WO2016119579A1 - 一种可连续生产金属半固态浆体的方法 - Google Patents

一种可连续生产金属半固态浆体的方法 Download PDF

Info

Publication number
WO2016119579A1
WO2016119579A1 PCT/CN2016/070184 CN2016070184W WO2016119579A1 WO 2016119579 A1 WO2016119579 A1 WO 2016119579A1 CN 2016070184 W CN2016070184 W CN 2016070184W WO 2016119579 A1 WO2016119579 A1 WO 2016119579A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
solid
slurry
solid metal
metal
Prior art date
Application number
PCT/CN2016/070184
Other languages
English (en)
French (fr)
Inventor
林荣英
Original Assignee
林荣英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林荣英 filed Critical 林荣英
Publication of WO2016119579A1 publication Critical patent/WO2016119579A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/06Heating or cooling equipment

Definitions

  • the invention belongs to the technical field of semi-solid molding of metals, and in particular relates to a method for continuously producing a semi-solid metal slurry.
  • the method overcomes the defects of the complicated process flow and high production cost in the existing semi-solid metal slurry manufacturing method, is easy to operate, has low production cost, and is easy to realize large-scale industrial application.
  • the present invention adopts the following technical solutions:
  • a method for continuously producing a metal semi-solid slurry comprising the following steps:
  • the semi-solid metal slurry (4) in the step (c) is completely solidified into a solid after being cooled.
  • the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 1% by weight.
  • the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 10wt%.
  • the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of at least 20% by weight.
  • the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of not more than 40% by weight.
  • the newly formed semi-solid metal slurry (1) in the step (e) is cooled to have a solid content of not more than 50% by weight.
  • the solid content of the newly formed semi-solid metal slurry (1) in the step (e) is not more than 60% by weight after cooling.
  • the above process can be continually repeated to meet the needs of continuous production; that is, a part of the newly formed semi-solid metal slurry (1) will be taken away for semi-solid processing, and the remaining half
  • the solid metal slurry is in turn added with a quantity of molten metal (5) to form more semi-solid metal paste (1).
  • the remaining semi-solid metal slurry (4) in the vessel (2) has completely solidified into a solid.
  • the time for cooling the remaining semi-solid metal slurry (4) in the vessel (2) may be zero; in the case of the above, generally the remaining semi-solid metal slurry
  • the solids content of body (4) is already relatively high, so no further cooling is required to increase its solids ratio.
  • the time for cooling the newly formed semi-solid metal slurry (1) may be zero; in the case of the newly formed semi-solid metal slurry (1)
  • the solids content has reached the requirements for semi-solid processing, so no further cooling is required to increase its solids ratio.
  • the length of the cooling time in actual production is selected according to the level of solid content in the semi-solid metal slurry and the actual needs.
  • the solid content in the semi-solid metal slurry is high, and the cooling time is correspondingly shorter.
  • the low solids content in the semi-solid metal paste results in a correspondingly longer cooling time.
  • the newly formed semi-solid metal paste (1) has a solids content after cooling of at least 1% by weight, preferably at least 10% by weight, more preferably at least 20% by weight; the key is that a new formation
  • the solid content of the semi-solid metal paste (1) should be selected to ensure that it inhibits the formation of metal dendritic structures and networks during further cooling and solidification.
  • the newly formed semi-solid metal slurry (1) has a solid content after cooling of not more than 60% by weight, preferably not more than 50% by weight, more preferably not more than 40% by weight; a higher solid content may be The slurry is not easily subjected to further semi-solid processing.
  • the solid content of the newly formed semi-solid metal slurry (1) is less than 10% by weight, the viscosity thereof is relatively low; an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) may be omitted to achieve the slurry.
  • an additional stirring process such as mechanical stirring, electromagnetic stirring, etc.
  • the purpose of body homogenization when the solid content of the formed semi-solid metal slurry (1) is more than 20% by weight, the viscosity thereof is relatively high, and an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) is generally required to achieve uniform slurry. Purpose.
  • the present invention is easy to implement large-scale industrial applications.
  • Figure 1 is a schematic view of the process of the present invention
  • Figure 2 is a photomicrograph of a metal composition of one example of the invention comprising a spherical primary solid phase and a secondary solid phase formed during the cold quenching process.
  • Figure 1 shows four separate steps in a preferred embodiment of the invention.
  • Step 1 shows a container (2) containing a certain weight of semi-solid metal slurry (1).
  • Step 2 shows the container (2) in step 1, the semi-solid metal slurry (1) in the container (2) has been taken out and placed in another container (6); half in the container (6)
  • the solid metal paste (3) will be used for further processing, such as for semi-solid die casting, with some semi-solid metal slurry (4) remaining in the vessel (2).
  • Step 3 shows the semi-solid metal slurry (4) remaining in step 2, and after a certain period of cooling, the solid ratio of the remaining semi-solid metal slurry (4) has increased; in some cases, half The solid metal slurry (4) can be cooled for a sufficient period of time to completely solidify into a solid.
  • Step 4 shows a further container (7) in which the molten metal (5) is contained; a certain amount of molten metal (5) has been added to the container (2) and half of the step 3 Solid metal paste (4) mixed together to form a new half Solid metal paste (1). If necessary, the newly formed semi-solid metal slurry (1) can be further cooled to increase its solid ratio (not shown).
  • the solid ratio of the semi-solid metal paste (1) can be the weight of the molten metal (5) added, the weight of the remaining semi-solid metal paste (4), and the remaining semi-solid metal paste.
  • the cooling time of the body (4) and the parameters such as the cooling time of the newly formed semi-solid metal slurry (1) are adjusted to control. In many cases, it is desirable to control the solid ratio of the semi-solid metal slurry (1) to be between 10 and 30%; since the semi-solid metal slurry (1) has sufficient solid content in this ratio range To prevent the generation of dendrites, while the semi-solid metal slurry (1) still has sufficient fluidity to be poured out of the container (2) (not shown).
  • the above process can be continually repeated to meet the needs of continuous production; that is, a portion of the newly formed semi-solid metal slurry (1) will be removed for semi-solid processing, while the remaining The semi-solid metal slurry is in turn added with a quantity of molten metal (5) to form more semi-solid metal paste (1).
  • a "clay-graphite" crucible having an inner diameter of about 130 mm, a wall thickness of about 16 mm, and a height of about 180 mm is heated to about 620 ° C; then about 5,000 g of molten Al - 7 wt % Si is poured into the crucible.
  • the aluminum alloy in the crucible has become a semi-solid slurry; then about 3000 g is poured out from the crucible.
  • the semi-solid slurry is ready for other use.
  • about 2000 grams of semi-solid slurry remains in the crucible; then the remaining semi-solid slurry in the crucible is naturally cooled for 45 seconds, at which time the semi-solid in the crucible
  • the temperature of the slurry is lowered to about 600 ° C; then about 3000 grams of a molten Al - 7 wt % Si aluminum alloy of about 630 ° C is added to the crucible, at which time the temperature of the aluminum alloy in the crucible is about 612 ° C, which is a new 5000 grams of semi-solid slurry has been formed; then the newly formed semi-solid slurry in the crucible
  • a temperature of about 5000 grams of semi-solid slurry in the crucible falls below about

