WO2016125674A1 - Semiconductor module, and method for producing semiconductor module - Google Patents

Semiconductor module, and method for producing semiconductor module Download PDF

Info

Publication number
WO2016125674A1
WO2016125674A1 PCT/JP2016/052463 JP2016052463W WO2016125674A1 WO 2016125674 A1 WO2016125674 A1 WO 2016125674A1 JP 2016052463 W JP2016052463 W JP 2016052463W WO 2016125674 A1 WO2016125674 A1 WO 2016125674A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor module
lead terminals
internal wiring
lead
external lead
Prior art date
Application number
PCT/JP2016/052463
Other languages
French (fr)
Japanese (ja)
Inventor
要一 守屋
山本 祐樹
康伸 森下
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016573313A priority Critical patent/JP6380561B2/en
Publication of WO2016125674A1 publication Critical patent/WO2016125674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor module, and more particularly, to a semiconductor module in which an external lead terminal is led out from a side surface of a sealing resin.
  • the present invention also relates to a method for manufacturing a semiconductor module, and more particularly to a method for manufacturing a semiconductor module in which external lead-out lead terminals are led out from the side surface of a sealing resin.
  • Semiconductor modules such as inverters are used as power sources for in-vehicle equipment and industrial equipment.
  • a semiconductor module is configured by a combination of a plurality of semiconductor switching elements or a combination of a plurality of switching elements and a plurality of free-wheeling diodes.
  • FIG. 18 shows a semiconductor module (semiconductor device) 500 disclosed in Patent Document 1. However, FIG. 18 is a cross-sectional view of the semiconductor module 500.
  • the semiconductor module 500 includes semiconductor switching elements (IGBTs) 101a and 101b, diodes 102a and 102b, lead terminals 105a, 105b, 105c, 105d, and 105e, heat sinks (heat sinks) 107a and 107b, and a sealing resin 108. It consists of the structure sealed in.
  • IGBTs semiconductor switching elements
  • one power electrode pad (not shown) of the semiconductor switching element 101 a is joined to the lead terminal 105 b by the solder 104, and the other power electrode pad (not shown) is attached to the heat sink 107 a by the solder 104. It is joined.
  • a signal electrode pad (not shown) of the semiconductor switching element 101a is wire-bonded to the lead terminal 105d by a wire 103a.
  • a diode 102a is connected in parallel with the semiconductor switching element 101a between the lead terminal 105b and the heat sink 107a.
  • the heat sink 107a is connected to the lead terminal 105a.
  • one power supply electrode pad (not shown) of the semiconductor switching element 101b is joined to the lead terminal 105b by the solder 104, and the other power supply electrode pad (not shown) is joined to the heat sink 107b by the solder 104.
  • a signal electrode pad (not shown) of the semiconductor switching element 101b is wire-bonded to the lead terminal 105e by a wire 103b.
  • a diode 102b is connected in parallel with the semiconductor switching element 101b between the lead terminal 105b and the heat sink 107b.
  • the heat sink 107b is connected to the lead terminal 105c.
  • the semiconductor switching elements 101a and 101b and the diodes 102a and 102b wired in this way are sealed with a sealing resin 108 together with lead terminals 105a, 105b, 105c, 105d, and 105e, heat radiation plates 107a and 107b, and the like.
  • Lead terminals 105 a, 105 b, 105 c, 105 d, and 105 e are led out from the side surface of the sealing resin 108. Further, the heat sinks 107 a and 107 b are exposed from both main surfaces of the sealing resin 108.
  • the lead terminals 105a, 105b, 105c, 105d, and 105e are derived from a plurality of height portions on the side surface of the sealing resin 108, and are derived from the same height portion. Absent.
  • a lead terminal derived from a sealing resin is bent in the same direction, and the bent lead terminal is inserted into a through hole formed in a substrate of an in-vehicle device or an industrial device. In many cases, it is mounted by soldering.
  • the lead terminals 105a, 105b, 105c, 105d, and 105e are not led out from the same height portion on the side surface of the sealing resin 108, they are bent in the same direction. Was not easy. That is, since the heights of the derived portions are different, the lead terminals 105a, 105b, 105c, 105d, and 105e cannot be bent at a time, and must be bent individually. Therefore, the productivity of bending the lead terminals of the semiconductor module 500 is extremely poor.
  • the present invention has been made in order to solve the above-described conventional problems.
  • the lead terminal includes an internal wiring lead terminal fixed to the insulating base and an external lead lead terminal led out from the sealing resin. In this way, all external lead terminals are led out from the same height portion of the side surface of the sealing resin.
  • the semiconductor module of the present invention at least a plurality of semiconductor switching elements, a plurality of lead terminals, and a plurality of insulating base materials are sealed with a sealing resin, and the lead terminals are insulating base materials.
  • the insulating base material to which the internal wiring lead terminal is fixed is spaced at least vertically and includes at least an internal wiring lead terminal fixed to the external wiring lead terminal led to the outside from the sealing resin.
  • the electrode of the semiconductor switching element is directly or indirectly joined to the internal wiring lead terminal or connected by wire bonding, and one end of each external lead terminal is an insulating base The other end is led out from the sealing resin, and at least some of the outer lead terminals are each provided with a plurality of bent portions. And, all external derivation lead terminals were to be drawn out from the same height portion of the side surface of the sealing resin.
  • each external lead-out lead terminal can be set at a desired interval while downsizing the semiconductor module.
  • the interval between external lead terminals is determined by a request from the board side of an in-vehicle device or an industrial device to which a semiconductor module is mounted. When an internal wiring lead terminal is designed according to the request, the semiconductor module There is concern that will grow.
  • the present invention attempts to reduce the size by arranging the semiconductor switching elements in a hierarchical manner.
  • the internal wiring lead is designed in response to a request for the distance between the lead-out lead terminals from the substrate side, the size is reduced by the hierarchy.
  • the benefits of In contrast, as described above, at least a part of the distance between the external lead terminal and the external lead terminal is moved from the sealing resin toward the tip of the other end of the external lead terminal. If it is spread in the plane direction, it is possible to meet the demand for the distance between the lead terminals from the substrate side without increasing the size of the semiconductor module.
  • Passive components may be further sealed in the sealing resin.
  • the function of the semiconductor module can be enhanced. For example, if a shunt resistor element that detects an abnormal current or a thermistor element that detects abnormal heat generation is incorporated in the sealing resin as a passive component, an abnormality of the semiconductor module can be detected with high accuracy.
  • the electrode of the semiconductor switching element may be joined to the internal wiring lead terminal via a metal block.
  • the distance between the semiconductor switching element and the internal wiring lead terminal can be increased, wire bonding between the other electrode of the semiconductor switching element and the other internal wiring lead terminal is easy. It becomes possible to connect to.
  • the insulating base material arranged in the intermediate layer has an opening penetrating between both main surfaces. It is preferable. In this case, the metal block and the internal wiring lead terminal can be joined at the opening.
  • all the external lead terminals may be bent in the same direction outside the sealing resin.
  • the semiconductor module can be mounted by inserting the bent external lead-out lead terminal into a through-hole formed in a substrate of an in-vehicle device or an industrial device and then soldering.
  • the insulating base material may be made of ceramics, and the lead terminals may be fixed to the insulating substrate through an alloy containing at least an active metal that reacts with the ceramic constituents, Ag, and Cu. .
  • the lead terminal can be firmly fixed to the insulating substrate having high strength.
  • the material of the insulating base material is arbitrary and does not have to be made of ceramics, and may be made of resin. However, when the insulating substrate is made of resin, the lead terminals are often fixed to the insulating substrate with an adhesive.
  • the semiconductor module can be an inverter, for example.
  • the semiconductor module manufacturing method of the present invention includes a step of preparing a plurality of insulating base materials, a step of preparing a plurality of internal wiring lead terminals, and each insulating base material
  • the step of joining to the internal wiring lead terminal is preferably performed in a state where a plurality of external lead-out lead terminals are integrated into one annular lead frame. In this case, the formation of the bent portion in the external lead-out lead terminal and the joining of one end of the external lead-out lead terminal to the internal wiring terminal can be performed very easily and with high productivity.
  • each external lead terminal fixed to the lead frame to one of the internal wiring terminals fixed to the insulating base material
  • the insulating base material to which the wiring lead terminals are fixed is viewed from the direction perpendicular thereto, only one portion of the external lead terminal and the internal wiring lead terminal are overlapped. preferable. In this case, one end of the external lead terminal can be joined to the internal wiring lead terminal very easily and with high productivity.
  • a step of separating an unnecessary lead frame from an external lead terminal derived from the sealing resin may be further provided.
  • a step of bending all the external lead terminals derived from the sealing resin in the same direction may be provided.
  • the manufactured semiconductor module is mounted by inserting the bent external lead-out lead terminal into a through-hole formed in a board of an in-vehicle device or industrial device and then soldering it. Can do.
  • the external lead-out lead terminal is led out from the same height portion of the side surface of the sealing resin, the external lead-out lead terminal derived from the side surface of the sealing resin can be very easily obtained. And it can be bent in the same direction with high productivity. Then, the bent lead terminal can be mounted by being soldered after being inserted into a through hole formed in a substrate of an in-vehicle device or an industrial device.
  • the lead-out lead terminals are led out from the same height portion of the side surface of the sealing resin, so that the size of the semiconductor module is larger than the size of the semiconductor module on a substrate such as an in-vehicle device or an industrial device.
  • the semiconductor device can be mounted by forming a large opening, placing the semiconductor module in the opening, and soldering the external lead-out lead terminal to an electrode pattern formed near the periphery of the opening.
  • FIG. 1A is a perspective view showing the semiconductor module 100 according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the semiconductor module 100 and shows a portion XX in FIG.
  • FIG. 2 is an exploded perspective view showing the semiconductor module 100.
  • FIG. 3 is an equivalent circuit diagram of the semiconductor module 100.
  • FIG. 4 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 5 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 6 is a perspective view showing a process applied in an example of a manufacturing method of the semiconductor module 100.
  • FIG. 7 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 1A is a perspective view showing the semiconductor module 100 according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the semiconductor module 100 and shows a portion XX in FIG.
  • FIG. 2 is an exploded
  • FIG. 8 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 9 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 10A is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 10B is a plan view thereof.
  • FIG. 10C is a front view thereof.
  • FIG. 11 is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 12 is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 13 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 10A is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 10B is a plan view thereof.
  • FIG. 10C is a front view thereof.
  • FIG. 11
  • FIG. 14 is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100.
  • FIG. 15A is a cross-sectional view showing a semiconductor module 200 according to the second embodiment.
  • FIG. 15B is an equivalent circuit diagram of the semiconductor module 200.
  • FIG. 16 is a perspective view showing a semiconductor module 300 according to the third embodiment.
  • FIG. 17 is a perspective view showing a semiconductor module 400 according to the fourth embodiment.
  • FIG. 18 is a perspective view showing a conventional semiconductor module 500 disclosed in Patent Document 1. As shown in FIG.
  • First Embodiment 1A, 1B, 2 and 3 show a semiconductor module 100 according to a first embodiment of the present invention.
  • FIG. 1A is a perspective view of the semiconductor module 100.
  • FIG. 1B is a cross-sectional view of the semiconductor module 100 and shows a portion XX in FIG.
  • FIG. In (B) illustration of sealing resin 8 is abbreviate
  • FIG. 2 is an exploded perspective view of the semiconductor module 100. In FIG. 2, the sealing resin 8 is not shown.
  • FIG. 3 is an equivalent circuit diagram of the semiconductor module 100.
  • the semiconductor module 100 includes three rectangular and plate-like insulating bases 6a, 6b, and 6c.
  • the insulating bases 6a, 6b, 6c are made of a resin such as epoxy or polyimide, for example.
  • a rectangular and plate-like heat radiation plate 7a is formed on one main surface (the upper main surface in FIG. 2) of the insulating base 6a.
  • the heat radiating plate 7a is for radiating heat generated by six semiconductor switching elements 1a to 1f described later.
  • an L-shaped and plate-like internal wiring lead terminal 51a is formed on the other main surface (lower main surface in FIG. 2) of the insulating base 6a.
  • a rectangular opening 6b-h is formed in the central portion of the insulating base 6b so as to penetrate between both main surfaces. Further, three main surfaces of one side of the insulating base 6b are provided along one side 6b-x of the two opposite sides 6b-x and 6b-y in a direction perpendicular to the side 6b-x.
  • the I-shaped, plate-like internal wiring lead terminals 52a, 52b, 52c are formed, and three I-shaped elements are formed along the other side 6b-y in a direction perpendicular to the side 6b-y. In shape, plate-like internal wiring lead terminals 52d, 52e, and 52f are formed.
  • the widths of the internal wiring lead terminals 52a, 52b, and 52c are larger than the widths of the internal wiring lead terminals 52d, 52e, and 52f.
  • the internal wiring lead terminals 52a, 52b, and 52c are formed so as to straddle the opening 6b-h, respectively, and the internal wiring lead terminals 52a, 52b, and 52c are the other side of the insulating base 6b in the opening 6b-h portion. It is exposed on the main surface side.
  • An L-shaped, plate-like internal wiring lead terminal 53a is formed on one main surface of the insulating base 6c.
  • the internal wiring lead terminal 53a is led out from one side 6c-x of the insulating base 6c in a direction perpendicular to the side 6c-x. Further, on one main surface of the insulating base 6c, three I-shaped, plate-like internal wirings are formed along the other side 6c-y in a direction perpendicular to the side 6c-y.
  • Lead terminals 53b, 53c, and 53d are formed.
  • the widths of the internal wiring lead terminals 53b, 53c, 53d are the same as the widths of the internal wiring lead terminals 52d, 52e, 52f formed on the insulating base 6b.
  • a rectangular and plate-shaped heat radiation plate 7b is formed on the other main surface of the insulating base 6c.
  • the heat sink 7b is for radiating heat generated by six semiconductor switching elements 1a to 1f described later.
  • a metal such as a copper-based metal, an aluminum-based metal, or an iron-based metal is used.
  • the semiconductor module 100 includes six semiconductor switching elements 1a, 1b, 1c, 1d, 1e, and 1f.
  • MOSFETs are used as the semiconductor switching elements 1a to 1f.
  • Each of the semiconductor switching elements 1a to 1f has one main surface (upper main surface in FIG. 2), one power electrode pad (not shown), and a signal electrode pad (shown with reference numerals).
  • the other power supply electrode pad (not shown) is formed on the other main surface (the lower main surface in FIG. 2).
  • the other power electrode pad is joined to the internal wiring lead terminal 52a formed on the insulating base 6b by the solder 4.
  • the other switching electrode 1b of the semiconductor switching element 1b is joined to the internal wiring lead terminal 52b formed on the insulating base 6b by the solder 4.
  • the other power electrode pad is joined to the internal wiring lead terminal 52c formed on the insulating base 6b by the solder 4.
  • the other power electrode pad is joined to the internal wiring lead terminal 53a formed on the insulating base 6c by the solder 4, respectively.
  • the signal electrode pad of the semiconductor switching element 1a is connected by wire bonding to the internal wiring lead terminal 52d formed on the insulating base 6b by the wire 3a.
  • the signal electrode pad of the semiconductor switching element 1b is connected by wire bonding to the internal wiring lead terminal 52e formed on the insulating base 6b by the wire 3b.
  • the signal electrode pad of the semiconductor switching element 1c is connected by wire bonding to an internal wiring lead terminal 52f formed on the insulating base 6b by a wire 3c.
  • the signal electrode pad of the semiconductor switching element 1d is connected by wire bonding to an internal wiring lead terminal 53b formed on the insulating base 6c by a wire 3d.
  • the signal electrode pad of the semiconductor switching element 1e is connected by wire bonding to the internal wiring lead terminal 53c formed on the insulating base 6c by the wire 3e.
  • the signal electrode pad of the semiconductor switching element 1f is connected by wire bonding to an internal wiring lead terminal 53d formed on the insulating base 6c by a wire 3f.
  • a wire 3f for example, a metal such as aluminum or gold is used.
  • a rectangular parallelepiped metal block 2 a is joined to one power supply electrode pad of the semiconductor switching element 1 a by solder 4.
  • a rectangular parallelepiped metal block 2b is joined to one power supply electrode pad of the semiconductor switching element 1b by solder 4.
  • a rectangular parallelepiped metal block 2c is joined to one power electrode pad of the semiconductor switching element 1c by solder 4.
  • a rectangular parallelepiped metal block 2d is joined by solder 4 to one power supply electrode pad of the semiconductor switching element 1d.
  • a rectangular parallelepiped metal block 2e is joined by solder 4 to one power supply electrode pad of the semiconductor switching element 1e.
  • a rectangular parallelepiped metal block 2 f is joined to one power supply electrode pad of the semiconductor switching element 1 f by solder 4.
  • metals such as copper metal and aluminum metal are used.
  • the metal blocks 2a, 2b, and 2c are joined to the internal wiring lead terminal 51a formed on the insulating base 6a by the solder 4.
  • the metal block 2d is joined to the internal wiring lead terminal 52a formed on the insulating base 6b by the solder 4 at the opening 6b-h.
  • the metal block 2e is joined to the internal wiring lead terminal 52b formed on the insulating base 6b by the solder 4 at the opening 6b-h.
  • the metal block 2f is joined to the internal wiring lead terminal 52c formed on the insulating base 6b by the solder 4 at the opening 6b-h.
