WO2016121252A1 - Device and method - Google Patents

Device and method Download PDF

Info

Publication number
WO2016121252A1
WO2016121252A1 PCT/JP2015/084947 JP2015084947W WO2016121252A1 WO 2016121252 A1 WO2016121252 A1 WO 2016121252A1 JP 2015084947 W JP2015084947 W JP 2015084947W WO 2016121252 A1 WO2016121252 A1 WO 2016121252A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
subframe
terminal device
frequency band
related information
Prior art date
Application number
PCT/JP2015/084947
Other languages
French (fr)
Japanese (ja)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016121252A1 publication Critical patent/WO2016121252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present disclosure relates to an apparatus and a method.
  • the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements).
  • a technique is a form of a technique called large-scale MIMO or massive MIMO.
  • the half width of the beam becomes narrow. That is, a sharp beam is formed.
  • by arranging the multiple antenna elements on a plane it is possible to form a beam in a desired three-dimensional direction.
  • Patent Documents 1 to 3 disclose techniques applied when a directional beam in a three-dimensional direction is used.
  • the number of directional beams formed at the same time eg, large-scale MIMO directional beams
  • the power allocated to each directional beam also changes dynamically
  • the terminal device's ACG Automatic Gain Control
  • reception quality can be degraded.
  • an acquisition unit that acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a downlink transmitted in the subframe in the frequency band
  • a device includes a control unit that notifies the terminal device of the power-related information in the control information.
  • the processor acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and transmits the power in the subframe in the frequency band. And notifying the terminal device of the power related information in the downlink control information to be provided.
  • An apparatus comprising: an acquisition unit that acquires the power-related information notified from the base station to the terminal device in the information; and a control unit that performs gain setting of the reception amplifier of the terminal device based on the power-related information.
  • the processor is power-related information related to power according to the number of directional beams formed in a subframe in a frequency band, and is transmitted in the subframe in the frequency band.
  • a method comprising: acquiring the power related information notified to a terminal device by a base station in downlink control information; and setting a gain of a receiving amplifier of the terminal device based on the power related information. Is provided.
  • the present disclosure it is possible to obtain better reception quality when transmission using a directional beam is performed.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • FIG. 6 is an explanatory diagram for explaining a flow of processing for setting an LNA gain; It is explanatory drawing for demonstrating an example of the stop of transmission of a downlink data signal. It is explanatory drawing for demonstrating an example of the electric power after the transmission of a downlink data signal is stopped. It is a sequence diagram showing an example of a schematic flow of processing according to the embodiment.
  • 8-layer MIMO can be realized in the case of SU-MIMO (Single-User Multi-Input Multiple-Input Multiple-Output).
  • 8-layer MIMO is a technique for spatially multiplexing eight independent streams.
  • two layers of MU-MIMO can be realized for four users.
  • UE User Equipment
  • the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements).
  • a technique is one form of a technique called large-scale MIMO or massive MIMO.
  • the half width of the beam becomes narrow. That is, a sharp beam is formed.
  • by arranging the multiple antenna elements on a plane it is possible to form a beam in a desired three-dimensional direction. For example, it has been proposed to transmit a signal to a terminal device existing at the position by forming a beam directed to a position higher than the base station (for example, an upper floor of a high-rise building).
  • the typical beam forming In typical beam forming, it is possible to change the beam direction in the horizontal direction. Therefore, it can be said that the typical beam forming is two-dimensional beam forming.
  • the beam direction can be changed in the vertical direction in addition to the horizontal direction. Therefore, it can be said that large-scale MIMO beamforming is three-dimensional beamforming.
  • MU-MIMO since the number of antennas increases, the number of users in MU-MIMO can be increased.
  • Such a technique is another form of a technique called large scale MIMO or massive MIMO.
  • the number of antennas of the UE is two, the number of spatially independent streams for one UE is two, and therefore, MU-MIMO rather than increasing the number of streams for one UE. It is more reasonable to increase the number of users.
  • Weight set A weight set for beam forming (that is, a set of weight coefficients for a plurality of antenna elements) is expressed as a complex number.
  • a weight set for beam forming of large scale MIMO will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram for describing a weight set for large-scale MIMO beamforming.
  • antenna elements arranged in a lattice shape are shown. Also shown are two axes x, y orthogonal to the plane on which the antenna element is arranged, and one axis z orthogonal to the plane.
  • the direction of the beam to be formed is represented by, for example, an angle phi (Greek letter) and an angle theta (Greek letter).
  • the angle phi (Greek letter) is an angle formed between the x-axis component and the xy plane component in the beam direction.
  • the angle theta (Greek letter) is an angle formed by the beam direction and the z axis.
  • the weighting factor V m, n of the antenna element arranged m-th in the x-axis direction and n-th arranged in the y-axis direction can be expressed as follows.
  • f is the frequency and c is the speed of light.
  • J is an imaginary unit in a complex number.
  • D x is the distance between the antenna elements in the x-axis direction, and dy is the distance between the antenna elements in the y-axis direction.
  • the coordinates of the antenna element are expressed as follows.
  • the result of the above measurement is used to select a cell for the terminal device. Specifically, for example, the result of the measurement is used for cell selection / cell reselection by a terminal device that is RRC (Radio Resource Control) idle (RRC Idle). Further, for example, the result of the measurement is reported to the base station by a terminal device that is RRC connected (RRC Connected), and is used for handover determination (Handover Decision) by the base station.
  • RRC Radio Resource Control
  • the measurement is performed by receiving CRS. Since the CRS is a signal for measuring the quality of a non-directional radio wave transmission path, the CRS is transmitted without beamforming. That is, the CRS is transmitted without being multiplied by the beamforming weight set.
  • DM-RS Demodulation Reference Signal
  • UE-specific reference signal UE-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • FIG. 3 is an explanatory diagram for explaining the relationship between weighting coefficient multiplication and reference signal insertion.
  • the transmission signal 82 corresponding to each antenna element 81 is complex-multiplied by a weight coefficient 83 in a multiplier 84. Then, a transmission signal 82 obtained by complex multiplication of the weighting coefficient 83 is transmitted from the antenna element 81.
  • the DR-MS 85 is inserted before the multiplier 84, and the multiplier 84 multiplies the weight coefficient 83 by a complex multiplication. Then, the DR-MS 85 obtained by complex multiplication of the weight coefficient 83 is transmitted from the antenna element 81.
  • the CRS 86 (and CSI-RS) is inserted after the multiplier 84. The CRS 86 (and CSI-RS) is transmitted from the antenna element 81 without being multiplied by the weighting coefficient 83.
  • CRS measurements are RSRP (Reference Signal Received Power) and / or RSRQ (Reference Signal Received Quality) measurements.
  • the terminal device acquires RSRP and / or RSRQ as a result of measurement on CRS.
  • RSRQ is calculated from RSRP and RSSI (Received Signal Strength Indicator).
  • the reception power that is, RSRP
  • the reception quality that is, RSRQ
  • SINR the reception quality
  • reception quality (that is, RSRQ) is often used in cell selection described later. This is because if a cell is selected based only on received power (ie, RSRP), a cell with large interference can be selected.
  • the base station makes a handover decision. That is, the base station selects a target cell for the terminal device and determines a handover from the serving cell for the terminal device to the target cell.
  • the base station adds a Scell (Secondary Cell) for carrier aggregation.
  • the Scell is also called SCC (Secondary Component Carrier).
  • the “cell” here may mean a communication area of the base station, or may mean a frequency band used by the base station.
  • the “cell” here may be a Pcell (Primary Cell) or Scell of carrier aggregation.
  • the Pcell is also called PCC (Primary Component Carrier), and the Scell is also called SCC (Secondary Component Carrier).
  • the base station has a large number of antenna elements (for example, about 100 antenna elements). Beam forming is performed using a directional antenna including In this case, the base station can change the beam direction not only in the horizontal direction but also in the vertical direction. Therefore, as an example, the base station can improve the throughput at a high position by forming a beam toward a position higher than the base station (for example, an upper floor of a high-rise building). As another example, a small base station can reduce interference with neighboring base stations by forming a beam to a nearby area.
  • a terminal apparatus transmits and receives a signal in a cell selected based on a CRS measurement result
  • a larger interference occurs in a sharp beam from an adjacent base station.
  • the result of CRS measurement for one cell is better than the result of CRS measurement for another cell, if beamforming is performed, There is a possibility that the communication quality is better than the communication quality in a certain cell.
  • an appropriate cell may not be selected for the terminal device when beamforming is performed.
  • the measurement result (reception power / reception quality) for CRS is the reception of a data signal transmitted by a directional beam.
  • the power / reception quality can vary greatly. In order to solve this, it is conceivable to transmit the CRS using a directional beam.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 4 is an explanatory diagram for explaining another relationship between weighting coefficient multiplication and reference signal insertion.
  • transmission signal 92 corresponding to each antenna element 91 is complex-multiplied by weighting factor 93 in multiplier 94.
  • a transmission signal 92 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • the DR-MS 95 is inserted in front of the multiplier 94, and the multiplier 94 multiplies the weight coefficient 93 in a complex manner.
  • the DR-MS 95 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • the CRS 96 is inserted before the multiplier 94, and the weight coefficient 93 is complex-multiplied by the multiplier 94. Then, the CRS 96 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • a normal CRS 97 (and CSI-RS) is inserted after the multiplier 94. The normal CRS 97 (and CSI-RS) is transmitted from the antenna element 91 without being multiplied by the weight coefficient 93.
  • FIG. 5 is an explanatory diagram for explaining an example of the number of directional beams formed in each subframe.
  • a frequency band eg, component carrier
  • 150 directional beams are formed in the frequency band.
  • 15 directional beams are formed in the frequency band
  • 60 directional beams are formed in the frequency band. Since there is an upper limit on the transmission power of the base station, if there are many directional beams formed in a subframe, the power allocated to each directional beam will be small, and there will be fewer directional beams formed in the subframe. For example, the power allocated to each directional beam increases.
  • the number of directional beams formed in the subframe 33 is 1/10 of the number of directional beams formed in the subframe 31, and thus the directivity formed in the subframe 33.
  • the power allocated to the beam is increased by 10 dB.
  • the received power at the terminal device also increases.
  • the number of directional beams formed in the subframe 35 is four times the number of directional beams formed in the subframe 33, and thus the directional beams formed in the subframe 33.
  • the power allocated to is reduced by 6.02 dB. As a result, the received power in the terminal device is also reduced.
  • FIG. 6 is an explanatory diagram for explaining an example of a dynamic range and received power.
  • a change in received power 41 within the dynamic range in the terminal device is shown.
  • the directional beam suddenly decreases, and as a result, the reception power 41 in the terminal apparatus also increases rapidly.
  • saturation occurs in an A / D (Analog-Digital) converter, and the terminal device may not be able to receive signals properly.
  • FIG. 7 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure.
  • the system 1 includes a base station 100 and a terminal device 200.
  • the system 1 is, for example, a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
  • the base station 100 performs wireless communication with the terminal device 200.
  • the base station 100 performs wireless communication with the terminal device 200 located in the cell 101 of the base station 100.
  • the base station 100 performs beam forming.
  • the beam forming is large-scale MIMO beam forming.
  • the beam forming may also be referred to as massive MIMO beam forming, free dimension MIMO beam forming, or three-dimensional beam forming.
  • the base station 100 includes a directional antenna that can be used for large-scale MIMO, and performs large-scale MIMO beamforming by multiplying a transmission signal by a weight set for the directional antenna. .
  • the terminal device 200 performs wireless communication with the base station 100. For example, when the terminal device 200 is located in the cell 101 of the base station 100, the terminal device 200 performs wireless communication with the base station 100.
  • FIG. 8 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 radiates the signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the antenna unit 110 includes a directional antenna.
  • the directional antenna is a directional antenna that can be used for large scale MIMO.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • the storage unit 140 stores a program and data for the operation of the base station 100.
  • the processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes an information acquisition unit 151 and a control unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • FIG. 9 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station 100 and transmits an uplink signal to the base station 100.
  • the storage unit 230 stores a program and data for the operation of the terminal device 200.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes an information acquisition unit 241 and a control unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • the base station 100 acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band. Then, the base station 100 (the control unit 153) notifies the terminal device 200 of the power related information in downlink control information (DCI) transmitted in the subframe in the frequency band. .
  • DCI downlink control information
  • the terminal device 200 acquires the power related information. And the terminal device 200 (control part 243) sets the gain of the receiving amplifier of the terminal device 200 based on the said electric power related information.
  • the power related information is information indicating a power offset corresponding to the number of the directional beams.
  • the power offset can be said to be a power reduction amount per directional beam.
  • the directional beam is a large-scale MIMO directional beam.
  • the power offset is 0 dB
  • the power offset is ⁇ 3.01 dB
  • the power offset is ⁇ 6.02 dB.
  • the terminal device 200 can more easily know how much received power will be, and can perform an appropriate gain setting.
  • the power related information is an index indicating the power offset.
  • the power related information is an index indicating the power offset.
  • FIG. 10 is an explanatory diagram for explaining an example of power-related information indicating a power offset.
  • the index and power offset are shown.
  • a plurality of power offsets are defined, and each index indicates a corresponding one of the plurality of power offsets.
  • index 0 indicates 0 dB
  • index 2 indicates ⁇ 6.02 dB.
  • the power related information is one of a plurality of indexes, and indicates one of the plurality of power offsets. Note that information indicating the relationship between such an index and a power offset is held in the base station 100 and the terminal device 200.
  • the power related information may be information indicating something other than the power offset.
  • the power related information may be information indicating the number of the directional beams.
  • the power related information may be an index indicating the number of the directional beams.
  • information indicating the relationship between the index and the number of directional beams (and information indicating the relationship between the number of directional beams and the power offset) may be held in the base station 100 and the terminal device 200.
  • the terminal device 200 can know how much the received power is, and can perform an appropriate gain setting.
  • Terminal apparatus (a) Terminal apparatus to which resources are allocated
  • the terminal apparatus 200 to which the base station 100 notifies the power-related information is a terminal apparatus to which downlink resources in the subframe are allocated. That is, the terminal device 200 is a terminal device that receives a downlink data signal within the subframe.
  • the terminal device 200 from which the base station 100 notifies the power-related information is a device having the capability of setting the gain of the receiving amplifier based on the power-related information.
  • the terminal device 200 (the control unit 243) notifies the base station 100 of capability information indicating that the terminal device 200 has the capability. Then, the base station 100 (information acquisition unit 151) acquires the capability information.
  • the base station 100 (the control unit 153) notifies the terminal device 200 of the power related information in the downlink control information transmitted in the subframe in the frequency band. To do.
  • the downlink control information includes information indicating downlink resources allocated to the terminal device 200.
  • the downlink control information is information transmitted on a physical downlink control channel (Physical Downlink Control Channel: PDCCH).
  • PDCCH Physical Downlink Control Channel
  • FIG. 11 is an explanatory diagram for explaining an example of a PDCCH in which downlink control information is transmitted.
  • downlink resources for one subframe in the frequency band are shown.
  • the frequency band is a component carrier.
  • the PDCCH is arranged in the first three symbols, and the PDSCH is arranged in the remaining 11 symbols.
  • Downlink control information is transmitted on the PDCCH.
  • the terminal device 200 can set the gain of the reception amplifier near the start of the subframe and perform the reception process in the subframe. Become. As a result, the received signal falls within the dynamic range of the A / D converter, and the downlink data signal transmitted by the directional beam can be appropriately received.
  • the physical downlink control channel may be ePDCCH instead of normal PDCCH.
  • the base station 100 transmits a downlink data signal to the terminal device 200 by a directional beam. More specifically, for example, the base station 100 transmits a downlink data signal to the terminal device 200 using a directional beam on the PDSCH. For example, a different directional beam is formed for each terminal device 200.
  • the terminal device 200 sets the gain of the reception amplifier of the terminal device 200 based on the power-related information.
  • the receiving amplifier is an LNA (Low Noise Amplifier).
  • the terminal device 200 decreases the gain setting value of the reception amplifier when the power offset indicated by the power related information decreases, and receives the reception when the power offset indicated by the power related information increases. Increase the gain setting of the amplifier.
  • FIG. 12 is an explanatory diagram for explaining the flow of LNA gain setting processing.
  • a signal received by an antenna element is amplified by an LNA, converted into a digital signal by an A / D converter, and demodulated. Then, the power related information included in the downlink control information is acquired, and the LNA gain is set based on the power related information.
  • the base station 100 (the control unit 153) transmits a downlink within a predetermined time after transmission of the downlink control information in the subframe in the frequency band. Stop sending data signals.
  • the predetermined time is one symbol after transmission of the downlink control information in the subframe. More specifically, for example, the predetermined time is one symbol immediately after the physical downlink control channel in the subframe.
  • the predetermined time is one symbol immediately after the physical downlink control channel in the subframe.
  • the base station 100 may allocate power for the predetermined time as power for another time in the subframe after the predetermined time.
  • the control unit 153 may allocate power for the predetermined time as power for another time in the subframe after the predetermined time.
  • FIG. 14 is an explanatory diagram for explaining an example of power after transmission of a downlink data signal is stopped.
  • downlink resources for one subframe in the frequency band are shown.
  • the base station 100 stops the transmission of the downlink data signal within the symbol 51 (that is, the fourth symbol) immediately after the PDCCH.
  • the power for the symbol 51 is allocated as the power for the symbol 53 immediately after the symbol 51 (that is, 10 symbols immediately after the symbol 51).
  • the power of the symbol 53 is 11/10 times.
  • the power for the symbol 51 may be allocated as power for three symbols immediately after the symbol 51 (that is, a symbol in the same slot). As a result, the power of the three symbols may be 4/3 times.
  • the base station 100 (control unit 153) indicates that the power-related information notified to the terminal device 200 in the subframe in the frequency band is the subband in the frequency band.
  • transmission of the downlink data signal may be stopped within the predetermined time in the frequency band.
  • the base station 100 (the control unit 153) does not stop transmission of the downlink data signal within the predetermined time in the frequency band when the power related information is the same as the other power related information. May be.
  • the base station 100 when the power control information is index 4 indicating -12.04 dB and the other power control information is index 0 indicating 0 dB, the base station 100 (control unit 153) Transmission of the downlink data signal may be stopped within the predetermined time in the frequency band.
  • both the power control information and the other power control information are index 4 indicating ⁇ 12.04 dB
  • the base station 100 when both the power control information and the other power control information are index 4 indicating ⁇ 12.04 dB, the base station 100 (the control unit 153) is down within the predetermined time in the frequency band. The transmission of the link data signal may not be stopped. This is because the gain setting value in the terminal device 200 does not change.
  • the base station 100 (the control unit 153) indicates stop information indicating whether or not to stop the transmission of the downlink data signal within the predetermined time in the frequency band in the downlink control information. May be notified. Then, the terminal device 200 (information acquisition unit 241) may acquire the stop information, and the terminal device 200 (control unit 243) receives the reception in the subframe in the frequency band based on the stop information. Processing may be performed. Thereby, for example, the terminal apparatus 200 can more easily know whether or not to perform gain setting.
  • FIG. 15 is a sequence diagram illustrating an example of a schematic flow of a process according to the embodiment of the present disclosure.
  • the terminal device 200 notifies the base station 100 of capability information indicating that the terminal device 200 has the capability of setting the gain of the reception amplifier based on the power-related information (S401).
  • the base station 100 performs resource allocation within the subframe for the frequency band (S403).
  • the base station 100 notifies the terminal device 200 of the power related information and the stop information in the downlink control information transmitted in the subframe in the frequency band (S407). In other words, the base station 100 transmits downlink control information including the power related information and the stop information to the terminal device 200 within the subframe in the frequency band.
  • the terminal device 200 acquires the power related information and the stop information (S409).
  • the terminal device 200 sets the gain of the receiving amplifier of the terminal device 200 based on the power related information (S411).
  • the base station 100 transmits a downlink data signal to the terminal device 200 using a directional beam within the subframe in the frequency band (S413).
  • the directional beam is a large-scale MIMO directional beam.
  • the terminal device 200 performs reception processing in the subframe in the frequency band based on the stop information (S415).
  • the number of directional beams is reduced from 150 to 15.
  • the base station 100 forms a 150 directional beam in the first subframe and forms a 15 directional beam in the second subframe.
  • the base station 100 gradually increases the power per directional beam over a plurality of subframes without increasing the power per directional beam by 10 dB all at once in the second subframe. Increase to.
  • the power per directional beam does not increase significantly between consecutive subframes. Therefore, the AGC can follow the change in received power, and the occurrence of saturation in the A / D converter is avoided.
  • the number of directional beams increases from 15 to 150.
  • the base station 100 forms 15 directional beams in the first subframe, and gradually increases the number of directional beams over a plurality of subframes including the second subframe. Let The base station 100 does not significantly increase the number of directional beams in the second subframe. As a result, the power per directional beam is not significantly reduced between consecutive subframes. Therefore, the AGC can follow the change in the received power, and the signal deterioration in the A / D converter is avoided.
  • the base station 100 (the control unit 153), in particular, allocates the downlink resources of both the first subframe and the second subframe to the terminal device that does not have the capability. Resource allocation or power allocation may be performed so as not to exceed the predetermined threshold.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 16 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 16, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 16 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 16, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 16, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively. 16 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • FIG. 17 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 17, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 17 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 16 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • FIG. 17 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, but the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 17, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. Note that FIG. 17 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a part of the wireless communication interface 855 (for example, the BB processor 856) or / and a module including the controller 851, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good.
  • the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 execute the program. Also good.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • FIG. 18 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure may be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 18 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. 18 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 18 through a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the information acquisition unit 241 and the control unit in the module. 243 may be implemented.
  • the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is installed.
  • the program may be executed.
  • the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • FIG. 19 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG.
  • FIG. 19 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935.
  • the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 19 shows an example in which the car navigation device 920 includes a plurality of antennas 937, but the car navigation device 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 19 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 933.
  • the processor 921 may be implemented in the processor 921.
  • the car navigation device 920 includes a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and / or the processor 921, and the information acquisition unit 241 and the control unit 243 are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 executes the program. May be executed.
  • the car navigation device 920 or the module may be provided as a device including the information acquisition unit 241 and the control unit 243, and a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241 and the control unit 243.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the base station 100 includes the information acquisition unit 151 that acquires power-related information regarding power according to the number of directional beams formed in a subframe in the frequency band, and the frequency band.
  • a control unit 153 that notifies the terminal apparatus 200 of the power-related information in the downlink control information transmitted in the subframe.
  • the terminal device 200 is power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and the subframe in the frequency band
  • a control unit 243 that performs gain setting is a control unit 243 that performs gain setting.
  • the communication system may be a system that complies with other communication standards.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a processor for example, a CPU, a DSP, or the like included in a device of the present specification (for example, a base station, a base station device, a module for a base station device, or a terminal device or a module for a terminal device) is provided. It is also possible to create a computer program (in other words, a computer program for causing the processor to execute the operation of the component of the device) to function as a component of the device (for example, an information acquisition unit and a control unit). . Moreover, a recording medium on which the computer program is recorded may be provided.
  • An apparatus for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a device including a memory for storing the computer program and one or more processors capable of executing the computer program
  • a module for a terminal device may also be provided.
  • a method including the operation of the components of the device for example, an information acquisition unit and a communication control unit is also included in the technology according to the present disclosure.
  • the terminal device is a device having a capability of setting a gain of a reception amplifier based on power-related information.
  • the acquisition unit acquires capability information indicating that the terminal device has the capability.
  • the control unit stops transmission of a downlink data signal in the frequency band within a predetermined time after transmission of the downlink control information in the subframe. Any one of (1) to (6) The apparatus according to claim 1. (8) The apparatus according to (7), wherein the predetermined time is one symbol after transmission of the downlink control information in the subframe.
  • the downlink control information is information transmitted on a physical downlink control channel;
  • the predetermined time is one symbol immediately after the physical downlink control channel in the subframe.
  • the apparatus according to (8) above.
  • the control unit allocates power for the predetermined time as power for another time in the subframe after the predetermined time, according to any one of (7) to (9) The device described.
  • the control unit is configured to notify the terminal device in another frequency subband immediately before the subframe in the frequency band, the power related information notified to the terminal device in the subframe in the frequency band.
  • the control unit When different from the power related information, the transmission of the downlink data signal is stopped within the predetermined time in the frequency band, The control unit does not stop transmission of a downlink data signal within the predetermined time in the frequency band when the power related information is the same as the other power related information;
  • the apparatus according to any one of (7) to (10).
  • the control unit notifies stop information indicating whether to stop transmission of a downlink data signal within the predetermined time in the frequency band to the terminal device in the downlink control information.
  • Device (13) The control unit includes power per one directional beam formed in the first subframe in the frequency band, and one directivity formed in the second subframe immediately after the first subframe.
  • the apparatus according to any one of (1) to (12), wherein resource allocation or power allocation is performed so that a difference from power per beam does not exceed a predetermined threshold.
  • the control unit assigns the downlink resources of both the first subframe and the second subframe to a terminal device that does not have the capability of setting the gain of the receiving amplifier based on the power related information.
  • the device according to (13), wherein resource allocation or power allocation is performed so that the difference does not exceed the predetermined threshold.
  • the acquisition unit is stop information indicating whether or not to stop transmission of a downlink data signal within a predetermined time after transmission of the downlink control information in the subframe in the frequency band, and the downlink information In the control information, obtain the stop information that the base station notifies the terminal device, The control unit performs reception processing in the subframe in the frequency band based on the stop information.
  • a base station is a terminal in downlink control information transmitted in the subframe in the frequency band Obtaining the power related information to be notified to a device; Based on the power related information, setting the gain of the receiving amplifier of the terminal device, Including methods.
  • (21) Obtaining power related information regarding power according to the number of directional beams formed in a subframe in a frequency band; In the downlink control information transmitted in the subframe in the frequency band, notifying the power related information to the terminal device; A program that causes a processor to execute.
  • (22) Obtaining power related information regarding power according to the number of directional beams formed in a subframe in a frequency band; In the downlink control information transmitted in the subframe in the frequency band, notifying the power related information to the terminal device; A readable recording medium on which a program for causing a processor to execute is recorded.
  • (23) Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band Obtaining the power related information to be notified to a device; Based on the power related information, setting the gain of the receiving amplifier of the terminal device, A program that causes a processor to execute.

