-irradiated liquid crystal cell was produced in the same manner as in Example A except that MLC-3022 (trade name of Merck), which is a liquid crystal composition containing an alkenyl liquid crystal, was used instead of MLC-6608. The voltage holding ratio and residual DC were measured.
  • MLC-3022 trade name of Merck
  • Examples 2 to 4, 8 to 14 Except for using the liquid crystal aligning agent described in Table 3 instead of the liquid crystal aligning agent A1, a liquid crystal cell irradiated with light was manufactured by performing the same operation as in Example 1, and the voltage holding ratio and the residual DC were measured. .
  • Example 5 Instead of MLC-6608, MLC-3023 (trade name of Merck), which is a liquid crystal composition containing an alkenyl liquid crystal and RM (photopolymerizable compound), is used, and liquid crystal aligning agent A2 is used instead of liquid crystal aligning agent A1. Further, instead of light irradiation, a liquid crystal cell irradiated with light was manufactured by performing the same operation as in Example A except that the PSA treatment was performed under the following conditions, and the voltage holding ratio and residual DC were measured.
  • UV processing With a DC voltage of 15 V applied, UV was applied from the outside of the liquid crystal cell through a 325 nm high-pass filter at 10 J / cm 2 (the lamp used was a USHIO Super High Pressure Mercury Lamp LL, ORC UV Light Measure Illuminance was measured with Model UV-M03A (attachment: UV-35). Thereafter, UV (UV lamp: FLR40SUV32 / A-1) was irradiated for 30 minutes using a UV-FL irradiation apparatus manufactured by Toshiba Lighting & Technology Co., Ltd. in a state where no voltage was applied.
  • Example 15 to 19 A PSA-treated liquid crystal cell was produced by performing the same operation as in Example 5 except that the liquid crystal aligning agent described in Table 4 was used instead of the liquid crystal aligning agent A2, and the voltage holding ratio and residual DC were measured. .
  • Example 6 Example A except that MLC-3022 (trade name of Merck), which is a liquid crystal composition containing an alkenyl liquid crystal, was used instead of MLC-6608, and liquid crystal aligning agent A2 was used instead of liquid crystal aligning agent A1.
  • MLC-3022 trade name of Merck
  • liquid crystal aligning agent A2 was used instead of liquid crystal aligning agent A1.
  • a liquid crystal cell irradiated with light was manufactured in the same manner, and the liquid crystal cell was annealed for 3 hours in a circulation oven at 150 ° C., and then the voltage holding ratio and residual DC were measured.
  • Example 7 Example A except that MLC-3022 (trade name of Merck), which is a liquid crystal composition containing an alkenyl liquid crystal, was used instead of MLC-6608, and liquid crystal aligning agent A2 was used instead of liquid crystal aligning agent A1.
  • a liquid crystal cell irradiated with light was manufactured by performing the same operation, and the liquid crystal cell was annealed for 3 hours in a circulation oven at 150 ° C., and further irradiated with light under the same conditions. Retention and residual DC were measured.
  • Table 2 shows the results of using MLC-6608, which is a conventional liquid crystal not containing an alkenyl liquid crystal, as Examples A and B, Comparative Example A, and Reference Example A.
  • MLC-6608 which is a conventional liquid crystal not containing an alkenyl liquid crystal
  • Comparative Example A and Reference Example A that do not use a polymer having a structural unit derived from PMDA
  • the accumulation of residual DC is suppressed in Reference Example A using a highly polar diamine, which is a conventional technique for reducing residual DC.
  • Example A and Example B using the polymer having a structural unit derived from PMDA there is a difference in the degree depending on the introduction amount of the structural unit derived from PMDA, but the residual DC is smaller than that in Comparative Example A. It is reduced, and further reduction is seen by light irradiation.
  • MLC-6608 which is a liquid crystal composition that does not contain an alkenyl-based liquid crystal
  • the alignment film can also be reduced by light irradiation.
  • Table 3 shows the results using MLC-3022 which is a liquid crystal composition containing an alkenyl liquid crystal. Compared with Table 2, it can be seen that the overall voltage holding ratio is reduced.
  • Comparative Example 1 and Comparative Example 2 also in Comparative Example 2 using the liquid crystal aligning agent A6 that was effective in residual DC with MLC-6608, the accumulated amount of residual DC was large regardless of the presence or absence of light irradiation.
  • Example 11, Example 12, Example 13, and Example 14 the residual DC in the unirradiated light was large as in Comparative Example 2, but was greatly reduced by performing the light irradiation.
  • Table 4 shows the results using MLC-3023, which is a liquid crystal composition containing alkenyl liquid crystal and RM. Similar to Table 3, the voltage holding ratio is low compared to Table 2, but Comparative Examples 3 and 4 have a large amount of residual DC accumulated regardless of the presence or absence of the PSA treatment. However, in Examples 5 and 15 to 19 using polymers having structural units derived from PMDA, CA-1 or CA-2, residual DC was greatly reduced by performing the PSA treatment. Thus, when a liquid crystal composition containing an alkenyl-based liquid crystal is used, the conventional residual DC reduction method is not effective, and a polymer having a structural unit derived from PMDA, CA-1 or CA-2 is used. By using the liquid crystal alignment film including the residual DC, the residual DC is reduced by performing the PSA process.
  • Example 5 Similar to the examples shown in Table 3 and Table 4, the polymer having PMDA-derived structural units was used, and factors that can reduce the accumulation of residual DC by light irradiation were examined (Table 5).
  • Example 5 when light irradiation was performed using liquid crystal aligning agent A2 containing the polymer which has a structural unit derived from PMDA, residual DC has decreased compared with non-irradiation. Furthermore, when annealing was performed at 150 ° C. for 3 hours after light irradiation, accumulation of residual DC was confirmed to be the same as the result of non-light irradiation (Example 6).
  • the tetracarboxylic dianhydride for example, the formula (1) and the formula (1 ′)
  • PMDA structural unit derived from
  • the liquid crystal display element obtained by the present invention is useful as a vertical alignment type liquid crystal display element such as a PSA liquid crystal display or an SC-PVA liquid crystal display.
  • a vertical alignment type liquid crystal display element such as a PSA liquid crystal display or an SC-PVA liquid crystal display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 残留DC特性が良好な液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法を提供する。 導電膜を有する一対の基板の該導電膜上に液晶配向剤を塗布し加熱して塗膜を形成した基板を、液晶層を介して前記塗膜が相対するように対向配置した液晶セルに光照射してなる液晶表示素子用であり、下記の(A)成分、(B)成分、及び有機溶媒を含有する液晶配向剤。 (A)成分:液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。 (B)成分:下記式(1)及び(1')から選ばれるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミン成分との反応生成物であるポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。但し、(B)成分は、液晶を垂直に配向させる側鎖を有する場合には、(A)成分と同一の重合体でもよい。(j、kは0又は1であり、x、yは、単結合、カルボニル基等である。)

