WO2016125274A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2016125274A1
WO2016125274A1 PCT/JP2015/053151 JP2015053151W WO2016125274A1 WO 2016125274 A1 WO2016125274 A1 WO 2016125274A1 JP 2015053151 W JP2015053151 W JP 2015053151W WO 2016125274 A1 WO2016125274 A1 WO 2016125274A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
temperature
time
period
air temperature
Prior art date
Application number
PCT/JP2015/053151
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 達也
前田 剛
康成 大和
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/053151 priority Critical patent/WO2016125274A1/en
Priority to JP2016572999A priority patent/JP6275290B2/en
Publication of WO2016125274A1 publication Critical patent/WO2016125274A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • the present invention relates to a refrigerator provided with a storage room capable of storing frozen food.
  • the temperature of the air in the storage room is detected by a thermistor installed in the storage room, and the temperature is generally controlled so that the detected temperature is kept constant.
  • This thermistor detects the temperature of the air around the thermistor by detecting a change in electrical resistance due to a temperature change, and indirectly detects the temperature of the food stored in the storage room via the air around the thermistor. It is something to detect.
  • the temperature of the air in the storage room is kept constant, and as a result, the temperature of the food in the storage room is cooled to a set temperature, thereby enabling long-term storage of the food.
  • Patent Document 1 describes a configuration in which thermopile, which is an infrared sensor, is arranged in an array or matrix as a technique for more accurately detecting the temperature of food.
  • thermopile which is an infrared sensor
  • the temperature of the object can be directly detected.
  • the detection temperature of the thermopile is determined by the total amount of infrared rays incident from the entire thermopile field of view, the temperature of the object itself is detected when a region other than the temperature detection target exists in the field of view. Do not mean. Therefore, in Patent Document 1, a plurality of thermopiles are installed, the storage chamber is divided into several sections, and the temperature distribution is measured to sense the entire storage chamber.
  • rapid freezing is a technology that rapidly cools food in a storage room with cold air whose temperature is lower than that during normal storage and has an increased air volume, thereby reducing ice crystals generated when the food is frozen. In the food frozen in this way, the drip outflow amount at the time of thawing is reduced, and quality deterioration is suppressed.
  • Supercooling means that when food is cooled under specific cooling conditions, the food is not frozen even at a temperature below the freezing point of the food.
  • the supercooled state is released and the food freezes rapidly.
  • Patent Document 2 since the food frozen in this way produces fine granular ice crystals, the amount of drip outflow during thawing is reduced, and the damage of food tissue is suppressed. Thus, quality deterioration can be suppressed.
  • the state in which the supercooling can be released refers to a state in which the temperature of the food in the supercooled state has reached a predetermined minimum temperature. That is, the state in which the supercooling can be canceled is a state in which the difference between the lowest temperature reached when the food is in the supercooled state and the freezing point is a certain depth or more.
  • the time when the food reaches the state where the supercooling can be released depends on the temperature when the food is stored in the food storage room and the weight of the food.
  • a method of directly grasping such food temperature as described above, there is a method in which a plurality of thermopiles are arranged in an array or a matrix and the food temperature is accurately monitored by these thermopile.
  • Patent Document 3 as a method for detecting food temperature with a single thermopile, the error between the food temperature detection value by the sensor and the actual food temperature is corrected by a preliminary experiment result or a theoretical calculation formula, and the food is accurately detected. A method for grasping the temperature has been proposed.
  • thermopile the configuration for directly detecting the food temperature using the thermopile is an expensive component configuration because the thermopile is used, which is an obstacle to deploying supercooled refrigeration to a wider variety of refrigerator models. It was.
  • the present invention has been made in view of the above, and provides a refrigerator capable of realizing supercooled freezing regardless of the temperature and the weight of food stored in a food storage room under a cheaper configuration.
  • the purpose is to provide.
  • the refrigerator according to the present invention sets the set temperature of the storage room to the first temperature below the freezing point of water after the food is stored in the storage room. Cooling the food for a first period, and then cooling the food for a second period while gradually lowering the set temperature to a second temperature lower than the first temperature. Maintaining the cooling state, and then forcibly canceling the supercooling state of the food, and then performing the supercooling freezing to freeze the food by setting the set temperature to a third temperature below the freezing point.
  • a temperature detecting unit that detects an air temperature in the storage chamber, and a time after a certain time elapses after the air temperature changes from rising to falling after storing the food in the storage chamber
  • the rate of decrease in the air temperature during the period of time and the second A storage unit that stores correspondence relationship information that gives a correspondence relationship between the start timing and the end timing of the period; and a control unit that controls the operation of the refrigerator.
  • the control unit is detected by the temperature detection unit
  • the air temperature decrease rate is calculated using the air temperature, and the start time and end time of the second period corresponding to the calculated air temperature decrease rate are obtained with reference to the correspondence information.
  • the supercooled refrigeration is performed according to the start time and end time of the second period obtained.
  • the present invention it is possible to provide a refrigerator capable of realizing supercooled freezing regardless of the temperature at the time of storing the food in the storage room and the weight of the food under a cheaper configuration. Play.
  • the block diagram which shows the structure of the control board of embodiment 1 is a block diagram showing a hardware configuration of a microcomputer according to an embodiment
  • the figure which shows the example of change of food temperature and preset temperature in the supercooling freezing process The figure which shows the time change of the air temperature after storing in the switching room of food
  • a diagram for explaining the rate of decrease in air temperature The figure which shows the relationship between the fall rate of air temperature, and the weight of food about food F1 to F3
  • the figure which shows an example of the table which matches the food temperature and food weight at the time of storage, and the start time of "cooling" The figure which shows an example of the table which matches the food temperature and food weight at the time of storage with the start time of "quick freezing”
  • the figure for explaining the time from the time when the food is stored in the switching room to the time when the air temperature changes from rising to falling The figure which shows the relationship between
  • FIG. 1 is a side view of a refrigerator 1 according to the present embodiment.
  • the refrigerator 1 includes a plurality of compartments that are partitioned. Specifically, the refrigerator 1 is disposed below the refrigerator compartment 2, the switching chamber 3 disposed below the refrigerator compartment 2, the vegetable compartment 4 disposed below the switching compartment 3, and the vegetable compartment 4. And a freezer compartment 5.
  • positioning of these storage chambers is not limited to the example of illustration.
  • a storage chamber other than the illustrated storage chamber may be provided.
  • an ice making chamber and a switching chamber 3 (not shown) can be arranged side by side.
  • the refrigerator 1 is equipped with a refrigeration cycle including a compressor 6 and a cooler 7.
  • the compressor 6 is disposed at the bottom of the back surface of the refrigerator 1, and the cooler 7 is disposed above the compressor 6. Further, an internal fan 8 is disposed above the cooler 7. The internal fan 8 circulates the cold air cooled by the cooler 7 in the internal space.
  • the switching room 3 is a storage room in which the indoor set temperature can be switched. Specifically, the switching chamber 3 can select the indoor set temperature from a plurality of temperature zones.
  • the set temperature of the switching chamber 3 is set by operating the operation panel 10 installed on the surface of the door 9 of the refrigerator compartment 2. Further, as will be described later, in the switching chamber 3, the stored food can be supercooled and frozen by an operation by the operation panel 10.
  • a switching chamber thermistor 11 serving as a temperature detection unit is installed in the switching chamber 3.
  • the switching chamber thermistor 11 is installed on the back side wall surface of the switching chamber 3 and detects the air temperature that is the temperature of the air in the switching chamber 3.
  • the thermistor is installed also in the other storage chamber.
  • the air passage 12 that sends the cold air to the switching chamber 3 is provided with a switching chamber damper 13 that can block the air passage 12 and prevent the inflow of the cold air. By opening and closing the switching chamber damper 13 according to the detected temperature of the switching chamber thermistor 11, the air temperature in the switching chamber 3 is adjusted to the set temperature.
  • FIG. 2 is a block diagram showing the configuration of the control board 14, and FIG. 3 is a block diagram showing the hardware configuration of the microcomputer 15.
  • a microcomputer 15 is mounted on the control board 14. The microcomputer 15 is connected to the switching chamber thermistor 11, the switching chamber damper 13, the compressor 6, the internal fan 8, and the operation panel 10.
  • the microcomputer 15 includes a processor 16 as a control unit and a memory 17 as a storage unit.
  • the microcomputer 15 operates according to the control program stored in the memory 17 and controls the operation of the refrigerator 1.
  • the microcomputer 15 is connected to the power source 18 and grounded.
  • the microcomputer 15 Data on the air temperature detected by the switching room thermistor 11 is input to the microcomputer 15. Note that the microcomputer 15 also receives air temperature data detected in the same manner in other storage rooms.
  • the operation panel 10 is provided with various operation buttons including a “instant freezing” button 10 a and various display units including a display unit 10 b for displaying that “instant freezing” is in progress. Setting information obtained by operating the operation buttons is input to the microcomputer 15.
  • the microcomputer 15 controls the opening / closing of the switching chamber damper 13, the rotation speed of the compressor 6, and the inside of the refrigerator based on the detected temperature data by the switching chamber thermistor 11 and the setting information input by operating the operation panel 10. The rotation speed of the fan 8 is controlled.
  • the set temperature of the switching chamber 3 is set to, for example, ⁇ 7 ° C., which is a freezing temperature.
  • the air temperature in the switching chamber 3 is detected by the switching chamber thermistor 11, and the switching chamber damper 13 is controlled to open and close, thereby suppressing temperature fluctuations of about ⁇ 1 ° C.
  • the “instantaneous freezing” is synonymous with supercooling freezing. Since the expression “supercooling” may give a misrecognition of “too cold”, the expression “instant freezing” is used on the operation panel 10.
  • the set temperature of the switching chamber 3 is set to the first temperature selected from the temperature range from -3 ° C to 0 ° C, and the food temperature is set to the temperature range from -1 ° C to 1 ° C. Slowly cool the food until it reaches the temperature selected.
  • this cooling period is referred to as a first period.
  • the first temperature is -3 ° C
  • the temperature selected from the temperature range from -1 ° C to 1 ° C is 0 ° C.
  • the first temperature is a temperature below the freezing point of water, and the temperature range from ⁇ 1 ° C. to 1 ° C. includes the freezing point of water.
  • a temperature selected from a temperature range including 0 ° C. which is the freezing point of water
  • the set temperature of the switching chamber 3 is the temperature selected from the temperature range from -12 ° C to -5 ° C. Gradually lower to the second temperature to cool the food.
  • this process is referred to as “cooling”, and this cooling period is referred to as a second period.
  • the second temperature is -12 ° C.
  • the second temperature is a temperature lower than the first temperature.
  • the food is maintained in a supercooled state at a temperature below the freezing point of water.
  • the cooling rate is determined according to the temperature at which the food is stored and the weight of the food, and is 0.06 ° C./min, for example. By performing such “cooling”, the food is cooled with a small temperature difference between the surface temperature and the core temperature while increasing the cooling rate.
  • the end of the second period is when the “cooling” has progressed and the temperature of the supercooled food reaches the predetermined minimum temperature. The second period ends with the forced release of the supercooled state. By releasing the supercooled state, the food temperature returns to the freezing point of water and the water in the food is frozen.
  • freeze the food by setting the set temperature to a third temperature below the freezing point of water in order to freeze the parts other than the water as soon as possible. Become.
  • the third temperature is -7 ° C.
  • the process after the release of the supercooled state is referred to as “quick freezing”.
  • the time when “cooling” can be started is the time when the food temperature reaches a temperature selected from the temperature range from ⁇ 1 ° C. to 1 ° C., and the time when “quick freezing” can be started. Is the time when the food temperature has returned to the freezing point of water. Therefore, the time when the “cooling” can be started and the time when the “quick freezing” can be started are not after a fixed time since the food is stored in the switching chamber 3, respectively. Varies with temperature and food weight. This will be specifically described with reference to FIG.
  • FIG. 4 is a diagram showing an example of changes in food temperature and set temperature in the supercooled freezing process. It should be noted that the weight of the food is different between FIG. 4 (a) and FIG. 4 (b). That is, FIG. 4 (a) shows a case where the weight of the food is larger than that of FIG. 4 (b). The types of food are the same.
  • FIG. 4A will be described.
  • the horizontal axis represents time, and the vertical axis represents temperature (° C.).
  • T F represents the food temperature
  • T S represents the set temperature.
  • t 0 represents the time when the food is stored in the switching chamber 3.
  • the set temperature is set to ⁇ 7 ° C., which is the freezing temperature.
  • the food temperature when stored in the switching chamber 3 is 30 ° C.
  • t 1 is the time when the “instant freezing” button 10 a is pressed, and is the start time of the supercooling freezing.
  • the period from time t 1 to time t 5 is the first period described above, and the set temperature is set to ⁇ 3 ° C.
  • the food temperature reaches the 0 °C a freezing point of water.
  • the set temperature has reached ⁇ 12 ° C., and the food temperature of the food maintained in the supercooled state at this time reaches the minimum temperature, so that the food can be increased by rapidly increasing the cooling rate.
  • the time t 6 is a timing that gives the temperature stimulation for releasing the supercooled state, is also the start time of the "sudden freezing".
  • the minimum temperature reached in the above-described supercooled state is -10 ° C.
  • the food temperature returns to the freezing point of water and the water in the food freezes.
  • the set temperature is kept at ⁇ 7 ° C., which is the freezing temperature, in order to freeze portions other than moisture in the food.
  • FIG. 4B The horizontal axis, vertical axis, T F , T S , food temperature during storage, t 0 , t 1 are the same as in FIG.
  • Period from time t 1 to time t 2 is the first period described above, the set temperature is set at -3 ° C.. At time t 2, the food temperature reaches the freezing point of water.
  • the set temperature has reached ⁇ 12 ° C., and the food temperature of the food maintained in the supercooled state at this time reaches the minimum temperature, so that the food can be increased by rapidly increasing the cooling rate.
  • the time t 3 is a timing that gives the temperature stimulation for releasing the supercooled state, is also the start time of the "sudden freezing".
  • the minimum temperature reached in the above-described supercooled state is -10 ° C.
  • the set temperature is kept at ⁇ 7 ° C., which is the freezing temperature, in order to freeze portions other than moisture in the food.
  • the start time of “cooling” and the start time of “quick freezing” are determined depending on both the weight of food and the temperature of food at the time of storage. That is, it can be considered that the amount of heat released from the food during the cooling process determines the start time of “cooling” and the start time of “quick freezing”. Therefore, even if the food weight and the food temperature at the time of storage are different from each other, the start time of “chilling” and the start time of “quick freezing” are equivalent to each other as long as the amount of heat is equal.
  • FIG. 5 is a diagram showing the change over time in the air temperature after the food is stored in the switching chamber 3.
  • the horizontal axis represents time, and the vertical axis represents the air temperature in the switching chamber 3.
  • Time t 0 is the time when the food is stored in the switching chamber 3.
  • T a (F1) is a curve representing the time change of the air temperature of the food F1 when the food is charged
  • T a (F2) is a curve representing the time change of the air temperature of the food F2 when the food is charged
  • T a (F3) is It is a curve showing the time change of the air temperature at the time of food injection of the food F3.
  • the weight of the food F1 is larger than the weight of the food F2, and the weight of the food F2 is larger than the weight of the food F3.
  • the foods F1 to F3 are the same kind of food, and the food temperature during storage is set equal to each other for the foods F1 to F3.
  • T a (F1), T a (F2), and T a (F3) when food is stored in the switching chamber 3, the air temperature in the switching chamber 3 once rises and then falls. .
  • the rate of decrease in air temperature during a period from when the air temperature changes from rising to falling until a certain time elapses varies depending on the weight of the food. This will be specifically described with reference to FIG.
  • FIG. 6 is a diagram for explaining a decrease rate of the air temperature.
  • the horizontal axis, the vertical axis, and the times t 0 , T a (F1), T a (F2), and T a (F3) are the same as those in FIG.
  • P1 is a peak point of T a (F1)
  • P2 is a peak point of T a (F2)
  • P3 is a peak point of T a (F3).
  • the peak point is a point where the air temperature changes from rising to falling.
  • ⁇ t is a predetermined time. ⁇ t is selected from a range of 1 minute to 10 minutes, for example.
  • Q1 is a point on T a (F1) after ⁇ t has elapsed from P1
  • Q2 is a point on T a (F2) after ⁇ t has elapsed from P2
  • Q3 is a point on T a (F3) after ⁇ t has elapsed from P3 It is.
  • the rate of decrease in air temperature is given by ((air temperature at P1) ⁇ (air temperature at Q1)) / ⁇ t, and is equal to the slope of the straight line connecting P1 and Q1.
  • the rate of decrease in air temperature is given by ((air temperature at P2) ⁇ (air temperature at Q2)) / ⁇ t, and is equal to the slope of the straight line connecting P2 and Q2.
  • the rate of decrease in air temperature is given by ((air temperature at P3) ⁇ (air temperature at Q3)) / ⁇ t, and is equal to the slope of the straight line connecting P3 and Q3.
  • FIG. 7 is a diagram illustrating the relationship between the rate of decrease in air temperature and the weight of food for foods F1 to F3.
  • the horizontal axis represents “weight” and the vertical axis represents “slope”.
  • weight is the weight of the food.
  • slope represents the slope of the decrease in air temperature, that is, the rate of decrease in air temperature.
  • the rate of decrease in air temperature decreases as the weight of the food increases.
  • the higher the food temperature at the time of storage the smaller the air temperature decrease rate.
  • the rate of decrease in air temperature in a period from when the air temperature starts to rise to when it falls for a certain time ⁇ t is calculated.
  • the correspondence between the food temperature at the time of storage and the weight of the food and the rate of decrease in the air temperature is tabulated in advance.
  • this table is referred to as a first table.
  • the first table is stored in advance in the memory 17 of FIG.
  • the microcomputer 15 can estimate the food temperature and the weight of the food at the time of storage from the calculated value of the decrease rate of the air temperature with reference to the first table.
  • FIG. 8 is a diagram showing an example of a table for associating food temperature at the time of storage and the weight of food with the rate of decrease in air temperature.
  • FIG. 8 shows an example of the first table. “Weight” indicates the weight of the food, and “Food temperature” indicates the food temperature at the time of storage. The unit of the decrease rate of the air temperature is (° C./min). For example, when the “weight” is 100 g and the “food temperature” is 10 ° C., the rate of decrease in air temperature is 0.10 (° C./min).
  • the first table there may be a plurality of combinations of “weight” and “food temperature” for the same air temperature decrease rate. This means that for such a combination, the calories of the foods described above are equal to each other. In this case, the start time of “cooling” and the start time of “quick freezing” are equal to each other. Therefore, regardless of which combination is selected, the start time of “cooling” and the start time of “quick freezing” Does not affect estimation. Therefore, in this case, any combination can be selected and used as the estimated value of food temperature and food weight during storage.
  • a food supercooling freezing experiment was conducted in advance for several different combinations of food temperature and food weight at the time of storage, and the start time of “cooling” and the start time of “quick freezing” were measured, The relationship between the food temperature and the food weight and the start time of “cooling” and the start time of “quick freezing” is tabulated in advance.
  • this table is referred to as a second table.
  • the second table is stored in advance in the memory 17 of FIG.
  • the start time of “cooling” is given as an elapsed time from the start of the supercooling freezing process. The same applies to the start time of “quick freezing”.
  • the microcomputer 15 refers to the first table, estimates the food temperature and food weight at the time of storage from the calculated value of the decrease rate of the air temperature, and then refers to the second table to estimate the storage Estimate the start time of “chilling” and the start time of “quick freezing” from the food temperature and the weight of the food.
  • FIG. 9 is a diagram illustrating an example of a table that associates food temperature and food weight during storage with the start time of “cooling”, and FIG. 10 illustrates food temperature and food weight during storage and “quick freeze”. It is a figure which shows an example of the table which matches start time.
  • a set of the table shown in FIG. 9 and the table shown in FIG. 10 is an example of the second table.
  • the “cooling” start time correction amount represents a correction amount from the reference “cooling” start time.
  • the reference “cooling” start time is the start time of “cooling” corresponding to the reference “weight” and “food temperature” food, and is obtained in advance by actual measurement.
  • the unit of the start time correction amount of “cooling” is (minutes). For example, if the “weight” is 300 g and the “food temperature” is 50 ° C., the start time correction amount of “chilling” is +60 minutes, and the starting time of the “cooling” as a reference is a minute.
  • the start time of “cooling” is (a + 60) minutes.
  • FIG. 10 is similar to FIG.
  • the “quick freezing” start time correction amount represents a correction amount from the reference “quick freezing” start time.
  • the reference “quick freeze” start time is the start time of “quick freeze” corresponding to the reference “weight” and “food temperature” food, and is obtained in advance by actual measurement.
  • the unit of the correction amount for the start time of “quick freezing” is (minutes). For example, when the “weight” is 300 g and the “food temperature” is 50 ° C., the start time correction amount of “quick freeze” is +70 minutes, and the start time of the “quick freeze” as a reference is b minutes.
  • the start time of “quick freezing” is (b + 70) minutes.
  • the second table as shown in FIGS. 9 and 10, the reference value for the start time of “cooling” and the reference value for the start time of “quick freezing” are stored in advance in the memory 17 of FIG.
  • the second table is divided into the “cooling” start timing correction amount and the “quick freezing” start timing correction amount, but FIG. 9 and FIG. 10 are combined into one table. You can also.
  • the first and second tables are stored in the memory 17.
  • the first table is a table that associates the food temperature at the time of storage and the weight of the food with the decreasing rate of the air temperature.
  • the second table is a table for associating the food temperature and food weight during storage with the start time and end time of the second period.
  • the start time of the second period is the start time of “cooling”, and the end time of the second period is the start time of “quick freezing”.
  • the switching chamber thermistor 11 detects the air temperature in the switching chamber 3 and outputs air temperature detection data to the microcomputer 15. For example, the microcomputer 15 acquires air temperature detection data at a period of 10 milliseconds.
  • the microcomputer 15 monitors the air temperature detected by the switching room thermistor 11, detects the time when the air temperature changes from rising to falling, and calculates the rate of decrease in the air temperature during a period until a certain time elapses from this time. To do. At this time, taking into account fluctuations due to noise in the air temperature detection data, the moving average value or interval average value for a certain period is calculated from the air temperature detection data, and then the time point when the air temperature starts to rise and falls is detected. It is preferable to calculate the reduction rate of the air temperature. For example, each time the microcomputer 15 acquires the air temperature detection data, the microcomputer 15 calculates the moving average value using the air temperature detection data for a certain period in the past, the previous moving average value and the newly obtained moving average.
  • the microcomputer 15 refers to the first table stored in the memory 17 and obtains the food temperature and the food weight at the time of storage corresponding to the calculated air temperature decrease rate.
  • the microcomputer 15 refers to the second table stored in the memory 17 to determine the start time and end time of the second period corresponding to the determined food temperature and food weight at the time of storage. .
  • the microcomputer 15 determines the start time of the second period and the end time of the second period,
  • the supercooled refrigeration described in (1) to (3) is performed. That is, after food is stored in the switching chamber 3, the microcomputer 15 sets the set temperature of the switching chamber 3 to a first temperature below the freezing point of water to cool the food for a first period, and then While gradually lowering the set temperature to a second temperature that is lower than the first temperature, the food is cooled for a second period to maintain the food in a supercooled state, and then the food supercooled state is forcibly released. After that, supercooled freezing is performed in which the set temperature is set to a third temperature lower than the freezing point and the food is frozen. In addition, the process which estimates the food temperature and food weight at the time of storage, and also estimates the start time and end time of a 2nd period is implemented during a 1st period.
  • the food temperature and food weight during storage are estimated from the rate of decrease in the air temperature in the switching chamber 3, and the food temperature and food during storage are further calculated using the results.
  • the cooling conditions of the supercooled refrigeration according to the weight of the are calculated.
  • thermopile it is possible to realize supercooled freezing regardless of the food temperature and the weight of food when stored in the switching chamber 3 under an inexpensive configuration without using a thermopile.
  • the microcomputer 15 refers to the first table stored in the memory 17 and obtains the food temperature and food weight at the time of storage corresponding to the calculated air temperature decrease rate. Further, by referring to the second table stored in the memory 17, the start time and end time of the second period corresponding to the obtained food temperature and food weight at the time of storage are obtained. This makes it possible not only to estimate the start time and end time of the second period, but also to estimate the food temperature and food weight during storage.
  • the procedure of further estimating the start time and end time of the second period is performed. Although it is stepped on, a procedure for directly estimating the start timing and end timing of the second period from the rate of decrease of the air temperature in the switching chamber 3 is also possible.
  • the memory 17 stores in the memory 17 the rate of decrease in the air temperature and the start and end times of the second period from the time when the air temperature changes from rising to falling after the food is stored in the switching chamber 3. Correspondence relationship information that gives the corresponding relationship is stored.
  • the microcomputer 15 calculates the air temperature decrease rate using the air temperature detected by the switching room thermistor 11 and refers to the correspondence information stored in the memory 17 to decrease the calculated air temperature.
  • the start time and end time of the second period corresponding to the rate may be obtained, and the supercooling refrigeration may be performed according to the obtained start time and end time of the second period.
  • the air temperature decrease rate is calculated and the food temperature and food weight at the time of storage corresponding to the calculated air temperature decrease rate are obtained.
  • the air temperature decrease rate is calculated.
  • the food temperature and the weight of the food at the time of storage can be estimated by using the time from the time when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling. This will be described with reference to FIG. 11 and FIG.
  • FIG. 11 is a diagram for explaining the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling.
  • the horizontal axis, the vertical axis, and the times t 0 , T a (F1), T a (F2), T a (F3), P1, P2, and P3 are the same as those in FIG.
  • the foods F1 to F3 are the same kind of food, and the food temperature during storage is set equal to each other for the foods F1 to F3.
  • A shows the time from the time when the food F1 is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling.
  • B shows the time from the time when the food F2 is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling.
  • C shows the time from the time when the food F3 is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling.
  • the relationship of A>B> C is established.
  • FIG. 12 is a diagram showing the relationship between the time from when the foods F1 to F3 are stored in the switching chamber 3 to the time when the air temperature changes from rising to falling and the weight of the food.
  • the “weight” on the horizontal axis is the weight of the food.
  • the “time” on the vertical axis is the time from the time when the air is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling.
  • FIG. 12 illustrates the relationship between “weight” and “time” for the foods F1 to F3 in FIG. As shown in FIG. 12, the time from when the air is stored in the switching chamber 3 to when the air temperature changes from rising to falling increases in the order of food F3, food F2, and food F1, and the weight of the food increases. large.
  • the time from when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling becomes longer.
  • the higher the food temperature at the time of storage the longer the time from when the food is stored in the switching chamber 3 until the time when the air temperature changes from rising to falling. Therefore, instead of using the first table as a table for associating the food temperature at the time of storage and the weight of the food with the rate of decrease in the air temperature, the following can be performed.
  • the microcomputer 15 monitors the air temperature detected by the switching chamber thermistor 11, detects the time when the air temperature changes from rising to falling, and calculates the time difference between the detected time and the storage time. This time difference is the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling.
  • the microcomputer 15 refers to the first table stored in the memory 17 and corresponds to the calculated value of the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling. Obtain food temperature and food weight when storing. The subsequent processing is the same as the case of calculating the air temperature decrease rate.
  • the start time and end of the second period are further estimated.
  • the procedure of estimating the time is taken, but the procedure of directly estimating the start timing and the end timing of the second period from the time from when the food is stored in the switching chamber 3 to the time when the air temperature starts to rise to descend Is also possible.
  • the memory 17 stores correspondence information that gives a correspondence relationship between the time from when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling and the start time and end time of the second period.
  • the microcomputer 15 uses the air temperature detected by the switching chamber thermistor 11 to calculate the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling, and storing it in the memory 17.
  • the start time and end time of the second period corresponding to the calculated time are obtained, and the supercooling refrigeration is performed according to the obtained start time and end time of the second period. You may make it do. Even in this case, the same effects as in the present embodiment can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