Abstract

[Problem] To enable better reception quality when performing transmission using a directive beam. [Solution] Provided is a device comprising: an acquisition unit that acquires power-related information concerning power according to the number of directional beams formed within a subframe in a frequency band; and a control unit which notifies a terminal device of the power-related information in the downlink control information transmitted within the subframe in the aforementioned frequency band.

Description

装置及び方法Apparatus and method
 本開示は、装置及び方法に関する。 The present disclosure relates to an apparatus and a method.
 現在、3GPP(Third Generation Partnership Project)では、爆発的に増加するトラフィックを収容するために、セルラーシステムの容量を向上するための様々な技術が検討されている。将来、現在の1000倍程度の容量が必要とも言われている。MU-MIMO(Multi-User Multiple-Input Multiple-Output)及びCoMP(Coordinated Multipoint)などの技術では、セルラーシステムの容量は数倍程度しか増加しないと考えられる。そのため、画期的な手法が求められている。 Currently, in 3GPP (Third Generation Partnership Project), various technologies for improving the capacity of cellular systems are being studied in order to accommodate explosively increasing traffic. It is said that a capacity about 1000 times the current capacity will be required in the future. With technologies such as MU-MIMO (Multi-User Multiple-Input Multiple-Output) and CoMP (Coordinated Multipoint), the capacity of the cellular system is considered to increase only several times. Therefore, an innovative method is required.
 例えば、セルラーシステムの容量を大幅に増加させるための手法として、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用して基地局がビームフォーミングを行うことが考えられる。このような技術は、ラージスケール(Large-Scale)MIMO、又はマッシブ(Massive)MIMOと呼ばれる技術の一形態である。このようなビームフォーミングによれば、ビームの半値幅は狭くなる。即ち、鋭いビームが形成される。また、上記多数のアンテナ素子を平面上に配置することにより、所望の3次元方向へのビームを形成することも可能になる。 For example, as a method for significantly increasing the capacity of the cellular system, it is conceivable that the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements). . Such a technique is a form of a technique called large-scale MIMO or massive MIMO. According to such beam forming, the half width of the beam becomes narrow. That is, a sharp beam is formed. Further, by arranging the multiple antenna elements on a plane, it is possible to form a beam in a desired three-dimensional direction.
 例えば、特許文献1~3には、3次元方向への指向性ビームが使用される場合に適用される技術が開示されている。 For example, Patent Documents 1 to 3 disclose techniques applied when a directional beam in a three-dimensional direction is used.
特開2014-204305号公報JP 2014-204305 A 特開2014-53811号公報JP 2014-53811 A 特開2014-64294号公報JP 2014-64294 A
 しかし、例えば、同じ時間に形成される指向性ビーム(例えば、ラージスケールMIMOの指向性ビーム)の数が動的に変わる場合には、個々の指向性ビームに割り当てられる電力も動的に変わり、端末装置のACG(Automatic Gain Control)が追従できなくなり得る。その結果、受信品質が低下し得る。 However, for example, when the number of directional beams formed at the same time (eg, large-scale MIMO directional beams) changes dynamically, the power allocated to each directional beam also changes dynamically, The terminal device's ACG (Automatic Gain Control) may not be able to follow. As a result, reception quality can be degraded.
 そこで、指向性ビームによる(over)送信が行われる場合により良好な受信品質を得ることを可能にする仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism that makes it possible to obtain better reception quality when directional beam (over) transmission is performed.
 本開示によれば、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得する取得部と、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で、上記電力関連情報を端末装置に通知する制御部と、を備える装置が提供される。 According to the present disclosure, an acquisition unit that acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a downlink transmitted in the subframe in the frequency band A device is provided that includes a control unit that notifies the terminal device of the power-related information in the control information.
 また、本開示によれば、プロセッサにより、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得することと、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で、上記電力関連情報を端末装置に通知することと、を含む方法が提供される。 In addition, according to the present disclosure, the processor acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and transmits the power in the subframe in the frequency band. And notifying the terminal device of the power related information in the downlink control information to be provided.
 また、本開示によれば、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する上記電力関連情報を取得する取得部と、上記電力関連情報に基づいて、上記端末装置の受信増幅器のゲイン設定を行う制御部と、を備える装置が提供される。 Further, according to the present disclosure, it is power related information related to power according to the number of directional beams formed in a subframe in a frequency band, and is downlink control transmitted in the subframe in the frequency band. An apparatus comprising: an acquisition unit that acquires the power-related information notified from the base station to the terminal device in the information; and a control unit that performs gain setting of the reception amplifier of the terminal device based on the power-related information. Provided.
 また、本開示によれば、プロセッサにより、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する上記電力関連情報を取得することと、上記電力関連情報に基づいて、上記端末装置の受信増幅器のゲイン設定を行うことと、を含む方法が提供される。 Further, according to the present disclosure, the processor is power-related information related to power according to the number of directional beams formed in a subframe in a frequency band, and is transmitted in the subframe in the frequency band. A method comprising: acquiring the power related information notified to a terminal device by a base station in downlink control information; and setting a gain of a receiving amplifier of the terminal device based on the power related information. Is provided.
 以上説明したように本開示によれば、指向性ビームによる送信が行われる場合により良好な受信品質を得ることが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。 As described above, according to the present disclosure, it is possible to obtain better reception quality when transmission using a directional beam is performed. The above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
ラージスケールMIMOのビームフォーミング用の重みセットを説明するための説明図である。It is explanatory drawing for demonstrating the weight set for the beam forming of large scale MIMO. ラージスケールMIMOのビームフォーミングが行われるケースの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the case where the beam forming of large scale MIMO is performed. 重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between multiplication of a weight coefficient and insertion of a reference signal. 重み係数の乗算とリファレンス信号の挿入との他の関係を説明するための説明図である。It is explanatory drawing for demonstrating the other relationship of the multiplication of a weighting coefficient, and the insertion of a reference signal. 各サブフレーム内で形成される指向性ビームの数の例を説明するための説明図である。It is explanatory drawing for demonstrating the example of the number of the directional beams formed in each sub-frame. ダイナミックレンジ及び受信電力の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of a dynamic range and received power. 本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure. FIG. 同実施形態に係る基地局の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. 同実施形態に係る端末装置の構成の一例を示すブロック図であるIt is a block diagram which shows an example of a structure of the terminal device which concerns on the embodiment 電力オフセットを示す電力関連情報の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the electric power relevant information which shows electric power offset. ダウンリンク制御情報が送信されるPDCCHの例を説明するための説明図である。It is explanatory drawing for demonstrating the example of PDCCH by which downlink control information is transmitted. LNAのゲイン設定の処理の流れを説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a flow of processing for setting an LNA gain; ダウンリンクデータ信号の送信の停止の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the stop of transmission of a downlink data signal. ダウンリンクデータ信号の送信の停止後における電力の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the electric power after the transmission of a downlink data signal is stopped. 同実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。It is a sequence diagram showing an example of a schematic flow of processing according to the embodiment. eNBの概略的な構成の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of schematic structure of eNB. eNBの概略的な構成の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of schematic structure of eNB. スマートフォンの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a smart phone. カーナビゲーション装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.はじめに
  1.1.関連技術
  1.2.技術的課題
 2.システムの概略的な構成
 3.各装置の構成
  3.1.基地局の構成
  3.2.端末装置の構成
 4.技術的特徴
 5.処理の流れ
 6.変形例
 7.応用例
  7.1.基地局に関する応用例
  7.2.端末装置に関する応用例
 8.まとめ
The description will be made in the following order.
1. 1. Introduction 1.1. Related technology 1.2. Technical issues 2. Schematic configuration of system Configuration of each device 3.1. Configuration of base station 3.2. 3. Configuration of terminal device Technical features 5. Flow of processing Modification 7 Application example 7.1. Application examples related to base stations 7.2. 7. Application examples related to terminal devices Summary
 <<1.はじめに>>
 まず、図1~図6を参照して、本開示の実施形態に関連する技術、及び、本実施形態に係る技術的課題を説明する。
<< 1. Introduction >>
First, a technique related to the embodiment of the present disclosure and a technical problem according to the embodiment will be described with reference to FIGS.
 <1.1.関連技術>
 図1~図4を参照して、本開示の実施形態に関連する技術として、ビームフォーミング、測定(measurements)、セルの選択、及びCSRについてのビームフォーミングを説明する。
<1.1. Related Technology>
With reference to FIGS. 1 to 4, beam forming, measurements, cell selection, and beam forming for CSR will be described as techniques related to the embodiment of the present disclosure.
 (1)ビームフォーミング
 (a)ラージスケールMIMOの必要性
 現在、3GPPでは、爆発的に増加するトラフィックを収容するために、セルラーシステムの容量を向上するための様々な技術が検討されている。将来、現在の1000倍程度の容量が必要とも言われている。MU-MIMO及びCoMPなどの技術では、セルラーシステムの容量は数倍程度しか増加しないと考えられる。そのため、画期的な手法が求められている。
(1) Beam forming (a) Necessity of large-scale MIMO Currently, 3GPP is examining various technologies for improving the capacity of a cellular system in order to accommodate explosively increasing traffic. It is said that a capacity about 1000 times the current capacity will be required in the future. In technologies such as MU-MIMO and CoMP, the capacity of the cellular system is considered to increase only about several times. Therefore, an innovative method is required.
 3GPPのリリース10では、eNodeBが8本のアンテナを搭載することが規格化されている。よって、当該アンテナによれば、SU-MIMO(Single-User Multi-Input Multiple-Input Multiple-Output)の場合に8レイヤのMIMOを実現することができる。8レイヤのMIMOとは、独立な8つのストリームを空間的に多重する技術である。また、4ユーザに2レイヤのMU-MIMOを実現することもできる。 In Release 10 of 3GPP, it is standardized that eNodeB is equipped with 8 antennas. Therefore, according to the antenna, 8-layer MIMO can be realized in the case of SU-MIMO (Single-User Multi-Input Multiple-Input Multiple-Output). 8-layer MIMO is a technique for spatially multiplexing eight independent streams. In addition, two layers of MU-MIMO can be realized for four users.
 UE(User Equipment)ではアンテナの配置のためのスペースが小さいこと、及びUEの処理能力には限界があることに起因して、UEのアンテナのアンテナ素子を増やすことは難しい。しかし、近年のアンテナ実装技術の進歩により、100個程度のアンテナ素子を含む指向性アンテナをeNodeBに配置することは不可能ではなくなってきている。 In UE (User Equipment), it is difficult to increase the antenna elements of the UE antenna due to the small space for antenna arrangement and the limited processing capability of the UE. However, with recent advances in antenna mounting technology, it has become impossible to arrange a directional antenna including about 100 antenna elements in an eNodeB.
 例えば、セルラーシステムの容量を大幅に増加させるための手法として、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用して基地局がビームフォーミングを行うことが考えられる。このような技術は、ラージスケール(Large-Scale)MIMO又はマッシブ(Massive)MIMOと呼ばれる技術の一形態である。このようなビームフォーミングによれば、ビームの半値幅は狭くなる。即ち、鋭いビームが形成される。また、上記多数のアンテナ素子を平面上に配置することにより、所望の3次元方向へのビームを形成することも可能になる。例えば、基地局よりも高い位置(例えば、高層ビルの上層階)に向けたビームを形成することにより、当該位置に存在する端末装置への信号を送信することが、提案されている。 For example, as a method for significantly increasing the capacity of the cellular system, it is conceivable that the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements). . Such a technique is one form of a technique called large-scale MIMO or massive MIMO. According to such beam forming, the half width of the beam becomes narrow. That is, a sharp beam is formed. Further, by arranging the multiple antenna elements on a plane, it is possible to form a beam in a desired three-dimensional direction. For example, it has been proposed to transmit a signal to a terminal device existing at the position by forming a beam directed to a position higher than the base station (for example, an upper floor of a high-rise building).
 典型的なビームフォーミングでは、水平方向でビームの方向を変えることが可能である。そのため、当該典型的なビームフォーミングは、2次元ビームフォーミングとも言える。一方、ラージスケールMIMO(又はマッシブMIMO)のビームフォーミングでは、水平方向に加えて垂直方向にもビームの方向を変えることが可能である。そのため、ラージスケールMIMOのビームフォーミングは、3次元ビームフォーミングとも言える。 In typical beam forming, it is possible to change the beam direction in the horizontal direction. Therefore, it can be said that the typical beam forming is two-dimensional beam forming. On the other hand, in large-scale MIMO (or massive MIMO) beamforming, the beam direction can be changed in the vertical direction in addition to the horizontal direction. Therefore, it can be said that large-scale MIMO beamforming is three-dimensional beamforming.
 なお、アンテナ本数が増えるので、MU-MIMOでのユーザ数を増やすことが可能になる。このような技術は、ラージスケールMIMO又はマッシブMIMOと呼ばれる技術の別の形態である。なお、UEのアンテナ数が2本である場合には、1つのUEについての空間的に独立したストリームの数は2本であるので、1つのUEについてのストリーム数を増やすよりも、MU-MIMOのユーザ数を増やす方が合理的である。 Note that since the number of antennas increases, the number of users in MU-MIMO can be increased. Such a technique is another form of a technique called large scale MIMO or massive MIMO. In addition, when the number of antennas of the UE is two, the number of spatially independent streams for one UE is two, and therefore, MU-MIMO rather than increasing the number of streams for one UE. It is more reasonable to increase the number of users.
 (b)重みセット
 ビームフォーミング用の重みセット(即ち、複数のアンテナ素子のための重み係数のセット)は、複素数として表される。以下、図1を参照して、とりわけラージスケールMIMOのビームフォーミング用の重みセットの例を説明する。
(B) Weight set A weight set for beam forming (that is, a set of weight coefficients for a plurality of antenna elements) is expressed as a complex number. Hereinafter, an example of a weight set for beam forming of large scale MIMO will be described with reference to FIG.
 図1は、ラージスケールMIMOのビームフォーミング用の重みセットを説明するための説明図である。図1を参照すると、格子状に配置されたアンテナ素子が示されている。また、アンテナ素子が配置された平面上の直行する2つの軸x、y、及び、当該平面に直行する1つの軸zも示されている。ここで、形成すべきビームの方向は、例えば、角度phi(ギリシャ文字)及び角度theta(ギリシャ文字)で表される。角度phi(ギリシャ文字)は、ビーム方向のうちのxy平面の成分とx軸とのなす角度である。また、角度theta(ギリシャ文字)は、ビーム方向とz軸とのなす角度である。この場合に、例えば、x軸方向においてm番目に配置され、y軸方向においてn番目に配置されるアンテナ素子の重み係数Vm,nは、以下のように表され得る。 FIG. 1 is an explanatory diagram for describing a weight set for large-scale MIMO beamforming. Referring to FIG. 1, antenna elements arranged in a lattice shape are shown. Also shown are two axes x, y orthogonal to the plane on which the antenna element is arranged, and one axis z orthogonal to the plane. Here, the direction of the beam to be formed is represented by, for example, an angle phi (Greek letter) and an angle theta (Greek letter). The angle phi (Greek letter) is an angle formed between the x-axis component and the xy plane component in the beam direction. The angle theta (Greek letter) is an angle formed by the beam direction and the z axis. In this case, for example, the weighting factor V m, n of the antenna element arranged m-th in the x-axis direction and n-th arranged in the y-axis direction can be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 fは周波数であり、cは光速である。また、jは複素数における虚数単位である。また、dは、x軸方向におけるアンテナ素子の間隔であり、dは、y軸方向におけるアンテナ素子間の間隔である。なお、アンテナ素子の座標は、以下のように表される。 f is the frequency and c is the speed of light. J is an imaginary unit in a complex number. D x is the distance between the antenna elements in the x-axis direction, and dy is the distance between the antenna elements in the y-axis direction. The coordinates of the antenna element are expressed as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、典型的なビームフォーミング(2次元ビームフォーミング)用の重みセットは、所望の水平方向へのビームを形成するための重みセットと、アンテナ間の位相の調整のための重みセットとに分解され得る。そのため、ラージスケールMIMOのビームフォーミング用の重みセットは、所望の垂直方向へのビームを形成するための第1の重みセットと、所望の水平方向へのビームを形成するための第2の重みセットと、アンテナ間の位相の調整のための第3の重みセットとに分解され得る。 A typical weight set for beam forming (two-dimensional beam forming) is decomposed into a weight set for forming a beam in a desired horizontal direction and a weight set for adjusting the phase between antennas. obtain. Therefore, the large-scale MIMO beamforming weight set includes a first weight set for forming a beam in a desired vertical direction and a second weight set for forming a beam in a desired horizontal direction. And a third weight set for adjusting the phase between the antennas.
 (c)ラージスケールMIMOのビームフォーミングによる環境の変化
 ラージスケールMIMOのビームフォーミングが行われる場合には、利得は10dB以上に達する。上記ビームフォーミングを採用するセルラーシステムでは、従来のセルラーシステムと比べて、電波環境の変化が激しくなり得る。
(C) Change in environment due to large-scale MIMO beamforming When large-scale MIMO beamforming is performed, the gain reaches 10 dB or more. In the cellular system that employs the beam forming, the radio wave environment can change more drastically than the conventional cellular system.
 (d)ラージスケールMIMOのビームフォーミングが行われるケース
 例えば、都市部の基地局が高層ビルに向けたビームを形成することが考えられる。また、郊外であっても、スモールセルの基地局が当該基地局の周辺のエリアに向けたビームを形成することが考えられる。なお、郊外のマクロセルの基地局はラージスケールMIMOのビームフォーミングを行わない可能性が高い。
(D) Case where large-scale MIMO beamforming is performed For example, a base station in an urban area may form a beam toward a high-rise building. Even in the suburbs, it is conceivable that a small cell base station forms a beam toward an area around the base station. It is highly likely that a macrocell base station in the suburbs does not perform large-scale MIMO beamforming.
 図2は、ラージスケールMIMOのビームフォーミングが行われるケースの一例を説明するための説明図である。図2を参照すると、基地局71及び高層ビル73が示されている。例えば、基地局71は、地上への指向性ビーム75、77に加えて、高層ビル73への指向性ビーム79を形成する。 FIG. 2 is an explanatory diagram for explaining an example of a case where large-scale MIMO beamforming is performed. Referring to FIG. 2, a base station 71 and a high-rise building 73 are shown. For example, the base station 71 forms a directional beam 79 to the high-rise building 73 in addition to the directional beams 75 and 77 to the ground.
 (2)測定
 (a)CRSについての測定
 LTE(Long Term Evolution)では、端末装置は、基地局により送信されるCRS(Cell-specific Reference Signal)についての測定を行う。具体的には、端末装置は、基地局により送信されるCRSの受信により、当該基地局と当該端末装置との間の伝搬路の品質の測定を行う。この測定は、「RRM(Radio Resource Management)測定」、又は単に「測定(measurements)」と呼ばれる。
(2) Measurement (a) Measurement on CRS In LTE (Long Term Evolution), the terminal apparatus performs measurement on CRS (Cell-specific Reference Signal) transmitted by the base station. Specifically, the terminal device measures the quality of the propagation path between the base station and the terminal device by receiving the CRS transmitted by the base station. This measurement is referred to as “RRM (Radio Resource Management) measurement” or simply “measurements”.
 上記測定の結果は、端末装置のためのセルを選択するために使用される。具体的には、例えば、上記測定の結果は、RRC(Radio Resource Control)アイドル(RRC Idle)である端末装置によるセル選択(Cell Selection)/セル再選択(cell reselection)に使用される。また、例えば、上記測定の結果は、RRC接続(RRC Connected)である端末装置により基地局に報告され、当該基地局によるハンドオーバ決定(Handover Decision)に使用される。 The result of the above measurement is used to select a cell for the terminal device. Specifically, for example, the result of the measurement is used for cell selection / cell reselection by a terminal device that is RRC (Radio Resource Control) idle (RRC Idle). Further, for example, the result of the measurement is reported to the base station by a terminal device that is RRC connected (RRC Connected), and is used for handover determination (Handover Decision) by the base station.