Description

液晶配向剤、液晶表示素子及び液晶表示素子の製造方法
 本発明は、液晶分子に紫外線を照射することによって作製される垂直配向方式の液晶表示素子の製造に使用できる液晶配向剤、液晶表示素子及び液晶表示素子の製造方法に関する。
 基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)の液晶表示素子の中には、その製造過程において、液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。
 このような垂直配向方式の液晶表示素子では、あらかじめ液晶組成物中に光重合性化合物を添加し、ポリイミド等の垂直配向膜と共に用いて、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度が速いPSA(Polymer sustained Alignment)素子(特許文献1及び非特許文献1参照。)が知られている。
 通常、電界に応答した液晶分子の傾く方向は、基板上に設けられた突起や表示用電極に設けられたスリットなどによって制御されている。液晶組成物中に光重合性化合物を添加し、液晶セルに電圧を印加しながら紫外線を照射する場合、液晶分子の傾いていた方向が記憶されたポリマー構造物が液晶配向膜上に形成されるので、突起やスリットのみで液晶分子の傾き方向を制御する方法と比べて、液晶表示素子の応答速度が速くなるといわれている。
 一方、光重合性化合物を液晶組成物中ではなく、液晶配向膜中に添加することによっても、液晶表示素子の応答速度が速くなることが報告されている(SC-PVA型液晶ディスプレイ)(非特許文献2参照)。更に、近年では、PSA型液晶パネルの更なる高速応答化が検討されており、かかる技術として、アルケニル基及びフルオロアルケニル基のうちのいずれか1つ以上を有する単官能性の液晶性化合物(以下、「アルケニル系液晶」ともいう。)を、液晶組成物に導入する試みがなされている(特許文献2~5参照)。しかしながら、アルケニル系液晶を液晶組成物に導入した場合、信頼性の低下にともない(特許文献6~9参照)、電圧保持率や直流電荷蓄積特性(残留DC特性)が悪化する傾向にある。
 特に、残留DC特性の悪化は、液晶表示素子の表示特性の悪化(残像)につながる、焼きつきを引起す。これまでの残留DC改善手法としては、カルボキシ基と窒素含有芳香族複素環の塩形成や水素結合といった、静電的相互作用による電荷移動の促進などが知られている。しかし、アルケニル系液晶を用いた場合の残留DCの改善手法は、知見が少ないのが現状である(特許文献10~12参照)。
日本特開2003-307720号公報 国際公開第2009/050869号 日本特開2010-285499号公報 日本特開平9-104644号公報 日本特開平6-108053号公報 欧州特許第0 474 062号明細書 米国特許第6,066,268号明細書 日本特開2014-240486号公報 日本特開2014-224260号公報 日本特開平9-316200号公報 日本特開平10-104633号公報 日本特開平8-76128号公報
K.Hanaoka,SID 04 DIGEST、P.1200-1202 K.H Y.-J.Lee,SID 09 DIGEST、P.666-668
 本発明の課題は、垂直配向方式の液晶表示素子の応答速度を向上させることができ、さらに、得られる液晶表示素子の電気特性、残留DC特性、とりわけ、アルケニル系液晶を含む液晶組成物を用いた場合の、残留DC特性を良好にすることができる液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法を提供することにある。
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
1.導電膜を有する一対の基板の該導電膜上に液晶配向剤を塗布し加熱して塗膜を形成した基板を、液晶層を介して前記塗膜が相対するように対向配置した液晶セルに光照射してなる液晶表示素子用であり、下記の(A)成分、(B)成分、及び有機溶媒を含有する液晶配向剤。
 (A)成分:液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
 (B)成分:下記式(1)及び(1’)から選ばれるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミン成分との反応生成物であるポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。但し、(B)成分は、液晶を垂直に配向させる側鎖を有する場合には、(A)成分と同一の重合体でもよい。
Figure JPOXMLDOC01-appb-C000004
(式中、j及びkは、それぞれ独立に、0又は1であり、x及びyは、それぞれ独立に、単結合、カルボニル、エステル、フェニレン、スルホニル又はアミド基である。)
2.液晶表示素子における液晶層が、アルケニル系液晶を有する液晶性化合物を含有する液晶層である、上記1に記載の液晶配向剤。
3.(A)成分と(B)成分の含有割合が、質量比で、(A)成分:(B)成分=X:(10-X)(X=1~9)である、上記1又は2に記載の液晶配向剤。
4.(A)成分中の液晶を垂直に配向させる側鎖が、下記式(a)で表される、上記1
~3のいずれか1項に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000005
(l、m及びnは、それぞれ独立に、0又は1の整数を表し、Rは炭素数2~6のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は炭素数1~3のアルキレン-エーテル基を表し、R、R、及びRは、それぞれ独立に、フェニレン基、フッ素含有フェニレン基又はシクロアルキレン基を表し、Rは水素原子、炭素数2~24のアルキル基、炭素数2~24のフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、又はそれらからなる一価の環状置換体を表す。)
5.上記1~4のいずれか1項に記載の液晶配向剤から得られる膜厚が5~300nmである液晶配向膜。
6.上記5に記載の液晶配向膜を備える液晶表示素子。
7.下記の(A)成分、(B)成分及び有機溶媒を含有する液晶配向剤を、導電膜を有する一対の基板の該導電膜上にそれぞれ塗布し、次いで、これを加熱して塗膜を形成する第1の工程と、前記塗膜を形成した一対の基板を、液晶層を介して前記塗膜が相対するように対向配置して液晶セルを構築する第2の工程と、前記液晶セルに光照射する第3の工程をむことを特徴とする液晶表示素子の製造方法。
(A)成分:液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
(B)成分:下記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミンとの反応生成物であるポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。但し、(B)成分は、液晶を垂直に配向させる側鎖を有する場合には、(A)成分と同一の重合体でもよい。
Figure JPOXMLDOC01-appb-C000006
(式中、j、k、x及びyは、上記したとおりである。)
8.液晶層が、アルケニル系液晶を有する液晶性化合物を含有する液晶層である、上記7に記載の液晶表示素子の製造方法。
9.紫外線の照射量が1~50J/cmである、上記7又は8に記載の液晶表示素子の製造方法。
10.液晶表示素子が垂直配向型表示素子である、上記7~9のいずれか1項に記載の液晶表示素子の製造方法。
 本発明によれば、液晶の応答速度が速く、且つ残留DCが少ない、垂直配向方式の液晶表示素子を提供することができる
 本発明の製造方法に用いる液晶配向剤は、上記(A)成分、(B)成分及び有機溶媒を含有する垂直配向型液晶表示素子用液晶配向剤である。ただし、上記(B)成分は、(A)成分と同一の重合体であってもよい。
 なお、本発明においては、液晶配向剤とは液晶配向膜を作製するための溶液であり、液晶配向膜とは液晶を所定の方向、本発明においては、垂直方向に配向させるための膜である。
 [(A)成分]
 本発明の液晶配向剤は、(A)成分として、液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する。
<液晶を垂直に配向させる側鎖>
 液晶を垂直に配向させる側鎖は、液晶を基板に対して垂直に配向させることができる構造であれば限定されない。例えば、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基などが挙げられる。液晶を垂直に配向させる側鎖は、ポリアミック酸又はポリイミドの主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。液晶を垂直に配向させる側鎖としては、例えば、下記式(a)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式(a)中、l、m及びnは、それぞれ独立に、0又は1の整数を表し、Rは炭素数2~6のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は炭素数1~3のアルキレン-エーテル基を表し、R、R、及びRは、それぞれ独立に、フェニレン基、フッ素含有フェニレン基又はシクロアルキレン基を表し、Rは水素原子、炭素数2~24のアルキル基、炭素数2~24のフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、又はそれらからなる一価の大環状置換体を表す。)
 なお、上記式(a)中のRは、合成の容易性の観点からは、-O-、-COO-、-CONH-、又は炭素数1~3のアルキレン-エーテル基が好ましい。
 また、式(a)中のR、R及びRは、合成の容易性及び液晶を垂直に配向させる能力の観点から、下記表1に示す、l、m、n、R、R及びRの組み合わせが好ましい。
Figure JPOXMLDOC01-appb-T000008
 l、m及びnの少なくとも一つが1である場合、式(a)中のRは、好ましくは水素原子、炭素数2~14のアルキル基、又は炭素数2~14のフッ素含有アルキル基であり、より好ましくは、水素原子、炭素数2~12のアルキル基、又は炭素数2~12のフッ素含有アルキル基である。また、l、m及びnがともに0である場合、Rは、好ましくは炭素数12~22のアルキル基、炭素数12~22のフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、又はそれらからなる一価の大環状置換体であり、より好ましくは、炭素数12~20のアルキル基又は炭素数12~20のフッ素含有アルキル基である。
 本発明に用いるポリイミド又はポリイミド前駆体中の、液晶を垂直に配向させる側鎖の含有量としては、液晶配向膜が、液晶を垂直に配向させることができる範囲であれば特に限定されない。但し、液晶配向膜を具備する液晶表示素子において、液晶の応答速度をより速くしたい場合は、垂直配向を保つことができる範囲内で、液晶を垂直に配向させる側鎖の含有量は、可能な限り少ない方が好ましい。
 なお、液晶を垂直に配向させる側鎖を有する重合体の、液晶を垂直に配向させる能力は、液晶を垂直に配向させる側鎖の構造によって異なる。一般的には、液晶を垂直に配向させる側鎖の含有量が多くなると液晶を垂直に配向させる能力は上がり、少なくなると下がる。また、環状構造を有する側鎖は、環状構造を有さない側鎖と比較して、液晶を垂直に配向させる能力が高い傾向がある。
 <(A)成分の製造方法>
 このような液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体である(A)成分を製造する方法は、特に限定されない。例えば、ジアミンとテトラカルボン酸二無水物との反応によってポリアミック酸を得る方法において、液晶を垂直に配向させる側鎖を有するジアミンをテトラカルボン酸二無水物と共重合させればよい。
 液晶を垂直に配向させる側鎖を有するジアミンとしては、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基等を側鎖として有するジアミン、例えば、上記式(a)で表される側鎖を有するジアミンを挙げることができる。より具体的には、例えば、下記式(2)、(3)、(4)及び(5)で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
(式(2)中のl、m、n、及びR~Rの定義は、上記式(a)と同じである。)
Figure JPOXMLDOC01-appb-C000010
(式(3)及び式(4)中、A10は-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を表し、A11は単結合若しくはフェニレン基を表し、aは上記式(a)で表される液晶を垂直に配向させる側鎖と同一の構造を表し、a’は上記式(a)で表される液晶を垂直に配向させる側鎖と同一の構造から、水素原子等が一つ取れた構造である二価の基を表す。)
Figure JPOXMLDOC01-appb-C000011
(式(5)中、A14は、フッ素原子で置換されていてもよい、炭素数3~20のアルキル基であり、A15は、1,4シクロへキシレン基又は1,4-フェニレン基であり、A16は、酸素原子又は-COO-*(ただし、「*」を付した結合手がA15と結合する)であり、A17は酸素原子又は-COO-*(ただし、「*」を付した結合手が(CH)aと結合する。)である。また、aは0、又は1の整数であり、aは2~10の整数であり、aは0、又は1の整数である。)
 式(2)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 式(2)の具体的な構造としては、下記の式[A-1]~式[A-24]で示されるジアミンを例示することができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
(式[A-1]~式[A-5]中、Aは、炭素数2~24のアルキル基又は炭素数2~24のフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000013
(式[A-6]及び式[A-7]中、Aは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Aは炭素数1~22のアルキル基、炭素数1~22のアルコキシ基、炭素数1~22のフッ素含有アルキル基又は炭素数1~22のフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000014
(式[A-8]~式[A-10]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Aは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000015

