WO2016119443A1 - 一种数据传输方法、装置、***及计算机存储介质 - Google Patents

一种数据传输方法、装置、***及计算机存储介质 Download PDF

Info

Publication number
WO2016119443A1
WO2016119443A1 PCT/CN2015/087230 CN2015087230W WO2016119443A1 WO 2016119443 A1 WO2016119443 A1 WO 2016119443A1 CN 2015087230 W CN2015087230 W CN 2015087230W WO 2016119443 A1 WO2016119443 A1 WO 2016119443A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
transmission
cca
detection
idle time
Prior art date
Application number
PCT/CN2015/087230
Other languages
English (en)
French (fr)
Inventor
梁春丽
戴博
杨维维
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016119443A1 publication Critical patent/WO2016119443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method, apparatus, system, and computer storage medium.
  • LTE Long Term Evolution
  • unlicensed carriers free/low cost; low entry requirements and low cost, such as individuals and enterprises can participate in deployment, and equipment vendors can be arbitrarily; operating in multiple different systems.
  • some shared resources can be considered to improve the spectrum efficiency; more wireless access technologies; more wireless access sites; more applications, from related data display
  • multi-services are mentioned to be able to operate in unlicensed carriers, such as Machine to Machine (M2M), Vehicle to Vehicle (V2V), and other services.
  • M2M Machine to Machine
  • V2V Vehicle to Vehicle
  • the unlicensed carrier and the authorized carrier work by carrier aggregation, which is called authorized carrier assisted access (LAA).
  • LAA authorized carrier assisted access
  • multiple systems will also work on the same spectrum, such as a WIFI system. Therefore, LTE works on unlicensed carriers, and it is crucial to solve coexistence problems with other systems.
  • LTE works on unlicensed carriers, and it is crucial to solve coexistence problems with other systems.
  • regulatory policies for the use of unlicensed spectrum. Therefore, for the regulatory restrictions of unlicensed carriers, the corresponding data transmission method is formulated, which is an urgent problem to be solved by the LTE system using unlicensed carriers.
  • channel availability detection also known as CCA, Clear Channel Assessment
  • CCA Clear Channel Assessment
  • LBT listen before talk
  • the channel occupation time and the idle period constitute a fixed frame period, and the device performs CCA detection during the idle period, and when the channel is detected to be idle, the data transmission can be performed immediately. Otherwise, the CCA detection is performed again during the idle period of the next fixed frame period.
  • the channel occupancy time is 1 millisecond to 10 milliseconds, and the idle period is at least 5% of the channel occupancy time.
  • the specific channel occupancy time is configurable.
  • the minimum time for CCA detection is regulated in the regulation, for example, the minimum is not less than 20us.
  • the CCA detection can be based on energy detection or based on signal detection.
  • the device starts to perform CCA detection. If the channel is found to be idle after performing CCA detection, data transmission can be performed immediately.
  • the value is stored in a counter where the X value is randomly selected from 1 to q.
  • each time the CCA is detected (the same time each CCA detection time), if the channel is found to be idle, the counter begins to decrement, if the channel is not idle, Then the counter is not decremented, When the counter is decremented to 0, data transmission can be started.
  • the data transmission time is determined according to requirements, but the maximum cannot exceed (13/32) ⁇ q ms.
  • the CCA detection must be performed again at the location specified by the next transmission frame.
  • the result is that the LAA transmission node can use the unlicensed carrier more often than other systems (such as WIFI).
  • WIFI wireless fidelity
  • embodiments of the present invention provide a data transmission method, apparatus, system, and computer storage medium.
  • the embodiment of the invention provides a data transmission method, including:
  • the detection location of the CCA is determined in a manner of at least one of the following:
  • the detection location of the CCA is determined according to the scheduling grant and the corresponding transmission timing relationship.
  • the detection position of the CCA when the detection position of the CCA is determined according to the frame length of the transmission frame, when there are multiple transmission frame lengths, the detection position of the CCA is the same in the transmission frame of different transmission frame length. .
  • the detected location of the CCA satisfies at least one of the following conditions:
  • At least one is located on the first subframe of the transmission frame.
  • the other listening subframes except the listening subframe located in the last subframe of the transmission frame sequentially include a data transmission area and an idle The time zone, the duration of the idle time zone is the time required for the unlicensed carrier to be in the idle state detection in the regulatory request, or the time duration of the N transmission symbols, where N is an integer greater than zero.
  • the listening subframe located in the first subframe of the transmission frame sequentially includes an idle time region and a data transmission. a region, the duration of the idle time region being a time required for the unauthenticated carrier to be in an idle state detection in a regulatory request, or a time duration of N transmission symbols, where N is an integer greater than 0;
  • the last subframe of the transmission frame contains only one data transmission area, or one data transmission area and one idle time area in sequence, and the duration of the idle time area of the last subframe is not less than the shortest idle time to meet regulatory requirements.
  • the difference between the time and the idle time of the first subframe, and the minimum value is zero; wherein the listening subframe refers to a subframe including a CCA detection location.
  • the listening subframe sequentially includes an idle time area and a data transmission area, and the duration of the idle time area is in a regulatory requirement.
  • the listening subframe when the transmission frame includes a intercept located in a last subframe of the transmission frame
  • the listening subframe includes a first idle time zone, a data transmission zone, and a second idle time zone, where the duration of the first idle time zone is one of the non-authorized carriers in the regulatory request.
  • the difference between the idle times of the first subframe, and the minimum value is zero.
  • performing CCA detection on the detection location of the CCA includes: performing CCA detection in an idle time region of the listening subframe or an end of the first idle time region.
  • the first transmitting node when the detection location of the CCA is determined according to the scheduling grant and the corresponding transmission timing relationship, the first transmitting node sends a scheduling grant to the second transmitting node in subframe #n, and the second transmitting node is in the subframe.
  • the end of #n+k-1 performs CCA detection, or CCA detection is performed at the beginning of subframe #n+k,
  • k is determined according to one of the following methods:
  • the second transmission node When the second transmission node performs CCA detection at the beginning of the subframe #n+k, when the second transmission node performs PUSCH transmission, at least one symbol preceding the first PUSCH transmission subframe is deleted.
  • the second transmitting node when the CCA detection result is that the channel is idle, the second transmitting node performs PUSCH transmission on the subframe #n+k of the unlicensed carrier according to the scheduling grant. Transmitting, or performing data transmission on the subframe #n+k of the unlicensed carrier and at least one subsequent subframe;
  • the second transmission node When the CCA detection result is that the channel is busy, the second transmission node performs CCA detection again at the end of the subframe #n+k+p+q-1 of the unlicensed carrier, or on the unlicensed carrier.
  • CCA detection is performed on the first symbol of the subframe #n+k+p+q, or CCA detection is performed again at the end of the subframe #n+k+m-1 of the unlicensed carrier, or The CCA detection is performed on the first symbol of the subframe #n+k+m of the unlicensed carrier, where the p and q are respectively performed by the PUSCH and the Physical Hybrid ARQ Indicator CHannel.
  • the k and m are predefined values, and the values of m and k are related to the frame length of the transmission frame and the number of subframes used for PUSCH transmission in the transmission frame.
  • the embodiment of the invention further provides a data transmission device, comprising: a detection location determining module, a detection module and a data transmission module; wherein
  • the detection location determining module is configured to determine a channel availability condition to detect a detection location of the CCA
  • the detecting module is configured to perform CCA detection on a detection location of the CCA
  • the data transmission module is configured to perform data transmission in the unlicensed carrier if the detection result of the detection module is that the unlicensed carrier is in an idle state, where the data transmission includes uplink transmission and/or downlink transmission. .
  • the detection location determining module is configured to determine a detection location of the CCA in a manner of at least one of:
  • the detection location determining module determines CCA according to a frame length of the transmission frame. In the scenario of detecting the location, when there are multiple transmission frame lengths, the detection locations of the CCA are the same in the transmission frames of different transmission frame lengths.
  • At least one is located in the last subframe of the transmission frame
  • At least one is located on the first subframe of the transmission frame.
  • the listening subframe located in the last subframe of the transmission frame sequentially includes a data transmission area and an idle time area.
  • the duration of the idle time zone is not less than the shortest idle time to meet regulatory requirements, wherein the interception subframe refers to a subframe that includes a CCA detection location.
  • the listening subframe located in the first subframe of the transmission frame sequentially includes an idle time region and a data transmission. a region, the duration of the idle time region being a time required for the unauthenticated carrier to be in an idle state detection in a regulatory request, or a time duration of N transmission symbols, where N is an integer greater than 0;
  • the last subframe of the transmission frame contains only one data transmission area, or, in turn, one data transmission area and one idle time area, and the duration of the idle time area of the last subframe is not less than that for the control.
  • the difference between the shortest idle time and the idle time of the first subframe, and the minimum value is zero; wherein the listening subframe refers to a subframe that includes a CCA detection location.
  • the listening subframe sequentially includes an idle time area and a data transmission area, and the duration of the idle time area is in a regulatory requirement.
  • the listening subframe when the transmission frame includes a listening subframe that is located in a last subframe of the transmission frame, sequentially includes a first idle time region, a data transmission region, and a second idle time region.
  • the duration of the first idle time zone is the time required for the unlicensed carrier to be in the idle state detection, or the duration of the N transmission symbols, where N is an integer greater than 0;
  • the duration of the second idle time zone is not less than a difference between a shortest idle time that meets regulatory requirements and an idle time of the first subframe, and the minimum value is zero.
  • the detecting module is configured to perform CCA detection in an idle time region of the listening subframe or an end of the first idle time region.
  • the embodiment of the present invention further provides a data transmission system, including a first transmission node and a second transmission node, where the detection location of the CCA is determined according to the scheduling authorization and the corresponding transmission timing relationship;
  • a first transit node configured to send a scheduling grant to the second transit node in subframe #n;
  • k is determined according to one of the following methods:
  • the second transmission node is further configured to: when performing CCA detection at the beginning of the subframe #n+k, when performing PUSCH transmission, deleting at least one symbol preceding the first PUSCH transmission subframe.
  • the second transmitting node when the CCA detection result is that the channel is idle, the second transmitting node performs PUSCH transmission on the subframe #n+k of the unlicensed carrier according to the scheduling grant, or Performing data transmission on the subframe #n+k of the unlicensed carrier and at least one subframe consecutively thereafter;
  • the second transmission node performs CCA detection again at the end of the subframe #n+k+p+q-1 of the unlicensed carrier, or on the unlicensed carrier.
  • CCA detection is performed on the first symbol of the subframe #n+k+p+q, or CCA detection is performed again at the end of the subframe #n+k+m-1 of the unlicensed carrier, or The CCA detection is performed on the first symbol of the subframe #n+k+m of the unlicensed carrier, wherein the p and q are respectively determined by the PUSCH and the physical hybrid automatic repeat request indication channel PHICH, and the timing relationship between the PHICH and the PUSCH It is determined that k and m are predefined values, and the values of m and k are related to the frame length of the transmission frame and the number of subframes used for PUSCH transmission in the transmission frame.
  • the embodiment of the present invention further provides a computer storage medium, the computer storage medium comprising a set of instructions, when executed, causing at least one processor to execute the data transmission method.
  • FIG. 1A is a frame-based (FBE) based LBT mechanism
  • Figure 1B is a load-based (LBE) based LBT mechanism
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • 4A is a schematic diagram of a frame structure design of a 2 millisecond transmission frame
  • 4B is a schematic diagram of a frame structure design of another 2 millisecond transmission frame
  • 5B is a schematic diagram of a frame structure design of another 3 millisecond transmission frame
  • 7B is a schematic diagram of a frame structure design of another 5 millisecond transmission frame
  • 8B is a schematic diagram of a CCA detection position of another 2 millisecond transmission frame
  • 9A is a schematic diagram of a CCA detection position of a 3 millisecond transmission frame
  • 9B is a schematic diagram of a CCA detection position of another 3 millisecond transmission frame
  • 11B is another schematic diagram of a CCA detection position of another 4 millisecond transmission frame
  • 12B is a schematic diagram of a CCA detection position of another 5 millisecond transmission frame
  • 13A is a schematic diagram of a CCA detection position of a 6 millisecond transmission frame
  • 13B is a schematic diagram of a CCA detection position of another 6 millisecond transmission frame
  • 14B is another schematic diagram of a CCA detection position of another 6 millisecond transmission frame
  • 15A is a schematic diagram of a CCA detection position of an 8 msec transmission frame
  • 16B is another schematic diagram of a CCA detection position of another 8 msec transmission frame
  • 17B is a schematic diagram of a CCA detection position of another 9 millisecond transmission frame
  • 18A is a schematic diagram of a CCA detection position of a 10 msec transmission frame
  • 19B is another schematic diagram of another CCA detection position of a 10 millisecond transmission frame
  • 21A is another schematic diagram of a CCA detection position of different transmission frame lengths
  • 21B is another schematic diagram of a CCA detection position of different transmission frame lengths
  • 22A is another schematic diagram of a CCA detection position of different transmission frame lengths
  • 23A is a schematic diagram of a frame structure having the same CCA detection position under different regional regulations
  • 23B is a schematic diagram of a frame structure having the same CCA detection position under another different area control
  • Figure 24 is another schematic diagram of the CCA detection position of a 4 millisecond transmission frame
  • 26 is a schematic diagram of determining a CCA detection position corresponding to Embodiment 3.
  • FIG. 27 is a schematic diagram of PUSCH transmission corresponding to Embodiment 43.
  • FIG. 28 is a schematic diagram of a second transmission node performing PUSCH transmission according to Embodiment 4.
  • FIG. 29 is a schematic diagram of another second transmission node performing PUSCH transmission according to Embodiment 4.
  • FIG. 30 is a schematic diagram of another second transmission node performing PUSCH transmission according to Embodiment 4.
  • FIG. 31 is a schematic diagram of performing PUSCH retransmission in a specific embodiment 4.
  • FIG. 32 is a schematic diagram of another PUSCH retransmission in Embodiment 4.
  • FIG. 33 is a schematic diagram of another PUSCH retransmission in Embodiment 4.
  • the embodiment of the present invention provides a data transmission method. As shown in FIG. 2, the method includes:
  • Step 201 Determine a detection location of the CCA
  • Step 202 Perform CCA detection on the detection location of the CCA
  • the detection location of the CCA is determined in a manner of at least one of the following:
  • the detection location of the CCA is determined according to the scheduling grant and the corresponding transmission timing relationship.
  • the detection position of the CCA when the detection position of the CCA is determined according to the frame length of the transmission frame, when there are multiple transmission frame lengths, the detection position of the CCA is the same in the transmission frame of different transmission frame length. .
  • the detected location of the CCA satisfies at least one of the following conditions:
  • At least one is located in the last subframe of the transmission frame
  • At least one is located on the first subframe of the transmission frame.
  • the listening subframe located in the last subframe of the transmission frame sequentially includes a data transmission area and an idle time area.
  • the duration of the idle time zone is not less than the shortest idle time to meet regulatory requirements, wherein the interception subframe refers to a subframe that includes a CCA detection location.
  • the other listening subframes except the listening subframe located in the last subframe of the transmission frame sequentially include a data transmission area and an idle The time zone, the duration of the idle time zone is the time required for the unlicensed carrier to be in the idle state detection in the regulatory request, or the time duration of the N transmission symbols, where N is an integer greater than zero.
