WO2016119557A1 - 一种可反复热加工的热塑性淀粉及其制备方法 - Google Patents

一种可反复热加工的热塑性淀粉及其制备方法 Download PDF

Info

Publication number
WO2016119557A1
WO2016119557A1 PCT/CN2015/099661 CN2015099661W WO2016119557A1 WO 2016119557 A1 WO2016119557 A1 WO 2016119557A1 CN 2015099661 W CN2015099661 W CN 2015099661W WO 2016119557 A1 WO2016119557 A1 WO 2016119557A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
acid
parts
dimer acid
hydrogenated aliphatic
Prior art date
Application number
PCT/CN2015/099661
Other languages
English (en)
French (fr)
Inventor
陈庆
曾军堂
叶任海
Original Assignee
成都新柯力化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都新柯力化工科技有限公司 filed Critical 成都新柯力化工科技有限公司
Publication of WO2016119557A1 publication Critical patent/WO2016119557A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin

Definitions

  • thermoplastic starch which can be repeatedly processed by heat and its preparation method
  • the present invention relates to the field of deep processing of starch, and in particular to the thermoplastic treatment of starch.
  • Thermoplastic starch can be used in biodegradable plastics, environmentally friendly hot melt adhesives and other products.
  • Starch is an important renewable and biodegradable natural polymer material, which is widely used in food and textile industries.
  • the starch In order to further broaden the use of starch in the industrial field, the starch is desired to become a thermoplastic polymer material.
  • the adjacent molecules form strong crystals through hydrogen bonding, and a large number of molecular chains aggregate to form a close double helix structure, resulting in a hard shell of the starch crystal particles.
  • the hydrogen bond interaction due to the large amount of hydroxyl groups on the surface of the starch granules has a strong intramolecular synergistic effect and is not easily plasticized.
  • the melting point of natural starch is higher than the thermal decomposition temperature, resulting in poor hot workability. Therefore, starch cannot be subjected to high-temperature thermoplastic processing like plastic polymers.
  • thermoplastic is generally understood to be the ability of a material to be processed repeatedly without physical property changes and having thermal stability.
  • Natural starch is a rigid substance with hydrogen bonds between molecules. It does not have thermoplasticity and cannot be melt-formed. There is no melting process when directly heated, and it decomposes above 30CTC. Therefore, coking and poor processing performance are likely to occur during the processing of starch plastics. It is more difficult to use.
  • a small molecule plasticizer can be used, and a small molecule plasticizer is drilled between the macromolecular starch chains, so that the polar group of the plasticizer interacts with the polar group of the starch molecule instead of the starch molecule.
  • the polar action causes the starch granules to swell and increase the intermolecular distance, thereby weakening the van der Waals force between the starch molecular chains, making the molecular chains easy to move, reducing the melting temperature of the starch, and making it easy to be hot processed.
  • starch plasticizers there are many starch plasticizers currently studied, generally polar plasticizers, the main features of which are: polar groups capable of interacting with hydroxyl or ether bonds, such as: hydroxyl, amide, carboxyl, carbonyl Wait. Because small molecule plasticizers are more likely to penetrate into the interior of the starch crystals, swelling the starch molecules, thereby destroying their original structure and lowering the glass transition temperature, making them exhibit thermoplasticity.
  • Chinese Patent Application No. 200810110041. 0 discloses a thermoplastic starch plastic from starch, A plasticizer, maleic anhydride, etc., wherein the plasticizer uses a small molecule polar material such as glycerin or ethylene glycol.
  • Ciba 201180055540. 4 discloses a thermoplastic starch composition comprising 40% to 96% starch, and 1% to 40% plasticizer.
  • the plasticizer is a hydroxyl group organic compound, a hydroxy polymer plasticizer, a hydrogen bond organic compound, a fatty acid, and a mixture thereof.
  • Cisa Chinese Patent Application No. 201310754312. 7 discloses a low water content thermoplastic cassava modified starch and a preparation process thereof, and the raw materials including tapioca starch, plasticizer and initiator are placed in a stirred reaction kettle for grafting. reaction.
  • the plasticizer is dioctyl phthalate, diisononyl phthalate, dioctyl sebacate, triphenyl phosphate, paraffin oil, chlorinated paraffin, eucalyptus oil, epoxidized soybean oil.
  • a type of dipentaerythritol ester is dioctyl phthalate, diisononyl phthalate, dioctyl sebacate, triphenyl phosphate, paraffin oil, chlorinated paraffin, eucalyptus oil, epoxidized soybean oil.
  • a small molecule polar material is usually used as a plasticizer, and a plasticizer such as glycerin or ethylene glycol contains a hydroxyl group, an amino group, an amide group or the like in a small molecule. It can form a stronger hydrogen bond with the hydroxyl groups in the starch molecular chain, thereby destroying its original structure and lowering the glass transition temperature to make it exhibit thermoplasticity.
  • the small molecule plasticizer has a significant reduction in hydrogen bonding to starch, and the plasticizing effect is excellent.
  • the small molecule plasticizer will lower the molecular weight of the starch, resulting in a decrease in the mechanical properties of the starch, and a small molecule increase during hot working. Plasticizers are easily precipitated, volatilized, and lost. Therefore, starch is no longer thermoplastic when it is repeatedly subjected to hot processing, which is the main reason for the poor thermal stability of thermoplastic starch.
  • thermoplastic starch contains a small molecule plasticizer, and small molecule plasticizer is easily precipitated and volatilized during thermal processing, which makes it difficult to repeatedly process thermoplastic starch at high temperatures.
