WO2016119739A1 - 天线、天线***和通信设备 - Google Patents

天线、天线***和通信设备 Download PDF

Info

Publication number
WO2016119739A1
WO2016119739A1 PCT/CN2016/072720 CN2016072720W WO2016119739A1 WO 2016119739 A1 WO2016119739 A1 WO 2016119739A1 CN 2016072720 W CN2016072720 W CN 2016072720W WO 2016119739 A1 WO2016119739 A1 WO 2016119739A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sheet
radiating
radiation
antenna
Prior art date
Application number
PCT/CN2016/072720
Other languages
English (en)
French (fr)
Inventor
刘若鹏
梁智荣
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510052372.3A external-priority patent/CN105990663A/zh
Priority claimed from CN201510054768.1A external-priority patent/CN105990665A/zh
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2016119739A1 publication Critical patent/WO2016119739A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an antenna, and an antenna system and a communication device using the same.
  • An antenna is an electronic device for transmitting or receiving electromagnetic waves.
  • Antennas are used in systems such as radio and television, point-to-point radio communications, radar and space exploration.
  • systems such as radio and television, point-to-point radio communications, radar and space exploration.
  • the field of antenna technology is becoming more and more extensive.
  • the requirements for antenna performance are also increasing.
  • modern communications as the integration of communication systems increases, the required antennas are characterized by high gain, wide band or multi-band, circular polarization, miniaturization, and wide coverage.
  • an antenna including a first substrate, a second substrate, a first radiating sheet, and a second radiating sheet, the first radiating sheet being disposed on the first substrate, the first a second substrate is disposed on the first radiation sheet, the second radiation sheet is disposed on the second substrate, and a gap is formed at an edge of the first radiation sheet and the second radiation sheet, and the first radiation sheet and
  • the second radiating sheets respectively include a first power feeding portion and a second power feeding portion.
  • the first radiating sheet and the second radiating sheet are both circular.
  • the first radiating sheet is provided with two notches that are recessed toward the center of the circle, and the two notches are located on the circumference of the first radiating sheet and are symmetrical about the center of the circle.
  • the first substrate is rectangular, and a projection of a center of the first radiation sheet on the first substrate coincides with a center of the first substrate.
  • connection line of two notches on the first radiation piece falls on a diagonal line of the first substrate.
  • the second radiating sheet is provided with two notches recessed toward the center of the circle, and the two notches are located on the circumference of the second radiating sheet and are symmetrical about the center of the circle.
  • the second substrate is rectangular, and the projection of the center of the second radiation sheet on the second substrate coincides with the center of the second substrate.
  • connection of the two notches on the second radiation sheet falls on a diagonal line of the second substrate.
  • the line connecting the two notches on the first radiating piece and the line connecting the two notches on the second radiating piece cross each other.
  • the first feeding portion is located on a horizontal symmetry axis or a vertical symmetry axis of the first radiation piece
  • the second feeding portion is located on a horizontal symmetry axis or a vertical symmetry axis of the second radiation piece. on.
  • the first power feeding portion and the second power feeding portion are coaxial power feeding portions.
  • the first feed portion and the second feed portion are electrically insulated.
  • the size of the second radiating piece is smaller than the size of the second substrate
  • the size of the first radiating piece is smaller than the size of the first substrate
  • the size of the first radiating piece is larger than the second The size of the radiation sheet.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are all planar shapes [0019]
  • a projection of a center of the second radiation sheet on the first radiation sheet coincides with a center of the first radiation sheet, and a horizontal symmetry axis and a vertical symmetry axis of the second radiation sheet are at the The projections on a radiation sheet coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet, respectively.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are both convex or concave.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet have the same curvature
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the first substrate.
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the second substrate.
  • the shape of the artificial microstructure includes an I-shape, or a cross, or a snowflake shape, or a broken mouth shape.
  • an antenna system including a feed port, an antenna, and a combiner, the antenna being the antenna, and the first end of the combiner is connected to the feed port The second end of the combiner is connected to the first feeding part, and the third end of the combiner is connected to the second feeding part.
  • a communication device including the above antenna system is provided.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • the antenna of the present invention can make the two radiation sheets individually circularly polarized without using other parts by providing notches at the edges of the first radiation sheet and the second radiation sheet and designing the proper positions of the notches. The cooperation of the radiation sheet.
  • the single antenna of the present invention can realize the circular polarization technical solution, and has the advantages of low cost and simple structural design compared to the prior art, where multiple antennas are required to cooperate together to realize circular polarization. , does not require complex structural design of multiple antennas.
  • the present invention enables the antenna to achieve multi-band, circular polarization, miniaturization, wide coverage, etc. by designing the gap and its proper position.
  • an antenna including a first substrate, a second substrate, a first radiation sheet, and a second radiation sheet, the first radiation sheet being disposed on the first substrate
  • the second substrate is disposed on the first radiation sheet
  • the second radiation sheet is disposed on the second substrate
  • the protrusions are disposed at edges of the first radiation sheet and the second radiation sheet
  • the first radiating sheet and the second radiating sheet respectively include a first feeding portion and a second feeding portion.
  • the first radiating sheet and the second radiating sheet are both circular.
  • the first radiation piece is provided with two protrusions, and the two protrusions are located on the circumference of the first radiation piece and are symmetric about a center, wherein the protrusions are The circumference in which it is located is radially convex toward the center of the circle.
  • the first substrate is rectangular, and a projection of a center of the first radiation sheet on the first substrate coincides with a center of the first substrate.
  • the line connecting the two protrusions on the first radiation sheet falls on a diagonal line of the first substrate.
  • the second radiating piece is provided with two convex portions, and the two convex portions are located on the circumference of the second radiating piece and are symmetrical with respect to a center of the circle, wherein the convex portion is self- The circumference in which it is located is radially convex toward the center of the circle.
  • the second substrate is rectangular, and the projection of the center of the second radiating sheet on the second substrate coincides with the center of the second substrate.
  • the line connecting the two protrusions on the second radiation sheet falls on a diagonal line of the second substrate.
  • a line connecting the two protrusions on the first radiation sheet and a line connecting the two protrusions on the second radiation sheet intersect each other.
  • the first feeding portion is located on a horizontal symmetry axis or a vertical symmetry axis of the first radiation piece
  • the second feeding portion is located on a horizontal symmetry axis or a vertical symmetry axis of the second radiation piece. on.
  • the first power feeding portion and the second power feeding portion are coaxial power feeding portions.
  • the first feed portion and the second feed portion are electrically insulated.
  • the size of the second radiating piece is smaller than the size of the second substrate
  • the size of the first radiating piece is smaller than the size of the first substrate
  • the size of the first radiating piece is larger than the second The size of the radiation sheet.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are all planar shapes
  • a projection of a center of the second radiation sheet on the first radiation sheet coincides with a center of the first radiation sheet, and a horizontal symmetry axis and a vertical symmetry axis of the second radiation sheet are at the The projections on a radiation sheet coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet, respectively.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are both convex or concave.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet have the same curvature
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the first substrate.
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the second substrate.
  • the shape of the artificial microstructure includes an I-shape, or a cross, or a snowflake shape, or a broken mouth shape.
  • an antenna system including a feed port, an antenna, and a combiner, the antenna being the antenna, and the first end of the combiner is connected to the feed port The second end of the combiner is connected to the first feeding part, and the third end of the combiner is connected to the second feeding part.
  • a communication device including the antenna system is provided.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • the antenna of the present invention can make the two radiation sheets individually circularly polarized by providing protrusions at the edges of the first radiation sheet and the second radiation sheet and designing the proper positions of the protrusions. There is no need to cooperate with other radiation sheets.
  • the single antenna of the present invention can realize the circular polarization technical solution, and has the advantages of low cost and simple structural design compared to the prior art, where multiple antennas are required to cooperate together to realize circular polarization. , does not require complex structural design of multiple antennas.
  • the present invention can realize multi-band, circular polarization, miniaturization, wide coverage, etc. by designing the convex portion and its proper position.
  • FIG. 1 shows a schematic plan view of an antenna according to an embodiment of the present invention
  • FIG. 2 is a top plan view showing an antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a power feeding portion of an antenna according to an embodiment of the present invention.
  • 4 is a schematic structural diagram of an antenna system according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a voltage standing wave ratio of an antenna according to an embodiment of the present invention.
  • FIG. 6 shows a gain graph of an antenna according to an embodiment of the present invention
  • FIG. 7 is a graph showing an axial ratio of an antenna according to an embodiment of the present invention.
  • first substrate 12 second substrate 13: first radiation sheet 14: second radiation sheet
  • FIG. 8 is a schematic plan view showing an antenna according to still another embodiment of the present invention.
  • FIG. 9 is a top plan view showing an antenna according to still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a power feeding portion of an antenna according to still another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an antenna system according to still another embodiment of the present invention.
  • FIG. 12 is a graph showing a voltage standing wave ratio of an antenna according to still another embodiment of the present invention. [0068] FIG.
  • FIG. 13 shows a gain graph of an antenna according to still another embodiment of the present invention.
  • FIG. 14 is a graph showing an axial ratio of an antenna according to still another embodiment of the present invention.
  • first substrate 12 second substrate 13: first radiation sheet 14: second radiation sheet
