WO2016121386A1 - Exhaust-gas purifying device - Google Patents

Exhaust-gas purifying device Download PDF

Info

Publication number
WO2016121386A1
WO2016121386A1 PCT/JP2016/000396 JP2016000396W WO2016121386A1 WO 2016121386 A1 WO2016121386 A1 WO 2016121386A1 JP 2016000396 W JP2016000396 W JP 2016000396W WO 2016121386 A1 WO2016121386 A1 WO 2016121386A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
filter
exhaust
particulate matter
exhaust pipe
Prior art date
Application number
PCT/JP2016/000396
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 中田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016000519.9T priority Critical patent/DE112016000519T5/en
Priority to US15/544,955 priority patent/US20180010498A1/en
Publication of WO2016121386A1 publication Critical patent/WO2016121386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust gas purification device that purifies exhaust gas discharged from a gasoline engine of a vehicle and flowing through an exhaust pipe.
  • Patent Document 1 discloses an apparatus that removes particulate matter by providing a filter in an exhaust gas path.
  • the filter removes the particulate matter in the passing exhaust gas by collecting it.
  • the removal of the particulate matter by the filter is recognized to be highly effective and is widely spread.
  • a detection unit is further provided on the downstream side of the filter, and the failure of the filter is determined by the detection unit.
  • the detection unit includes an electrical insulating material and a plurality of electrodes, and is configured such that the electrical resistance value between the electrodes changes based on the amount of particulate matter attached to the electrical insulating material.
  • Patent Document 1 is intended to remove particulate matter discharged from a diesel engine. Therefore, it seems that even in a gasoline engine, it is possible to remove particulate matter by a filter and to determine a failure of the filter by a detection unit.
  • air-fuel ratio control such as temporarily reducing the fuel supplied to the gasoline engine is performed, and fuel is burned in a state where the air-fuel ratio is larger than the theoretical air-fuel ratio, so that the fuel is supplied from the gasoline engine to the filter. Measures to increase the amount of oxygen in exhaust gas are being studied.
  • gasoline engines tend to have higher exhaust emissions than diesel engines. Therefore, when the detection unit described above is heated by receiving heat from the exhaust gas, and the amount of oxygen in the exhaust gas supplied to the detection unit by air-fuel ratio control is increased, the particulate matter adhering to the detection unit is increased. There is a risk that the substance will spontaneously burn. As a result, there is a possibility that the detection of the filter failure by the detection unit cannot be performed accurately.
  • an object thereof is an exhaust gas purification device that purifies exhaust gas exhausted from a gasoline engine of a vehicle and flowing through an exhaust pipe, and performs a regeneration process of the filter.
  • an object of the present invention is to provide an exhaust gas purification device that can detect the amount of particulate matter contained in exhaust gas that has passed through a filter.
  • the exhaust gas purifying apparatus purifies exhaust gas discharged from a gasoline engine of a vehicle and flowing through an exhaust pipe.
  • the exhaust gas purification device includes a purification function unit and a detection unit.
  • the purification function unit includes a three-way catalyst that is provided in the exhaust pipe and that oxidizes or reduces harmful substances in the exhaust gas using a metal catalyst, and a filter that collects particulate matter by passing the exhaust gas.
  • the detection unit is provided in an exhaust pipe downstream of the purification function unit, and includes an electrical insulating material to which particulate matter is attached, and a plurality of electrodes provided to be separated from the electrical insulating material. The amount of particulate matter attached is detected based on the electrical conductivity of the particles.
  • the detection unit is provided at a site that is 1 m or more away from the downstream end of the functional unit due to the length of the exhaust pipe, or a site where the temperature of exhaust gas flowing after the warm-up operation of the gasoline engine is 450 ° C. or less. .
  • the detection unit that detects the amount of particulate matter attached is a portion that is 1 m or more away from the downstream end of the functional unit in the path length of the exhaust pipe, or exhaust gas that flows after the warm-up operation of the gasoline engine Is provided at a site where the temperature is 450 ° C. or lower.
  • the temperature at which particulate matter generated by general gasoline combustion starts spontaneous combustion is about 500 ° C.
  • the temperature of exhaust gas is generally lower than 500 ° C. at a site that is 1 m or more away from the downstream end of the functional unit due to the length of the exhaust pipe.
  • an exhaust gas purification device that purifies exhaust gas discharged from a gasoline engine of a vehicle and flowing through an exhaust pipe, and the particulate matter contained in exhaust gas that has passed through the filter while performing regeneration processing of the filter. It is possible to provide an exhaust gas purifying device capable of detecting the amount of a substance.
  • the exhaust gas purification device CA1 is a device that purifies exhaust gas discharged from a gasoline engine 100 (hereinafter referred to as the engine 100) mounted on the vehicle GC.
  • the engine 100 a gasoline engine 100 mounted on the vehicle GC.
  • the configuration of the vehicle GC will be described with reference to FIG.
  • the vehicle GC includes an engine 100, an intake pipe 200, and an exhaust pipe 300.
  • the engine 100 is a gasoline engine having four cylinders 101.
  • the engine 100 is a direct injection internal combustion engine in which gasoline as fuel is directly injected into the combustion chamber 102. Since the configuration of each cylinder 101 and the control executed are the same, only the single cylinder 101 is shown and described in the following description.
  • the cylinder 101 includes an intake valve 151, an exhaust valve 152, an opening / closing adjustment mechanism 190, a spark plug 160, a piston 170, and an injector 180.
  • a combustion chamber 102 is formed inside the cylinder 101 as a space in which a mixed gas of fuel and air burns.
  • the intake valve 151 is a valve disposed at a connection portion between the intake pipe 200 and the cylinder 101.
  • the intake valve 151 is opened, the supply of air to the combustion chamber 102 is started.
  • the intake valve 151 is closed, the supply of air to the combustion chamber 102 is stopped.
  • the exhaust valve 152 is a valve disposed at a connection portion between the exhaust pipe 300 and the cylinder 101.
  • the exhaust valve 152 When the exhaust valve 152 is in an open state, discharge of exhaust gas from the combustion chamber 102 to the exhaust pipe 300 is started. Further, when the intake valve 151 is closed, the discharge of the exhaust gas from the combustion chamber 102 to the exhaust pipe 300 is stopped.
  • the opening / closing adjustment mechanism 190 is a mechanism for opening and closing the intake valve 151 and the exhaust valve 152, respectively.
  • the intake valve 151 and the exhaust valve 152 are opened and closed at appropriate timings by the opening / closing adjustment mechanism 190, and so-called intake stroke, compression stroke, combustion stroke, and exhaust stroke are executed in the cylinder 101, respectively.
  • the opening / closing adjustment mechanism 190 is configured as a variable valve timing mechanism including a VVT (registered trademark) pulley (not shown) and the like. Thereby, the opening / closing timings of the intake valve 151 and the exhaust valve 152 when the above-described four strokes are executed are not always fixed, but can be changed by the opening / closing adjustment mechanism 190.
  • VVT registered trademark
  • the opening / closing adjustment is a shift (overlap) between the timing at which the exhaust valve 152 is closed and the exhaust stroke is ended and the timing at which the intake valve 151 is opened and the intake stroke is started.
  • the mechanism 190 can be adjusted.
  • the opening / closing operation of the intake valve 151 and the exhaust valve 152 is controlled by the control device 400.
  • the spark plug 160 is an ignition device for performing spark ignition and igniting a mixed gas of fuel and air existing in the combustion chamber 102.
  • the timing at which spark ignition is performed by the spark plug 160 (ignition timing), that is, the timing at which the combustion stroke is started is controlled by the control device 400.
  • the piston 170 is a member that reciprocates up and down in the cylinder 101.
  • the combustion chamber 102 described above is a portion above the piston 170 in the space in the cylinder 101.
  • the volume of the combustion chamber 102 decreases as the piston 170 moves upward.
  • the piston 170 is pushed downward by the combustion (explosion) of the fuel in the combustion chamber 102.
  • a connecting rod 171 and a crankshaft 172 are disposed below the piston 170.
  • the reciprocating movement of the piston 170 is converted into a rotational motion by the crankshaft 172 and the like. Thereby, the explosive force generated in the combustion chamber 102 is converted into the driving force of the vehicle GC.
  • the injector 180 is an on-off valve for directly injecting fuel into the combustion chamber 102.
  • the timing and amount of fuel supplied to the combustion chamber 102 by the injector 180 are controlled by the control device 400.
  • the intake pipe 200 is a pipe for supplying air to the cylinder 101.
  • a throttle valve (not shown) is disposed in the intake pipe 200.
  • the flow rate of air supplied to the cylinder 101 is adjusted by opening and closing the throttle valve in accordance with the driver's accelerator operation.
  • the exhaust pipe 300 is a manifold-like pipe that takes in exhaust gas discharged from each cylinder 101, flows it into the interior, joins it, and guides it to the outside of the vehicle GC.
  • the exhaust pipe 300 is provided with a purification function unit 10 and a PM sensor 14 (detection unit).
  • the purification function unit 10 includes a three-way catalyst 11 and a filter 12.
  • the three-way catalyst 11 has a honeycomb shape, for example, and is configured to allow the exhaust gas flowing through the exhaust pipe 300 to pass therethrough.
  • the three-way catalyst 11 has a catalyst carrier (not shown) carrying platinum, palladium and rhodium which are metal catalysts.
  • the three-way catalyst 11 purifies by oxidizing or reducing harmful substances (hydrocarbon, carbon monoxide, nitrogen oxide) in the exhaust gas by the catalytic action of these metal catalysts.
  • the filter 12 is provided in the exhaust pipe 300 on the downstream side of the three-way catalyst 11.
  • the filter 12 has a honeycomb shape, for example, and is configured to allow exhaust gas flowing from the three-way catalyst 11 side to pass therethrough.
  • the filter 12 is also called GPF (GasolineGaParticle Filter).
  • the filter 12 has a plurality of partition walls 123 that are spaced apart from each other.
  • the partition wall 123 is a porous ceramic having an average pore diameter of 80 ⁇ m or less, and forms a honeycomb structure as a whole.
  • the plurality of partition walls 123 form a plurality of inlet plugged cells 125 and penetrating cells 126 that extend from the upstream end 121 to the downstream end 122 of the filter 12.
  • the inlet plugged cell 125 the downstream end 122 of the filter 12 is open, while the upstream end 121 is closed by the plugged portion 124.
  • the through cell 126 is formed so as to penetrate from the upstream end 121 to the downstream end 122 of the filter 12.
  • the inlet plugged cell 125 and the through cell 126 are formed so as to be adjacent to each other.
  • the exhaust gas first flows into the through cell 126.
  • the pressure in the through cell 126 increases.
  • the inlet plugged cell 125 is blocked by the plugged portion 124, exhaust gas does not flow from the upstream end 121. Therefore, the pressure in the inlet plugged cell 125 is lower than the pressure in the through cell 126.
  • the exhaust gas flowing in the through cell 126 passes through the partition wall 123 and flows into the through cell 126. .
  • the particulate matter PM in the exhaust gas is collected by the partition wall 123 and removed from the exhaust gas.
  • the exhaust gas from which the particulate matter PM has been removed flows out from the downstream end 122 of the filter 12. Since both the inlet plugged cell 125 and the penetrating cell 126 have the downstream end 122 open, even if the amount of the collected particulate matter PM increases, the pressure loss does not increase greatly.
  • the PM sensor 14 is provided in the exhaust pipe 300 downstream of the filter 12 as shown in FIG. As will be described later, the PM sensor 14 detects the amount of particulate matter PM in the exhaust gas that has passed through the filter 12.
  • the PM sensor 14 is electrically connected to the control device 400 and transmits a signal corresponding to the detected amount of the particulate matter PM to the control device 400.
  • the PM sensor 14 includes an electrical insulating material 141, electrodes 142a and 142b, and a measuring instrument 143.
  • the electrical insulating material 141 is made of alumina or the like.
  • the electrical insulating material 141 is disposed so as to be exposed to the exhaust gas flowing through the exhaust pipe 300 as indicated by the arrow F.
  • Each of the electrodes 142a and 142b is a metal member provided such that a part of the electrodes 142a and 142b is embedded in the electric insulating material 141 and the other part protrudes from the surface of the electric insulating material 141.
  • the electrodes 142a and 142b are arranged at a distance from each other at a portion protruding from the surface of the electrical insulating material 141.