  • the present invention provides a re-heat-processable thermoplastic starch which is obtained by amination of a starch with a hydrogenated aliphatic dimer acid, which can be repeatedly thermoplastic due to the absence of a small molecular weight plasticizer. machining. A method of preparing the thermoplastic starch is further provided.
  • thermoplastic starch that can be repeatedly heat processed, characterized in that: starch is aminated, and hydrogenated with aliphatic
  • the re-heat-processable thermoplastic starch formed by polycondensation of dimer acid comprises the following components by weight:
  • starch is a mixture of one or more of tapioca starch, sweet potato starch, potato starch, banana starch, acorn starch, sago starch, konjac starch, pea starch, corn starch.
  • the hydrogenated aliphatic dimer acid is derived from dimerized linoleic acid, dimerized oleic acid, dipolylinolenic acid, dimerized soybean acid or dimerized oleic acid, and C 18 derived from dimeric acid
  • the dimer acid of the hydrogenated fatty acid, the dimer acid accounts for 70-80% of the total mass of the hydrogenated aliphatic dimer acid.
  • the aminating agent is at least one of hydroxylamine sulfate, hexamethylenediamine, decanediamine, and diethylhydroxylamine.
  • the tackifier processing aid is at least one of maleic rosin, rosin glyceride, hydrogenated rosin glyceride, pentaerythritol rosin ester, hydrogenated pentaerythritol rosin ester, and acrylic acid modified rosin.
  • thermoplastic starch that can be repeatedly processed by heat, characterized in that the specific steps are as follows:
  • the pre-polycondensate obtained in the step (2) is added to the double-stage twin-screw reaction extruder, and the first-stage screw reactor temperature is set at 80-120 ° C, and the mixture is mixed with the gap between the screw and the barrel. , the crystal of the aminated starch is relaxed to form an amorphous gel powder, and polycondensed with a hydrogenated aliphatic dimer acid; through a second-stage screw reactor, the second-stage screw reactor temperature is 140_175 ° C, and the process is accompanied by deep polycondensation.
  • a two-stage devolatilizer is provided, and the degassing vacuum is reduced to 0. 05-0. 08 MPa, and the thermoplastic starch which can be repeatedly heat-processed is obtained by continuous polycondensation, devolatilization, and extrusion dicing.
  • the grinding machine described in the step (1) selects a ball mill, and the micro-machine uses a vortex flow micro-machine, and the starch is refined by the crushing of the starch granules and the starch is rapidly passed through the fine interfacial reaction. Amination.
  • the step (3) of the double-stage twin-screw reaction extruder comprises a first-order reactor and a second-order reactor, and the first-order and second-order reactors are closely linked, and only one feed port is provided. And a discharge port, wherein the first-order reactor is an anisotropic twin-screw reaction extruder, and the counter-rotating meshing thread element relaxes the crystal of the aminated starch to form an amorphous gel powder, and is polycondensed with the hydrogenated aliphatic dimer acid.
  • the second-order reactor is a co-rotating twin-screw reaction extruder, and the co-rotating screw elements continuously deep-condense the aminated starch and the hydrogenated aliphatic dimer acid, and the generated water is generated by the two-stage vacuum devolatilizer And the gas is eliminated in time to achieve continuous polycondensation, devolatilization, and extrusion pelletizing.
  • the present invention relates to a re-heat-processable thermoplastic starch and a preparation method thereof, which are capable of polycondensation of a starch and a polycondensation of a hydrogenated aliphatic dimer acid, thereby overcoming the small molecule when directly plasticizing a starch using a small molecule plasticizer.
  • the plasticizer is prone to precipitation and volatilization loss, and the thermoplastic starch is subjected to repeated hot working at high temperatures.
  • the thermoplastic starch has good hot melt at 101. 8 ° C. When the temperature is raised to 200 ° C, the heat weight loss lines are substantially parallel, and no degradation, charring, decomposition occurs, and the hot workability is reproducible.
  • thermoplastic starch in order to avoid hydrolysis during starch polycondensation and high temperature and shear degradation during polycondensation, a double-stage twin-screw reaction extruder is used to crystallize the aminated starch in the first-order reactor. Relaxation to form amorphous gel powder, polycondensation with hydrogenated aliphatic dimer acid, with certain thermoplasticity; continuous continuous condensation of aminated starch and hydrogenated aliphatic dimer acid through a second-order reactor; continuous starch amorphization Polycondensation Thermoplasticization, deep polycondensation, and finally the starch becomes a thermoplastic starch with reproducible hot workability.
  • the thermoplastic starch can be used for biodegradable plastics, environmentally friendly hot melt adhesives, and the like.
  • thermoplastic starch of the present invention The hot workability of a re-heat-processable thermoplastic starch of the present invention was tested, and the mixture was heated and stirred at 140 ° C for 3 times, and the melt viscosity and appearance did not change significantly, and the strength loss was small, and the hot workability was repeated. Good, performance is as follows:
  • the present invention provides a re-heat-processable thermoplastic starch and a preparation method thereof, and the outstanding features and beneficial effects compared with the prior art are:
  • thermoplastic starch of the present invention is formed by polycondensation of a hydrogenated aliphatic dimer acid by amination of starch, and overcomes the problem that small molecule plasticizer is easily precipitated and volatilized when directly using a small molecule plasticizer to plasticize starch. Defects enable thermoplastic starch to achieve repeated thermal processing at elevated temperatures.
