WO2016121320A1 - 非水電解質二次電池用負極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2016121320A1
WO2016121320A1 PCT/JP2016/000216 JP2016000216W WO2016121320A1 WO 2016121320 A1 WO2016121320 A1 WO 2016121320A1 JP 2016000216 W JP2016000216 W JP 2016000216W WO 2016121320 A1 WO2016121320 A1 WO 2016121320A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
particles
secondary battery
Prior art date
Application number
PCT/JP2016/000216
Other languages
English (en)
French (fr)
Inventor
達哉 明楽
博之 南
泰三 砂野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US15/524,395 priority Critical patent/US10312516B2/en
Priority to JP2016571835A priority patent/JP6685937B2/ja
Priority to CN201680006584.0A priority patent/CN107210442B/zh
Publication of WO2016121320A1 publication Critical patent/WO2016121320A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a nonaqueous electrolyte secondary battery in which SiO x is mixed with graphite to form a negative electrode active material.
  • the non-aqueous electrolyte secondary battery using SiO x as the negative electrode active material has a problem that the initial charge / discharge efficiency is lower than when graphite is used as the negative electrode active material. This is mainly due to the change of SiO x to Li 4 SiO 4 (irreversible reactant) due to the irreversible reaction during charging and discharging. Accordingly, a negative electrode active material represented by SiLi x O y (0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.5) has been proposed in order to suppress the irreversible reaction and improve the initial charge / discharge efficiency. (See Patent Document 2).
  • Patent Document 3 discloses a negative electrode active material in which a lithium silicate phase mainly composed of Li 4 SiO 4 is contained in silicon oxide.
  • initial charge / discharge is performed by heat-treating a mixture of SiO x and a lithium compound at a high temperature to convert SiO 2 into Li 4 SiO 4 which is an irreversible reactant. Improving efficiency.
  • SiO 2 remains inside the particle, and Li 4 SiO 4 is generated only on the particle surface.
  • the crystal grain size in this case Si and Li 4 SiO 4 is assumed to be increased. The increase in the crystal grain size increases the volume change of the active material particles due to charge / discharge, for example, and decreases the lithium ion conductivity.
  • SiO x has a smaller volume change due to occlusion of lithium ions than Si, but the volume change is larger than that of carbon materials such as graphite, and active material particles tend to collapse due to charge and discharge. For this reason, it is also an important subject to suppress the collapse of the active material particles and extend the cycle life.
  • a negative electrode active material for a nonaqueous electrolyte secondary battery which is one embodiment of the present disclosure, is dispersed in a lithium silicate phase represented by Li 2z SiO (2 + z) ⁇ 0 ⁇ z ⁇ 2 ⁇ and a lithium silicate phase.
  • Silicon particles and metal particles mainly composed of one or more metals or alloys selected from Fe, Pb, Zn, Sn, Cu, Ni, and Cr dispersed in a lithium silicate phase.
  • a negative electrode active material that is one embodiment of the present disclosure includes a lithium silicate phase represented by Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2) and silicon particles dispersed in the lithium silicate phase. Furthermore, the negative electrode active material includes metal particles mainly composed of one or more metals or alloys selected from Fe, Pb, Zn, Sn, Cu, Ni, and Cr, dispersed in a lithium silicate phase.
  • the negative electrode active material that is one embodiment of the present disclosure may contain SiO 2 that is about the natural oxide film formed on the surface of the silicon particles. It should be noted that the nature of SiO 2 of natural oxide film and SiO 2 of conventional SiO x particles are greatly different.
  • SiO x is obtained by dispersing minute Si particles in a SiO 2 matrix, and the following reaction occurs during charge and discharge.
  • Formula 1 is decomposed for Si and 2SiO 2 , the following formula is obtained.
  • Equation 3 is an irreversible reaction, and the generation of Li 4 SiO 4 is the main factor for reducing the initial charge / discharge efficiency.
  • Negative electrode active material which is one aspect of the present disclosure are those silicon particles are dispersed in the lithium silicate phase represented by Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2), for example, the conventional SiO x
  • the content of SiO 2 is significantly less.
  • SiO 2 contained in the anode active material is a natural oxide film, SiO 2 and the properties of the conventional SiO x particles differ greatly. Therefore, in the nonaqueous electrolyte secondary battery using the negative electrode active material, the reaction of Formula 3 hardly occurs, and it is considered that the initial charge / discharge efficiency is improved.
  • the negative electrode active material which is one embodiment of the present disclosure, metal particles mainly composed of Fe or the like are dispersed in a lithium silicate phase, and a non-aqueous electrolyte secondary battery using the active material is a conventional SiO 2 Compared with a non-aqueous electrolyte secondary battery using x , the cycle life is greatly improved.
  • the improvement in the cycle life is considered to be caused by the suppression of the collapse of the active material particles due to the malleability of the metal particles mainly composed of Fe or the like.
  • the suppression of the collapse of the active material particles by the addition of the metal particles is effective even with a small amount of addition, the total mass of the mother particles composed of the lithium silicate phase, the silicon particles, and the metal particles is reduced.
  • the addition amount is preferably 0.01% by mass or more.
  • a nonaqueous electrolyte secondary battery as an example of the embodiment includes a negative electrode including the negative electrode active material, a positive electrode, and a nonaqueous electrolyte including a nonaqueous solvent.
  • a separator is preferably provided between the positive electrode and the negative electrode.
  • As an example of the structure of the nonaqueous electrolyte secondary battery there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator, and a nonaqueous electrolyte are housed in an exterior body.
  • the wound electrode body instead of the wound electrode body, other types of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the nonaqueous electrolyte secondary battery may have any form such as a cylindrical type, a square type, a coin type, a button type, and a laminate type.
  • the positive electrode is preferably composed of a positive electrode current collector made of, for example, a metal foil, and a positive electrode mixture layer formed on the current collector.
  • a positive electrode current collector a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode mixture layer preferably includes a conductive material and a binder in addition to the positive electrode active material.
  • the particle surface of the positive electrode active material may be covered with fine particles of an oxide such as aluminum oxide (Al 2 O 3 ), an inorganic compound such as a phosphoric acid compound, or a boric acid compound.
  • Examples of the positive electrode active material include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Examples of the lithium transition metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3). These may be used individually by 1 type, and may mix and use multiple types.
  • the conductive material is used to increase the electrical conductivity of the positive electrode mixture layer.
  • Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder is used to maintain a good contact state between the positive electrode active material and the conductive material and to enhance the binding property of the positive electrode active material or the like to the surface of the positive electrode current collector.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • polyimide resins acrylic resins
  • polyolefin resins polyolefin resins.
  • the negative electrode is preferably composed of, for example, a negative electrode current collector made of a metal foil or the like, and a negative electrode mixture layer formed on the current collector.
  • a negative electrode current collector a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer preferably includes a binder in addition to the negative electrode active material.
  • fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin and the like can be used as in the case of the positive electrode.
  • CMC or a salt thereof may be a partially neutralized salt
  • SBR rubber
  • PAA polyacrylic acid
  • PAA-Na, PAA-K, etc. or a partially neutralized salt
  • PVA polyvinyl alcohol
  • FIG. 1 shows a cross-sectional view of negative electrode active material particles 10 as an example of the embodiment.
  • the negative electrode active material particle 10 includes a lithium silicate phase 11, a silicon particle 12 dispersed in the lithium silicate phase 11, a metal mainly composed of Fe or the like dispersed in the lithium silicate phase 11.
  • a conductive layer 14 is preferably formed on the surface of the mother particle 13 composed of the lithium silicate phase 11, the silicon particles 12, and the metal particles 15.
  • the mother particle 13 may contain a third component other than the lithium silicate phase 11, the silicon particle 12, and the metal particle 15.
  • the content is preferably less than 10% by mass, more preferably less than 7% by mass. Note that the smaller the particle size of the silicon particles 12, the larger the surface area, and the more SiO 2 of the natural oxide film.
  • the silicon particles 12 of the negative electrode active material particles 10 can occlude more lithium ions than carbon materials such as graphite, the application of the negative electrode active material particles 10 to the negative electrode active material contributes to increasing the capacity of the battery. To do. In the negative electrode mixture layer, only the negative electrode active material particles 10 may be used alone as the negative electrode active material. However, since the volume change due to charge / discharge is larger than that of graphite, a silicon material may be used in combination with another active material having a small volume change in order to maintain good cycle characteristics while increasing the capacity. As the other active material, a carbon material such as graphite is preferable.