  • the three insulating bases 6a, 6b, and 6c are arranged in three layers with a space in the vertical direction through the semiconductor switching elements 1a to 1f and the metal blocks 2a to 2f. Yes.
  • the semiconductor module 100 includes external lead terminals 151a, 152a, 152b, 152c, 152d, 152e, 152f, 153a, 153b, 153c, and 153d.
  • External lead terminals 151a to 153d are I-shaped and have a plate shape.
  • the widths of the external lead terminals 151a, 152a, 152b, 152c, and 153a are larger than the widths of the external lead terminals 152d, 152e, 152f, 153b, 153c, and 153d.
  • External lead terminals 151a, 153a, 153b, 153c, and 153d are bent at two locations, respectively.
  • the internal lead terminals 51a to 53d for example, metals such as copper-based metal, aluminum-based metal, and iron-based metal are used for the external lead-out lead terminals 151a to 153d.
  • the external lead terminals 151a to 153d are joined to the internal wiring lead terminals 51a to 53d by solder (not shown), respectively.
  • the external lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d in all joint portions. .
  • a stress due to a difference in thermal expansion coefficient is generated between the internal sealing resin 8 and the lead terminal each time the ON / OFF is repeated.
  • the stress applied to the external lead terminals 151a to 153d is applied each time ON / OFF is repeated. Take the same direction. For this reason, the distortion of the external lead terminals 151a to 153d themselves is small.
  • the external lead terminal 153a is connected to the lower part of the internal wiring lead terminal 53a, the external lead terminal 153a is connected to the other external lead terminals 151a to 152f by turning on / off. Stress in a direction different from 153b to 153d is applied. As a result, the stress applied to the inside of the external lead-out lead terminal 153a increases, and the life of the terminal is shortened.
  • the external lead-out lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d in all joint portions. Is also important for improving connection reliability for the following reasons.
  • the height position accuracy of the leading end portions of the external lead leads 151a to 153d and the internal wiring leads 51a to 53d, that is, the portions where the lead wires are joined to each other is not necessarily completely constant and may vary. For this reason, the thickness of the joint after joining may vary, and the reliability of the joint may be significantly deteriorated. In an extreme case, a part that is not joined may occur.
  • the external lead-out lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d in all the joints.
  • the external lead terminals 151a to 153d It goes without saying that the lead-out lead terminals 151a to 153d may be joined to the lower side of the internal wiring lead terminals 51a to 53d.
  • the materials 6 a to 6 c and the heat radiating plates 7 a and 7 b are sealed with the sealing resin 8.
  • the sealing resin 8 for example, epoxy, polyimide or the like is used.
  • the heat sinks 7 a and 7 b are exposed on both main surfaces of the sealing resin 8.
  • eleven external lead terminals 151 a to 153 d are led out from the side surface of the sealing resin 8. All the external lead terminals 151a to 153d are bent from the same height portion on the side surface of the sealing resin 8 by bending the external lead terminals 151a, 153a, 153b, 153c, and 153d at two locations, respectively. Has been derived.
  • the external lead-out lead terminals 151a to 153d are led out from the sealing resin 8 so that their main surfaces are horizontal. That is, the main surfaces of the external lead terminals 151 a to 153 d are parallel to the main surface of the sealing resin 8.
  • FIG. 3 shows an equivalent circuit of the semiconductor module 100 having the above structure according to the first embodiment.
  • the semiconductor module 100 is an inverter, and the external lead terminal 153a corresponds to the P-side terminal, and the external lead terminal 151a corresponds to the N-side terminal.
  • the external lead terminals 152a, 152b, and 152c correspond to intermediate terminals, respectively.
  • the external lead terminals 152d, 152e, 152f, 153b, 153c, and 153d correspond to gate terminals, respectively.
  • the semiconductor module 100 according to the first embodiment can be manufactured, for example, by the method shown in FIGS. 4 to 9 and FIGS. 11 to 14 are perspective views. 10A is a perspective view, FIG. 10B is a plan view, and FIG. 10C is a front view.
  • insulating bases 6a to 6c, heat sinks 7a and 7b, and internal wiring lead terminals 51a to 53d are prepared. Subsequently, the heat radiating plates 7a and 7b and the internal wiring lead terminals 51a to 53d are fixed to the insulating bases 6a to 6c. Fixing is performed by, for example, an adhesive. The state after fixing is shown in FIG.
  • the semiconductor switching elements 1a to 1f are prepared. Subsequently, as shown in FIG. 6, the other power supply electrode pads of semiconductor switching elements 1a to 1f (formed on the lower main surface of each semiconductor switching element 1a to 1f in FIG. 6) are soldered (see FIG. 6). To the internal wiring lead terminals 52a to 52c and 53a. More specifically, the other power supply electrode pad of the semiconductor switching element 1a is connected to the internal wiring lead terminal 52a, the other power supply electrode pad of the semiconductor switching element 1b is connected to the internal wiring lead terminal 52b, and the other power supply electrode of the semiconductor switching element 1c. The pads are bonded to the internal wiring lead terminals 52c, respectively. Further, the other power supply electrode pads of the semiconductor switching elements 1d to 1f are respectively joined to the internal wiring lead terminals 53a.
  • the metal blocks 2a to 2f are prepared. Subsequently, as shown in FIG. 7, one power supply electrode pad of the semiconductor switching elements 1a to 1f (formed on the main surface on the upper side of each semiconductor switching element 1a to 1f in FIG. 7) is soldered (not shown).
  • the metal blocks 2a to 2f are joined together. More specifically, the metal block 2a is provided on one power electrode pad of the semiconductor switching element 1a, the metal block 2b is provided on one power electrode pad of the semiconductor switching element 1b, and the metal block is provided on one power electrode pad of the semiconductor switching element 1c.
  • the signal electrode pads of semiconductor switching elements 1a to 1f (not shown but not provided with reference numerals) and internal wiring lead terminals 52d to 52f and 53b to 53d are connected to wires. Connect by wire bonding using 3a to 3f. More specifically, the signal electrode pad of the semiconductor switching element 1a and the internal wiring lead terminal 52d are connected by the wire 3a, the signal electrode pad of the semiconductor switching element 1b and the internal wiring lead terminal 52e are connected by the wire 3b, and the semiconductor switching element 1c.
  • the signal electrode pad and the internal wiring lead terminal 52f are connected by a wire 3c, the signal electrode pad of the semiconductor switching element 1d and the internal wiring lead terminal 53b are connected by a wire 3d, and the signal electrode pad and the internal wiring lead terminal 53c of the semiconductor switching element 1e are connected.
  • the wire 3e is used to connect the signal electrode pad of the semiconductor switching element 1f and the internal wiring lead terminal 53d by wire bonding using the wire 3f.
  • the metal blocks 2a to 2f and the internal wiring lead terminals 51a and 52a to 52c are joined by solder (not shown). More specifically, the metal blocks 2a to 2c and the internal wiring lead terminal 51a are joined to each other.
  • the metal block 2d and the internal wiring lead terminal 52a, the metal block 2e and the internal wiring lead terminal 52b, the metal block 2f and the internal wiring lead terminal 52c, respectively, are formed in the insulating base 6b. It joins in h part.
  • the internal wiring lead terminals 51a to 53d Insulating base materials 6a to 6c to which are fixed, semiconductor switching elements 1a to 1f, metal blocks 2a to 2f, and wires 3a to 3f are integrated.
  • external lead terminals 151a to 153d are manufactured. Specifically, a single metal plate is prepared, and the metal plate is punched out with a mold to produce external lead terminals 151a to 153d having a predetermined shape. After punching, the external lead terminals 151 a to 153 d are connected to one annular lead frame 150. Further, the external lead terminals 151a, 152a to 152c, 153a are connected to each other at intermediate portions by tie bars 155a. Further, the external lead terminals 152d to 152f and 153b to 153d are connected to each other at intermediate portions by tie bars 155b. Further, the external lead terminals 151a and 153a to 153d are bent at two points, respectively. The external lead terminal 151a is bent upward in FIG. The external lead terminals 153a to 153d are bent downward in FIG.
  • the external lead-out lead terminals 151a to 153d connected to the lead frame 150 are arranged above the integrated insulating bases 6a to 6c.
  • the integrated insulating bases 6 a to 6 c may be disposed above the external lead terminals 151 a to 153 d connected to the lead frame 150.
  • the external lead terminals 151a to 153d are joined to the internal wiring lead terminals 51a to 53d by solder (not shown).
  • solder not shown
  • the lead frame 150 in which the external lead terminals 151a to 153d are integrated and the insulating base materials 6a to 6c to which the internal wiring lead terminals 51a to 53d are fixed are viewed from the direction perpendicular thereto. Since only one portion of the external lead terminals 151a to 153d and the internal wiring terminals 51a to 53d are overlapped, the connection between the external lead terminals 151a to 153d and the internal wiring lead terminals 51a to 53d is as follows. It can be done very easily.
  • a load is applied to the entire external lead leads 151a to 153d so that all joining parts have a constant thickness. It is preferable to do.
  • the height position accuracy of the leading end portions of the external lead leads 151a to 153d and the internal wiring leads 51a to 53d, that is, the portions where the lead wires are joined to each other is not necessarily completely constant and may vary. For this reason, the thickness of the joint after joining may vary, and the reliability of the joint may be significantly deteriorated. In an extreme case, a part that is not joined may occur. Therefore, the connection reliability can be improved by performing the above operation before or during bonding.
  • the semiconductor switching elements 1a to 1f, metal blocks 2a to 2f, wires 3a to 3f, internal wiring lead terminals 51a to 53d, heat sinks 7a and 7b, and external lead-out lead terminals 151a to 153d are integrated.
  • the formed insulating bases 6a to 6c are accommodated in a mold (not shown) with the other ends of the external lead terminals 151a to 153d led out to the outside.
  • a resin is transfer-molded in the mold to form the sealing resin 8, and the semiconductor switching elements 1a to 1f and the metal blocks 2a to 2f are formed in the sealing resin 8.
  • the wires 3a to 3f, the internal wiring lead terminals 51a to 53d, the heat sinks 7a and 7b, and the external lead-out lead terminals 151a to 153d are sealed.
  • the heat sinks 7 a and 7 b are exposed from both main surfaces of the sealing resin 8.
  • Eleven external lead terminals 151 a to 153 d are led out from the side surface of the sealing resin 8.
  • the semiconductor module 100 has a structure in which the external lead terminals 151a to 153d are led out from the same height portion on the side surface of the sealing resin 8, a mold (resin sealing) of the sealing resin 8 is performed. It can be done very easily. In addition, the mold used for the mold can be easily designed, and the cost can be kept low.
  • the unnecessary lead frame 150 and tie bars 155a and 155b are separated from the external lead terminals 151a to 153d, and the semiconductor module 100 according to the first embodiment is completed.
  • the semiconductor module 100 all the external lead terminals 151 a to 153 d are led out from the same height portion of the side surface of the sealing resin 8.
  • FIGS. 15A is a cross-sectional view of the semiconductor module 200.
  • FIG. 15B is an equivalent circuit diagram of the semiconductor module 200.
  • the semiconductor module 200 In the semiconductor module 200 according to the second embodiment, three shunt resistor elements 10 are added to the semiconductor module 100 according to the first embodiment shown in FIGS. Specifically, as shown in FIG. 15A, the semiconductor module 200 has a shunt resistor element 10 added thereto.
  • the semiconductor module 200 replaces one internal wiring lead terminal 52c fixed to the insulating base 6 in the semiconductor module 100 according to the first embodiment with two internal wiring leads. Terminals 52g and 52h are replaced. Then, a shunt resistor element 10 having a pair of electrode pads formed on the bottom surface is prepared, and one electrode pad is joined to the internal wiring lead terminal 52g and the other electrode pad is joined to the internal wiring lead terminal 52h by the solder 4. ing.
  • the other power supply electrode pad (not shown) of the semiconductor switching element 1c is joined to the internal wiring lead terminal 52g instead of the internal wiring lead terminal 52c joined in the semiconductor module 100 according to the first embodiment. ing.
  • the remaining two shunt resistor elements 10 are also added to the semiconductor module 200 by the same method.
  • the semiconductor module 200 includes an equivalent circuit shown in FIG. That is, the shunt resistance element 10 is inserted between the connection point of the semiconductor switching elements 1a and 1d and the external connection lead terminal 152a that is an intermediate terminal. Further, the shunt resistor element 10 is inserted between the connection point of the semiconductor switching elements 1b and 1e and the external connection lead terminal 152b which is an intermediate terminal. Further, the shunt resistor element 10 is inserted between the connection point of the semiconductor switching elements 1c and 1f and the external connection lead terminal 152c which is an intermediate terminal.
  • the semiconductor module 200 can detect the occurrence of an abnormal current by monitoring the voltage between both power supply electrode pads of each shunt resistance element 10.
  • FIG. 16 is a perspective view of the semiconductor module 300.
  • the other configuration of the semiconductor module 300 is the same as that of the semiconductor module 100.
  • the external lead terminals 151a to 153d are led out from the same height portion on the side surface of the sealing resin 8, they can be bent together in the same direction easily.
  • the bent external lead terminals 151a to 153d are formed on a substrate (not shown) such as an in-vehicle device or an industrial device. It can be mounted by inserting into the through-hole and soldering.
  • FIG. 17 is a perspective view of the semiconductor module 400.
  • the terminals 252d, 253b, 252e, 253c, 252f, and 253d were replaced.
  • the other configuration of the semiconductor module 400 is the same as that of the semiconductor module 100.
  • each interval between the external lead terminals 252d, 253b, 252e, 253c, 252f, and 253d is from the sealing resin 8 toward the tip of each other end of the external lead terminals 252d to 253d. It spreads in the plane direction.
  • the distance between the external lead terminals 252d to 253d can be set to a desired size while maintaining the miniaturization of the semiconductor module.
  • the material of the components of the semiconductor module 100 according to the first embodiment is partially changed. Since the structure itself is not changed, the semiconductor module 500 will be described with reference to FIGS. 1 and 2 illustrating the semiconductor module 100.
  • the semiconductor module 100 resins such as epoxy and polyimide are used for the insulating bases 6a to 6c.
  • ceramics are used for the insulating bases 6a to 6d. More specifically, for example, a ceramic mainly composed of silicon nitride, aluminum nitride, alumina, or the like is used as the ceramic constituting the insulating bases 6a to 6c.
  • an adhesive is used for fixing the lead terminals 51a, 52a to 52f, 53a to 53d to the insulating bases 6a to 6c.
  • an alloy (not shown) containing at least an active metal that reacts with the components of the ceramic, Ag, and Cu is used to fix this portion.
  • Ti is contained in the alloy as an active metal that reacts with the constituent components of the ceramic.
  • the active metal that reacts with the components contained in the ceramic is not limited to Ti, and may be other metals such as Zr.
  • the active metal which reacts with the structural component of ceramics, the alloy containing Ag and Cu may be called an active metal brazing material.
  • Ti, Zn, Sn, In, Ni, Mn, Cd, etc. are used to adjust the melting point as necessary.
  • One or more selected metals may be added.
  • Ti added as an active component that reacts with components contained in the ceramic also plays a role of adjusting the melting point.
  • the addition amount of Ti is 3 weight% or less with respect to the total weight of an alloy. This is because if the Ti content exceeds 3% by weight, the alloy itself may become brittle.
  • the compounding ratio of the alloy 6 is set to Ag 60 to 80% by weight, Cu 20 to 40% by weight, and Ti 1 to 3% by weight.
  • the other configuration of the semiconductor module 500 is the same as that of the semiconductor module 100.
  • the lead terminals 51a, 52a to 52f, 53a to 53d are fixed to the insulating bases 6a to 6c in advance by applying a paste made of an active metal brazing material to the lead terminals 51a, 52a to 52f, 53a to 53d,
  • the coating can be performed by bringing the coated surface into contact with the insulating bases 6a to 6c and performing a heat treatment at a temperature equal to or higher than the melting point of the active metal brazing material.
  • An alloy containing an active metal that reacts with a component of ceramic, Ag, and Cu firmly joins the lead terminals 51a, 52a to 52f, and 53a to 53d to the insulating bases 6a to 6c.
  • silicon nitride is used for the insulating bases 6a to 6c
  • Cu is used for the lead terminals 51a, 52a to 52f, 53a to 53d, and both are joined by an alloy containing Ag and Cu to which Ti is added, TiN and MN are formed in the vicinity of the alloy insulating substrates (silicon nitride substrates) 6a to 6c (where M is an alloy of Si, Cu, and Ti).
  • the Ti concentration in the vicinity of the insulating substrates 6a to 6c of the alloy is higher than the Ti concentration in other portions of the alloy.
  • the lead terminals 2a to 2e and the insulating substrates 6a to 6c are bonded with high strength.
  • an alloy containing an active metal that reacts with a constituent component of ceramic, Ag, and Cu generally has a higher thermal conductivity than an adhesive. Therefore, in the semiconductor module 500, the heat generated by the semiconductor switching elements 1a to 1f passes through the lead terminals 51a, 52a to 52f, 53a to 53d, and further passes through the insulating bases 6a to 6c. Can be dissipated.
  • the lead terminals 51a, 52a to 52f, and 53a to 53d are formed on the insulating bases 6a to 6c made of ceramics having high strength. Since it is firmly joined through an alloy containing an active metal that reacts, Ag, and Cu, it has high strength. Moreover, it is excellent also in heat dissipation.
  • MOSFETs are used as the semiconductor switching elements 1a to 1f.
  • a circuit is formed by combining an IGBT (Insulated Gate Bipolar Transistor) and a free wheel diode. You may make it comprise.
  • IGBT Insulated Gate Bipolar Transistor
  • insulating bases 6a to 6c are used and arranged in three layers, but more insulating bases are used and further stacked in multiple layers. May be arranged.
  • the circuit configuration of the semiconductor module of the present invention is arbitrary, and is not limited to the equivalent circuit of the semiconductor modules 100 to 500.
  • the shunt resistor element 10 is added and sealed as a passive element in the sealing resin 8.
  • a thermistor element for monitoring abnormal heat generation is used as the sealing resin. 8 may be sealed.
  • the external lead-out lead terminals 151a to 253d are formed so as to lead to the outside from the height position of the substantially central portion of the side surface of the sealing resin 8. You may make it derive