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

一种可连续生产半固态金属浆体的方法,包括以下步骤:提供半固态金属浆体(1)于一容器(2)中,从容器(2)中取走部分的半固态金属浆体(3)用于半固态加工,冷却容器(2)中剩余的半固态金属浆体(4)以增加其固体比率,往容器(2)中加入熔融金属(5)以形成新的半固态金属浆体(1),冷却所述的半固态金属浆体(1)以增加其固体比率;重复以上步骤以达到连续生产半固态金属浆体的目的。该方法的工艺流程简单且易于控制,生产成本低,易于实现大规模的产业化应用。

Description

一种可连续生产金属半固态浆体的方法 技术领域
本发明属于金属的半固态成型技术领域,具体涉及一种可连续生产半固态金属浆体的方法。
背景技术
众所周知,使用金属半固态浆体成型的零件相对于普通液态成型的对应零件有许多的优点,如较少的缺陷、更佳的机械性能等;因此,半固态金属成形技术以其诸多的优越性而被视为划时代的金属加工新工艺。近年来,半固态金属成形技术的工业应用已取得很大进展;目前,制备具有球状晶结构的半固态金属浆体的方法主要有:机械搅拌法、电磁搅拌法、超声波搅拌法等。这些方法的工艺流程相对复杂、导致生产成本相对较高,以至于到目前为止,金属的半固态成型技术还没有在很大的范围得到工业化应用。
发明内容
本发明的目的在于针对现有技术的不足,提供一种可连续生产半固态金属浆体的方法。该方法克服了现有的半固态金属浆体制作方法中存在的工艺流程较复杂、生产成本较高的缺点,易于操作,生产成本极低,易于实现大规模的产业化应用。
为实现上述目的,本发明采用如下技术方案:
一种可连续生产金属半固态浆体的方法,包括以下步骤:
(a)提供半固态金属浆体(1)于一容器(2)中;
(b)从容器(2)中取走部分的半固态金属浆体(3)用于半固态加工(如半固态压铸、半固态锻造和半固态挤压等);
(c)将容器(2)中剩余的半固态金属浆体(4)冷却以增加其固体比率;
(d)往容器(2)中加入熔融金属(5)以形成新的半固态金属浆体(1);
(e)冷却新形成的半固态金属浆体(1)以增加其固体比率。
所述的步骤(c)中半固态金属浆体(4)经冷却后已完全凝固成固体。
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为1wt%。
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为 10wt%。
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为20wt%。
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过40wt%。
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过50wt%。
所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过60wt%。
在实际生产中,以上的工艺流程可以不断地被重复,以满足连续生产的需要;即一部分新形成的半固态金属浆体(1)又会被取走用于半固态加工,而剩余的半固态金属浆体又会被加入一定量的熔融金属(5)以便形成更多的半固态金属浆体(1)。
根据本发明的一个实施例,经过一定长时间的冷却后,容器(2)中剩余的半固态金属浆体(4)已完全凝固成固体。
根据本发明的另一个实施例,对容器(2)中剩余的半固态金属浆体(4)进行冷却的时间可以为零;在种情况下,一般来说所述的剩余的半固态金属浆体(4)的固体含量已经比较高,所以不需要进一步的冷却以增加其固体比率。
根据本发明的另一个实施例,对所述的新形成的半固态金属浆体(1)进行冷却的时间可以为零;在种情况下,所述的新形成的半固态金属浆体(1)的固体含量已经达到半固态加工的要求,所以不需要进一步的冷却以增加其固体比率。
总之,实际生产时冷却时间的长短是根据半固态金属浆体中的固体含量的高低和实际的需要而进行选择的,半固态金属浆体中的固体含量高,则相应地冷却时间较短,半固态金属浆体中的固体含量低,则相应地冷却时间较长。
根据本发明的一个优选实施例,新形成的半固态金属浆体(1)经冷却后的固体含量至少为1wt%,优选至少为10wt%,更优选至少为20wt%;其关键在于,新形成的半固态金属浆体(1)的固体含量的选择,应确保其在进一步的冷却和凝固时抑制金属枝状晶结构和网络的产生。