  • the antenna 10 of this embodiment may include a first substrate 11, a The second substrate 12, the first radiation sheet 13, and the second radiation sheet 14.
  • the first radiation sheet 13 is disposed on the first substrate 11.
  • the second radiating sheet 14 is disposed on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are made of a dielectric substrate.
  • the first radiating sheet 13 and the second radiating sheet 14 are made of a conductive material such as metal.
  • the radiation sheet may be in the form of a patch or a photolithographically etched coating.
  • the combined unit of each radiating patch and its corresponding substrate constitutes a receiving and transmitting path.
  • the two combined units are further combined into an antenna in a stacked manner.
  • the second substrate 12 is disposed on the first radiation sheet 13.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • a geometric perturbation method is implemented, and a degenerate mode operation in which two orthogonal polarizations have a phase difference of 90° is generated by using the degenerate mode separating element.
  • an extension portion is disposed at an edge of the first radiation piece 13 and the second radiation piece 14 , and the extension portion is a notch recessed inward toward the center of the circle, and the first radiation piece 13 is provided with two The extensions, that is, the first radiation sheets 13 are provided with notches 15a and 15b at the edges, and both extensions are located on the circumference of the first radiation sheet 13 and are symmetrical about the center of the circle.
  • the second radiation sheet 14 is provided with notches 16a and 16b at the edges, and both extensions are located on the circumference of the second radiation sheet and About the center of the circle is symmetrical.
  • the advantage of achieving circular polarization by geometric perturbation is that the first radiating sheet 13 and the second radiating sheet 14 may have only one feeding portion.
  • the first radiation sheet 13 has a first power feeding portion 17, and the second radiation sheet 14 has a second power feeding portion 18.
  • the first power feeder 17 and the second power feeder 18 may respectively input signals to be transmitted or output signals received.
  • the first power feeding portion 17 needs to be located on the horizontal symmetry axis XI or the vertical symmetry axis Y1 of the first radiation sheet 13.
  • the second feeding portion 18 needs to be located on the horizontal symmetry axis X2 or the vertical symmetry axis Y2 of the second radiation sheet 14.
  • the horizontal symmetry axes X1, X2 are on the same straight line
  • the vertical symmetry axes Y 1, Y2 are on the same straight line.
  • the center point of the second radiation piece 14 (in the figure, the center of the circle) is projected on the first radiation piece 13 coincident with the center point of the first radiation piece 13 (in the figure, the center of the circle), and the second radiation
  • the projections of the horizontal symmetry axis and the vertical symmetry axis of the sheet 14 on the first radiation sheet 13 coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet 13, respectively.
  • the first feeding portion 17 is located on the vertical symmetry axis Y1 of the first radiation piece 13, and the second feeding portion 18 is located on the horizontal symmetry axis ⁇ 2 of the second radiation piece 14.
  • the embodiment of the present invention does not limit the first power feeding portion 17 and the second power feeding portion 18 in the horizontal plane (the paper surface in FIG. 3)
  • the relative position on the first feeding portion 17 and the second feeding portion 18 can be respectively drawn out of the transmission line (not shown).
  • the first substrate 11 and the second substrate 12 are preferably rectangular, and of course, other shapes are also possible.
  • the first radiating sheet 13 and the second radiating sheet 14 are preferably circular having a notch. It will of course be understood that the first radiating sheet 14 and the second radiating sheet 14 may also be in his shape. However, the first radiating sheet 13 and the second radiating sheet 14 are preferably of the same shape. Preferably, the size of the first radiating sheet 13 is smaller than the size of the first substrate 11, and the size of the second radiating sheet 14 is smaller than the size of the second substrate 12.
  • the size of the first radiating sheet 13 is preferably larger than the size of the second radiating sheet 14, so as to ensure that the signal radiated by the first radiating sheet 13 is not blocked by the second radiating sheet 14 located thereon, and FIG. 1 shows the first An example in which the size of the radiation sheet 13 is larger than the size of the second radiation sheet 14 is obtained.
  • first substrate 11 and the second substrate 12 may have artificial microstructures, such as conductive microstructures.
  • the artificial microstructure within the substrate can be a planar or steric structure having a certain geometry and can be placed horizontally and/or vertically within the substrate, also known as a metamaterial microstructure.
  • the dielectric constant of the substrate can be changed, thereby being suitable for providing substrates having different dielectric constants.
  • the shape of the artificial microstructure may include an I-shape, a cross shape, a snowflake shape, or a broken mouth shape.
  • the thickness of the first substrate 11 may be smaller than the thickness of the second substrate 12 in terms of size.
  • the notches 15a, 15b of the first radiating sheet 13 are located on the circumference of the first radiating sheet 13 and are both recessed toward the center of the circle, and the two notches are symmetrical with respect to the center of the first radiating sheet 13.
  • the notches 16a, 16b of the second radiating sheet 14 are located on the circumference of the first radiating sheet 14 and are both recessed toward the center of the circle, and the two notches are symmetrical with respect to the center of the first radiating sheet 14.
  • the projection of the center of the first radiating sheet 13 on the first substrate 11 coincides with the center of the first substrate 11, and the lines of the two notches 15a, 15b on the first radiating sheet 13 are connected.
  • the line connecting the notches 15a, 15b of the first radiating sheet 13 and the lines of the notches 16a, 16b of the second radiating sheet 14 cross each other, more preferably in a vertical relationship, as shown.
  • the antenna of the present embodiment is designed to have dual frequency transmission and reception capabilities.
  • each of the power feeding units is electrically insulated to respectively input the frequency band signals to be transmitted into the respective units, or to receive the received signals from the respective units. Output from the unit.
  • the first power feeder 17 is a coaxial power feeder.
  • the second power feeder 18 is preferably a coaxial feed.
  • the coaxial feed mode reduces the interference of the feed structure.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a flat surface.
  • the present invention is not limited thereto, and in other embodiments, the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a curved surface, such as a convex shape or a concave shape.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have the same curvature, so that the structural layers 11-14 are attached due to their similar three-dimensional shapes.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have a conformal concave shape or a convex shape, so that the antenna design can be made more compact.
  • the conformal design of the curved surface can also increase the radiation area of the antenna, concentrate the radiation energy, and thereby increase the gain of the antenna and widen the coverage.
  • FIG. 5 is a graph showing a voltage standing wave ratio of the antenna of FIG. 1.
  • Fig. 6 is a graph showing the gain curve of the antenna of Fig. 1.
  • Fig. 7 is a graph showing the axial ratio of the antenna of Fig. 1. Referring to Fig. 7, the antenna of the embodiment of the present invention can achieve an axial ratio of 6 or less in a range of ⁇ 50°. 5 to 7, it can be seen that the antenna of the present invention can generate two circularly polarized frequency bands.
  • a single radiation sheet can achieve a circular polarization effect, and also has dual frequency bands, high gain, and good axial ratio performance. advantage.
  • the antenna system of this embodiment includes the antenna 10, the combiner 20, and the feed port 30 of the embodiment shown in Fig. 1.
  • the first end of the combiner 20 is connected to the feed port 30, the second end of the combiner 20 is connected to the first feed portion 17 of the first radiating piece 13 of the antenna 10, and the third end of the combiner 20 is connected to the second end.
  • the combiner 20 is a signal that divides the input excitation signal into multiple frequency bands and outputs them to the power feeding unit of the antenna corresponding radiation piece.
  • the ⁇ combiner can also be called a splitter, and accordingly, the antenna system is in a transmit signal status.
  • the combiner 20, on the other hand, combines the received signals of the multi-band to a feed port, which is in the state of receiving the signal.
  • the combiner 20 is responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power feeder 17 of the antenna 10, and outputting the second frequency band of the excitation signal to the antenna.
  • the combiner 20 is on the other hand responsible for combining the respective frequency band signals from the respective radiating patches 13, 14 and outputting them to the feed port 30.
  • the frequency of the second frequency band can be higher than the first frequency band to form a combination of high frequency and low frequency.
  • the excitation signal enters the first end of the combiner 20 from a feeding port 30 (this is the input end), and after the combiner 20, is split into two signals, one of which passes through the first The second end (which is the output end) and the transmission line are supplied to the first feeding portion 17 of the antenna 10, and the other signal is supplied to the second feeding portion of the antenna 10 via the third end (which is the output end) and the transmission line. Part 18.
  • two received signals are respectively transmitted from the first power feeding portion 17 and the second power feeding portion 18 via the transmission line to the second end of the combiner 20 (which is the input end) and the third end (this time) It is the input terminal), and the input combiner 20 combines into a signal, and then outputs it to the feed port 30 from the first end (here, it is the output end), which is processed by the subsequent receiving circuit.
  • the present invention requires only one feed port output, and only one set of signal processing devices can be used, which greatly simplifies the structure of the antenna and reduces the cost.
  • the circularly polarized antenna and antenna system of the above-described embodiments of the present invention may be incorporated in a communication device.
  • the antenna can be widely used in various fields of measurement and communication.
  • the circularly polarized antenna of the embodiment of the invention has a wider application range and can be applied to the fields of mobile communication, satellite navigation and the like.
  • the main advantages of circularly polarized antennas in practical applications are:
  • Any polarized electromagnetic wave can be decomposed into two circularly polarized waves with opposite directions of rotation, for example, for linearly polarized waves, it can be decomposed into two circularly polarized waves of opposite equal amplitude. Therefore, the arbitrarily polarized electromagnetic wave can be received by the circularly polarized antenna, and the electromagnetic wave emitted by the circularly polarized antenna can be received by the arbitrarily polarized antenna, so the circularly polarized antenna is generally used in electronic reconnaissance and interference;
  • FIG. 8 is a schematic plan view showing an antenna according to still another embodiment of the present invention.
  • Fig. 9 is a top plan view showing an antenna according to still another embodiment of the present invention.
  • an antenna 10 according to still another embodiment of the present invention may include a first substrate 11, a second substrate 12, a first radiating sheet 13, and a second radiating sheet 14. The first radiation sheet 13 is disposed on the first substrate 11.
  • the second radiating sheet 14 is disposed on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are made of a dielectric substrate.