  • the thermoplastic starch has good hot melt at 101. 8 ° C. When the temperature rises to 20 CTC, the heat weight loss line is substantially parallel, no degradation, scorch, decomposition occurs, and no coke occurs in three consecutive 20 minutes heating, Good reproducible hot workability.
  • thermoplastic starch of the present invention adopts a double-stage twin-screw reaction extruder, which successively makes the starch successively amorphous, polycondensation, thermoplasticization, deep polycondensation, avoids hydrolysis, and polycondensation during starch polycondensation. Defects in high temperature and shear degradation during the process.
  • thermoplastic starch of the invention has the advantages of simplified process, high reaction efficiency and continuous scale production. Brief description of the drawing
  • thermoplastic starch of the present invention.
  • DSC differential scanning calorimetry
  • the pre-polycondensate obtained in the step (2) is added to the double-stage twin-screw reaction extruder, and the first-stage screw reactor temperature is set to 80-120 ° C, and the mixture is mixed with the gap between the screw and the barrel. , the crystal of the aminated starch is relaxed to form an amorphous gel powder, and polycondensed with a hydrogenated aliphatic dimer acid; through a second-stage screw reactor, the second-stage screw reactor temperature is 140_175 ° C, and the process is accompanied by deep polycondensation.
  • a two-stage devolatilizer is provided, and the degassing vacuum is reduced to 0. 05-0. 08 MPa, and the thermoplastic starch is obtained by continuous polycondensation, devolatilization, and extrusion dicing.
  • thermoplastic starch By performing a DSC test on the thermoplastic starch, see Figure 1.
  • the thermoplastic starch has good hot melt at 101. 8 ° C, and the heat weight loss line is substantially parallel within 200 ° C, so that the hot workability is reproducible.
  • invention embodiment
  • the pre-polycondensate obtained in the step (2) is added to the double-stage twin-screw reaction extruder, and the first-stage screw reactor temperature is set at 80-120 ° C, and the mixture is mixed with the gap between the screw and the barrel. , the crystal of the aminated starch is relaxed to form an amorphous gel powder, and polycondensed with a hydrogenated aliphatic dimer acid; through a second-stage screw reactor, the second-stage screw reactor temperature is 140_175 ° C, and the process is accompanied by deep polycondensation.
  • a two-stage devolatilizer is provided, and the degassing vacuum is reduced to 0. 05-0. 08 MPa, and the thermoplastic starch is obtained by continuous polycondensation, devolatilization, and extrusion dicing.
  • thermoplastic starch obtained in Example 2 60 parts were blown on a 45FM800 type film blowing machine at 125 ° C, and the film tensile strength was 21 MPa.
  • the pre-polycondensate obtained in the step (2) is added to the double-stage twin-screw reaction extruder, and the first-stage screw reactor temperature is set at 80-120 ° C, and the mixture is mixed with the gap between the screw and the barrel. , the crystal of the aminated starch is relaxed to form an amorphous gel powder, and polycondensed with a hydrogenated aliphatic dimer acid; through a second-stage screw reactor, the second-stage screw reactor temperature is 140_175 ° C, and the process is accompanied by deep polycondensation.
  • a two-stage devolatilizer is provided, and the degassing vacuum is reduced to 0. 05-0. 08 MPa, and the thermoplastic starch is obtained by continuous polycondensation, devolatilization, and extrusion dicing.
  • thermoplastic starch obtained in Example 3 was blended with 60 parts of polyamide hot melt adhesive to prepare an environmentally friendly hot melt adhesive, which can be heated for a long time and repeatedly processed.
  • the performance test is as follows:
  • the pre-polycondensate obtained in the step (2) is added to the double-stage twin-screw reaction extruder, and the first-stage screw reactor is set at a temperature of 80-120 ° C, and is kneaded by the gap between the spiral rib and the barrel. , the crystal of the aminated starch is relaxed to form an amorphous gel powder, and polycondensed with a hydrogenated aliphatic dimer acid; through a second-stage screw reactor, the second-stage screw reactor temperature is 140_175 ° C, and the process is accompanied by deep polycondensation.
  • a two-stage devolatilizer is provided, and the degassing vacuum is reduced to 0. 05-0. 08 MPa, and the thermoplastic starch is obtained by continuous polycondensation, devolatilization, and extrusion dicing.
  • the pre-polycondensate obtained in the step (2) is added to the double-stage twin-screw reaction extruder, and the first-stage screw reactor temperature is set at 80-120 ° C, and the mixture is mixed with the gap between the screw and the barrel. , the crystal of the aminated starch is relaxed to form an amorphous gel powder, and polycondensed with a hydrogenated aliphatic dimer acid; through a second-stage screw reactor, the second-stage screw reactor temperature is 140_175 ° C, and the process is accompanied by deep polycondensation.
  • a two-stage devolatilizer is provided, and the degassing vacuum is reduced to 0. 05-0. 08 MPa, and the thermoplastic starch is obtained by continuous polycondensation, devolatilization, and extrusion dicing.
  • the invention relates to a re-heat-processable thermoplastic starch and a preparation method thereof, which can overcome the direct small-molecule plasticizer to plasticize starch by amidating starch and polycondensing with hydrogenated aliphatic dimer acid
  • the plasticizer is prone to precipitation and volatilization loss, and the thermoplastic starch is subjected to repeated hot working at high temperatures.
  • the thermoplastic starch has good hot melt at 101. 8 ° C. When the temperature is raised to 200 ° C, the heat weight loss lines are substantially parallel, and no degradation, charring, decomposition occurs, and the hot workability is reproducible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明提供了一种可反复热加工的热塑性淀粉,按重量份计包括以下组分:淀粉80-85份,氢化脂肪族二聚酸10-15份,胺化剂2-3份,增粘加工助剂0.5-1.5份;通过淀粉胺化,与氢化脂肪族二聚酸进行缩聚,克服了直接使用小分子增塑剂增塑淀粉时小分子增塑剂容易析出、挥发流失的缺陷,使热塑性淀粉具备高温反复热加工性。进一步,提供了制备方法,采用了一种双阶式双螺杆反应挤出器,使淀粉先后连续无定形化、缩聚热塑化、深度缩聚,最终使淀粉变为一种具有高温反复热加工性的热塑性淀粉。