  • the measuring instrument 143 is electrically connected to the electrodes 142a and 142b, and measures the electric resistance value between the electrodes 142a and 142b. Specifically, the measuring instrument 143 applies a measurement voltage between the electrodes 142a and 142b, and measures the electric resistance value based on the value of the current flowing at that time.
  • the failure determination of the filter 12 by the PM sensor 14 configured as described above will be described.
  • a failure such as melting damage occurs in the filter 12
  • the particulate matter PM is not properly collected. Therefore, the exhaust gas passing through the filter 12 reaches the downstream PM sensor 14 without removing the particulate matter PM.
  • the particulate matter PM that reaches the PM sensor 14 together with the exhaust gas adheres to the surface of the electrical insulating material 141 of the PM sensor 14.
  • the particulate matter PM has a higher electrical conductivity than the electrical insulating material 141. Therefore, as the particulate matter PM adheres to the electrical insulating material 141, the electrical resistance value between the electrodes 142a and 142b measured by the measuring instrument 143 decreases.
  • the control device 400 can determine that the filter 12 has failed when the electrical resistance value measured by the PM sensor 14 is equal to or less than a predetermined threshold value.
  • the collected particulate matter PM is deposited on the filter 12. If the particulate matter PM is excessively deposited on the filter 12, it becomes difficult for the exhaust gas to pass therethrough, and the fuel consumption of the engine 100 is deteriorated. For this reason, before the particulate matter PM is excessively deposited on the filter 12, it is necessary to perform a regeneration process for removing the particulate matter PM collected by the filter 12 by burning it and recovering its function.
  • a gasoline engine has a small amount of oxygen in exhaust gas compared to a diesel engine, and may be insufficient for burning the particulate matter PM in the filter 12. Therefore, by performing air-fuel ratio control such as temporarily reducing the fuel supplied to the engine 100 and burning the fuel in a state where the air-fuel ratio is larger than the stoichiometric air-fuel ratio, the exhaust supplied from the engine 100 to the filter 12 is performed. Measures to increase the amount of oxygen in the gas can be considered.
  • the exhaust pipe 300 includes a header part 301, a collector part 302, a storage part 303, and a lead-out part 304.
  • the exhaust pipe 300 actually extends while being bent in accordance with the shape of the engine room of the engine 100 or the vehicle GC. However, for convenience of explanation here, the exhaust pipe 300 is extended in a straight line. It is shown in the figure.
  • the temperature of the exhaust gas flowing through each part of the exhaust pipe 300 is shown.
  • the upstream end of the exhaust pipe 300 connected to each cylinder 101 of the engine 100 is the origin, the distance from the origin is on the horizontal axis, and the temperature of the exhaust gas is on the vertical axis.
  • the purification function unit 10 is accommodated in an accommodation unit 303 that is downstream of the collector unit 302 of the exhaust pipe 300 and has an inner diameter larger than that of the collector unit 302.
  • the three-way catalyst 11 is provided in the range of L11 to L12 from the origin.
  • the filter 12 is spaced from the downstream end 112 of the three-way catalyst 11 by a predetermined distance, and the distance from the origin is in the range of L13 to L14.
  • the PM sensor 14 is provided in the lead-out part 304 which is downstream of the housing part 303 and has a smaller inner diameter than the collector part 302.
  • the PM sensor 14 is provided at a site having a distance L15 from the origin.
  • each cylinder 101 of the engine 100 the combustion stroke and the exhaust process are performed at different phases. Therefore, high-temperature exhaust gas flows into each of the header portions 301 from the cylinders 101 at different timings.
  • the exhaust gas that has passed through the header portion 301 joins at the collector portion 302 on the downstream side, and further flows downstream. While the exhaust gas flows through the header portion 301 and the collector portion 302, the temperature is gradually lowered by releasing heat to the outside through the tube walls. For this reason, the temperature of the exhaust gas that was T17 when it flowed into the header portion 301 has dropped to T12 when it reached the upstream end 111 of the three-way catalyst 11.
  • the three-way catalyst 11 it is desirable to provide the three-way catalyst 11 at a site where high-temperature exhaust gas flows in order to activate the catalytic action of the metal catalyst.
  • the three-way catalyst 11 may be damaged by the heat of the exhaust gas.
  • the three-way catalyst 11 is provided at a site where the exhaust gas having an appropriate temperature (T12) flows (a site where the distance from the origin is L11).
  • the contained harmful substances are oxidized or reduced by the metal catalyst. Since heat is generated by this oxidation reaction or reduction reaction, the temperature of the exhaust gas passing through the three-way catalyst 11 rises to T16.
  • the oxidation reaction or reduction reaction of harmful substances contained in the exhaust gas is generally completed at the upstream side portion of the three-way catalyst 11. Therefore, the temperature of the exhaust gas slightly decreases in the downstream portion of the three-way catalyst 11, and becomes T15 when it flows out from the downstream end 112 (the portion where the distance from the origin is L12).
  • the exhaust gas that has passed through the three-way catalyst 11 then flows into the filter 12. While the exhaust gas flows from the downstream end 112 of the three-way catalyst 11 to the upstream end 121 of the filter 12, the temperature is reduced from T15 to T14 by releasing heat to the outside through the tube wall of the housing portion 303. To do.
  • the filter 12 is provided at a position where high-temperature exhaust gas flows in in order to reliably perform a regeneration process for burning the collected particulate matter PM.
  • the filter 12 is provided at a site within 0.5 m from the downstream end 112 of the three-way catalyst 11. That is, the filter 12 is provided so that the difference between L12 and L13 is within 0.5 m.
  • the filter 12 flows in the exhaust gas whose temperature is increased by the oxidation reaction or the reduction reaction when passing through the three-way catalyst 11, receives the supply of heat from the exhaust gas, and burns the particulate matter, Reproduction processing can be performed reliably.
  • a filter 12 may be provided. That is, after the engine 100 is warmed up and the three-way catalyst 11 is activated, the filter 12 may be provided at a portion where the difference between T15 and T14 is 50 ° C. or less.
  • the exhaust gas passing through the filter 12 is deprived of heat by the filter 12 and its temperature is lowered. Accordingly, the temperature of the exhaust gas decreases from T14 to T13 while flowing from the upstream end 121 to the downstream end 122 of the filter 12.
  • the exhaust gas that has passed through the filter 12 and has flowed out of the accommodating portion 303 of the exhaust pipe 300 is guided to a portion where the PM sensor 14 is provided by the derivation portion 304. Also during this time, the exhaust gas releases heat to the outside through the tube wall of the outlet portion 304, and its temperature gradually decreases. For this reason, the temperature of the exhaust gas is T11 at the part where the PM sensor 14 is disposed (the part whose distance from the origin is L15).
  • the PM sensor 14 it is desirable to provide the PM sensor 14 at a site where exhaust gas whose temperature has sufficiently decreased flows so that the particulate matter PM adhering to the electrical insulating material 141 does not spontaneously burn.
  • the temperature at which particulate matter PM generated by combustion of general gasoline starts spontaneous combustion is about 500 ° C. Therefore, the PM sensor 14 is provided at a site where T11 is 450 ° C. or lower. Thereby, even when the amount of oxygen in the exhaust gas supplied to the PM sensor 14 is increased by air-fuel ratio control or the like during the regeneration process of the filter 12, the particulate matter PM adhering to the PM sensor 14 is spontaneously combusted. The amount of particulate matter PM contained in the exhaust gas that has been suppressed and passed through the filter 12 can be detected.
  • the PM sensor 14 may be provided at a site separated by 1 m or more from the downstream end of the purification function unit 10 (downstream end 122 of the filter 12). That is, the PM sensor 14 may be provided so that the difference between L14 and L15 is within 1 m. This is because, in general, in a gasoline engine mounted on a vehicle, the temperature of exhaust gas is below 500 ° C. at a site that is 1 m or more away from the downstream end of the functional part in the length of the exhaust pipe.
  • the engine 100 is preferably set to a rotation speed of 4000 rpm or less in the normal use range. It is very difficult to manage the exhaust gas temperature at the part where the purification function unit 10 and the PM sensor 14 are arranged at all rotational speeds of the engine 100 as described above. However, in a general vehicle, by setting the normal use range where the use frequency is high to a range where the rotation speed is 4000 rpm or less, the above temperature management is facilitated while obtaining a high effect by the exhaust gas purification device CA1. It becomes possible.
  • the filter 12 is provided so as to pass through the upstream side to the downstream side and flow exhaust gas, and adjacent to the through cell 126, and the upstream side is closed while the downstream side is opened to flow exhaust gas. And an inlet plugged cell 125.
  • the exhaust gas purification device CA2 is a device that purifies exhaust gas exhausted from the engine 100 mounted on the vehicle GC, similarly to the exhaust gas purification device CA1. Therefore, the same components as those in the exhaust gas purifying apparatus CA1 are appropriately denoted by the same reference numerals and description thereof is omitted.
  • the purification function unit 10 is constituted only by the filter 13.
  • a metal catalyst 136 made of platinum, palladium, rhodium or the like is supported by a binder 135 on the surface of the base body 134 that forms the outer shape of the filter 13. That is, the filter 13 removes the particulate matter PM in the passing exhaust gas by collecting it, and oxidizes or reduces the harmful substance in the exhaust gas by the catalytic action of the metal catalyst 136.
  • the filter 13 has the functions of both the three-way catalyst 11 and the filter 12 described above. As shown in FIG. 5, the filter 13 has a distance from the origin in a range of L21 to L22.
  • the exhaust gas that has passed through the header portion 301 joins at the collector portion 302 on the downstream side, and further flows downstream. While the exhaust gas flows through the header portion 301 and the collector portion 302, the temperature is gradually lowered by releasing heat to the outside through the tube walls. For this reason, the temperature of the exhaust gas that was T25 when it flowed into the header portion 301 has decreased to T22 when it reached the upstream end 131 of the filter 13.
  • the filter 13 is desirably provided at a site where high-temperature exhaust gas flows.
  • the filter 13 may be damaged by the heat of the exhaust gas.
  • the filter 13 is provided at a site where the exhaust gas having an appropriate temperature (T22) flows (a site where the distance from the origin is L21).
  • the filter 13 When the exhaust gas flowing into the filter 13 passes through the filter 13, the contained harmful substances are oxidized or reduced by the metal catalyst 136. Since heat is generated by this oxidation reaction or reduction reaction, the temperature of the exhaust gas passing through the filter 13 rises to T24. The oxidation reaction or reduction reaction of harmful substances contained in the exhaust gas is almost completed at the upstream portion of the filter 13. Therefore, the temperature of the exhaust gas slightly decreases in the downstream portion of the three-way catalyst 11, and becomes T23 when flowing out from the downstream end 132 (the portion where the distance from the origin is L22).
  • the exhaust gas that has passed through the filter 13 and has flowed out of the accommodating portion 303 of the exhaust pipe 300 is guided to a portion where the PM sensor 14 is provided by the derivation portion 304. Also during this time, the exhaust gas releases heat to the outside through the tube wall of the outlet portion 304, and its temperature gradually decreases. For this reason, the temperature of the exhaust gas is T21 at the part where the PM sensor 14 is disposed (part where the distance from the origin is L23).
  • the PM sensor 14 has an exhaust gas whose temperature has been sufficiently lowered so that the particulate matter PM adhering to the electrical insulating material 141 does not spontaneously burn. It is desirable to provide in the part which flows. Therefore, the PM sensor 14 is provided at a site where T21 is 450 ° C. or lower.
  • the PM sensor 14 may be provided at a site separated by 1 m or more from the downstream end of the purification function unit 10 (downstream end 132 of the filter 13). That is, the PM sensor 14 may be provided so that the difference between L22 and L23 is within 1 m.
  • the PM sensor 14 uses the electrical resistance value as an index of electrical conductivity between the electrodes 142a and 142b.
  • the adhesion amount of the particulate matter PM is detected based on the current flowing between the electrodes 142a and 142b, the potential difference between the electrodes 142a and 142b, and the like. You may comprise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