  • Graphite includes graphite conventionally used as a negative electrode active material, such as natural graphite such as flaky graphite, massive graphite, earthy graphite, massive artificial graphite (MAG), graphitized mesophase carbon microbeads (MCMB), etc. Artificial graphite or the like can be used.
  • the ratio of the negative electrode active material particles 10 to graphite is preferably 1:99 to 30:70 in terms of mass ratio.
  • the mass ratio of the negative electrode active material particles 10 and graphite is within the range, it is easy to achieve both high capacity and improved cycle characteristics.
  • the ratio of the negative electrode active material particles 10 to graphite is lower than 1% by mass, the merit of increasing the capacity by adding the negative electrode active material particles 10 is reduced.
  • the content of the main component may be 50% by mass or more based on the total mass of the lithium silicate phase 11. Preferably, 80 mass% or more is more preferable.
  • the lithium silicate phase 11 is preferably composed of a collection of fine particles.
  • the lithium silicate phase 11 is composed of finer particles than the silicon particles 12, for example.
  • the intensity of the Si (111) peak is larger than the intensity of the (111) peak of lithium silicate.
  • the negative electrode active material particles 10 after charging / discharging do not contain Li 4 SiO 4 . Since the starting material of the negative electrode active material particles 10 contains only SiO 2 of a natural oxide film, the reaction of the above formula (3) hardly occurs in the first charge / discharge, and Li 4 SiO 4 which is an irreversible reactant. Is difficult to generate.
  • the silicon particles 12 are preferably dispersed substantially uniformly in the lithium silicate phase 11.
  • the negative electrode active material particles 10 (the mother particles 13) have, for example, a sea-island structure in which fine silicon particles 12 are dispersed in a lithium silicate matrix, and the silicon particles 12 are not unevenly distributed in some regions in an arbitrary cross section. It is scattered almost uniformly.
  • the content of the silicon particles 12 (Si) in the mother particles 13 is preferably 20% by mass to 95% by mass with respect to the total mass of the mother particles 13 from the viewpoint of increasing capacity and improving cycle characteristics. More preferred is 35% by mass to 75% by mass. If the Si content is too low, for example, the charge / discharge capacity decreases, and load characteristics deteriorate due to poor diffusion of lithium ions. If the Si content is too high, for example, a part of Si is not covered with lithium silicate and exposed to be in contact with the electrolytic solution, resulting in deterioration of cycle characteristics.
  • the average particle diameter of the silicon particles 12 is, for example, 500 nm or less before charge / discharge, preferably 200 nm or less, and more preferably 50 nm or less. After charging / discharging, 400 nm or less is preferable, and 100 nm or less is more preferable. By miniaturizing the silicon particles 12, the volume change at the time of charging / discharging is reduced, and the collapse of the electrode structure is easily suppressed.
  • the average particle diameter of the silicon particles 12 is measured by observing the cross section of the negative electrode active material particles 10 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), specifically, 100 silicons. It is obtained by averaging the longest diameter of the particles 12.
  • the metal particles 15 are one or more metals selected from iron (Fe), lead (Pb), zirconium (Zn), tin (Sn), and copper (Cu), nickel (Ni), and chromium (Cr). It is a particle having an alloy as a main component (a component having the largest mass in the metal or alloy constituting the metal particle 15) and having a smaller volume change due to charge / discharge than the silicon particle 12 and having excellent malleability.
  • the metal particles 15 play a role of relaxing the volume change of the mother particles 13 due to charge / discharge and suppressing the collapse of the mother particles 13.
  • the metal particles 15 are preferably composed mainly of one or more metals or alloys selected from Fe, Pb and Cu, and particularly preferably composed mainly of Fe.
  • the content of Fe is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to the total mass of the metal particles 15.
  • the metal or alloy constituting the metal particles 15 may be Fe only (about 100% by mass), and iron containing Pb, Zn, Sn, Cu, C, Cr, Ni, Mo, Nb, Mn, or the like.
  • An alloy for example, stainless steel may be used.
  • the metal particles 15 are preferably dispersed substantially uniformly in the lithium silicate phase 11 as with the silicon particles 12.
  • the base particles 13 have, for example, a sea-island structure in which fine metal particles 15 are dispersed in a lithium silicate matrix, and the metal particles 15 are scattered substantially uniformly without being unevenly distributed in a partial region in an arbitrary cross section. Yes.
  • the content of the metal particles 15 in the base particles 13 is preferably 0.01% by mass to 20% by mass, more preferably 0.5% by mass to 15% by mass with respect to the total mass of the base particles 13. A mass% to 10 mass% is particularly preferred. If content of the metal particle 15 is in the said range, decay
  • the metal or alloy constituting the metal particle 15 is alloyed with at least one of Si and lithium silicate.
  • the metal particles 15 are alloyed with at least one of Si and lithium silicate by heat treatment together with the silicon particles 12 and the lithium silicate constituting the lithium silicate phase 11.
  • the constituent material of the metal particles 15 is an alloy containing at least one of Si and lithium silicate.
  • the metal or alloy constituting the metal particle 15 is preferably alloyed with at least lithium silicate of the lithium silicate phase 11 and may be alloyed with Si and lithium silicate.
  • the adhesion between the metal particles 15 and the lithium silicate phase 11 is strengthened, and the collapse of the mother particles 13 due to charge / discharge is easily suppressed.
  • the metal or alloy which comprises the metal particle 15 and at least one of Si and lithium silicate are alloying using energy dispersive X-ray-spectroscopy (EDS).
  • the average particle diameter of the metal particles 15 is smaller than the average particle diameter of the silicon particles 12, preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. If the particle size of the metal particles 15 is too large, for example, the number of particles decreases and the adhesion with lithium silicate or the like decreases. It is preferable that the particle size of the metal particles 15 hardly change before and after charging / discharging. By adding the metal particles 15 having a smaller particle size than the silicon particles 12, it becomes easy to suppress the collapse of the mother particles 13.
  • the average particle diameter of the metal particles 15 is measured by observing the cross section of the negative electrode active material particles 10 using SEM or TEM, specifically, as in the case of the silicon particles 12. It is obtained by averaging the longest diameter.
  • the average particle diameter of the negative electrode active material particles 10 is preferably 1 to 15 ⁇ m, more preferably 4 to 10 ⁇ m, from the viewpoint of increasing capacity and improving cycle characteristics.
  • the average particle diameter of the negative electrode active material particles 10 is the particle diameter of primary particles, and the volume in the particle size distribution measured by a laser diffraction scattering method (for example, using “LA-750” manufactured by HORIBA). It means the particle size (volume average particle size) at which the integrated value is 50%. If the average particle diameter of the negative electrode active material particles 10 becomes too small, the surface area increases, and therefore the reaction amount with the electrolyte tends to increase and the capacity tends to decrease.
  • the average particle size becomes too large, the amount of volume change due to charging / discharging becomes large, so that the cycle characteristics tend to deteriorate.
  • the conductive layer 14 since the thickness of the conductive layer 14 is thin, the average particle diameter of the negative electrode active material particle 10 is not affected ( The particle diameter of the negative electrode active material particles 10 ⁇ the particle diameter of the mother particles 13)
  • the mother particle 13 is produced through the following steps 1 to 3, for example.
  • Si powder, lithium silicate powder, metal powder mainly composed of Fe, etc. pulverized to an average particle size of several ⁇ m to several tens ⁇ m are mixed at a predetermined mass ratio to prepare a mixture.
  • the mixture is pulverized into fine particles using a ball mill. It is also possible to prepare a mixture after making each raw material powder into fine particles.
  • the pulverized mixture is heat-treated at 600 to 1000 ° C., for example, in an inert atmosphere. In the heat treatment, a sintered body of the mixture may be produced by applying pressure as in hot pressing.
  • Lithium silicate represented by Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2) is stable in the above temperature range and does not react with Si, so the capacity does not decrease. Moreover, it is also possible to produce the base particles 13 by synthesizing Si nanoparticles and lithium silicate nanoparticles without using a ball mill, mixing them, and performing a heat treatment.
  • the negative electrode active material particles 10 preferably have a conductive layer 14 formed of a material having higher conductivity than the lithium silicate phase 11 enclosing the silicon particles 12 and the metal particles 15 on the particle surface.
  • the conductive material constituting the conductive layer 14 is preferably electrochemically stable, and is preferably at least one selected from the group consisting of carbon materials, metals, and metal compounds.
  • carbon material carbon black, acetylene black, ketjen black, graphite, a mixture of two or more thereof, and the like can be used as in the conductive material of the positive electrode mixture layer.
  • the metal copper, nickel, alloys thereof, and the like that are stable in the potential range of the negative electrode can be used.