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

All external lead-out lead terminals are led out to the exterior from sections having the same height as the side surface of a sealing resin. Lead terminals are formed by internal-wiring lead terminals (51a-53d) fixed to insulating substrates (6a-6c), and external lead-out lead terminals (151a-153d) which are led out to the exterior from the sealing resin. The lead terminals are configured such that the internal-wiring lead terminals (51a-53d) and the external lead-out lead terminals (151a-153d) are joined to each other. Among the external lead-out lead terminals (151a-153d), the external lead-out lead terminals (151a and 153a-153d) are respectively provided with a plurality of bent sections.

Description

半導体モジュールおよび半導体モジュールの製造方法Semiconductor module and method for manufacturing semiconductor module
 本発明は、半導体モジュールに関し、さらに詳しくは、外部導出リード端子が封止樹脂の側面から外部に導出された半導体モジュールに関する。 The present invention relates to a semiconductor module, and more particularly, to a semiconductor module in which an external lead terminal is led out from a side surface of a sealing resin.
 また、本発明は、半導体モジュールの製造方法に関し、さらに詳しくは、外部導出リード端子が封止樹脂の側面から外部に導出された半導体モジュールの製造方法に関する。 The present invention also relates to a method for manufacturing a semiconductor module, and more particularly to a method for manufacturing a semiconductor module in which external lead-out lead terminals are led out from the side surface of a sealing resin.
 インバータ等の半導体モジュールが、車載機器、産業用機器等の電源に使用されている。 Semiconductor modules such as inverters are used as power sources for in-vehicle equipment and industrial equipment.
 半導体モジュールは、特許文献1(特開2014-183078号公報)に開示されるように、複数の半導体スイッチング素子の組合せ、あるいは、複数のスイッチング素子と複数の還流ダイオードとの組合せで回路が構成される。また、半導体モジュールに、周辺回路の受動素子が組込まれる場合もある。 As disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-183078), a semiconductor module is configured by a combination of a plurality of semiconductor switching elements or a combination of a plurality of switching elements and a plurality of free-wheeling diodes. The In some cases, passive elements of peripheral circuits are incorporated in the semiconductor module.
 図18に、特許文献1に開示された半導体モジュール(半導体装置)500を示す。ただし、図18は、半導体モジュール500の断面図である。 FIG. 18 shows a semiconductor module (semiconductor device) 500 disclosed in Patent Document 1. However, FIG. 18 is a cross-sectional view of the semiconductor module 500.
 半導体モジュール500は、半導体スイッチング素子(IGBT)101a、101bと、ダイオード102a、102bとが、リード端子105a、105b、105c、105d、105e、放熱板(ヒートシンク)107a、107b等とともに、封止樹脂108に封止された構造からなる。 The semiconductor module 500 includes semiconductor switching elements (IGBTs) 101a and 101b, diodes 102a and 102b, lead terminals 105a, 105b, 105c, 105d, and 105e, heat sinks (heat sinks) 107a and 107b, and a sealing resin 108. It consists of the structure sealed in.
 具体的には、半導体スイッチング素子101aの一方の電源電極パッド(図示せず)が、はんだ104によりリード端子105bに接合され、他方の電源電極パッド(図示せず)が、はんだ104によりヒートシンク107aに接合されている。また、半導体スイッチング素子101aの信号電極パッド(図示せず)が、ワイヤー103aによりリード端子105dにワイヤーボンディングされている。さらに、リード端子105bとヒートシンク107aとの間には、ダイオード102aが、半導体スイッチング素子101aと並列に接続されている。そして、ヒートシンク107aが、リード端子105aに接続されている。 Specifically, one power electrode pad (not shown) of the semiconductor switching element 101 a is joined to the lead terminal 105 b by the solder 104, and the other power electrode pad (not shown) is attached to the heat sink 107 a by the solder 104. It is joined. A signal electrode pad (not shown) of the semiconductor switching element 101a is wire-bonded to the lead terminal 105d by a wire 103a. Furthermore, a diode 102a is connected in parallel with the semiconductor switching element 101a between the lead terminal 105b and the heat sink 107a. The heat sink 107a is connected to the lead terminal 105a.
 同様に、半導体スイッチング素子101bの一方の電源電極パッド(図示せず)が、はんだ104によりリード端子105bに接合され、他方の電源電極パッド(図示せず)が、はんだ104によりヒートシンク107bに接合されている。また、半導体スイッチング素子101bの信号電極パッド(図示せず)が、ワイヤー103bによりリード端子105eにワイヤーボンディングされている。さらに、リード端子105bとヒートシンク107bとの間には、ダイオード102bが、半導体スイッチング素子101bと並列に接続されている。そして、ヒートシンク107bが、リード端子105cに接続されている。 Similarly, one power supply electrode pad (not shown) of the semiconductor switching element 101b is joined to the lead terminal 105b by the solder 104, and the other power supply electrode pad (not shown) is joined to the heat sink 107b by the solder 104. ing. A signal electrode pad (not shown) of the semiconductor switching element 101b is wire-bonded to the lead terminal 105e by a wire 103b. Furthermore, a diode 102b is connected in parallel with the semiconductor switching element 101b between the lead terminal 105b and the heat sink 107b. The heat sink 107b is connected to the lead terminal 105c.
 このように配線された半導体スイッチング素子101a、101b、ダイオード102a、102bは、リード端子105a、105b、105c、105d、105e、放熱板107a、107b等とともに、封止樹脂108に封止されている。そして、封止樹脂108の側面から、リード端子105a、105b、105c、105d、105eが導出されている。また、封止樹脂108の両主面から、ヒートシンク107a、107bが露出されている。 The semiconductor switching elements 101a and 101b and the diodes 102a and 102b wired in this way are sealed with a sealing resin 108 together with lead terminals 105a, 105b, 105c, 105d, and 105e, heat radiation plates 107a and 107b, and the like. Lead terminals 105 a, 105 b, 105 c, 105 d, and 105 e are led out from the side surface of the sealing resin 108. Further, the heat sinks 107 a and 107 b are exposed from both main surfaces of the sealing resin 108.
特開2014-183078号公報JP 2014-183078 A
 上述した従来の半導体モジュール500においては、リード端子105a、105b、105c、105d、105eが、封止樹脂108の側面の複数の高さ部分から導出されており、同一の高さ部分から導出されていない。 In the conventional semiconductor module 500 described above, the lead terminals 105a, 105b, 105c, 105d, and 105e are derived from a plurality of height portions on the side surface of the sealing resin 108, and are derived from the same height portion. Absent.
 ところで、インバータ等の半導体モジュールは、封止樹脂から導出されたリード端子を同一方向に折り曲げ、折り曲げられたリード端子を、車載機器や産業用機器等の基板に形成された貫通孔に挿入したうえで、はんだ付けして実装することが多い。 By the way, in a semiconductor module such as an inverter, a lead terminal derived from a sealing resin is bent in the same direction, and the bent lead terminal is inserted into a through hole formed in a substrate of an in-vehicle device or an industrial device. In many cases, it is mounted by soldering.
 しかしながら、上述した従来の半導体モジュール500は、リード端子105a、105b、105c、105d、105eが、封止樹脂108の側面の同一の高さ部分から導出されていないため、これらを同一方向に折り曲げることは容易ではなかった。すなわち、導出されている部分の高さが異なるため、リード端子105a、105b、105c、105d、105eを一括して折り曲げることができず、個別に折り曲げなければならなかった。したがって、半導体モジュール500のリード端子の折り曲げ作業は、極めて生産性が悪かった。 However, in the conventional semiconductor module 500 described above, since the lead terminals 105a, 105b, 105c, 105d, and 105e are not led out from the same height portion on the side surface of the sealing resin 108, they are bent in the same direction. Was not easy. That is, since the heights of the derived portions are different, the lead terminals 105a, 105b, 105c, 105d, and 105e cannot be bent at a time, and must be bent individually. Therefore, the productivity of bending the lead terminals of the semiconductor module 500 is extremely poor.
 本発明は、上述した従来の問題を解決するためになされたものであり、リード端子を、絶縁基材に固定された内部配線リード端子と、封止樹脂から外部に導出された外部導出リード端子とで構成することにより、全ての外部導出リード端子を、封止樹脂の側面の同じ高さ部分から外部に導出するようにしたものである。 The present invention has been made in order to solve the above-described conventional problems. The lead terminal includes an internal wiring lead terminal fixed to the insulating base and an external lead lead terminal led out from the sealing resin. In this way, all external lead terminals are led out from the same height portion of the side surface of the sealing resin.
 具体的には、本発明の半導体モジュールは、少なくとも、複数の半導体スイッチング素子と、複数のリード端子と、複数の絶縁基材とが、封止樹脂に封止され、リード端子が、絶縁基材に固定された内部配線リード端子と、封止樹脂から外部に導出された外部導出リード端子と、を備え、内部配線リード端子が固定された絶縁基材は、上下方向に間隔を開けて、少なくとも3層に分けて配置され、半導体スイッチング素子の電極は、内部配線リード端子に、直接または間接に接合されるか、あるいは、ワイヤーボンディングにより接続され、各外部導出リード端子は、一端が絶縁基材に固定された内部配線リード端子に接合され、他端が、封止樹脂から導出され、外部導出リード端子の少なくとも一部のものは、それぞれ、複数の屈曲部を有し、全ての外部導出リード端子は、封止樹脂の側面の同じ高さ部分から外部に導出されるようにした。 Specifically, in the semiconductor module of the present invention, at least a plurality of semiconductor switching elements, a plurality of lead terminals, and a plurality of insulating base materials are sealed with a sealing resin, and the lead terminals are insulating base materials. The insulating base material to which the internal wiring lead terminal is fixed is spaced at least vertically and includes at least an internal wiring lead terminal fixed to the external wiring lead terminal led to the outside from the sealing resin. Arranged in three layers, the electrode of the semiconductor switching element is directly or indirectly joined to the internal wiring lead terminal or connected by wire bonding, and one end of each external lead terminal is an insulating base The other end is led out from the sealing resin, and at least some of the outer lead terminals are each provided with a plurality of bent portions. And, all external derivation lead terminals were to be drawn out from the same height portion of the side surface of the sealing resin.
 なお、全ての外部導出リード端子が封止樹脂の側面の同じ高さ部分から外部に導出されるとは、製造ばらつき等により僅かな寸法分ずれて外部に導出される場合をも含む概念であり、実質的に同じ高さから外部に導出される、略同じ高さから外部に導出される、という意味である。 It should be noted that the fact that all the external lead terminals are led out from the same height part of the side surface of the sealing resin is a concept including the case where the lead terminals are led out by a slight dimensional deviation due to manufacturing variation or the like. , Derived from substantially the same height to the outside, and derived from substantially the same height to the outside.
 また、封止樹脂および外部導出リード端子を平面視した場合に、外部導出リード端子と外部導出リード端子との間の間隔(ピッチ)のうち、少なくとも一部の間隔が、封止樹脂から外部導出リード端子の他端の先端方向に向かって、平面方向に広がっているようにしても良い。この場合には、半導体モジュールを小型化しながら、各外部導出リード端子を所望の間隔に設定することができる。一般的に、外部導出リード端子の間隔は、半導体モジュールが装着される車載機器や産業用機器等の基板側からの要請で決定されるが、その要請に従って内部配線リード端子を設計すると、半導体モジュールが大きくなってしまうという懸念がある。すなわち、本発明は、半導体スイッチング素子を階層化して配置することにより小型化を図っているが、基板側からの外部導出リード端子の間隔の要請により内部配線リードを設計すると、階層化による小型化のメリットを活かせない懸念がある。これに対し、上述のように、外部導出リード端子と外部導出リード端子との間の間隔のうち、少なくとも一部のものを、封止樹脂から外部導出リード端子の他端の先端方向に向かって、平面方向に広がるようにすれば、半導体モジュールを大型化させることなく、基板側からの外部導出リード端子の間隔の要請に応えることができる。 In addition, when the sealing resin and the external lead terminal are viewed in plan, at least a part of the distance (pitch) between the external lead terminal and the external lead terminal is externally derived from the sealing resin. You may make it spread in the plane direction toward the front-end | tip direction of the other end of a lead terminal. In this case, each external lead-out lead terminal can be set at a desired interval while downsizing the semiconductor module. Generally, the interval between external lead terminals is determined by a request from the board side of an in-vehicle device or an industrial device to which a semiconductor module is mounted. When an internal wiring lead terminal is designed according to the request, the semiconductor module There is concern that will grow. In other words, the present invention attempts to reduce the size by arranging the semiconductor switching elements in a hierarchical manner. However, if the internal wiring lead is designed in response to a request for the distance between the lead-out lead terminals from the substrate side, the size is reduced by the hierarchy. There are concerns that the benefits of. In contrast, as described above, at least a part of the distance between the external lead terminal and the external lead terminal is moved from the sealing resin toward the tip of the other end of the external lead terminal. If it is spread in the plane direction, it is possible to meet the demand for the distance between the lead terminals from the substrate side without increasing the size of the semiconductor module.
 封止樹脂に、さらに受動部品を封止するようにしても良い。この場合には、半導体モジュールを高機能化させることができる。たとえば、受動部品として、封止樹脂内に、異常電流を検出するシャント抵抗素子や、異常発熱を検出するサーミスタ素子を組込めば、高い精度で、半導体モジュールの異常を検出することができる。 Passive components may be further sealed in the sealing resin. In this case, the function of the semiconductor module can be enhanced. For example, if a shunt resistor element that detects an abnormal current or a thermistor element that detects abnormal heat generation is incorporated in the sealing resin as a passive component, an abnormality of the semiconductor module can be detected with high accuracy.
 半導体スイッチング素子の電極を、金属ブロックを介して、内部配線リード端子に接合するようにしても良い。この場合には、半導体スイッチング素子と内部配線リード端子との間の距離を大きくすることができるため、半導体スイッチング素子の他の電極と、他の内部配線リード端子との間を、ワイヤーボンディングにより容易に接続することが可能になる。 The electrode of the semiconductor switching element may be joined to the internal wiring lead terminal via a metal block. In this case, since the distance between the semiconductor switching element and the internal wiring lead terminal can be increased, wire bonding between the other electrode of the semiconductor switching element and the other internal wiring lead terminal is easy. It becomes possible to connect to.
 また、少なくとも3層に分けて配置された、内部配線リード端子が固定された絶縁基材のうち、中間の層に配置された絶縁基材には、両主面間を貫通した開口が形成されていることが好ましい。この場合には、その開口の部分において、金属ブロックと内部配線リード端子との接合を行うことができる。 In addition, among the insulating base materials arranged in at least three layers and having the internal wiring lead terminals fixed, the insulating base material arranged in the intermediate layer has an opening penetrating between both main surfaces. It is preferable. In this case, the metal block and the internal wiring lead terminal can be joined at the opening.
 また、全ての外部導出リード端子は、封止樹脂の外部で、同一方向に屈曲されていても良い。この場合には、屈曲された外部導出リード端子を、車載機器や産業用機器等の基板に形成された貫通孔に挿入したうえで、はんだ付けすることにより、半導体モジュールを実装することができる。 Also, all the external lead terminals may be bent in the same direction outside the sealing resin. In this case, the semiconductor module can be mounted by inserting the bent external lead-out lead terminal into a through-hole formed in a substrate of an in-vehicle device or an industrial device and then soldering.
 また、絶縁基材がセラミックスからなり、リード端子が、少なくとも、セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金を介して、絶縁基板に固定されたものとしても良い。この場合には、高い強度を備えた絶縁基板に、リード端子を強固に固定することができる。なお、絶縁基材の材料は任意であり、セラミックス製である必要はなく、樹脂製などであっても良い。ただし、絶縁基板が樹脂製である場合は、リード端子は、接着剤によって絶縁基板に固定される場合が多い。 Further, the insulating base material may be made of ceramics, and the lead terminals may be fixed to the insulating substrate through an alloy containing at least an active metal that reacts with the ceramic constituents, Ag, and Cu. . In this case, the lead terminal can be firmly fixed to the insulating substrate having high strength. The material of the insulating base material is arbitrary and does not have to be made of ceramics, and may be made of resin. However, when the insulating substrate is made of resin, the lead terminals are often fixed to the insulating substrate with an adhesive.
 半導体モジュールは、たとえば、インバータとすることができる。 The semiconductor module can be an inverter, for example.
 また、上述した従来の問題を解決するために、本発明の半導体モジュールの製造方法は、複数の絶縁基材を準備する工程と、複数の内部配線リード端子を準備する工程と、各絶縁基材に、内部配線リード端子を固定する工程と、複数の半導体スイッチング素子を準備する工程と、半導体スイッチング素子の電極を、絶縁基材に固定されたいずれかの内部配線リード端子に、直接または間接に接合するか、あるいは、ワイヤーボンディングにより接続することにより、半導体スイッチング素子を介して、絶縁基材を少なくとも3層に重ねて一体化する工程と、複数の外部導出リード端子を準備する工程と、外部導出リード端子の少なくとも一部のものに、それぞれ、複数の屈曲部を形成する工程と、各外部導出リード端子の一端を、絶縁基材に固定されたいずれかの内部配線リード端子に接合する工程と、一体化された、複数の半導体スイッチング素子と、複数の絶縁基材と、複数の内部配線リード端子と、複数の外部導出リード端子とを、各外部導出リード端子の他端を外部に導出させて樹脂封止する工程と、を備え、全ての外部導出リード端子が、封止樹脂の側面の同じ高さ部分から外部に導出されるようにした。 In addition, in order to solve the above-described conventional problems, the semiconductor module manufacturing method of the present invention includes a step of preparing a plurality of insulating base materials, a step of preparing a plurality of internal wiring lead terminals, and each insulating base material In addition, the step of fixing the internal wiring lead terminal, the step of preparing a plurality of semiconductor switching elements, and the electrode of the semiconductor switching element directly or indirectly to any of the internal wiring lead terminals fixed to the insulating substrate Bonding or connecting by wire bonding to integrate at least three layers of insulating base materials via a semiconductor switching element, preparing a plurality of external lead terminals, and external A step of forming a plurality of bent portions on at least a part of the lead-out lead terminals, and one end of each external lead-out lead terminal with an insulating base Bonding to any of the fixed internal wiring lead terminals, a plurality of integrated semiconductor switching elements, a plurality of insulating substrates, a plurality of internal wiring lead terminals, and a plurality of external lead-out lead terminals The other end of each lead-out lead terminal is led to the outside and resin-sealed, and all the lead-out lead terminals are led out from the same height portion of the side surface of the sealing resin. I did it.
 少なくとも、複数の外部導出リード端子を準備する工程と、外部導出リード端子の少なくとも一部のものに屈曲部を形成する工程と、各外部導出リード端子の一端を、絶縁基材に固定されたいずれかの内部配線リード端子に接合する工程は、複数の外部導出リード端子が、1つの環状のリードフレームに一体化された状態で行うことが好ましい。この場合には、外部導出リード端子への屈曲部の形成、および、外部導出リード端子の一端の内部配線端子への接合を、極めて容易に、かつ高い生産性で行うことができる。 At least a step of preparing a plurality of external lead-out lead terminals, a step of forming a bent portion on at least a part of the external lead-out lead terminals, and one of the external lead-out lead terminals fixed to an insulating base The step of joining to the internal wiring lead terminal is preferably performed in a state where a plurality of external lead-out lead terminals are integrated into one annular lead frame. In this case, the formation of the bent portion in the external lead-out lead terminal and the joining of one end of the external lead-out lead terminal to the internal wiring terminal can be performed very easily and with high productivity.