(式[A-11]及び式[A-12]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000016

(式[A-13]及び式[A-14]中、Aは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000017

(式[A-15]及び式[A-16]中、Aは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(3)で表されるジアミンの具体例としては、下記の式[A-25]~式[A-30]で示されるジアミンを挙げることができるが、これに限るものではない。
Figure JPOXMLDOC01-appb-C000021
(式[A-25]~式[A-30]中、A12は、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、A13は炭素数1~22のアルキル基又は炭素数1~22のフッ素含有アルキル基を示す。)
 式(4)で表されるジアミンの具体例としては、下記の式[A-31]~式[A-32]で示されるジアミンを挙げることができるが、これに限るものではない。
Figure JPOXMLDOC01-appb-C000022
 これらの中でも、液晶を垂直に配向させる能力、液晶の応答速度の観点から、[A-1]、[A-2]、[A-3]、[A-4]、[A-5]、[A-25]、[A-26]、[A-27]、[A-28]、[A-29]、又は[A-30]のジアミンが好ましい。
 上記のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 このような液晶を垂直に配向させる側鎖を有するジアミンは、ポリアミック酸である(A)成分の合成に用いるジアミン成分の5~50モル%となる量を用いることが好ましく、より好ましくは10~40モル%であり、特に好ましくは15~30モル%である。このように液晶を垂直に配向させる側鎖を有するジアミンを、ポリアミック酸の合成に用いるジアミン成分の5~50モル%となる量を用いると、垂直配向の固定化能力の点で特に優れる。
 なお、ポリアミック酸は、本発明の効果を損わない限りにおいて、上記液晶を垂直に配向させる側鎖を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、例えば、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、トランス-1,4-ビス(4-アミノフェニル)シクロヘキサン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;1,3-ビス[2-(p-アミノフェニル)エチル]ウレア、1,3-ビス[2-(p-アミノフェニル)エチル]-1-ターシャリーブチルオキシカルボニルウレア等のウレア構造を有するジアミン;N-p-アミノフェニル-4-p-アミノフェニル(ターシャリーブチルオキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N-ターシャリーブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン等のN-Boc基を有するジアミン;下記する(B)成分の項で記載した式(B-1)~(B-5)からなる群から選ばれる少なくとも1種のジアミンと、その具体例として例示したジアミン;等が挙げられる。
 また、その他のジアミンとして、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するジアミンや、紫外線照射により分解し、ラジカルが発生する部位を側鎖に有するジアミンを挙げることができる。
 具体的には、例えば、光反応性の側鎖を有するジアミンは、下記の一般式(6)で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
(式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、Rは単結合、又は、非置換又はフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、アルキレン基の-CH-は-CF-又は-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、又は二価の複素環。Rは、下記式から選択される光反応性基を表す。)
Figure JPOXMLDOC01-appb-C000024
 式(6)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000025
(式中、Jは単結合、-O-、-COO-、-NHCO-、又は-NH-より選ばれる結合基であり、Jは単結合、又は非置換又はフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
 紫外線照射により分解し、ラジカルが発生する部位を側鎖として有するジアミンは、下記の一般式(7)で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
(式中、Arはフェニレン、ナフチレン、ビフェニレンから選ばれる芳香族炭化水素基を示し、それらは有機基が置換していても良く、また、水素原子はハロゲン原子に置き換わっていても良い。R及びR10は、それぞれ独立に、炭素数1~10のアルキル基もしくはアルコキシ基であり、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基(ただしアルキレン基の-CH-又はCF-は、-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、又は二価の複素環。)であり、Qは下記の構造を表す。)
Figure JPOXMLDOC01-appb-C000027
(式中、Rは水素原子もしくは炭素原子数1~4のアルキル基を表し、R11は-CH-、-NR-、-O-、又は-S-を表す。)
 上記式(7)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 特に合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これに限定されない。
Figure JPOXMLDOC01-appb-C000028
(式中、nは2~8の整数である。)
 上記その他のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 ポリアミック酸の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。勿論、テトラカルボン酸二無水物も、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
 原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)との反応により、ポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分とを、有機溶媒中で反応させる方法である。ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 上記反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。さらに、ポリアミック酸が溶解しない有機溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~150℃、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。
 本発明に用いられるポリアミック酸を合成する方法は、上記の手法に限定されず、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。
 上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、50~99%であることがより好ましい。一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、70%以下が好ましい。両方の特性を加味すると、50~80%がより好ましい。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。
 ポリアミック酸又はポリイミドの反応溶液から、生成したポリアミック酸又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 [(B)成分]
 本発明の液晶配向剤は、(B)成分として、上記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミンとの反応により得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する。
 上記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を原料とする液晶配向膜を用いた場合、光照射により、液晶と液晶配向膜との間に発生すると思われる相互作用により、残留DC特性を改善することができる。
 上記式(1)及び(1’)から選ばれるテトラカルボン酸二無水物としては、次のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
 上記式(1-1)~(1-5)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物は、ポリアミック酸である(B)成分の合成に用いるテトラカルボン酸二無水物成分の10~100%となる量を用いることが好ましい。より好ましくは10~60%用いるのがよい。更に好ましくは、電圧保持率を高くできることから、式(1-1)、式(1-3)、式(1-5)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を、(B)成分の合成に用いるテトラカルボン酸二無水物成分全体の、10~40モル%、さらには20~40モル%で用いるのがよい。
 また、本発明の効果を損わない限りにおいて、(A)成分で述べた、その他のテトラカルボン酸二無水物を、(B)成分の原料として用いてもよい。例えば、脂肪族基や脂環族基を有するテトラカルボン酸二無水物は、ポリアミック酸である(B)成分の合成に用いるテトラカルボン酸二無水物成分の0~90モル%となる量を用いることが好ましい。
 なお、(B)成分である重合体は、下記式(B-1)~(B-5)からなる群から選ばれる少なくとも1種のジアミンを原料としてもよい。
Figure JPOXMLDOC01-appb-C000030
(式中、Y1は二級アミン、三級アミン、又は複素環構造を有する一価の有機基を表し、Y2は二級アミン、三級アミン、又は複素環構造を有する二価の有機基を表す。)
 上記式(B-1)~(B-5)から選択される、極性の高い特定構造を有するジアミンを少なくとも一種を用いたり、さらには、カルボキシ基を有するジアミンと、窒素含有芳香族複素環を有するジアミンを、それぞれ一種以上併用することで、塩形成や水素結合といった静電的相互作用により電荷移動が促進されるため、残留DC特性を改善することができる。
 上記式(B-1)~(B-5)からなる群から選ばれる少なくとも1種のジアミンとしては、次のようなジアミンが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
 さらに、(B)成分である重合体は、(A)成分で用いた、液晶を垂直に配向させる側鎖を有するジアミンや、前述の(A)成分の項で記載したその他のジアミンを原料としてもよい。