This exhaust-gas purifying device purifies exhaust gas discharged from a gasoline engine (100) of a vehicle (GC) and flowing through an exhaust pipe (300). The exhaust-gas purifying device is provided with a purification functional section (10) and a detecting section (14). The purification functional section is provided in the exhaust pipe and has a three-way catalyst (11, 13) that oxidizes or deoxidizes a hazardous substance in the exhaust gas by means of a metallic catalyst (136), and also has a filter (12, 13) that allows the exhaust gas to pass therethrough so as to collect particulates. The detecting section is provided in the exhaust pipe at the downstream side of the purification functional section and has an electrical insulator (141) that causes the particulates to adhere thereto and a plurality of electrodes (142a, 142b) provided apart from each other. The detecting section detects the quantity of adhered particulates on the basis of the electrical conductivity between the plurality of electrodes. The detecting section is provided in an area distant from a downstream end (122, 132) of the purification functional section by 1 m or more with respect to the path length of the exhaust pipe, or in an area where the temperature of the exhaust gas flowing after the gasoline engine warms up is 450°C or lower.

Description

排出ガス浄化装置Exhaust gas purification device 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年1月30日に出願された日本特許出願2015-016205号を基にしている。 This application is based on Japanese Patent Application No. 2015-016205 filed on January 30, 2015, the disclosure of which is incorporated herein by reference.
 本開示は、車両のガソリンエンジンから排出され排気配管を流れる排出ガスを浄化する排出ガス浄化装置に関する。 The present disclosure relates to an exhaust gas purification device that purifies exhaust gas discharged from a gasoline engine of a vehicle and flowing through an exhaust pipe.
 近年、内燃機関から排出ガスとともに排出される粒子状物質(Particulate Matter:PM)の低減が求められており、法規制の強化が進められている。粒子状物質の低減策としては、例えば、内燃機関の気筒における空燃比を制御し、粒子状物質の生成量を抑制することが考えられる。しかしながら、法規制では、粒子状物質の排出重量のみならず排出数の低減も求められている。したがって、従前の生成量の抑制による対策のみでは、今後の法規制に対応できなくなる可能性が高い。 In recent years, there has been a demand for reduction of particulate matter (PM) discharged from an internal combustion engine together with exhaust gas, and regulations are being strengthened. As a measure for reducing the particulate matter, for example, it is conceivable to control the air-fuel ratio in the cylinder of the internal combustion engine to suppress the generation amount of the particulate matter. However, laws and regulations require not only the emission weight of particulate matter but also the reduction of the number of emissions. Therefore, there is a high possibility that it will not be possible to comply with future laws and regulations only by measures based on the conventional suppression of the generation amount.
 下記特許文献1には、排出ガスの経路にフィルタを設けることで、粒子状物質を除去する装置が開示されている。当該フィルタは、通過する排出ガス中の粒子状物質を捕集することによって除去する。当該フィルタによる粒子状物質の除去は高い効果が認められており、広く普及している。 The following Patent Document 1 discloses an apparatus that removes particulate matter by providing a filter in an exhaust gas path. The filter removes the particulate matter in the passing exhaust gas by collecting it. The removal of the particulate matter by the filter is recognized to be highly effective and is widely spread.
 下記特許文献1に記載された装置では、さらに、フィルタの下流側に検出部を設け、当該検出部によってフィルタの故障判定を行っている。当該検出部は、電気絶縁材と複数の電極とを有しており、電気絶縁材に付着した粒子状物質の量に基づいて電極間の電気抵抗値が変化するように構成されている。電気絶縁材への粒子状物質の付着が進行して電気抵抗値が所定の基準より小さくなった場合に、フィルタが故障し、その結果、粒子状物質の捕集が適切に行われていないと判定することができる。 In the apparatus described in Patent Document 1 below, a detection unit is further provided on the downstream side of the filter, and the failure of the filter is determined by the detection unit. The detection unit includes an electrical insulating material and a plurality of electrodes, and is configured such that the electrical resistance value between the electrodes changes based on the amount of particulate matter attached to the electrical insulating material. When the particulate matter adheres to the electrical insulating material and the electrical resistance value becomes smaller than the predetermined standard, the filter fails, and as a result, the particulate matter is not properly collected. Can be determined.
 ところで、下記特許文献1に記載された装置は、ディーゼルエンジンから排出される粒子状物質を除去対象としている。そこで、ガソリンエンジンにおいても、フィルタによる粒子状物質の除去や、検出部によるフィルタの故障判定を行うことが可能であるようにも思われる。 By the way, the apparatus described in the following Patent Document 1 is intended to remove particulate matter discharged from a diesel engine. Therefore, it seems that even in a gasoline engine, it is possible to remove particulate matter by a filter and to determine a failure of the filter by a detection unit.
特開2009-144577号公報JP 2009-1444577 A
 しかしながら、本開示の発明者による検討によると、ディーゼルエンジンとは異なるガソリンエンジンの特性のため、ガソリンエンジンでは、フィルタによる粒子状物質の除去等が容易ではないという課題があった。以下、この課題について詳述する。 However, according to the examination by the inventors of the present disclosure, there is a problem that removal of particulate matter by a filter is not easy in a gasoline engine due to the characteristics of a gasoline engine different from a diesel engine. Hereinafter, this problem will be described in detail.
 まず、フィルタは、捕集した粒子状物質が過度に堆積すると、排出ガスの通過が困難となり、ガソリンエンジンの燃費悪化を招いてしまう。このため、粒子状物質がフィルタに過度に堆積する前に、フィルタに捕集された粒子状物質を燃焼させて除去し、機能回復させる再生処理を行うことが必要となる。 First, if the collected particulate matter is excessively accumulated in the filter, it becomes difficult for the exhaust gas to pass through, and the fuel consumption of the gasoline engine is deteriorated. For this reason, before the particulate matter is excessively deposited on the filter, it is necessary to perform a regeneration process in which the particulate matter collected by the filter is burned and removed to recover its function.
 しかしながら、理論空燃比に近い状態で燃料(ガソリン)の燃焼が行われるガソリンエンジンでは、ディーゼルエンジンと比べて、排出ガス中の酸素は少量である。このため、フィルタに堆積した粒子状物質を十分に燃焼させることができず、再生処理を適切に行えなくなるおそれがある。 However, a gasoline engine in which fuel (gasoline) is burned in a state close to the stoichiometric air-fuel ratio has a small amount of oxygen in the exhaust gas compared to a diesel engine. For this reason, the particulate matter deposited on the filter cannot be burned sufficiently, and the regeneration process may not be performed properly.
 また、フィルタの上流側に三元触媒が設けられている場合、当該三元触媒における酸化反応によって排出ガス中の酸素が使用されるため、フィルタに供給される排出ガス中の酸素の量はさらに少なくなる。この結果、フィルタに捕集された粒子状物質を燃焼させることが一層困難となる。一方、フィルタの下流側に三元触媒を設けると、ガソリンエンジンの暖機運転の際に、排出ガスの熱を利用した三元触媒の活性化に長時間を要するおそれがあった。 In addition, when a three-way catalyst is provided on the upstream side of the filter, oxygen in the exhaust gas is used by an oxidation reaction in the three-way catalyst, so that the amount of oxygen in the exhaust gas supplied to the filter is further increased. Less. As a result, it becomes more difficult to burn the particulate matter collected by the filter. On the other hand, when the three-way catalyst is provided on the downstream side of the filter, it may take a long time to activate the three-way catalyst using the heat of the exhaust gas when the gasoline engine is warmed up.
 これに対し、ガソリンエンジンに供給する燃料を一時的に減少させる等する空燃比制御を行い、空燃比が理論空燃比よりも大きい状態で燃料を燃焼させることで、ガソリンエンジンからフィルタに供給される排出ガス中の酸素量を増加させる対策が検討されている。 On the other hand, air-fuel ratio control such as temporarily reducing the fuel supplied to the gasoline engine is performed, and fuel is burned in a state where the air-fuel ratio is larger than the theoretical air-fuel ratio, so that the fuel is supplied from the gasoline engine to the filter. Measures to increase the amount of oxygen in exhaust gas are being studied.
 しかしながら、ガソリンエンジンは、ディーゼルエンジンと比べて排出ガスが高温になる傾向がある。したがって、この排出ガスから熱を受けることで前述した検出部が高温となり、さらに、空燃比制御によって検出部に供給される排出ガス中の酸素量が増加すると、検出部に付着している粒子状物質が自然燃焼してしまうおそれがある。これにより、検出部によるフィルタの故障検出等を正確に行えなくなるおそれがあった。 However, gasoline engines tend to have higher exhaust emissions than diesel engines. Therefore, when the detection unit described above is heated by receiving heat from the exhaust gas, and the amount of oxygen in the exhaust gas supplied to the detection unit by air-fuel ratio control is increased, the particulate matter adhering to the detection unit is increased. There is a risk that the substance will spontaneously burn. As a result, there is a possibility that the detection of the filter failure by the detection unit cannot be performed accurately.
 本開示はこのような課題に鑑みてなされたものであり、その目的は、車両のガソリンエンジンから排出され排気配管を流れる排出ガスを浄化する排出ガス浄化装置であって、フィルタの再生処理を行いながらも、フィルタを通過した排出ガスに含まれる粒子状物質の量を検出することができる排出ガス浄化装置を提供することにある。 The present disclosure has been made in view of such problems, and an object thereof is an exhaust gas purification device that purifies exhaust gas exhausted from a gasoline engine of a vehicle and flowing through an exhaust pipe, and performs a regeneration process of the filter. However, an object of the present invention is to provide an exhaust gas purification device that can detect the amount of particulate matter contained in exhaust gas that has passed through a filter.
 本開示に係る排出ガス浄化装置は、車両のガソリンエンジンから排出され排気配管を流れる排出ガスを浄化する。排出ガス浄化装置は、浄化機能部と検出部とを備える。浄化機能部は、排気配管に設けられ、金属触媒によって排出ガス中の有害物質を酸化又は還元する三元触媒、および排出ガスを通過させることで粒子状物質を補集するフィルタを有する。検出部は、浄化機能部よりも下流側の排気配管に設けられ、粒子状物質を付着させる電気絶縁材、および電気絶縁材と互いに離間して設けられる複数の電極を有し、複数の電極間の電気伝導性に基づいて粒子状物質の付着量を検出する。検出部は、排気配管の経路長さで機能部の下流端から1m以上離間した部位、又は、ガソリンエンジンの暖機運転後に流れる排出ガスの温度が450℃以下である部位、に設けられている。 The exhaust gas purifying apparatus according to the present disclosure purifies exhaust gas discharged from a gasoline engine of a vehicle and flowing through an exhaust pipe. The exhaust gas purification device includes a purification function unit and a detection unit. The purification function unit includes a three-way catalyst that is provided in the exhaust pipe and that oxidizes or reduces harmful substances in the exhaust gas using a metal catalyst, and a filter that collects particulate matter by passing the exhaust gas. The detection unit is provided in an exhaust pipe downstream of the purification function unit, and includes an electrical insulating material to which particulate matter is attached, and a plurality of electrodes provided to be separated from the electrical insulating material. The amount of particulate matter attached is detected based on the electrical conductivity of the particles. The detection unit is provided at a site that is 1 m or more away from the downstream end of the functional unit due to the length of the exhaust pipe, or a site where the temperature of exhaust gas flowing after the warm-up operation of the gasoline engine is 450 ° C. or less. .