 上述したように、上記測定は、CRSの受信により行われる。CRSは、無指向性の電波の伝送路の品質を測定するための信号であるので、ビームフォーミングなしで送信される。即ち、CRSは、ビームフォーミング用の重みセットを乗算されずに送信される。 As described above, the measurement is performed by receiving CRS. Since the CRS is a signal for measuring the quality of a non-directional radio wave transmission path, the CRS is transmitted without beamforming. That is, the CRS is transmitted without being multiplied by the beamforming weight set.
 なお、DM-RS(Demodulation Reference Signal)又はUE固有リファレンス信号(UE specific Reference Signal)と呼ばれる復調用のリファレンス信号もある。当該復調用のリファレンス信号は、ビームフォーミング用の重みセットを乗算されるので、無指向性の電波の伝送路の品質を測定するのには望ましくない。また、CSI-RS(Channel State Information Reference Signal)と呼ばれるリファレンス信号もある。CSI-RSは、CRSと同様に、ビームフォーミングなしで送信される。しかし、CSI-RSの送信頻度が低いので、CSI-RSの受信による測定には長い時間がかかる。以下、図3を参照して、重み係数の乗算とリファレンス信号の挿入(又はマッピング)との関係を説明する。 There is also a demodulation reference signal called DM-RS (Demodulation Reference Signal) or UE-specific reference signal (UE-specific Reference Signal). Since the demodulation reference signal is multiplied by a weighting set for beam forming, it is not desirable for measuring the quality of a non-directional radio wave transmission path. There is also a reference signal called CSI-RS (Channel State Information Reference Signal). Similar to CRS, CSI-RS is transmitted without beamforming. However, since the transmission frequency of CSI-RS is low, it takes a long time to measure by receiving CSI-RS. Hereinafter, with reference to FIG. 3, the relationship between weighting coefficient multiplication and reference signal insertion (or mapping) will be described.
 図3は、重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。図3を参照すると、各アンテナ素子81に対応する送信信号82は、乗算器84において重み係数83を複素乗算される。そして、重み係数83を複素乗算された送信信号82が、アンテナ素子81から送信される。また、DR-MS85は、乗算器84の前に挿入され、乗算器84において重み係数83が複素乗算される。そして、重み係数83が複素乗算されたDR-MS85が、アンテナ素子81から送信される。一方、CRS86(及びCSI-RS)は、乗算器84の後に挿入される。そして、CRS86(及びCSI-RS)は、重み係数83を乗算されることなく、アンテナ素子81から送信される。 FIG. 3 is an explanatory diagram for explaining the relationship between weighting coefficient multiplication and reference signal insertion. Referring to FIG. 3, the transmission signal 82 corresponding to each antenna element 81 is complex-multiplied by a weight coefficient 83 in a multiplier 84. Then, a transmission signal 82 obtained by complex multiplication of the weighting coefficient 83 is transmitted from the antenna element 81. Further, the DR-MS 85 is inserted before the multiplier 84, and the multiplier 84 multiplies the weight coefficient 83 by a complex multiplication. Then, the DR-MS 85 obtained by complex multiplication of the weight coefficient 83 is transmitted from the antenna element 81. On the other hand, the CRS 86 (and CSI-RS) is inserted after the multiplier 84. The CRS 86 (and CSI-RS) is transmitted from the antenna element 81 without being multiplied by the weighting coefficient 83.
 (b)RSRP及びRSRQ
 LTEでは、CRSについての測定は、RSRP(Reference Signal Received Power)及び/又はRSRQ(Reference Signal Received Quality)の測定である。換言すると、端末装置は、CRSについての測定の結果として、RSRP及び/又はRSRQを取得する。RSRQは、RSRPとRSSI(Received Signal Strength Indicator)から算出される。
(B) RSRP and RSRQ
In LTE, CRS measurements are RSRP (Reference Signal Received Power) and / or RSRQ (Reference Signal Received Quality) measurements. In other words, the terminal device acquires RSRP and / or RSRQ as a result of measurement on CRS. RSRQ is calculated from RSRP and RSSI (Received Signal Strength Indicator).
 RSRPは、単一のリソースエレメントあたりのCRSの受信電力である。即ち、RSRPは、CRSの受信電力の平均値である。CRSの受信電力は、CRSのリソースエレメントにおける受信信号と既知信号であるCRSとの相関の検出により得られる。RSRPは、所望信号「S(Signal)」に対応する。 RSRP is CRS received power per single resource element. That is, RSRP is the average value of CRS received power. The CRS received power is obtained by detecting the correlation between the received signal in the CRS resource element and the known signal CRS. RSRP corresponds to the desired signal “S (Signal)”.
 RSSIは、OFDMA(Orthogonal Frequency Division Multiple Access)シンボルあたりの信号の総電力である。そのため、RSSIは、所望信号、干渉信号及び雑音を含む。即ち、RSSIは、「S(Signal)+I(Interference)+N(Noise)」に対応する。 RSSI is the total power of signals per OFDMA (Orthogonal Frequency Division Multiple Access) symbol. Therefore, RSSI includes a desired signal, an interference signal, and noise. That is, RSSI corresponds to “S (Signal) + I (Interference) + N (Noise)”.
 RSRQは、RSRP/(RSSI/N)である。Nは、RSSIの算出に用いられるリソースブロックの数である。当該リソースブロックは、周波数方向に並ぶリソースブロックである。したがって、RSRQは、リソースブロック1個あたりのRSSIでRSRPを割ることにより得られる値である。即ち、RSRQは、SINR(Signal-to-Interference-plus-Noise Ratio)に対応する。 RSRQ is RSRP / (RSSI / N). N is the number of resource blocks used for calculating RSSI. The resource block is a resource block arranged in the frequency direction. Therefore, RSRQ is a value obtained by dividing RSRP by RSSI per resource block. That is, RSRQ corresponds to SINR (Signal-to-Interference-plus-Noise Ratio).
 以上のように、CRSについての測定により、受信電力(即ち、RSRP)と、SINRのような受信品質(即ち、RSRQ)とが得られる。 As described above, the reception power (that is, RSRP) and the reception quality (that is, RSRQ) such as SINR are obtained by the measurement on CRS.
 なお、後述するセルの選択では、受信品質(即ち、RSRQ)が用いられることが多い。なぜならば、受信電力(即ち、RSRP)のみに基づいてセルが選択されると、大きな干渉を伴うセルが選択され得るからである。 Note that reception quality (that is, RSRQ) is often used in cell selection described later. This is because if a cell is selected based only on received power (ie, RSRP), a cell with large interference can be selected.
 (c)平均化による効果
 RSRP及びRSRQを取得するためには、数ミリ秒から数十ミリ秒にわたって信号を受信し、受信電力の平均化を行う必要がある。1スロット又は1サブセットのみの平均化によりRSRP及びRPRQを取得すると、フェージングなどのチャネルの瞬間的な変動に影響されやすくなるからである。
(C) Effect of Averaging In order to acquire RSRP and RSRQ, it is necessary to receive a signal over several milliseconds to several tens of milliseconds and average the received power. This is because when RSRP and RPRQ are obtained by averaging only one slot or one subset, it is likely to be affected by instantaneous channel fluctuations such as fading.
 なお、上記平均化の手法は、端末装置ごとに実装されるのであり、規格において具体的に定められていない。 Note that the above averaging method is implemented for each terminal device, and is not specifically defined in the standard.
 (3)セルの選択
 (a)セルの選択の例
 例えば、端末装置は、RRCアイドル(RRC Idle)である場合に、セル選択(Cell Selection)/セル再選択(cell reselection)を行う。即ち、端末装置は、通信を行うためのセル(例えば、ページングの受信のためのセル)を選択する。
(3) Cell Selection (a) Example of Cell Selection For example, when the terminal device is RRC idle (RRC Idle), the terminal device performs cell selection / cell reselection. That is, the terminal device selects a cell for communication (for example, a cell for receiving paging).
 また、例えば、基地局は、ハンドオーバ決定(Handover Decision)を行う。即ち、基地局は、端末装置のためのターゲットセルを選択し、端末装置のためのサービングセルから上記ターゲットセルへのハンドオーバを決定する。 Also, for example, the base station makes a handover decision. That is, the base station selects a target cell for the terminal device and determines a handover from the serving cell for the terminal device to the target cell.
 また、例えば、基地局は、キャリアアグリゲーションのScell(Secondary Cell)の追加を行う。当該Scellは、SCC(Secondary Component Carrier)とも呼ばれる。 Also, for example, the base station adds a Scell (Secondary Cell) for carrier aggregation. The Scell is also called SCC (Secondary Component Carrier).
 なお、ここでの「セル」は、基地局の通信エリアを意味してもよく、又は基地局が使用する周波数帯域を意味してもよい。また、ここでの「セル」は、キャリアアグリゲーションのPcell(Primary Cell)又はScellであってもよい。上記Pcellは、PCC(Primary Component Carrier)とも呼ばれ、上記Scellは、SCC(Secondary Component Carrier)とも呼ばれる。 In addition, the “cell” here may mean a communication area of the base station, or may mean a frequency band used by the base station. Also, the “cell” here may be a Pcell (Primary Cell) or Scell of carrier aggregation. The Pcell is also called PCC (Primary Component Carrier), and the Scell is also called SCC (Secondary Component Carrier).
 (b)ビームフォーミングが行われる場合のセルの選択
 上述したように、ラージスケールMIMO又はマッシブMIMOと呼ばれる技術の一形態では、基地局は、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用してビームフォーミングを行う。この場合に、基地局は、水平方向のみではなく垂直方向にもビームの方向を変えることができる。そのため、一例として、基地局は、基地局よりも高い位置(例えば、高層ビルの上層階)に向けたビームを形成することにより、高い位置でのスループットを向上させることができる。別の例として、小型の基地局は、近傍のエリアへのビームを形成することにより、隣接基地局との間の干渉を減らすことができる。
(B) Cell selection when beam forming is performed As described above, in one form of technology called large-scale MIMO or massive MIMO, the base station has a large number of antenna elements (for example, about 100 antenna elements). Beam forming is performed using a directional antenna including In this case, the base station can change the beam direction not only in the horizontal direction but also in the vertical direction. Therefore, as an example, the base station can improve the throughput at a high position by forming a beam toward a position higher than the base station (for example, an upper floor of a high-rise building). As another example, a small base station can reduce interference with neighboring base stations by forming a beam to a nearby area.
 ここで、ラージスケールMIMOのビームフォーミングによる信号の送受信が主流になった場合に、CRSについての測定の結果に基づいてセルの選択が行われてよいのかという疑問が生じる。 Here, when signal transmission / reception by large-scale MIMO beamforming becomes mainstream, a question arises as to whether cell selection may be performed based on the measurement result of CRS.
 具体的には、CRSについての測定から分かるのは、あくまで、無指向性の電波の伝送路の品質である。しかし、無指向性の電波の伝送路は、ラージスケールMIMOのビームフォーミングにより形成される鋭いビームの伝送路とは全く異なる。そのため、当該ビームフォーミングによる信号の送受信が前提である場合には、CRSについての測定の結果に基づくセルの選択では、適切なセルが選択されない可能性がある。 Specifically, what can be seen from the measurement of CRS is the quality of the non-directional radio wave transmission path. However, a non-directional radio wave transmission path is completely different from a sharp beam transmission path formed by large-scale MIMO beamforming. Therefore, when signal transmission / reception by the beam forming is a premise, there is a possibility that an appropriate cell may not be selected in cell selection based on the measurement result of CRS.
 一例として、CRSの測定の結果に基づいて選択されたセルで端末装置が信号を送受信すると、隣接基地局からの鋭いビームにより大きい干渉が発生してしまう可能性がある。別の例として、あるセルについてのCRSの測定の結果が、別のセルについてのCRSの測定の結果よりも良好であったとしても、ビームフォーミングが行われる場合には、上記別のセルでの通信品質の方が上記あるセルでの通信品質よりも良好である可能性もある。 As an example, when a terminal apparatus transmits and receives a signal in a cell selected based on a CRS measurement result, there is a possibility that a larger interference occurs in a sharp beam from an adjacent base station. As another example, even if the result of CRS measurement for one cell is better than the result of CRS measurement for another cell, if beamforming is performed, There is a possibility that the communication quality is better than the communication quality in a certain cell.
 以上のように、ビームフォーミングが行われる場合に端末装置のために適切なセルが選択されない可能性がある。 As described above, an appropriate cell may not be selected for the terminal device when beamforming is performed.
 (c)CRSについての測定が望ましくないケース
 上述したように、例えば、ラージスケールMIMOのビームフォーミングは都市部の基地局又はスモールセルの基地局により行われると考えられる。そのため、これらの基地局のセルの選択がCRSについての測定に基づいて行われることは望ましくない。
(C) Case in which measurement of CRS is not desirable As described above, for example, large-scale MIMO beamforming is considered to be performed by an urban base station or a small cell base station. Therefore, it is not desirable that the cell selection of these base stations is made based on measurements on CRS.
 (4)CSRについてのビームフォーミング
 通常、CRSは、無指向性の電波により送信されるので、CRSについての測定の結果(受信電力/受信品質)は、指向性ビームにより送信されるデータ信号の受信電力/受信品質と大きく異なり得る。これを解決するために、CRSを指向性ビームにより送信することが考えられる。以下、この点について図4を参照して具体例を説明する。
(4) Beamforming for CSR Normally, since CRS is transmitted by non-directional radio waves, the measurement result (reception power / reception quality) for CRS is the reception of a data signal transmitted by a directional beam. The power / reception quality can vary greatly. In order to solve this, it is conceivable to transmit the CRS using a directional beam. Hereinafter, a specific example of this point will be described with reference to FIG.
 図4は、重み係数の乗算とリファレンス信号の挿入との他の関係を説明するための説明図である。図4を参照すると、各アンテナ素子91に対応する送信信号92は、乗算器94において重み係数93を複素乗算される。そして、重み係数93を複素乗算された送信信号92が、アンテナ素子91から送信される。また、DR-MS95は、乗算器94の前に挿入され、乗算器94において重み係数93が複素乗算される。そして、重み係数93が複素乗算されたDR-MS95が、アンテナ素子91から送信される。さらに、CRS96は、乗算器94の前に挿入され、乗算器94において重み係数93が複素乗算される。そして、重み係数93が複素乗算されたCRS96が、アンテナ素子91から送信される。一方、通常のCRS97(及びCSI-RS)は、乗算器94の後に挿入される。そして、通常のCRS97(及びCSI-RS)は、重み係数93を乗算されることなく、アンテナ素子91から送信される。 FIG. 4 is an explanatory diagram for explaining another relationship between weighting coefficient multiplication and reference signal insertion. Referring to FIG. 4, transmission signal 92 corresponding to each antenna element 91 is complex-multiplied by weighting factor 93 in multiplier 94. Then, a transmission signal 92 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91. The DR-MS 95 is inserted in front of the multiplier 94, and the multiplier 94 multiplies the weight coefficient 93 in a complex manner. Then, the DR-MS 95 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91. Further, the CRS 96 is inserted before the multiplier 94, and the weight coefficient 93 is complex-multiplied by the multiplier 94. Then, the CRS 96 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91. On the other hand, a normal CRS 97 (and CSI-RS) is inserted after the multiplier 94. The normal CRS 97 (and CSI-RS) is transmitted from the antenna element 91 without being multiplied by the weight coefficient 93.
 <1.2.技術的課題>
 次に、図5及び図6を参照して、本実施形態に係る技術的課題を説明する。
<1.2. Technical issues>
Next, a technical problem according to the present embodiment will be described with reference to FIGS.
 例えば、同じ時間に形成される指向性ビーム(例えば、ラージスケールMIMOの指向性ビーム)の数が動的に変わる場合には、個々の指向性ビームに割り当てられる電力も動的に変わり、端末装置のACG(Automatic Gain Control)が追従できなくなり得る。その結果、受信品質が低下し得る。以下、この点について、図5及び図6を参照して具体例を説明する。 For example, when the number of directional beams (for example, large-scale MIMO directional beams) formed at the same time changes dynamically, the power allocated to each directional beam also changes dynamically. ACG (Automatic Gain Control) may not be able to follow. As a result, reception quality can be degraded. Hereinafter, a specific example of this point will be described with reference to FIGS. 5 and 6.
 図5は、各サブフレーム内で形成される指向性ビームの数の例を説明するための説明図である。図5を参照すると、周波数帯域(例えば、コンポーネントキャリア)についての3つのサブフレーム31、33、35が示されている。例えば、サブフレーム31内では、上記周波数帯域において150の指向性ビームが形成される。また、サブフレーム33内では、上記周波数帯域において15の指向性ビームが形成され、サブフレーム35内では、上記周波数帯域において60の指向性ビームが形成される。基地局の送信電力には上限があるので、サブフレーム内で形成される指向性ビームが多ければ、各指向性ビームに割り当てられる電力は小さくなり、サブフレーム内で形成される指向性ビームが少なければ、各指向性ビームに割り当てられる電力は大きくなる。そのため、例えば、サブフレーム33内で形成される指向性ビームの数は、サブフレーム31内で形成される指向性ビームの数の1/10になるので、サブフレーム33内で形成される指向性ビームに割り当てられる電力は、10dBだけ大きくなる。その結果、端末装置における受信電力も大きくなる。また、例えば、サブフレーム35内で形成される指向性ビームの数は、サブフレーム33内で形成される指向性ビームの数の4倍になるので、サブフレーム33内で形成される指向性ビームに割り当てられる電力は、6.02dBだけ小さくなる。その結果、端末装置における受信電力も小さくなる。 FIG. 5 is an explanatory diagram for explaining an example of the number of directional beams formed in each subframe. Referring to FIG. 5, three subframes 31, 33, and 35 for a frequency band (eg, component carrier) are shown. For example, in the subframe 31, 150 directional beams are formed in the frequency band. In the subframe 33, 15 directional beams are formed in the frequency band, and in the subframe 35, 60 directional beams are formed in the frequency band. Since there is an upper limit on the transmission power of the base station, if there are many directional beams formed in a subframe, the power allocated to each directional beam will be small, and there will be fewer directional beams formed in the subframe. For example, the power allocated to each directional beam increases. Therefore, for example, the number of directional beams formed in the subframe 33 is 1/10 of the number of directional beams formed in the subframe 31, and thus the directivity formed in the subframe 33. The power allocated to the beam is increased by 10 dB. As a result, the received power at the terminal device also increases. Further, for example, the number of directional beams formed in the subframe 35 is four times the number of directional beams formed in the subframe 33, and thus the directional beams formed in the subframe 33. The power allocated to is reduced by 6.02 dB. As a result, the received power in the terminal device is also reduced.
 図6は、ダイナミックレンジ及び受信電力の一例を説明するための説明図である。図6を参照すると、端末装置におけるダイナミックレンジ内での受信電力41の変化が示されている。例えば、時点43で、指向性ビームが急激に少なくなり、その結果、端末装置における受信電力41も急激に大きくなる。その結果、A/D(Analog-Digital)変換器においてサチレーションが発生し、端末装置は、信号を適切に受信できなくなり得る。 FIG. 6 is an explanatory diagram for explaining an example of a dynamic range and received power. Referring to FIG. 6, a change in received power 41 within the dynamic range in the terminal device is shown. For example, at the time 43, the directional beam suddenly decreases, and as a result, the reception power 41 in the terminal apparatus also increases rapidly. As a result, saturation occurs in an A / D (Analog-Digital) converter, and the terminal device may not be able to receive signals properly.
 そこで、指向性ビームによる送信が行われる場合により良好な受信品質を得ることを可能にする仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism that makes it possible to obtain better reception quality when transmission using a directional beam is performed.
 <<2.システムの概略的な構成>>
 続いて、図7を参照して、本開示の実施形態に係るシステム1の概略的な構成を説明する。図7は、本開示の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図7を参照すると、システム1は、基地局100及び端末装置200を含む。システム1は、例えば、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
<< 2. Schematic configuration of system >>
Next, a schematic configuration of the system 1 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 7 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure. Referring to FIG. 7, the system 1 includes a base station 100 and a terminal device 200. The system 1 is, for example, a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
 (基地局100)
 基地局100は、端末装置200との無線通信を行う。例えば、基地局100は、基地局100のセル101内に位置する端末装置200との無線通信を行う。
(Base station 100)
The base station 100 performs wireless communication with the terminal device 200. For example, the base station 100 performs wireless communication with the terminal device 200 located in the cell 101 of the base station 100.
 とりわけ本開示の実施形態では、基地局100は、ビームフォーミングを行う。例えば、当該ビームフォーミングは、ラージスケールMIMOのビームフォーミングである。当該ビームフォーミングは、マッシブMIMOのビームフォーミング、フリーディメンジョン(free dimension)MIMOのビームフォーミング、又は3次元ビームフォーミングとも呼ばれ得る。具体的には、例えば、基地局100は、ラージスケールMIMOに使用可能な指向性アンテナを備え、当該指向性アンテナのための重みセットを送信信号に乗算することによりラージスケールMIMOのビームフォーミングを行う。 In particular, in the embodiment of the present disclosure, the base station 100 performs beam forming. For example, the beam forming is large-scale MIMO beam forming. The beam forming may also be referred to as massive MIMO beam forming, free dimension MIMO beam forming, or three-dimensional beam forming. Specifically, for example, the base station 100 includes a directional antenna that can be used for large-scale MIMO, and performs large-scale MIMO beamforming by multiplying a transmission signal by a weight set for the directional antenna. .
 (端末装置200)
 端末装置200は、基地局100との無線通信を行う。例えば、端末装置200は、基地局100のセル101内に位置する場合に、基地局100との無線通信を行う。
(Terminal device 200)
The terminal device 200 performs wireless communication with the base station 100. For example, when the terminal device 200 is located in the cell 101 of the base station 100, the terminal device 200 performs wireless communication with the base station 100.
 <<3.各装置の構成>>
 続いて、図8及び図9を参照して、基地局100及び端末装置200の構成の例を説明する。