A refrigerator 1 wherein, after a food product has been stored in a switching compartment 3, the set temperature of the switching compartment 3 is set to a temperature equal to or less than the freezing point of water, and the food product is cooled for a first period, after which the food product is cooled for a second period while the set temperature is gradually lowered, and a supercooled state is maintained, and then the supercooled state of the food product is forcefully cancelled, after which supercooling refrigeration is carried out to refrigerate and preserve the food product. A microcomputer 15 provided on a control board 14 uses the air temperature in the switching compartment 3, as detected by a switching compartment thermistor 11, to calculate a reduction rate for the air temperature inside the switching compartment 3 after the food product has been stored, and estimates a start time and an end time for the second period on the basis of the calculated air temperature reduction rate. Thus, it is possible to determine a period for changing the set temperature in supercooling refrigeration in response to the food product temperature at the time of storage and the weight of the food product.

Description

冷蔵庫refrigerator
 本発明は、食品の冷凍保存が可能な収納室を備えた冷蔵庫に関する。 The present invention relates to a refrigerator provided with a storage room capable of storing frozen food.
 従来の冷蔵庫では、収納室内に設置されたサーミスタにより収納室内の空気の温度を検出し、検出される温度が一定に保たれるように温度制御を行うのが一般的である。このサーミスタは、温度変化による電気抵抗の変化を検出することでサーミスタの周囲の空気の温度を検出するものであり、収納室内に収納された食品の温度をサーミスタの周囲の空気を介して間接的に検出するものである。このようにサーミスタを用いた温度検出を行う冷蔵庫では、収納室内の空気の温度を一定に保ち、その結果、収納室内の食品の温度を設定温度まで冷却し、食品の長期保存を可能としている。 In a conventional refrigerator, the temperature of the air in the storage room is detected by a thermistor installed in the storage room, and the temperature is generally controlled so that the detected temperature is kept constant. This thermistor detects the temperature of the air around the thermistor by detecting a change in electrical resistance due to a temperature change, and indirectly detects the temperature of the food stored in the storage room via the air around the thermistor. It is something to detect. Thus, in the refrigerator that performs temperature detection using the thermistor, the temperature of the air in the storage room is kept constant, and as a result, the temperature of the food in the storage room is cooled to a set temperature, thereby enabling long-term storage of the food.
 また、特許文献1には、食品の温度をより正確に検出する技術として、収納室内に赤外線センサであるサーモパイルをアレイ状またはマトリックス状に配置する構成が記載されている。一般に、サーモパイルは、物体から放出される赤外線に基づいて物体の温度を検出するので、物体の温度を直接的に検出可能である。ただし、サーモパイルの検出温度は、サーモパイルの視野全域から入射する赤外線量の総和で決まるため、視野内に温度検出の対象物以外の領域が存在する場合は、対象物そのものの温度を検出しているわけではない。そのため、特許文献1では、複数個のサーモパイルを設置し、収納室内をいくつかの区画に区分して温度分布を測定することで収納室全体をセンシングしている。 Patent Document 1 describes a configuration in which thermopile, which is an infrared sensor, is arranged in an array or matrix as a technique for more accurately detecting the temperature of food. In general, since the thermopile detects the temperature of an object based on infrared rays emitted from the object, the temperature of the object can be directly detected. However, since the detection temperature of the thermopile is determined by the total amount of infrared rays incident from the entire thermopile field of view, the temperature of the object itself is detected when a region other than the temperature detection target exists in the field of view. Do not mean. Therefore, in Patent Document 1, a plurality of thermopiles are installed, the storage chamber is divided into several sections, and the temperature distribution is measured to sense the entire storage chamber.
 一方、近年、食生活、生活スタイルの変化により、家庭用冷蔵庫による冷凍保存のニーズが高まってきている。すなわち、食品のまとめ買いによるストックおよび作り置きの保存の機会が増加し、冷凍室の利用頻度が高まり、冷凍品質への要求も高くなってきている。このような冷凍品質を高める工夫は数多くなされており、代表的な技術としては「急速冷凍」が知られている。ここで、急速冷凍は、通常保存時よりも低温度でかつ風量も増量した冷気により収納室内の食品を急速に冷却し、食品の凍結時に生成される氷結晶を小さくする技術である。このようにして凍結させた食品では、解凍時のドリップ流出量が減少し、品質劣化が抑制される。 On the other hand, in recent years, due to changes in eating habits and lifestyles, needs for freezing and storing in home refrigerators are increasing. In other words, the chance of stock and stock storage by bulk buying of foods has increased, the frequency of use of freezer rooms has increased, and the demand for frozen quality has also increased. Many ideas for improving the refrigeration quality have been made, and “rapid freezing” is known as a representative technique. Here, quick freezing is a technology that rapidly cools food in a storage room with cold air whose temperature is lower than that during normal storage and has an increased air volume, thereby reducing ice crystals generated when the food is frozen. In the food frozen in this way, the drip outflow amount at the time of thawing is reduced, and quality deterioration is suppressed.
 冷凍品質向上のための別の技術として、過冷却冷凍技術が挙げられる。過冷却とは、食品を特定の冷却条件で冷却していくと、食品の凍結点以下の温度でも食品が凍っていない状態となることをいう。過冷却の状態で冷却された食品に物理的又は温度的な刺激を与えると、過冷却状態が解除され、急速に食品が凍結する。特許文献2に記載されているように、このようにして凍結させた食品は、細かい粒状の氷結晶が生成されるため、解凍時のドリップ流出量が減少し、食品の細胞組織の損傷が抑制され、品質劣化を抑制することが可能となる。 Another technology for improving refrigeration quality is supercooled refrigeration technology. Supercooling means that when food is cooled under specific cooling conditions, the food is not frozen even at a temperature below the freezing point of the food. When physical or thermal stimuli are applied to food that has been cooled in a supercooled state, the supercooled state is released and the food freezes rapidly. As described in Patent Document 2, since the food frozen in this way produces fine granular ice crystals, the amount of drip outflow during thawing is reduced, and the damage of food tissue is suppressed. Thus, quality deterioration can be suppressed.
 このような過冷却冷凍を行うには、食品の状態に応じて冷却条件を随時変更する必要がある。例えば先述の物理的または温度的な刺激を与えるべきタイミングを判断するには、食品が過冷却解除可能な状態にあることを判断する必要がある。ここで、過冷却解除可能な状態とは、過冷却状態にある食品の温度が予め決められた最低到達温度に到達した状態をいう。すなわち、過冷却解除可能な状態は、食品が過冷却状態で達した最低到達温度と凍結点との差が一定以上の深度となった状態である。しかし、食品が過冷却解除可能な状態に達する時期は、食品の収納室への収納時の温度および食品の重量によって変わるため、食品収納後にある固定の時間が経過したときに物理的または温度的な刺激を与えるという方法では、適切なタイミングで過冷却解除を実施することが困難となる。従って、食品が過冷却解除可能な状態に達する時期を適切に把握するためには、食品温度を常時把握して物理的または温度的な刺激を与えるべきタイミングを判断することが理想的といえる。このような食品温度の直接的な把握の方法としては、先述の通り、複数のサーモパイルをアレイ状またはマトリックス状に配置し、これらのサーモパイルによって食品温度を精度よくモニタする方法がある。また、特許文献3では、単一のサーモパイルで食品温度を検出する方法として、センサによる食品温度検出値と実際の食品温度との誤差を、事前実験結果または理論計算式により補正し、精度良く食品温度を把握する方法が提案されている。 In order to perform such supercooled freezing, it is necessary to change the cooling conditions as needed according to the state of the food. For example, in order to determine the timing at which the aforementioned physical or temperature stimulus should be applied, it is necessary to determine that the food is in a state in which the supercooling can be released. Here, the state in which the supercooling can be released refers to a state in which the temperature of the food in the supercooled state has reached a predetermined minimum temperature. That is, the state in which the supercooling can be canceled is a state in which the difference between the lowest temperature reached when the food is in the supercooled state and the freezing point is a certain depth or more. However, the time when the food reaches the state where the supercooling can be released depends on the temperature when the food is stored in the food storage room and the weight of the food. In the method of giving a simple stimulus, it becomes difficult to perform the supercooling release at an appropriate timing. Therefore, in order to appropriately grasp the time when the food reaches a state where the supercooling can be released, it is ideal to always grasp the food temperature and determine the timing at which a physical or temperature stimulus should be applied. As a method of directly grasping such food temperature, as described above, there is a method in which a plurality of thermopiles are arranged in an array or a matrix and the food temperature is accurately monitored by these thermopile. In Patent Document 3, as a method for detecting food temperature with a single thermopile, the error between the food temperature detection value by the sensor and the actual food temperature is corrected by a preliminary experiment result or a theoretical calculation formula, and the food is accurately detected. A method for grasping the temperature has been proposed.
特開2002-71252号公報JP 2002-71252 A 特開2003-180314号公報JP 2003-180314 A 特許第4775344号公報Japanese Patent No. 4775344
 しかしながら、サーモパイルを用いて食品温度を直接的に検出する構成は、サーモパイルを用いるが故に、高価な部品構成となってしまい、過冷却冷凍をより幅広い冷蔵庫機種に展開する上での障害となっていた。 However, the configuration for directly detecting the food temperature using the thermopile is an expensive component configuration because the thermopile is used, which is an obstacle to deploying supercooled refrigeration to a wider variety of refrigerator models. It was.
 本発明は、上記に鑑みてなされたものであって、より安価な構成のもとで、食品の収納室への収納時の温度および食品の重量にかかわりなく過冷却冷凍を実現可能な冷蔵庫を提供することを目的とする。 The present invention has been made in view of the above, and provides a refrigerator capable of realizing supercooled freezing regardless of the temperature and the weight of food stored in a food storage room under a cheaper configuration. The purpose is to provide.
 上述した課題を解決し、目的を達成するために、本発明に係る冷蔵庫は、収納室に食品が収納された後、前記収納室の設定温度を水の凍結点以下の第1の温度に設定して前記食品を第1の期間冷却し、続いて前記設定温度を前記第1の温度よりも低い第2の温度まで徐々に低下させつつ前記食品を第2の期間冷却して前記食品を過冷却状態に維持し、続いて前記食品の過冷却状態を強制的に解除した後、前記設定温度を前記凍結点未満の第3の温度に設定して前記食品を冷凍する過冷却冷凍の実施をすることが可能な冷蔵庫であって、前記収納室内の空気温度を検出する温度検出部と、前記食品の前記収納室への収納後に前記空気温度が上昇から下降に転ずる時点から一定時間経過するまでの期間における前記空気温度の低下率と前記第2の期間の開始時期および終了時期との対応関係を与える対応関係情報を記憶する記憶部と、前記冷蔵庫の運転を制御する制御部と、を備え、前記制御部は、前記温度検出部により検出された前記空気温度を用いて前記空気温度の低下率を算出し、前記対応関係情報を参照して、前記算出された空気温度の低下率に対応する前記第2の期間の開始時期および終了時期を求め、前記求められた第2の期間の開始時期および終了時期に従って前記過冷却冷凍の実施をすることを特徴とする。 In order to solve the above-described problems and achieve the object, the refrigerator according to the present invention sets the set temperature of the storage room to the first temperature below the freezing point of water after the food is stored in the storage room. Cooling the food for a first period, and then cooling the food for a second period while gradually lowering the set temperature to a second temperature lower than the first temperature. Maintaining the cooling state, and then forcibly canceling the supercooling state of the food, and then performing the supercooling freezing to freeze the food by setting the set temperature to a third temperature below the freezing point. A temperature detecting unit that detects an air temperature in the storage chamber, and a time after a certain time elapses after the air temperature changes from rising to falling after storing the food in the storage chamber The rate of decrease in the air temperature during the period of time and the second A storage unit that stores correspondence relationship information that gives a correspondence relationship between the start timing and the end timing of the period; and a control unit that controls the operation of the refrigerator. The control unit is detected by the temperature detection unit The air temperature decrease rate is calculated using the air temperature, and the start time and end time of the second period corresponding to the calculated air temperature decrease rate are obtained with reference to the correspondence information. The supercooled refrigeration is performed according to the start time and end time of the second period obtained.
 本発明によれば、より安価な構成のもとで、食品の収納室への収納時の温度および食品の重量にかかわりなく過冷却冷凍を実現可能な冷蔵庫を提供することができる、という効果を奏する。 According to the present invention, it is possible to provide a refrigerator capable of realizing supercooled freezing regardless of the temperature at the time of storing the food in the storage room and the weight of the food under a cheaper configuration. Play.