 上記式(B-1)~(B-5)からなる群から選ばれる少なくとも1種のジアミンは、ポリアミック酸である(B)成分の合成に用いるジアミン成分の10~80モル%となる量を用いることが好ましく、20~70モル%用いることがより好ましい。更に好ましくは、電圧保持率を高くできることから、上記で例示したジアミンのうち、3,5-ジアミノ安息香酸及び3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミドからなる群から選ばれる少なくとも1種のジアミン成分を、(B)成分の合成に用いる全ジアミン成分の20~70モル%となる量で用いるのがよい。
 (B)成分を製造する方法では、上記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物、さらには、必要に応じて、その他のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、ジアミン成分とを反応させ、ポリイミド前駆体やポリイミドを得ることができる。
 (B)成分を製造する方法は、上記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を原料とする以外は、上記「(A)成分の製造方法」と同じである。
 [液晶配向剤]
 本発明の液晶配向剤は、上述したように、液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である(A)成分と、上記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミンとの反応生成物であるポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である(B)成分と、有機溶媒と、を有するものである。
 本発明の液晶配向剤中の、(A)成分と(B)成分の合計の含有量は、特に限定はないが、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
 また、(A)成分と(B)成分の含有割合は、特に限定されないが、例えば、質量比で、(A)成分:(B)成分=X:10-X(X=1~9)であり、好ましくは2:8~8:2である。ただし、(B)成分は、液晶を垂直に配向させる側鎖を有することにより、(A)成分と同一の重合体となってもよい。
 また、本発明の液晶配向剤は、(A)成分及び(B)成分以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は0.5~15質量%が好ましく、より好ましくは1~10質量%である。
 液晶配向剤が有する重合体の分子量は、液晶配向剤を塗布して得られる液晶配向膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。
 液晶配向剤が含有する有機溶媒に特に限定はなく、(A)成分、(B)成分等の含有成分を溶解又は分散できるものであればよい。例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。
 また、塗膜の均一性や平滑性を向上させる溶媒を、液晶配向剤の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 液晶配向剤には、上記以外の成分を含有させてもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜と基板との密着性を向上させる化合物、液晶配向膜の膜強度をさらに向上させる化合物などが挙げられる。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。
 また、液晶配向膜の膜強度をさらに上げるためには、2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、液晶配向剤に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。
 さらに、液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
 この液晶配向剤を基板上に塗布して焼成することにより、液晶を垂直に配向させる液晶配向膜を形成することができる。
 本発明の液晶配向剤は、液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体である(A)成分と共に、上記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分との反応により得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体である成分(B)を含有するため、残留DC特性を良好にすることができる。
 基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることが、プロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
 液晶配向剤の塗布方法は特に限定されず、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法や、ディップ、ロールコーター、スリットコーター、スピンナーなどが挙げられる。
 液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば、100~350℃の任意の温度で行うことができるが、好ましくは120~300℃であり、さらに好ましくは150~250℃である。この焼成はホットプレート、熱風循環炉、赤外線炉などで行うことができる。
 また、焼成して得られる液晶配向膜の厚みは特に限定されないが、好ましくは5~300nm、より好ましくは10~100nmである。
 本発明の液晶表示素子は、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ、本発明の液晶配向剤により形成された液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、本発明の液晶配向剤を、2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、紫外線を照射することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。
 このように、本発明の液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に紫外線を照射することで、液晶と本発明の液晶配向膜との間に相互作用が発生し、液晶残留DCが小さく、焼きつきが発生しにくい液晶表示素子となると思われる。
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。
 本発明の液晶表示素子は、従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、本発明の液晶配向剤を用いて形成された液晶配向膜を有していることにより、片側基板に1~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造の基板を用いても動作可能であり、素子の製造時のプロセスを簡略化でき、高い透過率を得ることができる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子の場合は、上記基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
 液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後、焼成することにより形成されるものであり、詳しくは上述したとおりである。
 本発明の液晶表示素子に用いる液晶組成物としては、負の誘電異方性を有するネマチック液晶を用いることができる。例えば、ジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、ターフェニル系液晶などを用いることができる。また、アルケニル系液晶を併用することが好ましい。このようなアルケニル系液晶としては、従来公知のものを使用することができる。例えば、下記式で表される化合物などを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000032
 本発明の液晶表示素子の液晶層を構成する液晶組成物は、垂直配向方式で使用される液晶材料であれば、特に限定されない。例えば、メルク社製の、負の誘電異方性を有する液晶組成物である、MLC-6608、MLC-6609等を用いることができる。さらに、アルケニル系液晶を含み、負の誘電異方性を有する液晶組成物である、メルク社製のMLC-3022、MLC-3023(光重合性化合物(RM)を含む)などを用いることができる。
 この液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、基板の周囲に接着剤を塗布した後、液晶配向膜が形成された側の面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。
 また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上に、ビーズ等のスペーサーを散布した後に液晶を滴下し、その後、液晶配向膜が形成された側の面が内側になるようにして、もう一方の基板を貼り合わせて封止を行う方法でも、液晶セルを作製することができる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 液晶配向膜及び液晶層に紫外線を照射することにより液晶セルを作製する工程は、液晶封入後であれば何時でもよい。紫外線の照射量は、例えば、1~60J/cm、好ましくは40J/cm以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制できる。
 用いる紫外線の波長は、300~500nmが好ましく、300~400nmがより好ましい。
 また、液晶配向膜及び液晶層への紫外線の照射は、電圧を印加し、この電界を保持したまま行ってもよい。ここで、電極間にかける電圧としては、例えば、5~30Vp-p、好ましくは5~20Vp-pである。
 液晶に重合性化合物が入っているPSA方式の場合は、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、(B)成分を含有させることにより、残留DC特性も良好になる。このとき、紫外線照射量は少ないほうが、紫外線照射時間を減らせ、製造効率が上がるので好適である。
 また、上記液晶配向剤は、PSA型液晶ディスプレイやSC-PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子を作製するための液晶配向剤として有用なだけでなく、ラビング処理や光配向処理によって形成される液晶配向膜の作製にも好適に使用できる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。下記で用いた化合物の略号は以下のとおりである。
(酸二無水物)
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物。
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物。
PMDA:ピロメリット酸二無水物。
Figure JPOXMLDOC01-appb-C000033
(ジアミン)
DBA:3,5-ジアミノ安息香酸
m-PDA:1,3-フェニレンジアミン
p-PDA:1,4-フェニレンジアミン
3AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
DDM:4,4‘-ジアミノジフェニルメタン 
Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036
(式DA-6においてtはトランスを表す。)
<溶媒>
NMP:N-メチル-2-ピロリドン。
BCS:ブチルセロソルブ。
<ポリイミド分子量測定>
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、