<< 3. Configuration of each device >>
Next, examples of configurations of the base station 100 and the terminal device 200 will be described with reference to FIGS. 8 and 9.
 <3.1.基地局の構成>
 まず、図8を参照して、本開示の実施形態に係る基地局100の構成の一例を説明する。図8は、本開示の実施形態に係る基地局100の構成の一例を示すブロック図である。図8を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
<3.1. Base station configuration>
First, an example of a configuration of the base station 100 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 8 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure. Referring to FIG. 8, the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
 (アンテナ部110)
 アンテナ部110は、無線通信部120により出力された信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
(Antenna unit 110)
The antenna unit 110 radiates the signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
 例えば、アンテナ部110は、指向性アンテナを含む。例えば、当該指向性アンテナは、ラージスケールMIMOに使用可能な指向性アンテナである。 For example, the antenna unit 110 includes a directional antenna. For example, the directional antenna is a directional antenna that can be used for large scale MIMO.
 (無線通信部120)
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置200へのダウンリンク信号を送信し、端末装置200からのアップリンク信号を受信する。
(Wireless communication unit 120)
The wireless communication unit 120 transmits and receives signals. For example, the radio communication unit 120 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
 (ネットワーク通信部130)
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
(Network communication unit 130)
The network communication unit 130 transmits and receives information. For example, the network communication unit 130 transmits information to other nodes and receives information from other nodes. For example, the other nodes include other base stations and core network nodes.
 (記憶部140)
 記憶部140は、基地局100の動作のためのプログラム及びデータを記憶する。
(Storage unit 140)
The storage unit 140 stores a program and data for the operation of the base station 100.
 (処理部150)
 処理部150は、基地局100の様々な機能を提供する。処理部150は、情報取得部151及び制御部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
(Processing unit 150)
The processing unit 150 provides various functions of the base station 100. The processing unit 150 includes an information acquisition unit 151 and a control unit 153. The processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
 情報取得部151及び制御部153の具体的な動作は、後に詳細に説明する。 Specific operations of the information acquisition unit 151 and the control unit 153 will be described in detail later.
 <3.2.端末装置の構成>
 次に、図9を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図9は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図9を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
<3.2. Configuration of terminal device>
Next, an example of a configuration of the terminal device 200 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 9 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure. Referring to FIG. 9, the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
 (アンテナ部210)
 アンテナ部210は、無線通信部220により出力された信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
(Antenna unit 210)
The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
 (無線通信部220)
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局100からのダウンリンク信号を受信し、基地局100へのアップリンク信号を送信する。
(Wireless communication unit 220)
The wireless communication unit 220 transmits and receives signals. For example, the radio communication unit 220 receives a downlink signal from the base station 100 and transmits an uplink signal to the base station 100.
 (記憶部230)
 記憶部230は、端末装置200の動作のためのプログラム及びデータを記憶する。
(Storage unit 230)
The storage unit 230 stores a program and data for the operation of the terminal device 200.
 (処理部240)
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、情報取得部241及び制御部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
(Processing unit 240)
The processing unit 240 provides various functions of the terminal device 200. The processing unit 240 includes an information acquisition unit 241 and a control unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
 情報取得部241及び制御部243の具体的な動作は、後に詳細に説明する。 Specific operations of the information acquisition unit 241 and the control unit 243 will be described later in detail.
 <<4.技術的特徴>>
 続いて、図10~図14を参照して、本開示の実施形態に係る技術的特徴を説明する。
<< 4. Technical features >>
Subsequently, the technical features according to the embodiment of the present disclosure will be described with reference to FIGS.
 本開示の実施形態では、基地局100(情報取得部151)は、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得する。そして、基地局100(制御部153)は、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報(Downlink Control Information:DCI)の中で、上記電力関連情報を端末装置200に通知する。 In the embodiment of the present disclosure, the base station 100 (information acquisition unit 151) acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band. Then, the base station 100 (the control unit 153) notifies the terminal device 200 of the power related information in downlink control information (DCI) transmitted in the subframe in the frequency band. .
 また、本開示の実施形態では、端末装置200(情報取得部241)は、上記電力関連情報を取得する。そして、端末装置200(制御部243)は、上記電力関連情報に基づいて、端末装置200の受信増幅器のゲイン設定を行う。 Further, in the embodiment of the present disclosure, the terminal device 200 (information acquisition unit 241) acquires the power related information. And the terminal device 200 (control part 243) sets the gain of the receiving amplifier of the terminal device 200 based on the said electric power related information.
 これにより、例えば、指向性ビームによる送信が行われる場合により良好な受信品質を得ることが可能になる。 This makes it possible to obtain better reception quality when, for example, transmission using a directional beam is performed.
 (1)周波数帯域
 例えば、上記周波数帯域は、コンポーネントキャリア(Component Carrier:CC)である。
(1) Frequency band For example, the frequency band is a component carrier (CC).
 (2)電力関連情報
 (a)電力オフセット
 例えば、上記電力関連情報は、上記指向性ビームの上記数に応じた電力オフセットを示す情報である。例えば、当該電力オフセットは、指向性ビームあたりの電力削減量とも言える。また、例えば、上記指向性ビームは、ラージスケールMIMOの指向性ビームである。
(2) Power related information (a) Power offset For example, the power related information is information indicating a power offset corresponding to the number of the directional beams. For example, the power offset can be said to be a power reduction amount per directional beam. For example, the directional beam is a large-scale MIMO directional beam.
 一例として、上記指向性ビームの数が所定数(例えば、15)である場合には、上記電力オフセットは0dBであり、上記指向性ビームの数が上記所定数の2倍である場合には、上記電力オフセットは、上記電力オフセットは、-3.01dBである。さらに、上記指向性ビームの数が上記所定数の4倍である場合には、上記電力オフセットは、上記電力オフセットは、-6.02dBである。 As an example, when the number of directional beams is a predetermined number (for example, 15), the power offset is 0 dB, and when the number of directional beams is twice the predetermined number, The power offset is −3.01 dB. Further, when the number of directional beams is four times the predetermined number, the power offset is −6.02 dB.
 このような電力オフセットから、端末装置200は、受信電力がどの程度になるかをより容易に知ることができ、適切なゲイン設定を行うことが可能になる。 From such a power offset, the terminal device 200 can more easily know how much received power will be, and can perform an appropriate gain setting.
 例えば、上記電力関連情報は、上記電力オフセットを示すインデックスである。以下、この点について図10を参照して具体例を説明する。 For example, the power related information is an index indicating the power offset. Hereinafter, a specific example of this point will be described with reference to FIG.
 図10は、電力オフセットを示す電力関連情報の一例を説明するための説明図である。図10を参照すると、インデックスと電力オフセットとが示されている。例えば、このように、複数の電力オフセットが定められ、各インデックスが上記複数の電力オフセットのうちの対応する1つを示す。例えば、インデックス0は、0dBを示し、インデックス2は、-6.02dBを示す。電力関連情報は、複数のインデックスのうちの1つであり、上記複数の電力オフセットのうちの1つを示す。なお、このようなインデックスと電力オフセットとの関係を示す情報が、基地局100及び端末装置200において保持される。 FIG. 10 is an explanatory diagram for explaining an example of power-related information indicating a power offset. Referring to FIG. 10, the index and power offset are shown. For example, in this way, a plurality of power offsets are defined, and each index indicates a corresponding one of the plurality of power offsets. For example, index 0 indicates 0 dB, and index 2 indicates −6.02 dB. The power related information is one of a plurality of indexes, and indicates one of the plurality of power offsets. Note that information indicating the relationship between such an index and a power offset is held in the base station 100 and the terminal device 200.
 (b)他の例
 上記電力関連情報は、上記電力オフセット以外のものを示す情報であってもよい。
(B) Other Examples The power related information may be information indicating something other than the power offset.
 一例として、上記電力関連情報は、上記指向性ビームの上記数を示す情報であってもよい。この場合に、上記電力関連情報は、上記指向性ビームの上記数を示すインデックスであってもよい。また、インデックスと指向性ビームの数との関係を示す情報(及び指向性ビームの数と電力オフセットとの関係を示す情報)が、基地局100及び端末装置200において保持されてもよい。 As an example, the power related information may be information indicating the number of the directional beams. In this case, the power related information may be an index indicating the number of the directional beams. Further, information indicating the relationship between the index and the number of directional beams (and information indicating the relationship between the number of directional beams and the power offset) may be held in the base station 100 and the terminal device 200.
 このような指向性ビームの数から、端末装置200は、受信電力がどの程度になるかを知ることができ、適切なゲイン設定を行うことが可能になる。 From the number of such directional beams, the terminal device 200 can know how much the received power is, and can perform an appropriate gain setting.
 (3)端末装置
 (a)リソースを割り当てられた端末装置
 例えば、基地局100が上記電力関連情報を通知する端末装置200は、上記サブフレーム内のダウンリンクリソースを割り当てられた端末装置である。即ち、この端末装置200は、上記サブフレーム内でダウンリンクデータ信号を受信する端末装置である。
(3) Terminal apparatus (a) Terminal apparatus to which resources are allocated For example, the terminal apparatus 200 to which the base station 100 notifies the power-related information is a terminal apparatus to which downlink resources in the subframe are allocated. That is, the terminal device 200 is a terminal device that receives a downlink data signal within the subframe.
 (b)ケイパビリティ
 例えば、基地局100が上記電力関連情報を通知する端末装置200は、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを有する装置である。
(B) Capability For example, the terminal device 200 from which the base station 100 notifies the power-related information is a device having the capability of setting the gain of the receiving amplifier based on the power-related information.
 例えば、端末装置200(制御部243)は、上記ケイパビリティを端末装置200が有することを示すケイパビリティ情報を、基地局100に通知する。そして、基地局100(情報取得部151)は、上記ケイパビリティ情報を取得する。 For example, the terminal device 200 (the control unit 243) notifies the base station 100 of capability information indicating that the terminal device 200 has the capability. Then, the base station 100 (information acquisition unit 151) acquires the capability information.
 (4)通知
 上述したように、基地局100(制御部153)は、上記周波数帯域において上記サブフレーム内で送信される上記ダウンリンク制御情報の中で、上記電力関連情報を端末装置200に通知する。
(4) Notification As described above, the base station 100 (the control unit 153) notifies the terminal device 200 of the power related information in the downlink control information transmitted in the subframe in the frequency band. To do.
 例えば、上記ダウンリンク制御情報は、端末装置200に割り当てられるダウンリンクリソースを示す情報を含む。 For example, the downlink control information includes information indicating downlink resources allocated to the terminal device 200.
 例えば、上記ダウンリンク制御情報は、物理ダウンリンク制御チャネル(Physical Downlink Control Channel:PDCCH)上で送信される情報である。 For example, the downlink control information is information transmitted on a physical downlink control channel (Physical Downlink Control Channel: PDCCH).
 図11は、ダウンリンク制御情報が送信されるPDCCHの例を説明するための説明図である。図11を参照すると、周波数帯域における1サブフレーム分のダウンリンクリソースが示されている。当該周波数帯域は、コンポーネントキャリアである。例えば、サブフレームに含まれる14個のシンボルのうちの、はじめの3個のシンボルにおいてPDCCHが配置され、残りの11個のシンボルにおいてPDSCHが配置される。ダウンリンク制御情報は、PDCCH上で送信される。 FIG. 11 is an explanatory diagram for explaining an example of a PDCCH in which downlink control information is transmitted. Referring to FIG. 11, downlink resources for one subframe in the frequency band are shown. The frequency band is a component carrier. For example, among the 14 symbols included in the subframe, the PDCCH is arranged in the first three symbols, and the PDSCH is arranged in the remaining 11 symbols. Downlink control information is transmitted on the PDCCH.
 ダウンリンク制御情報の中での電力制御情報の通知により、例えば、端末装置200は、サブフレームの開始付近の段階で受信増幅器のゲイン設定を行い、当該サブフレームにおける受信処理を行うことが可能になる。その結果、受信信号がA/Dコンバーターのダイナミックレンジ内に収まり、指向性ビームにより送信されるダウンリンクデータ信号が適切に受信され得る。 By the notification of the power control information in the downlink control information, for example, the terminal device 200 can set the gain of the reception amplifier near the start of the subframe and perform the reception process in the subframe. Become. As a result, the received signal falls within the dynamic range of the A / D converter, and the downlink data signal transmitted by the directional beam can be appropriately received.
 なお、上記物理ダウンリンク制御チャネルは、通常のPDCCHではなく、ePDCCHであってもよい。 Note that the physical downlink control channel may be ePDCCH instead of normal PDCCH.
 (5)ダウンリンクデータ信号の送信
 例えば、基地局100は、指向性ビームにより、ダウンリンクデータ信号を端末装置200へ送信する。より具体的には、例えば、基地局100は、PDSCH上で、指向性ビームによりダウンリンクデータ信号を端末装置200へ送信する。例えば、端末装置200ごとに異なる指向性ビームが形成される。
(5) Transmission of downlink data signal For example, the base station 100 transmits a downlink data signal to the terminal device 200 by a directional beam. More specifically, for example, the base station 100 transmits a downlink data signal to the terminal device 200 using a directional beam on the PDSCH. For example, a different directional beam is formed for each terminal device 200.
 (6)ゲイン設定
 上述したように、端末装置200(制御部243)は、上記電力関連情報に基づいて、端末装置200の受信増幅器のゲイン設定を行う。例えば、当該受信増幅器は、LNA(Low Noise Amplifier)である。
(6) Gain setting As described above, the terminal device 200 (the control unit 243) sets the gain of the reception amplifier of the terminal device 200 based on the power-related information. For example, the receiving amplifier is an LNA (Low Noise Amplifier).
 例えば、端末装置200(制御部243)は、上記電力関連情報により示される電力オフセットが下がれば、上記受信増幅器のゲイン設定値を下げ、上記電力関連情報により示される電力オフセットが上がれば、上記受信増幅器のゲイン設定値を上げる。 For example, the terminal device 200 (the control unit 243) decreases the gain setting value of the reception amplifier when the power offset indicated by the power related information decreases, and receives the reception when the power offset indicated by the power related information increases. Increase the gain setting of the amplifier.
 図12は、LNAのゲイン設定の処理の流れを説明するための説明図である。図12を参照すると、例えば、アンテナ素子で受信された信号は、LNAで増幅され、A/D変換器でデジタル信号に変換され、復調される。そして、ダウンリンク制御情報に含まれる電力関連情報が取得され、当該電力関連情報に基づいて上記LNAのゲイン設定が行われる。 FIG. 12 is an explanatory diagram for explaining the flow of LNA gain setting processing. Referring to FIG. 12, for example, a signal received by an antenna element is amplified by an LNA, converted into a digital signal by an A / D converter, and demodulated. Then, the power related information included in the downlink control information is acquired, and the LNA gain is set based on the power related information.
 (7)ダウンリンクデータ信号の送信の停止
 例えば、基地局100(制御部153)は、上記周波数帯域において、上記サブフレーム内の、上記ダウンリンク制御情報の送信後の所定時間内で、ダウンリンクデータ信号の送信を停止する。
(7) Stop transmission of downlink data signal For example, the base station 100 (the control unit 153) transmits a downlink within a predetermined time after transmission of the downlink control information in the subframe in the frequency band. Stop sending data signals.
 これにより、例えば、ゲイン設定に伴うノイズの発生に起因して受信品質が低下することを防ぐことが可能になる。 This makes it possible to prevent the reception quality from being lowered due to, for example, the occurrence of noise associated with the gain setting.
 (a)所定時間
 例えば、上記所定時間は、上記サブフレーム内の、上記ダウンリンク制御情報の送信後の1シンボルである。より具体的には、例えば、上記所定時間は、上記サブフレーム内の、上記物理ダウンリンク制御チャネルの直後の1シンボルである。以下、この点について図13を参照して具体例を説明する。
(A) Predetermined time For example, the predetermined time is one symbol after transmission of the downlink control information in the subframe. More specifically, for example, the predetermined time is one symbol immediately after the physical downlink control channel in the subframe. Hereinafter, a specific example of this point will be described with reference to FIG.
 図13は、ダウンリンクデータ信号の送信の停止の一例を説明するための説明図である。図13を参照すると、周波数帯域における1サブフレーム分のダウンリンクリソースが示されている。図11を参照して説明したように、例えば、サブフレームに含まれる14シンボルのうちの、はじめの3シンボルにおいてPDCCHが配置され、ダウンリンク制御情報は、PDCCH上で送信される。例えば、基地局100は、PDCCHの直後のシンボル51(即ち、4番目のシンボル)内で、ダウンリンクデータ信号の送信を停止する。 FIG. 13 is an explanatory diagram for explaining an example of stopping transmission of a downlink data signal. Referring to FIG. 13, downlink resources for one subframe in the frequency band are shown. As described with reference to FIG. 11, for example, PDCCH is arranged in the first three symbols of 14 symbols included in a subframe, and downlink control information is transmitted on PDCCH. For example, the base station 100 stops the transmission of the downlink data signal within the symbol 51 (that is, the fourth symbol) immediately after the PDCCH.
 (b)電力割当て
 基地局100(制御部153)は、上記所定時間のための電力を、上記サブフレーム内の、上記所定時間の後の別の時間のための電力として割り当ててもよい。以下、この点について図14を参照して具体例を説明する。
(B) Power allocation The base station 100 (the control unit 153) may allocate power for the predetermined time as power for another time in the subframe after the predetermined time. Hereinafter, a specific example of this point will be described with reference to FIG.
 図14は、ダウンリンクデータ信号の送信の停止後における電力の一例を説明するための説明図である。図14を参照すると、周波数帯域における1サブフレーム分のダウンリンクリソースが示されている。図13を参照して説明したように、例えば、基地局100は、PDCCHの直後のシンボル51(即ち、4番目のシンボル)内で、ダウンリンクデータ信号の送信を停止する。そして、シンボル51のための電力は、シンボル51の直後のシンボル53(即ち、シンボル51の直後の10シンボル)のための電力として割り当てられる。その結果、シンボル53の電力は、11/10倍になる。 FIG. 14 is an explanatory diagram for explaining an example of power after transmission of a downlink data signal is stopped. Referring to FIG. 14, downlink resources for one subframe in the frequency band are shown. As described with reference to FIG. 13, for example, the base station 100 stops the transmission of the downlink data signal within the symbol 51 (that is, the fourth symbol) immediately after the PDCCH. Then, the power for the symbol 51 is allocated as the power for the symbol 53 immediately after the symbol 51 (that is, 10 symbols immediately after the symbol 51). As a result, the power of the symbol 53 is 11/10 times.
 なお、シンボル51のための電力は、シンボル51の直後の3シンボル(即ち、同一のスロット内のシンボル)のための電力として割り当てられてもよい。その結果、上記3シンボルの電力は、4/3倍になってもよい。 Note that the power for the symbol 51 may be allocated as power for three symbols immediately after the symbol 51 (that is, a symbol in the same slot). As a result, the power of the three symbols may be 4/3 times.
 これにより、例えば、上記所定時間内でダウンリンクデータ信号の送信を停止したとしても、別の時間内での受信品質が向上する。その結果、通信速度の低下が抑えられ得る。 Thereby, for example, even if transmission of the downlink data signal is stopped within the predetermined time, reception quality within another time is improved. As a result, a decrease in communication speed can be suppressed.
 (c)停止ありのケースと停止なしのケース
 基地局100(制御部153)は、上記周波数帯域において上記サブフレーム内で端末装置200に通知される上記電力関連情報が、上記周波数帯域において上記サブフレームの直前の別のサブフレーム内で端末装置200に通知される別の電力関連情報と異なる場合に、上記周波数帯域において上記所定時間内でダウンリンクデータ信号の送信を停止してもよい。また、基地局100(制御部153)は、上記電力関連情報が上記別の電力関連情報と同じである場合に、上記周波数帯域において上記所定時間内でダウンリンクデータ信号の送信を停止しないようにしてもよい。
(C) Case with Stop and Case without Stop The base station 100 (control unit 153) indicates that the power-related information notified to the terminal device 200 in the subframe in the frequency band is the subband in the frequency band. When different from other power related information notified to the terminal device 200 in another subframe immediately before the frame, transmission of the downlink data signal may be stopped within the predetermined time in the frequency band. Also, the base station 100 (the control unit 153) does not stop transmission of the downlink data signal within the predetermined time in the frequency band when the power related information is the same as the other power related information. May be.