  • the first radiating sheet 13 and the second radiating sheet 14 are made of a conductive material such as metal.
  • the radiation sheet may be in the form of a patch or a photolithographically etched coating.
  • the combined unit of each radiating patch and its corresponding substrate constitutes a receiving and transmitting path.
  • the two combined units are further combined into an antenna in a stacked manner.
  • the second substrate 12 is disposed on the first radiation sheet 13.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • an extension portion is disposed at an edge of the first radiation piece 13 and the second radiation piece 14 , and the extension portion is a convex portion radially protruding from a circumference thereof away from a center of the circle
  • the first radiating piece 13 is provided with two extending portions, that is, the first radiating piece 13 is provided with convex portions 15a and 15b at the edges, and both extending portions are located on the circumference of the first radiating piece 13 with respect to the center of the circle symmetry.
  • two extensions are provided on the second radiation sheet 14, that is, the second radiation sheet 14 is provided with convex portions 16a and 16b at the edges, and both extension portions are located on the circumference of the second radiation sheet 14. And about the center of the circle is symmetrical.
  • An advantage of achieving circular polarization by means of geometric perturbation is that the first radiating sheet 13 and the second radiating sheet 14 may have only one feeding portion.
  • the first radiation sheet 13 has a first power feeding portion 17, and the second radiation sheet 14 has a second power feeding portion 18.
  • the first power feeder 17 and the second power feeder 18 may respectively input signals to be transmitted or output signals received.
  • the first power feeding portion 17 needs to be located on the horizontal symmetry axis XI or the vertical symmetry axis Y1 of the first radiation sheet 13.
  • the second feeding portion 18 needs to be located on the horizontal symmetry axis X2 or the vertical symmetry axis Y2 of the second radiation sheet 14.
  • the horizontal symmetry axes X1, X2 are on the same straight line
  • the vertical symmetry axes Y1, Y2 are on the same straight line.
  • the center point of the second radiation piece 14 (in the figure, the center of the circle) is projected on the first radiation piece 13 coincident with the center point of the first radiation piece 13 (in the figure, the center of the circle), and the second radiation
  • the projections of the horizontal symmetry axis and the vertical symmetry axis of the sheet 14 on the first radiation sheet 13 are respectively The horizontal symmetry axis and the vertical symmetry axis of a radiation sheet 13 coincide.
  • the first feeding portion 17 is located on the vertical symmetry axis Y1 of the first radiation sheet 13, and the second feeding portion 18 is located on the horizontal symmetry axis X2 of the second radiation sheet 14.
  • the embodiment of the present invention does not limit the relative positions of the first power feeding portion 17 and the second power feeding portion 18 on the horizontal plane (the paper surface in FIG. 10) as long as the first power feeding portion 17 and the first The two feeders 18 can each draw a transmission line (not shown).
  • the first substrate 11 and the second substrate 12 are preferably rectangular, and of course, other shapes are also possible.
  • the first radiating sheet 13 and the second radiating sheet 14 are preferably circular shapes having convex portions. It will of course be understood that the first radiating sheet 14 and the second radiating sheet 14 may also be in his shape. However, the first radiating sheet 13 and the second radiating sheet 14 are preferably of the same shape. Preferably, the size of the first radiating sheet 13 is smaller than the size of the first substrate 11, and the size of the second radiating sheet 14 is smaller than the size of the second substrate 12.
  • the size of the first radiating sheet 13 is preferably larger than the size of the second radiating sheet 14, so as to ensure that the signal radiated from the first radiating sheet 13 is not blocked by the second radiating sheet 14 located thereon, and FIG. 8 shows the first An example in which the size of the radiation sheet 13 is larger than the size of the second radiation sheet 14 is obtained.
  • the first substrate 11 and the second substrate 12 may have artificial microstructures, such as conductive microstructures.
  • the artificial microstructure within the substrate can be a planar or steric structure having a certain geometry and can be placed horizontally and/or vertically within the substrate, also known as a metamaterial microstructure.
  • the dielectric constant of the substrate can be changed, thereby being suitable for providing substrates having different dielectric constants.
  • the shape of the artificial microstructure may include an I-shape, a cross shape, a snowflake shape, or a broken mouth shape.
  • the thickness of the first substrate 11 may be smaller than the thickness of the second substrate 12 in terms of size.
  • the convex portions 15a, 15b of the first radiation piece 13 are located on the circumference of the first radiation piece 13, and the two convex portions are symmetrical with respect to the center of the first radiation piece 13, wherein the convex portion
  • the portions 15a, 15b project radially in a direction away from the center of the circle from the circumference thereof.
  • the convex portions 16a, 16b of the second radiation piece 14 are located on the circumference of the first radiation piece 14, and the two convex portions are symmetrical with respect to the center of the first radiation piece 14, wherein the convex portions 16a, 16b are from the circumference thereof It bulges in a radial direction away from the center of the circle.
  • the projection of the center of the first radiating sheet 13 on the first substrate 11 coincides with the center of the first substrate 11, and the two convex portions 15a, 15b on the first radiating sheet 13
  • the wiring falls on one diagonal of the first substrate 11; on the other hand, the projection of the center of the second radiating sheet 14 on the second substrate 12 coincides with the center of the second substrate 12, and the second radiating sheet 14
  • the line connecting the two raised portions 16a, 16b falls on one of the second substrates 12 Diagonal.
  • the line connecting the convex portions 15a, 15b of the first radiation piece 13 and the line connecting the convex portions 16a, 16b of the second radiation piece 14 cross each other, more preferably in a vertical relationship, as shown.
  • An antenna of still another embodiment of the present invention is designed to have dual frequency transmission and reception capabilities.
  • each of the feeders is electrically insulated to input the band signals to be transmitted to the respective units, or to output the received signals from the respective units.
  • the first power feeder 17 is a coaxial power feeder.
  • the second power feeder 18 is preferably a coaxial feed.
  • the coaxial feed mode reduces the interference of the feed structure.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may all be planar.
  • the present invention is not limited thereto, and in other embodiments, the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a curved surface, such as a convex shape or a concave shape.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have the same curvature, so that the structural layers 11-14 are attached due to their similar three-dimensional shapes.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have a conformal concave shape or a convex shape, so that the antenna design can be made more compact.
  • the conformal design of the curved surface can also increase the radiation area of the antenna, concentrate the radiation energy, and thereby increase the gain of the antenna and widen the coverage.
  • FIG. 12 is a graph showing a voltage standing wave ratio of the antenna of FIG. 8.
  • Fig. 13 is a graph showing the gain of the antenna of Fig. 8.
  • Fig. 14 is a graph showing the axial ratio of the antenna of Fig. 8.
  • the antenna of still another embodiment of the present invention can achieve an axial ratio of 6 or less in the range of ⁇ 50°. Referring to Figures 12 through 14, it can be seen that the antenna of the present invention can produce two circularly polarized frequency bands.
  • a single radiation sheet can achieve a circular polarization effect, and also has dual frequency bands, high gain, and good axial ratio performance. advantage.
  • an antenna system according to still another embodiment of the present invention includes an antenna 10, a combiner 20, and a feed port 30 of the embodiment shown in FIG. .
  • the first end of the combiner 20 is connected to the feed port 30, the second end of the combiner 20 is connected to the first feed portion 17 of the first radiating piece 13 of the antenna 10, and the third end of the combiner 20 is connected to the second end.
  • the combiner 20 is a signal that divides the input excitation signal into multiple frequency bands and outputs them to the power feeding unit of the antenna corresponding radiation piece.
  • the combiner can also be referred to as a splitter, and accordingly, the antenna system is in a state of transmitting a signal.
  • the combiner 20, on the other hand, combines the received signals of the multi-band to a feed port, which is in the state of receiving the signal.
  • the combiner 20 is responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power feeder 17 of the antenna 10, and the second frequency band of the excitation signal. It is output to the second power feeder 18 of the antenna 10.
  • the combiner 20 is on the other hand responsible for combining the respective frequency band signals from the respective radiation sheets 13, 14 and outputting them to the feed port 30.
  • the frequency of the second frequency band can be higher than the first frequency band to form a combination of high frequency and low frequency.
  • the excitation signal enters the first end of the combiner 20 from a feeding port 30 (this is the input end), and after the combiner 20, is divided into two signals, one of which passes through the first The second end (which is the output end) and the transmission line are supplied to the first feeding portion 17 of the antenna 10, and the other signal is supplied to the second feeding portion of the antenna 10 via the third end (which is the output end) and the transmission line. Part 18.
  • two received signals are respectively transmitted from the first power feeding portion 17 and the second power feeding portion 18 via the transmission line to the second end of the combiner 20 (which is the input end) and the third end (this time) It is the input terminal), and the input combiner 20 combines into a signal, and then outputs it to the feed port 30 from the first end (here, it is the output end), which is processed by the subsequent receiving circuit.
  • the present invention requires only one feed port output, and can use only one set of signal processing devices, which greatly simplifies the structure of the antenna and reduces the cost.
  • the circularly polarized antenna and antenna system of the above embodiments of the present invention can be incorporated in a communication device.
  • the circularly polarized antenna according to another embodiment of the present invention has a wider application range and can be applied to fields such as mobile communication and satellite navigation.
  • the main advantages of circularly polarized antennas in practical applications are:
  • Any polarized electromagnetic wave can be decomposed into two circularly polarized waves with opposite directions of rotation, for example, for linearly polarized waves, it can be decomposed into two circularly polarized waves of opposite equal amplitude. Therefore, any polarized electromagnetic wave can be rounded
  • the polarized antenna is received, and the electromagnetic wave emitted by the circularly polarized antenna can be received by the antenna with arbitrary polarization. Therefore, a circularly polarized antenna is generally used in electronic reconnaissance and interference;
  • the circularly polarized wave is incident on a symmetric target (such as a plane, a spherical surface, etc.), and the circularly polarized antenna suppresses rain and fog interference and multipath reflection in the fields of mobile communication, satellite navigation, and the like.
  • a symmetric target such as a plane, a spherical surface, etc.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线,包括第一基板、第二基板、第一辐射片和第二辐射片,该第一辐射片设置在该第一基板上,该第二基板设置在该第一辐射片上,该第二辐射片设置在该第二基板上,在该第一辐射片和该第二辐射片的边缘处皆设有缺口,并且该第一辐射片和该第二辐射片分别包括第一馈电部和第二馈电部。

