WO2016117452A1 - 光学装置および光学部材 - Google Patents

光学装置および光学部材 Download PDF

Info

Publication number
WO2016117452A1
WO2016117452A1 PCT/JP2016/051044 JP2016051044W WO2016117452A1 WO 2016117452 A1 WO2016117452 A1 WO 2016117452A1 JP 2016051044 W JP2016051044 W JP 2016051044W WO 2016117452 A1 WO2016117452 A1 WO 2016117452A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical member
scattering
infrared
reflection
Prior art date
Application number
PCT/JP2016/051044
Other languages
English (en)
French (fr)
Inventor
浩司 宮坂
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201680006330.9A priority Critical patent/CN107209304B/zh
Priority to JP2016570598A priority patent/JP6729396B2/ja
Publication of WO2016117452A1 publication Critical patent/WO2016117452A1/ja
Priority to US15/650,202 priority patent/US10921501B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0816Optical arrangements using attenuators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells

Definitions

  • the present invention relates to an optical device using infrared light and an optical member used therefor.
  • Optical devices using infrared light are used for various purposes such as measurement, communication, and biometric authentication in addition to photographing applications such as infrared camera devices.
  • Such an optical device generally has an infrared light emitting part and / or an infrared light receiving part. Furthermore, the optical device has the purpose of reducing unnecessary light such as visible light incident on the light emitting unit and the light receiving unit, and for emitting infrared light from the light emitting unit to the outside or for receiving infrared light from the outside.
  • An infrared light transmission filter that transmits only infrared light may be provided for the purpose of making an opening of a housing provided for receiving by the light receiving unit invisible.
  • the filter portion has a dark color such as black in order to block visible light.
  • Examples of infrared light transmission filters other than dark colors include white infrared light transmission filters described in Patent Document 1 and Patent Document 2.
  • the infrared light transmission filter described in Patent Document 1 includes a translucent diffusion portion and a mirror that transmits infrared light and reflects visible light, thereby realizing a white infrared light transmission filter. is doing.
  • the infrared transmission filter described in Patent Document 2 uniformly disperses fine particles having a refractive index different from that of the binder in a transparent binder to increase the transmittance in the infrared region, while in the visible region.
  • a white infrared transmission filter is realized by increasing the scattering.
  • Patent Document 1 and Patent Document 2 can increase the transmittance with respect to infrared light, the scattering ability also works with infrared light. There is a problem that the haze cannot be reduced. In other words, there is a problem that the straight-line transmittance of infrared light is not sufficient.
  • an object of the present invention is to provide an optical device and an optical member therefor that achieve both designability and high sensitivity to infrared light. It is another object of the present invention to provide an optical member that has high visible light reflection / scattering properties and high infrared light straight transmission.
  • An optical member according to the present invention includes a reflection / scattering portion that reflects and scatters light in at least a part of the wavelength band in the visible region and transmits light in at least a part of the wavelength region in the infrared region, and at least the part of the infrared region.
  • the straight-line transmittance with respect to light in the wavelength band is 75% or more.
  • the reflection / scattering unit reflects light of at least a part of the wavelength band in the visible region and transmits light of at least the part of the wavelength band of the infrared region, and the selective reflection unit, Light that is provided at least on the first side, which is a predetermined one of the incident side or the emission side of infrared light and the side on which visible light is incident, and light in at least a part of the wavelength band in the visible range And a scattering portion that scatters.
  • “provided on the first side” includes the case where the same member is integrally formed on the one side of the target member. Hereinafter, the same applies to the other side.
  • the optical device includes a light emitting unit that emits light in a partial wavelength band in the infrared region, a light receiving unit that receives light in a partial wavelength band in the infrared region, and the light emitting unit or the light receiving unit. And an infrared light transmission filter provided in an opening of the housing, wherein the infrared light transmission filter is any one of the optical members described above.
  • an optical member that has high visible light reflection / scattering properties and high infrared light straight transmission.
  • an optical device having both designability and high sensitivity to infrared light can be provided.
  • FIG. 1 is a configuration diagram illustrating an example of an optical member according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the optical member.
  • FIG. 3 is a graph showing an example of the wavelength dependence of the phase term coefficient in the diffractive structure 22.