 一例として、上記電力制御情報が、-12.04dBを示すインデックス4であり、上記別の電力制御情報が、0dBを示すインデックス0である場合には、基地局100(制御部153)は、上記周波数帯域において上記所定時間内でダウンリンクデータ信号の送信を停止してもよい。一方、上記電力制御情報及び上記別の電力制御情報の両方が、-12.04dBを示すインデックス4である場合に、基地局100(制御部153)は、上記周波数帯域において上記所定時間内でダウンリンクデータ信号の送信を停止しないようにしてもよい。端末装置200におけるゲイン設定値が変わらないからである。 As an example, when the power control information is index 4 indicating -12.04 dB and the other power control information is index 0 indicating 0 dB, the base station 100 (control unit 153) Transmission of the downlink data signal may be stopped within the predetermined time in the frequency band. On the other hand, when both the power control information and the other power control information are index 4 indicating −12.04 dB, the base station 100 (the control unit 153) is down within the predetermined time in the frequency band. The transmission of the link data signal may not be stopped. This is because the gain setting value in the terminal device 200 does not change.
 これにより、例えば、ダウンリンクデータ信号の停止の頻度をより低くすることが可能になる。 This makes it possible, for example, to reduce the frequency of stopping downlink data signals.
 なお、基地局100(制御部153)は、上記周波数帯域において上記所定時間内でダウンリンクデータ信号の送信を停止するか否かを示す停止情報を、上記ダウンリンク制御情報の中で端末装置200に通知してもよい。そして、端末装置200(情報取得部241)は、上記停止情報を取得してもよく、端末装置200(制御部243)は、上記停止情報に基づいて、上記周波数帯域における上記サブフレーム内の受信処理を行ってもよい。これにより、例えば、端末装置200は、ゲイン設定を行うか否かをより容易に知ることが可能になる。 Note that the base station 100 (the control unit 153) indicates stop information indicating whether or not to stop the transmission of the downlink data signal within the predetermined time in the frequency band in the downlink control information. May be notified. Then, the terminal device 200 (information acquisition unit 241) may acquire the stop information, and the terminal device 200 (control unit 243) receives the reception in the subframe in the frequency band based on the stop information. Processing may be performed. Thereby, for example, the terminal apparatus 200 can more easily know whether or not to perform gain setting.
 <<5.処理の流れ>>
 続いて、図15を参照して、本開示の実施形態に係る処理の例を説明する。図15は、本開示の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。
<< 5. Process flow >>
Next, an example of processing according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 15 is a sequence diagram illustrating an example of a schematic flow of a process according to the embodiment of the present disclosure.
 端末装置200は、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを端末装置200が有することを示すケイパビリティ情報を、基地局100に通知する(S401)。 The terminal device 200 notifies the base station 100 of capability information indicating that the terminal device 200 has the capability of setting the gain of the reception amplifier based on the power-related information (S401).
 基地局100は、周波数帯域についてのサブフレーム内のリソース割当てを行う(S403)。 The base station 100 performs resource allocation within the subframe for the frequency band (S403).
 基地局100は、上記周波数帯域において上記サブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報と、上記周波数帯域において上記所定時間内でダウンリンクデータ信号の送信を停止するか否かを示す停止情報とを取得する(S405)。例えば、基地局100は、上記リソース割当ての結果に基づいて、当該電力関連情報及び当該停止情報を生成する。 The base station 100 stops transmission of power-related information related to power according to the number of directional beams formed in the subframe in the frequency band and the downlink data signal in the frequency band within the predetermined time. And stop information indicating whether or not (S405). For example, the base station 100 generates the power related information and the stop information based on the resource allocation result.
 基地局100は、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で、上記電力関連情報及び上記停止情報を端末装置200に通知する(S407)。換言すると、基地局100は、上記周波数帯域において、上記サブフレーム内で、上記電力関連情報及び上記停止情報を含むダウンリンク制御情報を端末装置200へ送信する。 The base station 100 notifies the terminal device 200 of the power related information and the stop information in the downlink control information transmitted in the subframe in the frequency band (S407). In other words, the base station 100 transmits downlink control information including the power related information and the stop information to the terminal device 200 within the subframe in the frequency band.
 端末装置200は、上記電力関連情報及び上記停止情報を取得する(S409)。 The terminal device 200 acquires the power related information and the stop information (S409).
 端末装置200は、上記電力関連情報に基づいて、端末装置200の受信増幅器のゲイン設定を行う(S411)。 The terminal device 200 sets the gain of the receiving amplifier of the terminal device 200 based on the power related information (S411).
 基地局100は、上記周波数帯域において上記サブフレーム内で指向性ビームによりダウンリンクデータ信号を端末装置200へ送信する(S413)。例えば、当該指向性ビームは、ラージスケールMIMOの指向性ビームである。 The base station 100 transmits a downlink data signal to the terminal device 200 using a directional beam within the subframe in the frequency band (S413). For example, the directional beam is a large-scale MIMO directional beam.
 端末装置200は、上記停止情報に基づいて、上記周波数帯域における上記サブフレーム内の受信処理を行う(S415)。 The terminal device 200 performs reception processing in the subframe in the frequency band based on the stop information (S415).
 <<6.変形例>>
 続いて、本開示の実施形態に係る変形例を説明する。
<< 6. Modification >>
Subsequently, a modification according to an embodiment of the present disclosure will be described.
 本開示の実施形態に係る変形例によれば、基地局100(制御部153)は、上記周波数帯域において第1のサブフレーム内で形成される1指向性ビームあたりの電力と、当該第1のサブフレームの直後の第2のサブフレーム内で形成される1指向性ビームあたりの電力との差が、所定の閾値を超えないように、リソース割当て又は電力割当てを行う。即ち、基地局100(制御部153)は、連続するサブフレーム間で1指向性ビームあたりの電力を大幅に増減させない。 According to the modification according to the embodiment of the present disclosure, the base station 100 (the control unit 153) includes the power per one directional beam formed in the first subframe in the frequency band, and the first Resource allocation or power allocation is performed so that the difference from the power per one directional beam formed in the second subframe immediately after the subframe does not exceed a predetermined threshold. That is, the base station 100 (the control unit 153) does not greatly increase or decrease the power per one directional beam between consecutive subframes.
 例えば、指向性ビームの数が、150から15に減少する。この場合に、例えば、基地局100は、上記第1のサブフレーム内で150指向性ビームを形成し、上記第2のサブフレーム内で15指向性ビームを形成する。ここで、例えば、基地局100は、電力割当てにおいて、上記第2のサブフレームにおいて指向性ビームあたりの電力を一気に10dB増加させずに、例えば、複数のサブフレームにわたって指向性ビームあたりの電力を徐々に増加させる。その結果、連続するサブフレーム間で1指向性ビームあたりの電力が大幅に増加しない。そのため、AGCが受信電力の変化に追従可能であり、A/D変換器におけるサチレーションの発生が回避される。 For example, the number of directional beams is reduced from 150 to 15. In this case, for example, the base station 100 forms a 150 directional beam in the first subframe and forms a 15 directional beam in the second subframe. Here, for example, in the power allocation, the base station 100 gradually increases the power per directional beam over a plurality of subframes without increasing the power per directional beam by 10 dB all at once in the second subframe. Increase to. As a result, the power per directional beam does not increase significantly between consecutive subframes. Therefore, the AGC can follow the change in received power, and the occurrence of saturation in the A / D converter is avoided.
 例えば、指向性ビームの数が、15から150に増加する。この場合に、例えば、基地局100は、上記第1のサブフレーム内で15指向性ビームを形成し、上記第2のサブフレームを含む複数のサブフレームにわたって、指向性ビームの数を徐々に増加させる。基地局100は、上記第2のサブフレーム内で指向性ビームの数を大幅に増加させない。その結果、連続するサブフレーム間で1指向性ビームあたりの電力が大幅に減少しない。そのため、AGCが受信電力の変化に追従可能であり、A/D変換器における信号の劣化が回避される。 For example, the number of directional beams increases from 15 to 150. In this case, for example, the base station 100 forms 15 directional beams in the first subframe, and gradually increases the number of directional beams over a plurality of subframes including the second subframe. Let The base station 100 does not significantly increase the number of directional beams in the second subframe. As a result, the power per directional beam is not significantly reduced between consecutive subframes. Therefore, the AGC can follow the change in the received power, and the signal deterioration in the A / D converter is avoided.
 これにより、例えば、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを有しない端末装置がダウンリンクデータの信号を行う場合に、当該端末装置における受信品質の低下を防ぐことが可能になる。 Accordingly, for example, when a terminal device that does not have the capability of setting the gain of the reception amplifier based on the power-related information performs downlink data signal, it is possible to prevent a decrease in reception quality in the terminal device. .
 なお、基地局100(制御部153)は、とりわけ、上記第1のサブフレーム及び上記第2のサブフレームの両方のダウンリンクリソースを、上記ケイパビリティを有しない端末装置に割り当てる場合に、上記差が上記所定の閾値を超えないようにリソース割当て又は電力割当てを行ってもよい。 Note that the base station 100 (the control unit 153), in particular, allocates the downlink resources of both the first subframe and the second subframe to the terminal device that does not have the capability. Resource allocation or power allocation may be performed so as not to exceed the predetermined threshold.
 <<7.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
<< 7. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB. The small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB. Instead, the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station). Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。 Further, for example, the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. The terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
 <7.1.基地局に関する応用例>
 (第1の応用例)
 図16は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
<7.1. Application examples for base stations>
(First application example)
FIG. 16 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図16に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図16にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。 Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820. The eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 16, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Although FIG. 16 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。 The base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。 The controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node. The memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。 The network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. The controller 821 may communicate with the core network node or other eNB via the network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface). The network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。 The wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810. The wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like. The BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). Various signal processing of (Packet Data Convergence Protocol) is executed. The BB processor 826 may have some or all of the logical functions described above instead of the controller 821. The BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good. Further, the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade. On the other hand, the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
 無線通信インタフェース825は、図16に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図16に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図16には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。 The radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 16, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 16, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively. 16 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
 図16に示したeNB800において、図8を参照して説明した情報取得部151及び制御部153は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び制御部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び制御部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び制御部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、情報取得部151及び制御部153を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 800 illustrated in FIG. 16, the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good. In this case, the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and / or the controller 821 executes the program. Also good. As described above, the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図16に示したeNB800において、図8を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。 Also, in the eNB 800 illustrated in FIG. 16, the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
 (第2の応用例)
 図17は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(Second application example)
FIG. 17 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図17に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図17にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。 Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860. The eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 17, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 17 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図16を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。 The base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857. The controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図16を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図17に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図17には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。 The wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840. The wireless communication interface 855 may typically include a BB processor 856 and the like. The BB processor 856 is the same as the BB processor 826 described with reference to FIG. 16 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857. The wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 17, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. FIG. 17 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, but the wireless communication interface 855 may include a single BB processor 856.
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860. The connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。 In addition, the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850. The connection interface 861 may be a communication module for communication on the high-speed line.
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図17に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図17には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。 The wireless communication interface 863 transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 may typically include an RF circuit 864 and the like. The RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 840. The wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 17, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. Note that FIG. 17 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
 図17に示したeNB830において、図8を参照して説明した情報取得部151及び制御部153は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び制御部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び制御部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び制御部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、情報取得部151及び制御部153を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 830 illustrated in FIG. 17, the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a part of the wireless communication interface 855 (for example, the BB processor 856) or / and a module including the controller 851, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good. In this case, the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 execute the program. Also good. As described above, the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図17に示したeNB830において、例えば、図8を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。 Further, in the eNB 830 illustrated in FIG. 17, for example, the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864). The antenna unit 110 may be mounted on the antenna 840. The network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
 <7.2.端末装置に関する応用例>
 (第1の応用例)
 図18は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
<7.2. Application examples related to terminal devices>
(First application example)
FIG. 18 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure may be applied. The smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915. One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。 The processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900. The memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data. The storage 903 can include a storage medium such as a semiconductor memory or a hard disk. The external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。 The camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image. The sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor. The microphone 908 converts sound input to the smartphone 900 into an audio signal. The input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user. The display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900. The speaker 911 converts an audio signal output from the smartphone 900 into audio.
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図18に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図18には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。 The wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like. The BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916. The wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated. The wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 18 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。 Furthermore, the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method. In that case, a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。 Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図18に示したように複数のアンテナ916を有してもよい。なお、図18にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。 Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912. The smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. 18 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。 Furthermore, the smartphone 900 may include an antenna 916 for each wireless communication method. In that case, the antenna switch 915 may be omitted from the configuration of the smartphone 900.
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図18に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。 The bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. . The battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 18 through a power supply line partially illustrated by a broken line in the drawing. For example, the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
 図18に示したスマートフォン900において、図9を参照して説明した情報取得部241及び制御部243は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて情報取得部241及び制御部243が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部241及び制御部243として機能させるためのプログラム(換言すると、プロセッサに情報取得部241及び制御部243の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、情報取得部241及び制御部243を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the smartphone 900 shown in FIG. 18, the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the information acquisition unit 241 and the control unit in the module. 243 may be implemented. In this case, the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is installed. The program may be executed. As described above, the smartphone 900 or the module may be provided as an apparatus including the information acquisition unit 241 and the control unit 243, or a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 may be provided. Good. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図18に示したスマートフォン900において、例えば、図9を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。 Also, in the smartphone 900 shown in FIG. 18, for example, the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914). The antenna unit 210 may be mounted on the antenna 916.