実施の形態に係る冷蔵庫の側面図Side view of refrigerator according to embodiment 実施の形態の制御基板の構成を示すブロック図The block diagram which shows the structure of the control board of embodiment 実施の形態のマイクロコンピュータのハードウェア構成を示すブロック図1 is a block diagram showing a hardware configuration of a microcomputer according to an embodiment 過冷却冷凍過程における食品温度と設定温度の変化例を示す図The figure which shows the example of change of food temperature and preset temperature in the supercooling freezing process 食品の切替室への収納後の空気温度の時間変化を示す図The figure which shows the time change of the air temperature after storing in the switching room of food 空気温度の低下率を説明するための図A diagram for explaining the rate of decrease in air temperature 食品F1からF3について空気温度の低下率と食品の重量との関係を示す図The figure which shows the relationship between the fall rate of air temperature, and the weight of food about food F1 to F3 収納時の食品温度および食品の重量と空気温度の低下率とを対応付けるテーブルの一例を示す図The figure which shows an example of the table which matches the food temperature at the time of storage, the weight of food, and the decreasing rate of air temperature 収納時の食品温度および食品の重量と「冷やし込み」の開始時期とを対応付けるテーブルの一例を示す図The figure which shows an example of the table which matches the food temperature and food weight at the time of storage, and the start time of "cooling" 収納時の食品温度および食品の重量と「急冷凍」の開始時期とを対応付けるテーブルの一例を示す図The figure which shows an example of the table which matches the food temperature and food weight at the time of storage with the start time of "quick freezing" 食品の切替室への収納時から空気温度が上昇から下降に転ずる時点までの時間を説明するための図The figure for explaining the time from the time when the food is stored in the switching room to the time when the air temperature changes from rising to falling 食品F1からF3について切替室への収納時から空気温度が上昇から下降に転ずる時点までの時間と食品の重量との関係を示す図The figure which shows the relationship between the time from the time of storage to the switching room about the foodstuffs F1 to F3 until the time of the air temperature changing from rising to falling, and the weight of foodstuffs
 以下に、本発明の実施の形態に係る冷蔵庫を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a refrigerator according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本実施の形態に係る冷蔵庫1の側面図である。図1に示すように、冷蔵庫1は、区画された複数の収納室を備えている。具体的には、冷蔵庫1は、冷蔵室2と、冷蔵室2の下に配置された切替室3と、切替室3の下に配置された野菜室4と、野菜室4の下に配置された冷凍室5とを備えている。なお、これらの収納室の配置は図示例に限定されない。また、図示した収納室以外の収納室が設けられていてもよい。例えば図示しない製氷室と切替室3を左右に並べて配置することができる。
Embodiment.
FIG. 1 is a side view of a refrigerator 1 according to the present embodiment. As shown in FIG. 1, the refrigerator 1 includes a plurality of compartments that are partitioned. Specifically, the refrigerator 1 is disposed below the refrigerator compartment 2, the switching chamber 3 disposed below the refrigerator compartment 2, the vegetable compartment 4 disposed below the switching compartment 3, and the vegetable compartment 4. And a freezer compartment 5. In addition, arrangement | positioning of these storage chambers is not limited to the example of illustration. A storage chamber other than the illustrated storage chamber may be provided. For example, an ice making chamber and a switching chamber 3 (not shown) can be arranged side by side.
 冷蔵庫1には、圧縮機6および冷却器7を含む冷凍サイクルが搭載されている。圧縮機6は冷蔵庫1の背面最下部に配置され、冷却器7は圧縮機6の上方に配置されている。さらに、冷却器7の上方には庫内ファン8が配置されている。庫内ファン8は、冷却器7によって冷却された冷気を庫内に循環させる。 The refrigerator 1 is equipped with a refrigeration cycle including a compressor 6 and a cooler 7. The compressor 6 is disposed at the bottom of the back surface of the refrigerator 1, and the cooler 7 is disposed above the compressor 6. Further, an internal fan 8 is disposed above the cooler 7. The internal fan 8 circulates the cold air cooled by the cooler 7 in the internal space.
 切替室3は、室内の設定温度が切替可能な収納室である。具体的には、切替室3は、室内の設定温度を複数の温度帯から選択可能である。切替室3の設定温度は、冷蔵室2の扉9の表面に設置された操作パネル10を操作することで設定される。また、後述するように、切替室3では、操作パネル10による操作により、収納された食品の過冷却冷凍が可能である。 The switching room 3 is a storage room in which the indoor set temperature can be switched. Specifically, the switching chamber 3 can select the indoor set temperature from a plurality of temperature zones. The set temperature of the switching chamber 3 is set by operating the operation panel 10 installed on the surface of the door 9 of the refrigerator compartment 2. Further, as will be described later, in the switching chamber 3, the stored food can be supercooled and frozen by an operation by the operation panel 10.
 切替室3内には、温度検出部である切替室サーミスタ11が設置されている。切替室サーミスタ11は、切替室3の奥側壁面に設置され、切替室3内の空気の温度である空気温度を検出する。なお、図示は省略しているが、他の収納室内にもサーミスタが設置されている。また、切替室3に冷気を送る風路12には、風路12を遮蔽して冷気の流入を阻止することが可能な切替室ダンパー13が設けられている。切替室サーミスタ11の検出温度に応じて切替室ダンパー13を開閉することにより、切替室3の空気温度は設定温度に調整される。 In the switching chamber 3, a switching chamber thermistor 11 serving as a temperature detection unit is installed. The switching chamber thermistor 11 is installed on the back side wall surface of the switching chamber 3 and detects the air temperature that is the temperature of the air in the switching chamber 3. In addition, although illustration is abbreviate | omitted, the thermistor is installed also in the other storage chamber. In addition, the air passage 12 that sends the cold air to the switching chamber 3 is provided with a switching chamber damper 13 that can block the air passage 12 and prevent the inflow of the cold air. By opening and closing the switching chamber damper 13 according to the detected temperature of the switching chamber thermistor 11, the air temperature in the switching chamber 3 is adjusted to the set temperature.
 図2は、制御基板14の構成を示すブロック図、図3は、マイクロコンピュータ15のハードウェア構成を示すブロック図である。制御基板14には、マイクロコンピュータ15が搭載されている。マイクロコンピュータ15は、切替室サーミスタ11、切替室ダンパー13、圧縮機6、庫内ファン8、および操作パネル10と接続されている。 FIG. 2 is a block diagram showing the configuration of the control board 14, and FIG. 3 is a block diagram showing the hardware configuration of the microcomputer 15. A microcomputer 15 is mounted on the control board 14. The microcomputer 15 is connected to the switching chamber thermistor 11, the switching chamber damper 13, the compressor 6, the internal fan 8, and the operation panel 10.
 マイクロコンピュータ15は、制御部であるプロセッサ16と、記憶部であるメモリ17とを備えている。マイクロコンピュータ15は、メモリ17に記憶された制御プログラムに従って動作し、冷蔵庫1の運転を制御する。また、マイクロコンピュータ15は、電源18に接続されると共に接地されている。 The microcomputer 15 includes a processor 16 as a control unit and a memory 17 as a storage unit. The microcomputer 15 operates according to the control program stored in the memory 17 and controls the operation of the refrigerator 1. The microcomputer 15 is connected to the power source 18 and grounded.
 マイクロコンピュータ15には、切替室サーミスタ11により検出された空気温度のデータが入力される。なお、マイクロコンピュータ15には、同様にして検出された他の収納室内の空気温度のデータも入力される。操作パネル10には、「瞬冷凍」ボタン10aを含む各種の操作ボタンと、「瞬冷凍」中であることを表示する表示部10bを含む各種の表示部が設けられている。操作ボタンの操作による設定情報はマイクロコンピュータ15に入力される。マイクロコンピュータ15は、切替室サーミスタ11による検出温度データと操作パネル10の操作により入力された設定情報とに基づいて、切替室ダンパー13の開閉制御、圧縮機6の回転数の制御、および庫内ファン8の回転数の制御を実施する。 Data on the air temperature detected by the switching room thermistor 11 is input to the microcomputer 15. Note that the microcomputer 15 also receives air temperature data detected in the same manner in other storage rooms. The operation panel 10 is provided with various operation buttons including a “instant freezing” button 10 a and various display units including a display unit 10 b for displaying that “instant freezing” is in progress. Setting information obtained by operating the operation buttons is input to the microcomputer 15. The microcomputer 15 controls the opening / closing of the switching chamber damper 13, the rotation speed of the compressor 6, and the inside of the refrigerator based on the detected temperature data by the switching chamber thermistor 11 and the setting information input by operating the operation panel 10. The rotation speed of the fan 8 is controlled.
 次に、過冷却冷凍を実現するための冷却条件について説明する。まず、切替室3の設定温度は冷凍温度である例えば-7℃に設定されているものとする。この状態では、切替室3内の空気温度は切替室サーミスタ11で検出され、切替室ダンパー13を開閉制御することで±1℃程度の温度変動に抑えられている。過冷却冷凍を実施する場合、食品を切替室3に収納した後、ユーザーは操作パネル10の「瞬冷凍」ボタン10aを押す。ここで、「瞬冷凍」は過冷却冷凍と同義である。過冷却という表現は、「冷やし過ぎ」との誤認識を与える可能性があるため、操作パネル10では「瞬冷凍」という表現が使用されている。「瞬冷凍」ボタン10aが押されると、操作パネル10の表示部10bに「瞬冷凍」中であることが示されるとともに、過冷却冷凍が開始され、以下の(1)から(3)の温度制御が実施される。
 (1)まず、切替室3の設定温度を-3℃から0℃までの温度帯から選択された温度である第1の温度に設定し、食品温度が-1℃から1℃までの温度帯から選択された温度に到達するまで食品をゆっくりと冷却する。以下では、この冷却期間を第1の期間という。また、以下では、第1の温度は-3℃とし、-1℃から1℃までの温度帯から選択された温度は0℃とする。第1の温度は水の凍結点以下の温度であり、-1℃から1℃までの温度帯は水の凍結点を含んでいる。このように、食品温度が水の凍結点である0℃を含む温度帯から選択された温度に到達するまで食品をゆっくりと冷却することで、食品の表面温度と芯温度との温度差が小さい状態で冷却される。
 (2)食品温度が-1℃から1℃までの温度帯から選択された温度に到達すると、切替室3の設定温度を-12℃から-5℃までの温度帯から選択された温度である第2の温度まで徐々に下げ、食品を冷やし込んでいく。以下では、この過程を「冷やし込み」といい、この冷却期間を第2の期間という。また、以下では、第2の温度は-12℃とする。第2の温度は第1の温度よりも低い温度である。第2の期間では、食品は、水の凍結点未満の温度では過冷却状態に維持される。冷却速度は、食品の収納時の温度および食品の重量に応じて決まるが、一例を挙げれば0.06℃/分である。このような「冷やし込み」を行うことにより、冷却速度を速めつつ、食品は表面温度と芯温度との温度差が小さい状態で冷却される。なお、食品の表面温度と芯温度との温度差が大きくなると、食品中に含まれる水分の密度が変わり、その密度差で食品に含まれる水分の対流が発生する。このため、水分子の会合率が増加し、幼核の成長を促進するので過冷却が解除されやすくなる。
 (3)「冷やし込み」が進み、過冷却状態にある食品の温度が予め決められた最低到達温度に到達したときが、第2の期間の終了時期である。第2の期間は、過冷却状態の強制的な解除とともに終了する。過冷却状態の解除により、食品温度は水の凍結点まで戻り、食品中の水分が凍結する。食品中の水分が凍結した後は、水分以外の部分をできるだけ早く凍結させるべく設定温度を水の凍結点未満の第3の温度に設定して食品の冷凍を行い、食品全体が凍結したら完了となる。以下では、第3の温度は-7℃とする。以下では、過冷却状態の解除後の過程を「急冷凍」という。
Next, the cooling conditions for realizing supercooled refrigeration will be described. First, it is assumed that the set temperature of the switching chamber 3 is set to, for example, −7 ° C., which is a freezing temperature. In this state, the air temperature in the switching chamber 3 is detected by the switching chamber thermistor 11, and the switching chamber damper 13 is controlled to open and close, thereby suppressing temperature fluctuations of about ± 1 ° C. When supercooled freezing is performed, after the food is stored in the switching chamber 3, the user presses the “instant freezing” button 10 a on the operation panel 10. Here, “instantaneous freezing” is synonymous with supercooling freezing. Since the expression “supercooling” may give a misrecognition of “too cold”, the expression “instant freezing” is used on the operation panel 10. When the “instant freezing” button 10a is pressed, the display unit 10b of the operation panel 10 indicates that “instant freezing” is being performed, and supercooling freezing is started, and the following temperatures (1) to (3) Control is implemented.
(1) First, the set temperature of the switching chamber 3 is set to the first temperature selected from the temperature range from -3 ° C to 0 ° C, and the food temperature is set to the temperature range from -1 ° C to 1 ° C. Slowly cool the food until it reaches the temperature selected. Hereinafter, this cooling period is referred to as a first period. In the following, the first temperature is -3 ° C, and the temperature selected from the temperature range from -1 ° C to 1 ° C is 0 ° C. The first temperature is a temperature below the freezing point of water, and the temperature range from −1 ° C. to 1 ° C. includes the freezing point of water. Thus, by slowly cooling the food until the food reaches a temperature selected from a temperature range including 0 ° C., which is the freezing point of water, the temperature difference between the surface temperature of the food and the core temperature is small. Cooled in the state.
(2) When the food temperature reaches the temperature selected from the temperature range from -1 ° C to 1 ° C, the set temperature of the switching chamber 3 is the temperature selected from the temperature range from -12 ° C to -5 ° C. Gradually lower to the second temperature to cool the food. Hereinafter, this process is referred to as “cooling”, and this cooling period is referred to as a second period. In the following, the second temperature is -12 ° C. The second temperature is a temperature lower than the first temperature. In the second period, the food is maintained in a supercooled state at a temperature below the freezing point of water. The cooling rate is determined according to the temperature at which the food is stored and the weight of the food, and is 0.06 ° C./min, for example. By performing such “cooling”, the food is cooled with a small temperature difference between the surface temperature and the core temperature while increasing the cooling rate. Note that when the temperature difference between the surface temperature of the food and the core temperature increases, the density of moisture contained in the food changes, and the convection of moisture contained in the food occurs due to the density difference. For this reason, the association rate of water molecules increases, and the growth of nuclei is promoted, so that the supercooling is easily released.
(3) The end of the second period is when the “cooling” has progressed and the temperature of the supercooled food reaches the predetermined minimum temperature. The second period ends with the forced release of the supercooled state. By releasing the supercooled state, the food temperature returns to the freezing point of water and the water in the food is frozen. After the water in the food has been frozen, freeze the food by setting the set temperature to a third temperature below the freezing point of water in order to freeze the parts other than the water as soon as possible. Become. In the following, the third temperature is -7 ° C. Hereinafter, the process after the release of the supercooled state is referred to as “quick freezing”.