  • the listening subframe located in the first subframe of the transmission frame sequentially includes an idle time area and a data transmission area.
  • the duration of the idle time zone is the time required for the unlicensed carrier to be in the idle state detection in the regulatory request, or the time duration of the N transmission symbols, where N is an integer greater than 0;
  • the transmission frame The last subframe includes only one data transmission area, or one data transmission area and one idle time area in sequence, and the duration of the idle time area of the last subframe is not less than the minimum idle time to meet regulatory requirements. a difference between idle times of the first subframe, and a minimum value of zero; wherein the intercept subframe refers to a subframe that includes a CCA detection location.
  • the listening subframe sequentially includes an idle time area and a data transmission area, and the duration of the idle time area is in a regulatory requirement.
  • an unlicensed carrier is required for idle state detection Between, or for the duration of N transmission symbols, where N is an integer greater than zero.
  • the listening subframe when the transmission frame includes a listening subframe that is located in a last subframe of the transmission frame, sequentially includes a first idle time region, a data transmission region, and a second idle time region.
  • the duration of the first idle time zone is a time required for the unauthenticated carrier to be in an idle state detection, or a time duration of N transmission symbols, where N is an integer greater than 0;
  • the duration of the second idle time zone is not less than the difference between the shortest idle time that meets the regulatory requirements and the idle time of the first subframe, and the minimum value is zero.
  • performing CCA detection on the detection location of the CCA includes: performing CCA detection in an idle time region of the listening subframe or an end of the first idle time region.
  • the first transmitting node when the detection location of the CCA is determined according to the scheduling grant and the corresponding transmission timing relationship, the first transmitting node sends a scheduling grant to the second transmitting node in subframe #n, and the second transmitting node is in the subframe.
  • the end of #n+k-1 performs CCA detection, or CCA detection is performed at the beginning of subframe #n+k,
  • k is determined according to one of the following methods:
  • the k is determined according to a preset scheduling grant and a timing relationship of data transmission, where the data transmission is a PUSCH transmission;
  • the k is a predefined value.
  • the second transmission node when the second transmission node performs CCA detection at the end of the subframe #n+k-1, when the second transmission node performs PUSCH transmission, the last subframe of the last PUSCH transmission subframe is deleted. At least one symbol;
  • the second transmission node When the second transmission node performs CCA detection at the beginning of the subframe #n+k, when the second transmission node performs PUSCH transmission, at least one symbol preceding the first PUSCH transmission subframe is deleted.
  • the second transmission when the CCA detection result is that the channel is idle, the second transmission The node performs PUSCH transmission on the subframe #n+k of the unlicensed carrier according to the scheduling grant, or on the subframe #n+k of the unlicensed carrier and at least one subsequent subframe Data transmission;
  • the second transmission node performs CCA detection again at the end of the subframe #n+k+p+q-1 of the unlicensed carrier, or on the unlicensed carrier.
  • CCA detection is performed on the first symbol of the subframe #n+k+p+q, or CCA detection is performed again at the end of the subframe #n+k+m-1 of the unlicensed carrier, or The CCA detection is performed on the first symbol of the subframe #n+k+m of the unlicensed carrier, wherein the p and q are respectively determined by the PUSCH and the physical hybrid automatic repeat request indication channel PHICH, and the timing relationship between the PHICH and the PUSCH It is determined that k and m are predefined values, and the values of m and k are related to the frame length of the transmission frame and the number of subframes used for PUSCH transmission in the transmission frame.
  • the detection location determining module is configured to determine a channel availability condition to detect a detection location of the CCA
  • the detecting module is configured to perform CCA detection on a detection location of the CCA
  • the data transmission module is configured to perform data transmission in the unlicensed carrier if the detection result of the detection module is that the unlicensed carrier is in an idle state, where the data transmission includes uplink transmission and/or downlink transmission. .
  • the detection location determining module is specifically configured to determine the detection location of the CCA by using at least one of the following:
  • the detection location of the CCA is determined according to the scheduling grant and the corresponding transmission timing relationship.
  • the detection location determining module determines CCA according to a frame length of the transmission frame. In the scenario of detecting the location, when there are multiple transmission frame lengths, the detection locations of the CCA are the same in the transmission frames of different transmission frame lengths.
  • the detection location of the CCA determined by the detection location determining module satisfies at least one of the following conditions:
  • At least one is located in the last subframe of the transmission frame
  • At least one is located on the first subframe of the transmission frame.
  • the listening subframe located in the last subframe of the transmission frame sequentially includes a data transmission area and an idle time area.
  • the duration of the idle time zone is not less than the shortest idle time to meet regulatory requirements, wherein the interception subframe refers to a subframe that includes a CCA detection location.
  • the listening subframes other than the listening subframe located in the last subframe of the transmission frame sequentially include an idle time region and a data.
  • the transmission area, the duration of the idle time area is the time required for the unauthenticated carrier to be in the idle state detection, or the time during which the N transmission symbols are continued, where N is an integer greater than zero.
  • the listening subframe located in the first subframe of the transmission frame sequentially includes an idle time area and a data transmission area.
  • the duration of the idle time zone is the time required for the unlicensed carrier to be in the idle state detection in the regulatory request, or the time duration of the N transmission symbols, where N is an integer greater than 0;
  • the transmission frame The last subframe includes only one data transmission area, or one data transmission area and one idle time area in sequence, and the duration of the idle time area of the last subframe is not less than the minimum idle time to meet regulatory requirements. a difference between idle times of the first subframe, and a minimum value of zero;
  • the listening subframe refers to a subframe that includes a CCA detection location.
  • the listening subframe sequentially includes an idle time area and a data transmission area, and the duration of the idle time area is in a regulatory requirement.
  • the listening subframe when the transmission frame includes a listening subframe that is located in a last subframe of the transmission frame, sequentially includes a first idle time region, a data transmission region, and a second idle time region.
  • the duration of the first idle time zone is the time required for the unlicensed carrier to be in the idle state detection, or the duration of the N transmission symbols, where N is an integer greater than 0;
  • the duration of the second idle time zone is not less than a difference between a shortest idle time that meets regulatory requirements and an idle time of the first subframe, and the minimum value is zero.
  • the detecting module is configured to perform CCA detection in an idle time region of the listening subframe or an end of the first idle time region.
  • the embodiment of the present invention further provides a data transmission system, where the system includes a first transmission node and a second transmission node, where the detection location of the CCA is determined according to the scheduling authorization and the corresponding transmission timing relationship;
  • a first transit node configured to send a scheduling grant to the second transit node in subframe #n;
  • the second transmission node is configured to perform CCA detection at the end of the subframe #n+k-1, or perform CCA detection at the beginning of the subframe #n+k, and the detection result is that the unlicensed carrier is in an idle state, Data transmission is performed in the unlicensed carrier, where the data transmission includes uplink transmission and/or downlink transmission.
  • k is determined according to one of the following methods:
  • the k is determined according to a preset scheduling grant and a timing relationship of data transmission, where the data transmission is a physical uplink shared channel PUSCH transmission;
  • the k is a predefined value.
  • the second transmission node when the second transmission node performs CCA detection at the end of the subframe #n+k-1, when the second transmission node performs PUSCH transmission, it is further configured to delete the last PUSCH transmission sub- The last at least one symbol of the frame;
  • the second transmission node When the second transmission node performs CCA detection at the beginning of the subframe #n+k, when the second transmission node performs PUSCH transmission, it is further configured to delete at least one symbol preceding the first PUSCH transmission subframe.
  • the OFDM symbol duration containing the cyclic prefix is 71.9us (the first symbol of the slot) or 71.3us (other symbols). Under the extended cyclic prefix, the duration of the OFDM symbol containing the cyclic prefix is 83.3us. If the idle time is also in OFDM symbols, the idle time required for configuring different channel occupation times is as shown in Table 1:
  • the design of the transmission frame in Embodiment 1 is a conventional FBE design, that is, there is only one CCA detection position in one transmission frame.
  • the traditional FBE design due to the limited detection location of the CCA, the chances of the transmission node accessing the unlicensed carrier are relatively low, and the transmission is relatively large. Therefore, an improved FBE design is needed.
  • the data transmission includes an uplink transmission and a downlink transmission, and the subframe including the CCA detection is a listening subframe.
  • determining the detection location of the CCA is at least one of the following:
  • Method 2 determining a detection location of the CCA according to a transmission time of the transmission frame
  • Manner 3 Determine the detection location of the CCA according to the scheduling grant and the corresponding transmission timing relationship.
  • the CCA detection position of the transmission frame of different transmission frame lengths may be determined in a predefined manner.
  • its channel occupation time can be configured from 1 millisecond to 10 milliseconds, and the scheduling of LTE is in units of 1 millisecond subframe. Therefore, a transmission frame of 1 millisecond to 10 milliseconds can be designed.
  • a CCA detection position pattern of a 1 millisecond transmission frame is shown as shown in FIGS. 3A and 3B, and a CCA detection position in one transmission frame is located at the end and front end of the transmission frame of 1 millisecond. .
  • a pattern of CCA detection positions of a 3 millisecond transmission frame is given as shown in FIGS. 3A and 3B.
  • FIG. 9A shows another pattern of the CCA detection position of the transmission frame of 3 milliseconds.
  • one transmission frame contains three The detection positions of the CCA are respectively located at the end of each subframe, wherein for the listening subframe at the end of the transmission frame, the duration of the idle time region is 3 OFDM symbols, that is, the European control is satisfied for the idle time (5%).
  • the channel occupancy time is required, and for the rest time zone of the listening sub-frame, only enough CCA detection time is needed.
  • the LTE transmission is at least in units of OFDM symbols, here, the idle time region of the remaining subframes is 1 OFDM symbol.
  • FIGS. 6A and 6B For a 4 millisecond transmission frame, a pattern of CCA detection positions of a 6 millisecond transmission frame is shown as shown in FIGS. 6A and 6B. In this example, there is one CCA detection position in one transmission frame, respectively, at 6 milliseconds. The end and front end of the transmission frame.
  • FIG. 11 shows another pattern of the CCA detection position of the transmission frame of 4 milliseconds.
  • one transmission frame is included.
  • the four CCA detection positions are respectively located at the end of each subframe.
  • the duration of the idle time region is 3 OFDM symbols, that is, the European control is satisfied.
  • the idle time 5% channel occupancy time
  • the idle time area of the remaining subframes is 1 OFDM symbol.
  • Figure 11B shows another pattern of the CCA detection position of the 4 msec transmission frame, in this example, one transmission frame contains detection positions of 4 CCAs, respectively located at the front end of each sub-frame, the 4 listeners
  • the idle time zone of the frame only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore, the idle time zone of the listening subframe here is 1 OFDM symbol, and, in addition, due to the fourth
  • the listening sub-frame is also the last sub-frame of the transmission frame, and thus the fourth listening sub-frame includes, in addition to the idle time area (first spatial time area) for CCA detection, at the end of the fifth sub-frame.
  • There is a second idle time zone whose duration is not less than the idle time (corresponding to 3 OFDM symbols in this example) and the idle time zone of the first listening subframe (corresponding to 1 OFDM in this example) The difference between the symbols), and therefore 2 OFDM symbols.
  • FIG. 12 shows another pattern of the CCA detection position of the transmission frame of 5 milliseconds.
  • one transmission frame contains five The CCA detection location is located at the end of each subframe.
  • the duration of the idle time region is 4 OFDM symbols, that is, the European control is available for idle.
  • the time (5% channel occupancy time) is required, and for the remaining idle time regions of the listening subframe, only enough CCA detection time is needed, considering that the LTE transmission is at least in units of OFDM symbols, here, The idle time area of the remaining subframes is 1 OFDM symbol.
  • Figure 12B shows another pattern of the CCA detection position of the 5 msec transmission frame, in this example, one transmission frame contains detection positions of 5 CCAs, respectively located at the front end of each sub-frame, the 5 listeners
  • the idle time zone of the frame only needs to have enough CCA detection time.
  • the LTE transmission is at least in units of OFDM symbols
  • the idle time zone of the listening subframe here is 1 OFDM symbol
  • the listening subframe is also the last subframe of the transmission frame, and thus the fifth listening subframe includes, in addition to the idle time region (first spatial time region) for CCA detection, at the end of the fifth subframe.
  • a pattern of CCA detection positions of a 6 millisecond transmission frame is given as shown in FIG. 13A, in which a transmission frame contains 2 CCA detection positions, Located at the end of subframe #2 and subframe #5, respectively, wherein for the listening subframe at the end of the transmission frame (that is, subframe #5), the duration of the idle time region is 5 OFDM symbols, that is, it satisfies Europe.
  • the idle time 5% channel occupancy time
  • the rest of the listening subframe (that is, subframe #2) idle time area only need to leave enough CCA detection time, considering The LTE transmission is at least in units of OFDM symbols, where the idle time region of the remaining subframes is 1 OFDM symbol.
  • Figure 13B shows another pattern of the CCA detection position of the 6 msec transmission frame.
  • one transmission frame contains the detection positions of 2 CCAs, respectively located in subframe #0 and subframe #3, and the listening subframe
  • the idle time zone only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore, the idle time area of the listening subframe here is 1 OFDM symbol; in addition, the last of the transmission frame
  • the idle time region of one subframe, that is, subframe #5 is not less than the idle time (corresponding to 5 OFDM symbols in this example) and the idle time region of the first listening subframe. In the example, the difference between 1 OFDM symbol), and thus 4 OFDM symbols.
  • FIG. 14A shows another pattern of the CCA detection position of the 6 millisecond transmission frame, in which a transmission frame is included.
  • the three CCA detection positions are respectively located at the end of the subframe #1, the subframe #3, and the subframe #5, wherein the idle time region continues for the listening subframe at the end of the transmission frame (that is, the subframe #5)
  • the time is 5 OFDM symbols, that is, the requirement of the European regulation for idle time (5% channel occupation time), and the idle time region for the remaining listening subframes (ie, subframe #1 and subframe #3). It is only necessary to leave sufficient CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, where the idle time region of the remaining subframes is 1 OFDM symbol.
  • Figure 13B shows another pattern of the CCA detection position of the 6 msec transmission frame.
  • one transmission frame contains the detection positions of 3 CCAs, which are located in subframe #0, subframe #2, respectively.
  • sub-frame #4 the idle time area of the listening sub-frame only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore, the idle time area of the listening sub-frame here is one.
  • the last subframe of the transmission frame that is, the idle time region of subframe #5
  • the idle time region of subframe #5 lasts for a period of time not less than the idle time (corresponding to 5 OFDM symbols in this example) and the first detection
  • the difference between the idle time regions of the subframe corresponding to 1 OFDM symbol in this example, and thus 4 OFDM symbols.
  • the duration of the idle time region is 5 OFDM symbols, that is, It satisfies the requirements of European regulation for idle time (5% channel occupation time), and for the remaining idle time regions of the listening subframe, only enough CCA detection time is needed, considering that LTE transmission is at least OFDM symbol In units, here, the idle time area of the remaining subframes is 1 OFDM symbol.