  • the metal compound include a copper compound and a nickel compound (the metal or metal compound layer can be formed on the surface of the mother particle 13 by electroless plating, for example). Among these, it is particularly preferable to use a carbon material.
  • Examples of the method of coating the surface of the base particles 13 with carbon include a CVD method using acetylene, methane, etc., a method in which coal pitch, petroleum pitch, phenol resin or the like is mixed with the base particles 13 and heat treatment is performed. Further, the carbon coating layer may be formed by fixing carbon black, ketjen black or the like to the surface of the base particle 13 using a binder.
  • the conductive layer 14 is preferably formed so as to cover substantially the entire surface of the mother particle 13.
  • the thickness of the conductive layer 14 is preferably 1 to 200 nm and more preferably 5 to 100 nm in consideration of ensuring conductivity and diffusibility of lithium ions into the mother particles 13. If the thickness of the conductive layer 14 becomes too thin, the conductivity is lowered and it becomes difficult to uniformly coat the mother particles 13. On the other hand, if the thickness of the conductive layer 14 becomes too thick, the diffusion of lithium ions into the mother particles 13 is hindered and the capacity tends to decrease.
  • the thickness of the conductive layer 14 can be measured by cross-sectional observation of particles using SEM or TEM.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP ), Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • GBL ⁇ -butyrolactone
  • VTL ⁇ -valerolactone
  • MP methyl propionate
  • Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, diphen
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), or the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li Borates such as 2 B 4 O 7 and Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) and imide salts such as ⁇ 1, m is an integer of 1 or more ⁇ .
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoint of ion conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • separator a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • Example 1 [Production of negative electrode active material]
  • Si powder (3N, 10 ⁇ m pulverized product), Li 2 SiO 3 powder (10 ⁇ m pulverized product), and Fe powder (10 ⁇ m pulverized product) were mixed at a mass ratio of 41.5: 57.5: 1.
  • the mixture was mixed and filled into a pot (made of SUS, volume: 500 mL) of a planetary ball mill (made of Fritsch, P-5). Twenty-four SUS balls (diameter 20 mm) were placed in the pot, the lid was closed, and pulverization was performed at 200 rpm for 50 hours.
  • the powder was taken out in an inert atmosphere and heat-treated under conditions of an inert atmosphere and 800 ° C. ⁇ 4 hours.
  • the heat-treated powder hereinafter referred to as mother particles
  • coal pitch manufactured by JFE Chemical, MCP250
  • the surface of was coated with carbon to form a conductive layer.
  • the coating amount of carbon is about 5% by mass with respect to the total mass of the particles including the mother particles and the conductive layer.
  • negative electrode active material A1 was obtained by adjusting an average particle diameter to 5 micrometers using a sieve.
  • FIG. 2 shows an SEM image of a particle cross section of the negative electrode active material A1.
  • Si particles and Fe particles were dispersed substantially uniformly in a matrix made of Li 2 SiO 3 .
  • XRD pattern of the negative electrode active material A1 peaks derived from Si and Li 2 SiO 3 were confirmed.
  • the content of SiO 2 was less than 7% by mass (below the lower limit of detection).
  • LiPF 6 was added to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 so that the concentration would be 1.0 mol / L, and a non-aqueous electrolyte was added.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 2 Except that the mixing ratio (mass ratio) of the Si powder, Li 2 SiO 3 powder, and Fe powder was changed to 42: 57.9: 0.1, the negative electrode active material A2 and A battery T2 was produced.
  • Example 3 A negative electrode active material A3 and a battery T3 were produced in the same manner as in Example 1 except that the mixing ratio (mass ratio) of the Si powder, Li 2 SiO 3 powder, and Fe powder was changed to 40: 55: 5. did.
  • Example 4 A negative electrode active material A4 and a battery T4 were produced in the same manner as in Example 1 except that the mixing ratio (mass ratio) of the Si powder, Li 2 SiO 3 powder, and Fe powder was changed to 38: 53: 9. did.
  • Example 5 Except for changing the mixing ratio (mass ratio) of the Si powder, Li 2 SiO 3 powder, and Fe powder to 36.5: 50.5: 13, the negative electrode active material A5 and A battery T5 was produced.
  • Example 6 A negative electrode active material A6 and a battery T6 were produced in the same manner as in Example 1 except that the mixing ratio (mass ratio) of the Si powder, Li 2 SiO 3 powder, and Fe powder was changed to 35:50:15. did.
  • the batteries T1 to T6 of the example have better initial charge / discharge efficiency than the batteries R1 and R3 of the comparative example. That is, the first charge / discharge efficiency is improved by using, as the negative electrode active material, single particles in which Si particles are dispersed in a matrix of Li 2 SiO 3 or Li 2 Si 2 O 5 .
  • Example 7 [Production of positive electrode] Lithium cobaltate, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., HS100), and polyvinylidene fluoride (PVdF) were mixed at a mass ratio of 95: 2.5: 2.5. After adding N-methyl-2-pyrrolidone (NMP) as a dispersion medium to the mixture, the mixture was stirred using a mixer (TK Hibismix, manufactured by Primics) to prepare a positive electrode mixture slurry. Next, the positive electrode mixture slurry was applied on the aluminum foil, dried, and then rolled with a rolling roller to form a positive electrode mixture layer having a density of 3.6 g / cm 3 on both surfaces of the aluminum foil. Was made.
  • NMP N-methyl-2-pyrrolidone
  • TK Hibismix manufactured by Primics
  • Negative electrode active material A7 sodium carboxymethylcellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed at a mass ratio of 97.5: 1.0: 1.5, and water was added. This was stirred using a mixer (Primics, TK Hibismix) to prepare a negative electrode mixture slurry. Next, the slurry is applied on the copper foil such that the mass per 1 m 2 of the negative electrode mixture layer is 190 g, the coating film is dried at 105 ° C. in the air, rolled, and applied to both sides of the copper foil. A negative electrode on which a negative electrode mixture layer having a density of 1.6 g / cm 3 was formed was produced.
  • CMC-Na sodium carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • a wound electrode body was manufactured by attaching a tab to each of the electrodes and winding the positive electrode and the negative electrode to which the tab was attached via a separator in a spiral shape so that the tab was positioned on the outermost periphery.
  • the electrode body is inserted into an exterior body made of an aluminum laminate sheet and vacuum-dried at 105 ° C. for 2 hours, and then the non-aqueous electrolyte is injected to seal the opening of the exterior body to obtain a battery T7.
  • the design capacity of this battery is 800 mAh.
  • Example 8 A battery T8 was produced in the same manner as in Example 7, except that the negative electrode active material A8 added with Cu powder (10 ⁇ m pulverized product) was used instead of the Fe powder (10 ⁇ m pulverized product) of the negative electrode active material A1.
  • Example 9 A battery T9 was produced in the same manner as in Example 7, except that the negative electrode active material A9 added with Pb powder (10 ⁇ m pulverized product) was used instead of the Fe powder (10 ⁇ m pulverized product) of the negative electrode active material A1.
  • Example 10 A battery T10 was produced in the same manner as in Example 7 except that the negative electrode active material A2 was used instead of the negative electrode active material A1.
  • Example 11 A battery T11 was produced in the same manner as in Example 7 except that the negative electrode active material A3 was used instead of the negative electrode active material A1.
  • Example 12 A battery T12 was produced in the same manner as in Example 7 except that the negative electrode active material A4 was used instead of the negative electrode active material A1.
  • Example 13 A battery T13 was produced in the same manner as in Example 7 except that the negative electrode active material A5 was used instead of the negative electrode active material A1.
  • Example 14 A battery T14 was produced in the same manner as in Example 7 except that the negative electrode active material A6 was used instead of the negative electrode active material A1.
  • a battery R4 was produced in the same manner as in Example 7 except that the negative electrode active material B2 was used instead of the negative electrode active material A1.
  • the batteries of Examples 7 to 14 and Comparative Example 4 were evaluated for initial charge / discharge efficiency, appearance evaluation of negative electrode active material particles after 100 cycles, and cycle life evaluation by the following methods. The evaluation results are shown in Table 2.
  • the batteries T7 to T14 of the examples all have significantly improved cycle life as compared with the battery R4 of the comparative example using the negative electrode active material not containing metal particles, and 5% by mass.
  • the above Fe particles particularly excellent cycle characteristics were obtained.
  • grains was used, the improvement of cycle life was confirmed.
  • the negative electrode active material of the comparative example is a single particle in which Si particles are dispersed in a matrix of Li 2 SiO 3 or Li 2 Si 2 O 5 , but strain due to expansion stress of the Si particles accumulates with the charge / discharge cycle. It is thought that the active material particles collapsed.