 (第2の応用例)
 図19は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
(Second application example)
FIG. 19 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied. The car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. The interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。 The processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920. The memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。 The GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites. The sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor. The data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。 The content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928. The input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user. The display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced. The speaker 931 outputs the navigation function or the audio of the content to be played back.
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図19に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図19には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。 The wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like. The BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937. The wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated. The wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. FIG. 19 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935. However, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。 Further, the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method. A BB processor 934 and an RF circuit 935 may be included for each communication method.
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。 Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図19に示したように複数のアンテナ937を有してもよい。なお、図19にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。 Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933. The car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 19 shows an example in which the car navigation device 920 includes a plurality of antennas 937, but the car navigation device 920 may include a single antenna 937.
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。 Furthermore, the car navigation device 920 may include an antenna 937 for each wireless communication method. In that case, the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図19に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。 The battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 19 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
 図19に示したカーナビゲーション装置920において、図9を参照して説明した情報取得部241及び制御部243は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて情報取得部241及び制御部243が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部241及び制御部243として機能させるためのプログラム(換言すると、プロセッサに情報取得部241及び制御部243の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、情報取得部241及び制御部243を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the car navigation device 920 shown in FIG. 19, the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 933. Alternatively, at least some of these components may be implemented in the processor 921. As an example, the car navigation device 920 includes a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and / or the processor 921, and the information acquisition unit 241 and the control unit 243 are mounted in the module. May be. In this case, the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 executes the program. May be executed. As described above, the car navigation device 920 or the module may be provided as a device including the information acquisition unit 241 and the control unit 243, and a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図19に示したカーナビゲーション装置920において、例えば、図9を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。 Further, in the car navigation apparatus 920 shown in FIG. 19, for example, the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935). The antenna unit 210 may be mounted on the antenna 937.
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、情報取得部241及び制御部243を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。 Also, the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241 and the control unit 243. The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
 <<8.まとめ>>
 ここまで、図5~図19を参照して、本開示の実施形態に係る各装置及び各処理を説明した。
<< 8. Summary >>
So far, each device and each process according to the embodiment of the present disclosure has been described with reference to FIGS. 5 to 19.
 本開示の実施形態によれば、基地局100は、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得する情報取得部151と、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で、上記電力関連情報を端末装置200に通知する制御部153と、を備える。 According to the embodiment of the present disclosure, the base station 100 includes the information acquisition unit 151 that acquires power-related information regarding power according to the number of directional beams formed in a subframe in the frequency band, and the frequency band. A control unit 153 that notifies the terminal apparatus 200 of the power-related information in the downlink control information transmitted in the subframe.
 また、本開示の実施形態によれば、端末装置200は、周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、上記周波数帯域において上記サブフレーム内で送信されるダウンリンク制御情報の中で基地局100が端末装置200に通知する上記電力関連情報を取得する情報取得部241と、上記電力関連情報に基づいて、端末装置200の受信増幅器のゲイン設定を行う制御部243と、を備える。 In addition, according to the embodiment of the present disclosure, the terminal device 200 is power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and the subframe in the frequency band The information acquisition unit 241 for acquiring the power related information notified from the base station 100 to the terminal device 200 in the downlink control information transmitted within the network, and the reception amplifier of the terminal device 200 based on the power related information And a control unit 243 that performs gain setting.
 これにより、例えば、指向性ビームによる送信が行われる場合により良好な受信品質を得ることが可能になる。 This makes it possible to obtain better reception quality when, for example, transmission using a directional beam is performed.
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this indication was described referring an accompanying drawing, it cannot be overemphasized that this indication is not limited to the example concerned. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present disclosure. Understood.
 例えば、システムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、他の通信規格に準拠したシステムであってもよい。 For example, although the example in which the system is a system compliant with LTE, LTE-Advanced, or a communication standard based on these has been described, the present disclosure is not limited to such an example. For example, the communication system may be a system that complies with other communication standards.
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。 In addition, the processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram. For example, the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
 また、本明細書の装置(例えば、基地局、基地局装置若しくは基地局装置のためのモジュール、又は、端末装置若しくは端末装置のためのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の構成要素(例えば、情報取得部及び制御部など)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、基地局、基地局装置若しくは基地局装置のためのモジュール、又は、端末装置若しくは端末装置のためのモジュール)も提供されてもよい。また、上記装置の構成要素(例えば、情報取得部及び通信制御部など)の動作を含む方法も、本開示に係る技術に含まれる。 In addition, a processor (for example, a CPU, a DSP, or the like) included in a device of the present specification (for example, a base station, a base station device, a module for a base station device, or a terminal device or a module for a terminal device) is provided. It is also possible to create a computer program (in other words, a computer program for causing the processor to execute the operation of the component of the device) to function as a component of the device (for example, an information acquisition unit and a control unit). . Moreover, a recording medium on which the computer program is recorded may be provided. An apparatus (for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a device including a memory for storing the computer program and one or more processors capable of executing the computer program) A module for a terminal device may also be provided. In addition, a method including the operation of the components of the device (for example, an information acquisition unit and a communication control unit) is also included in the technology according to the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in the present specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得する取得部と、
 前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で、前記電力関連情報を端末装置に通知する制御部と、
を備える装置。
(2)
 前記電力関連情報は、前記指向性ビームの前記数に応じた電力オフセットを示す情報である、前記(1)に記載の装置。
(3)
 前記電力関連情報は、前記指向性ビームの前記数を示す情報である、前記(1)に記載の装置。
(4)
 前記端末装置は、前記サブフレーム内のダウンリンクリソースを割り当てられた端末装置である、前記(1)~(3)のいずれか1項に記載の装置。
(5)
 前記端末装置は、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを有する装置である、前記(1)~(4)のいずれか1項に記載の装置。
(6)
 前記取得部は、前記端末装置が前記ケイパビリティを有することを示すケイパビリティ情報を取得する、前記(5)に記載の装置。
(7)
 前記制御部は、前記周波数帯域において、前記サブフレーム内の、前記ダウンリンク制御情報の送信後の所定時間内で、ダウンリンクデータ信号の送信を停止する、前記(1)~(6)のいずれか1項に記載の装置。
(8)
 前記所定時間は、前記サブフレーム内の、前記ダウンリンク制御情報の送信後の1シンボルである、前記(7)に記載の装置。
(9)
 前記ダウンリンク制御情報は、物理ダウンリンク制御チャネル上で送信される情報であり、
 前記所定時間は、前記サブフレーム内の、前記物理ダウンリンク制御チャネルの直後の1シンボルである、
前記(8)に記載の装置。
(10)
 前記制御部は、前記所定時間のための電力を、前記サブフレーム内の、前記所定時間の後の別の時間のための電力として割り当てる、前記(7)~(9)のいずれか1項に記載の装置。
(11)
 前記制御部は、前記周波数帯域において前記サブフレーム内で端末装置に通知される前記電力関連情報が、前記周波数帯域において前記サブフレームの直前の別のサブフレーム内で端末装置に通知される別の電力関連情報と異なる場合に、前記周波数帯域において前記所定時間内でダウンリンクデータ信号の送信を停止し、
 前記制御部は、前記電力関連情報が、前記別の電力関連情報と同じである場合に、前記周波数帯域において前記所定時間内でダウンリンクデータ信号の送信を停止しない、
前記(7)~(10)のいずれか1項に記載の装置。
(12)
 前記制御部は、前記周波数帯域において前記所定時間内でダウンリンクデータ信号の送信を停止するか否かを示す停止情報を、前記ダウンリンク制御情報の中で前記端末装置に通知する、前記(11)に記載の装置。
(13)
 前記制御部は、前記周波数帯域において第1のサブフレーム内で形成される1指向性ビームあたりの電力と、当該第1のサブフレームの直後の第2のサブフレーム内で形成される1指向性ビームあたりの電力との差が、所定の閾値を超えないように、リソース割当て又は電力割当てを行う、前記(1)~(12)のいずれか1項に記載の装置。
(14)
 前記制御部は、前記第1のサブフレーム及び前記第2のサブフレームの両方のダウンリンクリソースを、前記電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを有しない端末装置に割り当てる場合に、前記差が前記所定の閾値を超えないようにリソース割当て又は電力割当てを行う、前記(13)に記載の装置。
(15)
 プロセッサにより、
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得することと、
 前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で、前記電力関連情報を端末装置に通知することと、
を含む方法。
(16)
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する前記電力関連情報を取得する取得部と、
 前記電力関連情報に基づいて、前記端末装置の受信増幅器のゲイン設定を行う制御部と、
を備える装置。
(17)
 前記制御部は、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを前記端末装置が有することを示すケイパビリティ情報を、前記基地局に通知する、前記(16)に記載の装置。
(18)
 前記取得部は、前記周波数帯域において前記サブフレーム内の前記ダウンリンク制御情報の送信後の所定時間内でダウンリンクデータ信号の送信を停止するか否かを示す停止情報であって、前記ダウンリンク制御情報の中で前記基地局が前記端末装置に通知する当該停止情報を取得し、
 前記制御部は、前記停止情報に基づいて、前記周波数帯域における前記サブフレーム内の受信処理を行う、
前記(16)又は(17)に記載の装置。
(19)
 前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、前記(16)~(18)のいずれか1項に記載の装置。
(20)
 プロセッサにより、
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する前記電力関連情報を取得することと、
 前記電力関連情報に基づいて、前記端末装置の受信増幅器のゲイン設定を行うことと、
を含む方法。
(21)
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得することと、
 前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で、前記電力関連情報を端末装置に通知することと、
をプロセッサに実行させるためのプログラム。
(22)
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得することと、
 前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で、前記電力関連情報を端末装置に通知することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(23)
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する前記電力関連情報を取得することと、
 前記電力関連情報に基づいて、前記端末装置の受信増幅器のゲイン設定を行うことと、
をプロセッサに実行させるためのプログラム。
(24)
 周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する前記電力関連情報を取得することと、
 前記電力関連情報に基づいて、前記端末装置の受信増幅器のゲイン設定を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
The following configurations also belong to the technical scope of the present disclosure.
(1)
An acquisition unit that acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band;
Among the downlink control information transmitted in the subframe in the frequency band, a control unit for notifying the terminal device of the power related information,
A device comprising:
(2)
The apparatus according to (1), wherein the power related information is information indicating a power offset according to the number of the directional beams.
(3)
The apparatus according to (1), wherein the power related information is information indicating the number of the directional beams.
(4)
The device according to any one of (1) to (3), wherein the terminal device is a terminal device to which a downlink resource in the subframe is allocated.
(5)
The device according to any one of (1) to (4), wherein the terminal device is a device having a capability of setting a gain of a reception amplifier based on power-related information.
(6)
The device according to (5), wherein the acquisition unit acquires capability information indicating that the terminal device has the capability.
(7)
The control unit stops transmission of a downlink data signal in the frequency band within a predetermined time after transmission of the downlink control information in the subframe. Any one of (1) to (6) The apparatus according to claim 1.
(8)
The apparatus according to (7), wherein the predetermined time is one symbol after transmission of the downlink control information in the subframe.
(9)
The downlink control information is information transmitted on a physical downlink control channel;
The predetermined time is one symbol immediately after the physical downlink control channel in the subframe.
The apparatus according to (8) above.
(10)
The control unit allocates power for the predetermined time as power for another time in the subframe after the predetermined time, according to any one of (7) to (9) The device described.
(11)
The control unit is configured to notify the terminal device in another frequency subband immediately before the subframe in the frequency band, the power related information notified to the terminal device in the subframe in the frequency band. When different from the power related information, the transmission of the downlink data signal is stopped within the predetermined time in the frequency band,
The control unit does not stop transmission of a downlink data signal within the predetermined time in the frequency band when the power related information is the same as the other power related information;
The apparatus according to any one of (7) to (10).
(12)
The control unit notifies stop information indicating whether to stop transmission of a downlink data signal within the predetermined time in the frequency band to the terminal device in the downlink control information. ) Device.
(13)
The control unit includes power per one directional beam formed in the first subframe in the frequency band, and one directivity formed in the second subframe immediately after the first subframe. The apparatus according to any one of (1) to (12), wherein resource allocation or power allocation is performed so that a difference from power per beam does not exceed a predetermined threshold.
(14)
The control unit assigns the downlink resources of both the first subframe and the second subframe to a terminal device that does not have the capability of setting the gain of the receiving amplifier based on the power related information. The device according to (13), wherein resource allocation or power allocation is performed so that the difference does not exceed the predetermined threshold.
(15)
Depending on the processor
Obtaining power related information regarding power according to the number of directional beams formed in a subframe in a frequency band;
In the downlink control information transmitted in the subframe in the frequency band, notifying the power related information to the terminal device;
Including methods.
(16)
Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band An acquisition unit for acquiring the power-related information to be notified to a device;
Based on the power related information, a control unit configured to set the gain of the receiving amplifier of the terminal device,
A device comprising:
(17)
The said control part is an apparatus as described in said (16) which notifies the said base station of the capability information which shows that the said terminal device has the capability which sets the gain setting of a receiving amplifier based on electric power related information.
(18)
The acquisition unit is stop information indicating whether or not to stop transmission of a downlink data signal within a predetermined time after transmission of the downlink control information in the subframe in the frequency band, and the downlink information In the control information, obtain the stop information that the base station notifies the terminal device,
The control unit performs reception processing in the subframe in the frequency band based on the stop information.
The device according to (16) or (17).
(19)
The device according to any one of (16) to (18), wherein the device is the terminal device or a module for the terminal device.
(20)
Depending on the processor
Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band Obtaining the power related information to be notified to a device;
Based on the power related information, setting the gain of the receiving amplifier of the terminal device,
Including methods.
(21)
Obtaining power related information regarding power according to the number of directional beams formed in a subframe in a frequency band;
In the downlink control information transmitted in the subframe in the frequency band, notifying the power related information to the terminal device;
A program that causes a processor to execute.
(22)
Obtaining power related information regarding power according to the number of directional beams formed in a subframe in a frequency band;
In the downlink control information transmitted in the subframe in the frequency band, notifying the power related information to the terminal device;
A readable recording medium on which a program for causing a processor to execute is recorded.
(23)
Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band Obtaining the power related information to be notified to a device;
Based on the power related information, setting the gain of the receiving amplifier of the terminal device,
A program that causes a processor to execute.
(24)
Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band Obtaining the power related information to be notified to a device;
Based on the power related information, setting the gain of the receiving amplifier of the terminal device,
A readable recording medium on which a program for causing a processor to execute is recorded.
 1    システム
 100  基地局
 101  セル
 151  情報取得部
 153  制御部
 200  端末装置
 241  情報取得部
 243  制御部
DESCRIPTION OF SYMBOLS 1 System 100 Base station 101 Cell 151 Information acquisition part 153 Control part 200 Terminal device 241 Information acquisition part 243 Control part