  • the detection location of the predefined CCA is located at the front end of each subframe, and the idle time region of each listening subframe only needs to have sufficient CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore,
  • the idle time area of the listening sub-frame is 1 OFDM symbol, and since the sixth listening sub-frame is also the last sub-frame of the transmission frame, the sixth listening sub-frame includes the CIA detection.
  • the idle time zone (the first spatial time zone)
  • the duration of which is not less than the idle time to meet the regulatory requirements (corresponding to 5 OFDM symbols in this example)
  • the difference between the idle time region of the first listening subframe (corresponding to 1 OFDM symbol in this example), and thus 4 OFDM symbols.
  • a pattern of CCA detection positions of a transmission frame of 8 milliseconds is given as shown in FIG. 15A.
  • a transmission frame contains detection positions of 2 CCAs, respectively located in subframe # 3 and the end of subframe #7, where, for the end of the transmission frame (that is, subframe #7)
  • the listening subframe has a duration of 6 OFDM symbols in the idle time region, that is, the requirement of the European control for the idle time (5% of the channel occupancy time), and for the remaining listening subframes (that is, the child)
  • the idle time area of frame #3) only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, where the idle time area of the remaining subframes is 1 OFDM symbol.
  • Figure 15B shows another pattern of the CCA detection position of the 8 msec transmission frame, in this example, one transmission frame contains the detection positions of 2 CCAs, respectively located in subframe #0 and subframe #3, the listening subframe
  • the idle time zone only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore, the idle time area of the listening subframe here is 1 OFDM symbol; in addition, the last of the transmission frame
  • the idle time region of one subframe, that is, subframe #7 is not less than the idle time (corresponding to 6 OFDM symbols in this example) and the idle time region of the first listening subframe. The difference between 1 OFDM symbol in the example), and thus 5 OFDM symbols.
  • FIG. 16A shows another pattern of the CCA detection position of the 8 millisecond transmission frame, in which a transmission frame is included.
  • the duration of the idle time zone is 6 OFDM symbols, that is, the requirement of the European control for the idle time (5% of the channel occupation time) is satisfied, and for the rest of the listening subframe, the idle time zone only needs to have enough
  • the CCA detection time is sufficient, considering that the LTE transmission is at least in units of OFDM symbols, where the idle time region of the remaining subframes is 1 OFDM symbol.
  • Figure 16B shows another pattern of the CCA detection position of the 8 msec transmission frame, in this example, one transmission frame contains the detection positions of 4 CCAs, respectively located in subframe #0, subframe #2, subframe # 4 and subframe #6, the idle time area of the listening sub-frame only needs to have enough CCA detection It is sufficient, considering that the LTE transmission is at least in units of OFDM symbols, therefore, the idle time region of the listening subframe here is 1 OFDM symbol; in addition, the last subframe of the transmission frame, that is, the idle of subframe #7 The time zone duration is not less than the difference between the idle time (corresponding to 6 OFDM symbols in this example) and the idle time zone of the first listening subframe (corresponding to 1 OFDM symbol in this example). Value, and therefore 5 OFDM symbols.
  • the duration of the idle time region is 6 OFDM symbols, that is, It satisfies the requirements of European regulation for idle time (5% channel occupation time), and for the remaining idle time regions of the listening subframe, only enough CCA detection time is needed, considering that LTE transmission is at least OFDM symbol In units, here, the idle time area of the remaining subframes is 1 OFDM symbol.
  • the detection location of the predefined CCA is located at the front end of each subframe, and the idle time region of each listening subframe only needs to have sufficient CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore,
  • the idle time area of the listening subframe is 1 OFDM symbol, and since the 8th listening subframe is also the last subframe of the transmission frame, the 8th listening subframe includes the CIA detection.
  • FIG. 17A For a 9-msec transmission frame, a pattern of the CCA detection position of the 9-msec transmission frame is shown in FIG. 17A.
  • one transmission frame contains three CCA detection positions, respectively located in the sub-frame # 2.
  • the idle time zone of the subframe that is, subframe #2 and subframe #5) only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, where the idle time of the remaining subframes is The area is 1 OFDM symbol.
  • Fig. 17B shows another pattern of the CCA detection position of the 9 msec transmission frame, in this example, one transmission frame contains detection positions of 3 CCAs, which are located in subframe #0, subframe #3, and subframe #6, respectively.
  • the idle time zone of the listening subframe only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore, the idle time region of the listening subframe here is 1 OFDM symbol;
  • the last subframe of the transmission frame that is, the idle time region of subframe #8, lasts for a period of time not less than the idle time (corresponding to 7 OFDM symbols in this example) and the first listening subframe.
  • the difference between the idle time regions (corresponding to 1 OFDM symbol in this example), and thus 6 OFDM symbols.
  • the duration of the idle time region is 7 OFDM symbols, that is, It satisfies the requirements of European regulation for idle time (5% channel occupation time), and for the remaining idle time regions of the listening subframe, only enough CCA detection time is needed, considering that LTE transmission is at least OFDM symbol In units, here, the idle time area of the remaining subframes is 1 OFDM symbol.
  • the detection location of the predefined CCA is located at the front end of each subframe, and the idle time region of each listening subframe only needs to have sufficient CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore,
  • the idle time area of the listening subframe is 1 OFDM symbol
  • the ninth listening subframe since the ninth listening subframe is also the last subframe of the transmission frame, the ninth listening subframe includes the CIA detection.
  • the idle time zone first spatial time zone
  • there is a second idle time zone at the end of the ninth subframe which lasts for a long time.
  • a pattern of CCA detection positions of a transmission frame of 10 milliseconds is given as shown in FIG. 18A.
  • one transmission frame contains detection positions of 2 CCAs, respectively located in subframe # 4 and the end of subframe #8, wherein for the listening subframe at the end of the transmission frame (that is, subframe #9), the duration of the idle time region is 7 OFDM symbols, that is, the European control is satisfied for the idle time ( 5% of the channel occupancy time), and for the remaining idle time zone of the listening subframe (that is, subframe #4), only enough CCA detection time is needed, considering that LTE transmission is at least OFDM
  • the symbol is a unit, where the idle time area of the remaining subframes is 1 OFDM symbol.
  • FIG. 19 shows another pattern of the CCA detection position of the 10 millisecond transmission frame, in which a transmission frame is included. 5 CCA detection positions, respectively located at the end of subframe #1, subframe #3, subframe #5, subframe #7, and subframe #9, where the detection for the end of the transmission frame (that is, subframe #9) Listening to a subframe, the duration of its idle time region is 7 OFDM symbols.
  • the requirement of the European control for the idle time (5% of the channel occupation time) is satisfied, and for the idle time zone of the remaining listening subframes, only enough CCA detection time is needed, considering that the LTE transmission is at least
  • the OFDM symbol is a unit, where the idle time region of the remaining subframes is 1 OFDM symbol.
  • the duration of the idle time region is 7 OFDM symbols, that is, It satisfies the requirements of European regulation for idle time (5% channel occupation time), and for the remaining idle time regions of the listening subframe, only enough CCA detection time is needed, considering that LTE transmission is at least OFDM symbol In units, here, the idle time area of the remaining subframes is 1 OFDM symbol.
  • the detection location of the predefined CCA is located at the front end of each subframe, and the idle time region of each listening subframe only needs to have sufficient CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols, therefore,
  • the idle time area of the listening subframe is 1 OFDM symbol, and since the 10th listening subframe is also the last subframe of the transmission frame, the 10th listening subframe includes the CIA detection.
  • a pattern of one or more CCA detection positions is predefined. In actual use, it may be configured to determine which CCA detection location pattern is used by the transmission node, or by an adaptive manner. Determine which CCA to use to detect the location pattern, such as when the network is relatively congested (multiple access to unlicensed carriers), use CCA to detect more patterns.
  • the actual data transmission time in the transmission frame is after the completion of the CCA detection to the idle time region of the transmission frame, as shown in FIG. 20. :
  • the transmitting node When the CCA detects that the free area at the end of the previous transmission frame is performed and the CCA detection result is that the channel is busy, the transmitting node performs CCA detection at the end of the subframe #4 of the transmission frame, if the CCA detection result is that the channel is idle.
  • the detection location of the CCA is determined according to the transmission time of the transmission frame. Specifically, according to the length of the transmission frame supported by the system, the length of the transmission frame corresponding to the greatest common divisor of the different transmission frame lengths is determined. Other CCA locations that transmit frame lengths.
  • the transmission frame supported by the system is 2 milliseconds, 4 milliseconds, 6 milliseconds, 8 milliseconds, and 10 milliseconds, since the transmission lengths of the different lengths have the greatest common divisor 2, therefore, 2 milliseconds.
  • the CCA position of other transmission frame lengths is determined, wherein the CCA position is located at the end of the listening subframe, as can be seen from FIG. 21A, the transmission frames of different lengths The CCA locations are aligned, thus ensuring the use of transport nodes of different transmission frame lengths with the same opportunity to access unlicensed carriers. Or, as shown in FIG.
  • the transmission frame length supported by the system is 3 milliseconds, 6 milliseconds, and 9 milliseconds, since the transmission frame lengths of these different lengths have the greatest common divisor 3, the transmission frame length is 3 milliseconds.
  • the CCA position of the other transmission frame length is determined, wherein the CCA position is located at the end of the listening subframe.
  • the CCA positions of the transmission frames of different lengths are aligned, thus ensuring different use.
  • a transmission node that transmits a long frame has the same opportunity to access an unlicensed carrier. Or, as shown in FIG.
  • the CCA positions of the transmission frames of different lengths are also aligned, thus ensuring transmission using different transmission frame lengths.
  • the determination is made based on the transmission frame length of 5 milliseconds. Transmitting the CCA position of the frame length, wherein the CCA position is located at the end of the listening subframe.
  • the CCA positions of the transmission frames of different lengths are aligned, thus ensuring transmission using different transmission frame lengths.
  • the CCA positions of the transmission frames of different lengths are also aligned, thus ensuring transmission using different transmission frame lengths.
  • the above-mentioned 4 millisecond CCA detection location pattern can also be used.
  • the free area only needs to have enough CCA detection time, considering that the LTE transmission is at least in units of OFDM symbols.
  • the idle time area of the remaining subframes is 1 OFDM symbol.
  • the detection positions of the CCA are respectively located at the end or the front end of the listening subframe.
  • the detection location of the CCA is constant for a certain period of time, or dynamically changes in each transmission frame.
  • the detection location of the CCA is determined according to the scheduling grant and the corresponding transmission timing relationship.
  • the first transmitting node transmits a scheduling grant to the second transmitting node in subframe #n, and the second transmitting node performs CCA detection at the end of subframe #n+k-1, or the first symbol in subframe #n+k Perform CCA testing on it.
  • the first transmitting node sends a scheduling grant to the second transmitting node on the authorized carrier or the unlicensed carrier.
  • the carrier that sends the scheduling grant is an FDD carrier or a TDD carrier
  • the carrier in which the second transmission node performs data transmission is FDD or a TDD carrier, where the data transmission is PUSCH transmission;
  • the k is determined according to one of the following:
  • the k is determined according to a timing relationship between a scheduling grant and a data transmission supported by the existing LTE system, where the data transmission is a physical uplink shared channel (PUSCH) transmission;
  • PUSCH physical uplink shared channel
  • the k is a predefined value.
  • the timing relationship between the scheduling authorization and the data transmission specified by the existing LTE system includes:
  • the second transmission node When the second transmission node is configured to be self-scheduling, the timing relationship between the scheduling authorization of FDD and TDD and the data transmission specified by the existing LTE system;
  • the FDD carrier aggregation specified by the existing LTE system the carrier aggregation of the same uplink and downlink configuration of the TDD, the carrier aggregation of the different uplink and downlink configurations of the TDD, and the scheduling authorization of the TDD and FDD aggregation The timing relationship of data transmission.
  • the timing relationship between the scheduling grant and the data transmission specified by the existing LTE system is prior art, and is not described here.
  • the second transmission node performs CCA detection at the end of the subframe #n+k-1
  • the second transmission node performs PUSCH transmission
  • the last at least one symbol of the last PUSCH transmission subframe is deleted.
  • the second transmission node performs CCA detection at the beginning of the subframe #n+k
  • the second transmission node performs PUSCH transmission
  • at least one symbol preceding the first PUSCH transmission subframe is deleted.
  • the second transmission node performs data transmission (ie, PUSCH transmission) on the subframe #n+k according to the scheduling grant, or in the Data transmission on subframe #n+k and subsequent consecutive Z subframes;
  • the second transmission node performs CCA detection again at the end of the subframe #n+k+p+q-1, or in the subframe #n+k+p Perform CCA detection on the first symbol of +q, or perform CCA detection again at the end of subframe #n+k+m-1, or perform CCA detection on the first symbol of subframe #n+k+m,
  • the p and q are determined according to a PUSCH and a physical hybrid automatic repeat request indication channel (ie, PHICH) specified by the existing LTE system, and a timing relationship between the PHICH and the PUSCH, where m is a predefined value.
  • 26 is a diagram showing a second transmission node determining a CCA detection location, in this embodiment, assuming that a first transmission node (eNB) transmits a scheduling grant to a second transmission node (UE1 or UE2) on an unlicensed carrier, and The unlicensed carrier is a TDD carrier; and it is assumed that the second transmitting node (UE1 or UE2) performs CCA detection at the end of the subframe #n+k-1, specifically to the embodiment shown in FIG.
  • eNB first transmission node
  • UE1 or UE2 transmits a scheduling grant to a second transmission node (UE1 or UE2) on an unlicensed carrier
  • the unlicensed carrier is a TDD carrier
  • the second transmitting node UE1 or UE2 performs CCA detection at the end of the subframe #n+k-1, specifically to the embodiment shown in FIG.
  • the first transmission The node eNB sends a scheduling grant to the UE1 on the subframe #8 of the transmission frame #x of the unlicensed carrier, and the second transmission node UE1 transmits the subframe of the transmission frame #x+1 according to the timing relationship of the existing LTE TDD system.
  • #2 is transmitted on the PUSCH, where k is 4, and before the UE1 transmits the PUSCH, the CCA detection is performed at the end of the subframe #1 of the transmission frame #x+1 (that is, the subframe #n+k-1);
  • the first transmission node eNB sends a scheduling grant to the UE1 on the subframe #9 of the transmission frame #x of the unlicensed carrier, and the UE2 will be in accordance with the timing relationship of the existing LTE TDD system.
  • the PUSCH is transmitted on the subframe #3 of the transmission frame #x+1, where k is 4, and before the UE2 transmits the PUSCH, at the end of the subframe #2 of the transmission frame #x (that is, the subframe #n+k-1) ) conducting CCA testing;
  • the PUSCH transmission is to delete the last symbol without performing data transmission.
  • k is determined according to the timing relationship between the scheduling grant and the PUSCH transmission when the TDD carrier is self-scheduling.
  • FIG. 27 is a diagram showing a second transmission node determining a CCA detection location, in this embodiment, assuming that a first transmission node (eNB) transmits a scheduling grant to a second transmission node (UE1 or UE2) on an unlicensed carrier, and The unlicensed carrier is a TDD carrier; and it is assumed that the second transmitting node (UE1 or UE2) performs CCA detection on the first symbol of the subframe #n+k, specifically to the embodiment shown in FIG.