カラム:Shodex社製カラム(KD-803、KD-805)、
カラム温度:50℃、
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、
流速:1.0ml/分、
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、及び30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、及び1,000)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05質量%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定装置(日本電子データム社製のJNW-ECA500)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い、以下の式によって求めた。なお、下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
    イミド化率(%)=(1-α・x/y)×100
<合成例1>
 BODA(3.30g、13.2mmol)、DA-3(3.35g、8.80mmol)、及びm-PDA(1.43g、13.2mmol)をNMP(29.8g)中で溶解し、60℃で4時間反応させた。その後、PMDA(1.85g、8.47mmol)とNMP(9.93g)を加え、室温で4時間反応させポリアミック酸溶液X1を得た。このポリアミック酸の数平均分子量は13000であり、重量平均分子量は39000であった。
 このポリアミック酸溶液(25g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(5.62g)、及びピリジン(4.35g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末Aを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 得られたポリイミド粉末A(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤A1を得た。
<合成例2>
 BODA(3.30g、13.2mmol)、DA-3(3.35g、8.80mmol)、及びm-PDA(1.43g、13.2mmol)をNMP(29.2g)中で溶解し、60℃で4時間反応させた。その後、CBDA(1.66g、8.47mmol)とNMP(9.74g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(25g)を用いる以外は、合成例1と同様にしてイミド化反応を行い、反応後の処理をして、ポリイミド粉末Bを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末B(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤U1を得た。
 次いで、BODA(3.75g、15mmol)、DA-3(1.90g、4.99mmol)、m-PDA(2.16g、20.0mmol)、をNMP(29.7g)中で溶解し、60℃で4時間反応させたのち、PMDA(2.10g、9.63mmol)とNMP(9.92g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(25g)を用いる以外は、合成例1と同様にしてイミド化反応を行い、反応後の処理をして、ポリイミド粉末Cを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末C(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L1を得た。
 得られた液晶配向剤U1を第1成分として5.0g、液晶配向剤L1を第2成分として5.0gを混合し、液晶配向剤A2を得た。
<合成例3>
 BODA(22.5g、90.0mmol)、DA-4(62.1g、158mmol)、p-PDA(14.6g、135mmol)、3AMPDA(38.16、157mmol)をNMP(620g)中で溶解し、55℃で2時間反応させたのち、CBDA(68.4g、349mmol)とNMP(102g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(85g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.87g)、及びピリジン(5.85g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(1000g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Dを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末D(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤U2を得た。
 次いで、BODA(123g、491mmol)、DBA(127g、837mmol)、DA-1(60.7g、148mmol)をNMP(1246g)中で溶解し、55℃で2時間反応させたのち、PMDA(43.0g、197mmol)とNMP(172g)を加え、室温で4時間反応させ、さらにCBDA(50.6g、258mmol)とNMP(202g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(700g)にNMPを加えて8質量%に希釈した後、イミド化触媒として無水酢酸(172g)、及びピリジン(54g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(7000g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Eを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末E(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L2を得た。
 得られた液晶配向剤U2を第1成分として5.0g、液晶配向剤L2を第2成分として5.0gを混合し、液晶配向剤A3を得た。
<合成例4>
 BODA(1.80g、7.19mmol)、DA-3(2.74g、7.20mmol)、3AMPDA(0.87g、3.59mmol)、及びDA-2(2.38g、7.20mmol)をNMP(29.7g)中で溶解し、60℃で4時間反応させた。その後、CBDA(2.10g、10.7mmol)とNMP(9.89g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(25g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.64g)、及びピリジン(3.59g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Fを得た。このポリイミドのイミド化率は74%であり、数平均分子量は12500、重量平均分子量は38000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末F(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤U3を得た。
 次いで、BODA(3.15g、12.6mmol)、DA-3(2.40g、6.31mmol)、DBA(1.28g、8.40mmol)、及び3AMPDA(1.25g、6.31mmol)をNMP(30.4g)中で溶解し、60℃で4時間反応させた。その後、PMDA(1.79g、8.19mmol)とNMP(10.14g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(25g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(5.26g)、及びピリジン(4.08g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Gを得た。このポリイミドのイミド化率は75%であり、数平均分子量は13000、重量平均分子量は38500であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末G(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L3を得た。
 得られた液晶配向剤U3を第1成分として5.0g、液晶配向剤L3を第2成分として5.0gを混合し、液晶配向剤A4を得た。
<合成例5>
 BODA(3.75g、15mmol)、DA-3(1.90g、4.99mmol)、及びm-PDA(2.16g、20.0mmol)をNMP(29.1g)中で溶解し、60℃で4時間反応させた。その後、CBDA(1.89g、9.64mmol)とNMP(9.71g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(25g)を用いる以外は、合成例1と同様にしてイミド化反応を行い、反応後の処理をして、ポリイミド粉末Hを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末H(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L4を得た。
 合成例2で得られた液晶配向剤U1を第1成分として5.0g、液晶配向剤L4を第2成分として5.0gを混合し、液晶配向剤A5を得た。
<合成例6>
 BODA(4.12g、16.5mmol)、DA-5(2.87g、6.60mmol)、及びDBA(2.34g、15.4mmol)をNMP(24.8g)中で溶解し、80℃で5時間反応させた。その後、CBDA(1.01g、5.15mmol)とNMP(8.30g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(38g)にNMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(8.43g)、及びピリジン(3.27g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(484g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Iを得た。このポリイミドのイミド化率は73%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末I(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤A6を得た。
<合成例7>
 合成例1で得られたポリアミック酸溶液X1(10g)にNMP(10.0g)を加え、室温で1時間撹拌した後、BCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤A7を得た。
<合成例8>
 BODA(123g、491mmol)、DBA(127g、837mmol)、DA-1(60.7g、148mmol)をNMP(1246g)中で溶解し、55℃で2時間反応させたのち、CA-1(70.6g、197mmol)とNMP(282g)を加え、室温で4時間反応させ、さらにCBDA(50.6g、258mmol)とNMP(202g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて8質量%に希釈した後、イミド化触媒として無水酢酸(9.15g)、及びピリジン(2.84g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(473g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Jを得た。このポリイミドのイミド化率は74%であり、数平均分子量は13500、重量平均分子量は40000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末J(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L5を得た。