根据本发明的另一个优选实施例,新形成的半固态金属浆体(1)经冷却后固体含量不超过60wt%,优选不超过50wt%,更优选不超过40wt%;更高的固体含量可能使浆体不易于进行进一步的半固态加工。
需要指出的是,当新形成的半固态金属浆体(1)的固体含量少于10wt%,其粘度相对较低;可以不需要附加的搅拌工序(如机械搅拌、电磁搅拌等)以达到浆体均匀化的目的。然而,当所述的所形成的半固态金属浆体(1)的固体含量大于20wt%,其粘度相对较高,一般需要附加的搅拌工序(如机械搅拌、电磁搅拌等)以达到浆体均匀化的目的。
本发明的有益效果在于:
1)本发明的工艺流程非常简单,且易于控制;
2)应用本发明揭露的制浆方法,浆体的生产成本极低;
3)本发明易于实现大规模的产业化应用。
附图说明
图1为本发明的工艺示意图;
图2为本发明的一个实例的金属组合物的显微照片,包括球状的初生固体相和冷淬过程中形成的二次固体相。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
图1示出了本发明的一个优选实施例中的四个独立步骤。步骤1示出了一个容器(2),容器(2)中装有一定重量的半固态金属浆体(1)。步骤2示出了步骤1中的容器(2),容器(2)中的半固态金属浆体(1)已被取出一部分并放入另一个容器(6)中;容器(6)中的半固态金属浆体(3)将被用于进一步的加工使用,如用于半固态压铸,容器(2)中还剩余一些半固态金属浆体(4)。步骤3示出了步骤2中所剩余的半固态金属浆体(4),经过一定长时间的冷却,所剩余的半固态金属浆体(4)的固体比率已经增加;在一些情况下,半固态金属浆体(4)可以被冷却足够长的时间以至于完全凝固成固体。步骤4示出再一个容器(7),容器(7)中装有熔融的金属(5);一定量的熔融金属(5)已被加入到容器(2)中,并和步骤3中的半固态金属浆体(4)混合在一起形成了新的半 固态金属浆体(1)。必要时,可以对新形成的半固态金属浆体(1)进行进一步的冷却以增加其固体比率(非示出)。
半固态金属浆体(1)的固体比率可通过对所加入的熔融金属(5)的重量和温度,对所剩余的半固态金属浆体(4)的重量,对所剩余的半固态金属浆体(4)的冷却时间,以及对新形成的半固态金属浆体(1)的冷却时间等参数进行调节来控制。在许多情况下,理想的是,将半固态金属浆体(1)的固体比率控制在10-30%之间;因为在该比率范围,半固态金属浆体(1)已具有足够的固体含量以防止枝状晶的产生,同时半固态金属浆体(1)仍然具有足够的流动性从容器(2)中倒出(非示出)。
在实际生产应用中,以上的工艺流程可以不断地被重复,以满足连续生产的需要;即一部分新形成的半固态金属浆体(1)又会被取走用于半固态加工,而剩余的半固态金属浆体又会被加入一定量的熔融金属(5)以便形成更多的半固态金属浆体(1)。
实施例1
以下对Al-7wt%Si铝合金半固态浆体的生产方法及装置加以举例说明。
首先把一个内径为约130毫米、壁厚为约16毫米、高度为约180毫米的“粘土-石墨”坩埚加热至约620℃;然后往该坩埚倒入约5000克的熔融Al-7wt%Si铝合金,这时坩埚中的铝合金的温度为625℃(该Al-7wt%Si铝合金的液相线温度为约616℃,固相线温度为约572℃);然后让坩埚中的铝合金自然冷却,同时对该铝合金进行机械搅拌,当该合金的温度降到610℃时停止搅拌,这时坩埚中的铝合金已变成半固态浆体;然后从坩埚中倒出约3000克的半固态浆体以备他用,这时坩埚中还剩下约2000克的半固态浆体;然后让坩埚中所剩下的半固态浆体自然冷却45秒,这时坩埚中的半固态浆体的温度降到约600℃;然后往坩埚中加入约3000克的约630℃的熔融Al-7wt%Si铝合金,这时坩埚中的铝合金的温度为约612℃,即新的约5000克的半固态浆体已经形成;然后让坩埚中的新形成的半固态浆体自然冷却并同时进行机械搅拌约10秒,这时坩埚中的约5000克半固态浆体的温度降到约610℃。少量的半固态浆体被从坩埚中取出并在冷水中淬火;所得到的显微结构如图2所示;从图2可以看出,使用本发明所揭露的方法生产的半固态浆体,其初生固体相为球状晶结构。在实际生产中,以上 的本发明所揭露的方法可以不断地重复使用,以达到连续生产的目的。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