  • FIG. 3B is a graph showing the zero-order diffraction efficiency of the rectangular diffraction grating under the conditions shown in FIG.
  • FIG. 4 is a plan view showing an example of the diffractive structure 22.
  • FIG. 5 is a graph showing an example of the angle dependency of the light amount distribution of the infrared light transmission component by the diffractive structure 22.
  • FIG. 6 is a cross-sectional view showing another example of the optical member.
  • FIG. 7 is an explanatory diagram showing an example of a method for measuring the light density of scattered light.
  • FIG. 8 is a configuration diagram illustrating another example of the optical member, and
  • FIG. 8A is a cross-sectional view illustrating a configuration example of the optical member having a concavo-convex surface formed on the reflection member as a scattering portion, and
  • FIG. FIG. 9 is an exploded cross-sectional view of a main part of the optical member shown in FIG.
  • FIG. 9 is an explanatory view showing an example of the concavo-convex structure 342b.
  • FIG. 9 is an explanatory view showing an example of the concavo-convex structure 342b.
  • FIG. 9A is a plan view of a concave lens array in which the concavo-convex structure 342b has a plurality of concave lens-like lens portions arranged without gaps.
  • FIG. 9A is a cross-sectional view taken along the line AA ′ of the second base material 34b having the concavo-convex structure 342b shown in FIG. 9A.
  • FIG. 10 is an explanatory view showing the relationship between the inclination angle of the concavo-convex surface of the selective reflection film 33 and the reflection / scattering of visible light, and (a) is an explanatory view when the inclination angle ⁇ exceeds 45 °.
  • FIG. 11 is a graph showing an example of the angle dependency of the light amount distribution of the transmitted component of the infrared light by the reflection / scattering unit 31.
  • FIG. 12 is a configuration diagram illustrating another example of the optical member, (a) is a cross-sectional view illustrating another configuration example of the optical member having the uneven surface of the reflecting member as a scattering portion, and (b).
  • FIG. 13 is an exploded cross-sectional view of a main part of the optical member 40 shown in FIG.
  • FIG. 13 is a configuration diagram illustrating another example of the optical member.
  • FIG. 13A illustrates a configuration example in which the cholesteric liquid crystal layer 43 corresponding to the reflecting member has an uneven surface on the non-viewing side as well as the viewing side. It is sectional drawing shown, (b) is a decomposition
  • FIG. 14 is a configuration diagram illustrating another example of the optical member.
  • FIG. 15 is a configuration diagram illustrating another example of the optical member.
  • FIG. 16 is a configuration diagram illustrating another example of the optical member.
  • FIG. 15 is a configuration diagram illustrating another example of the optical member.
  • FIG. 17 is a configuration diagram illustrating another example of the optical member, (a) is a configuration diagram illustrating an example of the optical member including the absorbing member, and (b) is an example of the optical member including the reflecting member.
  • FIG. FIG. 18 is a configuration diagram illustrating an example of the optical device according to the second embodiment.
  • FIG. 19 is a graph showing the transmittance characteristics of the multilayer film as the selective reflection portion.
  • FIG. 20 is a graph showing the measurement results of the transmitted light amount of the optical members of the first to fourth examples.
  • FIG. 21 is a graph showing the measurement results of the transmitted light amount of the optical members of the fifth and sixth examples.
  • FIG. 22 is a graph showing the measurement results of the light intensity of scattered light from the uneven surface of the base material of the optical member of the fourth example.
  • FIG. 23 is a graph showing the transmittance characteristics of the multilayer film as the selective reflection portion.
  • FIG. 24 is a graph showing the measurement result of the light intensity of the scattered light by the base material uneven surface of the optical members of the eighth and ninth examples.
  • FIG. 25 is a graph showing measurement results of the transmitted light amount of the optical members of the eighth and ninth examples.
  • FIG. 26 is a graph showing measurement results of the transmitted light amount of the optical members of the tenth to twelfth examples.
  • FIG. 27 is a graph showing the transmittance characteristics of the multilayer film as the selective reflection portion.
  • FIG. 28 is a graph showing the angle dependence of the reflected and scattered light of the optical members and the casing members of the ninth to eleventh examples.
  • FIG. 1 is a configuration diagram showing an example of an optical member 10 according to the first embodiment of the present invention.
  • the optical member 10 shown in FIG. 1 is used as an infrared light transmission filter that blocks visible light and transmits infrared light in an optical device or the like that uses infrared light.
  • the optical member 10 reflects and scatters visible light while transmitting infrared light, so that the visible light receiving region is observed to be colored in a color other than black when viewed from at least the first side.
  • the observed coloring is not limited to a single color, and includes a combination of a plurality of colors such as a spotted pattern and a camouflage.