Description

天线、 天线***和通信设备
技术领域
[0001] 本发明涉及无线通信领域, 尤其是涉及一种天线, 以及使用该天线的天线*** 和通信设备。
背景技术
[0002] 天线是一种用来发射或接收电磁波的电子器件。 天线应用于广播和电视、 点对 点无线电通信、 雷达和太空探索等***。 随着无线通信技术的飞速发展, 天线 技术所涉及的领域越来越广泛。 在许多特殊应用中, 对于天线性能的要求也越 来越高。 在现代通信中, 随着通信***集成度的提高, 要求使用的天线具有高 增益、 宽频带或多频段、 圆极化、 小型化、 宽覆盖等特点。
技术问题
[0003] 但是, 目前的现有技术中, 当需要多频段 (例如, 双频段) 天线或者多频段圆 极化天线吋, 通常是通过多个馈电端口和多个天线来分别实现不同的频段, 在 这种情况下, 通常一个馈电端口的输出需要后续一整套信号处理装置来进行处 理, 还需要多个天线来响应不同频段的天线信号, 这样一来, 现有技术中如果 要实现多频段、 高增益以及圆极化就势必增加天线的数量, 但是如果增加天线 的数量就会导致多个天线之间的相互干扰增强进而影响圆极化的性能, 同吋还 会导致多个天线之间的结构设计复杂化, 进而导致最终的天线尺寸变大, 因此 , 如何实现使天线具有多频段、 圆极化、 小型化、 宽覆盖等优点一直是业界亟 需解决的问题。
问题的解决方案
技术解决方案
[0004] 以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。 此概述不 是所有构想到的方面的详尽综览, 并且既非旨在指认出所有方面的关键性或决 定性要素亦非试图界定任何或所有方面的范围。 其唯一的目的是要以简化形式 给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。 [0005] 根据本发明的一方面, 提供了一种天线, 包括第一基板、 第二基板、 第一辐射 片和第二辐射片, 该第一辐射片设置在该第一基板上, 该第二基板设置在该第 一辐射片上, 该第二辐射片设置在该第二基板上, 在该第一辐射片和该第二辐 射片的边缘处皆设有缺口, 并且该第一辐射片和该第二辐射片分别包括第一馈 电部和第二馈电部。
[0006] 在一实例中, 该第一辐射片和该第二辐射片均为圆形。
[0007] 在一实例中, 该第一辐射片上设有两个均朝圆心方向凹陷的缺口, 并且两个该 缺口位于该第一辐射片的圆周上且关于圆心对称。
[0008] 在一实例中, 该第一基板为矩形, 且该第一辐射片的圆心在该第一基板上的投 影与该第一基板的中心重合。
[0009] 在一实例中, 该第一辐射片上两个缺口的连线落在该第一基板的一条对角线上
[0010] 在一实例中, 该第二辐射片上设有两个均朝圆心方向凹陷的缺口, 并且两个该 缺口位于该第二辐射片的圆周上且关于圆心对称。
[0011] 在一实例中, 该第二基板为矩形, 且该第二辐射片的圆心在该第二基板上的投 影与该第二基板的中心重合。
[0012] 在一实例中, 该第二辐射片上两个缺口的连线落在该第二基板的一条对角线上
[0013] 在一实例中, 该第一辐射片上两个缺口的连线与该第二辐射片上两个缺口的连 线相互交叉。
[0014] 在一实例中, 该第一馈电部位于该第一辐射片的水平对称轴或垂直对称轴上, 该第二馈电部位于该第二辐射片的水平对称轴或垂直对称轴上。
[0015] 在一实例中, 该第一馈电部和该第二馈电部为同轴馈电部。
[0016] 在一实例中, 该第一馈电部和该第二馈电部电性绝缘。
[0017] 在一实例中, 该第二辐射片的尺寸小于该第二基板的尺寸, 该第一辐射片的尺 寸小于该第一基板的尺寸, 且该第一辐射片的尺寸大于该第二辐射片的尺寸。
[0018] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为平面形状 [0019] 在一实例中, 该第二辐射片的圆心在该第一辐射片上的投影与该第一辐射片的 圆心重合, 且该第二辐射片的水平对称轴和垂直对称轴在该第一辐射片上的投 影分别与该第一辐射片的水平对称轴和垂直对称轴重合。
[0020] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为凸面或凹 面形状。
[0021] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同
[0022] 在一实例中, 在该第一基板的内部水平方向或者竖直方向放置有人造微结构。
[0023] 在一实例中, 在该第二基板的内部水平方向或者竖直方向放置有人造微结构。
[0024] 在一实例中, 该人造微结构的形状包括工字形、 或者十字形、 或者雪花形、 或 者断幵的口字型。
[0025] 根据本发明的另一方面, 提供了一种天线***, 包括馈电端口、 天线以及合路 器, 该天线是所述的天线, 该合路器的第一端连接该馈电端口, 该合路器的第 二端连接该第一馈电部, 该合路器的第三端连接该第二馈电部。
[0026] 根据本发明的再一方面, 提供了包括上述天线***的一种通信设备。
[0027] 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺 寸。 本发明的天线通过在第一辐射片和第二辐射片的边缘处皆设有缺口并设计 所述缺口的恰当位置, 可以使得这两个辐射片都能单独实现圆极化而不需要借 助其他辐射片的配合。 本发明的这种单个天线就能实现圆极化的技术方案, 相 比于现有技术中需要多个天线共同配合来实现圆极化来说, 很明显具有低成本 的优势, 而且结构设计简单, 不需要多个天线的复杂结构设计。 同吋, 本发明 借助设计缺口及其恰当的位置, 可以使得该天线能实现多频段、 圆极化、 小型 化、 宽覆盖等。
[0028] 另外, 根据本发明的另一方面, 还提供了一种天线, 包括第一基板、 第二基板 、 第一辐射片和第二辐射片, 该第一辐射片设置在该第一基板上, 该第二基板 设置在该第一辐射片上, 该第二辐射片设置在该第二基板上, 在该第一辐射片 和该第二辐射片的边缘处皆设有凸起部, 并且该第一辐射片和该第二辐射片分 别包括第一馈电部和第二馈电部。 [0029] 在一实例中, 该第一辐射片和该第二辐射片均为圆形。
[0030] 在一实例中, 该第一辐射片上设有两个该凸起部, 并且两个该凸起部位于该第 一辐射片的圆周上并且关于圆心对称, 其中, 该凸起部自所在的圆周起朝远离 圆心的方向径向凸起。
[0031] 在一实例中, 该第一基板为矩形, 且该第一辐射片的圆心在该第一基板上的投 影与该第一基板的中心重合。
[0032] 在一实例中, 该第一辐射片上两个凸起部的连线落在该第一基板的一条对角线 上。
[0033] 在一实例中, 该第二辐射片上设有两个该凸起部, 并且两个该凸起部位于该第 二辐射片的圆周上并且关于圆心对称, 其中, 该凸起部自所在的圆周起朝远离 圆心的方向径向凸起。
[0034] 在一实例中, 该第二基板为矩形, 且该第二辐射片的圆心在该第二基板上的投 影与该第二基板的中心重合。
[0035] 在一实例中, 该第二辐射片上两个凸起部的连线落在该第二基板的一条对角线 上。
[0036] 在一实例中, 该第一辐射片上两个该凸起部的连线与该第二辐射片上两个该凸 起部的连线相互交叉。
[0037] 在一实例中, 该第一馈电部位于该第一辐射片的水平对称轴或垂直对称轴上, 该第二馈电部位于该第二辐射片的水平对称轴或垂直对称轴上。
[0038] 在一实例中, 该第一馈电部和该第二馈电部为同轴馈电部。
[0039] 在一实例中, 该第一馈电部和该第二馈电部电性绝缘。
[0040] 在一实例中, 该第二辐射片的尺寸小于该第二基板的尺寸, 该第一辐射片的尺 寸小于该第一基板的尺寸, 且该第一辐射片的尺寸大于该第二辐射片的尺寸。
[0041] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为平面形状
[0042] 在一实例中, 该第二辐射片的圆心在该第一辐射片上的投影与该第一辐射片的 圆心重合, 且该第二辐射片的水平对称轴和垂直对称轴在该第一辐射片上的投 影分别与该第一辐射片的水平对称轴和垂直对称轴重合。 [0043] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为凸面或凹 面形状。