  • the negative electrode active material of the example in which metal particles are added to the single particles the volume change of the active material particles is eased by the metal particles and the adhesion of the active material particles is improved, and the active material particles are collapsed. Is presumed to be suppressed.
  • Negative electrode active material particles 11 Lithium silicate phase, 12 Silicon particles, 13 Mother particles, 14 Conductive layer, 15 Metal particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極活物質としてシリコン材料を用いた非水電解質二次電池において、初回充放電効率を向上させると共に、サイクル寿命を向上させる。実施形態の一例である負極活物質粒子(10)は、Li2zSiO(2+z){0<z<2}で表されるリチウムシリケート相(11)と、リチウムシリケート相(11)中に分散したシリコン粒子(12)と、リチウムシリケート相(11)中に分散した、Fe、Pb、Zn、Sn、及びCuから選択される1種以上の金属又は合金を主成分とする金属粒子(15)とを備える。

Description

非水電解質二次電池用負極活物質及び非水電解質二次電池
 本開示は、非水電解質二次電池用負極活物質及び非水電解質二次電池に関する。
 シリコン(Si)、SiOxで表されるシリコン酸化物などのシリコン材料は、黒鉛などの炭素材料と比べて単位体積当りに多くのリチウムイオンを吸蔵できることが知られている。特にSiOxは、Siよりもリチウムイオンの吸蔵による体積変化が小さいことから、リチウムイオン電池等の負極への適用が検討されている。例えば、特許文献1は、SiOxを黒鉛と混合して負極活物質とした非水電解質二次電池を開示している。
 一方、SiOxを負極活物質として用いた非水電解質二次電池は、黒鉛を負極活物質とした場合に比べて、初回充放電効率が低いという課題がある。これは、充放電時の不可逆反応によりSiOxがLi4SiO4(不可逆反応物)に変化することが主な要因である。そこで、かかる不可逆反応を抑制して初回充放電効率を改善すべく、SiLixy(0<x<1.0、0<y<1.5)で表される負極活物質が提案されている(特許文献2参照)。また、特許文献3は、Li4SiO4を主成分とするリチウムシリケート相がシリコン酸化物中に含まれた負極活物質を開示している。
特開2011-233245号公報 特開2003-160328号公報 特開2007-59213号公報
 特許文献2,3に開示された技術は、いずれもSiOx及びリチウム化合物の混合物を高温で熱処理して、SiO2を不可逆反応物であるLi4SiO4に予め変換することにより、初回充放電効率の改善を図っている。しかし、当該プロセスでは、粒子内部にSiO2が残り、粒子表面のみにLi4SiO4が生成する。粒子内部まで反応させるためには、さらなる高温プロセスが必要であり、その場合Si及びLi4SiO4の結晶粒径が増大すると想定される。そして、かかる結晶粒径の増大は、例えば充放電による活物質粒子の体積変化を大きくし、またリチウムイオン導電性を低下させる。
 なお、SiOxはSiよりもリチウムイオンの吸蔵による体積変化は小さいが、黒鉛などの炭素材料と比べると当該体積変化が大きく充放電に伴い活物質粒子の崩壊が発生し易い。このため、活物質粒子の崩壊を抑制してサイクル寿命を延ばすことも重要な課題である。
 本開示の一態様である非水電解質二次電池用負極活物質は、Li2zSiO(2+z){0<z<2}で表されるリチウムシリケート相と、リチウムシリケート相中に分散したシリコン粒子と、リチウムシリケート相中に分散した、Fe、Pb、Zn、Sn、Cu、Ni及びCrから選択される1種以上の金属又は合金を主成分とする金属粒子とを備える。
 本開示の一態様によれば、負極活物質としてシリコン材料を用いた非水電解質二次電池において、初回充放電効率を向上させることができると共に、サイクル寿命を延ばすことが可能となる。
実施形態の一例である負極活物質を模式的に示す断面図である。 実施形態の一例(実施例1)である負極活物質の粒子断面の電子顕微鏡写真を示す図である。
 以下、実施形態の一例について詳細に説明する。
 実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 本開示の一態様である負極活物質は、Li2zSiO(2+z)(0<z<2)で表されるリチウムシリケート相と、リチウムシリケート相中に分散したシリコン粒子とを備える。さらに、当該負極活物質は、リチウムシリケート相中に分散した、Fe、Pb、Zn、Sn、Cu、Ni及びCrから選択される1種以上の金属又は合金を主成分とする金属粒子を備える。本開示の一態様である負極活物質は、シリコン粒子の表面に形成される自然酸化膜程度のSiO2を含有していてもよい。なお、自然酸化膜のSiO2と、従来のSiOx粒子のSiO2は性質が大きく異なる。例えば、本開示の一態様である負極活物質のXRD測定により得られるXRDパターンには、2θ=25°にSiO2のピークが観察されない。これは、自然酸化膜が極めて薄いため、X線が回折しないためであると考えられる。一方、従来のSiOx粒子のXRDパターンには、2θ=25°にSiO2のピークが観察される。
 従来のSiOxは、SiO2のマトリクスの中に微小なSi粒子が分散したものであり、充放電時には下記の反応が起こる。
(1)SiOx(2Si+2SiO2)+16Li++16e-
   →3Li4Si+Li4SiO4
 Si、2SiO2について式1を分解すると下記の式になる。
(2)Si+4Li++4e- → Li4Si
(3)2SiO2+8Li++8e- → Li4Si+Li4SiO4
 上記のように、式3が不可逆反応であり、Li4SiO4の生成が初回充放電効率を低下させる主な要因となっている。
 本開示の一態様である負極活物質は、シリコン粒子がLi2zSiO(2+z)(0<z<2)で表されるリチウムシリケート相に分散したものであり、例えば従来のSiOxに比べてSiO2の含有量が大幅に少ない。また、本負極活物質に含有されるSiO2は自然酸化膜であり、従来のSiOx粒子のSiO2と性質が大きく異なる。したがって、当該負極活物質を用いた非水電解質二次電池では、式3の反応が起こり難く、初回充放電効率が向上するものと考えられる。
 本開示の一態様である負極活物質には、Fe等を主成分とする金属粒子がリチウムシリケート相中に分散しており、当該活物質を用いた非水電解質二次電池は、従来のSiOxを用いた非水電解質二次電池と比べてサイクル寿命が大幅に改善される。かかるサイクル寿命の改善は、Fe等を主成分とする金属粒子の展性により活物質粒子の崩壊が抑制されたことに起因すると考えられる。当該金属粒子の添加による活物質粒子の崩壊抑制は、少量の添加であっても効果が見られるが、リチウムシリケート相と、シリコン粒子と、金属粒子とで構成される母粒子の総質量に対して0.01質量%以上の添加量とすることが好ましい。
 実施形態の一例である非水電解質二次電池は、上記負極活物質を含む負極と、正極と、非水溶媒を含む非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池の構造の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極体の代わりに、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 [正極]
 正極は、例えば金属箔等からなる正極集電体と、当該集電体上に形成された正極合材層とで構成されることが好適である。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質の他に、導電材及び結着材を含むことが好適である。また、正極活物質の粒子表面は、酸化アルミニウム(Al23)等の酸化物、リン酸化合物、ホウ酸化合物等の無機化合物の微粒子で覆われていてもよい。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。
 導電材は、正極合材層の電気伝導性を高めるために用いられる。導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [負極]
 負極は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極合材層とで構成されることが好適である。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質の他に、結着材を含むことが好適である。結着剤としては、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて合材スラリーを調製する場合は、CMC又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。
 図1に実施形態の一例である負極活物質粒子10の断面図を示す。
 図1で例示するように、負極活物質粒子10は、リチウムシリケート相11と、リチウムシリケート相11中に分散したシリコン粒子12と、リチウムシリケート相11中に分散したFe等を主成分とする金属粒子15とを備える。負極活物質粒子10に含まれるSiO2は、自然酸化膜程度であって、負極活物質粒子10のXRD測定により得られるXRDパターンの2θ=25°にSiO2のピークが観察されないことが好適である。リチウムシリケート相11と、シリコン粒子12と、金属粒子15とで構成される母粒子13の表面には、導電層14が形成されていることが好適である。
 母粒子13は、リチウムシリケート相11、シリコン粒子12、及び金属粒子15以外の第3成分を含んでいてもよい。母粒子13に自然酸化膜のSiO2が含まれる場合、その含有量は、好ましくは10質量%未満、より好ましくは7質量%未満である。なお、シリコン粒子12の粒径が小さいほど表面積が大きくなり、自然酸化膜のSiO2が多くなる。
 負極活物質粒子10のシリコン粒子12は、黒鉛等の炭素材料と比べてより多くのリチウムイオンを吸蔵できることから、負極活物質粒子10を負極活物質に適用することで電池の高容量化に寄与する。負極合材層には、負極活物質として負極活物質粒子10のみを単独で用いてもよい。但し、シリコン材料は黒鉛よりも充放電による体積変化が大きいことから、高容量化を図りながらサイクル特性を良好に維持すべく、かかる体積変化が小さな他の活物質を併用してもよい。他の活物質としては、黒鉛等の炭素材料が好ましい。
 黒鉛には、従来から負極活物質として使用されている黒鉛、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などを用いることができる。黒鉛を併用する場合、負極活物質粒子10と黒鉛との割合は、質量比で1:99~30:70が好ましい。負極活物質粒子10と黒鉛の質量比が当該範囲内であれば、高容量化とサイクル特性向上を両立し易くなる。一方、黒鉛に対する負極活物質粒子10の割合が1質量%よりも低い場合は、負極活物質粒子10を添加して高容量化するメリットが小さくなる。