Description

说明书 发明名称: 一种可反复热加工的热塑性淀粉及其制备方法 技术领域
[0001] 本发明涉及淀粉深加工领域, 具体涉及淀粉的热塑化处理。 热塑性淀粉可用于 生物降解塑料、 环保热熔胶等产品。
背景技术
[0002] 淀粉是一种重要的可再生和可生物降解的天然高分子材料, 在食品、 纺织工业 中应用非常广泛。 为了进一步拓宽淀粉在工业领域的用途, 渴望淀粉变为一种 热塑性高分子材料。 然而, 淀粉分子上有大量羟基, 其邻近分子通过氢键形成 强烈的结晶, 大量的分子链聚集在一起形成紧密的双螺旋结构, 造成淀粉结晶 颗粒有坚硬的外壳。 由于淀粉颗粒表面大量的羟基而产生的氢键相互作用, 从 而具有很强的分子内协同作用, 不容易塑化。 另外, 天然淀粉的熔点比热分解 温度更高, 致使它的热加工性很差。 因此, 淀粉无法同塑料高分子一样进行高 温热塑化加工。
[0003] 所谓热塑性通常的理解即材料可以被反复加工而不发生物性改变、 具有热稳定 性的能力。 天然淀粉属刚性物质, 分子间存在氢键, 本身不具备热塑性, 不能 熔融成型, 直接加热时没有熔融过程, 30CTC以上分解, 所以在淀粉塑料的加工 过程中容易发生焦化、 加工性能差等现象, 使用比较困难。 为了使淀粉具有热 塑性, 可使用小分子增塑剂, 小分子增塑剂钻到大分子淀粉链间, 这样增塑剂 的极性基团与淀粉分子的极性基团相互作用, 代替淀粉分子间的极性作用, 使 淀粉颗粒溶胀, 增大分子间距离, 从而削弱淀粉分子链间的范德华力, 使得分 子链易移动, 降低淀粉的熔融温度, 使之易于热加工。
[0004] 目前研究的淀粉增塑剂很多, 一般都是极性增塑剂, 其主要特点是: 有能与羟 基或醚键作用的极性基团, 如: 羟基、 酰胺基、 羧基、 羰基等。 因为小分子增 塑剂更容易渗入淀粉结晶内部, 溶胀淀粉分子, 从而破坏其原有结构, 降低玻 璃化转变温度, 使其表现出热塑性。
[0005] 申请号为 200810110041. 0的中国专利公开了一种热塑性淀粉塑料, 由淀粉、 增 塑剂、 马来酸酐等组成, 其中增塑剂采用了甘油、 乙二醇等小分子极性材料。
[0006] 申请号为 201180055540. 4的中国专利公开了一种热塑性淀粉组合物, 包含 40% 至 96% 的淀粉, 1% 至 40% 的增塑剂。 其中增塑剂为羟基的有机化合物、 羟基聚 合物增塑剂、 氢键有机化合物、 脂肪酸以及它们的混合。
[0007] 申请号为 201310754312. 7 的中国专利公开了一种低含水量热塑性木薯改性淀 粉及其制备工艺, 将原料包括木薯淀粉、 塑化剂和引发剂放入搅拌反应釜, 进 行接枝反应。 其中增塑剂选用了邻苯二甲酸二辛酯、 邻苯二甲酸二异壬酯、 壬 二酸二辛酯、 磷酸三苯酯、 石蜡油、 氯化石蜡、 环垸油、 环氧大豆油、 双季戊 四醇酯的一种。
[0008] 根据上述, 为了实现淀粉的热塑化加工, 通常通过小分子极性材料作 为增塑剂, 如甘油、 乙二醇等塑化剂小分子中含有羟基、 氨基、 酰胺基等基团 , 能够与淀粉分子链中的羟基形成更强烈的氢键作用, 从而破坏其原有结构, 降低玻璃化转变温度, 使其表现出热塑性。 一方面, 小分子增塑剂对淀粉的氢 键减低明显, 增塑效果优异, 但另一方面, 小分子增塑剂会使淀粉分子量降低 , 导致淀粉力学性能降低, 在热加工时小分子增塑剂极易析出、 挥发、 流失, 因而反复热加工时淀粉不再具备热塑性, 这也是目前热塑性淀粉热稳定性差的 主要原因。
发明概述
技术问题
[0009] 目前热塑性淀粉含有小分子增塑剂, 在热加工时小分子增塑剂容易析出、 挥发 流失, 造成热塑性淀粉难以在高温下反复加工。
问题的解决方案
技术解决方案
[0010] 本发明提出一种可反复热加工的热塑性淀粉, 该热塑性淀粉是淀粉通过胺化, 与氢化脂肪族二聚酸缩聚而成, 由于不含小分子量增塑剂, 可进行反复的热塑 性加工。 进一步提供该热塑性淀粉的制备方法。
[0011] 为实现上述目的, 本发明采用如下技术方案:
[0012] 一种可反复热加工的热塑性淀粉, 其特征在于: 淀粉通过胺化, 与氢化脂肪族 二聚酸缩聚形成的可反复热加工的热塑性淀粉, 按重量份计包括以下组分:
[0013] 淀粉 80-85份,
[0014] 氢化脂肪族二聚酸 10-15份,
[0015] 胺化剂 2-3份,
[0016] 增粘加工助剂 0. 5-1. 5份,
[0017] 其中所述的淀粉为木薯淀粉、 甘薯淀粉、 马铃薯淀粉、 蕉芋淀粉、 橡子淀粉、 西米淀粉、 魔芋淀粉、 豌豆淀粉、 玉米淀粉中的一种或几种的混合物。
[0018] 所述的氢化脂肪族二聚酸由二聚亚油酸、 二聚油酸、 二聚亚麻酸、 二聚豆油酸 或二聚反油酸, 与二聚桐油酸衍生得到的 C 18氢化脂肪酸的二聚酸, 二聚体酸占 氢化脂肪族二聚酸总质量的 70-80%。
[0019] 所述的胺化剂为硫酸羟胺、 己二胺、 癸二胺、 二乙基羟胺中的至少一种。
[0020] 所述的增粘加工助剂为马来松香、 松香甘油酯、 氢化松香甘油酯、 季戊四醇松 香酯、 氢化季戊四醇松香酯、 丙烯酸改性松香中的至少一种。
[0021] 一种可反复热加工的热塑性淀粉的制备方法, 其特征在于具体步骤如下:
[0022] ( 1 ) 将 80-85重量份的淀粉与 2-3重量份的胺化剂通过研磨机或者微细机细化 至粉体粒径 5微米, 得到胺化淀粉;
[0023] ( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 10-15重量份的氢化脂肪族二聚酸加入高 速混合机, 高速混合机温度升至 100-120°C, 搅拌速度控制在 200-300rpm, 搅拌 的同时加入冰醋酸, 在高速混合机中预缩聚 30-45min, 冰醋酸的加入量控制在 氢化脂肪族二聚酸质量的 2-3%;