  1. 一种可连续生产金属半固态浆体的方法,其特征在于:包括以下步骤:
    (a)提供半固态金属浆体(1)于一容器(2)中;
    (b)从容器(2)中取走部分的半固态金属浆体(3)用于半固态加工;
    (c)将容器(2)中剩余的半固态金属浆体(4)冷却以增加其固体比率;
    (d)往容器(2)中加入熔融金属(5)以形成新的半固态金属浆体(1);
    (e)冷却步骤(d)新形成的半固态金属浆体(1)以增加其固体比率。
  2. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中半固态金属浆体(4)经冷却后已完全凝固成固体。
  3. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为1wt%。
  4. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为10wt%。
  5. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量至少为20wt%。
  6. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过40wt%。
  7. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过50wt%。
  8. 根据权利要求1所述的可连续生产金属半固态浆体的方法,其特征在于:所述的步骤(e)中新形成的半固态金属浆体(1)经冷却后固体含量不超过60wt%。
PCT/CN2016/070184 2015-01-30 2016-01-05 一种可连续生产金属半固态浆体的方法 WO2016119579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510046803.5A CN104550888B (zh) 2015-01-30 2015-01-30 一种可连续生产金属半固态浆体的方法
CN201510046803.5 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119579A1 true WO2016119579A1 (zh) 2016-08-04

Family

ID=53068547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070184 WO2016119579A1 (zh) 2015-01-30 2016-01-05 一种可连续生产金属半固态浆体的方法

Country Status (2)