 リチウムシリケート相11は、Li2zSiO(2+z)(0<z<2)で表されるリチウムシリケートからなる。即ち、リチウムシリケート相11を構成するリチウムシリケートには、Li4SiO4(Z=2)が含まれない。Li4SiO4は、不安定な化合物であり、水と反応してアルカリ性を示すため、Siを変質させて充放電容量の低下を招く。リチウムシリケート相11は、安定性、作製容易性、リチウムイオン導電性等の観点から、Li2SiO3(Z=1)又はLi2Si25(Z=1/2)を主成分とすることが好適である。Li2SiO3又はLi2Si25を主成分(最も質量が多い成分)とする場合、当該主成分の含有量はリチウムシリケート相11の総質量に対して50質量%以上であることが好ましく、80質量%以上がより好ましい。
 リチウムシリケート相11は、微細な粒子の集合により構成されることが好適である。リチウムシリケート相11は、例えばシリコン粒子12よりもさらに微細な粒子から構成される。負極活物質粒子10のXRDパターンでは、例えばSiの(111)のピークの強度が、リチウムシリケートの(111)のピークの強度よりも大きい。
 充放電後の負極活物質粒子10には、Li4SiO4が含まれないことが好適である。負極活物質粒子10の出発原料には、自然酸化膜程度のSiO2が含まれるだけなので、初回充放電において、上述した式(3)の反応が起こり難く、不可逆反応物であるLi4SiO4が生成し難い。
 シリコン粒子12は、リチウムシリケート相11中に略均一に分散していることが好適である。負極活物質粒子10(母粒子13)は、例えばリチウムシリケートのマトリックス中に微細なシリコン粒子12が分散した海島構造を有し、任意の断面においてシリコン粒子12が一部の領域に偏在することなく略均一に点在している。母粒子13におけるシリコン粒子12(Si)の含有量は、高容量化及びサイクル特性の向上等の観点から、母粒子13の総質量に対して20質量%~95質量%であることが好ましく、35質量%~75質量%がより好ましい。Siの含有量が低すぎると、例えば充放電容量が低下し、またリチウムイオンの拡散不良により負荷特性が低下する。Siの含有量が高すぎると、例えばSiの一部がリチウムシリケートで覆われず露出して電解液が接触し、サイクル特性が低下する。
 シリコン粒子12の平均粒径は、例えば充放電前において500nm以下であり、200nm以下が好ましく、50nm以下がより好ましい。充放電後においては、400nm以下が好ましく、100nm以下がより好ましい。シリコン粒子12を微細化することにより、充放電時の体積変化が小さくなり電極構造の崩壊を抑制し易くなる。シリコン粒子12の平均粒径は、負極活物質粒子10の断面を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて観察することにより測定され、具体的には100個のシリコン粒子12の最長径を平均して求められる。
 金属粒子15は、鉄(Fe)、鉛(Pb)、ジルコニウム(Zn)、錫(Sn)、及び銅(Cu)、ニッケル(Ni)及びクロム(Cr)から選択される1種以上の金属又は合金を主成分(金属粒子15を構成する金属又は合金において最も質量が多い成分)とする粒子であって、シリコン粒子12に比べて充放電に伴う体積変化が小さく展性に優れる粒子である。金属粒子15は、充放電に伴う母粒子13の体積変化を緩和し、母粒子13の崩壊を抑制する役割を果たす。金属粒子15は、Fe、Pb、及びCuから選択される1種以上の金属又は合金を主成分とすることが好ましく、Feを主成分とすることが特に好ましい。
 金属粒子15の主成分がFeである場合、Feの含有量は金属粒子15の総質量に対して50質量%以上であることが好ましく、60質量%以上がより好ましく、70質量%以上が特に好ましい。金属粒子15を構成する金属又は合金は、Feのみ(約100質量%)であってもよく、またPb、Zn、Sn、Cu、C、Cr、Ni、Mo、Nb、Mn等を含有する鉄合金(例えば、ステンレス鋼)であってもよい。
 金属粒子15は、シリコン粒子12と同様に、リチウムシリケート相11中に略均一に分散していることが好適である。母粒子13は、例えばリチウムシリケートのマトリックス中に微細な金属粒子15が分散した海島構造を有し、任意の断面において金属粒子15が一部の領域に偏在することなく略均一に点在している。母粒子13における金属粒子15の含有量は、母粒子13の総質量に対して0.01質量%~20質量%であることが好ましく、0.5質量%~15質量%がより好ましく、1質量%~10質量%が特に好ましい。金属粒子15の含有量が当該範囲内であれば、母粒子13の崩壊を抑制してサイクル寿命を改善できると共に高容量化を図ることができる。
 さらに、金属粒子15を構成する金属又は合金は、Si及びリチウムシリケートの少なくとも一方と合金化していることが好適である。詳しくは後述するように、金属粒子15は、シリコン粒子12及びリチウムシリケート相11を構成するリチウムシリケートと共に熱処理されることで、Si及びリチウムシリケートの少なくとも一方と合金化する。換言すると、金属粒子15の構成材料は、Si及びリチウムシリケートの少なくとも一方を含有する合金である。金属粒子15を構成する金属又は合金は、少なくともリチウムシリケート相11のリチウムシリケートと合金化していることが好ましく、Si及びリチウムシリケートと合金化していてもよい。かかる合金化によって、例えば金属粒子15とリチウムシリケート相11の密着性が強固になり、充放電に伴う母粒子13の崩壊を抑制し易くなる。なお、金属粒子15を構成する金属又は合金とSi及びリチウムシリケートの少なくとも一方とが合金化していることは、エネルギー分散型X線分光分析(EDS)を用いて確認することができる。
 金属粒子15の平均粒径は、シリコン粒子12の平均粒径よりも小さく、好ましくは100nm以下、より好ましくは50nm以下、特に好ましくは30nm以下である。金属粒子15の粒径が大き過ぎると、例えば粒子数が減少してリチウムシリケート等との密着性が低下する。金属粒子15の粒径は、充放電の前後において殆ど変化しないことが好適である。シリコン粒子12よりも小粒径の金属粒子15を添加することにより、母粒子13の崩壊を抑制し易くなる。金属粒子15の平均粒径は、シリコン粒子12の場合と同様に、負極活物質粒子10の断面をSEM又はTEMを用いて観察することにより測定され、具体的には100個の金属粒子15の最長径を平均して求められる。
 負極活物質粒子10の平均粒径は、高容量化及びサイクル特性の向上等の観点から、1~15μmが好ましく、4~10μmがより好ましい。ここで、負極活物質粒子10の平均粒径とは、一次粒子の粒径であって、レーザー回折散乱法(例えば、HORIBA製「LA-750」を用いて)で測定される粒度分布において体積積算値が50%となる粒径(体積平均粒径)を意味する。負極活物質粒子10の平均粒径が小さくなり過ぎると、表面積が大きくなるため、電解質との反応量が増大して容量が低下する傾向にある。一方、平均粒径が大きくなり過ぎると、充放電による体積変化量が大きくなるため、サイクル特性が低下する傾向にある。なお、負極活物質粒子10(母粒子13)の表面には、導電層14を形成することが好ましいが、導電層14の厚みは薄いため、負極活物質粒子10の平均粒径に影響しない(負極活物質粒子10の粒径≒母粒子13の粒径)。
 母粒子13は、例えば下記の工程1~3を経て作製される。
(1)いずれも平均粒径が数μm~数十μm程度に粉砕された、Si粉末、リチウムシリケート粉末、Fe等を主成分とする金属粉末を所定の質量比で混合して混合物を作製する。
(2)次に、ボールミルを用いて上記混合物を粉砕し微粒子化する。なお、それぞれの原料粉末を微粒子化してから、混合物を作製することも可能である。
(3)粉砕された混合物を、例えば不活性雰囲気中、600~1000℃で熱処理する。当該熱処理では、ホットプレスのように圧力を印加して上記混合物の燒結体を作製してもよい。Li2zSiO(2+z)(0<z<2)で表されるリチウムシリケートは、上記温度範囲で安定であり、Siと反応しないので容量が低下することはない。また、ボールミルを使用せず、Siナノ粒子及びリチウムシリケートナノ粒子を合成し、これらを混合して熱処理を行うことで母粒子13を作製することも可能である。
 負極活物質粒子10は、シリコン粒子12及び金属粒子15を包むリチウムシリケート相11よりも導電性の高い材料から構成される導電層14を粒子表面に有することが好適である。導電層14を構成する導電材料としては、電気化学的に安定なものが好ましく、炭素材料、金属、及び金属化合物からなる群より選択される少なくとも1種であることが好ましい。当該炭素材料には、正極合材層の導電材と同様に、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、及びこれらの2種以上の混合物などを用いることができる。当該金属には、負極の電位範囲で安定な銅、ニッケル、及びこれらの合金などを用いることができる。当該金属化合物としては、銅化合物、ニッケル化合物等が例示できる(金属又は金属化合物の層は、例えば無電解めっきにより母粒子13の表面に形成できる)。中でも、炭素材料を用いることが特に好ましい。
 母粒子13の表面を炭素被覆する方法としては、アセチレン、メタン等を用いたCVD法、石炭ピッチ、石油ピッチ、フェノール樹脂等を母粒子13と混合し、熱処理を行う方法などが例示できる。また、カーボンブラック、ケッチェンブラック等を結着材を用いて母粒子13の表面に固着させることで炭素被覆層を形成してもよい。
 導電層14は、母粒子13の表面の略全域を覆って形成されることが好適である。導電層14の厚みは、導電性の確保と母粒子13へのリチウムイオンの拡散性を考慮して、1~200nmが好ましく、5~100nmがより好ましい。導電層14の厚みが薄くなり過ぎると、導電性が低下し、また母粒子13を均一に被覆することが難しくなる。一方、導電層14の厚みが厚くなり過ぎると、母粒子13へのリチウムイオンの拡散が阻害されて容量が低下する傾向にある。導電層14の厚みは、SEM又はTEM等を用いた粒子の断面観察により計測できる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 [セパレータ]
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [負極活物質の作製]
 不活性雰囲気中で、Si粉末(3N、10μm粉砕品)、Li2SiO3粉末(10μm粉砕品)、及びFe粉末(10μm粉砕品)を、41.5:57.5:1の質量比で混合し、遊星ボールミル(フリッチュ製、P-5)のポット(SUS製、容積:500mL)に充填した。当該ポットにSUS製ボール(直径20mm)を24個入れてフタを閉め、200rpmで50時間粉砕処理した。その後、不活性雰囲気中で粉末を取り出し、不活性雰囲気・800℃×4時間の条件で熱処理を行った。熱処理した粉末(以下、母粒子という)を粉砕し、40μmのメッシュに通した後、石炭ピッチ(JFEケミカル製、MCP250)と混合して、不活性雰囲気・800℃で熱処理することにより、母粒子の表面を炭素で被覆して導電層を形成した。炭素の被覆量は、母粒子及び導電層を含む粒子の総質量に対して約5質量%である。その後、篩を用いて平均粒径を5μmに調整することにより負極活物質A1を得た。
 [負極活物質の分析]