Claims (20)

  1.  周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得する取得部と、
     前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で、前記電力関連情報を端末装置に通知する制御部と、
    を備える装置。
    An acquisition unit that acquires power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band;
    Among the downlink control information transmitted in the subframe in the frequency band, a control unit for notifying the terminal device of the power related information,
    A device comprising:
  2.  前記電力関連情報は、前記指向性ビームの前記数に応じた電力オフセットを示す情報である、請求項1に記載の装置。 The apparatus according to claim 1, wherein the power related information is information indicating a power offset according to the number of the directional beams.
  3.  前記電力関連情報は、前記指向性ビームの前記数を示す情報である、請求項1に記載の装置。 The apparatus according to claim 1, wherein the power-related information is information indicating the number of the directional beams.
  4.  前記端末装置は、前記サブフレーム内のダウンリンクリソースを割り当てられた端末装置である、請求項1に記載の装置。 The apparatus according to claim 1, wherein the terminal apparatus is a terminal apparatus to which a downlink resource in the subframe is allocated.
  5.  前記端末装置は、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを有する装置である、請求項1に記載の装置。 The device according to claim 1, wherein the terminal device is a device having a capability of setting a gain of a receiving amplifier based on power-related information.
  6.  前記取得部は、前記端末装置が前記ケイパビリティを有することを示すケイパビリティ情報を取得する、請求項5に記載の装置。 The device according to claim 5, wherein the acquisition unit acquires capability information indicating that the terminal device has the capability.
  7.  前記制御部は、前記周波数帯域において、前記サブフレーム内の、前記ダウンリンク制御情報の送信後の所定時間内で、ダウンリンクデータ信号の送信を停止する、請求項1に記載の装置。 The apparatus according to claim 1, wherein the control unit stops transmission of a downlink data signal in the frequency band within a predetermined time after transmission of the downlink control information in the subframe.
  8.  前記所定時間は、前記サブフレーム内の、前記ダウンリンク制御情報の送信後の1シンボルである、請求項7に記載の装置。 The apparatus according to claim 7, wherein the predetermined time is one symbol after transmission of the downlink control information in the subframe.
  9.  前記ダウンリンク制御情報は、物理ダウンリンク制御チャネル上で送信される情報であり、
     前記所定時間は、前記サブフレーム内の、前記物理ダウンリンク制御チャネルの直後の1シンボルである、
    請求項8に記載の装置。
    The downlink control information is information transmitted on a physical downlink control channel;
    The predetermined time is one symbol immediately after the physical downlink control channel in the subframe.
    The apparatus according to claim 8.
  10.  前記制御部は、前記所定時間のための電力を、前記サブフレーム内の、前記所定時間の後の別の時間のための電力として割り当てる、請求項7に記載の装置。 The apparatus according to claim 7, wherein the control unit allocates power for the predetermined time as power for another time in the subframe after the predetermined time.
  11.  前記制御部は、前記周波数帯域において前記サブフレーム内で端末装置に通知される前記電力関連情報が、前記周波数帯域において前記サブフレームの直前の別のサブフレーム内で端末装置に通知される別の電力関連情報と異なる場合に、前記周波数帯域において前記所定時間内でダウンリンクデータ信号の送信を停止し、
     前記制御部は、前記電力関連情報が、前記別の電力関連情報と同じである場合に、前記周波数帯域において前記所定時間内でダウンリンクデータ信号の送信を停止しない、
    請求項7に記載の装置。
    The control unit is configured to notify the terminal device in another frequency subband immediately before the subframe in the frequency band, the power related information notified to the terminal device in the subframe in the frequency band. When different from the power related information, the transmission of the downlink data signal is stopped within the predetermined time in the frequency band,
    The control unit does not stop transmission of a downlink data signal within the predetermined time in the frequency band when the power-related information is the same as the other power-related information;
    The apparatus according to claim 7.
  12.  前記制御部は、前記周波数帯域において前記所定時間内でダウンリンクデータ信号の送信を停止するか否かを示す停止情報を、前記ダウンリンク制御情報の中で前記端末装置に通知する、請求項11に記載の装置。 The said control part notifies the stop information which shows whether the transmission of a downlink data signal is stopped within the said predetermined time in the said frequency band in the said downlink control information to the said terminal device. The device described in 1.
  13.  前記制御部は、前記周波数帯域において第1のサブフレーム内で形成される1指向性ビームあたりの電力と、当該第1のサブフレームの直後の第2のサブフレーム内で形成される1指向性ビームあたりの電力との差が、所定の閾値を超えないように、リソース割当て又は電力割当てを行う、請求項1に記載の装置。 The control unit includes power per one directional beam formed in the first subframe in the frequency band, and one directivity formed in the second subframe immediately after the first subframe. The apparatus according to claim 1, wherein resource allocation or power allocation is performed such that a difference from power per beam does not exceed a predetermined threshold.
  14.  前記制御部は、前記第1のサブフレーム及び前記第2のサブフレームの両方のダウンリンクリソースを、前記電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを有しない端末装置に割り当てる場合に、前記差が前記所定の閾値を超えないようにリソース割当て又は電力割当てを行う、請求項13に記載の装置。 The control unit assigns the downlink resources of both the first subframe and the second subframe to a terminal device that does not have the capability of setting the gain of the receiving amplifier based on the power related information. 14. The apparatus according to claim 13, wherein resource allocation or power allocation is performed so that the difference does not exceed the predetermined threshold.
  15.  プロセッサにより、
     周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報を取得することと、
     前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で、前記電力関連情報を端末装置に通知することと、
    を含む方法。
    Depending on the processor
    Obtaining power related information regarding power according to the number of directional beams formed in a subframe in a frequency band;
    In the downlink control information transmitted in the subframe in the frequency band, notifying the power related information to the terminal device;
    Including methods.
  16.  周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する前記電力関連情報を取得する取得部と、
     前記電力関連情報に基づいて、前記端末装置の受信増幅器のゲイン設定を行う制御部と、
    を備える装置。
    Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band An acquisition unit for acquiring the power-related information to be notified to a device;
    Based on the power related information, a control unit configured to set the gain of the receiving amplifier of the terminal device,
    A device comprising:
  17.  前記制御部は、電力関連情報に基づいて受信増幅器のゲイン設定を行うケイパビリティを前記端末装置が有することを示すケイパビリティ情報を、前記基地局に通知する、請求項16に記載の装置。 The apparatus according to claim 16, wherein the control unit notifies the base station of capability information indicating that the terminal device has a capability of performing gain setting of a reception amplifier based on power-related information.
  18.  前記取得部は、前記周波数帯域において前記サブフレーム内の前記ダウンリンク制御情報の送信後の所定時間内でダウンリンクデータ信号の送信を停止するか否かを示す停止情報であって、前記ダウンリンク制御情報の中で前記基地局が前記端末装置に通知する当該停止情報を取得し、
     前記制御部は、前記停止情報に基づいて、前記周波数帯域における前記サブフレーム内の受信処理を行う、
    請求項16に記載の装置。
    The acquisition unit is stop information indicating whether or not to stop transmission of a downlink data signal within a predetermined time after transmission of the downlink control information in the subframe in the frequency band, and the downlink information In the control information, obtain the stop information that the base station notifies the terminal device,
    The control unit performs reception processing in the subframe in the frequency band based on the stop information.
    The apparatus of claim 16.
  19.  前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、請求項16に記載の装置。 The device according to claim 16, wherein the device is the terminal device or a module for the terminal device.
  20.  プロセッサにより、
     周波数帯域においてサブフレーム内で形成される指向性ビームの数に応じた電力に関する電力関連情報であって、前記周波数帯域において前記サブフレーム内で送信されるダウンリンク制御情報の中で基地局が端末装置に通知する前記電力関連情報を取得することと、
     前記電力関連情報に基づいて、前記端末装置の受信増幅器のゲイン設定を行うことと、
    を含む方法。
    Depending on the processor
    Power-related information regarding power according to the number of directional beams formed in a subframe in a frequency band, and a base station is a terminal in downlink control information transmitted in the subframe in the frequency band Obtaining the power related information to be notified to a device;
    Based on the power related information, setting the gain of the receiving amplifier of the terminal device,
    Including methods.
PCT/JP2015/084947 2015-01-29 2015-12-14 Device and method WO2016121252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015820 2015-01-29
JP2015-015820 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121252A1 true WO2016121252A1 (en) 2016-08-04