[0044] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同
[0045] 在一实例中, 在该第一基板的内部水平方向或者竖直方向放置有人造微结构。
[0046] 在一实例中, 在该第二基板的内部水平方向或者竖直方向放置有人造微结构。
[0047] 在一实例中, 该人造微结构的形状包括工字形、 或者十字形、 或者雪花形、 或 者断幵的口字型。
[0048] 根据本发明的另一方面, 提供了一种天线***, 包括馈电端口、 天线以及合路 器, 该天线是所述的天线, 该合路器的第一端连接该馈电端口, 该合路器的第 二端连接该第一馈电部, 该合路器的第三端连接该第二馈电部。
[0049] 根据本发明的再一方面, 提供了包括所述天线***的一种通信设备。
发明的有益效果
有益效果
[0050] 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺 寸。 本发明的天线通过在第一辐射片和第二辐射片的边缘处皆设有凸起部并设 计所述凸起部的恰当位置, 可以使得这两个辐射片都能单独实现圆极化而不需 要借助其他辐射片的配合。 本发明的这种单个天线就能实现圆极化的技术方案 , 相比于现有技术中需要多个天线共同配合来实现圆极化来说, 很明显具有低 成本的优势, 而且结构设计简单, 不需要多个天线的复杂结构设计。 同吋, 本 发明借助设计凸起部及其恰当的位置, 可以使得该天线能实现多频段、 圆极化 、 小型化、 宽覆盖等。
对附图的简要说明
附图说明
[0051] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0052] 图 1示出本发明一实施例的天线的平视示意图;
[0053] 图 2示出本发明一实施例的天线的俯视示意图;
[0054] 图 3示出本发明一实施例的天线的馈电部示意图; [0055] 图 4示出本发明一实施例的天线***的结构示意图;
[0056] 图 5示出本发明一实施例的天线的电压驻波比曲线图;
[0057] 图 6示出本发明一实施例的天线的增益曲线图;
[0058] 图 7示出本发明一实施例的天线的轴比曲线图。
[0059] 为清楚起见, 以下给出本发明一实施例的附图标记的简要说明:
[0060] 10: 天线
[0061] 11: 第一基板 12: 第二基板 13: 第一辐射片 14: 第二辐射片
[0062] 15a、 15b: 缺口 16a、 16b: 缺口 17: 第一馈电部 18: 第二馈电部
[0063] 20: 合路器 30: 馈电端口
[0064] 图 8示出本发明又一实施例的天线的平视示意图;
[0065] 图 9示出本发明又一实施例的天线的俯视示意图;
[0066] 图 10示出本发明又一实施例的天线的馈电部示意图;
[0067] 图 11示出本发明又一实施例的天线***的结构示意图;
[0068] 图 12示出本发明又一实施例的天线的电压驻波比曲线图;
[0069] 图 13示出本发明又一实施例的天线的增益曲线图;
[0070] 图 14示出本发明又一实施例的天线的轴比曲线图。
[0071] 为清楚起见, 以下给出本发明又一实施例的附图标记的简要说明:
[0072] 10: 天线
[0073] 11: 第一基板 12: 第二基板 13: 第一辐射片 14: 第二辐射片
[0074] 15a、 15b: 凸起部 16a、 16b: 凸起部 17: 第一馈电部 18: 第二馈电部
[0075] 20: 合路器 30: 馈电端口。
本发明的实施方式
[0076] 以下结合附图和具体实施例对本发明作详细描述。 注意, 以下结合附图和具体 实施例描述的诸方面仅是示例性的, 而不应被理解为对本发明的保护范围进行 任何限制。
[0077] 图 1示出本发明一实施例的天线的平视示意图。 图 2示出本发明一实施例的天线 的俯视示意图。 参考图 1和图 2所示, 本实施例的天线 10可包括第一基板 11、 第 二基板 12、 第一辐射片 13和第二辐射片 14。 第一辐射片 13设置在第一基板 11上 。 第二辐射片 14设置在第二基板 12上。 第一基板 11和第二基板 12由电介质基材 制成。 第一辐射片 13和第二辐射片 14由导电材料, 例如金属制成。 辐射片可以 是贴片形式, 也可以是经光刻刻蚀的镀层。 每个辐射片及其对应的基板这种组 合单元构成一个接收和发送路径。 在本实施例中, 两个组合单元进一步以叠合 的方式组合成天线。 换言之, 第二基板 12设置在第一辐射片 13上。 本发明的天 线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺寸。
[0078] 在本实施方式中, 为了实现天线的圆极化, 采用几何微扰的方法实施, 利用简 并模分离元产生两个正交极化的相位差 90°的简并模工作。 具体结构上, 在第一 辐射片 13和第二辐射片 14的边缘处皆设有延伸部, 所述延伸部为朝圆心方向向 内凹陷的缺口, 所述第一辐射片 13上设有两个延伸部, 即第一辐射片 13在边缘 处设有缺口 15a和 15b, 并且两个延伸部均位于第一辐射片 13的圆周上且关于圆心 对称。 类似地, 在第二辐射片 14上设有两个延伸部, 即第二辐射片 14在边缘处 设有缺口 16a和 16b, 并且两个延伸部均位于所述第二辐射片的圆周上且关于圆心 对称。 通过几何微扰的方法实现圆极化的优势是, 第一辐射片 13和第二辐射片 1 4可仅具有一个馈电部。
[0079] 参考图 3所示, 第一辐射片 13具有第一馈电部 17, 第二辐射片 14具有第二馈电 部 18。 第一馈电部 17和第二馈电部 18可分别输入待发送的信号, 或者输出接收 已接收的信号。
[0080] 第一馈电部 17需要位于第一辐射片 13的水平对称轴 XI或者垂直对称轴 Y1上。
第二馈电部 18需要位于第二辐射片 14的水平对称轴 X2或者垂直对称轴 Y2上。 参 考图 3所示, 作为特定实例, 水平对称轴 X1,X2位于同一直线上, 且垂直对称轴 Y 1,Y2位于同一直线上。 换言之, 第二辐射片 14的中心点 (在图中即为圆心) 在 第一辐射片 13上的投影与第一辐射片 13的中心点 (在图中即为圆心) 重合, 并 且第二辐射片 14的水平对称轴和垂直对称轴在第一辐射片 13上的投影分别与第 一辐射片 13的水平对称轴和垂直对称轴重合。 第一馈电部 17位于第一辐射片 13 的垂直对称轴 Y1上, 第二馈电部 18位于第二辐射片 14的水平对称轴 Χ2上。 另外 , 本发明的实施例并不限定第一馈电部 17和第二馈电部 18在水平面 (图 3中的纸面 )上的相对位置, 只要在工程上第一馈电部 17和第二馈电部 18能够各自引出传输 线 (图中未示出)。
[0081] 在形状设计上, 第一基板 11和第二基板 12优选为矩形, 当然, 也可以是其它形 状。 第一辐射片 13和第二辐射片 14优选为具有缺口的圆形。 当然可以理解, 第 一辐射片 14和第二辐射片 14还可以是他形状。 不过, 第一辐射片 13和第二辐射 片 14优选为形状相同。 较优地, 第一辐射片 13的尺寸小于第一基板 11的尺寸, 第二辐射片 14的尺寸小于第二基板 12的尺寸。 第一辐射片 13的尺寸最好大于第 二辐射片 14的尺寸, 从而以确保第一辐射片 13辐射出的信号不被位于其上的第 二辐射片 14所遮挡, 图 1示出第一辐射片 13的尺寸大于第二辐射片 14的尺寸的实 例。
[0082] 进一步, 第一基板 11和第二基板 12内可具有人造微结构, 例如导电微结构。 基 板内的人造微结构可以是具有一定几何图形的平面或立体结构, 且可以水平和 / 或竖直地放置在基材内, 也称为超材料微结构。 通过在基板内设置人造微结构 , 可以改变基板的介电常数, 从而适合提供具有不同介电常数的基板。 作为特 定实例, 人造微结构的形状可包括工字形、 十字形、 雪花形、 或者断幵的口字 型。 在尺寸上, 第一基板 11的厚度可小于第二基板 12的厚度。