[0024] ( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设置一阶螺 杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通过第二阶螺杆反应器, 二阶 螺杆反应器温度 140_175°C, 进行深度缩聚, 反应过程伴随着水分和气体的产生 , 设置两段脱挥装置, 脱挥真空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到可反复热加工的热塑性淀粉。
[0025] 上述制备方法, 步骤 (1 ) 所述的研磨机选用球磨机, 微细机选用涡旋气流微 细机, 通过淀粉颗粒的破碎使淀粉微细化并通过微细界面反应对淀粉进行快速 胺化。
[0026] 上述制备方法, 步骤 (3 ) 所述的双阶式双螺杆反应挤出器包括一阶反应器和 二阶反应器, 一阶与二阶反应器密闭联动, 只设置一个进料口和一个出料口, 其中一阶反应器为异向双螺杆反应挤出器, 异向旋转的啮合螺纹元件使胺化淀 粉的晶体松弛形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 二阶反应器为同 向双螺杆反应挤出器, 同向旋转的螺纹元件使胺化淀粉与氢化脂肪族二聚酸连 续深度缩聚, 并通过设置的两段真空脱挥装置将产生的水分和气体及时排除, 实现连续缩聚、 脱挥、 挤出切粒。
[0027] 本发明一种可反复热加工的热塑性淀粉及其制备方法, 通过将淀粉胺化, 与氢 化脂肪族二聚酸进行缩聚, 克服了直接使用小分子增塑剂增塑淀粉时小分子增 塑剂容易析出、 挥发流失的缺陷, 使热塑性淀粉实现在高温下的反复热加工。 该热塑性淀粉在 101. 8°C具有良好的热熔性, 在温度升至 200°C时热重损失线基 本平行, 没有降解、 烧焦、 分解出现, 可反复热加工性良好。
[0028] 进一步, 为了避免淀粉缩聚时需要水解, 以及缩聚过程中受高温和剪切降解, 采用了一种双阶式双螺杆反应挤出器, 在一阶反应器中使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚, 具备一定的热塑性; 连续通过 二阶反应器使胺化淀粉与氢化脂肪族二聚酸连续深度缩聚; 使淀粉先后连续无 定形化、 缩聚热塑化、 深度缩聚, 最终使淀粉变为一种具可反复热加工性的热 塑性淀粉。 该热塑性淀粉可用于生物降解塑料、 环保热熔胶等。
[0029] 对本发明一种可反复热加工的热塑性淀粉的热加工性进行测试,在 140°C条件下 加热搅拌 3次, 熔融粘度、 外观没有明显的变化,强度损失较小, 反复热加工性 良好,性能如下表:
[] [表 1]
Figure imgf000006_0001
发明的有益效果
有益效果
[0030] 本发明一种可反复热加工的热塑性淀粉及其制备方法, 与现有技术相比突出的 特点和有益的效果在于:
[0031] 1、 本发明热塑性淀粉, 通过淀粉胺化, 与氢化脂肪族二聚酸缩聚而成, 克服 了直接使用小分子增塑剂增塑淀粉时小分子增塑剂容易析出、 挥发流失的缺陷 , 使热塑性淀粉实现在高温下的反复热加工。 该热塑性淀粉在 101. 8°C具有良好 的热熔性, 在温度升至 20CTC时热重损失线基本平行, 没有降解、 烧焦、 分解出 现, 连续三次 20分钟加热没有出现焦状物, 具有良好的可反复热加工性。
[0032] 2、 本发明热塑性淀粉, 采用了一种双阶式双螺杆反应挤出器, 使淀粉先后连 续无定形化、 缩聚热塑化、 深度缩聚, 避免了淀粉缩聚时需要水解, 以及缩聚 过程中受高温和剪切降解的缺陷。
[0033] 3、 本发明一种热塑性淀粉的制备方法, 工艺简化、 反应高效, 可进行连续化 规模生产。 对附图的简要说明
附图说明
[0034] 图 1是本发明热塑性淀粉的 差示扫描量热 (DSC) 图。 通过测试, 热塑性淀粉 在 101. 8°C具有良好的热熔性, 且在 200°C以内热重损失线基本平行, 因此可反 复热加工性良好。
实施该发明的最佳实施例
本发明的最佳实施方式
[0035] 实施例 1
[0036] ( 1 ) 将 40重量份的木薯淀粉、 40重量份的豌豆淀粉与 2重量份的硫酸羟胺通过 球磨机细化至粉体粒径 5微米, 得到胺化淀粉;
[0037] ( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 10重量份的二聚亚油酸与二聚桐油酸衍生 得到的 C 18氢化脂肪酸的二聚酸加入高速混合机, 高速混合机温度升至 100°C, 搅拌速度控制在 200-300rpm, 搅拌的同时加入冰醋酸, 在高速混合机中预缩聚 3 Omin, 冰醋酸的加入量控制在氢化脂肪族二聚酸质量的 2%;
[0038] ( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设置一阶螺 杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通过第二阶螺杆反应器, 二阶 螺杆反应器温度 140_175°C, 进行深度缩聚, 反应过程伴随着水分和气体的产生 , 设置两段脱挥装置, 脱挥真空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到热塑性淀粉。
[0039] 通过对该热塑性淀粉进行 DSC测试, 见附图 1。 该热塑性淀粉在 101. 8°C具有良 好的热熔性, 且在 200°C以内热重损失线基本平行, 因此可反复热加工性良好。 发明实施例
本发明的实施方式
[0040] 实施例 2