Country Link
CN (1) CN104550888B (zh)
WO (1) WO2016119579A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550888B (zh) * 2015-01-30 2016-08-31 林荣英 一种可连续生产金属半固态浆体的方法
CN104841896A (zh) * 2015-05-28 2015-08-19 林荣英 一种生产金属半固态浆体的方法
CN105537552A (zh) * 2016-02-02 2016-05-04 曹海平 一种生产半固态浆体的方法及装置
CN112846127B (zh) * 2020-12-30 2022-07-12 福建省金瑞高科有限公司 5g基站散热壳的压铸方法及其应用的半固态压铸方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124232A (ja) * 1990-09-12 1992-04-24 Leotec:Kk 連続式半凝固金属製造装置のスタート方法
EP0745694A1 (en) * 1995-05-29 1996-12-04 Ube Industries, Ltd. Method and apparatus for shaping semisolid metals
CN101098974A (zh) * 2004-12-10 2008-01-02 M·韦森 生产液-固金属组合物的方法和装置
CN102266914A (zh) * 2011-08-08 2011-12-07 昆明理工大学 一种半固态合金浆料的制备方法
CN104084545A (zh) * 2014-07-25 2014-10-08 无锡职业技术学院 一种铸造Mg-Al合金液态熔体/半固态熔体混液变质方法
CN104550888A (zh) * 2015-01-30 2015-04-29 林荣英 一种可连续生产金属半固态浆体的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124232A (ja) * 1990-09-12 1992-04-24 Leotec:Kk 連続式半凝固金属製造装置のスタート方法
EP0745694A1 (en) * 1995-05-29 1996-12-04 Ube Industries, Ltd. Method and apparatus for shaping semisolid metals
CN101098974A (zh) * 2004-12-10 2008-01-02 M·韦森 生产液-固金属组合物的方法和装置
CN102266914A (zh) * 2011-08-08 2011-12-07 昆明理工大学 一种半固态合金浆料的制备方法
CN104084545A (zh) * 2014-07-25 2014-10-08 无锡职业技术学院 一种铸造Mg-Al合金液态熔体/半固态熔体混液变质方法
CN104550888A (zh) * 2015-01-30 2015-04-29 林荣英 一种可连续生产金属半固态浆体的方法

Also Published As

Publication number Publication date
CN104550888A (zh) 2015-04-29
CN104550888B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105525158B (zh) 一种半固态压铸铝合金材料及使用该材料压铸成型的方法
Jiang et al. Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting
WO2016119579A1 (zh) 一种可连续生产金属半固态浆体的方法
CN103820661B (zh) 稀土镁合金的半固态浆料制备方法
CN105583396B (zh) 一种制造半固态轻合金铸件的低压铸造一步法
CN109385542B (zh) 用于晶粒细化的铝铌硼合金杆的制备方法
CN103586431B (zh) 一种引入超声场铸轧法生产ctp版基坏料的方法
CN106086559B (zh) 一种长周期结构相增强Mg-RE-Ni镁合金半固态坯料及其制备方法
JP2018536544A (ja) 半凝固スラリーの製造方法及び装置
CN102699081B (zh) 一种铝硅铁合金发动机缸套的半固态触变挤压成形方法
CN104028722A (zh) 一种锌合金铸造工艺
CN108097854B (zh) 一种大型金属构件高均匀性短流程成形方法
CN104946960B (zh) 一种球墨铸铁用管模粉的制备方法及其应用
CN103162550A (zh) 一种铸造用金属熔体的处理装置及方法
WO2016188125A1 (zh) 一种生产金属半固态浆体的方法
CN108300917A (zh) 一种大型复杂汽车结构件专用压铸铝合金及其制备方法
CN103290244B (zh) 一种制备变形铝合金球形晶的简易方法
US10675676B2 (en) Process for preparing molten metals for casting at a low to zero superheat temperature
CN102319890B (zh) 一种制备变形铝合金半固态浆料的方法
CN102294442A (zh) 一种制备细晶粒变形铝合金半固态浆料的方法
CN102418009B (zh) 一种可消解高硬度化合物的铝合金及其熔炼方法
CN102418010A (zh) 去除针孔的铸铝合金及其熔炼方法
CN104404279A (zh) 一种铝镁铍中间合金及制备方法
Bo et al. Commercial AM60 alloy for semisolid processing: Effects of continuous rheoconversion process on microstructure
CN202316969U (zh) 低压铸造升液管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742641

Country of ref document: EP

Kind code of ref document: A1