 合成例3得られた液晶配向剤U2を第1成分として5.0g、液晶配向剤L5を第2成分として5.0gを混合し、液晶配向剤A8を得た。
<合成例9>
 BODA(2.38g、9.51mmol)、DBA(1.45g、9.53mmol)、DA-1(2.34g、5.70mmol)、DA-3(1.45g、3.81mmol)、をNMP(30.4g)中で溶解し、55℃で3時間反応させたのち、CA-1(2.04g、5.69mmol)とNMP(8.17g)を加え、室温で4時間反応させ、さらにCBDA(0.60g、3.06mmol)とNMP(2.38g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(7.46g)、及びピリジン(2.31g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(465g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Lを得た。このポリイミドのイミド化率は75%であり、数平均分子量は13000、重量平均分子量は39500であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末L(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L6を得た。
 合成例3得られた液晶配向剤U2を第1成分として5.0g、液晶配向剤L6を第2成分として5.0gを混合し、液晶配向剤A9を得た。
<合成例10>
 BODA(2.25g、8.99mmol)、DA-2(2.97g、8.99mmol)、及びDA-3(3.43g、9.01mmol)をNMP(34.6g)中で溶解し、60℃で4時間反応させた。その後、CBDA(1.75g、8.92mmol)とNMP(6.99g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(7.06g)、及びピリジン(2.19g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(463g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Mを得た。このポリイミドのイミド化率は74%であり、数平均分子量は12500、重量平均分子量は38500であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末M(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤U4を得た。
 次いで、BODA(1.20g、4.80mmol)、DBA(1.46g、9.59mmol)、3AMPDA(1.74g、7.18mmol)、及びDA-3(2.74g、7.20mmol)をNMP(28.58g)中で溶解し、60℃で2時間反応させた。その後、PMDA(1.05g、4.81mmol)とNMP(4.19g)を加え、室温で4時間反応させ、さらにCBDA(2.78g、14.18mmol)とNMP(
11.1g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(8.90g)、及びピリジン(2.76g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(472g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Nを得た。このポリイミドのイミド化率は74%であり、数平均分子量は13000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末N(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L7を得た。
 得られた液晶配向剤U4を第1成分として3.0g、液晶配向剤L7を第2成分として7.0gを混合し、液晶配向剤A10を得た。
<合成例11>
 BODA(1.20g、4.80mmol)、DBA(1.46g、9.59mmol)、3AMPDA(1.74g、7.18mmol)、及びDA-3(2.74g、7.20mmol)をNMP(28.58g)中で溶解し、60℃で2時間反応させた。その後、CA-2(1.41g、4.79mmol)とNMP(5.65g)を加え、室温で4時間反応させ、さらにCBDA(2.78g、14.18mmol)とNMP(11.1g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(8.61g)、及びピリジン(2.67g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(470g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Oを得た。このポリイミドのイミド化率は75%であり、数平均分子量は14000、重量平均分子量は39000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末O(2.0g)を用いる以外は、合成例1と同様の処理を行い、液晶配向剤L8を得た。
 合成例10で得られた液晶配向剤U4を第1成分として3.0g、液晶配向剤L8を第2成分として7.0gを混合し、液晶配向剤A11を得た。
<合成例12>
 CA-3(2.42g、10.8mmol)、DA-6(2.40g、9.01mmol)、DA-5(1.56g、3.59mmol)、及びDA-7(2.67g、5.40mmol)をNMP(31.7g)中で溶解し、60℃で4時間反応させた。その後、PMDA(1.30g、5.94mmol)とNMP(5.20g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて6.0質量%に希釈した後、イミド化触媒として無水酢酸(2.01g)、及びピリジン(1.61g)を加え、110℃で4時間反応させた。この反応溶液をメタノール(480g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末Pを得た。このポリイミドのイミド化率は55%であり、数平均分子量は11000、重量平均分子量は32000であった。
 ポリイミド粉末Aの代わりに、得られたポリイミド粉末P(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤A12を得た。
<合成例13>
 CA-3(3.83g、17.1mmol)、DA-6(2.40g、9.01mmol)、DA-5(1.56g、3.59mmol)、及びDA-7(2.67g、5.40mmol)をNMP(31.7g)中で溶解し、60℃で6時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加えて6.0質量%に希釈した後、イミド化触媒として無水酢酸(2.07g)、及びピリジン(1.60g)を加え、110℃で4時間反応させた。この反応溶液をメタノール(480g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末Qを得た。このポリイミドのイミド化率は55%であり、数平均分子量は10500、重量平均分子量は31500であった。
 得られたポリイミド粉末Q(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤U5を得た。
 次いで、CA-3(2.96g、13.2mmol)、DDM(3.49g、17.6mmol)、及びDA-7(2.18g、4.41mmol)をNMP(34.5g)中で溶解し、60℃で4時間反応させた。その後、PMDA(1.54g、7.04mmol)とNMP(6.10g)を加え、室温で4時間反応させポリアミック酸溶液X2を得た。このポリアミック酸の数平均分子量は12500であり、重量平均分子量は34000であった。
 得られたポリアミック酸溶液X2(10g)にNMP(10.0g)を加え、室温で1時間撹拌した後、BCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤L9を得た。
 得られた液晶配向剤U5を第1成分として5.0g、液晶配向剤L9を第2成分として5.0gを混合し、液晶配向剤A13を得た。
<液晶セルの作製>
(実施例A)
 合成例1で得られた液晶配向剤A1を用いて、下記に示すような手順で液晶セルの作製を行った。合成例1で得られた液晶配向剤A1を、画素サイズが100μm×300μmで、ライン/スペースがそれぞれ5μmのITO電極パターンが形成されている、ITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 また、液晶配向剤A1を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで90秒乾燥させた後、200℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 上記の2枚の基板について、一方の基板の液晶配向膜上に4μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに、アルケニル系液晶を含まない液晶組成物である液晶MLC-6608(商品名、メルク社製)を、減圧注入法によって注入し、液晶セルを作製した。得られた液晶セルを110℃の循環式オーブンで30分のアニール(再配向処理)を行った。
 その後、この液晶セルに対して下記の条件で光照射を行い、また、下記の条件で電圧保持率及び残留DCを測定した。なお、比較のため、光を照射しない液晶セルについても同様な条件で電圧保持率及び残留DCを測定した。
[光照射]
 液晶セルの外側から、365nmのバンドパスフィルターを通したUVを、6J/cm照射した(ランプには、USHIO Super High Pressure Mercury Lamp LLを用い、ORC UV Light Measure Model UV-M03A(アタッチメント:UV-35)で照度を測定した。)。
[電圧保持率]
 得られた液晶セルを、東陽テクニカ社製のVHR-1Aを用いて、60℃の温度下で、1Vの電圧を60μs印加し、1667ms後に保持している電圧の割合を電圧保持率として測定した。
[残留DCの評価]
 電圧保持率測定後の液晶セルに、交流電圧5.8Vppと直流電圧1Vを48時間印加し、液晶セル内に発生している電圧(残留DC)を、直流電圧解除直後にフリッカー消去法により求めた。この値は残像特性の指標となり、この値が、±30mV以下であるとき、残像特性に優れているといえる。
(実施例B、比較例A、参考例A)
 液晶配向剤A1の代りに、表2に記載の液晶配向剤を用いた以外は、実施例Aと同様の操作を行って光照射した液晶セルを製造し、電圧保持率及び残留DCを測定した。
(実施例1)
 MLC-6608の代りにアルケニル系液晶を含む液晶組成物であるMLC-3022(メルク社商品名)を用いた以外は、実施例Aと同様の操作を行って光照射した液晶セルを製造し、電圧保持率及び残留DCを測定した。
(実施例2~4、8~14)
 液晶配向剤A1の代りに、表3に記載の液晶配向剤を用いた以外は、実施例1と同様の操作を行って光照射した液晶セルを製造し、電圧保持率及び残留DCを測定した。
(比較例1~2)
 液晶配向剤A1の代りに、表3に記載の液晶配向剤を用いた以外は、実施例1と同様の操作を行って光照射した液晶セルを製造し、電圧保持率及び残留DCを測定した。
(実施例5)