 また、リードフレームに固定された各外部導出リード端子の一端を、絶縁基材に固定されたいずれかの内部配線端子に接合する工程において、外部導出リード端子が一体化されたリードフレームと、内部配線リード端子が固定された絶縁基材とを、これらに対して垂直方向から見た場合、外部導出リード端子の一端と、内部配線リード端子との、接合される部分のみが重なっていることが好ましい。この場合には、外部導出リード端子の一端の内部配線リード端子への接合を、極めて容易に、かつ高い生産性で行うことができる。 In addition, in the step of joining one end of each external lead terminal fixed to the lead frame to one of the internal wiring terminals fixed to the insulating base material, When the insulating base material to which the wiring lead terminals are fixed is viewed from the direction perpendicular thereto, only one portion of the external lead terminal and the internal wiring lead terminal are overlapped. preferable. In this case, one end of the external lead terminal can be joined to the internal wiring lead terminal very easily and with high productivity.
 また、樹脂封止する工程の後に、さらに、封止樹脂から導出された外部導出リード端子から、不要なリードフレームを切り離す工程を備えるようにしても良い。 Further, after the resin sealing step, a step of separating an unnecessary lead frame from an external lead terminal derived from the sealing resin may be further provided.
 さらに、封止樹脂から導出された全ての外部導出リード端子を、同一方向に屈曲する工程を備えるようにしても良い。この場合には、製造された半導体モジュールは、屈曲された外部導出リード端子を、車載機器や産業用機器等の基板に形成された貫通孔に挿入したうえで、はんだ付けすることにより実装することができる。 Furthermore, a step of bending all the external lead terminals derived from the sealing resin in the same direction may be provided. In this case, the manufactured semiconductor module is mounted by inserting the bent external lead-out lead terminal into a through-hole formed in a board of an in-vehicle device or industrial device and then soldering it. Can do.
 本発明の半導体モジュールは、外部導出リード端子が、封止樹脂の側面の同一の高さ部分から導出されているため、封止樹脂の側面から導出された外部導出リード端子を、極めて容易に、かつ高い生産性で、同一方向に折り曲げることができる。そして、折り曲げられたリード端子を、車載機器や産業用機器等の基板に形成された貫通孔に挿入したうえで、はんだ付けすることにより実装することができる。 In the semiconductor module of the present invention, since the external lead-out lead terminal is led out from the same height portion of the side surface of the sealing resin, the external lead-out lead terminal derived from the side surface of the sealing resin can be very easily obtained. And it can be bent in the same direction with high productivity. Then, the bent lead terminal can be mounted by being soldered after being inserted into a through hole formed in a substrate of an in-vehicle device or an industrial device.
 あるいは、本発明の半導体モジュールは、外部導出リード端子が、封止樹脂の側面の同一の高さ部分から導出されているため、車載機器や産業用機器等の基板に、半導体モジュールの大きさよりも大きな開口を形成し、その開口内に半導体モジュールを配置するとともに、外部導出リード端子を、開口の周縁近傍に形成された電極パターンにはんだ付けすることにより、実装することができる。 Alternatively, in the semiconductor module of the present invention, the lead-out lead terminals are led out from the same height portion of the side surface of the sealing resin, so that the size of the semiconductor module is larger than the size of the semiconductor module on a substrate such as an in-vehicle device or an industrial device. The semiconductor device can be mounted by forming a large opening, placing the semiconductor module in the opening, and soldering the external lead-out lead terminal to an electrode pattern formed near the periphery of the opening.
 また、本発明の半導体モジュールの製造方法によれば、極めて容易に、かつ高い生産性で、全ての外部導出リード端子が封止樹脂の側面の同じ高さ部分から外部に導出された半導体モジュールを製造することができる。 In addition, according to the method for manufacturing a semiconductor module of the present invention, it is very easy and with high productivity, all the external lead-out lead terminals are led out from the same height portion of the side surface of the sealing resin. Can be manufactured.
図1(A)は、第1実施形態にかかる半導体モジュール100を示す斜視図である。図1(B)は、半導体モジュール100を示す断面図であり、図1(A)のX-X部分を示している。FIG. 1A is a perspective view showing the semiconductor module 100 according to the first embodiment. FIG. 1B is a cross-sectional view showing the semiconductor module 100 and shows a portion XX in FIG. 図2は、半導体モジュール100を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the semiconductor module 100. 図3は、半導体モジュール100の等価回路図である。FIG. 3 is an equivalent circuit diagram of the semiconductor module 100. 図4は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 4 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100. 図5は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 5 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100. 図6は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 6 is a perspective view showing a process applied in an example of a manufacturing method of the semiconductor module 100. 図7は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 7 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100. 図8は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 8 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100. 図9は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 9 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100. 図10(A)は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。図10(B)は、その平面図である。図10(C)は、その正面図である。FIG. 10A is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100. FIG. 10B is a plan view thereof. FIG. 10C is a front view thereof. 図11は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 11 is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100. 図12は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 12 is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100. 図13は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 13 is a perspective view showing steps applied in an example of a method for manufacturing the semiconductor module 100. 図14は、半導体モジュール100の製造方法の一例において適用される工程を示す斜視図である。FIG. 14 is a perspective view showing a process applied in an example of a method for manufacturing the semiconductor module 100. 図15(A)は、第2実施形態にかかる半導体モジュール200を示す断面図である。図15(B)は、半導体モジュール200の等価回路図である。FIG. 15A is a cross-sectional view showing a semiconductor module 200 according to the second embodiment. FIG. 15B is an equivalent circuit diagram of the semiconductor module 200. 図16は、第3実施形態にかかる半導体モジュール300を示す斜視図である。FIG. 16 is a perspective view showing a semiconductor module 300 according to the third embodiment. 図17は、第4実施形態にかかる半導体モジュール400を示す斜視図である。FIG. 17 is a perspective view showing a semiconductor module 400 according to the fourth embodiment. 図18は、特許文献1に開示された従来の半導体モジュール500を示す斜視図である。FIG. 18 is a perspective view showing a conventional semiconductor module 500 disclosed in Patent Document 1. As shown in FIG.
 以下、図面とともに、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 [第1実施形態]
 図1(A)、図1(B)、図2、図3に、本発明の第1実施形態にかかる半導体モジュール100を示す。
[First Embodiment]
1A, 1B, 2 and 3 show a semiconductor module 100 according to a first embodiment of the present invention.
 ただし、図1(A)は、半導体モジュール100の斜視図である。図1(B)は、半導体モジュール100の断面図であり、図1(A)のX-X部分を示している。なお、図1
(B)においては、封止樹脂8の図示を省略し、その部分を破線で示している。図2は、半導体モジュール100の分解斜視図である。なお、図2においても、封止樹脂8の図示を省略している。図3は、半導体モジュール100の等価回路図である。
However, FIG. 1A is a perspective view of the semiconductor module 100. FIG. 1B is a cross-sectional view of the semiconductor module 100 and shows a portion XX in FIG. In addition, FIG.
In (B), illustration of sealing resin 8 is abbreviate | omitted and the part is shown with the broken line. FIG. 2 is an exploded perspective view of the semiconductor module 100. In FIG. 2, the sealing resin 8 is not shown. FIG. 3 is an equivalent circuit diagram of the semiconductor module 100.
 半導体モジュール100は、3枚の矩形、板状の絶縁基材6a、6b、6cを備える。絶縁基材6a、6b、6cは、たとえば、エポキシ、ポリイミド等の樹脂からなる。 The semiconductor module 100 includes three rectangular and plate-like insulating bases 6a, 6b, and 6c. The insulating bases 6a, 6b, 6c are made of a resin such as epoxy or polyimide, for example.
 絶縁基材6aの一方の主面(図2において上側の主面)には、矩形、板状の放熱板7aが形成されている。放熱板7aは、後述する6個の半導体スイッチング素子1a~1fが発生させる熱を放散させるためのものである。また、絶縁基材6aの他方の主面(図2において下側の主面)には、L字形状で、板状の内部配線リード端子51aが形成されている。 A rectangular and plate-like heat radiation plate 7a is formed on one main surface (the upper main surface in FIG. 2) of the insulating base 6a. The heat radiating plate 7a is for radiating heat generated by six semiconductor switching elements 1a to 1f described later. Further, an L-shaped and plate-like internal wiring lead terminal 51a is formed on the other main surface (lower main surface in FIG. 2) of the insulating base 6a.
 絶縁基材6bの中央部分には、両主面間を貫通して、矩形の開口6b-hが形成されて
いる。また、絶縁基材6bの一方の主面には、対向する2つの辺6b-x、6b-yの一方の辺6b-xに沿って、その辺6b-xと直行する方向に、3本の、I字形状で、板状の内部配線リード端子52a、52b、52cが形成され、他方の辺6b-yに沿って、その辺6b-yと直行する方向に、3本の、I字形状で、板状の内部配線リード端子52d、52e、52fが形成されている。内部配線リード端子52a、52b、52cの幅は、内部配線リード端子52d、52e、52fの幅よりも大きい。内部配線リード端子52a、52b、52cは、それぞれ、開口6b-hを跨ぐように形成されており、内部配線リード端子52a、52b、52cは、開口6b-h部分において、絶縁基材6bの他方の主面側に露出している。
A rectangular opening 6b-h is formed in the central portion of the insulating base 6b so as to penetrate between both main surfaces. Further, three main surfaces of one side of the insulating base 6b are provided along one side 6b-x of the two opposite sides 6b-x and 6b-y in a direction perpendicular to the side 6b-x. The I-shaped, plate-like internal wiring lead terminals 52a, 52b, 52c are formed, and three I-shaped elements are formed along the other side 6b-y in a direction perpendicular to the side 6b-y. In shape, plate-like internal wiring lead terminals 52d, 52e, and 52f are formed. The widths of the internal wiring lead terminals 52a, 52b, and 52c are larger than the widths of the internal wiring lead terminals 52d, 52e, and 52f. The internal wiring lead terminals 52a, 52b, and 52c are formed so as to straddle the opening 6b-h, respectively, and the internal wiring lead terminals 52a, 52b, and 52c are the other side of the insulating base 6b in the opening 6b-h portion. It is exposed on the main surface side.
 絶縁基材6cの一方の主面には、L字形状で、板状の内部配線リード端子53aが形成されている。内部配線リード端子53aは、絶縁基材6cの1つの辺6c-xから、その辺6c-xと直行する方向に導出されている。また、絶縁基材6cの一方の主面には、もう1つの辺6c-yに沿って、その辺6c-yと直行する方向に、3本の、I字形状で、板状の内部配線リード端子53b、53c、53dが形成されている。内部配線リード端子53b、53c、53dの幅は、絶縁基材6bに形成された内部配線リード端子52d、52e、52fの幅と同じ大きさである。また、絶縁基材6cの他方の主面には、矩形、板状の放熱板7bが形成されている。放熱板7bは、放熱板7aと同様に、後述する6個の半導体スイッチング素子1a~1fが発生させる熱を放散させるためのものである。放熱板7a、7b、内部配線リード端子51a~53dには、たとえば、銅系金属、アルミニウム系金属、鉄系金属等の金属が使用される。 An L-shaped, plate-like internal wiring lead terminal 53a is formed on one main surface of the insulating base 6c. The internal wiring lead terminal 53a is led out from one side 6c-x of the insulating base 6c in a direction perpendicular to the side 6c-x. Further, on one main surface of the insulating base 6c, three I-shaped, plate-like internal wirings are formed along the other side 6c-y in a direction perpendicular to the side 6c-y. Lead terminals 53b, 53c, and 53d are formed. The widths of the internal wiring lead terminals 53b, 53c, 53d are the same as the widths of the internal wiring lead terminals 52d, 52e, 52f formed on the insulating base 6b. Further, a rectangular and plate-shaped heat radiation plate 7b is formed on the other main surface of the insulating base 6c. Like the heat sink 7a, the heat sink 7b is for radiating heat generated by six semiconductor switching elements 1a to 1f described later. For the heat sinks 7a and 7b and the internal wiring lead terminals 51a to 53d, for example, a metal such as a copper-based metal, an aluminum-based metal, or an iron-based metal is used.
 半導体モジュール100は、6個の半導体スイッチング素子1a、1b、1c、1d、1e、1fを備える。本実施形態においては、半導体スイッチング素子1a~1fとして、MOSFETを使用した。 The semiconductor module 100 includes six semiconductor switching elements 1a, 1b, 1c, 1d, 1e, and 1f. In the present embodiment, MOSFETs are used as the semiconductor switching elements 1a to 1f.
 半導体スイッチング素子1a~1fは、それぞれ、一方の主面(図2において上側の主面)に、一方の電源電極パッド(図示せず)と、信号電極パッド(図示しているが符号は付与していない)とが形成され、他方の主面(図2において下側の主面)に、他方の電源電極パッド(図示せず)が形成されている。 Each of the semiconductor switching elements 1a to 1f has one main surface (upper main surface in FIG. 2), one power electrode pad (not shown), and a signal electrode pad (shown with reference numerals). The other power supply electrode pad (not shown) is formed on the other main surface (the lower main surface in FIG. 2).
 半導体スイッチング素子1aは、はんだ4により、他方の電源電極パッドが、絶縁基材6bに形成された内部配線リード端子52aに接合されている。 In the semiconductor switching element 1a, the other power electrode pad is joined to the internal wiring lead terminal 52a formed on the insulating base 6b by the solder 4.
 半導体スイッチング素子1bは、はんだ4により、他方の電源電極パッドが、絶縁基材6bに形成された内部配線リード端子52bに接合されている。 The other switching electrode 1b of the semiconductor switching element 1b is joined to the internal wiring lead terminal 52b formed on the insulating base 6b by the solder 4.
 半導体スイッチング素子1cは、はんだ4により、他方の電源電極パッドが、絶縁基材6bに形成された内部配線リード端子52cに接合されている。 In the semiconductor switching element 1c, the other power electrode pad is joined to the internal wiring lead terminal 52c formed on the insulating base 6b by the solder 4.
 半導体スイッチング素子1d、1e、1fは、それぞれ、はんだ4により、他方の電源電極パッドが、絶縁基材6cに形成された内部配線リード端子53aに接合されている。また、半導体スイッチング素子1aの信号電極パッドは、ワイヤー3aにより、絶縁基材6bに形成された内部配線リード端子52dにワイヤーボンディングされて接続されている。 In the semiconductor switching elements 1d, 1e, and 1f, the other power electrode pad is joined to the internal wiring lead terminal 53a formed on the insulating base 6c by the solder 4, respectively. The signal electrode pad of the semiconductor switching element 1a is connected by wire bonding to the internal wiring lead terminal 52d formed on the insulating base 6b by the wire 3a.
 半導体スイッチング素子1bの信号電極パッドは、ワイヤー3bにより、絶縁基材6bに形成された内部配線リード端子52eにワイヤーボンディングされて接続されている。 The signal electrode pad of the semiconductor switching element 1b is connected by wire bonding to the internal wiring lead terminal 52e formed on the insulating base 6b by the wire 3b.
 半導体スイッチング素子1cの信号電極パッドは、ワイヤー3cにより、絶縁基材6bに形成された内部配線リード端子52fにワイヤーボンディングされて接続されている。 The signal electrode pad of the semiconductor switching element 1c is connected by wire bonding to an internal wiring lead terminal 52f formed on the insulating base 6b by a wire 3c.
 半導体スイッチング素子1dの信号電極パッドは、ワイヤー3dにより、絶縁基材6cに形成された内部配線リード端子53bにワイヤーボンディングされて接続されている。 The signal electrode pad of the semiconductor switching element 1d is connected by wire bonding to an internal wiring lead terminal 53b formed on the insulating base 6c by a wire 3d.
 半導体スイッチング素子1eの信号電極パッドは、ワイヤー3eにより、絶縁基材6cに形成された内部配線リード端子53cにワイヤーボンディングされて接続されている。 The signal electrode pad of the semiconductor switching element 1e is connected by wire bonding to the internal wiring lead terminal 53c formed on the insulating base 6c by the wire 3e.
 半導体スイッチング素子1fの信号電極パッドは、ワイヤー3fにより、絶縁基材6cに形成された内部配線リード端子53dにワイヤーボンディングされて接続されている。ワイヤー3a~3fには、たとえば、アルミニウム、金等の金属が使用される。 The signal electrode pad of the semiconductor switching element 1f is connected by wire bonding to an internal wiring lead terminal 53d formed on the insulating base 6c by a wire 3f. For the wires 3a to 3f, for example, a metal such as aluminum or gold is used.
 また、半導体スイッチング素子1aの一方の電源電極パッドに、はんだ4により、直方体の金属ブロック2aが接合されている。 Further, a rectangular parallelepiped metal block 2 a is joined to one power supply electrode pad of the semiconductor switching element 1 a by solder 4.
 半導体スイッチング素子1bの一方の電源電極パッドに、はんだ4により、直方体の金属ブロック2bが接合されている。 A rectangular parallelepiped metal block 2b is joined to one power supply electrode pad of the semiconductor switching element 1b by solder 4.
 半導体スイッチング素子1cの一方の電源電極パッドに、はんだ4により、直方体の金属ブロック2cが接合されている。 A rectangular parallelepiped metal block 2c is joined to one power electrode pad of the semiconductor switching element 1c by solder 4.
 半導体スイッチング素子1dの一方の電源電極パッドに、はんだ4により、直方体の金属ブロック2dが接合されている。 A rectangular parallelepiped metal block 2d is joined by solder 4 to one power supply electrode pad of the semiconductor switching element 1d.
 半導体スイッチング素子1eの一方の電源電極パッドに、はんだ4により、直方体の金属ブロック2eが接合されている。 A rectangular parallelepiped metal block 2e is joined by solder 4 to one power supply electrode pad of the semiconductor switching element 1e.
 半導体スイッチング素子1fの一方の電源電極パッドに、はんだ4により、直方体の金属ブロック2fが接合されている。 A rectangular parallelepiped metal block 2 f is joined to one power supply electrode pad of the semiconductor switching element 1 f by solder 4.
 金属ブロック2a~2fには、たとえば、銅系金属、アルミニウム系金属等の金属が使用される。 For the metal blocks 2a to 2f, for example, metals such as copper metal and aluminum metal are used.
 そして、金属ブロック2a、2b、2cが、はんだ4により、絶縁基材6aに形成された内部配線リード端子51aに接合されている。 The metal blocks 2a, 2b, and 2c are joined to the internal wiring lead terminal 51a formed on the insulating base 6a by the solder 4.
 金属ブロック2dが、はんだ4により、開口6b-h部分において、絶縁基材6bに形
成された内部配線リード端子52aに接合されている。
The metal block 2d is joined to the internal wiring lead terminal 52a formed on the insulating base 6b by the solder 4 at the opening 6b-h.
 金属ブロック2eが、はんだ4により、開口6b-h部分において、絶縁基材6bに形
成された内部配線リード端子52bに接合されている。
The metal block 2e is joined to the internal wiring lead terminal 52b formed on the insulating base 6b by the solder 4 at the opening 6b-h.
 金属ブロック2fが、はんだ4により、開口6b-h部分において、絶縁基材6bに形
成された内部配線リード端子52cに接合されている。
The metal block 2f is joined to the internal wiring lead terminal 52c formed on the insulating base 6b by the solder 4 at the opening 6b-h.
 以上の結果により、3枚の絶縁基材6a、6b、6cは、半導体スイッチング素子1a~1fおよび金属ブロック2a~2fを介して、上下方向に間隔を開けて、3層に重ねて配置されている。 As a result of the above, the three insulating bases 6a, 6b, and 6c are arranged in three layers with a space in the vertical direction through the semiconductor switching elements 1a to 1f and the metal blocks 2a to 2f. Yes.
 半導体モジュール100は、外部導出リード端子151a、152a、152b、152c、152d、152e、152f、153a、153b、153c、153dを備える。 The semiconductor module 100 includes external lead terminals 151a, 152a, 152b, 152c, 152d, 152e, 152f, 153a, 153b, 153c, and 153d.
 外部導出リード端子151a~153dは、I字形状で、板状からなる。 External lead terminals 151a to 153d are I-shaped and have a plate shape.
 外部導出リード端子151a、152a、152b、152c、153aの幅は、外部導出リード端子152d、152e、152f、153b、153c、153dの幅よりも大きい。 The widths of the external lead terminals 151a, 152a, 152b, 152c, and 153a are larger than the widths of the external lead terminals 152d, 152e, 152f, 153b, 153c, and 153d.
 外部導出リード端子151a、153a、153b、153c、153dは、それぞれ、2ヶ所において屈曲されている。 External lead terminals 151a, 153a, 153b, 153c, and 153d are bent at two locations, respectively.
 外部導出リード端子151a~153dには、内部配線リード端子51a~53dと同様に、たとえば、銅系金属、アルミニウム系金属、鉄系金属等の金属が使用される。
外部導出リード端子151a~153dは、それぞれ、はんだ(図示せず)により、内部配線リード端子51a~53dに接合されている。
As the internal lead terminals 51a to 53d, for example, metals such as copper-based metal, aluminum-based metal, and iron-based metal are used for the external lead-out lead terminals 151a to 153d.
The external lead terminals 151a to 153d are joined to the internal wiring lead terminals 51a to 53d by solder (not shown), respectively.