 上記したように、「冷やし込み」を開始可能な時期は、食品温度が-1℃から1℃までの温度帯から選択された温度に到達した時期であり、「急冷凍」を開始可能な時期は、食品温度が水の凍結点に復帰した時期である。従って、「冷やし込み」を開始可能な時期および「急冷凍」を開始可能な時期は、それぞれ食品を切替室3に収納した後からある固定の時間経過後というわけではなく、食品の収納時の温度および食品の重量によって異なる。これを、図4を参照して具体的に説明する。 As described above, the time when “cooling” can be started is the time when the food temperature reaches a temperature selected from the temperature range from −1 ° C. to 1 ° C., and the time when “quick freezing” can be started. Is the time when the food temperature has returned to the freezing point of water. Therefore, the time when the “cooling” can be started and the time when the “quick freezing” can be started are not after a fixed time since the food is stored in the switching chamber 3, respectively. Varies with temperature and food weight. This will be specifically described with reference to FIG.
 図4は、過冷却冷凍過程における食品温度と設定温度の変化例を示す図である。なお、図4(a)と図4(b)とでは、食品の重量が異なる。すなわち、図4(a)は、図4(b)よりも食品の重量が大きい場合を示している。食品の種類は同種としている。 FIG. 4 is a diagram showing an example of changes in food temperature and set temperature in the supercooled freezing process. It should be noted that the weight of the food is different between FIG. 4 (a) and FIG. 4 (b). That is, FIG. 4 (a) shows a case where the weight of the food is larger than that of FIG. 4 (b). The types of food are the same.
 まず、図4(a)について説明する。横軸は時間、縦軸は温度(℃)を表す。Tは食品温度を表し、Tは設定温度を表す。tは切替室3に食品が収納された時刻を表す。t以前は、設定温度は冷凍温度である-7℃に設定されている。切替室3への収納時の食品温度は30℃である。tは「瞬冷凍」ボタン10aが押された時刻であり、過冷却冷凍の開始時刻である。時刻tから時刻tまでの期間は、上記した第1の期間であり、設定温度は-3℃に設定されている。時刻tでは、食品温度は水の凍結点である0℃に到達する。時刻tから時刻tまでの期間は、上記した第2の期間、すなわち、「冷やし込み」の期間である。時刻tでは、設定温度は-12℃に到達しており、この時点で過冷却状態に維持された食品の食品温度が最低到達温度に到達するので、冷却速度を急激に増大させることで食品に温度的な刺激を与える。すなわち、時刻tは過冷却状態を解除するための温度的な刺激を与えるタイミングであり、「急冷凍」の開始時期でもある。上記した過冷却状態での最低到達温度は-10℃としている。過冷却状態が強制的に解除されると、食品温度は水の凍結点に戻り、食品中の水分が凍結する。時刻t以降は、食品中の水分以外の部分を凍結させるべく設定温度を冷凍温度である-7℃に保っている。 First, FIG. 4A will be described. The horizontal axis represents time, and the vertical axis represents temperature (° C.). T F represents the food temperature, T S represents the set temperature. t 0 represents the time when the food is stored in the switching chamber 3. Before t 0 , the set temperature is set to −7 ° C., which is the freezing temperature. The food temperature when stored in the switching chamber 3 is 30 ° C. t 1 is the time when the “instant freezing” button 10 a is pressed, and is the start time of the supercooling freezing. The period from time t 1 to time t 5 is the first period described above, and the set temperature is set to −3 ° C. At time t 5, the food temperature reaches the 0 ℃ a freezing point of water. The period from the time t 5 to time t 6, the second period as described above, that is, a period of "narrowing cold". At time t 6 , the set temperature has reached −12 ° C., and the food temperature of the food maintained in the supercooled state at this time reaches the minimum temperature, so that the food can be increased by rapidly increasing the cooling rate. Gives a thermal stimulus. In other words, the time t 6 is a timing that gives the temperature stimulation for releasing the supercooled state, is also the start time of the "sudden freezing". The minimum temperature reached in the above-described supercooled state is -10 ° C. When the supercooling state is forcibly released, the food temperature returns to the freezing point of water and the water in the food freezes. After time t 7 , the set temperature is kept at −7 ° C., which is the freezing temperature, in order to freeze portions other than moisture in the food.
 続いて、図4(b)について説明する。横軸、縦軸、T、T、収納時の食品温度、t、tは、図4(a)と同じである。時刻tから時刻tまでの期間は、上記した第1の期間であり、設定温度は-3℃に設定されている。時刻tでは、食品温度は水の凍結点に到達する。時刻tから時刻tまでの期間は、上記した第2の期間、すなわち、「冷やし込み」の期間である。時刻tでは、設定温度は-12℃に到達しており、この時点で過冷却状態に維持された食品の食品温度が最低到達温度に到達するので、冷却速度を急激に増大させることで食品に温度的な刺激を与える。すなわち、時刻tは過冷却状態を解除するための温度的な刺激を与えるタイミングであり、「急冷凍」の開始時期でもある。上記した過冷却状態での最低到達温度は-10℃としている。過冷却状態が強制的に解除されると、食品温度は水の凍結点に戻り、食品中の水分が凍結する。時刻t以降は、食品中の水分以外の部分を凍結させるべく設定温度を冷凍温度である-7℃に保っている。 Subsequently, FIG. 4B will be described. The horizontal axis, vertical axis, T F , T S , food temperature during storage, t 0 , t 1 are the same as in FIG. Period from time t 1 to time t 2 is the first period described above, the set temperature is set at -3 ° C.. At time t 2, the food temperature reaches the freezing point of water. The period from the time t 2 to time t 3, the second period as described above, that is, a period of "narrowing cold". At time t 3 , the set temperature has reached −12 ° C., and the food temperature of the food maintained in the supercooled state at this time reaches the minimum temperature, so that the food can be increased by rapidly increasing the cooling rate. Gives a thermal stimulus. In other words, the time t 3 is a timing that gives the temperature stimulation for releasing the supercooled state, is also the start time of the "sudden freezing". The minimum temperature reached in the above-described supercooled state is -10 ° C. When the supercooling state is forcibly released, the food temperature returns to the freezing point of water and the water in the food freezes. After time t 4 , the set temperature is kept at −7 ° C., which is the freezing temperature, in order to freeze portions other than moisture in the food.
 図4(a)と図4(b)との比較からわかるように、t≧tであり、t≧tであり、t≧tである。すなわち、食品の重量が大きいほど、「冷やし込み」の開始時期に到達するまでの時間が長くなる。また、食品の重量が大きいほど、「急冷凍」の開始時期に到達するまでの時間が長くなる。 As can be seen from the comparison between FIG. 4A and FIG. 4B, t 5 ≧ t 2 , t 6 ≧ t 3 , and t 7 ≧ t 4 . That is, the larger the weight of the food, the longer it takes to reach the start time of “cooling”. In addition, the larger the weight of the food, the longer the time until the “quick freezing” start time is reached.
 なお、図示は省略するが、食品の重量が互いに等しく、かつ、収納時の食品温度が互いに異なる場合は、収納時の食品温度が高いほど、「冷やし込み」の開始時期に到達するまでの時間が長くなる。また、収納時の食品温度が高いほど、「急冷凍」の開始時期に到達するまでの時間が長くなる。このように、「冷やし込み」の開始時期と「急冷凍」の開始時期は、食品の重量と収納時の食品温度の両方に依存して決まる。つまり、冷却の過程で食品から放出される熱量が「冷やし込み」の開始時期と「急冷凍」の開始時期を定めているとみなすことができる。従って、食品の重量および収納時の食品温度が互いに異なる食品であっても、熱量が等しければ、「冷やし込み」の開始時期および「急冷凍」の開始時期は互いに同等のものとなる。 Although illustration is omitted, if the food weights are equal to each other and the food temperature at the time of storage is different from each other, the higher the food temperature at the time of storage, the longer it takes to reach the start time of “cooling” Becomes longer. In addition, the higher the food temperature at the time of storage, the longer the time until the “quick freezing” start time is reached. Thus, the start time of “cooling” and the start time of “quick freezing” are determined depending on both the weight of food and the temperature of food at the time of storage. That is, it can be considered that the amount of heat released from the food during the cooling process determines the start time of “cooling” and the start time of “quick freezing”. Therefore, even if the food weight and the food temperature at the time of storage are different from each other, the start time of “chilling” and the start time of “quick freezing” are equivalent to each other as long as the amount of heat is equal.
 次に、本実施の形態における過冷却冷凍処理の詳細について説明する。まず、切替室3内の空気温度から収納時の食品温度と食品の重量を推定する処理について説明する。 Next, details of the supercooling freezing process in the present embodiment will be described. First, a process for estimating the food temperature and the weight of food during storage from the air temperature in the switching chamber 3 will be described.
 図5は、食品の切替室3への収納後の空気温度の時間変化を示す図である。横軸は時間、縦軸は切替室3内の空気温度である。時刻tは切替室3に食品が収納された時刻である。T(F1)は食品F1の食品投入時の空気温度の時間変化を表す曲線、T(F2)は食品F2の食品投入時の空気温度の時間変化を表す曲線、T(F3)は食品F3の食品投入時の空気温度の時間変化を表す曲線である。食品F1の重量は食品F2の重量より大きく、食品F2の重量は食品F3の重量より大きい。食品F1からF3は同種の食品であり、収納時の食品温度は、食品F1からF3について互いに等しく設定されている。T(F1)、T(F2)およびT(F3)が示すように、切替室3内に食品が収納されると、切替室3内の空気温度が一旦上昇し、その後下降に転ずる。ただし、空気温度が上昇から下降に転ずる時点から一定時間経過するまでの期間における空気温度の低下率は、食品の重量によって異なる。これを、図6を参照して具体的に説明する。 FIG. 5 is a diagram showing the change over time in the air temperature after the food is stored in the switching chamber 3. The horizontal axis represents time, and the vertical axis represents the air temperature in the switching chamber 3. Time t 0 is the time when the food is stored in the switching chamber 3. T a (F1) is a curve representing the time change of the air temperature of the food F1 when the food is charged, T a (F2) is a curve representing the time change of the air temperature of the food F2 when the food is charged, and T a (F3) is It is a curve showing the time change of the air temperature at the time of food injection of the food F3. The weight of the food F1 is larger than the weight of the food F2, and the weight of the food F2 is larger than the weight of the food F3. The foods F1 to F3 are the same kind of food, and the food temperature during storage is set equal to each other for the foods F1 to F3. As indicated by T a (F1), T a (F2), and T a (F3), when food is stored in the switching chamber 3, the air temperature in the switching chamber 3 once rises and then falls. . However, the rate of decrease in air temperature during a period from when the air temperature changes from rising to falling until a certain time elapses varies depending on the weight of the food. This will be specifically described with reference to FIG.
 図6は、空気温度の低下率を説明するための図である。横軸、縦軸、時刻t,T(F1),T(F2),T(F3)は、図5と同様である。P1はT(F1)のピーク点、P2はT(F2)のピーク点、P3はT(F3)のピーク点である。ここで、ピーク点は空気温度が上昇から下降に転ずる点である。Δtは予め決められた一定時間である。Δtは、例えば1分から10分の範囲から選択される。Q1はP1からΔt経過後のT(F1)上の点、Q2はP2からΔt経過後のT(F2)上の点、Q3はP3からΔt経過後のT(F3)上の点である。食品F1については、空気温度の低下率は、((P1での空気温度)-(Q1での空気温度))/Δtで与えられ、P1とQ1とを結ぶ直線の傾きに等しい。同様に、食品F2については、空気温度の低下率は、((P2での空気温度)-(Q2での空気温度))/Δtで与えられ、P2とQ2とを結ぶ直線の傾きに等しい。同様に、食品F3については、空気温度の低下率は、((P3での空気温度)-(Q3での空気温度))/Δtで与えられ、P3とQ3とを結ぶ直線の傾きに等しい。 FIG. 6 is a diagram for explaining a decrease rate of the air temperature. The horizontal axis, the vertical axis, and the times t 0 , T a (F1), T a (F2), and T a (F3) are the same as those in FIG. P1 is a peak point of T a (F1), P2 is a peak point of T a (F2), and P3 is a peak point of T a (F3). Here, the peak point is a point where the air temperature changes from rising to falling. Δt is a predetermined time. Δt is selected from a range of 1 minute to 10 minutes, for example. Q1 is a point on T a (F1) after Δt has elapsed from P1, Q2 is a point on T a (F2) after Δt has elapsed from P2, and Q3 is a point on T a (F3) after Δt has elapsed from P3 It is. For food F1, the rate of decrease in air temperature is given by ((air temperature at P1) − (air temperature at Q1)) / Δt, and is equal to the slope of the straight line connecting P1 and Q1. Similarly, for food F2, the rate of decrease in air temperature is given by ((air temperature at P2) − (air temperature at Q2)) / Δt, and is equal to the slope of the straight line connecting P2 and Q2. Similarly, for food F3, the rate of decrease in air temperature is given by ((air temperature at P3) − (air temperature at Q3)) / Δt, and is equal to the slope of the straight line connecting P3 and Q3.
 図6から明らかなように、空気温度の低下率は、食品F1,食品F2,食品F3の順に増大しており、食品の重量が小さいほど大きい。図7は、食品F1からF3について空気温度の低下率と食品の重量との関係を示す図である。横軸は「重量」を表し、縦軸は「傾き」を表す。ここで、「重量」は食品の重量である。「傾き」は、空気温度の低下の傾き、すなわち、空気温度の低下率を表している。 As is apparent from FIG. 6, the rate of decrease in the air temperature increases in the order of food F1, food F2, and food F3, and increases as the weight of the food decreases. FIG. 7 is a diagram illustrating the relationship between the rate of decrease in air temperature and the weight of food for foods F1 to F3. The horizontal axis represents “weight” and the vertical axis represents “slope”. Here, “weight” is the weight of the food. “Slope” represents the slope of the decrease in air temperature, that is, the rate of decrease in air temperature.
 このように、収納時の食品温度を同一とした場合は、食品の重量が大きいほど、空気温度の低下率は小さくなる。同様に、重量を同一とした場合は、収納時の食品温度が高いほど、空気温度の低下率は小さくなる。 Thus, when the food temperature at the time of storage is the same, the rate of decrease in air temperature decreases as the weight of the food increases. Similarly, when the weights are the same, the higher the food temperature at the time of storage, the smaller the air temperature decrease rate.
 そこで、本実施の形態では、収納時の食品温度および食品の重量の複数の異なる組み合わせについて、空気温度が上昇から下降に転ずる時点から一定時間Δtを経過するまでの期間における空気温度の低下率を予め実測し、収納時の食品温度および食品の重量と空気温度の低下率との対応関係を予めテーブル化しておく。以下では、このテーブルを第1のテーブルという。第1のテーブルは図3のメモリ17に予め記憶される。マイクロコンピュータ15は、第1のテーブルを参照して、空気温度の低下率の算出値から収納時の食品温度および食品の重量を推定することができる。 Therefore, in the present embodiment, for a plurality of different combinations of food temperature and food weight at the time of storage, the rate of decrease in air temperature in a period from when the air temperature starts to rise to when it falls for a certain time Δt is calculated. Measured in advance, the correspondence between the food temperature at the time of storage and the weight of the food and the rate of decrease in the air temperature is tabulated in advance. Hereinafter, this table is referred to as a first table. The first table is stored in advance in the memory 17 of FIG. The microcomputer 15 can estimate the food temperature and the weight of the food at the time of storage from the calculated value of the decrease rate of the air temperature with reference to the first table.