 本開示によれば、粒子状物質の付着量を検出する検出部は、排気配管の経路長さで機能部の下流端から1m以上離間した部位、又は、ガソリンエンジンの暖機運転後に流れる排出ガスの温度が450℃以下である部位、に設けられる。一般的なガソリンの燃焼によって発生する粒子状物質が自然燃焼を開始する温度は500℃程度である。また、車両に搭載されるガソリンエンジンでは、排気配管の経路長さで機能部の下流端から1m以上離間した部位では、排出ガスの温度が500℃を下回るのが一般的である。したがって、本開示によれば、フィルタの再生処理の際の空燃比制御等により、検出部に供給される排出ガス中の酸素量が増加した場合でも、検出部に付着した粒子状物質の自然燃焼を抑制し、フィルタを通過した排出ガスに含まれる粒子状物質の量を検出することが可能となる。 According to the present disclosure, the detection unit that detects the amount of particulate matter attached is a portion that is 1 m or more away from the downstream end of the functional unit in the path length of the exhaust pipe, or exhaust gas that flows after the warm-up operation of the gasoline engine Is provided at a site where the temperature is 450 ° C. or lower. The temperature at which particulate matter generated by general gasoline combustion starts spontaneous combustion is about 500 ° C. Further, in a gasoline engine mounted on a vehicle, the temperature of exhaust gas is generally lower than 500 ° C. at a site that is 1 m or more away from the downstream end of the functional unit due to the length of the exhaust pipe. Therefore, according to the present disclosure, even when the amount of oxygen in the exhaust gas supplied to the detection unit is increased by air-fuel ratio control or the like during the regeneration process of the filter, natural combustion of the particulate matter adhering to the detection unit And the amount of particulate matter contained in the exhaust gas that has passed through the filter can be detected.
 本開示によれば、車両のガソリンエンジンから排出され排気配管を流れる排出ガスを浄化する排出ガス浄化装置であって、フィルタの再生処理を行いながらも、フィルタを通過した排出ガスに含まれる粒子状物質の量を検出することができる排出ガス浄化装置を提供することが可能となる。 According to the present disclosure, there is provided an exhaust gas purification device that purifies exhaust gas discharged from a gasoline engine of a vehicle and flowing through an exhaust pipe, and the particulate matter contained in exhaust gas that has passed through the filter while performing regeneration processing of the filter. It is possible to provide an exhaust gas purifying device capable of detecting the amount of a substance.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態に係る排出ガス浄化装置が搭載された車両を示す模式図である。 図1に示すPMセンサを示す模式図である。 図1に示す車両における排出ガスの温度変化を示す模式図である。 図1に示すフィルタの断面を示す模式図である。 第2実施形態に係る排出ガス浄化装置が搭載された車両における排出ガスの温度変化を示す模式図である。 図5に示すフィルタの表面を示す断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a mimetic diagram showing a vehicle carrying an exhaust gas purification device concerning a 1st embodiment. It is a schematic diagram which shows PM sensor shown in FIG. It is a schematic diagram which shows the temperature change of the exhaust gas in the vehicle shown in FIG. It is a schematic diagram which shows the cross section of the filter shown in FIG. It is a schematic diagram which shows the temperature change of the exhaust gas in the vehicle carrying the exhaust gas purification apparatus which concerns on 2nd Embodiment. It is sectional drawing which shows the surface of the filter shown in FIG.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to those described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described above. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder.
 (第1実施形態)
 第1実施形態に係る排出ガス浄化装置CA1について、図1乃至図4を参照しながら説明する。排出ガス浄化装置CA1は、車両GCに搭載されるガソリンエンジン100(以下、エンジン100と称する)から排出される排出ガスの浄化を行う装置である。先ず、車両GCの構成について図1を参照しながら説明する。
(First embodiment)
An exhaust gas purification apparatus CA1 according to the first embodiment will be described with reference to FIGS. The exhaust gas purification device CA1 is a device that purifies exhaust gas discharged from a gasoline engine 100 (hereinafter referred to as the engine 100) mounted on the vehicle GC. First, the configuration of the vehicle GC will be described with reference to FIG.
 尚、図1では、車両GCのうちエンジン100及びその周辺の構成のみが模式的に示されており、その他の構成については図示が省略されている。図1に示されるように、車両GCは、エンジン100と、吸気配管200と、排気配管300と、を備えている。 In FIG. 1, only the configuration of the engine 100 and its surroundings in the vehicle GC is schematically shown, and the other configurations are not shown. As shown in FIG. 1, the vehicle GC includes an engine 100, an intake pipe 200, and an exhaust pipe 300.
 エンジン100は、4つの気筒101を備えたガソリンエンジンである。本実施形態においては、エンジン100は、燃料であるガソリンが燃焼室102内に直接噴射される直噴式の内燃機関である。各気筒101の構成及び実行される制御は互いに同一であるから、以下の説明においては単一の気筒101についてのみ図示及び説明を行う。 The engine 100 is a gasoline engine having four cylinders 101. In the present embodiment, the engine 100 is a direct injection internal combustion engine in which gasoline as fuel is directly injected into the combustion chamber 102. Since the configuration of each cylinder 101 and the control executed are the same, only the single cylinder 101 is shown and described in the following description.
 気筒101は、吸気バルブ151と、排気バルブ152と、開閉調整機構190と、点火プラグ160と、ピストン170と、インジェクタ180と、を備えている。また、気筒101の内部には、燃料と空気との混合気体が燃焼する空間として燃焼室102が形成されている。 The cylinder 101 includes an intake valve 151, an exhaust valve 152, an opening / closing adjustment mechanism 190, a spark plug 160, a piston 170, and an injector 180. In addition, a combustion chamber 102 is formed inside the cylinder 101 as a space in which a mixed gas of fuel and air burns.
 吸気バルブ151は、吸気配管200と気筒101との接続部分に配置されたバルブである。吸気バルブ151が開状態となることにより、燃焼室102に対する空気の供給が開始される。また、吸気バルブ151が閉状態となることにより、燃焼室102への空気の供給が停止される。 The intake valve 151 is a valve disposed at a connection portion between the intake pipe 200 and the cylinder 101. When the intake valve 151 is opened, the supply of air to the combustion chamber 102 is started. In addition, when the intake valve 151 is closed, the supply of air to the combustion chamber 102 is stopped.
 排気バルブ152は、排気配管300と気筒101との接続部分に配置されたバルブである。排気バルブ152が開状態となることにより、燃焼室102から排気配管300への排出ガスの排出が開始される。また、吸気バルブ151が閉状態となることにより、燃焼室102から排気配管300への排出ガスの排出が停止される。 The exhaust valve 152 is a valve disposed at a connection portion between the exhaust pipe 300 and the cylinder 101. When the exhaust valve 152 is in an open state, discharge of exhaust gas from the combustion chamber 102 to the exhaust pipe 300 is started. Further, when the intake valve 151 is closed, the discharge of the exhaust gas from the combustion chamber 102 to the exhaust pipe 300 is stopped.
 開閉調整機構190は、吸気バルブ151及び排気バルブ152をそれぞれ開閉させるための機構である。開閉調整機構190により、吸気バルブ151及び排気バルブ152がそれぞれ適切なタイミングで開閉し、気筒101では所謂吸気行程、圧縮行程、燃焼行程及び排気行程がそれぞれ実行されることとなる。 The opening / closing adjustment mechanism 190 is a mechanism for opening and closing the intake valve 151 and the exhaust valve 152, respectively. The intake valve 151 and the exhaust valve 152 are opened and closed at appropriate timings by the opening / closing adjustment mechanism 190, and so-called intake stroke, compression stroke, combustion stroke, and exhaust stroke are executed in the cylinder 101, respectively.
 開閉調整機構190は、VVT(登録商標)プーリ(不図示)等を備えた可変バルブタイミング機構として構成されている。これにより、前述した4つの行程が実行される際の吸気バルブ151及び排気バルブ152の開閉タイミングは、常に固定されているのではなく、開閉調整機構190によって変更可能となっている。 The opening / closing adjustment mechanism 190 is configured as a variable valve timing mechanism including a VVT (registered trademark) pulley (not shown) and the like. Thereby, the opening / closing timings of the intake valve 151 and the exhaust valve 152 when the above-described four strokes are executed are not always fixed, but can be changed by the opening / closing adjustment mechanism 190.
 具体的には、排気バルブ152が閉状態となって排気行程が終了されるタイミングと、吸気バルブ151が開状態となって吸気行程が開始されるタイミングとのずれ(オーバーラップ)が、開閉調整機構190により調整可能となっている。吸気バルブ151及び排気バルブ152の開閉動作は、制御装置400によって制御される。 Specifically, the opening / closing adjustment is a shift (overlap) between the timing at which the exhaust valve 152 is closed and the exhaust stroke is ended and the timing at which the intake valve 151 is opened and the intake stroke is started. The mechanism 190 can be adjusted. The opening / closing operation of the intake valve 151 and the exhaust valve 152 is controlled by the control device 400.
 点火プラグ160は、火花点火を行い、燃焼室102内に存在する燃料及び空気の混合気体に着火するための点火装置である。点火プラグ160によって火花点火が行われるタイミング(点火時期)、すなわち燃焼行程が開始されるタイミングは、制御装置400によって制御される。 The spark plug 160 is an ignition device for performing spark ignition and igniting a mixed gas of fuel and air existing in the combustion chamber 102. The timing at which spark ignition is performed by the spark plug 160 (ignition timing), that is, the timing at which the combustion stroke is started is controlled by the control device 400.
 ピストン170は、気筒101内において上下方向に往復移動する部材である。前述した燃焼室102は、気筒101内の空間のうち、ピストン170よりも上方側の部分となっている。 The piston 170 is a member that reciprocates up and down in the cylinder 101. The combustion chamber 102 described above is a portion above the piston 170 in the space in the cylinder 101.
 圧縮行程においては、ピストン170が上方に移動することによって、燃焼室102の容積が減少する。燃焼行程においては、燃焼室102における燃料の燃焼(爆発)によってピストン170が下方に押し下げられる。ピストン170の下方側には、コンロッド171やクランクシャフト172が配置されている。ピストン170の往復移動は、これらクランクシャフト172等によって回転運動に変換される。これにより、燃焼室102において生じた爆発力が車両GCの駆動力に変換される。 In the compression stroke, the volume of the combustion chamber 102 decreases as the piston 170 moves upward. In the combustion stroke, the piston 170 is pushed downward by the combustion (explosion) of the fuel in the combustion chamber 102. A connecting rod 171 and a crankshaft 172 are disposed below the piston 170. The reciprocating movement of the piston 170 is converted into a rotational motion by the crankshaft 172 and the like. Thereby, the explosive force generated in the combustion chamber 102 is converted into the driving force of the vehicle GC.
 インジェクタ180は、燃焼室102内に燃料を直接噴射するための開閉弁である。インジェクタ180によって燃焼室102内に燃料が供給されるタイミングや供給量は、制御装置400により制御される。 The injector 180 is an on-off valve for directly injecting fuel into the combustion chamber 102. The timing and amount of fuel supplied to the combustion chamber 102 by the injector 180 are controlled by the control device 400.