[0041] ( 1 ) 将 40重量份的甘薯淀粉、 45重量份的橡子淀粉与 3重量份的己二胺通过涡 旋气流细化机细化至粉体粒径 5微米, 得到胺化淀粉; [0042] ( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 15重量份的二聚油酸与二聚桐油酸衍生得 到的 C 18氢化脂肪酸的二聚酸加入高速混合机, 高速混合机温度升至 100°C, 搅 拌速度控制在 250rpm, 搅拌的同时加入冰醋酸, 在高速混合机中预缩聚 45min, 冰醋酸的加入量控制在氢化脂肪族二聚酸质量的 3%;
[0043] ( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设置一阶螺 杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通过第二阶螺杆反应器, 二阶 螺杆反应器温度 140_175°C, 进行深度缩聚, 反应过程伴随着水分和气体的产生 , 设置两段脱挥装置, 脱挥真空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到热塑性淀粉。
[0044] 将实施例 2得到的热塑性淀粉 60份与 40份聚己内酯 (PCL) 在 45FM800型吹膜机 上,在 125°C条件下进行吹制薄膜, 薄膜拉伸强度可达 21MPa。
[0045] 实施例 3
[0046] ( 1 ) 将 80重量份的西米淀粉与 3重量份的癸二胺通过研磨机细化至粉体粒径
5微米, 得到胺化淀粉;
[0047] ( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 10重量份的二聚亚麻酸与二聚桐油酸衍生 得到的 C 18氢化脂肪酸的二聚酸, 加入高速混合机, 高速混合机温度升至 110°C , 搅拌速度控制在 300rpm, 搅拌的同时加入冰醋酸, 在高速混合机中预缩聚 35m in, 冰醋酸的加入量控制在氢化脂肪族二聚酸质量的 2%;
[0048] ( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设置一阶螺 杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通过第二阶螺杆反应器, 二阶 螺杆反应器温度 140_175°C, 进行深度缩聚, 反应过程伴随着水分和气体的产生 , 设置两段脱挥装置, 脱挥真空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到热塑性淀粉。
[0049] 将实施例 3得到的热塑性淀粉 40份与 60份聚酰胺热熔胶共混制备出环保热熔胶 , 可进行长时间加热和反复加工, 性能测试如下表:
[] [表 2]
Figure imgf000009_0001
[0050] 实施例 4
[0051] ( 1 ) 将 80重量份的淀蕉芋淀粉与 2重量份的二乙基羟胺通过涡旋气流机细化至 粉体粒径 5微米, 得到胺化淀粉;
[0052] ( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 12重量份二聚豆油酸与二聚桐油酸衍生得 到的 C 18氢化脂肪酸的二聚酸加入高速混合机, 高速混合机温度升至 120°C, 搅 拌速度控制在 300rpm, 搅拌的同时加入冰醋酸, 在高速混合机中预缩聚 45min, 冰醋酸的加入量控制在氢化脂肪族二聚酸质量的 2%;
[0053] ( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设置一阶螺 杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通过第二阶螺杆反应器, 二阶 螺杆反应器温度 140_175°C, 进行深度缩聚, 反应过程伴随着水分和气体的产生 , 设置两段脱挥装置, 脱挥真空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到热塑性淀粉。
[0054] 实施例 5
[0055] ( 1 ) 将 85重量份的马铃薯淀粉与 3重量份的硫酸羟胺通过研磨机细化至粉体粒 径 5微米, 得到胺化淀粉;
[0056] ( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 15重量份二聚反油酸与二聚桐油酸衍生得 到的 C 18氢化脂肪酸的二聚酸加入高速混合机, 高速混合机温度升至 100°C, 搅 拌速度控制在 200rpm, 搅拌的同时加入冰醋酸, 在高速混合机中预缩聚 30min, 冰醋酸的加入量控制在氢化脂肪族二聚酸质量的 3%;
[0057] ( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设置一阶螺 杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺化淀粉的晶体松弛 形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通过第二阶螺杆反应器, 二阶 螺杆反应器温度 140_175°C, 进行深度缩聚, 反应过程伴随着水分和气体的产生 , 设置两段脱挥装置, 脱挥真空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到热塑性淀粉。
工业实用性
[0058] 本发明一种可反复热加工的热塑性淀粉及其制备方法, 通过将淀粉胺化, 与氢 化脂肪族二聚酸进行缩聚, 克服了直接使用小分子增塑剂增塑淀粉时小分子增 塑剂容易析出、 挥发流失的缺陷, 使热塑性淀粉实现在高温下的反复热加工。 该热塑性淀粉在 101. 8°C具有良好的热熔性, 在温度升至 200°C时热重损失线基 本平行, 没有降解、 烧焦、 分解出现, 可反复热加工性良好。