  • eNB transmission node
  • the eNB Given on subframe #8 of the transmission frame #x of the unlicensed carrier UE1 sends a scheduling grant, and UE1 transmits PUSCH on subframe #2 of transmission frame #x+1 according to the timing relationship of the existing LTE TDD system, where k is 4, and before UE1 transmits PUSCH, in transmission frame # CCA detection is performed on the first symbol of subframe #2 of x+1 (that is, subframe #n+k);
  • the eNB sends a scheduling grant to UE1 on subframe #9 of the transmission frame #x of the unlicensed carrier, and UE2 will transmit the frame #x+1 according to the timing relationship of the existing LTE TDD system.
  • the PUSCH is transmitted on the frame #3, where k is 4, and the CCA detection is performed on the first symbol of the subframe #3 (that is, the subframe #n+k) of the transmission frame #x+1 before the UE2 transmits the PUSCH. ;
  • the CCA detection can be performed at the end of the first symbol of the subframe in which the PUSCH is to be transmitted, so that only as a preferred embodiment, the CCA detects other locations in the first symbol, The invention is not excluded.
  • Fig. 28 shows an example of the above-described second transmission node performing PUSCH transmission.
  • the first transmitting node (eNB) transmits a scheduling grant to the second transmitting node (UE1 or UE2) on the unlicensed carrier, and the unlicensed carrier is a TDD carrier; and assuming the second transmitting node ( UE1 or UE2) performs CCA detection on the first symbol of subframe #n+k, specifically to the embodiment shown in FIG. 28, the eNB gives on subframe #8 of the transmission frame #x of the unlicensed carrier.
  • PUSCH retransmission is performed on frame #2, and UE1 will transmit the first symbol of subframe #2 (that is, subframe #n+k+p+q) of frame #x+2 before retransmission of PUSCH. get on CCA testing.
  • the subframe #2 of the transmission frame #x+2 is the subframe of the PUSCH retransmission transmitted on the subframe #2 of the transmission frame #x+1. If the CCA detection result is still busy, the above process is repeated, and the CCA detection is performed on the next retransmission subframe, and the detection result is idle, and the busy is repeated until the maximum number of retransmissions is reached, and the maximum PUSCH is configured.
  • the number of retransmissions (for example, 4).
  • the eNB sends a scheduling grant to UE2 on subframe #9 of the transmission frame #x of the unlicensed carrier, and UE2 transmits the subframe ##+1 in the frame according to the timing relationship of the existing LTE TDD system.
  • the PUSCH is transmitted, where k is 4, and the CCA detection is performed on the first symbol of the subframe #3 (that is, the subframe #n+k) of the transmission frame #x+1 before the UE2 transmits the PUSCH.
  • the result of the CCA detection is that the channel is idle, so UE2 transmits the PUSCH after completing the CCA detection.
  • Fig. 28 shows an example of the above-described second transmission node performing PUSCH transmission.
  • the first transmitting node (eNB) transmits a scheduling grant to the second transmitting node (UE1 or UE2) on the unlicensed carrier, and the unlicensed carrier is a TDD carrier; and assuming the second transmitting node ( UE1 or UE2) performs CCA detection on the first symbol of subframe #n+k, specifically to the embodiment shown in FIG. 28, the eNB gives on subframe #8 of the transmission frame #x of the unlicensed carrier.
  • the UE1 Before the PUSCH performs the retransmission, the UE1 will transmit the subframe #2 of the frame #x+2 (that is, the subframe #n+k+p+q, which is called the first weight).
  • the CCA detection is performed on the first symbol of the sub-frame.
  • the subframe #2 of the transmission frame #x+2 is the subframe of the PUSCH retransmission transmitted on the subframe #2 of the transmission frame #x+1. If the CCA detection result is still busy, repeat the above process, perform CCA detection on the next retransmission subframe, and the detection result is idle. If it is busy, it is repeated until the maximum number of retransmissions is reached. If the maximum number of retransmissions of the PUSCH is 4, the UE1 abandons the PUSCH transmission if the CCA detects that it has been busy for 4 consecutive times.
  • the eNB sends a scheduling grant to UE2 on subframe #9 of the transmission frame #x of the unlicensed carrier, and UE2 transmits the subframe ##+1 in the frame according to the timing relationship of the existing LTE TDD system.
  • the PUSCH is transmitted, where k is 4, and the CCA detection is performed on the first symbol of the subframe #3 (that is, the subframe #n+k) of the transmission frame #x+1 before the UE2 transmits the PUSCH.
  • the result of the CCA detection is that the channel is idle, so UE2 transmits the PUSCH after completing the CCA detection.
  • Fig. 29 shows an example of the above-described second transmission node performing PUSCH transmission.
  • the first transmitting node (eNB) transmits a scheduling grant to the second transmitting node (UE1 or UE2) on the unlicensed carrier, and the unlicensed carrier is a TDD carrier; and assuming the second transmitting node ( UE1 or UE2) performs CCA detection on the first symbol of subframe #n+k, specifically to the embodiment shown in FIG. 29, the eNB gives on subframe #8 of the transmission frame #x of the unlicensed carrier.
  • the CCA detection result is still busy, the above process is repeated, and the CCA detection is performed on the next retransmission subframe, and the detection result is idle, and the busy is repeated until the maximum number of retransmissions is reached, for example, the maximum PUSCH is configured. If the number of retransmissions is 4, if the CCA detects that it is busy for 4 consecutive times, UE1 abandons the PUSCH transmission.
  • the value of m is the same as the frame length of the transmission frame and the subframe used for PUSCH transmission in the transmission frame.
  • the number is related.
  • the above embodiment is an example of a PUSCH transmission in which one scheduling grant triggers only one subframe of the second transmission node.
  • a scheduling grant triggers PUSCH transmission of multiple subframes of the second transmission node.
  • the first transmission node (eNB) transmits a scheduling grant to the second transport node (UE1) on the unlicensed carrier, and the unlicensed carrier is a TDD carrier; and the second transport node (UE1) is assumed
  • the CCA detection is performed on the end of the subframe #n+k-1.
  • the eNB sends a scheduling grant to the UE1 on the subframe #8 of the transmission frame #x of the unlicensed carrier.
  • the UE1 transmits the PUSCH on the subframe #2 of the transmission frame #x+1 and the subsequent two subframes, where k is 4, and before the UE1 transmits the PUSCH, it transmits The end of subframe #1 of frame #x+1 (that is, subframe #n+k-1) performs CCA detection; if the detection result of CCA is channel idle, UE1 transmits frame #x+ after completing CCA detection.
  • PUSCH transmission is performed on subframe #2 of 1 and subsequent subframe #3 and subframe #4, wherein CCA detection is not required for PUSCH transmission on subframe #3 and subframe #4 of transmission frame #x+1, That is, when a scheduling grant triggers PUSCH transmission of multiple subframes, UE1 only needs to perform CCA detection before the first PUSCH transmission.
  • three independent transport blocks may be corresponding, or three subframes may correspond to one transport block.
  • the UE1 may perform the retransmission of the PUSCH of the three subframes in the corresponding subframe according to the method described in the specific embodiment 4-3 or the specific embodiment 4-4, such as Figure 31 shows.
  • the UE1 may also be processed as follows:
  • the CCA detection is continued at the end of the subframe #n+k (that is, the first PUSCH transmission subframe, that is, the subframe #2 of the transmission frame #x+1), and if the result of the CCA detection is the channel idle, the UE1 Performing PUSCH transmission of the second and third transport blocks on subframe #3 and subframe #4 of transmission frame #x+1, according to the method described in Embodiment 4-3 or Embodiment 4-4, The retransmission of the PUSCH of the first subframe is performed on the corresponding subframe, as shown in FIG.
  • the UE1 If the result of the CCA detection performed at the end of the subframe #n+k is that the channel is busy, the UE1 will be in the subframe #n+k+1 (that is, the second PUSCH transmission subframe, that is, the transmission frame #x The end of the +1 subframe #3) continues the CCA detection. If the result of the CCA detection is the channel idle, the UE1 performs the PUSCH transmission of the third transport block on the subframe #4 of the transmission frame #x+1, according to In the method described in the specific embodiment 4-3 or the specific embodiment 4-4, the PUSCH retransmission of the first and second subframes is performed on the corresponding subframe, as shown in FIG.
  • the UE when the CCA detection result is that the channel is busy, the UE retransmits the PUSCH or is performed on the unlicensed carrier. If the UE transmits the unlicensed carrier, the UE needs to perform CCA detection before transmitting the PUSCH, CCA. The result of the detection depends on the current channel conditions, so the UE may still be unable to transmit. To this end, this embodiment provides another way for the UE to retransmit the PUSCH to reduce the delay of the PUSCH. In this embodiment, the UE does not transmit the PUSCH.
  • the base station side determines that the UE does not transmit the PUSCH by using corresponding detection (such as detecting whether there is energy of the transmitted signal on the resource block of the scheduled PUSCH), so that the UE does not preempt the UE.