 吸気配管200は、気筒101に空気を供給するための配管である。吸気配管200にはスロットルバルブ(不図示)が配置されている。運転者のアクセル操作に応じてスロットルバルブが開閉することで、気筒101に供給される空気の流量が調整される。 The intake pipe 200 is a pipe for supplying air to the cylinder 101. A throttle valve (not shown) is disposed in the intake pipe 200. The flow rate of air supplied to the cylinder 101 is adjusted by opening and closing the throttle valve in accordance with the driver's accelerator operation.
 排気配管300は、各気筒101から排出される排出ガスを取り入れて内部に流し、合流させて車両GCの外部へと導くマニホールド状の配管である。排気配管300には、浄化機能部10と、PMセンサ14(検出部)とが設けられている。浄化機能部10は、三元触媒11と、フィルタ12とからなる。 The exhaust pipe 300 is a manifold-like pipe that takes in exhaust gas discharged from each cylinder 101, flows it into the interior, joins it, and guides it to the outside of the vehicle GC. The exhaust pipe 300 is provided with a purification function unit 10 and a PM sensor 14 (detection unit). The purification function unit 10 includes a three-way catalyst 11 and a filter 12.
 三元触媒11は、例えばハニカム状を呈し、排気配管300を流れる排出ガスを通過させることができるように構成されている。三元触媒11は、金属触媒であるプラチナ、パラジウム、ロジウムを担持した触媒担体(不図示)を内部に有している。三元触媒11は、これら金属触媒の触媒作用によって、排出ガス中の有害物質(炭化水素、一酸化炭素、窒素酸化物)を酸化又は還元することで浄化する。 The three-way catalyst 11 has a honeycomb shape, for example, and is configured to allow the exhaust gas flowing through the exhaust pipe 300 to pass therethrough. The three-way catalyst 11 has a catalyst carrier (not shown) carrying platinum, palladium and rhodium which are metal catalysts. The three-way catalyst 11 purifies by oxidizing or reducing harmful substances (hydrocarbon, carbon monoxide, nitrogen oxide) in the exhaust gas by the catalytic action of these metal catalysts.
 フィルタ12は、三元触媒11よりも下流側の排気配管300に設けられている。フィルタ12は、例えばハニカム状を呈し、三元触媒11側から流れてくる排出ガスを通過させることができるように構成されている。フィルタ12は、GPF(Gasoline Particle Filter)とも称される。 The filter 12 is provided in the exhaust pipe 300 on the downstream side of the three-way catalyst 11. The filter 12 has a honeycomb shape, for example, and is configured to allow exhaust gas flowing from the three-way catalyst 11 side to pass therethrough. The filter 12 is also called GPF (GasolineGaParticle Filter).
 フィルタ12は、図4に示されるように、互いに間隔を空けて配置される複数の隔壁123を有している。この隔壁123は、平均細孔径が80μm以下の多孔質セラミクスであり、全体としてハニカム構造体を形成している。この複数の隔壁123によって、フィルタ12には、その上流端121から下流端122まで延びる入口目封止セル125及び貫通セル126が複数形成されている。入口目封止セル125は、フィルタ12の下流端122が開放されている一方で、上流端121が目封止部124によって塞がれている。貫通セル126は、フィルタ12の上流端121から下流端122まで貫通するように形成されている。フィルタ12には、このような入口目封止セル125と貫通セル126とが互いに隣り合うようにして形成されている。 As shown in FIG. 4, the filter 12 has a plurality of partition walls 123 that are spaced apart from each other. The partition wall 123 is a porous ceramic having an average pore diameter of 80 μm or less, and forms a honeycomb structure as a whole. The plurality of partition walls 123 form a plurality of inlet plugged cells 125 and penetrating cells 126 that extend from the upstream end 121 to the downstream end 122 of the filter 12. In the inlet plugged cell 125, the downstream end 122 of the filter 12 is open, while the upstream end 121 is closed by the plugged portion 124. The through cell 126 is formed so as to penetrate from the upstream end 121 to the downstream end 122 of the filter 12. In the filter 12, the inlet plugged cell 125 and the through cell 126 are formed so as to be adjacent to each other.
 このように構成されたフィルタ12では、排出ガスはまず貫通セル126内に流入する。排出ガスが貫通セル126内を下流端122に向けて流れることにより、貫通セル126内の圧力が上昇する。一方、入口目封止セル125は、目封止部124によって塞がれているため、上流端121から排出ガスが流入することはない。したがって、入口目封止セル125内の圧力は、貫通セル126内の圧力と比べて低いものとなる。 In the filter 12 configured in this manner, the exhaust gas first flows into the through cell 126. As the exhaust gas flows in the through cell 126 toward the downstream end 122, the pressure in the through cell 126 increases. On the other hand, since the inlet plugged cell 125 is blocked by the plugged portion 124, exhaust gas does not flow from the upstream end 121. Therefore, the pressure in the inlet plugged cell 125 is lower than the pressure in the through cell 126.
 入口目封止セル125内の圧力が、貫通セル126内の圧力と比べて低くなることで、貫通セル126内を流れている排出ガスは、隔壁123を透過して貫通セル126内に流入する。このように排出ガスが隔壁123を通過する際に、排出ガス中の粒子状物質PMが隔壁123によって捕集され、排出ガスから除去される。粒子状物質PMを除去された排出ガスは、フィルタ12の下流端122から流出する。入口目封止セル125及び貫通セル126のいずれも、下流端122が開放されているため、捕集した粒子状物質PMの量が増大しても、その圧力損失が大きく増加することがない。 Since the pressure in the inlet plugged cell 125 is lower than the pressure in the through cell 126, the exhaust gas flowing in the through cell 126 passes through the partition wall 123 and flows into the through cell 126. . As described above, when the exhaust gas passes through the partition wall 123, the particulate matter PM in the exhaust gas is collected by the partition wall 123 and removed from the exhaust gas. The exhaust gas from which the particulate matter PM has been removed flows out from the downstream end 122 of the filter 12. Since both the inlet plugged cell 125 and the penetrating cell 126 have the downstream end 122 open, even if the amount of the collected particulate matter PM increases, the pressure loss does not increase greatly.
 PMセンサ14は、図3に示されるように、フィルタ12よりも下流側の排気配管300に設けられている。後述するように、PMセンサ14は、フィルタ12を通過した排出ガス中の粒子状物質PMの量を検出する。PMセンサ14は、制御装置400と電気的に接続され、粒子状物質PMの検出量に対応する信号を制御装置400に送信する。 The PM sensor 14 is provided in the exhaust pipe 300 downstream of the filter 12 as shown in FIG. As will be described later, the PM sensor 14 detects the amount of particulate matter PM in the exhaust gas that has passed through the filter 12. The PM sensor 14 is electrically connected to the control device 400 and transmits a signal corresponding to the detected amount of the particulate matter PM to the control device 400.
 続いて、図2を参照しながら、PMセンサ14の構成について説明する。PMセンサ14は、電気絶縁材141と、電極142a、142bと、測定器143とを有している。 Subsequently, the configuration of the PM sensor 14 will be described with reference to FIG. The PM sensor 14 includes an electrical insulating material 141, electrodes 142a and 142b, and a measuring instrument 143.
 電気絶縁材141は、アルミナ等によって形成されている。電気絶縁材141は、矢印Fで示されるように排気配管300を流れる排出ガスに曝されるように配置されている。 The electrical insulating material 141 is made of alumina or the like. The electrical insulating material 141 is disposed so as to be exposed to the exhaust gas flowing through the exhaust pipe 300 as indicated by the arrow F.
 電極142a、142bは、いずれも、その一部が電気絶縁材141の内部に埋設されるとともに、他部が電気絶縁材141の表面から臨出するように設けられた金属製部材である。電極142a、142bは、電気絶縁材141の表面から臨出した部分において、互いに間隔を空けて配置されている。 Each of the electrodes 142a and 142b is a metal member provided such that a part of the electrodes 142a and 142b is embedded in the electric insulating material 141 and the other part protrudes from the surface of the electric insulating material 141. The electrodes 142a and 142b are arranged at a distance from each other at a portion protruding from the surface of the electrical insulating material 141.
 測定器143は、電極142a、142bと電気的に接続され、電極142a、142b間の電気抵抗値を測定する。詳細には、測定器143は、電極142a、142b間に測定電圧を印加し、その際に流れる電流の値に基づいて、当該電気抵抗値の測定を行う。 The measuring instrument 143 is electrically connected to the electrodes 142a and 142b, and measures the electric resistance value between the electrodes 142a and 142b. Specifically, the measuring instrument 143 applies a measurement voltage between the electrodes 142a and 142b, and measures the electric resistance value based on the value of the current flowing at that time.
 次に、以上のように構成されたPMセンサ14によるフィルタ12の故障判定について説明する。フィルタ12に溶損等の故障が生じると、粒子状物質PMの捕集が適切に行われなくなる。したがって、フィルタ12を通過する排出ガスは、粒子状物質PMを除去されることなく下流側のPMセンサ14に至る。 Next, the failure determination of the filter 12 by the PM sensor 14 configured as described above will be described. When a failure such as melting damage occurs in the filter 12, the particulate matter PM is not properly collected. Therefore, the exhaust gas passing through the filter 12 reaches the downstream PM sensor 14 without removing the particulate matter PM.
 排出ガスとともにPMセンサ14に至った粒子状物質PMは、PMセンサ14の電気絶縁材141の表面に付着する。粒子状物質PMは、電気絶縁材141と比べて高い電気伝導率を有している。したがって、粒子状物質PMの電気絶縁材141への付着に伴って、測定器143で測定される電極142a、142b間の電気抵抗値が低下する。制御装置400は、PMセンサ14が測定する電気抵抗値が所定の閾値以下となった場合に、フィルタ12が故障したと判定することができる。 The particulate matter PM that reaches the PM sensor 14 together with the exhaust gas adheres to the surface of the electrical insulating material 141 of the PM sensor 14. The particulate matter PM has a higher electrical conductivity than the electrical insulating material 141. Therefore, as the particulate matter PM adheres to the electrical insulating material 141, the electrical resistance value between the electrodes 142a and 142b measured by the measuring instrument 143 decreases. The control device 400 can determine that the filter 12 has failed when the electrical resistance value measured by the PM sensor 14 is equal to or less than a predetermined threshold value.
 ところで、フィルタ12には、捕集した粒子状物質PMが堆積する。フィルタ12に粒子状物質PMが過度に堆積すると、排出ガスの通過が困難となり、エンジン100の燃費悪化を招いてしまう。このため、粒子状物質PMがフィルタ12に過度に堆積する前に、フィルタ12に捕集された粒子状物質PMを燃焼させて除去し、機能回復させる再生処理を行うことが必要となる。 Incidentally, the collected particulate matter PM is deposited on the filter 12. If the particulate matter PM is excessively deposited on the filter 12, it becomes difficult for the exhaust gas to pass therethrough, and the fuel consumption of the engine 100 is deteriorated. For this reason, before the particulate matter PM is excessively deposited on the filter 12, it is necessary to perform a regeneration process for removing the particulate matter PM collected by the filter 12 by burning it and recovering its function.
 一般に、ガソリンエンジンでは、ディーゼルエンジンと比べて、排出ガス中の酸素は少量であり、フィルタ12において粒子状物質PMを燃焼させるには不十分となるおそれがある。したがって、エンジン100に供給する燃料を一時的に減少させる等する空燃比制御を行い、空燃比が理論空燃比よりも大きい状態で燃料を燃焼させることで、エンジン100からフィルタ12に供給される排出ガス中の酸素量を増加させる対策が考えられる。 Generally, a gasoline engine has a small amount of oxygen in exhaust gas compared to a diesel engine, and may be insufficient for burning the particulate matter PM in the filter 12. Therefore, by performing air-fuel ratio control such as temporarily reducing the fuel supplied to the engine 100 and burning the fuel in a state where the air-fuel ratio is larger than the stoichiometric air-fuel ratio, the exhaust supplied from the engine 100 to the filter 12 is performed. Measures to increase the amount of oxygen in the gas can be considered.