 MLC-6608の代りにアルケニル系液晶とRM(光重合性化合物)を含む液晶組成物であるMLC-3023(メルク社商品名)を用い、かつ液晶配向剤A1の代りに液晶配向剤A2を用い、さらに光照射ではなく、以下の条件の通りPSA処理を行った以外は実施例Aと同様の操作を行って光照射した液晶セルを製造し、電圧保持率及び残留DCを測定した。
[PSA処理]
 15VのDC電圧を印加した状態で、液晶セルの外側から、325nmのハイパスフィルターを通したUVを10J/cm照射した(ランプには、USHIO Super High Pressure Mercury Lamp LLを用い、ORC UV Light Measure Model UV-M03A(アタッチメント:UV-35)で照度を測定した。)。その後、電圧を印加していない状態で、東芝ライテック社製のUV-FL照射装置を用いて、UV(UVランプ:FLR40SUV32/A-1)を30分間照射した。
(実施例15~19)
 液晶配向剤A2の代りに、表4に記載の液晶配向剤を用いた以外は、実施例5と同様の操作を行ってPSA処理した液晶セルを製造し、電圧保持率及び残留DCを測定した。
(比較例3~4)
 液晶配向剤A2の代りに、表4に記載の液晶配向剤を用いた以外は、実施例5と同様の操作を行ってPSA処理した液晶セルを製造し、電圧保持率及び残留DCを測定した。
(実施例6)
 MLC-6608の代りにアルケニル系液晶を含む液晶組成物であるMLC-3022(メルク社商品名)を用い、かつ液晶配向剤A1の代りに液晶配向剤A2を用いた以外は、実施例Aと同様の操作を行って光照射した液晶セルを製造し、該液晶セルに対して、150℃の循環式オーブンで3時間のアニールを行った後、電圧保持率及び残留DCを測定した。
(実施例7)
 MLC-6608の代りにアルケニル系液晶を含む液晶組成物であるMLC-3022(メルク社商品名)を用い、かつ液晶配向剤A1の代りに液晶配向剤A2を用いた以外は、実施例Aと同様の操作を行って光照射した液晶セルを製造し、該液晶セルに対して、150℃の循環式オーブンで3時間のアニールを行い、更に、同じ条件で再度光照射を行った後、電圧保持率及び残留DCを測定した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 表2は、実施例A、B、比較例A、参考例Aとしてアルケニル系液晶を含まない、従来の液晶であるMLC-6608を用いた結果を示す。PMDA由来の構造単位を有する重合体を用いていない比較例Aと参考例Aでは、従来の残留DCの低減手法である、極性の高いジアミンを用いた参考例Aにおいて、残留DCの蓄積が抑制されている。
 一方、PMDA由来の構造単位を有する重合体を用いた実施例Aと実施例Bにおいても、PMDA由来の構造単位の導入量による程度の差はあるが、比較例Aと比較して残留DCは低減しており、光照射によりさらに低減が見られる。
 このように、アルケニル系液晶を含まない液晶組成物であるMLC-6608においては、従来法による残留DCの蓄積量の低減は可能であり、さらに、PMDA由来の構造単位を有する重合体を含む液晶配向膜においても、光照射により低減可能である。
 表3は、アルケニル系液晶を含む液晶組成物であるMLC-3022を用いた結果を示す。表2と比較して、全体的に電圧保持率が低下していることがわかる。また比較例1と比較例2では、MLC-6608で残留DCに効果のあった液晶配向剤A6を用いた比較例2においても、光照射の有無に関わらず、残留DCの蓄積量は大きい。一方、PMDA、CA-1またはCA-2由来の構造単位を有する重合体を用いた実施例1、実施例2、実施例3、実施例4、実施例8、実施例9、実施例10、実施例11、実施例12、実施例13、実施例14においては、光未照射における残留DCは、比較例2と同様に蓄積量が大きいが、光照射を行うことで大きく低減した。
 表4は、アルケニル系液晶とRMを含む液晶組成物であるMLC-3023を用いた結果を示す。表3と同様に、表2と比較して電圧保持率は低いが、比較例3、4はPSA処理の有無に関わらず、残留DCの蓄積量が大きい。しかし、PMDA、CA-1またはCA-2由来の構造単位を有する重合体を用いた実施例5、実施例15~19においては、PSA処理を行うことで、残留DCは大きく低減した。
 このように、アルケニル系液晶を含む液晶組成物を用いた場合には、従来の残留DCの低減手法では、効果は無く、PMDA、CA-1またはCA-2由来の構造単位を有する重合体を含む液晶配向膜を用いることにより、PSA処理を行うことで残留DCが低減する。
 表3、表4に示される例と同様、PMDA由来の構造単位を有する重合体を用い、光照射を行うことで残留DCの蓄積を低減できる要因を検討した(表5)。
 実施例5において、PMDA由来の構造単位を有する重合体を含む液晶配向剤A2を用い、光照射を行ったところ、未照射と比較して残留DCが低減している。さらに、光照射後に150Cで、3時間のアニール処理を行ったところ、光未照射の結果と同程度の残留DCの蓄積が確認された(実施例6)。
 アニール前後で電圧保持率に、ほとんど変化はないことから、液晶の劣化とは考えられず、光照射によって、液晶と液晶配向膜との間に発生した相互作用が消滅したためであると考えられる。さらに、この状態で再度光照射を行ったところ(実施例7)、再び、残留DCの蓄積量が低減した。このことからも、光照射により、液晶と液晶配向膜との間で相互作用が発生し、このことにより、残留DCの蓄積量が低減できることが示された。
 上記のことから、実施例のように、アルケニル系液晶を含む信頼性の低い液晶組成物を用いた場合でも、上記式(1)、式(1’)のテトラカルボン酸二無水物(例えば、PMDA)由来の構造単位を有する重合体を含む液晶配向膜を用いることで、光照射後、またはPSA処理後の残留DCの蓄積を低減できることが分かった。
 本発明で得られる液晶表示素子は、PSA型液晶ディスプレイやSC-PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子として有用である。
 なお、2015年2月6日に出願された日本特許出願2015-22122号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  導電膜を有する一対の基板の該導電膜上に液晶配向剤を塗布し加熱して塗膜を形成した基板を、液晶層を介して前記塗膜が相対するように対向配置した液晶セルに光照射してなる液晶表示素子用であり、下記の(A)成分、(B)成分、及び有機溶媒を含有する液晶配向剤。
     (A)成分:液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
     (B)成分:下記式(1)及び(1’)から選ばれるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミン成分との反応生成物であるポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。但し、(B)成分は、液晶を垂直に配向させる側鎖を有する場合には、(A)成分と同一の重合体でもよい。
    Figure JPOXMLDOC01-appb-C000001
    (j及びkは、それぞれ独立に、0又は1であり、x及びyは、それぞれ独立に、単結合、カルボニル、エステル、フェニレン、スルホニル又はアミド基である。)
  2.  液晶表示素子における液晶層が、アルケニル系液晶を有する液晶性化合物を含有する液晶層である、請求項1に記載の液晶配向剤。
  3.  (A)成分と(B)成分の含有割合が、質量比で、(A)成分:(B)成分=X:(10-X)(X=1~9)である、請求項1又は2に記載の液晶配向剤。
  4.  (A)成分中の液晶を垂直に配向させる側鎖が、下記式(a)で表される、請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (l、m及びnは、それぞれ独立に、0又は1の整数を表し、Rは炭素数2~6のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は炭素数1~3のアルキレン-エーテル基を表し、R、R、及びRは、それぞれ独立に、フェニレン基、フッ素含有フェニレン基又はシクロアルキレン基を表し、Rは水素原子、炭素数2~24のアルキル基、炭素数2~24のフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、又はそれらからなる一価の環状置換体を表す。)
  5.  請求項1~4のいずれか1項に記載の液晶配向剤から得られる膜厚が5~300nmである液晶配向膜。
  6.  請求項5に記載の液晶配向膜を備える液晶表示素子。
  7.  下記の(A)成分、(B)成分及び有機溶媒を含有する液晶配向剤を、導電膜を有する一対の基板の該導電膜上にそれぞれ塗布し、次いで、これを加熱して塗膜を形成する第1の工程と、前記塗膜を形成した一対の基板を、液晶層を介して、前記塗膜が相対するように対向配置して液晶セルを構築する第2の工程と、前記液晶セルに光照射する第3の工程を含むことを特徴とする液晶表示素子の製造方法。
    (A)成分:液晶を垂直に配向させる側鎖を有するポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
    (B)成分:下記式(1)及び(1’)からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とジアミンとの反応生成物であるポリイミド前駆体、及びこのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。但し、(B)成分は、液晶を垂直に配向させる側鎖を有する場合には、(A)成分と同一の重合体でもよい。
    Figure JPOXMLDOC01-appb-C000003
    (式中、j及びkは、それぞれ独立に、0又は1であり、x及びyは、それぞれ独立に、単結合、カルボニル、エステル、フェニレン、スルホニル又はアミド基である。)
  8.  液晶層が、アルケニル系液晶を有する液晶性化合物を含有する液晶層である、請求項7に記載の液晶表示素子の製造方法。
  9.  紫外線の照射量が1~50J/cmである、請求項7又は8に記載の液晶表示素子の製造方法。
  10.  液晶表示素子が垂直配向型表示素子である、請求項7~9のいずれか1項に記載の液晶表示素子の製造方法。
PCT/JP2016/053413 2015-02-06 2016-02-04 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法 WO2016125870A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680008962.9A CN107209423B9 (zh) 2015-02-06 2016-02-04 液晶取向剂、液晶表示元件和液晶表示元件的制造方法
JP2016573424A JP6662306B2 (ja) 2015-02-06 2016-02-04 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法
KR1020237005293A KR102607979B1 (ko) 2015-02-06 2016-02-04 액정 배향제, 액정 표시 소자 및 액정 표시 소자의 제조 방법
KR1020177023922A KR102502321B1 (ko) 2015-02-06 2016-02-04 액정 배향제, 액정 표시 소자 및 액정 표시 소자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022122 2015-02-06
JP2015-022122 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125870A1 true WO2016125870A1 (ja) 2016-08-11