 なお、図1(B)および図2から分かるように、本実施形態においては、すべての接合部分において、外部導出リード端子151a~153dが、内部配線リード端子51a~53dの上側に接合されている。完成した半導体モジュール100は、オン・オフの繰り返しの度に、内部の封止樹脂8とリード端子間で熱膨張係数差による応力が発生する。本実施形態においては、外部導出リード端子151a~153dが内部配線リード端子51a~53dの上側に接合されているため、外部導出リード端子151a~153dにかかる応力は、オン/オフの繰り返しの度に同方向にかかる。そのため、外部導出リード端子151a~153d自身のひずみは少ない。 As can be seen from FIG. 1B and FIG. 2, in this embodiment, the external lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d in all joint portions. . In the completed semiconductor module 100, a stress due to a difference in thermal expansion coefficient is generated between the internal sealing resin 8 and the lead terminal each time the ON / OFF is repeated. In the present embodiment, since the external lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d, the stress applied to the external lead terminals 151a to 153d is applied each time ON / OFF is repeated. Take the same direction. For this reason, the distortion of the external lead terminals 151a to 153d themselves is small.
 一方で、もし、たとえば、外部導出リード端子153aのみを内部配線リード端子53aの下部に接続させた場合、オン/オフにより、外部導出リード端子153aには、他の外部導出リード端子151a~152f、153b~153dと異なる方向の応力がかかってしまう。結果として外部導出リード端子153a内部に印加される応力は大きくなり、端子の寿命が短くなってしまう。 On the other hand, if, for example, only the external lead terminal 153a is connected to the lower part of the internal wiring lead terminal 53a, the external lead terminal 153a is connected to the other external lead terminals 151a to 152f by turning on / off. Stress in a direction different from 153b to 153d is applied. As a result, the stress applied to the inside of the external lead-out lead terminal 153a increases, and the life of the terminal is shortened.
 本実施形態においては、全ての外部導出リード端子151a~153dが内部配線リード端子51a~53dの上側に配置されているため、応力の低減が可能となり、端子の寿命をより長くすることが可能になっている。 In the present embodiment, since all the external lead terminals 151a to 153d are arranged above the internal wiring lead terminals 51a to 53d, stress can be reduced and the life of the terminals can be extended. It has become.
 また、図1(B)および図2に示すように、本実施形態において、すべての接合部分において、外部導出リード端子151a~153dが、内部配線リード端子51a~53dの上側に接合されていることは、以下の理由により、接続信頼性を向上させるためにも重要である。外部導出リード151a~153d、および内部配線リード51a~53dの先端部、すなわち互いが接合される部分の高さ位置精度は、必ずしも完全に一定ではなく、ばらつきを持っている場合がある。そのため、接合後の接合部厚みがばらつき、接合部信頼性が著しく劣化したり、極端な場合は接合していない箇所が生じたりする場合がある。そこで、接合時には、内部配線リードを固定した状態で、外部導出リード全体に荷重(力)を掛けて、全ての接合部が一定厚みになるようにする。この方法は、内部配線リード端子に対して、外部導出リードが同じ側に位置する場合にのみ為し得るものである。 Further, as shown in FIGS. 1B and 2, in this embodiment, the external lead-out lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d in all joint portions. Is also important for improving connection reliability for the following reasons. The height position accuracy of the leading end portions of the external lead leads 151a to 153d and the internal wiring leads 51a to 53d, that is, the portions where the lead wires are joined to each other is not necessarily completely constant and may vary. For this reason, the thickness of the joint after joining may vary, and the reliability of the joint may be significantly deteriorated. In an extreme case, a part that is not joined may occur. Therefore, at the time of joining, a load (force) is applied to the entire external lead-out lead with the internal wiring leads fixed, so that all the joining portions have a constant thickness. This method can be performed only when the external lead-out lead is located on the same side with respect to the internal wiring lead terminal.
 なお、本実施形態においては、全ての接合部において、外部導出リード端子151a~153dが、内部配線リード端子51a~53dの上側に接合されているが、上記記述により、全ての接合部において、外部導出リード端子151a~153dが、内部配線リード端子51a~53dの下側に接合されても良いことは言うまでもない。 In this embodiment, the external lead-out lead terminals 151a to 153d are joined to the upper side of the internal wiring lead terminals 51a to 53d in all the joints. However, according to the above description, the external lead terminals 151a to 153d It goes without saying that the lead-out lead terminals 151a to 153d may be joined to the lower side of the internal wiring lead terminals 51a to 53d.
 半導体モジュール100においては、以上のように一体化された半導体スイッチング素子1a~1f、金属ブロック2a~2f、ワイヤー3a~3f、内部配線リード端子51a~53d、外部導出リード端子151a~153d、絶縁基材6a~6c、放熱板7a、7bが、封止樹脂8に封止されている。封止樹脂8には、たとえば、エポキシ、ポリイミド等が使用される。 In the semiconductor module 100, the semiconductor switching elements 1a to 1f, the metal blocks 2a to 2f, the wires 3a to 3f, the internal wiring lead terminals 51a to 53d, the external lead-out lead terminals 151a to 153d, the insulating group, which are integrated as described above. The materials 6 a to 6 c and the heat radiating plates 7 a and 7 b are sealed with the sealing resin 8. For the sealing resin 8, for example, epoxy, polyimide or the like is used.
 封止樹脂8の両主面には、放熱板7a、7bが露出されている。 The heat sinks 7 a and 7 b are exposed on both main surfaces of the sealing resin 8.
 また、封止樹脂8の側面から、11本の外部導出リード端子151a~153dが導出されている。全ての外部導出リード端子151a~153dは、外部導出リード端子151a、153a、153b、153c、153dが、それぞれ、2ヶ所において屈曲されていることにより、封止樹脂8の側面の同じ高さ部分から導出されている。 In addition, eleven external lead terminals 151 a to 153 d are led out from the side surface of the sealing resin 8. All the external lead terminals 151a to 153d are bent from the same height portion on the side surface of the sealing resin 8 by bending the external lead terminals 151a, 153a, 153b, 153c, and 153d at two locations, respectively. Has been derived.
 なお、全ての外部導出リード端子151a~153dが封止樹脂8の側面の同じ高さ部分から外部に導出されるとは、製造ばらつき等により僅かな寸法分ずれて外部に導出される場合をも含む概念であり、実質的に同じ高さから外部に導出されている、略同じ高さから外部に導出されている、という意味である。 Note that all the external lead terminals 151a to 153d are led out to the outside from the same height portion of the side surface of the sealing resin 8 because they may be led to the outside by a slight dimensional deviation due to manufacturing variations or the like. It is a concept that includes, and is derived from substantially the same height to the outside, and is derived from substantially the same height to the outside.
 また、外部導出リード端子151a~153dは、それぞれの主面が水平となるように封止樹脂8から導出されている。すなわち、外部導出リード端子151a~153dの主面は、封止樹脂8の主面と平行になっている。 Further, the external lead-out lead terminals 151a to 153d are led out from the sealing resin 8 so that their main surfaces are horizontal. That is, the main surfaces of the external lead terminals 151 a to 153 d are parallel to the main surface of the sealing resin 8.
 このように、外部導出リード端子151a~153dを封止樹脂8から水平に導出しておけば、外部導出リード端子151a~153dを、たとえば図1(A)における下側方向に屈曲させることが容易になる。以上の構造からなる、第1実施形態にかかる半導体モジュール100の等価回路を図3に示す。 As described above, if the external lead terminals 151a to 153d are horizontally led out from the sealing resin 8, the external lead terminals 151a to 153d can be easily bent downward, for example, in FIG. 1A. become. FIG. 3 shows an equivalent circuit of the semiconductor module 100 having the above structure according to the first embodiment.
 半導体モジュール100はインバータであり、外部導出リード端子153aがP側端子に該当し、外部導出リード端子151aがN側端子に該当する。また、外部導出リード端子152a、152b、152cが、それぞれ、中間端子に該当する。また、外部導出リード端子152d、152e、152f、153b、153c、153dが、それぞれ、ゲート端子に該当する。 The semiconductor module 100 is an inverter, and the external lead terminal 153a corresponds to the P-side terminal, and the external lead terminal 151a corresponds to the N-side terminal. The external lead terminals 152a, 152b, and 152c correspond to intermediate terminals, respectively. The external lead terminals 152d, 152e, 152f, 153b, 153c, and 153d correspond to gate terminals, respectively.
 第1実施形態にかかる半導体モジュール100は、たとえば、図4~14に示す方法で製造することができる。なお、図4~9および図11~14は斜視図である。図10(A)は斜視図であり、図10(B)は平面図であり、図10(C)正面図である。 The semiconductor module 100 according to the first embodiment can be manufactured, for example, by the method shown in FIGS. 4 to 9 and FIGS. 11 to 14 are perspective views. 10A is a perspective view, FIG. 10B is a plan view, and FIG. 10C is a front view.
 まず、図4に示すように、絶縁基材6a~6cと、放熱板7a、7bと、内部配線リード端子51a~53dとを準備する。続いて、放熱板7a、7bと内部配線リード端子51a~53dとを、絶縁基材6a~6cに固定する。固定は、たとえば、接着剤によりおこなう。固定後の状態を、図5に示す。 First, as shown in FIG. 4, insulating bases 6a to 6c, heat sinks 7a and 7b, and internal wiring lead terminals 51a to 53d are prepared. Subsequently, the heat radiating plates 7a and 7b and the internal wiring lead terminals 51a to 53d are fixed to the insulating bases 6a to 6c. Fixing is performed by, for example, an adhesive. The state after fixing is shown in FIG.
 次に、半導体スイッチング素子1a~1fを準備する。続いて、図6に示すように、半導体スイッチング素子1a~1fの他方の電源電極パッド(図6において各半導体スイッチング素子1a~1fの下側の主面に形成されている)を、はんだ(図示せず)により、内部配線リード端子52a~52cおよび53aに接合する。より詳細には、半導体スイッチング素子1aの他方の電源電極パッドを内部配線リード端子52aに、半導体スイッチング素子1bの他方の電源電極パッドを内部配線リード端子52bに、半導体スイッチング素子1cの他方の電源電極パッドを内部配線リード端子52cに、それぞれ接合する。また、半導体スイッチング素子1d~1fの他方の電源電極パッドを、内部配線リード端子53aに、それぞれ接合する。 Next, the semiconductor switching elements 1a to 1f are prepared. Subsequently, as shown in FIG. 6, the other power supply electrode pads of semiconductor switching elements 1a to 1f (formed on the lower main surface of each semiconductor switching element 1a to 1f in FIG. 6) are soldered (see FIG. 6). To the internal wiring lead terminals 52a to 52c and 53a. More specifically, the other power supply electrode pad of the semiconductor switching element 1a is connected to the internal wiring lead terminal 52a, the other power supply electrode pad of the semiconductor switching element 1b is connected to the internal wiring lead terminal 52b, and the other power supply electrode of the semiconductor switching element 1c. The pads are bonded to the internal wiring lead terminals 52c, respectively. Further, the other power supply electrode pads of the semiconductor switching elements 1d to 1f are respectively joined to the internal wiring lead terminals 53a.
 次に、金属ブロック2a~2fを準備する。続いて、図7に示すように、半導体スイッチング素子1a~1fの一方の電源電極パッド(図7において各半導体スイッチング素子1a~1fの上側の主面に形成されている)に、はんだ(図示せず)により、金属ブロック2a~2fを接合する。より詳細には、半導体スイッチング素子1aの一方の電源電極パッドに金属ブロック2aを、半導体スイッチング素子1bの一方の電源電極パッドに金属ブロック2bを、半導体スイッチング素子1cの一方の電源電極パッドに金属ブロック2cを、半導体スイッチング素子1dの一方の電源電極パッドに金属ブロック2dを、半導体スイッチング素子1eの一方の電源電極パッドに金属ブロック2eを、半導体スイッチング素子1fの一方の電源電極パッドに金属ブロック2fを、それぞれ接合する。 Next, the metal blocks 2a to 2f are prepared. Subsequently, as shown in FIG. 7, one power supply electrode pad of the semiconductor switching elements 1a to 1f (formed on the main surface on the upper side of each semiconductor switching element 1a to 1f in FIG. 7) is soldered (not shown). The metal blocks 2a to 2f are joined together. More specifically, the metal block 2a is provided on one power electrode pad of the semiconductor switching element 1a, the metal block 2b is provided on one power electrode pad of the semiconductor switching element 1b, and the metal block is provided on one power electrode pad of the semiconductor switching element 1c. 2c, a metal block 2d on one power electrode pad of the semiconductor switching element 1d, a metal block 2e on one power electrode pad of the semiconductor switching element 1e, and a metal block 2f on one power electrode pad of the semiconductor switching element 1f. , Respectively.
 次に、図8に示すように、半導体スイッチング素子1a~1fの信号電極パッド(図示しているが符号は付与していない)と、内部配線リード端子52d~52fおよび53b~53dとを、ワイヤー3a~3fにより、ワイヤーボンディングして接続する。より詳細には、半導体スイッチング素子1aの信号電極パッドと内部配線リード端子52dとをワイヤー3aにより、半導体スイッチング素子1bの信号電極パッドと内部配線リード端子52eとをワイヤー3bにより、半導体スイッチング素子1cの信号電極パッドと内部配線リード端子52fとをワイヤー3cにより、半導体スイッチング素子1dの信号電極パッドと内部配線リード端子53bとをワイヤー3dにより、半導体スイッチング素子1eの信号電極パッドと内部配線リード端子53cとをワイヤー3eにより、半導体スイッチング素子1fの信号電極パッドと内部配線リード端子53dとをワイヤー3fにより、それぞれ、ワイヤーボンディングして接続する。 Next, as shown in FIG. 8, the signal electrode pads of semiconductor switching elements 1a to 1f (not shown but not provided with reference numerals) and internal wiring lead terminals 52d to 52f and 53b to 53d are connected to wires. Connect by wire bonding using 3a to 3f. More specifically, the signal electrode pad of the semiconductor switching element 1a and the internal wiring lead terminal 52d are connected by the wire 3a, the signal electrode pad of the semiconductor switching element 1b and the internal wiring lead terminal 52e are connected by the wire 3b, and the semiconductor switching element 1c. The signal electrode pad and the internal wiring lead terminal 52f are connected by a wire 3c, the signal electrode pad of the semiconductor switching element 1d and the internal wiring lead terminal 53b are connected by a wire 3d, and the signal electrode pad and the internal wiring lead terminal 53c of the semiconductor switching element 1e are connected. The wire 3e is used to connect the signal electrode pad of the semiconductor switching element 1f and the internal wiring lead terminal 53d by wire bonding using the wire 3f.
 次に、図9に示すように、金属ブロック2a~2fと、内部配線リード端子51aおよび52a~52cとを、はんだ(図示せず)により接合する。より詳細には、金属ブロック2a~2cと内部配線リード端子51aとを、それぞれ接合する。また、金属ブロック2dと内部配線リード端子52aとを、金属ブロック2eと内部配線リード端子52bとを、金属ブロック2fと内部配線リード端子52cとを、それぞれ、絶縁基材6bに形成した開口6b-h部分において接合する。この結果、内部配線リード端子51a~53d
が固定された絶縁基材6a~6cと、半導体スイッチング素子1a~1fと、金属ブロック2a~2fと、ワイヤー3a~3fとが一体化される。
Next, as shown in FIG. 9, the metal blocks 2a to 2f and the internal wiring lead terminals 51a and 52a to 52c are joined by solder (not shown). More specifically, the metal blocks 2a to 2c and the internal wiring lead terminal 51a are joined to each other. In addition, the metal block 2d and the internal wiring lead terminal 52a, the metal block 2e and the internal wiring lead terminal 52b, the metal block 2f and the internal wiring lead terminal 52c, respectively, are formed in the insulating base 6b. It joins in h part. As a result, the internal wiring lead terminals 51a to 53d
Insulating base materials 6a to 6c to which are fixed, semiconductor switching elements 1a to 1f, metal blocks 2a to 2f, and wires 3a to 3f are integrated.
 次に、図10(A)~(C)に示すように、外部導出リード端子151a~153dを作製する。具体的には、1枚の金属板を準備し、その金属板を金型によって打ち抜いて、所定の形状からなる外部導出リード端子151a~153dを作製する。打ち抜き後に、外部導出リード端子151a~153dは、1つの環状のリードフレーム150に繋がっている。また、外部導出リード端子151a、152a~152c、153aは、タイバー155aによって、それぞれの中間部分において繋がっている。また、外部導出リード端子152d~152f、153b~153dは、タイバー155bによって、それぞれの中間部分において繋がっている。さらに、外部導出リード端子151a、153a~153dを、それぞれ2ヶ所で屈曲させる。外部導出リード端子151aは、図10(A)における上側に屈曲させる。外部導出リード端子153a~153dは、図10(A)における下側に屈曲させる。 Next, as shown in FIGS. 10A to 10C, external lead terminals 151a to 153d are manufactured. Specifically, a single metal plate is prepared, and the metal plate is punched out with a mold to produce external lead terminals 151a to 153d having a predetermined shape. After punching, the external lead terminals 151 a to 153 d are connected to one annular lead frame 150. Further, the external lead terminals 151a, 152a to 152c, 153a are connected to each other at intermediate portions by tie bars 155a. Further, the external lead terminals 152d to 152f and 153b to 153d are connected to each other at intermediate portions by tie bars 155b. Further, the external lead terminals 151a and 153a to 153d are bent at two points, respectively. The external lead terminal 151a is bent upward in FIG. The external lead terminals 153a to 153d are bent downward in FIG.
 次に、図11に示すように、リードフレーム150に繋がった外部導出リード端子151a~153dを、一体化された絶縁基材6a~6cの上側に配置する。なお、逆に、一体化された絶縁基材6a~6cを、リードフレーム150に繋がった外部導出リード端子151a~153dの上側に配置しても良い。 Next, as shown in FIG. 11, the external lead-out lead terminals 151a to 153d connected to the lead frame 150 are arranged above the integrated insulating bases 6a to 6c. Conversely, the integrated insulating bases 6 a to 6 c may be disposed above the external lead terminals 151 a to 153 d connected to the lead frame 150.
 次に、図12に示すように、外部導出リード端子151a~153dを、はんだ(図示せず)により、内部配線リード端子51a~53dに接合する。このとき、外部導出リード端子151a~153dが一体化されたリードフレーム150と、内部配線リード端子51a~53dが固定された絶縁基材6a~6cとを、これらに対して垂直方向から見た場合、外部導出リード端子151a~153dの一端と内部配線端子51a~53dとの接合される部分のみが重なっているため、外部導出リード端子151a~153dと内部配線リード端子51a~53dとの接合は、極めて容易に行うことができる。 Next, as shown in FIG. 12, the external lead terminals 151a to 153d are joined to the internal wiring lead terminals 51a to 53d by solder (not shown). At this time, when the lead frame 150 in which the external lead terminals 151a to 153d are integrated and the insulating base materials 6a to 6c to which the internal wiring lead terminals 51a to 53d are fixed are viewed from the direction perpendicular thereto. Since only one portion of the external lead terminals 151a to 153d and the internal wiring terminals 51a to 53d are overlapped, the connection between the external lead terminals 151a to 153d and the internal wiring lead terminals 51a to 53d is as follows. It can be done very easily.
 なお、接合前、または接合を行うときには、内部配線リード51a~53dを固定した状態で、外部導出リード151a~153d全体に荷重(力)を掛けて、全ての接合部が一定厚みになるようにすることが好ましい。外部導出リード151a~153d、および内部配線リード51a~53dの先端部、すなわち互いが接合される部分の高さ位置精度は、必ずしも完全に一定ではなく、ばらつきを持っている場合がある。そのため、接合後の接合部厚みがばらつき、接合部信頼性が著しく劣化したり、極端な場合は接合していない箇所が生じたりする場合がある。そこで、接合前、または接合時に、上記作業を行うことにより、接続信頼性を向上させることができる。 Before joining or when joining, with the internal wiring leads 51a to 53d fixed, a load (force) is applied to the entire external lead leads 151a to 153d so that all joining parts have a constant thickness. It is preferable to do. The height position accuracy of the leading end portions of the external lead leads 151a to 153d and the internal wiring leads 51a to 53d, that is, the portions where the lead wires are joined to each other is not necessarily completely constant and may vary. For this reason, the thickness of the joint after joining may vary, and the reliability of the joint may be significantly deteriorated. In an extreme case, a part that is not joined may occur. Therefore, the connection reliability can be improved by performing the above operation before or during bonding.