 しかしながら、ガソリンエンジンは、ディーゼルエンジンと比べて排出ガスが高温になる傾向がある。したがって、この排出ガスから熱を受けることでPMセンサ14が高温となり、さらに、空燃比制御によってPMセンサ14に供給される排出ガス中の酸素量が増加すると、PMセンサ14の電気絶縁材141に付着している粒子状物質が自然燃焼してしまうおそれがある。これにより、PMセンサ14によるフィルタ12の故障検出等を正確に行えなくなるおそれがある。 However, gasoline engines tend to have higher exhaust emissions than diesel engines. Therefore, when the PM sensor 14 is heated by receiving heat from the exhaust gas, and the amount of oxygen in the exhaust gas supplied to the PM sensor 14 is increased by air-fuel ratio control, the electrical insulation material 141 of the PM sensor 14 is increased. There is a risk that adhering particulate matter may spontaneously burn. As a result, the PM sensor 14 may not be able to accurately detect the failure of the filter 12 or the like.
 そこで、第1実施形態に係る排出ガス浄化装置CA1では、浄化機能部10及びPMセンサ14の配置を工夫することにより、上記課題を解決している。次に、図3を参照しながら、これらの配置について説明する。 Therefore, in the exhaust gas purification apparatus CA1 according to the first embodiment, the above-described problems are solved by devising the arrangement of the purification function unit 10 and the PM sensor 14. Next, these arrangements will be described with reference to FIG.
 図3の上段には、エンジン100に接続されたマニホールド状の排気配管300と、そこに配置された浄化機能部10及びPMセンサ14が示されている。排気配管300は、ヘッダ部301と、コレクタ部302と、収容部303と、導出部304とを有している。 3 shows a manifold-like exhaust pipe 300 connected to the engine 100, and the purification function unit 10 and the PM sensor 14 arranged there. The exhaust pipe 300 includes a header part 301, a collector part 302, a storage part 303, and a lead-out part 304.
 排気配管300は、実際にはエンジン100や車両GCのエンジンルームの形状に対応して屈曲しながら延びているが、ここでは説明の簡便のため、排気配管300を直線状に延伸させた状態で図示されている。 The exhaust pipe 300 actually extends while being bent in accordance with the shape of the engine room of the engine 100 or the vehicle GC. However, for convenience of explanation here, the exhaust pipe 300 is extended in a straight line. It is shown in the figure.
 また、図3の下段には、排気配管300の各部位を流れる排出ガスの温度が示されている。エンジン100の各気筒101に接続される排気配管300の上流端を原点とし、当該原点からの距離を横軸にとり、排出ガスの温度を縦軸にとっている。 In the lower part of FIG. 3, the temperature of the exhaust gas flowing through each part of the exhaust pipe 300 is shown. The upstream end of the exhaust pipe 300 connected to each cylinder 101 of the engine 100 is the origin, the distance from the origin is on the horizontal axis, and the temperature of the exhaust gas is on the vertical axis.
 浄化機能部10は、排気配管300のコレクタ部302の下流側であって、コレクタ部302よりも内径が大きい収容部303に収容されている。このうち、三元触媒11は、原点からの距離がL11からL12の範囲に設けられている。また、フィルタ12は、三元触媒11の下流端112と所定間隔を空けて、原点からの距離がL13からL14の範囲に設けられている。 The purification function unit 10 is accommodated in an accommodation unit 303 that is downstream of the collector unit 302 of the exhaust pipe 300 and has an inner diameter larger than that of the collector unit 302. Among these, the three-way catalyst 11 is provided in the range of L11 to L12 from the origin. The filter 12 is spaced from the downstream end 112 of the three-way catalyst 11 by a predetermined distance, and the distance from the origin is in the range of L13 to L14.
 PMセンサ14は、収容部303の下流側であって、コレクタ部302よりも内径が小さい導出部304に設けられている。PMセンサ14は、原点からの距離がL15の部位に設けられている。 The PM sensor 14 is provided in the lead-out part 304 which is downstream of the housing part 303 and has a smaller inner diameter than the collector part 302. The PM sensor 14 is provided at a site having a distance L15 from the origin.
 エンジン100の各気筒101では、互いに異なる位相で燃焼行程や排気工程が行われる。したがって、各気筒101から、互いに異なるタイミングで、ヘッダ部301のそれぞれに高温の排出ガスが流入する。 In each cylinder 101 of the engine 100, the combustion stroke and the exhaust process are performed at different phases. Therefore, high-temperature exhaust gas flows into each of the header portions 301 from the cylinders 101 at different timings.
 ヘッダ部301を通過した排出ガスは、その下流側のコレクタ部302において合流し、さらに下流側へと流れる。排出ガスは、ヘッダ部301やコレクタ部302部を流れる間に、それらの管壁を介して外部に熱を放出することで、その温度が徐々に低下する。このため、ヘッダ部301に流入した際にT17であった排出ガスの温度は、三元触媒11の上流端111に至った際にはT12まで低下している。 The exhaust gas that has passed through the header portion 301 joins at the collector portion 302 on the downstream side, and further flows downstream. While the exhaust gas flows through the header portion 301 and the collector portion 302, the temperature is gradually lowered by releasing heat to the outside through the tube walls. For this reason, the temperature of the exhaust gas that was T17 when it flowed into the header portion 301 has dropped to T12 when it reached the upstream end 111 of the three-way catalyst 11.
 ここで、三元触媒11は、その金属触媒の触媒作用を活性化させるために、高温の排出ガスが流入する部位に設けることが望ましい。一方で、過度に温度が高い排出ガスが三元触媒11に流入すると、排出ガスの熱による三元触媒11の損傷を招くおそれがある。このような要求と制約を考慮して、三元触媒11は、適温(T12)の排出ガスが流入する部位(原点からの距離がL11の部位)に設けられる。 Here, it is desirable to provide the three-way catalyst 11 at a site where high-temperature exhaust gas flows in order to activate the catalytic action of the metal catalyst. On the other hand, if the exhaust gas having an excessively high temperature flows into the three-way catalyst 11, the three-way catalyst 11 may be damaged by the heat of the exhaust gas. In consideration of such demands and restrictions, the three-way catalyst 11 is provided at a site where the exhaust gas having an appropriate temperature (T12) flows (a site where the distance from the origin is L11).
 三元触媒11に流入した排出ガスは、三元触媒11を通過する際に、含んでいる有害物質が金属触媒によって酸化又は還元される。この酸化反応又は還元反応によって熱が発生するため、三元触媒11を通過中の排出ガスの温度がT16まで上昇する。排出ガスに含まれる有害物質の酸化反応又は還元反応は、三元触媒11の上流側部分で概ね完了する。したがって、三元触媒11の下流側部分では排出ガスの温度は若干低下し、下流端112(原点からの距離がL12の部位)から流出する際はT15となる。 When the exhaust gas flowing into the three-way catalyst 11 passes through the three-way catalyst 11, the contained harmful substances are oxidized or reduced by the metal catalyst. Since heat is generated by this oxidation reaction or reduction reaction, the temperature of the exhaust gas passing through the three-way catalyst 11 rises to T16. The oxidation reaction or reduction reaction of harmful substances contained in the exhaust gas is generally completed at the upstream side portion of the three-way catalyst 11. Therefore, the temperature of the exhaust gas slightly decreases in the downstream portion of the three-way catalyst 11, and becomes T15 when it flows out from the downstream end 112 (the portion where the distance from the origin is L12).
 三元触媒11を通過した排出ガスは、次に、フィルタ12に流入する。排出ガスは、三元触媒11の下流端112からフィルタ12の上流端121まで流れる間に、収容部303の管壁を介して外部に熱を放出することで、その温度がT15からT14まで低下する。 The exhaust gas that has passed through the three-way catalyst 11 then flows into the filter 12. While the exhaust gas flows from the downstream end 112 of the three-way catalyst 11 to the upstream end 121 of the filter 12, the temperature is reduced from T15 to T14 by releasing heat to the outside through the tube wall of the housing portion 303. To do.
 ここで、フィルタ12は、捕集した粒子状物質PMを燃焼させる再生処理を確実に行うために、高温の排出ガスが流入する位置に設けられることが望ましい。このため、フィルタ12は、三元触媒11の下流端112からの0.5m以内の部位に設けられている。すなわち、L12とL13との差が0.5m以内となるようにフィルタ12が設けられている。これにより、フィルタ12は、三元触媒11を通過する際の酸化反応又は還元反応によって温度上昇している排出ガスを流入させ、当該排出ガスから熱の供給を受けて粒子状物質を燃焼させ、確実に再生処理を行うことができる。 Here, it is desirable that the filter 12 is provided at a position where high-temperature exhaust gas flows in in order to reliably perform a regeneration process for burning the collected particulate matter PM. For this reason, the filter 12 is provided at a site within 0.5 m from the downstream end 112 of the three-way catalyst 11. That is, the filter 12 is provided so that the difference between L12 and L13 is within 0.5 m. Thereby, the filter 12 flows in the exhaust gas whose temperature is increased by the oxidation reaction or the reduction reaction when passing through the three-way catalyst 11, receives the supply of heat from the exhaust gas, and burns the particulate matter, Reproduction processing can be performed reliably.
 また、同様の観点から、エンジン100の暖機運転後であって三元触媒11の活性化後に、三元触媒11の下流端112からの排出ガスの温度低下が50℃以下となるような部位に、フィルタ12を設けてもよい。すなわち、エンジン100の暖機運転後であって三元触媒11の活性化後に、T15とT14との差が50℃以下となる部位にフィルタ12を設けてもよい。 From the same point of view, a portion where the temperature drop of the exhaust gas from the downstream end 112 of the three-way catalyst 11 becomes 50 ° C. or less after the three-way catalyst 11 is activated after the engine 100 is warmed up. In addition, a filter 12 may be provided. That is, after the engine 100 is warmed up and the three-way catalyst 11 is activated, the filter 12 may be provided at a portion where the difference between T15 and T14 is 50 ° C. or less.
 フィルタ12を通過する排出ガスは、フィルタ12によって熱を奪われることによってその温度が低下する。したがって、排出ガスの温度は、フィルタ12の上流端121から下流端122まで流れる間に、T14からT13まで低下する。 The exhaust gas passing through the filter 12 is deprived of heat by the filter 12 and its temperature is lowered. Accordingly, the temperature of the exhaust gas decreases from T14 to T13 while flowing from the upstream end 121 to the downstream end 122 of the filter 12.
 フィルタ12を通過し、排気配管300の収容部303から流出した排出ガスは、導出部304によってPMセンサ14が設けられている部位に導かれる。この間も、排出ガスは導出部304の管壁を介して外部に熱を放出することで、その温度が徐々に低下する。このため、PMセンサ14が配置されている部位(原点からの距離がL15の部位)では、排出ガスの温度はT11となる。 The exhaust gas that has passed through the filter 12 and has flowed out of the accommodating portion 303 of the exhaust pipe 300 is guided to a portion where the PM sensor 14 is provided by the derivation portion 304. Also during this time, the exhaust gas releases heat to the outside through the tube wall of the outlet portion 304, and its temperature gradually decreases. For this reason, the temperature of the exhaust gas is T11 at the part where the PM sensor 14 is disposed (the part whose distance from the origin is L15).