  • the resources of the unlicensed carrier Therefore, in order to ensure that the PUSCH of the UE can be transmitted in time, the base station may instruct the UE to perform PUSCH retransmission on the authorized carrier.
  • the modules described in the embodiments of the present invention may be implemented by a central processing unit (CPU), a digital signal processor (DSP), or a programmable logic array (Field-Programmable Gate Array) in an electronic device. FPGA) implementation.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA programmable logic array
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention may be employed in one or more of its A computer program product embodied on a computer usable storage medium (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage medium including but not limited to disk storage and optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • an embodiment of the present invention further provides a computer storage medium, the computer storage medium comprising a set of instructions, when executed, causing at least one processor to execute the data transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据传输方法、装置、***及计算机存储介质,该方法包括:确定信道可用情况检测(CCA)的检测位置;在所述CCA的检测位置上进行CCA检测;检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。

Description

一种数据传输方法、装置、***及计算机存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种数据传输方法、装置、***及计算机存储介质。
背景技术
众所周知,长期演进(LTE,Long Term Evolution)是部署在授权载波中运营的,但是随着数据业务的快速增长,在不久的将来,授权载波将不能再承受如此巨大的数据量。因此,在非授权载波中部署LTE,通过非授权载波来分担授权载波中的数据流量,是后续LTE发展的一个重要的演进方向。
另外,对于非授权载波,也是存在很多优势的:免费/低费用;准入要求低,成本低,比如个人、企业都可以参与部署,而且设备商的设备可以任意;在多个不同***运营共享频谱中时,或者同一***的不同运营商运营非授权载波中时,可以考虑一些共享资源的方式,以提高频谱效率;无线接入技术多;无线接入站点多;应用多,从相关资料显示来看,多业务被提及可以在非授权载波中运营,比如机器到机器(M2M,Machine to Machine)、汽车到汽车(V2V,Vehicle to vehicle)等业务。
对于非授权载波的工作方式,通常是借助于授权载波,也就是非授权载波与授权载波(工作在LTE模式下)通过载波聚合的方式来工作,这种方式称为授权载波辅助接入(LAA,Licensed-Assistant Access)。另外,考虑到非授权载波,会有多个***也工作在相同的频谱上,如WIFI***。因此,LTE工作在非授权载波上,解决与其他***的共存问题是至关重要的。而且,在有些国家和地区,对于非授权频谱的使用,有相应的管制政策。 为此,针对非授权载波的管制限制,制定相应的数据传输方法,是LTE***使用非授权载波亟待解决的一个问题。
在对非授权载波的使用有管制要求的国家和地区,在使用非授权载波前必须进行信道可用情况检测(也称为CCA,Clear Channel Assessment),当检测结果为闲时,才能使用所述非授权载波,如果检测结果为忙时,则继续进行侦听,或者在下一个传输帧上进行侦听(上述过程也可以称为先听后说(LBT,listen before talk)行为)。
下面以对非授权频谱的使用有管制要求的欧洲为例,简要地说明一下欧洲国家所支持的两种LBT行为,一种是针对基于帧的设备(FBE,Frame-based Equipment),另一种是针对基于负载的设备(LBE,Load-based Equipment)。
如图1A所示,对于FBE,具有固定的传输帧结构,信道占用时间和空闲时期构成固定的帧周期,设备在空闲时期进行CCA检测,当检测到信道为闲时,则可以立即进行数据传输,否则,在下一个固定帧周期的空闲时期再进行CCA检测。对于欧洲的FBE,信道占用时间为1毫秒到10毫秒,空闲时期至少为信道占用时间的5%。具体的信道占用时间是可以配置的。CCA检测持续的最短时间在管制中有规定,比如最短不小于20us,CCA检测可以基于能量检测,也可以基于信号检测。
如图1B所示,对于LBE,顾名思义,基于负载的,当有数据传输需求时,设备才开始去进行CCA检测,如果在进行CCA检测后,发现信道为空闲时,则可以立即进行数据传输,数据传输可占用的最大时间为(13/32)×q ms,其中q={4…32},是可配置的;否则,进入扩展CCA检测时期,也就是要进行X次的CCA检测,X的值存储在一个计数器里,其中,X值在1到q里随机选取,每次CCA检测(每次CCA检测时间相同)如果发现信道是空闲的,则计数器开始递减,如果信道不是空闲的,则计数器不递减, 当计数器递减到0时,则可以开始进行数据传输,数据传输时间根据需求确定,但是最大不能超过(13/32)×q ms。
对于FBE,如果CCA检测的结果为信道忙,则必须在下一个传输帧规定的位置才能再次进行CCA检测,这样导致的结果就是LAA传输节点能够使用非授权载波的机会要比其他***(如WIFI)的低,并且,由于信道忙的话必须等到下一个传输帧才有机会进行传输,从而传输延时比较大。
发明内容
有鉴于此,为解决现有存在的技术问题,本发明实施例提供一种数据传输方法、装置、***及计算机存储介质。
本发明实施例提供了一种数据传输方法,包括:
确定CCA的检测位置;
在所述CCA的检测位置上进行CCA检测;
检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。
一具体实施例中,采用以下至少之一的方式确定CCA的检测位置:
根据预定义或配置的方式确定CCA的检测位置;
根据传输帧的帧长确定CCA的检测位置;
根据调度授权以及对应的传输定时关系确定CCA的检测位置。
一具体实施例中,所述根据传输帧的帧长确定CCA的检测位置的场景下,当存在多种传输帧长时,所述CCA的检测位置在不同传输帧长的传输帧中的位置相同。
一具体实施例中,所述CCA的检测位置满足以下至少一个条件:
在传输帧中均匀分布;
在预设时间内不变,或者在每个传输帧中动态变化;
至少有一个位于传输帧的最后一个子帧上;
至少有一个位于传输帧的第一个子帧上。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的最后一个子帧上时,所述位于传输帧最后一个子帧的侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间,其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,除位于传输帧最后一个子帧的侦听子帧之外的其他侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的第一个子帧上时,所述位于传输帧第一个子帧的侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述传输帧的最后一个子帧仅包含一个数据传输区域,或者,依次包含一个数据传输区域和一个空闲时间区域,所述最后一个子帧的空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零;其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,所述侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,当所述传输帧包含位于传输帧最后一个子帧的侦听 子帧时,所述侦听子帧依次包含第一空闲时间区域、数据传输区域和第二空闲时间区域,其中所述的第一空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述的第二空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零。
一具体实施例中,在所述CCA的检测位置上进行CCA检测,包括:在侦听子帧的空闲时间区域或第一空闲时间区域的末端进行CCA检测。
一具体实施例中,当所述CCA的检测位置根据调度授权以及对应的传输定时关系确定时,第一传输节点在子帧#n向第二传输节点发送调度授权,第二传输节点在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的开始进行CCA检测,
其中,所述k根据如下之一的方式确定:
所述k根据预设的调度授权与数据传输的定时关系确定,其中,所述数据传输为物理上行共享信道(PUSCH,Physical Uplink Shared CHannel)的传输;
所述k为预定义的值。
一具体实施例中,当所述第二传输节点在子帧#n+k-1的末端进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉最后一个PUSCH传输子帧的最后至少一个符号;
当所述第二传输节点在子帧#n+k的开始进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉第一个PUSCH传输子帧的前面至少一个符号。
一具体实施例中,当所述CCA检测结果为信道空闲时,所述第二传输节点根据所述调度授权,在所述非授权载波的子帧#n+k上进行PUSCH传 输,或者,在所述非授权载波的子帧#n+k以及其后连续的至少一个子帧上进行数据传输;
当所述CCA检测结果为信道忙时,所述第二传输节点在所述非授权载波的子帧#n+k+p+q-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+p+q的第一个符号上进行CCA检测,或者在所述非授权载波的子帧#n+k+m-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+m第一个符号上进行CCA检测,其中,所述的p和q分别由PUSCH与物理混合自动重传请求指示信道(PHICH,Physical Hybrid ARQ Indicator CHannel),以及PHICH与PUSCH的定时关系确定,所述的k和m为预定义的值,m和k的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧的数量有关。
本发明实施例还提供了一种数据传输装置,包括:检测位置确定模块、检测模块和数据传输模块;其中,
所述检测位置确定模块,配置为确定信道可用情况检测CCA的检测位置;
所述检测模块,配置为在所述CCA的检测位置上进行CCA检测;
所述数据传输模块,配置为在检测模块的检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。
一具体实施例中,所述检测位置确定模块配置为采用以下至少之一的方式确定CCA的检测位置:
根据预定义或配置的方式确定CCA的检测位置;
根据传输帧的帧长确定CCA的检测位置;
根据调度授权以及对应的传输定时关系确定CCA的检测位置。
一具体实施例中,所述检测位置确定模块根据传输帧的帧长确定CCA 的检测位置的场景下,当存在多种传输帧长时,所述CCA的检测位置在不同传输帧长的传输帧中的位置相同。
一具体实施例中,所述检测位置确定模块确定的CCA的检测位置满足以下至少一个条件:
在传输帧中均匀分布;
在预设时间内不变,或者在每个传输帧中动态变化;
至少有一个位于传输帧的最后一个子帧上;
至少有一个位于传输帧的第一个子帧上。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的最后一个子帧上时,所述位于传输帧最后一个子帧的侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间,其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,除位于传输帧最后一个子帧的侦听子帧之外的其他侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的第一个子帧上时,所述位于传输帧第一个子帧的侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述传输帧的最后一个子帧仅包含一个数据传输区域,或者,依次包含一个数据传输区域和一个空闲时间区域,所述最后一个子帧的空闲时间区域的持续时间不小于为满足管制要 求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零;其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,所述侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,当所述传输帧包含位于传输帧最后一个子帧的侦听子帧时,所述侦听子帧依次包含第一空闲时间区域、数据传输区域和第二空闲时间区域,其中所述的第一空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述的第二空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零。
一具体实施例中,所述检测模块,配置为在侦听子帧的空闲时间区域或第一空闲时间区域的末端进行CCA检测。
本发明实施例还提供了一种数据传输***,包括第一传输节点和第二传输节点,CCA的检测位置根据调度授权以及对应的传输定时关系确定;其中,
第一传输节点,配置为在子帧#n向第二传输节点发送调度授权;
第二传输节点,配置为在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的开始进行CCA检测,检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输,
其中,所述k根据如下之一的方式确定:
所述k根据预设的调度授权与数据传输的定时关系确定,其中,所述 数据传输为物理上行共享信道PUSCH的传输;
所述k为预定义的值。
一具体实施例中,所述第二传输节点,还用于当在子帧#n+k-1的末端进行CCA检测,进行PUSCH传输时,还配置为删掉最后一个PUSCH传输子帧的最后至少一个符号;
所述第二传输节点,还配置为当在子帧#n+k的开始进行CCA检测,进行PUSCH传输时,删掉第一个PUSCH传输子帧的前面至少一个符号。
一具体实施例中,当所述CCA检测结果为信道空闲时,所述第二传输节点根据所述调度授权,在所述非授权载波的子帧#n+k上进行PUSCH传输,或者,在所述非授权载波的子帧#n+k以及其后连续的至少一个子帧上进行数据传输;
当所述CCA检测结果为信道忙时,所述第二传输节点在所述非授权载波的子帧#n+k+p+q-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+p+q的第一个符号上进行CCA检测,或者在所述非授权载波的子帧#n+k+m-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+m第一个符号上进行CCA检测,其中,所述的p和q分别由PUSCH与物理混合自动重传请求指示信道PHICH,以及PHICH与PUSCH的定时关系确定,所述的k和m为预定义的值,m和k的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧的数量有关。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的数据传输方法。
本发明实施例所述的数据传输方法、装置、***及计算机存储介质,确定CCA的检测位置;在所述CCA的检测位置上进行CCA检测;检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传 输,其中,所述数据传输包括上行传输和/或下行传输。根据本发明实施例所述的技术方案,CCA的检测位置不再是传输帧中的固定位置,可以根据实际情况进行调整,从而能够增加FBE的接入机会、减少传输延时。
附图说明
图1A为基于帧(FBE)的LBT机制;
图1B为基于负载(LBE)的LBT机制;
图2为本发明实施例一种数据传输方法流程示意图;
图3A为一个1毫秒的传输帧的帧结构设计示意图;
图3B为另一个1毫秒的传输帧的帧结构设计示意图;
图4A为一个2毫秒的传输帧的帧结构设计示意图;
图4B为另一个2毫秒的传输帧的帧结构设计示意图;
图5A为一个3毫秒的传输帧的帧结构设计示意图;
图5B为另一个3毫秒的传输帧的帧结构设计示意图;
图6A为一个4毫秒的传输帧的帧结构设计示意图;
图6B为另一个4毫秒的传输帧的帧结构设计示意图;
图7A为一个5毫秒的传输帧的帧结构设计示意图;
图7B为另一个5毫秒的传输帧的帧结构设计示意图;
图8A为一2个毫秒的传输帧的CCA检测位置示意图;
图8B为另一个2毫秒的传输帧的CCA检测位置示意图;
图9A为一个3毫秒的传输帧的CCA检测位置示意图;
图9B为另一个3毫秒的传输帧的CCA检测位置示意图;
图10A为一个4毫秒的传输帧的CCA检测位置示意图;
图10B为另一个4毫秒的传输帧的CCA检测位置示意图;
图11A为一个4毫秒的传输帧的CCA检测位置另一示意图;
图11B为另一个4毫秒的传输帧的CCA检测位置另一示意图;
图12A为一个5毫秒的传输帧的CCA检测位置示意图;
图12B为另一个5毫秒的传输帧的CCA检测位置示意图;
图13A为一个6毫秒的传输帧的CCA检测位置示意图;
图13B为另一个6毫秒的传输帧的CCA检测位置示意图;
图14A为一个6毫秒的传输帧的CCA检测位置另一示意图;
图14B为另一个6毫秒的传输帧的CCA检测位置另一示意图;
图15A为一个8毫秒的传输帧的CCA检测位置示意图;
图15B为另一个8毫秒的传输帧的CCA检测位置示意图;
图16A为一个8毫秒的传输帧的CCA检测位置另一示意图;
图16B为另一个8毫秒的传输帧的CCA检测位置另一示意图;
图17A为一个9毫秒的传输帧的CCA检测位置示意图;
图17B为另一个9毫秒的传输帧的CCA检测位置示意图;
图18A为一个10毫秒的传输帧的CCA检测位置示意图;
图18B为另一个10毫秒的传输帧的CCA检测位置示意图;
图19A为一个10毫秒的传输帧的CCA检测位置另一示意图;
图19B为另一个10毫秒的传输帧的CCA检测位置另一示意图;
图20为不同传输帧长的CCA检测位置的一个示意图;
图21A为不同传输帧长的CCA检测位置的另一个示意图;
图21B为不同传输帧长的CCA检测位置的另一个示意图;
图22A为不同传输帧长的CCA检测位置的另一个示意图;
图22B为不同传输帧长的CCA检测位置的另一个示意图;
图23A为一不同地区管制下具有相同CCA检测位置的帧结构示意图;
图23B为另一不同地区管制下具有相同CCA检测位置的帧结构示意图;
图24为4毫秒的传输帧的CCA检测位置的另一个示意图;
图25A为本发明方式3所对应的确定CCA检测位置的一个示意图;
图25B为本发明方式3所对应的确定CCA检测位置的另一个示意图;
图26为具体实施例3所对应的确定CCA检测位置的一个示意图;
图27为具体实施例43所对应PUSCH传输的一个示意图。
图28为具体实施例4一第二传输节点进行PUSCH传输的示意图;
图29为具体实施例4另一第二传输节点进行PUSCH传输的示意图;
图30为具体实施例4另一第二传输节点进行PUSCH传输的示意图;
图31为具体实施例4中一进行PUSCH的重传的示意图;
图32为具体实施例4中另一进行PUSCH的重传的示意图;
图33为具体实施例4中另一进行PUSCH的重传的示意图。
具体实施方式
为了增加FBE的接入机会、减少传输延时,本发明实施例提出了一种数据传输方法,如图2所示,该方法包括:
步骤201:确定CCA的检测位置;
步骤202:在所述CCA的检测位置上进行CCA检测;
步骤203:检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。
一具体实施例中,采用以下至少之一的方式确定CCA的检测位置:
根据预定义或配置的方式确定CCA的检测位置;
根据传输帧的帧长确定CCA的检测位置;
根据调度授权以及对应的传输定时关系确定CCA的检测位置。
一具体实施例中,所述根据传输帧的帧长确定CCA的检测位置的场景下,当存在多种传输帧长时,所述CCA的检测位置在不同传输帧长的传输帧中的位置相同。
一具体实施例中,所述CCA的检测位置满足以下至少一个条件:
在传输帧中均匀分布;
在预设时间内不变,或者在每个传输帧中动态变化;
至少有一个位于传输帧的最后一个子帧上;
至少有一个位于传输帧的第一个子帧上。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的最后一个子帧上时,位于传输帧最后一个子帧的侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间,其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,除位于传输帧最后一个子帧的侦听子帧之外的其他侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的第一个子帧上时,位于传输帧第一个子帧的侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述传输帧的最后一个子帧仅包含一个数据传输区域,或者,依次包含一个数据传输区域和一个空闲时间区域,所述最后一个子帧的空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零;其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,所述侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时 间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,当所述传输帧包含位于传输帧最后一个子帧的侦听子帧时,所述侦听子帧依次包含第一空闲时间区域、数据传输区域和第二空闲时间区域,其中所述第一空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述第二空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零。