 負極活物質A1の断面をTEMで観察した結果、Si粒子の平均粒径は50nm未満、Fe粒子の平均粒径は30nm未満であった。図2は、負極活物質A1の粒子断面のSEM画像を示す。負極活物質A1の粒子断面をSEMで観察した結果、Li2SiO3からなるマトリックス中にSi粒子及びFe粒子が略均一に分散していることが確認された。負極活物質A1のXRDパターンには、Si、Li2SiO3に由来するピークが確認された。なお、Fe粒子の含有量は、ICP発光分析により測定することができる。また、2θ=25°にSiO2のピークは観察されなかった。負極活物質A1をSi-NMRで測定した結果、SiO2の含有量は7質量%未満(検出下限値以下)であった。
 [負極の作製]
 次に、負極活物質A1及びポリアクリロニトリル(PAN)を、95:5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(シンキー製、あわとり練太郎)を用いて攪拌して、負極合材スラリーを調製した。そして、銅箔の片面に負極合材層の1m2当りの質量が25gとなるように当該スラリーを塗布し、大気中、105℃で塗膜を乾燥した後、圧延することにより負極を作製した。負極合材層の充填密度は、1.50g/cm3とした。
 [非水電解液の調製]
 エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを、3:7の体積比で混合した混合溶媒に、LiPF6を濃度が1.0mol/Lとなるように添加して非水電解液を調製した。
 [非水電解質二次電池の作製]
 不活性雰囲気中で、Niタブを取り付けた上記負極及びリチウム金属箔を、ポリエチレン製セパレータを介して対向配置させることにより電極体とした。当該電極体をアルミニウムラミネートフィルムで構成される電池外装体内に入れ、非水電解液を電池外装体内に注入し、電池外装体を封止して、電池T1を作製した。
 <実施例2>
 Si粉末、Li2SiO3粉末、及びFe粉末の混合比率(質量比)を、42:57.9:0.1に変更したこと以外は、実施例1と同様の方法で負極活物質A2及び電池T2を作製した。
 <実施例3>
 Si粉末、Li2SiO3粉末、及びFe粉末の混合比率(質量比)を、40:55:5に変更したこと以外は、実施例1と同様の方法で負極活物質A3及び電池T3を作製した。
 <実施例4>
 Si粉末、Li2SiO3粉末、及びFe粉末の混合比率(質量比)を、38:53:9に変更したこと以外は、実施例1と同様の方法で負極活物質A4及び電池T4を作製した。
 <実施例5>
 Si粉末、Li2SiO3粉末、及びFe粉末の混合比率(質量比)を、36.5:50.5:13に変更したこと以外は、実施例1と同様の方法で負極活物質A5及び電池T5を作製した。
 <実施例6>
 Si粉末、Li2SiO3粉末、及びFe粉末の混合比率(質量比)を、35:50:15に変更したこと以外は、実施例1と同様の方法で負極活物質A6及び電池T6を作製した。
 <比較例1>
 上記ボールミルを用いて、Si粉末(3N、10μm粉砕品)及びLi2SiO3粉末(10μm粉砕品)を、それぞれ不活性雰囲気で50時間粉砕した後、50:50の質量比で混合し、熱処理をせず、混合状態のまま負極活物質B1として用いた。また、実施例1と同様の方法で電池R1を作製した。負極活物質B1では、Si粒子の表面にLi2SiO3粒子が付着しているものの、Li2SiO3のマトリックス(連続相)が形成されていない。即ち、Li2SiO3相中にSi粒子が分散した単一粒子構造を有さない。
 <比較例2>
 Fe粉末を添加しなかったこと以外は、実施例1と同様の方法で電池R2を作製した。
 <比較例3>
 5質量%の炭素で被覆されたSiOx(x=0.97、平均粒径5μm)を負極活物質として用いたこと以外は、実施例1と同様の方法で電池R3を作製した。
 実施例1~6及び比較例1~3の各電池について、以下の方法で初回充放電効率の評価を行った。評価結果は、表1に示した。
 [初回充放電効率の評価]
 ・充電
 0.2Itの電流で電圧が0Vになるまで定電流充電を行い、その後0.05Itの電流で電圧が0Vになるまで定電流充電を行った。
 ・放電
 0.2Itの電流で電圧が1.0Vになるまで定電流放電を行った。
 ・休止
 上記充電と上記放電との間の休止期間は10分とした。
 1サイクル目の充電容量に対する放電容量の割合を、初回充放電効率とした。
 初回充放電効率(%)
  =1サイクル目の放電容量/1サイクル目の充電容量×100
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池T1~T6はいずれも、比較例の電池R1及びR3に比べて良好な初回充放電効率を有する。即ち、Li2SiO3又はLi2Si25のマトリックス中にSi粒子が分散した単一粒子を負極活物質に用いることで、初回充放電効率が向上する。
 <実施例7>
 [正極の作製]
 コバルト酸リチウムと、アセチレンブラック(電気化学工業社製、HS100)と、ポリフッ化ビニリデン(PVdF)とを、95:2.5:2.5の質量比で混合した。当該混合物に分散媒としてN-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極合材スラリーを調製した。次に、アルミニウム箔上に正極合材スラリーを塗布し、乾燥させた後、圧延ローラにより圧延して、アルミニウム箔の両面に密度が3.6g/cm3の正極合材層が形成され
た正極を作製した。
 [負極の作製]
 実施例1で用いた負極活物質A1と、黒鉛とを、5:95の質量比で混合したものを負極活物質A7(負極活物質A1:5質量%)として用いた。負極活物質A7と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)とを、97.5:1.0:1.5の質量比で混合し、水を添加した。これを混合機(プライミクス製、T.K.ハイビスミックス)を用いて攪拌し、負極合材スラリーを調製した。次に、銅箔上に負極合材層の1m2当りの質量が190gとなるように当該スラリー
を塗布し、大気中、105℃で塗膜を乾燥し、圧延して、銅箔の両面に密度が1.6g/cm3の負極合材層が形成された負極を作製した。
 [非水電解質二次電池の作製]
 上記各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介してタブが取り付けられた正極及び負極を渦巻き状に巻回することにより巻回電極体を作製した。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、105℃で2時間真空乾燥した後、上記非水電解液を注入し、外装体の開口部を封止して電池T7を作製した。この電池の設計容量は800mAhである。
 <実施例8>
 負極活物質A1のFe粉末(10μm粉砕品)に代えてCu粉末(10μm粉砕品)を添加した負極活物質A8を用いたこと以外は、実施例7と同様の方法で電池T8を作製した。
 <実施例9>
 負極活物質A1のFe粉末(10μm粉砕品)に代えてPb粉末(10μm粉砕品)を添加した負極活物質A9を用いたこと以外は、実施例7と同様の方法で電池T9を作製した。
 <実施例10>
 負極活物質A1の代わりに負極活物質A2を用いたこと以外は、実施例7と同様の方法で電池T10を作製した。
 <実施例11>
 負極活物質A1の代わりに負極活物質A3を用いたこと以外は、実施例7と同様の方法で電池T11を作製した。
 <実施例12>
 負極活物質A1の代わりに負極活物質A4を用いたこと以外は、実施例7と同様の方法で電池T12を作製した。
 <実施例13>
 負極活物質A1の代わりに負極活物質A5を用いたこと以外は、実施例7と同様の方法で電池T13を作製した。
 <実施例14>
 負極活物質A1の代わりに負極活物質A6を用いたこと以外は、実施例7と同様の方法で電池T14を作製した。
 <比較例4>
 負極活物質A1の代わりに負極活物質B2を用いたこと以外は、実施例7と同様の方法で電池R4を作製した。
 実施例7~14及び比較例4の各電池について、以下の方法で初回充放電効率の評価、100サイクル後の負極活物質粒子の外観評価、及びサイクル寿命の評価を行った。評価結果は、表2に示した。
 [初回充放電効率の評価]
 ・充電
 1It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後4.2Vの定電圧で電流が1/20It(40mA)になるまで定電圧充電した。
 ・放電
 1It(800mA)の電流で電圧が2.75Vになるまで定電流放電を行った。
 ・休止
 上記充電と上記放電との間の休止期間は10分とした。
 上記充放電条件で各電池について初回充放電効率を測定した。
 [100サイクル後の負極活物質粒子の外観評価(粒子崩壊の確認)]
 100サイクルの充放電を行った電池を不活性雰囲気下で分解した。分解した電池から負極を取り出し、不活性雰囲気下でクロスセクションポリッシャー(日本電子製)を用いて負極活物質断面を露出させ、当該断面をSEMで観察して粒子崩壊の有無を確認した。粒子断面において、元々1つの粒子が2個以上の微粒子に割れている状態を粒子崩壊と定義した。
 [サイクル寿命の評価]
 上記充放電条件で各電池についてサイクル試験を行った。1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、サイクル寿命とした。なお、各電池のサイクル寿命は、電池R4のサイクル寿命を100とした指数である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例の電池T7~T14はいずれも、金属粒子を含有しない負極活物質を用いた比較例の電池R4と比べてサイクル寿命が大幅に向上しており、5質量%以上のFe粒子を添加することで(電池T11~T14)、特に優れたサイクル特性が得られた。なお、Cu粒子、Pb粒子を含有する負極活物質を用いた場合にも、サイクル寿命の向上が確認された。
 電池R4に用いた負極活物質は100サイクル後における粒子の崩壊が激しかったが、電池T7~T14に用いた負極活物質は100サイクル後においても粒子の崩壊が殆ど確認されなかった。比較例の負極活物質は、Li2SiO3又はLi2Si25のマトリックス中にSi粒子が分散した単一粒子であるが、充放電サイクルに伴いSi粒子の膨張応力による歪みが蓄積して活物質粒子が崩壊したものと考えられる。一方、上記単一粒子に金属粒子が添加された実施例の負極活物質では、金属粒子により活物質粒子の体積変化が緩和されると共に活物質粒子の密着性が向上し、活物質粒子の崩壊が抑制されたと推測される。
 10 負極活物質粒子、11 リチウムシリケート相、12 シリコン粒子、13 母粒子、14 導電層、15 金属粒子

Claims (13)

  1.  Li2zSiO(2+z){0<z<2}で表されるリチウムシリケート相と、
     前記リチウムシリケート相中に分散したシリコン粒子と、
     前記リチウムシリケート相中に分散した、Fe、Pb、Zn、Sn、Cu、Ni及びCrから選択される1種以上の金属又は合金を主成分とする金属粒子と、
     を備える非水電解質二次電池用負極活物質。
  2.  前記金属粒子は、Fe、Pb及びCuから選択される1種以上の金属又は合金を主成分とする、請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記金属粒子は、Feを主成分とする、請求項1又は2に記載の非水電解質二次電池用負極活物質。