Claims

权利要求书
[权利要求 1] 一种可反复热加工的热塑性淀粉, 其特征在于: 淀粉通过胺化, 与氢 化脂肪族二聚酸缩聚形成的可反复热加工的热塑性淀粉, 按重量份计 包括以下组分:
淀粉 80-85份, 氢化脂肪族二聚酸 10-15份,
胺化剂 2-3份,
增粘加工助剂 0. 5-1. 5份,
其中所述的淀粉为木薯淀粉、 甘薯淀粉、 马铃薯淀粉、 蕉芋淀粉、 橡 子淀粉、 西米淀粉、 魔芋淀粉、 豌豆淀粉、 玉米淀粉中的一种或几种 的混合物;
所述的氢化脂肪族二聚酸由二聚亚油酸、 二聚油酸、 二聚亚麻酸、 二 聚豆油酸或二聚反油酸, 与二聚桐油酸衍生得到的 C 18氢化脂肪酸的 二聚酸, 二聚体酸占氢化脂肪族二聚酸总质量的 70-80%;
所述的胺化剂为硫酸羟胺、 己二胺、 癸二胺、 二乙基羟胺中的至少一 种; 所述的增粘加工助剂为马来松香、 松香甘油酯、 氢化松香甘油酯、 季 戊四醇松香酯、 氢化季戊四醇松香酯、 丙烯酸改性松香中的至少一种
[权利要求 2] 权利要求 1所述一种可反复热加工的热塑性淀粉的制备方法, 其特征 在于具体步骤如下:
( 1 ) 将 80-85重量份的淀粉与 2-3重量份的胺化剂通过研磨机或者微 细机细化至粉体粒径 5微米, 得到胺化淀粉;
( 2 ) 将步骤 (1 ) 得到的胺化淀粉与 10-15重量份的氢化脂肪族二聚 酸加入高速混合机, 高速混合机温度升至 100-120°C, 搅拌速度控制 在 200-300rpm, 搅拌的同时加入冰醋酸, 在高速混合机中预缩聚 30_4 5min, 冰醋酸的加入量控制在氢化脂肪族二聚酸质量的 2-3%;
( 3 ) 将步骤 (2 ) 得到的预缩聚物加入双阶式双螺杆反应挤出器, 设 置一阶螺杆反应器温度 80-120°C, 通过螺棱与机筒的间隙混炼, 使胺 化淀粉的晶体松弛形成无定形凝胶粉, 与氢化脂肪族二聚酸缩聚; 通 过第二阶螺杆反应器, 二阶螺杆反应器温度 140-175°C, 进行深度缩 聚, 反应过程伴随着水分和气体的产生, 设置两段脱挥装置, 脱挥真 空减压为 0. 05-0. 08MPa, 通过连续缩聚、 脱挥、 挤出切粒得到可反复 热加工的热塑性淀粉。
[权利要求 3] 根据权利要求 2所述一种可反复热加工的热塑性淀粉的制备方法, 其 特征在于: 步骤 (3 ) 所述的双阶式双螺杆反应挤出器包括一阶反应 器和二阶反应器, 一阶与二阶反应器密闭联动, 只设置一个进料口和 一个出料口, 其中一阶反应器为异向双螺杆反应挤出器, 异向旋转的 啮合螺纹元件使胺化淀粉的晶体松弛形成无定形凝胶粉, 与氢化脂肪 族二聚酸缩聚; 二阶反应器为同向双螺杆反应挤出器, 同向旋转的螺 纹元件使胺化淀粉与氢化脂肪族二聚酸连续深度缩聚, 并通过设置的 两段真空脱挥装置将产生的水分和气体及时排除, 实现连续缩聚、 脱 挥、 挤出切粒。
PCT/CN2015/099661 2015-01-30 2015-12-30 一种可反复热加工的热塑性淀粉及其制备方法 WO2016119557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510050142.3 2015-01-30
CN201510050142.3A CN104672507B (zh) 2015-01-30 2015-01-30 一种可反复热加工的热塑性淀粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2016119557A1 true WO2016119557A1 (zh) 2016-08-04

Family

ID=53308125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099661 WO2016119557A1 (zh) 2015-01-30 2015-12-30 一种可反复热加工的热塑性淀粉及其制备方法

Country Status (2)