一具体实施例中,在所述CCA的检测位置上进行CCA检测,包括:在侦听子帧的空闲时间区域或第一空闲时间区域的末端进行CCA检测。
一具体实施例中,当所述CCA的检测位置根据调度授权以及对应的传输定时关系确定时,第一传输节点在子帧#n向第二传输节点发送调度授权,第二传输节点在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的开始进行CCA检测,
其中,所述k根据如下之一的方式确定:
所述k根据预设的调度授权与数据传输的定时关系确定,其中,所述数据传输为PUSCH的传输;
所述k为预定义的值。
一具体实施例中,当所述第二传输节点在子帧#n+k-1的末端进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉最后一个PUSCH传输子帧的最后至少一个符号;
当所述第二传输节点在子帧#n+k的开始进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉第一个PUSCH传输子帧的前面至少一个符号。
一具体实施例中,当所述CCA检测结果为信道空闲时,所述第二传输 节点根据所述调度授权,在所述非授权载波的子帧#n+k上进行PUSCH传输,或者,在所述非授权载波的子帧#n+k以及其后连续的至少一个子帧上进行数据传输;
当所述CCA检测结果为信道忙时,所述第二传输节点在所述非授权载波的子帧#n+k+p+q-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+p+q的第一个符号上进行CCA检测,或者在所述非授权载波的子帧#n+k+m-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+m第一个符号上进行CCA检测,其中,所述的p和q分别由PUSCH与物理混合自动重传请求指示信道PHICH,以及PHICH与PUSCH的定时关系确定,所述的k和m为预定义的值,m和k的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧的数量有关。
本发明实施例还相应地提出了一种数据传输装置,该装置包括:检测位置确定模块、检测模块和数据传输模块;其中,
所述检测位置确定模块,配置为确定信道可用情况检测CCA的检测位置;
所述检测模块,配置为在所述CCA的检测位置上进行CCA检测;
所述数据传输模块,配置为在检测模块的检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。
一具体实施例中,所述检测位置确定模块具体配置为采用以下至少之一的方式确定CCA的检测位置:
根据预定义或配置的方式确定CCA的检测位置;
根据传输帧的帧长确定CCA的检测位置;
根据调度授权以及对应的传输定时关系确定CCA的检测位置。
一具体实施例中,所述检测位置确定模块根据传输帧的帧长确定CCA 的检测位置的场景下,当存在多种传输帧长时,所述CCA的检测位置在不同传输帧长的传输帧中的位置相同。
一具体实施例中,所述检测位置确定模块确定的CCA的检测位置满足以下至少一个条件:
在传输帧中均匀分布;
在预设时间内不变,或者在每个传输帧中动态变化;
至少有一个位于传输帧的最后一个子帧上;
至少有一个位于传输帧的第一个子帧上。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的最后一个子帧上时,位于传输帧最后一个子帧的侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间,其中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,除位于传输帧最后一个子帧的侦听子帧之外的其他侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,CCA的检测位置至少有一个位于传输帧的第一个子帧上时,位于传输帧第一个子帧的侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述传输帧的最后一个子帧仅包含一个数据传输区域,或者,依次包含一个数据传输区域和一个空闲时间区域,所述最后一个子帧的空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零;其 中,所述侦听子帧指包含CCA检测位置的子帧。
一具体实施例中,当所述传输帧包含多个侦听子帧时,所述侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
一具体实施例中,当所述传输帧包含位于传输帧最后一个子帧的侦听子帧时,所述侦听子帧依次包含第一空闲时间区域、数据传输区域和第二空闲时间区域,其中所述的第一空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述的第二空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零。
一具体实施例中,所述检测模块,配置为在侦听子帧的空闲时间区域或第一空闲时间区域的末端进行CCA检测。
本发明实施例还相应地提出了一种数据传输***,该***包括第一传输节点和第二传输节点,CCA的检测位置根据调度授权以及对应的传输定时关系确定;其中,
第一传输节点,配置为在子帧#n向第二传输节点发送调度授权;
第二传输节点,配置为在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的开始进行CCA检测,检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输,
其中,所述k根据如下之一的方式确定:
所述k根据预设的调度授权与数据传输的定时关系确定,其中,所述数据传输为物理上行共享信道PUSCH的传输;
所述k为预定义的值。
一具体实施例中,当所述第二传输节点在子帧#n+k-1的末端进行CCA检测时,所述第二传输节点进行PUSCH传输时,还配置为删掉最后一个PUSCH传输子帧的最后至少一个符号;
当所述第二传输节点在子帧#n+k的开始进行CCA检测时,所述第二传输节点进行PUSCH传输时,还配置为删掉第一个PUSCH传输子帧的前面至少一个符号。
一具体实施例中,当所述CCA检测结果为信道空闲时,所述第二传输节点根据所述调度授权,在所述非授权载波的子帧#n+k上进行PUSCH传输,或者,在所述非授权载波的子帧#n+k以及其后连续的至少一个子帧上进行数据传输;
当所述CCA检测结果为信道忙时,所述第二传输节点在所述非授权载波的子帧#n+k+p+q-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+p+q的第一个符号上进行CCA检测,或者在所述非授权载波的子帧#n+k+m-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+m第一个符号上进行CCA检测,其中,所述的p和q分别由PUSCH与物理混合自动重传请求指示信道PHICH,以及PHICH与PUSCH的定时关系确定,所述的k和m为预定义的值,m和k的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧的数量有关。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例对本发明的技术方案进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1
对于欧洲的FBE,信道占用时间为1毫秒到10毫秒,空闲时间至少为 信道占用时间的5%。具体的信道占用时间是可以配置的。而LTE的帧结构以子帧为单位,一个子帧持续1ms,因此,信道占用时间可以配置为1个到10个LTE子帧。再考虑到LTE的传输以正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号为单位,一个OFDM符号不包含循环前缀(CP,Cyclic Prefix)时的持续时间为66.7us,常规循环前缀下,包含循环前缀的OFDM符号持续时间为71.9us(时隙的第一个符号)或者是71.3us(其他符号),扩展循环前缀下,包含循环前缀的OFDM符号的持续时间为83.3us。如果空闲时间也以OFDM符号为单位,则对于配置不同的信道占用时间,其所需的空闲时间如表1所示:
Figure PCTCN2015087230-appb-000001
表1
基于此,对于比较典型的信道占用时间,如1毫秒,2毫秒,3毫秒,4毫秒,5毫秒,可以得到如图3到图7所示的几个典型传输帧设计,这里的帧设计指的是侦听子帧的设计以及侦听子帧中空闲时间的设计。
其中图3A~图7A表示的是侦听子帧位于传输最后一个子帧的设计,图3B~图7B表示的是侦听子帧位于传输帧第一个子帧的设计。
实施例2
实施例1中的传输帧的设计,是传统的FBE设计,也即一个传输帧中只有一个CCA检测位置。如前所述,对于传统的FBE设计,由于CCA的检测位置有限,导致了传输节点接入非授权载波的机会相对比较低,以及传输比较大,为此,需要有改进型的FBE设计。
基于此,本实施例提供了一种非授权载波的数据传输方法,该方法包括:
确定CCA的检测位置,传输节点在所述CCA的检测位置上进行CCA检测,在检测结果为所述非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中所述数据传输包括上行传输和下行传输,所述包含CCA检测的子帧为侦听子帧。
其中,确定CCA的检测位置为以下至少之一:
方式1:根据预定义或配置的方式确定CCA的检测位置;
方式2:根据传输帧的传输时间确定CCA的检测位置;
方式3:根据调度授权以及对应的传输定时关系确定CCA的检测位置。
其中,对于方式1,可以采用预定义的方式确定不同传输帧长的传输帧的CCA检测位置。考虑到欧洲管制下的FBE,其信道占用时间可配置为1毫秒到10毫秒,以及LTE的调度是以1毫秒的子帧为单位,因此,可以设计1毫秒到10毫秒的传输帧。
具体实施例2-1
对于1毫秒的传输帧,如图3A和图3B所示给出了1毫秒的传输帧的CCA检测位置图样,一个传输帧里有一个CCA检测位置,分别位于1毫秒的传输帧的末端和前端。
具体实施例2-2
对于2毫秒的传输帧,如图4A和图4B分别所示给出了2毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里有一个CCA的检测位置,分别位于2毫秒的传输帧的末端和前端。
为了增加传输节点接入非授权载波的机会,可以增加CCA的检测位置,图8A给出了2毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧里包含2个CCA的检测位置,分别位于两个子帧的末端,其中, 对于传输帧末端的侦听子帧,其空闲时间区域的持续时间为2个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而第一个子帧中的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,第一个子帧的空闲时间区域为1个OFDM符号。
图8B给出了2毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含2个CCA的检测位置,分别位于两个子帧的前端,所述两个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第二个侦听子帧同时也是传输帧的最后一个子帧,因而第二个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第二个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应2个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即1个OFDM符号。
具体实施例2-3
对于3毫秒的传输帧,如图3A和3B所示给出了3毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里有一个CCA的检测位置,分别位于3毫秒的传输帧的末端和前端。
为了增加传输节点接入非授权载波的机会,可以增加CCA的检测位置,图9A给出了3毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧里包含3个CCA的检测位置,分别位于每个子帧的末端,其中,对于传输帧末端的侦听子帧,其空闲时间区域的持续时间为3个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可, 考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图9B给出了3毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含3个CCA的检测位置,分别位于每个子帧的前端,所述三个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第三个侦听子帧同时也是传输帧的最后一个子帧,因而第三个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第三个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应3个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即2个OFDM符号。
具体实施例2-4
对于4毫秒的传输帧,如图6A和6B所示给出了6毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里有一个CCA的检测位置,分别位于6毫秒的传输帧的末端和前端。
为了增加传输节点接入非授权载波的机会,可以增加CCA的检测位置,图10A给出了4毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧里包含2个CCA的检测位置,分别位于子帧#1和子帧#3的末端,其中,对于传输帧末端(也就是子帧#3)的侦听子帧,其空闲时间区域的持续时间为3个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧(也就是子帧#1)的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图10B给出了4毫秒的传输帧的CCA检测位置的另一个图样,在该示 例中,一个传输帧包含2个CCA的检测位置,分别位于子帧#0和子帧#2,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#3的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应3个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即2个OFDM符号。为了进一步增加传输节点接入非授权载波的机会,可以进一步增加CCA的检测位置,图11给出了4毫秒的传输帧的CCA检测位置的另一个图样,在该实例中,一个传输帧里包含4个CCA检测位置,分别位于每个子帧的末端,对于传输帧末端(也就是子帧#3)的侦听子帧,其空闲时间区域的持续时间为3个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图11B给出了4毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含4个CCA的检测位置,分别位于每个子帧的前端,所述4个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第四个侦听子帧同时也是传输帧的最后一个子帧,因而第四个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第五个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应3个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即2个OFDM符号。
具体实施例2-5
对于5毫秒的传输帧,如图7A和7B所示给出了5毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里有一个CCA的检测位置,分别位于5毫秒的传输帧的末端和前端。
为了增加传输节点接入非授权载波的机会,可以增加CCA的检测位置,图12给出了5毫秒的传输帧的CCA检测位置的另一个图样,在该实例中,一个传输帧里包含5个CCA检测位置,分别位于每个子帧的末端,对于传输帧末端(也就是子帧#4)的侦听子帧,其空闲时间区域的持续时间为4个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图12B给出了5毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含5个CCA的检测位置,分别位于每个子帧的前端,所述5个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第5个侦听子帧同时也是传输帧的最后一个子帧,因而第五个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第五个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应4个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即3个OFDM符号。
具体实施例2-6
对于6毫秒的传输帧,如图13A所示给出了6毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里包含2个CCA的检测位置, 分别位于子帧#2和子帧#5的末端,其中,对于传输帧末端(也就是子帧#5)的侦听子帧,其空闲时间区域的持续时间为5个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧(也就是子帧#2)的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图13B给出了6毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含2个CCA的检测位置,分别位于子帧#0和子帧#3,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#5的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应5个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即4个OFDM符号。
为了进一步增加传输节点接入非授权载波的机会,可以进一步增加CCA的检测位置,图14A给出了6毫秒的传输帧的CCA检测位置的另一个图样,在该实例中,一个传输帧里包含3个CCA检测位置,分别位于子帧#1、子帧#3和子帧#5的末端,其中,对于传输帧末端(也就是子帧#5)的侦听子帧,其空闲时间区域的持续时间为5个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧(也就是子帧#1和子帧#3)的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图13B给出了6毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含3个CCA的检测位置,分别位于子帧#0、子帧#2 和子帧#4,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#5的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应5个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即4个OFDM符号。
此外,还可以预定义CCA的检测位置位于每个子帧的末端,对于传输帧末端(也就是子帧#5)的侦听子帧,其空闲时间区域的持续时间为5个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
或者,预定义CCA的检测位置位于每个子帧的前端,每个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第6个侦听子帧同时也是传输帧的最后一个子帧,因而第6个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第6个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应5个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即4个OFDM符号。
具体实施例2-7
对于8毫秒的传输帧,如图15A所示给出了8毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里包含2个CCA的检测位置,分别位于子帧#3和子帧#7的末端,其中,对于传输帧末端(也就是子帧#7) 的侦听子帧,其空闲时间区域的持续时间为6个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧(也就是子帧#3)的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图15B给出了8毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含2个CCA的检测位置,分别位于子帧#0和子帧#3,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#7的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应6个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即5个OFDM符号。