 ここで、PMセンサ14は、その電気絶縁材141に付着している粒子状物質PMが自然燃焼することがないように、十分温度が低下した排出ガスが流れる部位に設けることが望ましい。一般的なガソリンの燃焼によって発生する粒子状物質PMが自然燃焼を開始する温度は、500℃程度である。したがって、PMセンサ14は、T11が450℃以下となる部位に設けられている。これにより、フィルタ12の再生処理の際の空燃比制御等により、PMセンサ14に供給される排出ガス中の酸素量が増加した場合でも、PMセンサ14に付着した粒子状物質PMの自然燃焼を抑制し、フィルタ12を通過した排出ガスに含まれる粒子状物質PMの量を検出することが可能となる。 Here, it is desirable to provide the PM sensor 14 at a site where exhaust gas whose temperature has sufficiently decreased flows so that the particulate matter PM adhering to the electrical insulating material 141 does not spontaneously burn. The temperature at which particulate matter PM generated by combustion of general gasoline starts spontaneous combustion is about 500 ° C. Therefore, the PM sensor 14 is provided at a site where T11 is 450 ° C. or lower. Thereby, even when the amount of oxygen in the exhaust gas supplied to the PM sensor 14 is increased by air-fuel ratio control or the like during the regeneration process of the filter 12, the particulate matter PM adhering to the PM sensor 14 is spontaneously combusted. The amount of particulate matter PM contained in the exhaust gas that has been suppressed and passed through the filter 12 can be detected.
 また、同様の観点から、浄化機能部10の下流端(フィルタ12の下流端122)から1m以上離間した部位に、PMセンサ14を設けてもよい。すなわち、L14とL15との差が1m以内となるようにPMセンサ14を設けてもよい。一般的に、車両に搭載されるガソリンエンジンでは、排気配管の経路長さで機能部の下流端から1m以上離間した部位では、排出ガスの温度が500℃を下回るためである。 Also, from the same viewpoint, the PM sensor 14 may be provided at a site separated by 1 m or more from the downstream end of the purification function unit 10 (downstream end 122 of the filter 12). That is, the PM sensor 14 may be provided so that the difference between L14 and L15 is within 1 m. This is because, in general, in a gasoline engine mounted on a vehicle, the temperature of exhaust gas is below 500 ° C. at a site that is 1 m or more away from the downstream end of the functional part in the length of the exhaust pipe.
 さらに、エンジン100は、その通常使用域における回転速度を4000rpm以下に設定することが好ましい。エンジン100の全ての回転速度において、浄化機能部10やPMセンサ14が配置される部位における排出ガスの温度を前述したように管理することは非常に困難である。しかしながら、一般的な車両において、使用頻度が高い通常使用域を、回転速度が4000rpm以下の範囲に設定することにより、排出ガス浄化装置CA1による高い効果を得ながらも、上記温度管理を容易にすることが可能となる。 Furthermore, the engine 100 is preferably set to a rotation speed of 4000 rpm or less in the normal use range. It is very difficult to manage the exhaust gas temperature at the part where the purification function unit 10 and the PM sensor 14 are arranged at all rotational speeds of the engine 100 as described above. However, in a general vehicle, by setting the normal use range where the use frequency is high to a range where the rotation speed is 4000 rpm or less, the above temperature management is facilitated while obtaining a high effect by the exhaust gas purification device CA1. It becomes possible.
 また、フィルタ12は、上流側から下流側に貫通し排出ガスを流す貫通セル126と、貫通セル126と隣り合うように設けられ、上流側が塞がれる一方で下流側が開放されて排出ガスを流す入口目封止セル125と、を有している。このように構成されたフィルタ12を用いることにより、捕集した粒子状物質PMの量が増大しても、その圧力損失を大きく増加させることなく、排出ガスからPMの除去を行うことが可能となる。特に、図3に示されるように、フィルタ12を三元触媒11の下流端112近傍に配置する場合でも、三元触媒11よりも上流側の排気配管300内の圧力上昇を抑制することができる。これにより、エンジン100の出力低下を抑制しながらも、排出ガスからPMの除去を行うことが可能となる。 Further, the filter 12 is provided so as to pass through the upstream side to the downstream side and flow exhaust gas, and adjacent to the through cell 126, and the upstream side is closed while the downstream side is opened to flow exhaust gas. And an inlet plugged cell 125. By using the filter 12 configured in this way, even if the amount of the collected particulate matter PM increases, it is possible to remove PM from the exhaust gas without greatly increasing the pressure loss. Become. In particular, as shown in FIG. 3, even when the filter 12 is disposed in the vicinity of the downstream end 112 of the three-way catalyst 11, the pressure increase in the exhaust pipe 300 upstream of the three-way catalyst 11 can be suppressed. . Thereby, it is possible to remove PM from the exhaust gas while suppressing a decrease in the output of the engine 100.
 (第2実施形態)
 第2実施形態に係る排出ガス浄化装置CA2について、図5及び図6を参照しながら説明する。排出ガス浄化装置CA2は、排出ガス浄化装置CA1と同様に、車両GCに搭載されるエンジン100から排出される排出ガスの浄化を行う装置である。したがって、排出ガス浄化装置CA1と同一の構成については適宜同一の符号を付して、説明を省略する。
(Second Embodiment)
An exhaust gas purification apparatus CA2 according to the second embodiment will be described with reference to FIGS. The exhaust gas purification device CA2 is a device that purifies exhaust gas exhausted from the engine 100 mounted on the vehicle GC, similarly to the exhaust gas purification device CA1. Therefore, the same components as those in the exhaust gas purifying apparatus CA1 are appropriately denoted by the same reference numerals and description thereof is omitted.
 排出ガス浄化装置CA2では、その浄化機能部10がフィルタ13のみによって構成されている。ただし、図6に示されるように、フィルタ13の外形を構成する基体134の表面には、バインダ135によってプラチナ、パラジウム、ロジウム等からなる金属触媒136が担持されている。すなわち、フィルタ13は、通過する排出ガス中の粒子状物質PMを捕集することによって除去するとともに、当該排出ガス中の有害物質を金属触媒136の触媒作用によって酸化又は還元する。 In the exhaust gas purification device CA2, the purification function unit 10 is constituted only by the filter 13. However, as shown in FIG. 6, a metal catalyst 136 made of platinum, palladium, rhodium or the like is supported by a binder 135 on the surface of the base body 134 that forms the outer shape of the filter 13. That is, the filter 13 removes the particulate matter PM in the passing exhaust gas by collecting it, and oxidizes or reduces the harmful substance in the exhaust gas by the catalytic action of the metal catalyst 136.
 このように、フィルタ13は、前述した三元触媒11及びフィルタ12の双方の機能を有している。フィルタ13は、図5に示されるように、原点からの距離がL21からL22の範囲に設けられている。 Thus, the filter 13 has the functions of both the three-way catalyst 11 and the filter 12 described above. As shown in FIG. 5, the filter 13 has a distance from the origin in a range of L21 to L22.
 ヘッダ部301を通過した排出ガスは、その下流側のコレクタ部302において合流し、さらに下流側へとながれる。排出ガスは、ヘッダ部301やコレクタ部302部を流れる間に、それらの管壁を介して外部に熱を放出することで、その温度が徐々に低下する。このため、ヘッダ部301に流入した際にT25であった排出ガスの温度は、フィルタ13の上流端131に至った際にはT22まで低下している。 The exhaust gas that has passed through the header portion 301 joins at the collector portion 302 on the downstream side, and further flows downstream. While the exhaust gas flows through the header portion 301 and the collector portion 302, the temperature is gradually lowered by releasing heat to the outside through the tube walls. For this reason, the temperature of the exhaust gas that was T25 when it flowed into the header portion 301 has decreased to T22 when it reached the upstream end 131 of the filter 13.
 金属触媒136の触媒作用の活性化や、捕集した粒子状物質PMを燃焼させる再生処理の観点から、フィルタ13は、高温の排出ガスが流入する部位に設けることが望ましい。一方で、過度に温度が高い排出ガスがフィルタ13に流入すると、排出ガスの熱によるフィルタ13の損傷を招くおそれがある。このような要求と制約を考慮して、フィルタ13は、適温(T22)の排出ガスが流入する部位(原点からの距離がL21の部位)に設けられる。 From the viewpoint of activation of the catalytic action of the metal catalyst 136 and regeneration processing for burning the collected particulate matter PM, the filter 13 is desirably provided at a site where high-temperature exhaust gas flows. On the other hand, if the exhaust gas having an excessively high temperature flows into the filter 13, the filter 13 may be damaged by the heat of the exhaust gas. In consideration of such demands and restrictions, the filter 13 is provided at a site where the exhaust gas having an appropriate temperature (T22) flows (a site where the distance from the origin is L21).
 フィルタ13に流入した排出ガスは、フィルタ13を通過する際に、含んでいる有害物質が金属触媒136によって酸化又は還元される。この酸化反応又は還元反応によって熱が発生するため、フィルタ13を通過中の排出ガスの温度がT24まで上昇する。排出ガスに含まれる有害物質の酸化反応又は還元反応は、フィルタ13の上流側部分で概ね完了する。したがって、三元触媒11の下流側部分では排出ガスの温度は若干低下し、下流端132(原点からの距離がL22の部位)から流出する際はT23となる。 When the exhaust gas flowing into the filter 13 passes through the filter 13, the contained harmful substances are oxidized or reduced by the metal catalyst 136. Since heat is generated by this oxidation reaction or reduction reaction, the temperature of the exhaust gas passing through the filter 13 rises to T24. The oxidation reaction or reduction reaction of harmful substances contained in the exhaust gas is almost completed at the upstream portion of the filter 13. Therefore, the temperature of the exhaust gas slightly decreases in the downstream portion of the three-way catalyst 11, and becomes T23 when flowing out from the downstream end 132 (the portion where the distance from the origin is L22).
 フィルタ13を通過し、排気配管300の収容部303から流出した排出ガスは、導出部304によってPMセンサ14が設けられている部位に導かれる。この間も、排出ガスは導出部304の管壁を介して外部に熱を放出することで、その温度が徐々に低下する。このため、PMセンサ14が配置されている部位(原点からの距離がL23の部位)では、排出ガスの温度はT21となる。 The exhaust gas that has passed through the filter 13 and has flowed out of the accommodating portion 303 of the exhaust pipe 300 is guided to a portion where the PM sensor 14 is provided by the derivation portion 304. Also during this time, the exhaust gas releases heat to the outside through the tube wall of the outlet portion 304, and its temperature gradually decreases. For this reason, the temperature of the exhaust gas is T21 at the part where the PM sensor 14 is disposed (part where the distance from the origin is L23).
 第2実施形態に係る排出ガス浄化装置CA2においても、PMセンサ14は、その電気絶縁材141に付着している粒子状物質PMが自然燃焼することがないように、十分温度が低下した排出ガスが流れる部位に設けることが望ましい。したがって、PMセンサ14は、T21が450℃以下となる部位に設けられている。 Also in the exhaust gas purifying apparatus CA2 according to the second embodiment, the PM sensor 14 has an exhaust gas whose temperature has been sufficiently lowered so that the particulate matter PM adhering to the electrical insulating material 141 does not spontaneously burn. It is desirable to provide in the part which flows. Therefore, the PM sensor 14 is provided at a site where T21 is 450 ° C. or lower.
 また、同様の観点から、浄化機能部10の下流端(フィルタ13の下流端132)から1m以上離間した部位に、PMセンサ14を設けてもよい。すなわち、L22とL23との差が1m以内となるようにPMセンサ14を設けてもよい。 Also, from the same viewpoint, the PM sensor 14 may be provided at a site separated by 1 m or more from the downstream end of the purification function unit 10 (downstream end 132 of the filter 13). That is, the PM sensor 14 may be provided so that the difference between L22 and L23 is within 1 m.
 (その他の実施形態)
 以上、具体例を参照しつつ本開示の実施の形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本開示の特徴を含む限り本開示の範囲に包含される。
(Other embodiments)
The embodiments of the present disclosure have been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. That is, those specific examples modified by appropriate design by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, but can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present disclosure as long as it includes the features of the present disclosure.
 例えば、前述した実施形態では、PMセンサ14は、電気抵抗値を電極142a、142b間の電気伝導性の指標として用いている。しかしながら、電気抵抗値に代えて、又は、電気抵抗値に加えて、電極142a、142b間を流れる電流や、電極142a、142bの電位差等に基づいて、粒子状物質PMの付着量を検出するように構成してもよい。