 図8は、収納時の食品温度および食品の重量と空気温度の低下率とを対応付けるテーブルの一例を示す図である。図8は、第1のテーブルの一例を示している。「重量」は食品の重量を示し、「食品温度」は収納時の食品温度を示している。空気温度の低下率の単位は(℃/分)である。例えば「重量」が100g、「食品温度」が10℃である場合は、空気温度の低下率は0.10(℃/分)である。 FIG. 8 is a diagram showing an example of a table for associating food temperature at the time of storage and the weight of food with the rate of decrease in air temperature. FIG. 8 shows an example of the first table. “Weight” indicates the weight of the food, and “Food temperature” indicates the food temperature at the time of storage. The unit of the decrease rate of the air temperature is (° C./min). For example, when the “weight” is 100 g and the “food temperature” is 10 ° C., the rate of decrease in air temperature is 0.10 (° C./min).
 なお、第1のテーブルでは、同一の空気温度の低下率に対して、「重量」と「食品温度」との組み合わせが複数存在する場合がある。これは、このような組み合わせに対しては、上記した食品の熱量が互いに等しいことを意味する。この場合は、「冷やし込み」の開始時期および「急冷凍」の開始時期も互いに等しくなるので、いずれの組み合わせを選択したとしても、「冷やし込み」の開始時期および「急冷凍」の開始時期の推定には影響を及ぼさない。従って、この場合は、任意の組み合わせを選択し、収納時の食品温度および食品の重量の推定値とすることができる。 In the first table, there may be a plurality of combinations of “weight” and “food temperature” for the same air temperature decrease rate. This means that for such a combination, the calories of the foods described above are equal to each other. In this case, the start time of “cooling” and the start time of “quick freezing” are equal to each other. Therefore, regardless of which combination is selected, the start time of “cooling” and the start time of “quick freezing” Does not affect estimation. Therefore, in this case, any combination can be selected and used as the estimated value of food temperature and food weight during storage.
 次に、上記のようにして推定された収納時の食品温度および食品の重量から、「冷やし込み」の開始時期および「急冷凍」の開始時期を推定する処理について説明する。 Next, processing for estimating the start time of “chilling” and the start time of “quick freezing” from the food temperature and weight of food estimated as described above will be described.
 まず、収納時の食品温度と食品の重量の複数の異なる組み合わせについて食品の過冷却冷凍実験を予め実施し、「冷やし込み」の開始時期と「急冷凍」の開始時期を実測し、収納時の食品温度および食品の重量と「冷やし込み」の開始時期および「急冷凍」の開始時期との関係を予めテーブル化しておく。以下では、このテーブルを第2のテーブルという。第2のテーブルは図3のメモリ17に予め記憶される。なお、「冷やし込み」の開始時期は、過冷却冷凍処理の開始時からの経過時間として与える。「急冷凍」の開始時期についても同様である。マイクロコンピュータ15は、第1のテーブルを参照して、空気温度の低下率の算出値から収納時の食品温度と食品の重量を推定した後、第2のテーブルを参照して、推定された収納時の食品温度と食品の重量から「冷やし込み」の開始時期と「急冷凍」の開始時期を推定する。 First, a food supercooling freezing experiment was conducted in advance for several different combinations of food temperature and food weight at the time of storage, and the start time of “cooling” and the start time of “quick freezing” were measured, The relationship between the food temperature and the food weight and the start time of “cooling” and the start time of “quick freezing” is tabulated in advance. Hereinafter, this table is referred to as a second table. The second table is stored in advance in the memory 17 of FIG. The start time of “cooling” is given as an elapsed time from the start of the supercooling freezing process. The same applies to the start time of “quick freezing”. The microcomputer 15 refers to the first table, estimates the food temperature and food weight at the time of storage from the calculated value of the decrease rate of the air temperature, and then refers to the second table to estimate the storage Estimate the start time of “chilling” and the start time of “quick freezing” from the food temperature and the weight of the food.
 図9は、収納時の食品温度および食品の重量と「冷やし込み」の開始時期とを対応付けるテーブルの一例を示す図、図10は、収納時の食品温度および食品の重量と「急冷凍」の開始時期とを対応付けるテーブルの一例を示す図である。図9に示すテーブルと図10に示すテーブルの組が、第2のテーブルの一例である。 FIG. 9 is a diagram illustrating an example of a table that associates food temperature and food weight during storage with the start time of “cooling”, and FIG. 10 illustrates food temperature and food weight during storage and “quick freeze”. It is a figure which shows an example of the table which matches start time. A set of the table shown in FIG. 9 and the table shown in FIG. 10 is an example of the second table.
 図9において、「重量」は食品の重量を示し、「食品温度」は収納時の食品温度を示している。「冷やし込み」の開始時期補正量は、基準となる「冷やし込み」の開始時期からの補正量を表している。ここで、基準となる「冷やし込み」の開始時期は、基準となる「重量」および「食品温度」の食品に対応する「冷やし込み」の開始時期であり、予め実測で求めておく。「冷やし込み」の開始時期補正量の単位は(分)である。例えば「重量」が300g、「食品温度」が50℃である場合には、「冷やし込み」の開始時期補正量は+60分であり、基準となる「冷やし込み」の開始時期をa分とすると、「冷やし込み」の開始時期は(a+60)分となる。 In FIG. 9, “weight” indicates the weight of the food, and “food temperature” indicates the food temperature during storage. The “cooling” start time correction amount represents a correction amount from the reference “cooling” start time. Here, the reference “cooling” start time is the start time of “cooling” corresponding to the reference “weight” and “food temperature” food, and is obtained in advance by actual measurement. The unit of the start time correction amount of “cooling” is (minutes). For example, if the “weight” is 300 g and the “food temperature” is 50 ° C., the start time correction amount of “chilling” is +60 minutes, and the starting time of the “cooling” as a reference is a minute. The start time of “cooling” is (a + 60) minutes.
 図10についても図9と同様である。「急冷凍」の開始時期補正量は、基準となる「急冷凍」の開始時期からの補正量を表している。ここで、基準となる「急冷凍」の開始時期は、基準となる「重量」および「食品温度」の食品に対応する「急冷凍」の開始時期であり、予め実測で求めておく。「急冷凍」の開始時期補正量の単位は(分)である。例えば「重量」が300g、「食品温度」が50℃である場合には、「急冷凍」の開始時期補正量は+70分であり、基準となる「急冷凍」の開始時期をb分とすると、「急冷凍」の開始時期は(b+70)分となる。 FIG. 10 is similar to FIG. The “quick freezing” start time correction amount represents a correction amount from the reference “quick freezing” start time. Here, the reference “quick freeze” start time is the start time of “quick freeze” corresponding to the reference “weight” and “food temperature” food, and is obtained in advance by actual measurement. The unit of the correction amount for the start time of “quick freezing” is (minutes). For example, when the “weight” is 300 g and the “food temperature” is 50 ° C., the start time correction amount of “quick freeze” is +70 minutes, and the start time of the “quick freeze” as a reference is b minutes. The start time of “quick freezing” is (b + 70) minutes.
 図9および図10に示すような第2のテーブル、「冷やし込み」の開始時期の基準値および「急冷凍」の開始時期の基準値は、図3のメモリ17に予め記憶される。なお、図示例では、第2のテーブルは「冷やし込み」の開始時期補正量と「急冷凍」の開始時期補正量とで分けられているが、図9および図10を一つのテーブルにまとめることもできる。 The second table as shown in FIGS. 9 and 10, the reference value for the start time of “cooling” and the reference value for the start time of “quick freezing” are stored in advance in the memory 17 of FIG. In the illustrated example, the second table is divided into the “cooling” start timing correction amount and the “quick freezing” start timing correction amount, but FIG. 9 and FIG. 10 are combined into one table. You can also.
 次に、本実施の形態の動作について説明する。以下に述べる処理の主体は、マイクロコンピュータ15のプロセッサ16である。また、上記したように、第1および第2のテーブルはメモリ17に記憶されている。ここで、第1のテーブルは、収納時の食品温度および食品の重量と空気温度の低下率とを対応付けるテーブルである。また、第2のテーブルは、収納時の食品温度および食品の重量と第2の期間の開始時期および終了時期とを対応付けるテーブルである。なお、第2の期間の開始時期は「冷やし込み」の開始時期であり、第2の期間の終了時期は「急冷凍」の開始時期である。 Next, the operation of this embodiment will be described. The subject of the processing described below is the processor 16 of the microcomputer 15. Further, as described above, the first and second tables are stored in the memory 17. Here, the first table is a table that associates the food temperature at the time of storage and the weight of the food with the decreasing rate of the air temperature. The second table is a table for associating the food temperature and food weight during storage with the start time and end time of the second period. The start time of the second period is the start time of “cooling”, and the end time of the second period is the start time of “quick freezing”.
 まず、切替室3に食品が収納され、操作パネル10の「瞬冷凍」ボタン10aが押されて、過冷却冷凍処理が開始される。切替室サーミスタ11は、切替室3内の空気温度を検出し、空気温度の検出データをマイクロコンピュータ15に出力している。マイクロコンピュータ15は、例えば10m秒の周期で空気温度の検出データを取得する。 First, food is stored in the switching chamber 3, and the "instant freezing" button 10a of the operation panel 10 is pressed, and the supercooling freezing process is started. The switching chamber thermistor 11 detects the air temperature in the switching chamber 3 and outputs air temperature detection data to the microcomputer 15. For example, the microcomputer 15 acquires air temperature detection data at a period of 10 milliseconds.
 マイクロコンピュータ15は、切替室サーミスタ11により検出される空気温度を監視し、空気温度が上昇から下降に転ずる時点を検出し、この時点から一定時間経過するまでの期間における空気温度の低下率を算出する。この際、空気温度の検出データのノイズによる変動を考慮すると、空気温度の検出データから一定期間分の移動平均値または区間平均値を算出した上で、空気温度が上昇から下降に転ずる時点の検出および空気温度の低下率を算出を行うことが好ましい。例えば、マイクロコンピュータ15は、空気温度の検出データを取得するたびに、過去一定期間分の空気温度の検出データを用いて移動平均値を算出し、直前の移動平均値と新たに求めた移動平均値とを比較することで、空気温度が上昇から下降に転ずる時点を検出することができる。さらに、空気温度の低下率の算出に移動平均値を用いることができる。これにより、空気温度が上昇から下降に転ずる時点の検出および空気温度の低下率を算出の精度が向上する。 The microcomputer 15 monitors the air temperature detected by the switching room thermistor 11, detects the time when the air temperature changes from rising to falling, and calculates the rate of decrease in the air temperature during a period until a certain time elapses from this time. To do. At this time, taking into account fluctuations due to noise in the air temperature detection data, the moving average value or interval average value for a certain period is calculated from the air temperature detection data, and then the time point when the air temperature starts to rise and falls is detected. It is preferable to calculate the reduction rate of the air temperature. For example, each time the microcomputer 15 acquires the air temperature detection data, the microcomputer 15 calculates the moving average value using the air temperature detection data for a certain period in the past, the previous moving average value and the newly obtained moving average. By comparing with the value, it is possible to detect the time point when the air temperature changes from rising to falling. Furthermore, a moving average value can be used for calculating the air temperature decrease rate. This improves the accuracy of detecting the time when the air temperature changes from rising to falling and calculating the rate of decrease in air temperature.
 次に、マイクロコンピュータ15は、メモリ17に記憶された第1のテーブルを参照して、算出された空気温度の低下率に対応する収納時の食品温度および食品の重量を求める。 Next, the microcomputer 15 refers to the first table stored in the memory 17 and obtains the food temperature and the food weight at the time of storage corresponding to the calculated air temperature decrease rate.
 続いて、マイクロコンピュータ15は、メモリ17に記憶された第2のテーブルを参照して、求められた収納時の食品温度と食品の重量に対応する第2の期間の開始時期および終了時期を求める。 Subsequently, the microcomputer 15 refers to the second table stored in the memory 17 to determine the start time and end time of the second period corresponding to the determined food temperature and food weight at the time of storage. .
 このようにして、第2の期間の開始時期と第2の期間の終了時期を求めた後、マイクロコンピュータ15は、求められた第2の期間の開始時期と第2の期間の終了時期に従って、上記した(1)から(3)の過冷却冷凍を実施する。すなわち、マイクロコンピュータ15は、切替室3に食品が収納された後、切替室3の設定温度を水の凍結点以下の第1の温度に設定して食品を第1の期間冷却し、続いて設定温度を第1の温度よりも低い第2の温度まで徐々に低下させつつ食品を第2の期間冷却して食品を過冷却状態に維持し、続いて食品の過冷却状態を強制的に解除した後、設定温度を凍結点未満の第3の温度に設定して食品を冷凍する過冷却冷凍の実施をする。なお、収納時の食品温度および食品の重量を推定し、さらに第2の期間の開始時期および終了時期を推定する処理は、第1の期間中に実施される。 In this way, after obtaining the start time of the second period and the end time of the second period, the microcomputer 15 determines the start time of the second period and the end time of the second period, The supercooled refrigeration described in (1) to (3) is performed. That is, after food is stored in the switching chamber 3, the microcomputer 15 sets the set temperature of the switching chamber 3 to a first temperature below the freezing point of water to cool the food for a first period, and then While gradually lowering the set temperature to a second temperature that is lower than the first temperature, the food is cooled for a second period to maintain the food in a supercooled state, and then the food supercooled state is forcibly released. After that, supercooled freezing is performed in which the set temperature is set to a third temperature lower than the freezing point and the food is frozen. In addition, the process which estimates the food temperature and food weight at the time of storage, and also estimates the start time and end time of a 2nd period is implemented during a 1st period.