Family

ID=56564209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053413 WO2016125870A1 (ja) 2015-02-06 2016-02-04 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法

Country Status (5)

Country Link
JP (1) JP6662306B2 (ja)
KR (2) KR102607979B1 (ja)
CN (2) CN107209423B9 (ja)
TW (2) TWI707887B (ja)
WO (1) WO2016125870A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062438A1 (ja) * 2016-09-29 2018-04-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
KR20190055196A (ko) * 2016-09-29 2019-05-22 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
JPWO2018062439A1 (ja) * 2016-09-29 2019-07-11 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018062440A1 (ja) * 2016-09-29 2019-07-18 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
CN110475838A (zh) * 2017-08-24 2019-11-19 株式会社Lg化学 用于液晶取向剂的聚合物、包含其的液晶取向剂组合物、以及使用其的液晶取向膜和液晶显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140288A1 (ja) * 2015-03-04 2016-09-09 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102635627B1 (ko) * 2017-08-29 2024-02-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20200124697A (ko) * 2018-02-23 2020-11-03 닛산 가가쿠 가부시키가이샤 액정 표시 소자의 제조 방법
JP7414006B2 (ja) * 2018-11-19 2024-01-16 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055643A1 (ja) * 2009-11-09 2011-05-12 Jnc株式会社 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用
WO2012057337A1 (ja) * 2010-10-28 2012-05-03 日産化学工業株式会社 液晶配向剤、及び液晶配向膜
JP2015026052A (ja) * 2013-06-17 2015-02-05 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、液晶表示素子の製造方法、重合体及び化合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027981A1 (de) 1990-09-04 1992-04-30 Merck Patent Gmbh Matrix-fluessigkristallanzeige
JPH06108053A (ja) 1992-09-30 1994-04-19 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置
JP3201172B2 (ja) 1994-09-08 2001-08-20 ジェイエスアール株式会社 液晶配向剤
JP3797389B2 (ja) 1995-10-09 2006-07-19 チッソ株式会社 フッ素置換アルケニル液晶性化合物、液晶組成物および液晶表示素子
JP3613421B2 (ja) 1996-05-31 2005-01-26 Jsr株式会社 液晶配向剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
US6066268A (en) 1997-08-29 2000-05-23 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
JP4175826B2 (ja) 2002-04-16 2008-11-05 シャープ株式会社 液晶表示装置
JP4900571B2 (ja) * 2006-03-20 2012-03-21 Jsr株式会社 垂直液晶配向剤および垂直液晶表示素子
CN101821670B (zh) 2007-10-15 2011-12-21 夏普株式会社 液晶显示装置
DE102008064171A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Flüssigkristallines Medium
JP5573011B2 (ja) 2009-06-10 2014-08-20 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
KR101688687B1 (ko) * 2010-02-26 2016-12-21 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055643A1 (ja) * 2009-11-09 2011-05-12 Jnc株式会社 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用
WO2012057337A1 (ja) * 2010-10-28 2012-05-03 日産化学工業株式会社 液晶配向剤、及び液晶配向膜
JP2015026052A (ja) * 2013-06-17 2015-02-05 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、液晶表示素子の製造方法、重合体及び化合物

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805386A (zh) * 2016-09-29 2021-12-17 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
KR20190058569A (ko) * 2016-09-29 2019-05-29 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
JP7089229B2 (ja) 2016-09-29 2022-06-22 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7089230B2 (ja) 2016-09-29 2022-06-22 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018062437A1 (ja) * 2016-09-29 2019-07-11 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018062440A1 (ja) * 2016-09-29 2019-07-18 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018062438A1 (ja) * 2016-09-29 2019-08-08 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2018062438A1 (ja) * 2016-09-29 2018-04-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
TWI817934B (zh) * 2016-09-29 2023-10-11 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜,及液晶顯示元件
KR20190055196A (ko) * 2016-09-29 2019-05-22 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
JPWO2018062439A1 (ja) * 2016-09-29 2019-07-11 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7089231B2 (ja) 2016-09-29 2022-06-22 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7089228B2 (ja) 2016-09-29 2022-06-22 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
KR102453433B1 (ko) * 2016-09-29 2022-10-11 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
KR102465496B1 (ko) * 2016-09-29 2022-11-09 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
TWI813994B (zh) * 2016-09-29 2023-09-01 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜,及液晶顯示元件
CN110475838B (zh) * 2017-08-24 2023-05-26 株式会社Lg化学 用于液晶取向剂的聚合物、包含其的液晶取向剂组合物、以及使用其的液晶取向膜和液晶显示装置
CN110475838A (zh) * 2017-08-24 2019-11-19 株式会社Lg化学 用于液晶取向剂的聚合物、包含其的液晶取向剂组合物、以及使用其的液晶取向膜和液晶显示装置

Also Published As

Publication number Publication date
CN107209423B9 (zh) 2020-10-13
JP6662306B2 (ja) 2020-03-11
TWI707887B (zh) 2020-10-21
TWI776209B (zh) 2022-09-01
KR102607979B1 (ko) 2023-11-30
TW201634533A (zh) 2016-10-01
CN107209423B (zh) 2020-08-25
JPWO2016125870A1 (ja) 2017-11-16
KR20230027326A (ko) 2023-02-27
CN111944542A (zh) 2020-11-17
TW202043338A (zh) 2020-12-01
KR102502321B1 (ko) 2023-02-21
KR20170109604A (ko) 2017-09-29
CN107209423A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6725885B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5828329B2 (ja) 液晶配向剤
JP6662306B2 (ja) 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法
JP6635272B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6361898B6 (ja) 重合性化合物
WO2013099937A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
JP2020073680A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2014024893A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN110192148B (zh) 液晶表示元件的制造方法以及液晶表示元件用基板和液晶表示元件组装体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177023922

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16746701

Country of ref document: EP

Kind code of ref document: A1