 
For example, in the above-described embodiment, the PM sensor 14 uses the electrical resistance value as an index of electrical conductivity between the electrodes 142a and 142b. However, instead of or in addition to the electrical resistance value, the adhesion amount of the particulate matter PM is detected based on the current flowing between the electrodes 142a and 142b, the potential difference between the electrodes 142a and 142b, and the like. You may comprise.

Claims (5)

  1.  車両(GC)のガソリンエンジン(100)から排出されて排気配管(300)を流れる排出ガスを浄化する排出ガス浄化装置(CA1,CA2)であって、
     前記排気配管に設けられ、金属触媒(136)によって排出ガス中の有害物質を酸化又は還元する三元触媒(11,13)および排出ガスを通過させることで粒子状物質を補集するフィルタ(12,13)を有する浄化機能部(10)と、
     前記浄化機能部よりも下流側の前記排気配管に設けられ、粒子状物質を付着させる電気絶縁材(141)および互いに離間して設けられる複数の電極(142a、142b)を有し、前記複数の電極間の電気伝導性に基づいて粒子状物質の付着量を検出する検出部(14)と、を備え、
     前記検出部は、前記排気配管の経路長さで前記浄化機能部の下流端(122,132)から1m以上離間した部位、又は、前記ガソリンエンジンの暖機運転後に流れる排出ガスの温度が450℃以下である部位、に設けられている排出ガス浄化装置。
    Exhaust gas purification devices (CA1, CA2) for purifying exhaust gas discharged from a gasoline engine (100) of a vehicle (GC) and flowing through an exhaust pipe (300),
    A three-way catalyst (11, 13) that is provided in the exhaust pipe and oxidizes or reduces harmful substances in the exhaust gas by the metal catalyst (136), and a filter (12) that collects particulate matter by passing the exhaust gas. , 13) a purification function section (10),
    An electrical insulating material (141) that is provided in the exhaust pipe downstream of the purification function section and adheres particulate matter; and a plurality of electrodes (142a, 142b) that are provided apart from each other; A detection unit (14) for detecting the amount of particulate matter attached based on the electrical conductivity between the electrodes,
    In the detection unit, the temperature of the exhaust gas flowing at a portion 1 m or more away from the downstream end (122, 132) of the purification function unit or the exhaust gas flowing after the warm-up operation of the gasoline engine is 450 ° C. An exhaust gas purifying device provided in the following part.
  2.  前記三元触媒(11)は、前記フィルタ(12)と互いに独立して設けられるとともに、前記フィルタよりも上流側の前記排気配管に設けられ、
     前記フィルタは、前記排気配管の経路長さで前記三元触媒の下流端から0.5m以内の部位、又は、前記ガソリンエンジンの暖機運転後であって前記三元触媒の活性化後に前記三元触媒の下流端からの排出ガスの温度低下が50℃以下である部位、に設けられている請求項1に記載の排出ガス浄化装置。
    The three-way catalyst (11) is provided independently of the filter (12), and is provided in the exhaust pipe upstream of the filter.
    The filter has a path length of the exhaust pipe that is within 0.5 m from the downstream end of the three-way catalyst, or after the three-way catalyst is activated after the gasoline engine is warmed up. The exhaust gas purification device according to claim 1, wherein the exhaust gas purification device is provided at a portion where the temperature drop of the exhaust gas from the downstream end of the original catalyst is 50 ° C or less.
  3.  前記浄化機能部は、前記フィルタの表面に前記金属触媒を担持させて構成されている請求項1に記載の排出ガス浄化装置。 The exhaust gas purification device according to claim 1, wherein the purification function unit is configured by supporting the metal catalyst on a surface of the filter.
  4.  前記ガソリンエンジンの通常使用域における回転速度が4000rpm以下である請求項1乃至3のいずれか1項に記載の排出ガス浄化装置。 The exhaust gas purifying device according to any one of claims 1 to 3, wherein a rotation speed of the gasoline engine in a normal use range is 4000 rpm or less.
  5.  前記フィルタは、
      上流側から下流側に貫通して排出ガスを流す貫通セル(126)と、
      前記貫通セルと隣り合うように設けられ、上流側が塞がれる一方で下流側が開放されて排出ガスを流す入口目封止セル(125)と、を有している請求項1及至4のいずれか1項に記載の排出ガス浄化装置。

     
    The filter is
    A penetrating cell (126) that flows from the upstream side to the downstream side to flow exhaust gas;
    5. An inlet plugged cell (125) provided adjacent to the through-cell and having an upstream side blocked and a downstream side opened to allow exhaust gas to flow. 5. The exhaust gas purification device according to item 1.

PCT/JP2016/000396 2015-01-30 2016-01-27 Exhaust-gas purifying device WO2016121386A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016000519.9T DE112016000519T5 (en) 2015-01-30 2016-01-27 exhaust gas purification device
US15/544,955 US20180010498A1 (en) 2015-01-30 2016-01-27 Exhaust-gas purifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016205A JP2016142139A (en) 2015-01-30 2015-01-30 Exhaust emission control device
JP2015-016205 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121386A1 true WO2016121386A1 (en) 2016-08-04

Family

ID=56543008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000396 WO2016121386A1 (en) 2015-01-30 2016-01-27 Exhaust-gas purifying device

Country Status (4)

Country Link
US (1) US20180010498A1 (en)
JP (1) JP2016142139A (en)
DE (1) DE112016000519T5 (en)
WO (1) WO2016121386A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468414B2 (en) 2020-06-05 2024-04-16 トヨタ自動車株式会社 Vehicle allocation device, vehicle allocation method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783115A (en) * 1993-09-14 1995-03-28 Kubota Corp Valve opening rate setting method for throttle valve of carburetor
JP2003035126A (en) * 2001-07-24 2003-02-07 Mitsubishi Motors Corp Exhaust emission control device for diesel engine
JP2005201155A (en) * 2004-01-15 2005-07-28 Toyota Motor Corp Exhaust emission control device
WO2012095943A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Pm quantity detecting apparatus and apparatus for detecting failure of particulate filter
WO2013153081A1 (en) * 2012-04-13 2013-10-17 Umicore Ag & Co. Kg Pollutant abatement system for gasoline vehicles
WO2013175572A1 (en) * 2012-05-22 2013-11-28 トヨタ自動車株式会社 Exhaust emission purification device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783115A (en) * 1993-09-14 1995-03-28 Kubota Corp Valve opening rate setting method for throttle valve of carburetor
JP2003035126A (en) * 2001-07-24 2003-02-07 Mitsubishi Motors Corp Exhaust emission control device for diesel engine
JP2005201155A (en) * 2004-01-15 2005-07-28 Toyota Motor Corp Exhaust emission control device
WO2012095943A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Pm quantity detecting apparatus and apparatus for detecting failure of particulate filter
WO2013153081A1 (en) * 2012-04-13 2013-10-17 Umicore Ag & Co. Kg Pollutant abatement system for gasoline vehicles
WO2013175572A1 (en) * 2012-05-22 2013-11-28 トヨタ自動車株式会社 Exhaust emission purification device for internal combustion engine

Also Published As

Publication number Publication date
DE112016000519T5 (en) 2017-10-19
US20180010498A1 (en) 2018-01-11
JP2016142139A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
CN108071511B (en) Method for mitigating over-temperature during regeneration of a particulate filter device of an exhaust system
CN101617106B (en) Exhaust gas purification device for internal combustion engine
US9840954B2 (en) Exhaust purification device for internal combustion engine
US20120151992A1 (en) Particulate matter detection sensor
US9594068B2 (en) Abnormality detection system of engine exhaust system
US10024260B2 (en) System for sensing particulate matter
JP2011080926A (en) Particulate detecting element
JPWO2015004713A1 (en) Control method for internal combustion engine
CN101460716A (en) Control unit and control method for internal combustion engine
US11230960B2 (en) Failure detection apparatus and failure detection method for particulate filter
CN209011913U (en) Gasoline engine particle capture device
WO2016121386A1 (en) Exhaust-gas purifying device
CN107339139A (en) System and method for soot sensor
JP2009127597A (en) Catalyst degradation diagnostic device
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
WO2016125436A1 (en) Particulate detection device
JP7067987B2 (en) Exhaust gas purification device
JP7113598B2 (en) Failure detection device and failure detection method for particulate filter
JP6940999B2 (en) Filter device
JP2017223160A (en) Exhaust emission control device and filter device
JP2018178738A (en) Control device for internal combustion engine
JP2005207240A (en) Abnormality determining device for particulate filter
US10132262B2 (en) Methods for optimizing exhaust gas system regeneration and cleaning
JP2018162712A (en) Filter device
JP2017020376A (en) Exhaust emission control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544955

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000519

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742990

Country of ref document: EP

Kind code of ref document: A1