  4.  前記金属粒子を構成する金属又は合金は、Si及びリチウムシリケートの少なくとも一方と合金化している、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極活物質。
  5.  前記金属粒子の含有量は、前記リチウムシリケート相と、前記シリコン粒子と、前記金属粒子とで構成される母粒子の総質量に対して0.01質量%~20質量%である、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極活物質。
  6.  XRD測定により得られるXRDパターンの2θ=25°にSiO2のピークが観察されない、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極活物質。
  7.  前記金属粒子の平均粒径は、100nm以下である、請求項1~6のいずれか1項に記載の非水電解質二次電池用負極活物質。
  8.  前記シリコン粒子の平均粒径は、初回充電前において200nm以下である、請求項1~7のいずれか1項に記載の非水電解質二次電池用負極活物質。
  9.  前記リチウムシリケート相と、前記シリコン粒子と、前記金属粒子とで構成される母粒子の表面には、導電層が形成されている、請求項1~8のいずれか1項に記載の非水電解質二次電池用負極活物質。
  10.  前記リチウムシリケート相は、Li2SiO3を主成分とする、請求項1~9のいずれか1項に記載の非水電解質二次電池用負極活物質。
  11.  前記リチウムシリケート相は、Li2Si25を主成分とする、請求項1~9のいずれか1項に記載の非水電解質二次電池用負極活物質。
  12.  充放電後の前記非水電解質二次電池用負極活物質には、Li4SiO4が含まれない、請求請1~11のいずれか1項に記載の非水電解質二次電池用負極活物質。
  13.  請求項1~12のいずれか1項に記載の負極活物質を用いた負極と、正極と、非水電解質と、を備えた非水電解質二次電池。
PCT/JP2016/000216 2015-01-28 2016-01-18 非水電解質二次電池用負極活物質及び非水電解質二次電池 WO2016121320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/524,395 US10312516B2 (en) 2015-01-28 2016-01-18 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016571835A JP6685937B2 (ja) 2015-01-28 2016-01-18 非水電解質二次電池用負極活物質及び非水電解質二次電池
CN201680006584.0A CN107210442B (zh) 2015-01-28 2016-01-18 非水电解质二次电池用负极活性物质和非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015014227 2015-01-28
JP2015-014227 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121320A1 true WO2016121320A1 (ja) 2016-08-04

Family

ID=56542945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000216 WO2016121320A1 (ja) 2015-01-28 2016-01-18 非水電解質二次電池用負極活物質及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US10312516B2 (ja)
JP (1) JP6685937B2 (ja)
CN (1) CN107210442B (ja)
WO (1) WO2016121320A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179934A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 負極材料および非水電解質二次電池
WO2019065766A1 (ja) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019087771A1 (ja) 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019131724A1 (ja) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2019151016A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2019151026A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2020044931A1 (ja) 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
WO2020080452A1 (ja) 2018-10-18 2020-04-23 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質、負極及び非水電解質二次電池
WO2020189452A1 (ja) * 2019-03-19 2020-09-24 パナソニックIpマネジメント株式会社 非水電解液二次電池用負極および非水電解液二次電池
CN112086633A (zh) * 2019-06-12 2020-12-15 达兴材料股份有限公司 锂离子电池负极活性材料、锂离子电池负极以及锂离子电池
WO2021153075A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 電気化学素子およびその製造方法、ならびに電気化学デバイス
WO2021153074A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 電気化学素子およびその製造方法、ならびに電気化学デバイス
WO2021153073A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 活物質粒子、電気化学素子およびこれらの製造方法、ならびに電気化学デバイス
WO2021199587A1 (ja) 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 二次電池用負極活物質およびこれを用いた二次電池
WO2021241618A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質および二次電池
WO2022270041A1 (ja) * 2021-06-21 2022-12-29 パナソニックIpマネジメント株式会社 複合活物質粒子およびそれを用いた電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203358B2 (ja) * 2017-11-30 2023-01-13 パナソニックIpマネジメント株式会社 リチウムイオン電池用負極活物質及びリチウムイオン電池
US11152613B2 (en) * 2018-01-19 2021-10-19 Amprius, Inc. Stabilized, prelithiated silicon oxide particles for lithium ion battery anodes
CN110970600B (zh) * 2018-09-28 2023-06-30 贝特瑞新材料集团股份有限公司 一种锂离子二次电池负极材料及其制备方法和应用
CN111293284B (zh) * 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 一种负极材料、及其制备方法和用途
WO2020195575A1 (ja) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN115004410A (zh) * 2020-01-31 2022-09-02 松下知识产权经营株式会社 二次电池用负极活性物质和二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
JP2013161705A (ja) * 2012-02-07 2013-08-19 Toyota Industries Corp 二次電池用活物質およびその製造方法
WO2013145108A1 (ja) * 2012-03-26 2013-10-03 株式会社 東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP2014044899A (ja) * 2012-08-28 2014-03-13 Toyota Industries Corp 非水電解質二次電池用負極材料、その製造方法、非水電解質二次電池用負極及び非水電解質二次電池
WO2014119256A1 (ja) * 2013-01-29 2014-08-07 三洋電機株式会社 非水電解質二次電池用負極活物質、当該負極活物質を用いた非水電解質二次電池用負極、及び当該負極を用いた非水電解質二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702510B2 (ja) 2001-09-05 2011-06-15 信越化学工業株式会社 リチウム含有酸化珪素粉末及びその製造方法
JP4868556B2 (ja) 2010-04-23 2012-02-01 日立マクセルエナジー株式会社 リチウム二次電池
CN103118976B (zh) * 2010-09-17 2016-07-06 古河电气工业株式会社 多孔质硅粒子及多孔质硅复合体粒子、以及它们的制造方法
JP5765780B2 (ja) * 2011-10-14 2015-08-19 株式会社豊田自動織機 リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
IN2014MN01862A (ja) * 2012-02-28 2015-07-03 Lg Chemical Ltd
JP6092885B2 (ja) * 2012-09-27 2017-03-08 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
US10424780B2 (en) * 2013-09-24 2019-09-24 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery containing negative electrode active material
WO2015063979A1 (ja) * 2013-10-29 2015-05-07 信越化学工業株式会社 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
JP6082355B2 (ja) * 2014-02-07 2017-02-15 信越化学工業株式会社 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池
US11043665B2 (en) * 2014-09-03 2021-06-22 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2016103113A1 (ja) * 2014-12-26 2016-06-30 株式会社半導体エネルギー研究所 負極活物質、二次電池、負極の作製方法、および負極の処理装置