Family

ID=56542885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084947 WO2016121252A1 (en) 2015-01-29 2015-12-14 Device and method

Country Status (2)

Country Link
TW (1) TW201631904A (en)
WO (1) WO2016121252A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230246A1 (en) 2017-06-14 2018-12-20 ソニー株式会社 Communication device, communication control method, and computer program
WO2018230206A1 (en) 2017-06-14 2018-12-20 ソニー株式会社 Communication device, communication control method, and computer program
WO2019031133A1 (en) 2017-08-08 2019-02-14 ソニー株式会社 Communication device and communication method
JP2020509713A (en) * 2018-01-12 2020-03-26 華為技術有限公司Huawei Technologies Co.,Ltd. Communication method and communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054674A (en) * 2004-08-11 2006-02-23 Matsushita Electric Ind Co Ltd Base station device and communication method
WO2008013173A1 (en) * 2006-07-24 2008-01-31 Panasonic Corporation Reception device, transmission device, and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054674A (en) * 2004-08-11 2006-02-23 Matsushita Electric Ind Co Ltd Base station device and communication method
WO2008013173A1 (en) * 2006-07-24 2008-01-31 Panasonic Corporation Reception device, transmission device, and communication method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230246A1 (en) 2017-06-14 2018-12-20 ソニー株式会社 Communication device, communication control method, and computer program
WO2018230206A1 (en) 2017-06-14 2018-12-20 ソニー株式会社 Communication device, communication control method, and computer program
KR20200016849A (en) 2017-06-14 2020-02-17 소니 주식회사 Communication device, communication control method and computer program
US11025329B2 (en) 2017-06-14 2021-06-01 Sony Corporation Communication apparatus, communication control method, and computer program
US11387889B2 (en) 2017-06-14 2022-07-12 Sony Corporation Communication apparatus, communication control method, and computer program
WO2019031133A1 (en) 2017-08-08 2019-02-14 ソニー株式会社 Communication device and communication method
US11284275B2 (en) 2017-08-08 2022-03-22 Sony Corporation Communication apparatus and communication method
JP2020509713A (en) * 2018-01-12 2020-03-26 華為技術有限公司Huawei Technologies Co.,Ltd. Communication method and communication device
US11160116B2 (en) 2018-01-12 2021-10-26 Huawei Technologies Co., Ltd. Communication method and communications apparatus
JP7030832B2 (en) 2018-01-12 2022-03-07 華為技術有限公司 Communication method and communication device

Also Published As

Publication number Publication date
TW201631904A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US11206063B2 (en) Beamforming device for providing weight sets
US10194333B2 (en) Terminal apparatus, base station, and program
US11153767B2 (en) Apparatus and method for transmitting measurement restriction and configuration information
US11528647B2 (en) Device and method for measuring a channel state
WO2015045659A1 (en) Communication control device, communication control method, terminal device, and information processing device
US10498518B2 (en) Apparatus and method
US10383050B2 (en) Apparatus for selecting a cell in a directional beam network
WO2017077753A1 (en) Device and method
WO2016121252A1 (en) Device and method
WO2015182292A1 (en) Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15880144

Country of ref document: EP

Kind code of ref document: A1