[0083] 在此实例中, 第一辐射片 13的缺口 15a、 15b位于第一辐射片 13的圆周上且均朝 圆心方向凹陷, 并且这两个缺口关于第一辐射片 13的圆心对称。 第二辐射片 14 的缺口 16a、 16b位于第一辐射片 14的圆周上且均朝圆心方向凹陷, 并且这两个缺 口关于第一辐射片 14的圆心对称。 在图中所示的实例中, 第一辐射片 13的圆心 在第一基板 11上的投影与第一基板 11的中心重合, 并且第一辐射片 13上的两个 缺口 15a、 15b的连线落在第一基板 11的一条对角线上; 另一方面, 第二辐射片 14 的圆心在第二基板 12上的投影与第二基板 12的中心重合, 并且第二辐射片 14上 两个缺口 16a、 16b的连线落在第二基板 12的一条对角线上。 较优地, 第一辐射片 13的缺口 15a、 15b的连线与第二辐射片 14的缺口 16a、 16b的连线相互交叉, 更优 地呈垂直关系, 如图所示。
[0084] 本实施例的天线被设计为具有双频发送和接收能力。 为此, 各馈电部电性绝缘 , 以分别将待发送的频段信号输入到各自的单元中, 或者将已接收的信号从各 自的单元中输出。
[0085] 优选地, 第一馈电部 17是同轴馈电部。 类似地, 第二馈电部 18优选为同轴馈电 部。 采用同轴馈电的方式, 降低了馈电结构的干扰。
[0086] 在本实施例中, 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可均 为平面。 但是, 本发明并不局限于此, 在其他实施例中, 第一基板 11、 第二基 板 12、 第一辐射片 13和第二辐射片 14可均为弧面, 例如凸面形状或凹面形状。 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可具有相同的曲率, 从而这些结构层 11-14之间因其相似的三维形状而贴合。 在该实施例中, 通过第 一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可以是共形的凹面形状 或凸面形状, 这样一来, 可以使得该天线设计更加紧凑, 减小平面尺寸, 通过 这种曲面的共形设计还能增加天线的辐射面积, 辐射能量集中, 进而提高天线 的增益以及扩宽覆盖范围。
[0087] 图 5示出了图 1中的天线的电压驻波比曲线图。 图 6示出了图 1中的天线的增益曲 线图。 图 7示出了图 1中的天线的轴比曲线图, 参考图 7, 本发明实施例的天线可 以在 ±50°范围内, 实现轴比小于等于 6。 结合图 5至图 7, 可知本发明中的天线可 以产生两个圆极化的频段。
[0088] 现有技术中, 需要使用两个天线或者甚至更多个天线来构成双频段或者多频段 圆极化天线, 因此, 在后端信号处理吋, 通常需要两套或者甚至更多套信号处 理装置来分别进行信号的处理, 这样很明显就增加了设备的体积、 重量和成本
[0089] 但是, 通过本发明的天线设计, 以及图 5至图 7的实际效果图来看, 单个辐射片 就能实现圆极化效果, 而且也具备双频段、 高增益以及轴比性能好的优点。
[0090] 图 4示出本发明一实施例的天线***的结构示意图。 参考图 4所示, 本实施例的 天线***包括图 1所示实施例的天线 10、 合路器 20以及馈电端口 30。 合路器 20的 第一端连接馈电端口 30, 合路器 20的第二端连接天线 10的第一辐射片 13的第一 馈电部 17, 合路器 20的第三端连接第二辐射片 14的第二馈电部 18。
[0091] 合路器 20—方面是将输入激励信号分成多频段的信号, 分别输出到天线对应辐 射片的馈电部。 此吋合路器亦可称为分路器, 相应地, 天线***处于发射信号 的状态。 合路器 20另一方面是将多频段的接收信号合路到一个馈电端口, 此吋 天线***处于接收信号的状态。 举例来说, 本实施例中合路器 20—方面负责将 馈电端口 30提供的激励信号的第一频段输出到天线 10的第一馈电部 17, 将激励 信号的第二频段输出到天线 10的第二馈电部 18。 合路器 20另一方面负责将分别 来自各个辐射片 13、 14的各个频段信号组合到在一起后输出给馈电端口 30。 举 例来说, 第二频段的频率可以高于第一频段, 形成高频和低频的配合。
[0092] 发射工作吋, 激励信号从一个馈电端口 30进入合路器 20的第一端 (此吋其为输 入端) , 经合路器 20后, 分成两路信号, 其中一路信号经过第二端 (此吋其为 输出端) 及传输线提供给天线 10的第一馈电部 17, 另一路信号经过第三端 (此 吋其为输出端) 及传输线提供给天线 10的第二馈电部 18。 接收工作吋, 两路接 收信号分别从第一馈电部 17和第二馈电部 18经传输线传输到合路器 20的第二端( 此吋其为输入端)和第三端 (此吋其为输入端), 进入合路器 20组合成一个信号, 再从第一端 (此吋其为输出端) 输出给馈电端口 30, 由后续的接收电路处理。
[0093] 因而, 本发明只需要一个馈电端口输出, 可以仅用一套信号处理装置, 大大简 化了天线的结构, 降低了成本。
[0094] 本发明上述实施例的圆极化天线及天线***可结合于通信设备中。
[0095] 天线由于具有剖面低、 重量轻、 体积小、 易于共形和批量生产优点, 可以广泛 应用于测量和通讯各个领域。 本发明实施例的圆极化天线应用范围更加广泛, 可以应用于移动通信、 卫星导航等领域。 圆极化天线在实际应用方面的主要优 势有:
[0096] 1)任意的极化电磁波均可分解为两个旋向相反的圆极化波, 如对于线极化波来 说, 可以分解为两个反向等幅的圆极化波。 因此, 任意极化的电磁波均可被圆 极化天线接收, 而圆极化天线发射的电磁波则可被任意极化的天线接收到, 故 电子侦察和干扰中普遍采用圆极化天线;
[0097] 2)在通信、 雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋 向正交性;
[0098] 3) 圆极化波入射到对称目标 (如平面、 球面等) 吋旋向逆转, 所以圆极化天线 在移动通信、 卫星导航等领域抑制雨雾干扰和抗多径反射。 [0099] 另外, 图 8示出本发明又一实施例的天线的平视示意图。 图 9示出本发明又一实 施例的天线的俯视示意图。 参考图 8和图 9所示, 本发明又一实施例的天线 10可 包括第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14。 第一辐射片 13 设置在第一基板 11上。 第二辐射片 14设置在第二基板 12上。 第一基板 11和第二 基板 12由电介质基材制成。 第一辐射片 13和第二辐射片 14由导电材料, 例如金 属制成。 辐射片可以是贴片形式, 也可以是经光刻刻蚀的镀层。 每个辐射片及 其对应的基板这种组合单元构成一个接收和发送路径。 在本发明又一实施例中 , 两个组合单元进一步以叠合的方式组合成天线。 换言之, 第二基板 12设置在 第一辐射片 13上。 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减 小天线的体积和尺寸。
[0100] 在本实施方式中, 为了实现天线的圆极化, 采用几何微扰的方法实施, 利用简 并模分离元产生两个正交极化的相位差 90°的简并模工作。 具体结构上, 在第一 辐射片 13和第二辐射片 14的边缘处皆设有延伸部, 所述延伸部为自所在的圆周 起朝远离圆心的方向径向凸起的凸起部, 在第一辐射片 13上设有两个延伸部, 即在第一辐射片 13在边缘处设有凸起部 15a和 15b, 并且两个延伸部均位于第一辐 射片 13的圆周上且关于圆心对称。 类似地, 在第二辐射片 14上设有两个延伸部 , 即第二辐射片 14在边缘处设有凸起部 16a和 16b, 并且两个延伸部均位于第二辐 射片 14的圆周上并且关于圆心对称。 通过几何微扰的方法实现圆极化的优势是 , 第一辐射片 13和第二辐射片 14可仅具有一个馈电部。
[0101] 参考图 10所示, 第一辐射片 13具有第一馈电部 17, 第二辐射片 14具有第二馈电 部 18。 第一馈电部 17和第二馈电部 18可分别输入待发送的信号, 或者输出接收 已接收的信号。
[0102] 第一馈电部 17需要位于第一辐射片 13的水平对称轴 XI或者垂直对称轴 Y1上。
第二馈电部 18需要位于第二辐射片 14的水平对称轴 X2或者垂直对称轴 Y2上。 参 考图 10所示, 作为特定实例, 水平对称轴 X1,X2位于同一直线上, 且垂直对称轴 Y1,Y2位于同一直线上。 换言之, 第二辐射片 14的中心点 (在图中即为圆心) 在 第一辐射片 13上的投影与第一辐射片 13的中心点 (在图中即为圆心) 重合, 并 且第二辐射片 14的水平对称轴和垂直对称轴在第一辐射片 13上的投影分别与第 一辐射片 13的水平对称轴和垂直对称轴重合。 第一馈电部 17位于第一辐射片 13 的垂直对称轴 Y1上, 第二馈电部 18位于第二辐射片 14的水平对称轴 X2上。 另外 , 本发明的实施例并不限定第一馈电部 17和第二馈电部 18在水平面 (图 10中的纸 面)上的相对位置, 只要在工程上第一馈电部 17和第二馈电部 18能够各自引出传 输线 (图中未示出)。