KR101586816B1 (ko) * 2015-06-15 2016-01-20 대주전자재료 주식회사 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
JP2013161705A (ja) * 2012-02-07 2013-08-19 Toyota Industries Corp 二次電池用活物質およびその製造方法
WO2013145108A1 (ja) * 2012-03-26 2013-10-03 株式会社 東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP2014044899A (ja) * 2012-08-28 2014-03-13 Toyota Industries Corp 非水電解質二次電池用負極材料、その製造方法、非水電解質二次電池用負極及び非水電解質二次電池
WO2014119256A1 (ja) * 2013-01-29 2014-08-07 三洋電機株式会社 非水電解質二次電池用負極活物質、当該負極活物質を用いた非水電解質二次電池用負極、及び当該負極を用いた非水電解質二次電池

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362321B2 (en) 2017-03-30 2022-06-14 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and non-aqueous electrolyte secondary battery
JP7029680B2 (ja) 2017-03-30 2022-03-04 パナソニックIpマネジメント株式会社 負極材料および非水電解質二次電池
CN110495026A (zh) * 2017-03-30 2019-11-22 松下知识产权经营株式会社 负极材料和非水电解质二次电池
JPWO2018179934A1 (ja) * 2017-03-30 2020-02-06 パナソニックIpマネジメント株式会社 負極材料および非水電解質二次電池
WO2018179934A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 負極材料および非水電解質二次電池
US11715822B2 (en) 2017-09-29 2023-08-01 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2019065766A1 (ja) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP7165926B2 (ja) 2017-09-29 2022-11-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
JPWO2019065766A1 (ja) * 2017-09-29 2020-09-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019087771A1 (ja) 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
EP3706213A4 (en) * 2017-10-31 2020-11-25 Panasonic Intellectual Property Management Co., Ltd. NEGATIVE ELECTRODE ACTIVE SUBSTANCE FOR SECONDARY BATTERIES WITH WATER-FREE ELECTROLYTE AND SECONDARY BATTERY WITH WATER-FREE ELECTROLYTE
WO2019131724A1 (ja) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
US11936034B2 (en) 2017-12-27 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active substance for secondary battery, and secondary battery
JPWO2019131724A1 (ja) * 2017-12-27 2020-12-10 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JP7257626B2 (ja) 2017-12-27 2023-04-14 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2019151026A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JPWO2019151026A1 (ja) * 2018-01-30 2021-01-14 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JP7182133B2 (ja) 2018-01-30 2022-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JP7182132B2 (ja) 2018-01-30 2022-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JPWO2019151016A1 (ja) * 2018-01-30 2021-01-07 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2019151016A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2020044931A1 (ja) 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
US11978896B2 (en) 2018-08-30 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2020080452A1 (ja) 2018-10-18 2020-04-23 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質、負極及び非水電解質二次電池
WO2020189452A1 (ja) * 2019-03-19 2020-09-24 パナソニックIpマネジメント株式会社 非水電解液二次電池用負極および非水電解液二次電池
US11430989B2 (en) 2019-06-12 2022-08-30 Daxin Materials Corporation Active material of anode of lithium-ion battery, anode of lithium-ion battery and lithium-ion battery
CN112086633A (zh) * 2019-06-12 2020-12-15 达兴材料股份有限公司 锂离子电池负极活性材料、锂离子电池负极以及锂离子电池
WO2021153073A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 活物質粒子、電気化学素子およびこれらの製造方法、ならびに電気化学デバイス
WO2021153074A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 電気化学素子およびその製造方法、ならびに電気化学デバイス
WO2021153075A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 電気化学素子およびその製造方法、ならびに電気化学デバイス
WO2021199587A1 (ja) 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 二次電池用負極活物質およびこれを用いた二次電池
WO2021241618A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質および二次電池
WO2022270041A1 (ja) * 2021-06-21 2022-12-29 パナソニックIpマネジメント株式会社 複合活物質粒子およびそれを用いた電池

Also Published As

Publication number Publication date
JP6685937B2 (ja) 2020-04-22
CN107210442A (zh) 2017-09-26
US20180287148A1 (en) 2018-10-04
JPWO2016121320A1 (ja) 2017-11-09
CN107210442B (zh) 2020-06-16
US10312516B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP6685937B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
US11043665B2 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6847667B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP6685938B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2016136180A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
WO2018101072A1 (ja) 負極材料および非水電解質二次電池
US10312507B2 (en) Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6613250B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019087771A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
US11670772B2 (en) Negative electrode active material for lithium ion battery, and lithium ion battery
JP7029680B2 (ja) 負極材料および非水電解質二次電池
JP6918638B2 (ja) 非水電解質二次電池
JP2020119908A (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2020003595A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571835

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15524395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742925

Country of ref document: EP

Kind code of ref document: A1