 次に、半導体スイッチング素子1a~1fと、金属ブロック2a~2fと、ワイヤー3a~3fと、内部配線リード端子51a~53dと、放熱板7a、7bと、外部導出リード端子151a~153dとが一体化された絶縁基材6a~6cを、外部導出リード端子151a~153dの他端を外部に導出させて、金型(図示せず)内に収容する。続いて、図13に示すように、金型内に樹脂をトランスファーモールドして、封止樹脂8を形成し、封止樹脂8内に、半導体スイッチング素子1a~1fと、金属ブロック2a~2fと、ワイヤー3a~3fと、内部配線リード端子51a~53dと、放熱板7a、7bと、外部導出リード端子151a~153dとを封止する。この結果、封止樹脂8の両主面から放熱板7a、7bが露出される。また、封止樹脂8の側面から、11本の外部導出リード端子151a~153dが導出される。 Next, the semiconductor switching elements 1a to 1f, metal blocks 2a to 2f, wires 3a to 3f, internal wiring lead terminals 51a to 53d, heat sinks 7a and 7b, and external lead-out lead terminals 151a to 153d are integrated. The formed insulating bases 6a to 6c are accommodated in a mold (not shown) with the other ends of the external lead terminals 151a to 153d led out to the outside. Subsequently, as shown in FIG. 13, a resin is transfer-molded in the mold to form the sealing resin 8, and the semiconductor switching elements 1a to 1f and the metal blocks 2a to 2f are formed in the sealing resin 8. The wires 3a to 3f, the internal wiring lead terminals 51a to 53d, the heat sinks 7a and 7b, and the external lead-out lead terminals 151a to 153d are sealed. As a result, the heat sinks 7 a and 7 b are exposed from both main surfaces of the sealing resin 8. Eleven external lead terminals 151 a to 153 d are led out from the side surface of the sealing resin 8.
 なお、半導体モジュール100においては、外部導出リード端子151a~153dが封止樹脂8の側面の同じ高さ部分から外部に導出された構造であるため、封止樹脂8のモールド(樹脂封止)を非常に容易に行うことができる。また、モールドに使用する金型の設計が容易で、コストも低く抑えることができる。 Since the semiconductor module 100 has a structure in which the external lead terminals 151a to 153d are led out from the same height portion on the side surface of the sealing resin 8, a mold (resin sealing) of the sealing resin 8 is performed. It can be done very easily. In addition, the mold used for the mold can be easily designed, and the cost can be kept low.
 最後に、図14に示すように、外部導出リード端子151a~153dから、不要なリードフレーム150とタイバー155a、155bを切り離し、第1実施形態にかかる半導体モジュール100を完成させる。半導体モジュール100においては、全ての外部導出リード端子151a~153dが、封止樹脂8の側面の同じ高さ部分から外部に導出されている。 Finally, as shown in FIG. 14, the unnecessary lead frame 150 and tie bars 155a and 155b are separated from the external lead terminals 151a to 153d, and the semiconductor module 100 according to the first embodiment is completed. In the semiconductor module 100, all the external lead terminals 151 a to 153 d are led out from the same height portion of the side surface of the sealing resin 8.
 [第2実施形態]
 第2実施形態にかかる半導体モジュール200を、図15(A)、(B)に示す。ただし、図15(A)は、半導体モジュール200の断面図である。図15(B)は、半導体モジュール200の等価回路図である。
[Second Embodiment]
A semiconductor module 200 according to the second embodiment is shown in FIGS. However, FIG. 15A is a cross-sectional view of the semiconductor module 200. FIG. 15B is an equivalent circuit diagram of the semiconductor module 200.
 第2実施形態にかかる半導体モジュール200は、図1~3に示した第1実施形態にかかる半導体モジュール100に、3個のシャント抵抗素子10を追加した。
具体的には、半導体モジュール200は、図15(A)に示すように、シャント抵抗素子10が追加されている。
In the semiconductor module 200 according to the second embodiment, three shunt resistor elements 10 are added to the semiconductor module 100 according to the first embodiment shown in FIGS.
Specifically, as shown in FIG. 15A, the semiconductor module 200 has a shunt resistor element 10 added thereto.
 半導体モジュール200は、シャント抵抗素子10を追加するために、第1実施形態にかかる半導体モジュール100において絶縁基材6に固定されていた1本の内部配線リード端子52cを、2本の内部配線リード端子52g、52hに置き換えている。
そして、底面に1対の電極パッドが形成されたシャント抵抗素子10を用意し、はんだ4により、一方の電極パッドが内部配線リード端子52gに、他方の電極パッドが内部配線リード端子52hに接合している。
In order to add the shunt resistance element 10, the semiconductor module 200 replaces one internal wiring lead terminal 52c fixed to the insulating base 6 in the semiconductor module 100 according to the first embodiment with two internal wiring leads. Terminals 52g and 52h are replaced.
Then, a shunt resistor element 10 having a pair of electrode pads formed on the bottom surface is prepared, and one electrode pad is joined to the internal wiring lead terminal 52g and the other electrode pad is joined to the internal wiring lead terminal 52h by the solder 4. ing.
 なお、半導体スイッチング素子1cの他方の電源電極パッド(図示せず)は、第1実施形態にかかる半導体モジュール100において接合されていた内部配線リード端子52cに代えて、内部配線リード端子52gに接合されている。 The other power supply electrode pad (not shown) of the semiconductor switching element 1c is joined to the internal wiring lead terminal 52g instead of the internal wiring lead terminal 52c joined in the semiconductor module 100 according to the first embodiment. ing.
 あと2個のシャント抵抗素子10も、同様の方法により、半導体モジュール200に追加されている。 The remaining two shunt resistor elements 10 are also added to the semiconductor module 200 by the same method.
 半導体モジュール200は、図15(B)に示す等価回路を備えている。すなわち、半導体スイッチング素子1aと1dの接続点と、中間端子である外部接続リード端子152aとの間に、シャント抵抗素子10が挿入されている。また、半導体スイッチング素子1bと1eの接続点と、中間端子である外部接続リード端子152bとの間に、シャント抵抗素子10が挿入されている。また、半導体スイッチング素子1cと1fの接続点と、中間端子である外部接続リード端子152cとの間に、シャント抵抗素子10が挿入されている。 The semiconductor module 200 includes an equivalent circuit shown in FIG. That is, the shunt resistance element 10 is inserted between the connection point of the semiconductor switching elements 1a and 1d and the external connection lead terminal 152a that is an intermediate terminal. Further, the shunt resistor element 10 is inserted between the connection point of the semiconductor switching elements 1b and 1e and the external connection lead terminal 152b which is an intermediate terminal. Further, the shunt resistor element 10 is inserted between the connection point of the semiconductor switching elements 1c and 1f and the external connection lead terminal 152c which is an intermediate terminal.
 半導体モジュール200は、各シャント抵抗素子10の両電源極パッド間の電圧を監視することにより、異常電流の発生を検出することができる。 The semiconductor module 200 can detect the occurrence of an abnormal current by monitoring the voltage between both power supply electrode pads of each shunt resistance element 10.
 [第3実施形態]
 第3実施形態にかかる半導体モジュール300を、図16に示す。ただし、図16は、半導体モジュール300の斜視図である。
[Third Embodiment]
A semiconductor module 300 according to the third embodiment is shown in FIG. However, FIG. 16 is a perspective view of the semiconductor module 300.
 第3実施形態にかかる半導体モジュール300は、図1~3に示した第1実施形態にかかる半導体モジュール100の外部導出リード端子151a~153dの長さを長くしたうえで、同一方向(図16における下側方向)に屈曲させた。半導体モジュール300の他の構成は、半導体モジュール100の構成と同じにした。 In the semiconductor module 300 according to the third embodiment, the lengths of the external lead terminals 151a to 153d of the semiconductor module 100 according to the first embodiment shown in FIGS. Bent downward). The other configuration of the semiconductor module 300 is the same as that of the semiconductor module 100.
 半導体モジュール300は、外部導出リード端子151a~153dが封止樹脂8の側面の同じ高さ部分から導出されているため、一括して、容易に同一方向に屈曲させることができる。 In the semiconductor module 300, since the external lead terminals 151a to 153d are led out from the same height portion on the side surface of the sealing resin 8, they can be bent together in the same direction easily.
 半導体モジュール300は、外部導出リード端子151a~153dが同一方向に屈曲されているため、屈曲された外部導出リード端子151a~153dを、車載機器や産業用機器等の基板(図示せず)に形成された貫通孔に挿入したうえで、はんだ付けすることにより実装することができる。 In the semiconductor module 300, since the external lead terminals 151a to 153d are bent in the same direction, the bent external lead terminals 151a to 153d are formed on a substrate (not shown) such as an in-vehicle device or an industrial device. It can be mounted by inserting into the through-hole and soldering.
 [第4実施形態]
 第4実施形態にかかる半導体モジュール400を、図17に示す。ただし、図17は、半導体モジュール400の斜視図である。
[Fourth Embodiment]
A semiconductor module 400 according to the fourth embodiment is shown in FIG. However, FIG. 17 is a perspective view of the semiconductor module 400.
 第4実施形態にかかる半導体モジュール400は、図1~3に示した第1実施形態にかかる半導体モジュール100の外部導出リード端子152d、153b、152e、153c、152f、153dを、別の外部導出リード端子252d、253b、252e、253c、252f、253dに置き換えた。半導体モジュール400の他の構成は、半導体モジュール100の構成と同じにした。 In the semiconductor module 400 according to the fourth embodiment, the external lead terminals 152d, 153b, 152e, 153c, 152f, and 153d of the semiconductor module 100 according to the first embodiment shown in FIGS. The terminals 252d, 253b, 252e, 253c, 252f, and 253d were replaced. The other configuration of the semiconductor module 400 is the same as that of the semiconductor module 100.
 半導体モジュール100では、外部導出リード端子152d、153b、152e、153c、152f、153dの各間隔(ピッチ)が一定であった。これに対し、半導体モジュール100では、外部導出リード端子252d、253b、252e、253c、252f、253dの各間隔が、封止樹脂8から、外部導出リード端子252d~253dの各他端の先端方向に向かって、平面方向に広がっている。 In the semiconductor module 100, the intervals (pitch) of the external lead terminals 152d, 153b, 152e, 153c, 152f, and 153d were constant. On the other hand, in the semiconductor module 100, each interval between the external lead terminals 252d, 253b, 252e, 253c, 252f, and 253d is from the sealing resin 8 toward the tip of each other end of the external lead terminals 252d to 253d. It spreads in the plane direction.
 半導体モジュール400では、半導体モジュールの小型化を維持したまま、各外部導出リード端子252d~253dの間の間隔を所望の大きさに設定することができる。 In the semiconductor module 400, the distance between the external lead terminals 252d to 253d can be set to a desired size while maintaining the miniaturization of the semiconductor module.
 [第5実施形態]
 第5実施形態にかかる半導体モジュール500は、第1実施形態にかかる半導体モジュール100の構成要素の材質に一部変更を加えた。構造そのものには変更がないので、半導体モジュール100を説明した図1、図2を援用して半導体モジュール500を説明する。
[Fifth Embodiment]
In the semiconductor module 500 according to the fifth embodiment, the material of the components of the semiconductor module 100 according to the first embodiment is partially changed. Since the structure itself is not changed, the semiconductor module 500 will be described with reference to FIGS. 1 and 2 illustrating the semiconductor module 100.
 半導体モジュール100では、絶縁基材6a~6cに、エポキシ、ポリイミド等の樹脂を用いた。半導体モジュール500では、これに代えて、絶縁基材6a~6dにセラミックスを用いた。より具体的には、絶縁基材6a~6cを構成するセラミックスに、たとえば、窒化珪素、窒化アルミニウム、アルミナなどを主成分とするセラミックスを用いた。 In the semiconductor module 100, resins such as epoxy and polyimide are used for the insulating bases 6a to 6c. In the semiconductor module 500, instead of this, ceramics are used for the insulating bases 6a to 6d. More specifically, for example, a ceramic mainly composed of silicon nitride, aluminum nitride, alumina, or the like is used as the ceramic constituting the insulating bases 6a to 6c.
 また、半導体モジュール100では、リード端子51a、52a~52f、53a~53dの絶縁基材6a~6cへの固定に接着剤を用いた。半導体モジュール500では、これに代えて、この部分の固定に、少なくとも、セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金(図示せず)を用いた。本実施形態においては、具体的には、セラミックスの構成成分と反応する活性な金属として、合金にTiを含有させた。ただし、セラミックに含まれる成分と反応する活性な金属はTiには限定されず、Zrなど、他の金属であっても良い。なお、セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金は、活性金属ロウ材と呼ばれる場合がある。 In the semiconductor module 100, an adhesive is used for fixing the lead terminals 51a, 52a to 52f, 53a to 53d to the insulating bases 6a to 6c. In the semiconductor module 500, instead of this, an alloy (not shown) containing at least an active metal that reacts with the components of the ceramic, Ag, and Cu is used to fix this portion. In the present embodiment, specifically, Ti is contained in the alloy as an active metal that reacts with the constituent components of the ceramic. However, the active metal that reacts with the components contained in the ceramic is not limited to Ti, and may be other metals such as Zr. In addition, the active metal which reacts with the structural component of ceramics, the alloy containing Ag and Cu may be called an active metal brazing material.
 セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金には、必要に応じて、融点を調整するために、Ti、Zn、Sn、In、Ni、Mn、Cdなどから選ばれる金属が、1種または複数種、添加される場合がある。なお、本実施形態においては、セラミックに含まれる成分と反応する活性成分として添加されたTiは、融点を調整する役割も果たしている。 For alloys containing active metals that react with ceramic constituents, Ag, and Cu, Ti, Zn, Sn, In, Ni, Mn, Cd, etc. are used to adjust the melting point as necessary. One or more selected metals may be added. In the present embodiment, Ti added as an active component that reacts with components contained in the ceramic also plays a role of adjusting the melting point.
 なお、合金にTiを添加する場合には、Tiの添加量は、合金の全重量に対して3重量%以下であることが好ましい。Tiの含有量が3重量%を超えると、合金自体が脆化する虞があるからである。本実施形態においては、合金6の配合比率を、Ag60~80重量%、Cu20~40重量%、Ti1~3重量%とした。 In addition, when adding Ti to an alloy, it is preferable that the addition amount of Ti is 3 weight% or less with respect to the total weight of an alloy. This is because if the Ti content exceeds 3% by weight, the alloy itself may become brittle. In this embodiment, the compounding ratio of the alloy 6 is set to Ag 60 to 80% by weight, Cu 20 to 40% by weight, and Ti 1 to 3% by weight.
 半導体モジュール500の他の構成は、半導体モジュール100と同じにした。 The other configuration of the semiconductor module 500 is the same as that of the semiconductor module 100.
 リード端子51a、52a~52f、53a~53dの絶縁基材6a~6cへの固定は、予め、リード端子51a、52a~52f、53a~53dに活性金属ロウ材からなるペーストを塗布しておき、その塗布面を絶縁基材6a~6cへ当接させて、その活性金属ロウ材の融点以上の温度で熱処理することによりおこなうことができる。 The lead terminals 51a, 52a to 52f, 53a to 53d are fixed to the insulating bases 6a to 6c in advance by applying a paste made of an active metal brazing material to the lead terminals 51a, 52a to 52f, 53a to 53d, The coating can be performed by bringing the coated surface into contact with the insulating bases 6a to 6c and performing a heat treatment at a temperature equal to or higher than the melting point of the active metal brazing material.
 セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金は、リード端子51a、52a~52f、53a~53dを絶縁基材6a~6cへ強固に接合する。たとえば、絶縁基材6a~6cに窒化珪素を用い、リード端子51a、52a~52f、53a~53dにCuを用い、両者を、Tiが添加されたAgとCuとを含む合金によって接合した場合、合金の絶縁基板(窒化珪素基板)6a~6cの近傍には、TiNや、MNが形成される(ただしMはSi、Cu、Tiの合金)。すなわち、合金の絶縁基板6a~6c近傍のTiの濃度が、合金のその他の部分のTiの濃度よりも高くなっている。この結果、リード端子2a~2eと絶縁基板6a~6cとは、高い強度で接合されている。 An alloy containing an active metal that reacts with a component of ceramic, Ag, and Cu firmly joins the lead terminals 51a, 52a to 52f, and 53a to 53d to the insulating bases 6a to 6c. For example, when silicon nitride is used for the insulating bases 6a to 6c, Cu is used for the lead terminals 51a, 52a to 52f, 53a to 53d, and both are joined by an alloy containing Ag and Cu to which Ti is added, TiN and MN are formed in the vicinity of the alloy insulating substrates (silicon nitride substrates) 6a to 6c (where M is an alloy of Si, Cu, and Ti). That is, the Ti concentration in the vicinity of the insulating substrates 6a to 6c of the alloy is higher than the Ti concentration in other portions of the alloy. As a result, the lead terminals 2a to 2e and the insulating substrates 6a to 6c are bonded with high strength.
 また、セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金は、一般に、接着剤よりも熱伝導率が高い。そのため、半導体モジュール500は、半導体スイッチング素子1a~1fが発生させた熱を、リード端子51a、52a~52f、53a~53dを経由し、更に絶縁基材6a~6cを経由して、より効率的に放散させることがきる。 Further, an alloy containing an active metal that reacts with a constituent component of ceramic, Ag, and Cu generally has a higher thermal conductivity than an adhesive. Therefore, in the semiconductor module 500, the heat generated by the semiconductor switching elements 1a to 1f passes through the lead terminals 51a, 52a to 52f, 53a to 53d, and further passes through the insulating bases 6a to 6c. Can be dissipated.
 以上のように、第5実施形態にかかる半導体モジュール500は、高い強度を備えたセラミックスからなる絶縁基材6a~6cに、リード端子51a、52a~52f、53a~53dが、セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金を介して強固に接合されているため、高い強度を備えている。また、放熱性においても優れている。 As described above, in the semiconductor module 500 according to the fifth embodiment, the lead terminals 51a, 52a to 52f, and 53a to 53d are formed on the insulating bases 6a to 6c made of ceramics having high strength. Since it is firmly joined through an alloy containing an active metal that reacts, Ag, and Cu, it has high strength. Moreover, it is excellent also in heat dissipation.
 以上、本発明の第1~5実施形態にかかる半導体モジュール100~500の構造、および製造方法の一例について説明した。しかしながら、本発明がこれらの内容に限定されることはなく、発明の趣旨に沿って、種々の変更を加えることができる。 The structure of the semiconductor modules 100 to 500 according to the first to fifth embodiments of the present invention and the example of the manufacturing method have been described above. However, the present invention is not limited to these contents, and various modifications can be made in accordance with the spirit of the invention.
 たとえば、半導体モジュール100~500においては、半導体スイッチング素子1a~1fとしてMOSFETを使用したが、これに代えて、IGBT(Insulated Gate Bipolar Transistor;絶縁ゲートバイポーラトランジスタ)と還流ダイオードとを組合せて
、回路を構成するようにしても良い。
For example, in the semiconductor modules 100 to 500, MOSFETs are used as the semiconductor switching elements 1a to 1f. Instead of this, a circuit is formed by combining an IGBT (Insulated Gate Bipolar Transistor) and a free wheel diode. You may make it comprise.
 また、半導体モジュール100~500においては、3枚の絶縁基材6a~6cを使用し、これらを3層に重ねて配置しているが、さらに多くの絶縁基材を使用し、さらに多層に重ねて配置するようにしても良い。 In addition, in the semiconductor modules 100 to 500, three insulating bases 6a to 6c are used and arranged in three layers, but more insulating bases are used and further stacked in multiple layers. May be arranged.
 また、本発明の半導体モジュールの回路構成は任意であり、半導体モジュール100~500の等価回路には限定されない。たとえば、半導体モジュール200では、受動素子としてシャント抵抗素子10を封止樹脂8内に追加して封止しているが、これに代えて、異常発熱の監視をするためのサーミスタ素子を封止樹脂8内に封止するようにしても良い。 Further, the circuit configuration of the semiconductor module of the present invention is arbitrary, and is not limited to the equivalent circuit of the semiconductor modules 100 to 500. For example, in the semiconductor module 200, the shunt resistor element 10 is added and sealed as a passive element in the sealing resin 8. Instead, a thermistor element for monitoring abnormal heat generation is used as the sealing resin. 8 may be sealed.
 さらに、半導体モジュール100~500では、外部導出リード端子151a~253dを封止樹脂8の側面の略中央部の高さ位置から外部に導出するように形成しているが、たとえば、最下層又は最上層の絶縁基材6a、6cの近傍等、その他の高さ位置で導出させるようにしてもよい。 Further, in the semiconductor modules 100 to 500, the external lead-out lead terminals 151a to 253d are formed so as to lead to the outside from the height position of the substantially central portion of the side surface of the sealing resin 8. You may make it derive | lead-out at other height positions, such as the vicinity of the upper insulating base materials 6a and 6c.
1a、1b、1c、1d、1e、1f・・・半導体スイッチング素子
2a、2b、2c、2d、2e、2f・・・金属ブロック
3a、3b、3c、3d、3e、3f・・・ワイヤー
4・・・はんだ
51a、52a、52b、52c、52d、52e、52f、53a、53b、53c、53d・・・内部配線リード端子
151a、152a、152b、152c、152d、152e、152f、153a、153b、153c、153d、252d、252e、252f、253b、253c、253d・・・外部導出リード端子
6a、6b、6c・・・絶縁基材
7a、7b・・・放熱板
8・・・封止樹脂
10・・・シャント抵抗素子
100、200、300、400、500・・・半導体モジュール
1a, 1b, 1c, 1d, 1e, 1f... Semiconductor switching elements 2a, 2b, 2c, 2d, 2e, 2f... Metal blocks 3a, 3b, 3c, 3d, 3e, 3f. .. Solders 51a, 52a, 52b, 52c, 52d, 52e, 52f, 53a, 53b, 53c, 53d... Internal wiring lead terminals 151a, 152a, 152b, 152c, 152d, 152e, 152f, 153a, 153b, 153c , 153d, 252d, 252e, 252f, 253b, 253c, 253d ... external lead terminals 6a, 6b, 6c ... insulating base materials 7a, 7b ... heat sink 8 ... sealing resin 10 ... · Shunt resistor elements 100, 200, 300, 400, 500 ... semiconductor modules