为了进一步增加传输节点接入非授权载波的机会,可以进一步增加CCA的检测位置,图16A给出了8毫秒的传输帧的CCA检测位置的另一个图样,在该实例中,一个传输帧里包含4个CCA检测位置,分别位于子帧#1、子帧#3、子帧#5和子帧#7的末端,其中,对于传输帧末端(也就是子帧#7)的侦听子帧,其空闲时间区域的持续时间为6个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图16B给出了8毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含4个CCA的检测位置,分别位于子帧#0、子帧#2、子帧#4和子帧#6,侦听子帧的空闲时间区域只需要留有足够的CCA检测时 间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#7的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应6个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即5个OFDM符号。
此外,还可以预定义CCA的检测位置位于每个子帧的末端,对于传输帧末端(也就是子帧#7)的侦听子帧,其空闲时间区域的持续时间为6个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
或者,预定义CCA的检测位置位于每个子帧的前端,每个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第8个侦听子帧同时也是传输帧的最后一个子帧,因而第8个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第8个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应6个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即5个OFDM符号。
具体实施例2-8
对于9毫秒的传输帧,如图17A所示给出了9毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里包含3个CCA的检测位置,分别位于子帧#2、子帧#5和子帧#8的末端,其中,对于传输帧末端(也就 是子帧#8)的侦听子帧,其空闲时间区域的持续时间为7个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧(也就是子帧#2和子帧#5)的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图17B给出了9毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含3个CCA的检测位置,分别位于子帧#0、子帧#3和子帧#6,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#8的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应7个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即6个OFDM符号。此外,还可以预定义CCA的检测位置位于每个子帧的末端,对于传输帧末端(也就是子帧#8)的侦听子帧,其空闲时间区域的持续时间为7个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
或者,预定义CCA的检测位置位于每个子帧的前端,每个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第9个侦听子帧同时也是传输帧的最后一个子帧,因而第9个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第9个子帧的末端还有第二空闲时间区域,其持续的时间不小 于为满足管制要求的空闲时间(该示例中对应7个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即6个OFDM符号。
具体实施例2-9
对于10毫秒的传输帧,如图18A所示给出了10毫秒的传输帧的CCA检测位置的一个图样,在该示例中,一个传输帧里包含2个CCA的检测位置,分别位于子帧#4和子帧#8的末端,其中,对于传输帧末端(也就是子帧#9)的侦听子帧,其空闲时间区域的持续时间为7个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧(也就是子帧#4)的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图18B给出了10毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含2个CCA的检测位置,分别位于子帧#0和子帧#5,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#,9的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应7个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即6个OFDM符号。
为了进一步增加传输节点接入非授权载波的机会,可以进一步增加CCA的检测位置,图19给出了10毫秒的传输帧的CCA检测位置的另一个图样,在该实例中,一个传输帧里包含5个CCA检测位置,分别位于子帧#1、子帧#3、子帧#5、子帧#7和子帧#9的末端,其中,对于传输帧末端(也就是子帧#9)的侦听子帧,其空闲时间区域的持续时间为7个OFDM符号, 也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
图19B给出了10毫秒的传输帧的CCA检测位置的另一个图样,在该示例中,一个传输帧包含5个CCA的检测位置,分别位于子帧#0、子帧#2、子帧#4、子帧#6和子帧#8,侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号;另外,传输帧的最后一个子帧,也即子帧#9的空闲时间区域持续的时间不小于为满足管制要求的空闲时间(该示例中对应7个OFDM符号)与第一个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即6个OFDM符号。
此外,还可以预定义CCA的检测位置位于每个子帧的末端,对于传输帧末端(也就是子帧#9)的侦听子帧,其空闲时间区域的持续时间为7个OFDM符号,也即满足欧洲管制对于空闲时间(5%的信道占用时间)的要求,而对于其余的侦听子帧的空闲时间区域,只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号。
或者,预定义CCA的检测位置位于每个子帧的前端,每个侦听子帧的空闲时间区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,因此,这里侦听子帧的空闲时间区域为1个OFDM符号,另外,由于第10个侦听子帧同时也是传输帧的最后一个子帧,因而第10个侦听子帧除了包含用于CCA检测的空闲时间区域(第一空间时间区域)外,在第10个子帧的末端还有第二空闲时间区域,其持续的时间不小于为满足管制要求的空闲时间(该示例中对应7个OFDM符号)与第一 个侦听子帧的空闲时间区域(该示例中对应1个OFDM符号)之间的差值,因此也即6个OFDM符号。
对于方式1,对于每个传输帧长,预定义一种或多种CCA检测位置的图样,实际使用当中,可以通过配置的方式确定传输节点具体使用哪个CCA检测位置图样,或者通过自适应的方式确定使用哪个CCA检测位置图样,如当网络比较拥堵的时候(多次无法接入非授权载波),使用CCA检测位置比较多的图样。
另外,需要注意的时,当一个传输帧存在多个CCA检测位置时,传输帧中的实际进行数据传输的时间为完成CCA检测后到本传输帧的空闲时间区域为止,具体如图20所示:
当CCA检测在前一个传输帧的末端的空闲区域进行且CCA检测结果为信道空闲时,传输节点在本传输帧中的信道占用时间为T1=9.5毫秒
当CCA检测在前一个传输帧的末端的空闲区域进行且CCA检测结果为信道忙时,则传输节点将在本传输帧的子帧#4的末端进行CCA检测,如果CCA检测结果为信道空闲时,传输节点在本传输帧中的信道占用时间为T2=4.5毫秒。
实施例3
对于方式2,根据传输帧的传输时间确定CCA的检测位置,具体来说,根据***中支持的多种传输帧长,以不同传输帧长的最大公约数所对应的传输帧长为基础,确定其他传输帧长的CCA位置。
如图21A所示,如果***支持的传输帧长为2毫秒,4毫秒,6毫秒,8毫秒,10毫秒,由于这几个不同长度传输帧长具有最大公约数2,因此,以2毫秒的传输帧长为基础,确定其他传输帧长的CCA位置,其中所述的CCA位置位于侦听子帧的末端,从图21A可以看出,不同长度的传输帧的 CCA位置是对齐的,这样保证了使用不同传输帧长的传输节点,具有相同的接入到非授权载波的机会。或者如图21B所示,其中所述CCA的位置位于侦听子帧的前端,从图21B可以看出,不同长度的传输帧的CCA位置是对齐的,这样保证了使用不同传输帧长的传输节点,具有相同的接入到非授权载波的机会。
同理,如图22A所示,如果***支持的传输帧长为3毫秒,6毫秒,9毫秒,由于这几个不同长度传输帧长具有最大公约数3,因此,以3毫秒的传输帧长为基础,确定其他传输帧长的CCA位置,其中所述的CCA位置位于侦听子帧的末端,从图22A可以看出,不同长度的传输帧的CCA位置是对齐的,这样保证了使用不同传输帧长的传输节点,具有相同的接入到非授权载波的机会。或者如图22B所示,其中所述CCA的位置位于侦听子帧的前端,从图22B可以看出,不同长度的传输帧的CCA位置也是对齐的,这样保证了使用不同传输帧长的传输节点,具有相同的接入到非授权载波的机会。
同理,如图23A所示,如果***支持的传输帧长为5毫秒,10毫秒,由于这两个传输帧长具有最大公约数5,因此,以5毫秒的传输帧长为基础,确定其他传输帧长的CCA位置,其中所述的CCA位置位于侦听子帧的末端,从图23A可以看出,不同长度的传输帧的CCA位置是对齐的,这样保证了使用不同传输帧长的传输节点,具有相同的接入到非授权载波的机会。或者如图23B所示,其中所述CCA的位置位于侦听子帧的前端,从图23B可以看出,不同长度的传输帧的CCA位置也是对齐的,这样保证了使用不同传输帧长的传输节点,具有相同的接入到非授权载波的机会。
考虑到LTE以10毫秒为一个无线帧,5毫秒对应一个半帧,因此,当LTE***应用在非授权载波上时,传输帧长为5毫秒和10毫秒是一个比较合理的选择。另外,考虑到其他地方的管制要求,比如日本地区,其限制 是传输的最大时长不能超过4毫秒,对于此,如果要跟欧洲管制具有相同的CCA检测位置,则可以考虑采用跟上述5毫秒相同的CCA检测位置图样,如图24所示,不同的地方在于最后一个子帧必须全部空闲,才能满足日本的管制要求:传输时长最大不超过4毫秒。
另外,对于日本的管制要求,也可以采用上述的4毫秒的CCA检测位置图样,不同的地方在于,空闲区域只需要留有足够的CCA检测时间即可,考虑到LTE传输至少以OFDM符号为单位,这里,其余子帧的空闲时间区域为1个OFDM符号,如图25A或图25B所示所示,CCA的检测位置分别位于侦听子帧的末端或前端。
需要说明的是,CCA的检测位置在一定时间内是不变的,或者是在每个传输帧中动态变化的。
实施例4
采用方式3,根据调度授权以及对应的传输定时关系确定CCA的检测位置。
第一传输节点在子帧#n向第二传输节点发送调度授权,第二传输节点在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的第一个符号上进行CCA检测。
进一步地,所述第一传输节点在授权载波或非授权载波上向第二传输节点发送调度授权。
进一步地,所述发送调度授权的载波为FDD载波或者为TDD载波;
进一步地,所述第二传输节点进行数据传输所在的载波为FDD或者为TDD载波,其中,所述的数据传输为PUSCH传输;
进一步地,所述k根据如下之一的方式确定:
(1)所述k根据现有LTE***所支持的调度授权与数据传输的定时关系确定,其中,所述的数据传输为物理上行共享信道(PUSCH)的传输;
(2)所述k为预定义的值。
其中,现有LTE***所规定的调度授权与数据传输的定时关系包括:
当第二传输节点配置为自调度时,现有LTE***所规定的FDD和TDD的调度授权与数据传输的定时关系;
当第二传输节点配置为跨载波调度时,现有LTE***所规定的FDD载波聚合,TDD相同上下行配置的载波聚合,TDD不同上下行配置的载波聚合,以及TDD和FDD聚合的调度授权与数据传输的定时关系。
所述现有LTE***所规定的调度授权与数据传输的定时关系为现有技术,这里不再累述。
进一步地,当所述第二传输节点在子帧#n+k-1的末端进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉最后一个PUSCH传输子帧的最后至少一个符号;
进一步地,当所述第二传输节点在子帧#n+k的开始进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉第一个PUSCH传输子帧的前面至少一个符号。
进一步地,当所述CCA检测结果为信道空闲时,所述第二传输节点根据所述调度授权,在所述子帧#n+k上进行数据传输(也即PUSCH传输),或者在所述子帧#n+k以及其后连续的Z个子帧上进行数据传输;
进一步地,当所述CCA检测结果为信道忙时,所述第二传输节点在子帧#n+k+p+q-1的末端重新进行CCA检测,或者在子帧#n+k+p+q的第一个符号上进行CCA检测,或者在子帧#n+k+m-1的末端重新进行CCA检测,或者在子帧#n+k+m第一个符号上进行CCA检测,其中,其中所述的p和q为根据现有LTE***规定的PUSCH与物理混合自动重传请求指示信道(即PHICH),以及PHICH与PUSCH的定时关系确定,m为预定义的值。
为了更好的阐述本发明方案,下面进一步结合具体实施例予以说明。
具体实施例4-1
图26给出第二传输节点确定CCA检测位置的一个示意图,在该实施例中,假设第一传输节点(eNB)在非授权载波上向第二传输节点(UE1或UE2)发送调度授权,且所述非授权载波为TDD载波;同时假设第二传输节点(UE1或UE2)在子帧#n+k-1的末端进行CCA检测,具体到如图26所示的实施例中,第一传输节点eNB在非授权载波的传输帧#x的子帧#8上给UE1发送调度授权,则第二传输节点UE1根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#2上发送PUSCH,这里k为4,在UE1在发送PUSCH之前,在传输帧#x+1的子帧#1的末端(也就是子帧#n+k-1)进行CCA检测;
同理,对于第二传输节点UE2,第一传输节点eNB在非授权载波的传输帧#x的子帧#9上给UE1发送调度授权,则UE2根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#3上发送PUSCH,这里k为4,在UE2在发送PUSCH之前,在传输帧#x的子帧#2的末端(也就是子帧#n+k-1)进行CCA检测;
在该实施例中,为了保证UE2进行CCA检测时,不受UE1的PUSCH传输的影响,PUSCH传输要删掉最后一个符号不进行数据传输。
需要注意的是,作为一个实施例,k在本实施例中是根据TDD载波自调度时的调度授权与PUSCH传输的定时关系确定的。
具体实施例4-2
图27给出第二传输节点确定CCA检测位置的一个示意图,在该实施例中,假设第一传输节点(eNB)在非授权载波上向第二传输节点(UE1或UE2)发送调度授权,且所述非授权载波为TDD载波;同时假设第二传输节点(UE1或UE2)在子帧#n+k的第一个符号上进行CCA检测,具体到如图27所示的实施例中,eNB在非授权载波的传输帧#x的子帧#8上给 UE1发送调度授权,则UE1根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#2上发送PUSCH,这里k为4,在UE1在发送PUSCH之前,在传输帧#x+1的子帧#2(也就是子帧#n+k)的第一个符号上进行CCA检测;
同理,对于UE2,eNB在非授权载波的传输帧#x的子帧#9上给UE1发送调度授权,则UE2根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#3上发送PUSCH,这里k为4,在UE2在发送PUSCH之前,在传输帧#x+1的子帧#3(也就是子帧#n+k)的第一个符号上进行CCA检测;
为了避免对不完整符号的处理,CCA检测可以在要发送PUSCH的子帧的第一个符号的末端进行,这样只作为一个较好的实施例,CCA检测在第一个符号的其他位置,本发明并不排除。
具体实施例4-3
图28给出了上述第二传输节点进行PUSCH传输的一个例子。在该实施例中,假设第一传输节点(eNB)在非授权载波上向第二传输节点(UE1或UE2)发送调度授权,且所述非授权载波为TDD载波;同时假设第二传输节点(UE1或UE2)在子帧#n+k的第一个符号上进行CCA检测,具体到如图28所示的实施例中,eNB在非授权载波的传输帧#x的子帧#8上给UE1发送调度授权,则UE1根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#2上发送PUSCH,这里k为4,在UE1在发送PUSCH之前,在传输帧#x+1的子帧#2(也就是子帧#n+k)的第一个符号上进行CCA检测。CCA的检测结果为信道忙,则根据现有的PUSCH与PHICH的定时关系(这里p=6)以及PHICH与PUSCH的定时关系(这里q=4),UE1将在传输帧#x+2的子帧#2上进行PUSCH重传,在PUSCH进行重传前,UE1将在传输帧#x+2的子帧#2(也就是子帧#n+k+p+q)的第一个符号上进行 CCA检测。实际上,传输帧#x+2的子帧#2为传输帧#x+1的子帧#2上发送的PUSCH重传的子帧。如果CCA检测结果仍然为忙,则重复上述过程,在下一个重传子帧上进行CCA检测,检测结果为闲则发送,为忙则重复,直到到达最大重传次数位置,假设配置了PUSCH的最大重传次数(如为4)。
而对于UE2,eNB在非授权载波的传输帧#x的子帧#9上给UE2发送调度授权,则UE2根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#3上发送PUSCH,这里k为4,在UE2在发送PUSCH之前,在传输帧#x+1的子帧#3(也就是子帧#n+k)的第一个符号上进行CCA检测。CCA的检测结果为信道闲,因此UE2在完成CCA检测后发送PUSCH。
具体实施例4-3
图28给出了上述第二传输节点进行PUSCH传输的一个例子。在该实施例中,假设第一传输节点(eNB)在非授权载波上向第二传输节点(UE1或UE2)发送调度授权,且所述非授权载波为TDD载波;同时假设第二传输节点(UE1或UE2)在子帧#n+k的第一个符号上进行CCA检测,具体到如图28所示的实施例中,eNB在非授权载波的传输帧#x的子帧#8上给UE1发送调度授权,则UE1根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#2上发送PUSCH,这里k为4,在UE1在发送PUSCH之前,在传输帧#x+1的子帧#2(也就是子帧#n+k)的第一个符号上进行CCA检测。CCA的检测结果为信道忙,则根据现有的PUSCH与PHICH的定时关系(这里p=6)以及PHICH与PUSCH的定时关系(这里q=4),UE1将在传输帧#x+2的子帧#2上进行PUSCH重传,在PUSCH进行重传前,UE1将在传输帧#x+2的子帧#2(也就是子帧#n+k+p+q,称为第一个重传子帧)的第一个符号上进行CCA检测。实际上,传输帧#x+2的子帧#2为传输帧#x+1的子帧#2上发送的PUSCH重传的子帧。如果CCA检测结果仍然为忙,则重复上述过程,在下一个重传子帧上进行CCA检测,检测结果为闲则发 送,为忙则重复,直到到达最大重传次数为止,如配置了PUSCH的最大重传次数为4,则如果CCA连续4次检测为忙后,则UE1放弃该PUSCH发送。
而对于UE2,eNB在非授权载波的传输帧#x的子帧#9上给UE2发送调度授权,则UE2根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#3上发送PUSCH,这里k为4,在UE2在发送PUSCH之前,在传输帧#x+1的子帧#3(也就是子帧#n+k)的第一个符号上进行CCA检测。CCA的检测结果为信道闲,因此UE2在完成CCA检测后发送PUSCH。
具体实施例4-4
图29给出了上述第二传输节点进行PUSCH传输的一个例子。在该实施例中,假设第一传输节点(eNB)在非授权载波上向第二传输节点(UE1或UE2)发送调度授权,且所述非授权载波为TDD载波;同时假设第二传输节点(UE1或UE2)在子帧#n+k的第一个符号上进行CCA检测,具体到如图29所示的实施例中,eNB在非授权载波的传输帧#x的子帧#8上给UE1发送调度授权,则UE1根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#2上发送PUSCH,这里k为4,在UE1在发送PUSCH之前,在传输帧#x+1的子帧#2(也就是子帧#n+k)的第一个符号上进行CCA检测。CCA的检测结果为信道忙,则根据UE1在子帧n+k+m上进行PUSCH发送,其中m为预定义的值,在这里,假设m=10,那么UE1将在传输帧#x+2的子帧#2(也就是子帧#n+k+m)的第一个符号上进行CCA检测。如果CCA检测结果仍然为忙,则重复上述过程,在下一个重传子帧上进行CCA检测,检测结果为闲则发送,为忙则重复,直到到达最大重传次数为止,如配置了PUSCH的最大重传次数为4,则如果CCA连续4次检测为忙后,则UE1放弃该PUSCH发送。
这里m的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧 的数量有关。
具体实施例4-5:
上面实施例给出的是一个调度授权只触发第二传输节点一个子帧的PUSCH传输的例子,本实施例给出的是一个调度授权触发第二传输节点多个子帧的PUSCH传输。如图30所示,假设第一传输节点(eNB)在非授权载波上向第二传输节点(UE1)发送调度授权,且所述非授权载波为TDD载波;同时假设第二传输节点(UE1)在子帧#n+k-1的末端上进行CCA检测,具体到如图30所示的实施例中,eNB在非授权载波的传输帧#x的子帧#8上给UE1发送调度授权,则UE1根据现有LTE TDD***的定时关系,将在传输帧#x+1的子帧#2以及其后的2个子帧上发送PUSCH,这里k为4,在UE1在发送PUSCH之前,在传输帧#x+1的子帧#1的末端(也就是子帧#n+k-1)进行CCA检测;如果CCA的检测结果为信道闲,则UE1在完成CCA检测后在传输帧#x+1的子帧#2以及其后的子帧#3和子帧#4上进行PUSCH传输,其中传输帧#x+1的子帧#3和子帧#4上进行PUSCH传输时不需要进行CCA检测,也即,当一个调度授权触发多个子帧的PUSCH传输时,UE1只需要在第一个PUSCH发送前进行CCA检测。