Country Link
CN (1) CN104672507B (zh)
WO (1) WO2016119557A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672507B (zh) * 2015-01-30 2016-08-31 成都新柯力化工科技有限公司 一种可反复热加工的热塑性淀粉及其制备方法
CN108424549B (zh) * 2018-03-31 2021-05-04 苏州汉丰新材料股份有限公司 耐热全降解热塑性淀粉及其制备方法和应用
CN110343471A (zh) * 2019-07-12 2019-10-18 杭州厚瑞科技有限公司 一种医疗器械生产线专业胶水及其制备方法
CN110373118A (zh) * 2019-07-12 2019-10-25 杭州厚瑞科技有限公司 一种增强环保工业胶及其制备方法和应用
CN113896955A (zh) * 2021-11-08 2022-01-07 蚌埠天成包装科技股份有限公司 一种淀粉基片材组合物及制备方法
CN115197404B (zh) * 2022-07-20 2024-05-07 青岛科技大学 一种绿色制备淀粉接枝聚己内酯共聚物的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227568A (zh) * 1996-08-09 1999-09-01 生物技术生物学自然包装有限公司 可热塑性加工的淀粉或淀粉衍生物聚合物混合物
RU2180670C2 (ru) * 2000-01-06 2002-03-20 Всероссийский научно-исследовательский институт крахмалопродуктов Биологически разрушаемая термопластичная композиция на основе крахмала
WO2003028470A1 (de) * 2001-09-25 2003-04-10 Kalle Gmbh & Co. Kg Stärkehaltige, schlauchförmige nahrungsmittelhülle mit übertragbarer beschichtung sowie verfahren zu deren herstellung
CN102875853A (zh) * 2012-10-22 2013-01-16 郭俊才 一种可降解塑料及其制备方法
CN103497361A (zh) * 2013-09-29 2014-01-08 中国林业科学研究院林产化学工业研究所 基于非粮木本植物油脂的热塑性淀粉材料的制备方法
CN104292343A (zh) * 2014-09-24 2015-01-21 鲁东大学 一种多胺基淀粉及其制备方法
CN104672507A (zh) * 2015-01-30 2015-06-03 成都新柯力化工科技有限公司 一种可反复热加工的热塑性淀粉及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912753B1 (fr) * 2007-02-16 2012-10-12 Arkema France Copolyamide, composition comprenant un tel copolyamide et leur utilisation
CN102731841A (zh) * 2011-04-12 2012-10-17 河北华丹完全生物降解塑料有限公司 Hd全生物降解包装材料及其制备
CN103589386A (zh) * 2013-10-29 2014-02-19 烟台德邦科技有限公司 一种可生物降解的聚酰胺热熔胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227568A (zh) * 1996-08-09 1999-09-01 生物技术生物学自然包装有限公司 可热塑性加工的淀粉或淀粉衍生物聚合物混合物
RU2180670C2 (ru) * 2000-01-06 2002-03-20 Всероссийский научно-исследовательский институт крахмалопродуктов Биологически разрушаемая термопластичная композиция на основе крахмала
WO2003028470A1 (de) * 2001-09-25 2003-04-10 Kalle Gmbh & Co. Kg Stärkehaltige, schlauchförmige nahrungsmittelhülle mit übertragbarer beschichtung sowie verfahren zu deren herstellung
CN102875853A (zh) * 2012-10-22 2013-01-16 郭俊才 一种可降解塑料及其制备方法
CN103497361A (zh) * 2013-09-29 2014-01-08 中国林业科学研究院林产化学工业研究所 基于非粮木本植物油脂的热塑性淀粉材料的制备方法
CN104292343A (zh) * 2014-09-24 2015-01-21 鲁东大学 一种多胺基淀粉及其制备方法
CN104672507A (zh) * 2015-01-30 2015-06-03 成都新柯力化工科技有限公司 一种可反复热加工的热塑性淀粉及其制备方法

Also Published As

Publication number Publication date
CN104672507B (zh) 2016-08-31
CN104672507A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016119557A1 (zh) 一种可反复热加工的热塑性淀粉及其制备方法
CN103159984B (zh) 一种全降解热塑性淀粉/聚乳酸共混材料及其制备方法
CN112961474B (zh) 一种聚乳酸/环氧植物油全生物基复合材料的制备方法
JPWO2010082639A1 (ja) ポリ乳酸樹脂組成物およびポリ乳酸樹脂用添加剤
CN108948689B (zh) 一种反应挤出法改性聚乳酸-木质素复合材料及制备方法
CN101405340A (zh) 含有基于天然脂肪酸的改性混合树脂的复合材料
CN109320933B (zh) 一种增强增韧竹纤维/聚乳酸复合材料及其制备方法
CN102250389B (zh) 一种木质纤维素增容共混降解高分子材料及其制备方法
JP2023518333A (ja) 土質植物質の堆肥化可能な生分解性の基材およびその製造方法
JP2022524150A (ja) 熱可塑性デンプンおよびその製造方法
JP2001509527A (ja) ジアルデヒドデンプン及び天然高分子を含んで成る熱可塑性混合物
CN104262915A (zh) 制备低迁移率的聚乳酸基增塑木塑复合材料的方法
CN104163943B (zh) 一种热塑性纤维素复合材料及其制备方法
Wang et al. High-performance thermoplastic starch/poly (butylene adipate-co-terephthalate) blends through synergistic plasticization of epoxidized soybean oil and glycerol
Ge et al. “In situ” compatibilization of poly (L-lactic acid)/epoxidized soybean oil bio-blends by reactive additives
CN105131542A (zh) 一种经丙交酯表面接枝处理的竹粉和聚乳酸共混复合材料及其制备方法与应用
CN102952292B (zh) 一种淀粉酯完全生物降解塑料及制备方法
CN114539749A (zh) 一种可生物降解的高韧性聚乳酸吸管
JP2018053192A (ja) エステル化澱粉及び澱粉系プラスチック組成物
Zabihi et al. Phase morphology and thermomechanical performance of thermoplastic corn starch/polystyrene blends
Sangeetha et al. Super toughened renewable poly (lactic acid) based ternary blends system: effect of degree of hydrolysis of ethylene vinyl acetate on impact and thermal properties
Ziaei-tabari et al. Preparation of Cellulose Nanofibers Reinforced Polyether-b-Amide Nanocomposite.
CN111531741A (zh) 聚乳酸熔体在线制备改性聚乳酸材料的装置和方法
CN106366592B (zh) 一种高耐热型聚乳酸仿木复合材料及其制备方法
CN111087766A (zh) 热塑性共混物材料及共混物热塑性薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879755

Country of ref document: EP

Kind code of ref document: A1