[0103] 在形状设计上, 第一基板 11和第二基板 12优选为矩形, 当然, 也可以是其它形 状。 第一辐射片 13和第二辐射片 14优选为具有凸起部的圆形。 当然可以理解, 第一辐射片 14和第二辐射片 14还可以是他形状。 不过, 第一辐射片 13和第二辐 射片 14优选为形状相同。 较优地, 第一辐射片 13的尺寸小于第一基板 11的尺寸 , 第二辐射片 14的尺寸小于第二基板 12的尺寸。 第一辐射片 13的尺寸最好大于 第二辐射片 14的尺寸, 从而以确保第一辐射片 13辐射出的信号不被位于其上的 第二辐射片 14所遮挡, 图 8示出第一辐射片 13的尺寸大于第二辐射片 14的尺寸的 实例。
[0104] 进一步, 第一基板 11和第二基板 12内可具有人造微结构, 例如导电微结构。 基 板内的人造微结构可以是具有一定几何图形的平面或立体结构, 且可以水平和 / 或竖直地放置在基材内, 也称为超材料微结构。 通过在基板内设置人造微结构 , 可以改变基板的介电常数, 从而适合提供具有不同介电常数的基板。 作为特 定实例, 人造微结构的形状可包括工字形、 十字形、 雪花形、 或者断幵的口字 型。 在尺寸上, 第一基板 11的厚度可小于第二基板 12的厚度。
[0105] 在此实例中, 第一辐射片 13的凸起部 15a、 15b位于第一辐射片 13的圆周上, 并 且这两个凸起部关于第一辐射片 13的圆心对称, 其中凸起部 15a、 15b自所在的圆 周起在径向上朝远离圆心的方向凸起。 第二辐射片 14的凸起部 16a、 16b位于第一 辐射片 14的圆周上, 并且这两个凸起部关于第一辐射片 14的圆心对称, 其中凸 起部 16a、 16b自所在的圆周起在径向上朝远离圆心的方向凸起。 在图中所示的实 例中, 第一辐射片 13的圆心在第一基板 11上的投影与第一基板 11的中心重合, 并且第一辐射片 13上的两个凸起部 15a、 15b的连线落在第一基板 11的一条对角线 上; 另一方面, 第二辐射片 14的圆心在第二基板 12上的投影与第二基板 12的中 心重合, 并且第二辐射片 14上两个凸起部 16a、 16b的连线落在第二基板 12的一条 对角线上。 较优地, 第一辐射片 13的凸起部 15a、 15b的连线与第二辐射片 14的凸 起部 16a、 16b的连线相互交叉, 更优地呈垂直关系, 如图所示。
[0106] 本发明又一实施例的天线被设计为具有双频发送和接收能力。 为此, 各馈电部 电性绝缘, 以分别将待发送的频段信号输入到各自的单元中, 或者将已接收的 信号从各自的单元中输出。
[0107] 优选地, 第一馈电部 17是同轴馈电部。 类似地, 第二馈电部 18优选为同轴馈电 部。 采用同轴馈电的方式, 降低了馈电结构的干扰。
[0108] 在本发明又一实施例中, 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射 片 14可均为平面。 但是, 本发明并不局限于此, 在其他实施例中, 第一基板 11 、 第二基板 12、 第一辐射片 13和第二辐射片 14可均为弧面, 例如凸面形状或凹 面形状。 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可具有相同 的曲率, 从而这些结构层 11-14之间因其相似的三维形状而贴合。 在该实施例中 , 通过第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可以是共形的 凹面形状或凸面形状, 这样一来, 可以使得该天线设计更加紧凑, 减小平面尺 寸, 通过这种曲面的共形设计还能增加天线的辐射面积, 辐射能量集中, 进而 提高天线的增益以及扩宽覆盖范围。
[0109] 图 12示出了图 8中的天线的电压驻波比曲线图。 图 13示出了图 8中的天线的增益 曲线图。 图 14示出了图 8中的天线的轴比曲线图, 参考图 14, 本发明又一实施例 的天线可以在 ±50°范围内, 实现轴比小于等于 6。 结合图 12至图 14, 可知本发明 中的天线可以产生两个圆极化的频段。
[0110] 现有技术中, 需要使用两个天线或者甚至更多个天线来构成双频段或者多频段 圆极化天线, 因此, 在后端信号处理吋, 通常需要两套或者甚至更多套信号处 理装置来分别进行信号的处理, 这样很明显就增加了设备的体积、 重量和成本
[0111] 但是, 通过本发明的天线设计, 以及图 12至图 14的实际效果图来看, 单个辐射 片就能实现圆极化效果, 而且也具备双频段、 高增益以及轴比性能好的优点。
[0112] 图 11示出本发明又一实施例的天线***的结构示意图。 参考图 11所示, 本发明 又一实施例的天线***包括图 8所示实施例的天线 10、 合路器 20以及馈电端口 30 。 合路器 20的第一端连接馈电端口 30, 合路器 20的第二端连接天线 10的第一辐 射片 13的第一馈电部 17, 合路器 20的第三端连接第二辐射片 14的第二馈电部 18
[0113] 合路器 20—方面是将输入激励信号分成多频段的信号, 分别输出到天线对应辐 射片的馈电部。 此吋合路器亦可称为分路器, 相应地, 天线***处于发射信号 的状态。 合路器 20另一方面是将多频段的接收信号合路到一个馈电端口, 此吋 天线***处于接收信号的状态。 举例来说, 本发明又一实施例中合路器 20—方 面负责将馈电端口 30提供的激励信号的第一频段输出到天线 10的第一馈电部 17 , 将激励信号的第二频段输出到天线 10的第二馈电部 18。 合路器 20另一方面负 责将分别来自各个辐射片 13、 14的各个频段信号组合到在一起后输出给馈电端 口 30。 举例来说, 第二频段的频率可以高于第一频段, 形成高频和低频的配合
[0114] 发射工作吋, 激励信号从一个馈电端口 30进入合路器 20的第一端 (此吋其为输 入端) , 经合路器 20后, 分成两路信号, 其中一路信号经过第二端 (此吋其为 输出端) 及传输线提供给天线 10的第一馈电部 17, 另一路信号经过第三端 (此 吋其为输出端) 及传输线提供给天线 10的第二馈电部 18。 接收工作吋, 两路接 收信号分别从第一馈电部 17和第二馈电部 18经传输线传输到合路器 20的第二端( 此吋其为输入端)和第三端 (此吋其为输入端), 进入合路器 20组合成一个信号, 再从第一端 (此吋其为输出端) 输出给馈电端口 30, 由后续的接收电路处理。
[0115] 因而, 本发明只需要一个馈电端口输出, 可以仅用一套信号处理装置, 大大简 化了天线的结构, 降低了成本。
[0116] 本发明上述实施例的圆极化天线及天线***可结合于通讯设备中。
[0117] 天线由于具有剖面低、 重量轻、 体积小、 易于共形和批量生产优点, 可以广泛 应用于测量和通讯各个领域。 本发明又一实施例的圆极化天线应用范围更加广 泛, 可以应用于移动通信、 卫星导航等领域。 圆极化天线在实际应用方面的主 要优势有:
[0118] 1)任意的极化电磁波均可分解为两个旋向相反的圆极化波, 如对于线极化波来 说, 可以分解为两个反向等幅的圆极化波。 因此, 任意极化的电磁波均可被圆 极化天线接收, 而圆极化天线发射的电磁波则可被任意极化的天线接收到, 故 电子侦察和干扰中普遍采用圆极化天线;
[0119] 2)在通信、 雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋 向正交性;
[0120] 3) 圆极化波入射到对称目标 (如平面、 球面等) 吋旋向逆转, 所以圆极化天线 在移动通信、 卫星导航等领域抑制雨雾干扰和抗多径反射。
[0121] 提供对本公幵的先前描述是为使得本领域任何技术人员皆能够制作或使用本公 幵。 对本公幵的各种修改对本领域技术人员来说都将是显而易见的, 且本文中 所定义的普适原理可被应用到其他变体而不会脱离本公幵的精神或范围。 由此 , 本公幵并非旨在被限定于本文中所描述的示例和设计, 而是应被授予与本文 中所公幵的原理和新颖性特征相一致的最广范围。