 以上に説明したように、本実施の形態では、切替室3内の空気温度の低下率から収納時の食品温度および食品の重量を推定し、さらにその結果を用いて収納時の食品温度および食品の重量に応じた過冷却冷凍の冷却条件を求めている。 As described above, in the present embodiment, the food temperature and food weight during storage are estimated from the rate of decrease in the air temperature in the switching chamber 3, and the food temperature and food during storage are further calculated using the results. The cooling conditions of the supercooled refrigeration according to the weight of the are calculated.
 従って、本実施の形態によれば、サーモパイルを用いない安価な構成のもとで、切替室3への収納時の食品温度および食品の重量にかかわりなく過冷却冷凍を実現することができる。 Therefore, according to the present embodiment, it is possible to realize supercooled freezing regardless of the food temperature and the weight of food when stored in the switching chamber 3 under an inexpensive configuration without using a thermopile.
 また、収納時の食品温度および食品の重量を考慮することにより、過冷却冷凍処理における設定温度の変更時期を収納時の食品温度および食品の重量に合わせて調整することが可能となり、過冷却の最低到達温度を安定して深化させることができ、解凍時の食品の品質が向上する。 In addition, by considering the food temperature and food weight during storage, it is possible to adjust the set temperature change time in the supercooled freezing process according to the food temperature and food weight during storage. The minimum temperature reached can be deepened stably, and the quality of the food during thawing is improved.
 また、本実施の形態では、マイクロコンピュータ15は、メモリ17に記憶された第1のテーブルを参照して、算出された空気温度の低下率に対応する収納時の食品温度および食品の重量を求め、さらにメモリ17に記憶された第2のテーブルを参照して、求められた収納時の食品温度と食品の重量に対応する第2の期間の開始時期および終了時期を求めている。これにより、第2の期間の開始時期および終了時期の推定のみならず、収納時の食品温度および食品の重量の推定も可能になる。 Further, in the present embodiment, the microcomputer 15 refers to the first table stored in the memory 17 and obtains the food temperature and food weight at the time of storage corresponding to the calculated air temperature decrease rate. Further, by referring to the second table stored in the memory 17, the start time and end time of the second period corresponding to the obtained food temperature and food weight at the time of storage are obtained. This makes it possible not only to estimate the start time and end time of the second period, but also to estimate the food temperature and food weight during storage.
 なお、本実施の形態では、切替室3内の空気温度の低下率から収納時の食品温度および食品の重量を推定した後に、さらに第2の期間の開始時期および終了時期を推定するという手順を踏んでいるが、切替室3内の空気温度の低下率から第2の期間の開始時期および終了時期を直接推定する手順も可能である。 In the present embodiment, after estimating the food temperature and the weight of the food at the time of storage from the rate of decrease in the air temperature in the switching chamber 3, the procedure of further estimating the start time and end time of the second period is performed. Although it is stepped on, a procedure for directly estimating the start timing and end timing of the second period from the rate of decrease of the air temperature in the switching chamber 3 is also possible.
 すなわち、メモリ17に、食品の切替室3への収納後に空気温度が上昇から下降に転ずる時点から一定時間経過するまでの期間における空気温度の低下率と第2の期間の開始時期および終了時期との対応関係を与える対応関係情報を記憶させておく。そして、マイクロコンピュータ15は、切替室サーミスタ11により検出された空気温度を用いて空気温度の低下率を算出し、メモリ17に記憶された対応関係情報を参照して、算出された空気温度の低下率に対応する第2の期間の開始時期および終了時期を求め、求められた第2の期間の開始時期および終了時期に従って過冷却冷凍の実施をするようにしてもよい。 That is, the memory 17 stores in the memory 17 the rate of decrease in the air temperature and the start and end times of the second period from the time when the air temperature changes from rising to falling after the food is stored in the switching chamber 3. Correspondence relationship information that gives the corresponding relationship is stored. The microcomputer 15 calculates the air temperature decrease rate using the air temperature detected by the switching room thermistor 11 and refers to the correspondence information stored in the memory 17 to decrease the calculated air temperature. The start time and end time of the second period corresponding to the rate may be obtained, and the supercooling refrigeration may be performed according to the obtained start time and end time of the second period.
 また、本実施の形態では、空気温度の低下率を算出し、算出された空気温度の低下率に対応する収納時の食品温度および食品の重量を求めているが、空気温度の低下率を算出する代わりに、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を用いることで、収納時の食品温度および食品の重量を推定することもできる。これを、図11および図12を参照して説明する。 In the present embodiment, the air temperature decrease rate is calculated and the food temperature and food weight at the time of storage corresponding to the calculated air temperature decrease rate are obtained. However, the air temperature decrease rate is calculated. Instead, the food temperature and the weight of the food at the time of storage can be estimated by using the time from the time when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling. This will be described with reference to FIG. 11 and FIG.
 図11は、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を説明するための図である。横軸、縦軸、時刻t,T(F1),T(F2),T(F3)、P1,P2,P3は、図6と同様である。食品F1からF3は同種の食品であり、収納時の食品温度は、食品F1からF3について互いに等しく設定されている。Aは、食品F1について、切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を示している。Bは、食品F2について、切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を示している。Cは、食品F3について、切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を示している。図11に示すように、A>B>Cの関係が成り立つ。 FIG. 11 is a diagram for explaining the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling. The horizontal axis, the vertical axis, and the times t 0 , T a (F1), T a (F2), T a (F3), P1, P2, and P3 are the same as those in FIG. The foods F1 to F3 are the same kind of food, and the food temperature during storage is set equal to each other for the foods F1 to F3. A shows the time from the time when the food F1 is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling. B shows the time from the time when the food F2 is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling. C shows the time from the time when the food F3 is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling. As shown in FIG. 11, the relationship of A>B> C is established.
 図12は、食品F1からF3について切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間と食品の重量との関係を示す図である。横軸の「重量」は食品の重量である。縦軸の「時間」は、切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間である。図12は、図11の食品F1からF3について、「重量」と「時間」との関係を図示したものである。図12に示すように、切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間は、食品F3、食品F2、食品F1の順に増大しており、食品の重量が大きいほど大きい。 FIG. 12 is a diagram showing the relationship between the time from when the foods F1 to F3 are stored in the switching chamber 3 to the time when the air temperature changes from rising to falling and the weight of the food. The “weight” on the horizontal axis is the weight of the food. The “time” on the vertical axis is the time from the time when the air is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling. FIG. 12 illustrates the relationship between “weight” and “time” for the foods F1 to F3 in FIG. As shown in FIG. 12, the time from when the air is stored in the switching chamber 3 to when the air temperature changes from rising to falling increases in the order of food F3, food F2, and food F1, and the weight of the food increases. large.
 このように、収納時の食品温度を同一とした場合は、食品の重量が大きいほど、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間は長くなる。同様に、重量を同一とした場合は、収納時の食品温度が高いほど、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間は長くなる。そこで、第1のテーブルを収納時の食品温度および食品の重量と空気温度の低下率とを対応付けるテーブルとする代わりに次のようにすることができる。 As described above, when the food temperature at the time of storage is the same, as the weight of the food is larger, the time from when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling becomes longer. Similarly, when the weights are the same, the higher the food temperature at the time of storage, the longer the time from when the food is stored in the switching chamber 3 until the time when the air temperature changes from rising to falling. Therefore, instead of using the first table as a table for associating the food temperature at the time of storage and the weight of the food with the rate of decrease in the air temperature, the following can be performed.
 すなわち、収納時の食品温度および食品の重量の複数の異なる組み合わせについて、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を予め実測し、収納時の食品温度および食品の重量と食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間との対応関係を予めテーブル化しておく。このテーブルを第1のテーブルとし、この第1のテーブルをメモリ17に記憶させておく。 That is, for a plurality of different combinations of food temperature at the time of storage and the weight of food, the time from when the food is stored in the switching chamber 3 to the time when the air temperature starts to rise is measured in advance, and the food temperature at the time of storage The correspondence relationship between the weight of the food and the time from when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling is tabulated in advance. This table is the first table, and this first table is stored in the memory 17.
 次に、マイクロコンピュータ15は、切替室サーミスタ11により検出される空気温度を監視し、空気温度が上昇から下降に転ずる時点を検出し、検出された時点と収納時との時間差を算出する。この時間差が、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間となる。 Next, the microcomputer 15 monitors the air temperature detected by the switching chamber thermistor 11, detects the time when the air temperature changes from rising to falling, and calculates the time difference between the detected time and the storage time. This time difference is the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling.
 次に、マイクロコンピュータ15は、メモリ17に記憶された第1のテーブルを参照して、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間の算出値に対応する収納時の食品温度および食品の重量を求める。以降の処理は、空気温度の低下率を算出する場合と同様である。 Next, the microcomputer 15 refers to the first table stored in the memory 17 and corresponds to the calculated value of the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling. Obtain food temperature and food weight when storing. The subsequent processing is the same as the case of calculating the air temperature decrease rate.
 この場合、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間から収納時の食品温度および食品の重量を推定した後に、さらに第2の期間の開始時期および終了時期を推定するという手順を踏んでいるが、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間から第2の期間の開始時期および終了時期を直接推定する手順も可能である。 In this case, after estimating the food temperature and the weight of the food from the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling, the start time and end of the second period are further estimated The procedure of estimating the time is taken, but the procedure of directly estimating the start timing and the end timing of the second period from the time from when the food is stored in the switching chamber 3 to the time when the air temperature starts to rise to descend Is also possible.
 すなわち、メモリ17に、食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間と第2の期間の開始時期および終了時期との対応関係を与える対応関係情報を記憶させておく。そして、マイクロコンピュータ15は、切替室サーミスタ11により検出された空気温度を用いて食品の切替室3への収納時から空気温度が上昇から下降に転ずる時点までの時間を算出し、メモリ17に記憶された対応関係情報を参照して、算出された時間に対応する第2の期間の開始時期および終了時期を求め、求められた第2の期間の開始時期および終了時期に従って過冷却冷凍の実施をするようにしてもよい。この場合でも、本実施の形態と同様の効果を奏する。 In other words, the memory 17 stores correspondence information that gives a correspondence relationship between the time from when the food is stored in the switching chamber 3 to the time when the air temperature changes from rising to falling and the start time and end time of the second period. Let me. The microcomputer 15 uses the air temperature detected by the switching chamber thermistor 11 to calculate the time from when the food is stored in the switching chamber 3 to when the air temperature changes from rising to falling, and storing it in the memory 17. With reference to the obtained correspondence relationship information, the start time and end time of the second period corresponding to the calculated time are obtained, and the supercooling refrigeration is performed according to the obtained start time and end time of the second period. You may make it do. Even in this case, the same effects as in the present embodiment can be obtained.
 以上では、切替室3内で過冷却冷凍が可能な構成について説明したが、他の収納室、例えば冷凍室5内で過冷却冷凍が可能な構成にすることもできる。また、本実施の形態は、冷蔵庫のみならず、貯蔵室内の冷却が可能な貯蔵庫にも適用することができる。 In the above, the configuration in which the supercooling and freezing can be performed in the switching chamber 3 has been described. However, a configuration in which the supercooling and freezing can be performed in another storage chamber, for example, the freezing chamber 5 can be used. Moreover, this Embodiment can be applied not only to a refrigerator, but also to a storage that can cool the storage chamber.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 冷蔵庫、2 冷蔵室、3 切替室、4 野菜室、5 冷凍室、6 圧縮機、7 冷却器、8 庫内ファン、9 扉、10 操作パネル、10a ボタン、10b 表示部、11 切替室サーミスタ、12 風路、13 切替室ダンパー、14 制御基板、15 マイクロコンピュータ、16 プロセッサ、17 メモリ、18 電源。 1 refrigerator, 2 refrigerator compartment, 3 switching room, 4 vegetable room, 5 freezer room, 6 compressor, 7 cooler, 8 internal fan, 9 door, 10 operation panel, 10a button, 10b display section, 11 switching room thermistor , 12 air paths, 13 switching room dampers, 14 control boards, 15 microcomputers, 16 processors, 17 memories, 18 power supplies.