Claims (13)

  1.  少なくとも、複数の半導体スイッチング素子と、複数のリード端子と、複数の絶縁基材とが、封止樹脂に封止された半導体モジュールであって、
     前記リード端子は、前記絶縁基材に固定された内部配線リード端子と、封止樹脂から外部に導出された外部導出リード端子と、を備え、
     前記内部配線リード端子が固定された前記絶縁基材は、上下方向に間隔を開けて、少なくとも3層に分けて配置され、
     前記半導体スイッチング素子の電極は、前記内部配線リード端子に、直接または間接に接合されるか、あるいは、ワイヤーボンディングにより接続され、
     各前記外部導出リード端子は、一端が、前記絶縁基材に固定された前記内部配線リード端子に接合され、他端が、前記封止樹脂から導出され、
     前記外部導出リード端子の少なくとも一部のものは、それぞれ、複数の屈曲部を有し、
     全ての前記外部導出リード端子は、前記封止樹脂の側面の同じ高さ部分から外部に導出されている半導体モジュール。
    At least a plurality of semiconductor switching elements, a plurality of lead terminals, and a plurality of insulating base materials are semiconductor modules sealed with a sealing resin,
    The lead terminal includes an internal wiring lead terminal fixed to the insulating base material, and an external lead-out lead terminal led out from a sealing resin,
    The insulating base material to which the internal wiring lead terminals are fixed is arranged in at least three layers at intervals in the vertical direction,
    The electrode of the semiconductor switching element is directly or indirectly bonded to the internal wiring lead terminal, or connected by wire bonding,
    Each of the external lead terminals has one end joined to the internal wiring lead terminal fixed to the insulating base and the other end is led out from the sealing resin.
    At least some of the external lead terminals each have a plurality of bent portions,
    All the external lead-out lead terminals are lead out to the outside from the same height portion of the side surface of the sealing resin.
  2.  前記封止樹脂および前記外部導出リード端子を平面視した場合に、前記外部導出リード端子と前記外部導出リード端子との間の間隔のうち、少なくとも一部の間隔が、前記封止樹脂から前記外部導出リード端子の前記他端の先端方向に向かって、平面方向に広がっている、請求項1に記載された半導体モジュール。 When the sealing resin and the external lead-out lead terminal are viewed in plan, at least a part of the spacing between the external lead-out lead terminal and the external lead-out lead terminal is from the sealing resin to the outside. The semiconductor module according to claim 1, wherein the semiconductor module extends in a planar direction toward a tip direction of the other end of the lead-out lead terminal.
  3.  前記封止樹脂に、さらに受動部品が封止されている、請求項1または2に記載された半導体モジュール。 The semiconductor module according to claim 1, wherein passive components are further sealed in the sealing resin.
  4.  前記半導体スイッチング素子の電極が、金属ブロックを介して、前記内部配線リード端子に接合されている、請求項1ないし3のいずれか1項に記載された半導体モジュール。 The semiconductor module according to any one of claims 1 to 3, wherein an electrode of the semiconductor switching element is joined to the internal wiring lead terminal via a metal block.
  5.  少なくとも3層に分けて配置された、前記内部配線リード端子が固定された前記絶縁基材のうち、中間の層に配置されたものに、両主面間を貫通した開口が形成されている、請求項1ないし4のいずれか1項に記載された半導体モジュール。 Of the insulating base material, in which the internal wiring lead terminals are fixed, arranged in at least three layers, an opening penetrating between both main surfaces is formed in the insulating base material, The semiconductor module described in any one of Claims 1 thru | or 4.
  6.  全ての前記外部導出リード端子が、前記封止樹脂の外部で、同一方向に屈曲されている、請求項1ないし5のいずれか1項に記載された半導体モジュール。 6. The semiconductor module according to claim 1, wherein all the external lead terminals are bent in the same direction outside the sealing resin.
  7.  前記絶縁基材がセラミックスからなり、前記リード端子が、少なくとも、前記セラミックスの構成成分と反応する活性な金属と、Agと、Cuとを含む合金を介して、前記絶縁基板に固定された、請求項1ないし6のいずれか1項に記載された半導体モジュール。 The insulating base is made of ceramics, and the lead terminals are fixed to the insulating substrate through an alloy containing at least an active metal that reacts with the constituents of the ceramics, Ag, and Cu. Item 7. The semiconductor module according to any one of Items 1 to 6.
  8.  前記半導体モジュールがインバータである、請求項1ないし7のいずれか1項に記載された半導体モジュール。 The semiconductor module according to any one of claims 1 to 7, wherein the semiconductor module is an inverter.
  9.  複数の絶縁基材を準備する工程と、
     複数の内部配線リード端子を準備する工程と、
     各前記絶縁基材に、前記内部配線リード端子を固定する工程と、
     複数の半導体スイッチング素子を準備する工程と、
    前記半導体スイッチング素子の電極を、前記絶縁基材に固定されたいずれかの前記内部配線リード端子に、直接または間接に接合するか、あるいは、ワイヤーボンディングにより接続することにより、前記半導体スイッチング素子を介して、前記絶縁基材を少なくとも3層に重ねて一体化する工程と、
     複数の外部導出リード端子を準備する工程と、
     前記外部導出リード端子の少なくとも一部のものに、それぞれ、複数の屈曲部を形成する工程と、
     各前記外部導出リード端子の一端を、前記絶縁基材に固定されたいずれかの前記内部配線リード端子に接合する工程と、
     一体化された、複数の前記半導体スイッチング素子と、複数の前記絶縁基材と、複数の前記内部配線リード端子と、複数の前記外部導出リード端子とを、各前記外部導出リード端子の他端を外部に導出させて樹脂封止する工程と、を備え、
     全ての前記外部導出リード端子が、前記封止樹脂の側面の同じ高さ部分から外部に導出されている半導体モジュールの製造方法。
    Preparing a plurality of insulating substrates;
    Preparing a plurality of internal wiring lead terminals;
    Fixing the internal wiring lead terminal to each insulating base;
    Preparing a plurality of semiconductor switching elements;
    An electrode of the semiconductor switching element is directly or indirectly joined to any one of the internal wiring lead terminals fixed to the insulating base material, or connected by wire bonding, via the semiconductor switching element. A step of stacking and integrating the insulating base material in at least three layers;
    Preparing a plurality of external lead terminals;
    Forming a plurality of bent portions on at least a part of the external lead terminals; and
    Bonding one end of each of the external lead terminals to any of the internal wiring lead terminals fixed to the insulating base;
    The plurality of integrated semiconductor switching elements, the plurality of insulating base materials, the plurality of internal wiring lead terminals, the plurality of external lead terminals, and the other end of each external lead terminal. A process of leading out and sealing with resin,
    A method for manufacturing a semiconductor module, wherein all the external lead-out lead terminals are led out from the same height portion of the side surface of the sealing resin.
  10.  少なくとも、
     複数の前記外部導出リード端子を準備する工程と、
     前記外部導出リード端子の少なくとも一部のものに屈曲部を形成する工程と、
     各前記外部導出リード端子の一端を、前記絶縁基材に固定されたいずれかの前記内部配線リード端子に接合する工程を、
     複数の前記外部導出リード端子が、1つの環状のリードフレームに一体化された状態で行う、請求項9に記載された半導体モジュールの製造方法。
    at least,
    Preparing a plurality of the external lead terminals;
    Forming a bent portion in at least a part of the external lead terminal;
    Bonding one end of each of the external lead terminals to any of the internal wiring lead terminals fixed to the insulating base,
    The method for manufacturing a semiconductor module according to claim 9, wherein the plurality of external lead-out lead terminals are integrated in a single annular lead frame.
  11.  前記リードフレームに固定された各前記外部導出リード端子の一端を、前記絶縁基材に固定されたいずれかの前記内部配線端子に接合する工程において、前記外部導出リード端子が一体化された前記リードフレームと、前記内部配線リード端子が固定された前記絶縁基材とを、これらに対して垂直方向から見た場合、
     前記外部導出リード端子の一端と、前記内部配線リード端子との、接合される部分のみが重なっている、請求項10に記載された半導体モジュールの製造方法。
    The lead integrated with the external lead terminal in the step of joining one end of each external lead terminal fixed to the lead frame to any of the internal wiring terminals fixed to the insulating substrate When the frame and the insulating base material to which the internal wiring lead terminal is fixed are viewed from a direction perpendicular to these,
    11. The method of manufacturing a semiconductor module according to claim 10, wherein only a portion to be joined of one end of the external lead terminal and the internal wiring lead terminal is overlapped.
  12.  前記樹脂封止する工程の後に、
     さらに、前記封止樹脂から導出された前記外部導出リード端子から、不要な前記リードフレームを切り離す工程を備えた、請求項10または11に記載された半導体モジュールの製造方法。
    After the resin sealing step,
    The method of manufacturing a semiconductor module according to claim 10, further comprising a step of separating the unnecessary lead frame from the externally derived lead terminal derived from the sealing resin.
  13.  さらに、前記封止樹脂から導出された全ての前記外部導出リード端子を、同一方向に屈曲する工程を備えた、請求項9ないし12のいずれか1項に記載された半導体モジュールの製造方法。 The method for manufacturing a semiconductor module according to claim 9, further comprising a step of bending all the external lead terminals derived from the sealing resin in the same direction.
PCT/JP2016/052463 2015-02-02 2016-01-28 Semiconductor module, and method for producing semiconductor module WO2016125674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573313A JP6380561B2 (en) 2015-02-02 2016-01-28 Semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018880 2015-02-02
JP2015-018880 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125674A1 true WO2016125674A1 (en) 2016-08-11