Claims

权利要求书
一种天线, 包括第一基板、 第二基板、 第一辐射片和第二辐射片, 所 述第一辐射片设置在所述第一基板上, 所述第二基板设置在所述第一 辐射片上, 所述第二辐射片设置在所述第二基板上, 在所述第一辐射 片和所述第二辐射片的边缘处皆设有延伸部, 并且所述第一辐射片和 所述第二辐射片分别包括第一馈电部和第二馈电部。
如权利要求 1所述的天线, 其特征在于, 所述第一辐射片和所述第二 辐射片均为圆形。
如权利要求 2所述的天线, 其特征在于, 所述延伸部为朝圆心方向向 内凹陷的缺口, 所述第一辐射片上设有两个延伸部, 并且两个延伸部 均位于所述第一辐射片的圆周上且关于圆心对称。
如权利要求 3所述的天线, 其特征在于, 所述第一基板为矩形, 且所 述第一辐射片的圆心在所述第一基板上的投影与所述第一基板的中心 重合。
如权利要求 4所述的天线, 其特征在于, 所述第一辐射片上两个缺口 的连线落在所述第一基板的一条对角线上。
如权利要求 3所述的天线, 其特征在于, 所述第二辐射片上设有两个 延伸部, 并且两个延伸部均位于所述第二辐射片的圆周上且关于圆心 对称。
如权利要求 6所述的天线, 其特征在于, 所述第二基板为矩形, 且所 述第二辐射片的圆心在所述第二基板上的投影与所述第二基板的中心 重合。
如权利要求 7所述的天线, 其特征在于, 所述第二辐射片上两个缺口 的连线落在所述第二基板的一条对角线上。
如权利要求 6所述的天线, 其特征在于, 所述第一辐射片上两个缺口 的连线与所述第二辐射片上两个缺口的连线相互交叉。
如权利要求 2所述的天线, 其特征在于, 所述延伸部为自所在的圆周 起朝远离圆心的方向径向凸起的凸起部, 所述第一辐射片上设有两个 延伸部, 并且两个延伸部均位于所述第一辐射片的圆周上且关于圆心 对称。
如权利要求 10所述的天线, 其特征在于, 所述第一基板为矩形, 且所 述第一辐射片的圆心在所述第一基板上的投影与所述第一基板的中心 重合。
如权利要求 11所述的天线, 其特征在于, 所述第一辐射片上两个凸起 部的连线落在所述第一基板的一条对角线上。
如权利要求 10所述的天线, 其特征在于, 所述第二辐射片上设有两个 延伸部, 并且两个延伸部均位于所述第二辐射片的圆周上并且关于圆 心对称。
如权利要求 13所述的天线, 其特征在于, 所述第二基板为矩形, 且所 述第二辐射片的圆心在所述第二基板上的投影与所述第二基板的中心 重合。
如权利要求 14所述的天线, 其特征在于, 所述第二辐射片上两个凸起 部的连线落在所述第二基板的一条对角线上。
如权利要求 13所述的天线, 其特征在于, 所述第一辐射片上两个所述 凸起部的连线与所述第二辐射片上两个所述凸起部的连线相互交叉。 如权利要求 1所述的天线, 其特征在于, 所述第一馈电部位于所述第 一辐射片的水平对称轴或垂直对称轴上, 所述第二馈电部位于所述第 二辐射片的水平对称轴或垂直对称轴上。
如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的尺寸小于 所述第二基板的尺寸, 所述第一辐射片的尺寸小于所述第一基板的尺 寸, 且所述第一辐射片的尺寸大于所述第二辐射片的尺寸。
如权利要求 2所述的天线, 其特征在于, 所述第二辐射片的圆心在所 述第一辐射片上的投影与所述第一辐射片的圆心重合, 且所述第二辐 射片的水平对称轴和垂直对称轴在所述第一辐射片上的投影分别与所 述第一辐射片的水平对称轴和垂直对称轴重合。
如权利要求 1所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同。
[权利要求 21] —种天线***, 包括馈电端口、 天线以及合路器, 所述天线是权利要 求 1至 20中任一项所述的天线, 所述合路器的第一端连接所述馈电端 口, 所述合路器的第二端连接所述第一馈电部, 所述合路器的第三端 连接所述第二馈电部。
[权利要求 22] —种通信设备, 包括权利要求 21所述的天线***。
PCT/CN2016/072720 2015-01-30 2016-01-29 天线、天线***和通信设备 WO2016119739A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510052372.3A CN105990663A (zh) 2015-01-30 2015-01-30 天线、天线***和通信设备
CN201510054768.1 2015-01-30
CN201510052372.3 2015-01-30
CN201510054768.1A CN105990665A (zh) 2015-01-30 2015-01-30 天线、天线***和通信设备

Publications (1)

Publication Number Publication Date
WO2016119739A1 true WO2016119739A1 (zh) 2016-08-04

Family

ID=56542463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072720 WO2016119739A1 (zh) 2015-01-30 2016-01-29 天线、天线***和通信设备

Country Status (1)

Country Link
WO (1) WO2016119739A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140071016A1 (en) * 2012-09-07 2014-03-13 Yu-Sheng Chen Dual-band and dual-polarization antenna
CN203644949U (zh) * 2013-12-18 2014-06-11 深圳市振华微电子有限公司 一种应用于gps和wlan的双频微带天线
CN203883115U (zh) * 2013-12-12 2014-10-15 深圳光启创新技术有限公司 圆极化天线、圆极化天线***和通讯设备
CN204407496U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 微带天线、天线***和通信设备
CN204407493U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线***及通讯设备
CN204407495U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线***和通信设备
CN204407502U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 微带天线、天线***和通信设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140071016A1 (en) * 2012-09-07 2014-03-13 Yu-Sheng Chen Dual-band and dual-polarization antenna
CN203883115U (zh) * 2013-12-12 2014-10-15 深圳光启创新技术有限公司 圆极化天线、圆极化天线***和通讯设备
CN203644949U (zh) * 2013-12-18 2014-06-11 深圳市振华微电子有限公司 一种应用于gps和wlan的双频微带天线
CN204407496U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 微带天线、天线***和通信设备
CN204407493U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线***及通讯设备
CN204407495U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线***和通信设备
CN204407502U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 微带天线、天线***和通信设备

Similar Documents

Publication Publication Date Title
JP6981475B2 (ja) アンテナ、アンテナの構成方法及び無線通信装置
US10135155B2 (en) Wireless communication module
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
US9755311B2 (en) Circularly polarized patch antennas, antenna arrays, and devices including such antennas and arrays
US20150214629A1 (en) Antenna
EP2631991B1 (en) Microstrip antenna
WO2014011087A4 (en) Lens antenna with electronic beam steering capabilities
US9680211B2 (en) Ultra-wideband antenna
CN204407491U (zh) 天线、天线***和通信设备
JP6602165B2 (ja) 2周波共用円偏波平面アンテナおよびその軸比調整方法
CN110112561A (zh) 一种单极化天线
CN204407499U (zh) 天线、天线***和通信设备
KR101412135B1 (ko) Mimo용 수평 편파 무지향성 안테나
WO2016119740A1 (zh) 天线、天线***和通信设备
CN105305051A (zh) 一种椭圆形圆极化微带天线
CN204407497U (zh) 天线、天线***和通信设备
WO2016119739A1 (zh) 天线、天线***和通信设备
JP2015233253A (ja) 無線装置
CN204407494U (zh) 天线、天线***和通信设备
CN111800155B (zh) 无线装置
WO2016119738A1 (zh) 天线、天线***和通信设备
WO2016119729A1 (zh) 天线、天线***和通信设备
Ding et al. Wideband omnidirectional circularly polarized antenna for millimeter-wave applications using printed artificial anisotropic polarizer
CN204407503U (zh) 天线、天线***和通信设备
CN204407495U (zh) 天线、天线***和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742801

Country of ref document: EP

Kind code of ref document: A1