Claims (4)

  1.  収納室に食品が収納された後、前記収納室の設定温度を水の凍結点以下の第1の温度に設定して前記食品を第1の期間冷却し、続いて前記設定温度を前記第1の温度よりも低い第2の温度まで徐々に低下させつつ前記食品を第2の期間冷却して前記食品を過冷却状態に維持し、続いて前記食品の過冷却状態を強制的に解除した後、前記設定温度を前記凍結点未満の第3の温度に設定して前記食品を冷凍する過冷却冷凍の実施をすることが可能な冷蔵庫であって、
     前記収納室内の空気温度を検出する温度検出部と、
     前記食品の前記収納室への収納後に前記空気温度が上昇から下降に転ずる時点から一定時間経過するまでの期間における前記空気温度の低下率と前記第2の期間の開始時期および終了時期との対応関係を与える対応関係情報を記憶する記憶部と、
     前記冷蔵庫の運転を制御する制御部と、
     を備え、
     前記制御部は、前記温度検出部により検出された前記空気温度を用いて前記空気温度の低下率を算出し、前記対応関係情報を参照して、前記算出された空気温度の低下率に対応する前記第2の期間の開始時期および終了時期を求め、前記求められた第2の期間の開始時期および終了時期に従って前記過冷却冷凍の実施をすることを特徴とする冷蔵庫。
    After the food is stored in the storage chamber, the set temperature of the storage chamber is set to a first temperature below the freezing point of water to cool the food for a first period, and then the set temperature is set to the first temperature. After gradually lowering the food to a second temperature lower than the temperature of the product, cooling the food for a second period to maintain the food in a supercooled state, and then forcibly releasing the supercooled state of the food , A refrigerator capable of performing supercooled freezing to freeze the food by setting the set temperature to a third temperature below the freezing point,
    A temperature detector for detecting an air temperature in the storage chamber;
    Correspondence between a decrease rate of the air temperature and a start time and an end time of the second period from the time when the air temperature changes from rising to falling after storing the food in the storage chamber A storage unit for storing correspondence information for giving a relationship;
    A control unit for controlling the operation of the refrigerator;
    With
    The control unit calculates a reduction rate of the air temperature using the air temperature detected by the temperature detection unit, refers to the correspondence information, and corresponds to the calculated reduction rate of the air temperature. A refrigerator characterized in that a start time and an end time of the second period are obtained, and the supercooling refrigeration is performed according to the obtained start time and end time of the second period.
  2.  前記対応関係情報は、前記食品の前記収納室への収納時の食品温度および前記食品の重量と前記空気温度の低下率とを対応付ける第1のテーブルと、前記食品の前記収納室への収納時の食品温度および前記食品の重量と前記第2の期間の開始時期および終了時期とを対応付ける第2のテーブルとからなることを特徴とする請求項1に記載の冷蔵庫。 The correspondence information includes a first table for associating a food temperature when the food is stored in the storage chamber, a weight of the food with a rate of decrease in the air temperature, and when the food is stored in the storage chamber. The refrigerator according to claim 1, further comprising: a second table that associates the food temperature and the weight of the food with the start time and end time of the second period.
  3.  収納室に食品が収納された後、前記収納室の設定温度を水の凍結点以下の第1の温度に設定して前記食品を第1の期間冷却し、続いて前記設定温度を前記第1の温度よりも低い第2の温度まで徐々に低下させつつ前記食品を第2の期間冷却して前記食品を過冷却状態に維持し、続いて前記食品の過冷却状態を強制的に解除した後、前記設定温度を前記凍結点未満の第3の温度に設定して前記食品を冷凍する過冷却冷凍の実施をすることが可能な冷蔵庫であって、
     前記収納室内の空気温度を検出する温度検出部と、
     前記食品の前記収納室への収納時から前記空気温度が上昇から下降に転ずる時点までの時間と前記第2の期間の開始時期および終了時期との対応関係を与える対応関係情報を記憶する記憶部と、
     前記冷蔵庫の運転を制御する制御部と、
     を備え、
     前記制御部は、前記温度検出部により検出された前記空気温度を用いて前記食品の前記収納室への収納時から前記空気温度が上昇から下降に転ずる時点までの時間を算出し、前記対応関係情報を参照して、前記算出された時間に対応する前記第2の期間の開始時期および終了時期を求め、前記求められた第2の期間の開始時期および終了時期に従って前記過冷却冷凍の実施をすることを特徴とする冷蔵庫。
    After the food is stored in the storage chamber, the set temperature of the storage chamber is set to a first temperature below the freezing point of water to cool the food for a first period, and then the set temperature is set to the first temperature. After gradually lowering the food to a second temperature lower than the temperature of the product, cooling the food for a second period to maintain the food in a supercooled state, and then forcibly releasing the supercooled state of the food , A refrigerator capable of performing supercooled freezing to freeze the food by setting the set temperature to a third temperature below the freezing point,
    A temperature detector for detecting an air temperature in the storage chamber;
    A storage unit that stores correspondence information that provides a correspondence between a time from when the food is stored in the storage chamber to a time when the air temperature changes from rising to falling and a start time and an end time of the second period. When,
    A control unit for controlling the operation of the refrigerator;
    With
    The control unit calculates a time from the time when the food is stored in the storage chamber to the time when the air temperature changes from rising to falling using the air temperature detected by the temperature detecting unit, and the correspondence relationship With reference to the information, the start time and end time of the second period corresponding to the calculated time are obtained, and the supercooling refrigeration is performed according to the start time and end time of the second period obtained. A refrigerator characterized by that.
  4.  前記対応関係情報は、前記食品の前記収納室への収納時の食品温度および前記食品の重量と前記食品の前記収納室への収納時から前記空気温度が上昇から下降に転ずる時点までの時間とを対応付ける第1のテーブルと、前記食品の前記収納室への収納時の食品温度および前記食品の重量と前記第2の期間の開始時期および終了時期とを対応付ける第2のテーブルとからなることを特徴とする請求項3に記載の冷蔵庫。 The correspondence information includes the food temperature when the food is stored in the storage chamber, the weight of the food, and the time from when the food is stored in the storage chamber to the time when the air temperature changes from rising to falling. And a second table for associating the food temperature and the weight of the food when the food is stored in the storage room with the start time and end time of the second period. The refrigerator according to claim 3.
PCT/JP2015/053151 2015-02-04 2015-02-04 Refrigerator WO2016125274A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/053151 WO2016125274A1 (en) 2015-02-04 2015-02-04 Refrigerator
JP2016572999A JP6275290B2 (en) 2015-02-04 2015-02-04 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053151 WO2016125274A1 (en) 2015-02-04 2015-02-04 Refrigerator