Family

ID=56564022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052463 WO2016125674A1 (en) 2015-02-02 2016-01-28 Semiconductor module, and method for producing semiconductor module

Country Status (2)

Country Link
JP (1) JP6380561B2 (en)
WO (1) WO2016125674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021507A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Semiconductor device and semiconductor module
WO2019034741A1 (en) * 2017-08-18 2019-02-21 Danfoss Silicon Power Gmbh Power semiconductor having a shunt resistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018204865A1 (en) * 2018-03-29 2019-10-02 Siemens Aktiengesellschaft Circuit arrangement with a spacer element, converter and aircraft with such a circuit arrangement and method for current measurement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136642A (en) * 1986-11-28 1988-06-08 Dainippon Printing Co Ltd 2-layer type semiconductor integrated circuit
JP2006148000A (en) * 2004-11-24 2006-06-08 Kyocera Corp Glass ceramic wiring board
JP2011029402A (en) * 2009-07-24 2011-02-10 Daishinku Corp Lead type electronic component and lead frame
JP2011238906A (en) * 2010-04-14 2011-11-24 Denso Corp Semiconductor module
WO2012157069A1 (en) * 2011-05-16 2012-11-22 トヨタ自動車株式会社 Power module
JP2014220424A (en) * 2013-05-09 2014-11-20 シャープ株式会社 Photo coupler
WO2015005181A1 (en) * 2013-07-08 2015-01-15 株式会社 村田製作所 Power conversion member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136642A (en) * 1986-11-28 1988-06-08 Dainippon Printing Co Ltd 2-layer type semiconductor integrated circuit
JP2006148000A (en) * 2004-11-24 2006-06-08 Kyocera Corp Glass ceramic wiring board
JP2011029402A (en) * 2009-07-24 2011-02-10 Daishinku Corp Lead type electronic component and lead frame
JP2011238906A (en) * 2010-04-14 2011-11-24 Denso Corp Semiconductor module
WO2012157069A1 (en) * 2011-05-16 2012-11-22 トヨタ自動車株式会社 Power module
JP2014220424A (en) * 2013-05-09 2014-11-20 シャープ株式会社 Photo coupler
WO2015005181A1 (en) * 2013-07-08 2015-01-15 株式会社 村田製作所 Power conversion member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021507A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Semiconductor device and semiconductor module
JPWO2019021507A1 (en) * 2017-07-28 2019-11-07 三菱電機株式会社 Semiconductor device and semiconductor module
WO2019034741A1 (en) * 2017-08-18 2019-02-21 Danfoss Silicon Power Gmbh Power semiconductor having a shunt resistor

Also Published As

Publication number Publication date
JPWO2016125674A1 (en) 2017-10-12
JP6380561B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP4438489B2 (en) Semiconductor device
JP5971263B2 (en) Semiconductor device
US9731370B2 (en) Directly cooled substrates for semiconductor modules and corresponding manufacturing methods
US8673691B2 (en) Method for manufacturing a semiconductor device
JP5975180B2 (en) Semiconductor module
TWI446493B (en) Semiconductor die package including stacked dice and heat sink structures
JP6261642B2 (en) Power semiconductor device
JP6610590B2 (en) Semiconductor device and manufacturing method thereof
EP2654079A2 (en) Heat dissipation device and method for manufacturing the same
JP6380561B2 (en) Semiconductor module
JP2019216214A (en) Semiconductor device, lead frame and method of manufacturing semiconductor device
US20140347838A1 (en) Electronic device and manufacturing method of electronic device
CN111433909A (en) Semiconductor device with a plurality of semiconductor chips
JP2017123360A (en) Semiconductor module
WO2014021077A1 (en) Multilayer substrate and power module using multilayer substrate
JP2021158232A (en) Semiconductor module
JP5800716B2 (en) Power semiconductor device
JP2014072314A (en) Semiconductor device and semiconductor device manufacturing method
JP7459465B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2018116960A (en) Power semiconductor device
JP6447842B2 (en) Semiconductor module
JP2013004912A (en) Semiconductor module
JPWO2019116910A1 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6274986B2 (en) Power semiconductor module and manufacturing method thereof
JP2015149363A (en) semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746505

Country of ref document: EP

Kind code of ref document: A1