对于一个调度授权触发的连续三个子帧的PUSCH,可以对应三个独立的传输块,也可以三个子帧对应一个传输块。
当CCA的检测结果为信道忙时,UE1可以根据具体实施例4-3或具体实施例4-4所述的方法,在相应的子帧上进行所述3个子帧的PUSCH的重传,如图31所示。
或者,当CCA的检测结果为信道忙时,且调度授权触发的连续三个子帧分别对应三个独立的传输块时,UE1还可以采用如下方式进行处理:
在子帧#n+k(也就是第一个PUSCH传输子帧,即传输帧#x+1的子帧#2)的末端继续进行CCA检测,如果CCA检测的结果为信道闲,则UE1 在传输帧#x+1的子帧#3和子帧#4上进行第二和第三个传输块的PUSCH传输,根据具体实施例4-3或具体实施例4-4所述的方法,在相应的子帧上进行所述第一个子帧的PUSCH的重传,如图32所示。
如果在子帧#n+k的末端进行的CCA检测的结果为信道忙时,则UE1将在在子帧#n+k+1(也就是第二个PUSCH传输子帧,即传输帧#x+1的子帧#3)的末端继续进行CCA检测,如果CCA检测的结果为信道闲,则UE1在传输帧#x+1的子帧#4上进行第三个传输块的PUSCH传输,根据具体实施例4-3或具体实施例4-4所述的方法,在相应的子帧上进行所述第一和第二个子帧的PUSCH的重传,如图33所示。
具体实施例4-6
前面给出的实施例中,当CCA检测结果为信道忙时,UE重传PUSCH时还是在非授权载波上进行,在非授权载波上发送的话,则UE发送PUSCH前都需要进行CCA检测,CCA检测的结果取决于当前的信道条件,因而UE也有可能还是不能发送。为此,本实施例给出了UE重传PUSCH的另一种方式,以减少PUSCH的延时。在本实施例中,由于UE没有发送PUSCH,因此,基站侧通过相应的检测(如在调度PUSCH的资源块上检测是否有发送信号的能量)判断出UE没有发送PUSCH,从而知道UE没有抢占到非授权载波的资源,因此,为了保证UE的PUSCH能够及时发送,基站可以指示UE在授权载波上进行PUSCH重传。
本发明实施例中所述的各模块可以由电子设备中的中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)或可编程逻辑阵列(Field-Programmable Gate Array,FPGA)实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
基于此,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的数据传输方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (27)

  1. 一种数据传输方法,所述方法包括:
    确定信道可用情况检测CCA的检测位置;
    在所述CCA的检测位置上进行CCA检测;
    检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。
  2. 根据权利要求1所述的方法,其中,采用以下至少之一的方式确定CCA的检测位置:
    根据预定义或配置的方式确定CCA的检测位置;
    根据传输帧的帧长确定CCA的检测位置;
    根据调度授权以及对应的传输定时关系确定CCA的检测位置。
  3. 根据权利要求2所述的方法,其中,所述根据传输帧的帧长确定CCA的检测位置的场景下,当存在多种传输帧长时,所述CCA的检测位置在不同传输帧长的传输帧中的位置相同。
  4. 根据权利要求1所述的方法,其中,所述CCA的检测位置满足以下至少一个条件:
    在传输帧中均匀分布;
    在预设时间内不变,或者在每个传输帧中动态变化;
    至少有一个位于传输帧的最后一个子帧上;
    至少有一个位于传输帧的第一个子帧上。
  5. 根据权利要求4所述的方法,其中,CCA的检测位置至少有一个位于传输帧的最后一个子帧上时,所述位于传输帧最后一个子帧的侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间,其中,所述侦听子帧指包含CCA检测位置的子帧。
  6. 根据权利要求5所述的方法,其中,当所述传输帧包含多个侦听子帧时,除位于传输帧最后一个子帧的侦听子帧之外的其他侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
  7. 根据权利要求4所述的方法,其中,CCA的检测位置至少有一个位于传输帧的第一个子帧上时,所述位于传输帧第一个子帧的侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述传输帧的最后一个子帧仅包含一个数据传输区域,或者,依次包含一个数据传输区域和一个空闲时间区域,所述最后一个子帧的空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零;其中,所述侦听子帧指包含CCA检测位置的子帧。
  8. 根据权利要求7所述的方法,其中,当所述传输帧包含多个侦听子帧时,所述侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
  9. 根据权利要求7所述的方法,其中,当所述传输帧包含位于传输帧最后一个子帧的侦听子帧时,所述侦听子帧依次包含第一空闲时间区域、数据传输区域和第二空闲时间区域,其中所述的第一空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述的第二空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所 述第一个子帧的空闲时间之间的差值,且最小值为零。
  10. 根据权利要求5或7或9所述的方法,其中,在所述CCA的检测位置上进行CCA检测,包括:在侦听子帧的空闲时间区域或第一空闲时间区域的末端进行CCA检测。
  11. 根据权利要求2所述的方法,其中,当所述CCA的检测位置根据调度授权以及对应的传输定时关系确定时,第一传输节点在子帧#n向第二传输节点发送调度授权,第二传输节点在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的开始进行CCA检测,
    其中,所述k根据如下之一的方式确定:
    所述k根据预设的调度授权与数据传输的定时关系确定,其中,所述数据传输为物理上行共享信道PUSCH的传输;
    所述k为预定义的值。
  12. 根据权利要求11所述的方法,其中,
    当所述第二传输节点在子帧#n+k-1的末端进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉最后一个PUSCH传输子帧的最后至少一个符号;
    当所述第二传输节点在子帧#n+k的开始进行CCA检测时,所述第二传输节点进行PUSCH传输时,删掉第一个PUSCH传输子帧的前面至少一个符号。
  13. 根据权利要求12所述的方法,其中,
    当所述CCA检测结果为信道空闲时,所述第二传输节点根据所述调度授权,在所述非授权载波的子帧#n+k上进行PUSCH传输,或者,在所述非授权载波的子帧#n+k以及其后连续的至少一个子帧上进行数据传输;
    当所述CCA检测结果为信道忙时,所述第二传输节点在所述非授权载波的子帧#n+k+p+q-1的末端重新进行CCA检测,或者在所述非授权载波的 子帧#n+k+p+q的第一个符号上进行CCA检测,或者在所述非授权载波的子帧#n+k+m-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+m第一个符号上进行CCA检测,其中,所述的p和q分别由PUSCH与物理混合自动重传请求指示信道PHICH,以及PHICH与PUSCH的定时关系确定,所述的k和m为预定义的值,m和k的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧的数量有关。
  14. 一种数据传输装置,所述装置包括:检测位置确定模块、检测模块和数据传输模块;其中,
    所述检测位置确定模块,配置为确定信道可用情况检测CCA的检测位置;
    所述检测模块,配置为在所述CCA的检测位置上进行CCA检测;
    所述数据传输模块,配置为在检测模块的检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输。
  15. 根据权利要求14所述的装置,其中,所述检测位置确定模块配置为采用以下至少之一的方式确定CCA的检测位置:
    根据预定义或配置的方式确定CCA的检测位置;
    根据传输帧的帧长确定CCA的检测位置;
    根据调度授权以及对应的传输定时关系确定CCA的检测位置。
  16. 根据权利要求12所述的装置,其中,所述检测位置确定模块根据传输帧的帧长确定CCA的检测位置的场景下,当存在多种传输帧长时,所述CCA的检测位置在不同传输帧长的传输帧中的位置相同。
  17. 根据权利要求14所述的装置,其中,所述检测位置确定模块确定的CCA的检测位置满足以下至少一个条件:
    在传输帧中均匀分布;
    在预设时间内不变,或者在每个传输帧中动态变化;
    至少有一个位于传输帧的最后一个子帧上;
    至少有一个位于传输帧的第一个子帧上。
  18. 根据权利要求17所述的装置,其中,CCA的检测位置至少有一个位于传输帧的最后一个子帧上时,所述位于传输帧最后一个子帧的侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间,其中,所述侦听子帧指包含CCA检测位置的子帧。
  19. 根据权利要求18所述的装置,其中,当所述传输帧包含多个侦听子帧时,除位于传输帧最后一个子帧的侦听子帧之外的其他侦听子帧依次包含一个数据传输区域和一个空闲时间区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
  20. 根据权利要求17所述的装置,其中,CCA的检测位置至少有一个位于传输帧的第一个子帧上时,所述位于传输帧第一个子帧的侦听子帧依次包含一个空闲时间区域和一个数据传输区域,所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述传输帧的最后一个子帧仅包含一个数据传输区域,或者,依次包含一个数据传输区域和一个空闲时间区域,所述最后一个子帧的空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零;其中,所述侦听子帧指包含CCA检测位置的子帧。
  21. 根据权利要求20所述的装置,其中,当所述传输帧包含多个侦听子帧时,所述侦听子帧依次包含一个空闲时间区域和一个数据传输区域, 所述空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数。
  22. 根据权利要求20所述的装置,其中,当所述传输帧包含位于传输帧最后一个子帧的侦听子帧时,所述侦听子帧依次包含第一空闲时间区域、数据传输区域和第二空闲时间区域,其中所述的第一空闲时间区域的持续时间为管制要求中进行一次非授权载波是否处于空闲状态检测所需的时间,或者为N个传输符号所持续的时间,其中N为大于0的整数;所述的第二空闲时间区域的持续时间不小于为满足管制要求的最短空闲时间与所述第一个子帧的空闲时间之间的差值,且最小值为零。
  23. 根据权利要求18或20或22所述的装置,其中,所述检测模块,配置为在侦听子帧的空闲时间区域或第一空闲时间区域的末端进行CCA检测。
  24. 一种数据传输***,所述***包括第一传输节点和第二传输节点,CCA的检测位置根据调度授权以及对应的传输定时关系确定;其中,
    第一传输节点,配置为在子帧#n向第二传输节点发送调度授权;
    第二传输节点,配置为在子帧#n+k-1的末端进行CCA检测,或者在子帧#n+k的开始进行CCA检测,检测结果为非授权载波处于空闲状态的情况下,在所述非授权载波中进行数据传输,其中,所述数据传输包括上行传输和/或下行传输,
    其中,所述k根据如下之一的方式确定:
    所述k根据预设的调度授权与数据传输的定时关系确定,其中,所述数据传输为物理上行共享信道PUSCH的传输;
    所述k为预定义的值。
  25. 根据权利要求24所述的***,其中,
    所述第二传输节点,还配置为当在子帧#n+k-1的末端进行CCA检测,进行PUSCH传输时,删掉最后一个PUSCH传输子帧的最后至少一个符号;
    所述第二传输节点,还配置为当在子帧#n+k的开始进行CCA检测,进行PUSCH传输时,删掉第一个PUSCH传输子帧的前面至少一个符号。
  26. 根据权利要求25所述的***,其中,
    当所述CCA检测结果为信道空闲时,所述第二传输节点根据所述调度授权,在所述非授权载波的子帧#n+k上进行PUSCH传输,或者,在所述非授权载波的子帧#n+k以及其后连续的至少一个子帧上进行数据传输;
    当所述CCA检测结果为信道忙时,所述第二传输节点在所述非授权载波的子帧#n+k+p+q-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+p+q的第一个符号上进行CCA检测,或者在所述非授权载波的子帧#n+k+m-1的末端重新进行CCA检测,或者在所述非授权载波的子帧#n+k+m第一个符号上进行CCA检测,其中,所述的p和q分别由PUSCH与物理混合自动重传请求指示信道PHICH,以及PHICH与PUSCH的定时关系确定,所述的k和m为预定义的值,m和k的取值跟传输帧的帧长以及传输帧中用于PUSCH传输的子帧的数量有关。
  27. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如权利要求1至10任一项所述的数据传输方法。
PCT/CN2015/087230 2015-01-26 2015-08-17 一种数据传输方法、装置、***及计算机存储介质 WO2016119443A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510039420.5A CN105897387A (zh) 2015-01-26 2015-01-26 一种数据传输方法、装置及***
CN201510039420.5 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016119443A1 true WO2016119443A1 (zh) 2016-08-04

Family

ID=56542314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087230 WO2016119443A1 (zh) 2015-01-26 2015-08-17 一种数据传输方法、装置、***及计算机存储介质

Country Status (2)

Country Link
CN (1) CN105897387A (zh)
WO (1) WO2016119443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278123A (zh) * 2019-02-02 2020-06-12 维沃移动通信有限公司 非授权频段的信息传输方法、终端及网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686603B (zh) * 2015-11-05 2020-11-20 中兴通讯股份有限公司 信道干净评估检测方法和装置
CN107182126B (zh) * 2016-03-09 2023-07-11 中兴通讯股份有限公司 上行反馈信息的传输方法及装置
CN110248368B (zh) * 2018-03-08 2023-09-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507189A (zh) * 2006-08-21 2009-08-12 松下电器产业株式会社 无线通信***、通信控制方法和通信节点
CN102469470A (zh) * 2010-11-04 2012-05-23 中兴通讯股份有限公司 无线局域网中的传输方法和装置
US20140341018A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incorporated Techniques for selecting subframe type or for interleaving signals for wireless communications over unlicensed spectrum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815302B (zh) * 2010-01-07 2014-12-03 北京邮电大学 一种利用认知无线电网络中空闲信道的频谱接入方法
US8666319B2 (en) * 2011-07-15 2014-03-04 Cisco Technology, Inc. Mitigating effects of identified interference with adaptive CCA threshold
CN105933981B (zh) * 2011-08-08 2019-08-23 华为技术有限公司 检测、发送信息的方法及设备
EP2757850B1 (en) * 2013-01-16 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Radio communication in unlicensed band
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507189A (zh) * 2006-08-21 2009-08-12 松下电器产业株式会社 无线通信***、通信控制方法和通信节点
CN102469470A (zh) * 2010-11-04 2012-05-23 中兴通讯股份有限公司 无线局域网中的传输方法和装置
US20140341018A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incorporated Techniques for selecting subframe type or for interleaving signals for wireless communications over unlicensed spectrum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278123A (zh) * 2019-02-02 2020-06-12 维沃移动通信有限公司 非授权频段的信息传输方法、终端及网络设备

Also Published As

Publication number Publication date
CN105897387A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6487069B2 (ja) 共有無線周波数スペクトルバンドのマルチチャネルへの媒体アクセスを管理するための技法
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
US20220116995A1 (en) Information transmission method, apparatus, device and storage medium
US10555300B2 (en) Data transmission method, data transmission site and computer storage medium
CN106301733A (zh) 数据的传输方法及装置
WO2021098858A1 (en) Resource pre-emption sidelink communication
WO2013131257A1 (en) Methods and apparatuses for facilitating multiple operator coordination for transmissions in an unlicensed band
JP2018530961A (ja) 物理ダウンリンク制御チャネルの伝送方法及び装置
CN111869302B (zh) 无线通信网络中用户设备的数据传输优化
WO2016119443A1 (zh) 一种数据传输方法、装置、***及计算机存储介质
WO2018024084A1 (zh) 一种确定资源占用状态的方法和装置
US20200014496A1 (en) Method, device and system for data transmission
EP4068889A1 (en) Efficient signaling of non-preferred transmission resources
KR20220128415A (ko) 채널 충돌 처리 방법, 장치, 설비 및 저장 매체
WO2020015667A1 (zh) 上行传输方法、装置、终端及网络侧设备
CN108811135B (zh) 一种数据传输方法及装置
TW202002555A (zh) 處理在頻寬部分中的實體下鏈路共享通道的裝置及方法
US9042280B2 (en) Methods and apparatus for half duplex scheduling
WO2016184219A1 (zh) 一种非授权频谱的共享方法及装置
KR20220122968A (ko) 차량 인터넷 시스템에서의 리소스 선택 방법, 장치, 단말 및 매체
CN113647182A (zh) 无线通信的方法和设备
WO2017054545A1 (zh) 一种数据传输方法及装置
US10952100B2 (en) UL scheduling timing with short TTIs in TDD
CN116261220A (zh) Cg配置方法、装置、设备及介质
JP7476318B2 (ja) データ伝送方法、端末機器、および記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879642

Country of ref document: EP

Kind code of ref document: A1