Publications (1)

Publication Number Publication Date
WO2016125274A1 true WO2016125274A1 (en) 2016-08-11

Family

ID=56563638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053151 WO2016125274A1 (en) 2015-02-04 2015-02-04 Refrigerator

Country Status (2)

Country Link
JP (1) JP6275290B2 (en)
WO (1) WO2016125274A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085727A1 (en) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
WO2019085726A1 (en) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
WO2020144791A1 (en) * 2019-01-10 2020-07-16 三菱電機株式会社 Refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271152A (en) * 2006-03-31 2007-10-18 Hitachi Appliances Inc Refrigerator
JP2009024951A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp Refrigerator and refrigeration preservative method
US20100319368A1 (en) * 2007-09-21 2010-12-23 Lg Electronics Inc. Supercooling recognition method and supercooling apparatus
JP2011007487A (en) * 2010-08-26 2011-01-13 Panasonic Corp Overcooling control refrigerator
JP2011101610A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Method for cooling and freezing food and apparatus for cooling and freezing food

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271152A (en) * 2006-03-31 2007-10-18 Hitachi Appliances Inc Refrigerator
JP2009024951A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp Refrigerator and refrigeration preservative method
US20100319368A1 (en) * 2007-09-21 2010-12-23 Lg Electronics Inc. Supercooling recognition method and supercooling apparatus
JP2011101610A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Method for cooling and freezing food and apparatus for cooling and freezing food
JP2011007487A (en) * 2010-08-26 2011-01-13 Panasonic Corp Overcooling control refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085727A1 (en) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
WO2019085726A1 (en) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
WO2020144791A1 (en) * 2019-01-10 2020-07-16 三菱電機株式会社 Refrigerator
CN111684219A (en) * 2019-01-10 2020-09-18 三菱电机株式会社 Refrigerator with a door
JPWO2020144791A1 (en) * 2019-01-10 2021-09-09 三菱電機株式会社 refrigerator
TWI747106B (en) * 2019-01-10 2021-11-21 日商三菱電機股份有限公司 refrigerator
CN111684219B (en) * 2019-01-10 2021-12-14 三菱电机株式会社 Refrigerator with a door
JP7217758B2 (en) 2019-01-10 2023-02-03 三菱電機株式会社 refrigerator

Also Published As

Publication number Publication date
JP6275290B2 (en) 2018-02-07
JPWO2016125274A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
CN105806007B (en) Refrigeration equipment
EP3139116B1 (en) Refrigerator
JP5401889B2 (en) refrigerator
JP2009030934A (en) Refrigerator
JP6454210B2 (en) refrigerator
WO2019085727A1 (en) Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
JP2009047337A (en) Refrigerator
JP6275290B2 (en) refrigerator
TW201812233A (en) Refrigerator
KR20190023257A (en) Refrigerator and controlling method thereof
JP5178808B2 (en) Freezer refrigerator
JP6925514B2 (en) refrigerator
JP7116588B2 (en) Refrigerator, refrigerator control method, refrigerator control program
JP2015218942A (en) refrigerator
JP2007278647A (en) Cooling storage cabinet
KR102412061B1 (en) Refrigerator and control method thereof
JP5386390B2 (en) refrigerator
TWI747106B (en) refrigerator
US20180329437A1 (en) Systems and methods for refrigerator control
JP7465686B2 (en) refrigerator
JP5147922B2 (en) Freezer refrigerator
JP5927428B2 (en) refrigerator
WO2023204130A1 (en) Refrigerator
JP5642045B2 (en) refrigerator
KR20090124496A (en) Refrigerator and controlling method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881091

Country of ref document: EP

Kind code of ref document: A1