  • the first side is a predetermined one side of the incident side or the emission side of the infrared light and the incident side of the visible light in the optical member 10.
  • the other side that is not the first side is referred to as a second side.
  • the first side is simply referred to as the viewing side
  • the second side is simply referred to as the anti-viewing side, but the surface on which coloring is observed (hereinafter simply referred to as the observation surface) is limited to the first side. Not what you want.
  • the anti-viewing side (second side) can also be an observation surface.
  • the base material 14 may optionally be provided.
  • the base material 14 should just be comprised with the member which has a transmittance
  • the base material 14 may be a substrate made of, for example, glass or resin.
  • the selective reflection unit 13 has a function of reflecting visible light at a certain rate or more and transmitting infrared light at a certain rate or more.
  • Examples of the selective reflection unit 13 include a dichroic mirror and a cholesteric phase liquid crystal film. More specifically, if the selective reflection portion 13 has a reflective member such as a dielectric multilayer film used for a mirror layer of a dichroic mirror or a cholesteric phase liquid crystal layer used for a cholesteric phase liquid crystal film. Good.
  • the scattering unit 12 has a function of expressing scattering ability with respect to visible light.
  • the scattering part 12 has a function which expresses higher scattering power than visible light with respect to visible light. Examples of realizing such a function of exhibiting scattering ability include a fine particle-containing resin layer, which is a layer formed of a resin containing fine particles, a diffractive structure, and irregularities provided at an arbitrary medium interface (particularly a reflecting member). Surface and the like.
  • the scattering part 12 should just have the member, structure, or surface which has the function to express scattering ability which was mentioned as an implementation example, for example.
  • the scattering unit 12 when the scattering unit 12 has a diffractive structure, visible light can be scattered using a diffraction phenomenon.
  • the scattering unit 12 when the scattering unit 12 has an uneven surface formed at an interface of an arbitrary medium, visible light can be scattered using reflection and refraction phenomena on the uneven surface.
  • the scattering portion 12 has a concavo-convex surface provided on the reflecting member, since the amount of deflection of the light beam is larger than that of refraction, the reflection of visible light can be increased.
  • the scattering portion 12 when the scattering portion 12 has a fine particle-containing resin layer, visible light can be scattered mainly using a refraction phenomenon at the interface with the fine particles in the resin layer as a binder.
  • the visible light may be light having a wavelength of 400 to 750 nm.
  • the infrared light may be light having a wavelength of 800 nm or more.
  • the target wavelength band is further limited within the above range for both visible light and infrared light. Also good.
  • the visible region has a wavelength of 400 to 780 nm
  • the infrared region has a wavelength of 780 to 2000 nm, particularly a wavelength of 800 to 1000 nm
  • visible light is light in the visible region. Infrared light is assumed to be light in the infrared region.
  • the scattering unit 12 may be provided on the viewing side (first side) of the selective reflection unit 13. That is, the selective reflection part 13 and the scattering part 12 should just be provided in order of the scattering part 12 and the selective reflection part 13 seeing from the visual recognition side (1st side). In addition, when visible light is incident also from the counter-viewing side (second side), the scattering units 12 may be provided on both sides of the selective reflection unit 13.
  • the selective reflection unit 13 and the scattering unit 12 are illustrated as being configured by and in contact with different members.
  • a part of the members that configure the selective reflection unit 13 is the scattering unit. 12 (for example, a diffractive structure or an uneven surface) may be formed. That is, the selective reflection part 13 and the scattering part 12 may be integrally formed by the same member, for example.
  • the selective reflection portion 13 may be provided inside the base material 14, that is, a configuration sandwiched between two base materials 14, or a configuration provided on the side opposite to the visual recognition side of the base material 14. Moreover, it has another functional layer between the selective reflection part 13 and the scattering part 12, and these do not need to contact
  • the distance between the selective reflection part 13 and the scattering part 12 is preferably short.
  • the scattering portion 12 is formed of a diffractive structure, specifically, 3 ⁇ m or less is preferable. If the distance between the two is too large, the coefficient of the phase term of the reflected light of visible light deviates from 2 ⁇ nd / ⁇ described later, which is not preferable.
  • the scattering unit 12 and the selective reflection unit 13 may be collectively referred to as a reflection / scattering unit 11.
  • the reflection / scattering unit 11 has a function of reflecting and scattering visible light at a certain rate or more and allowing infrared light to pass straight through at a certain rate or more.
  • the visible light 102 enters the optical member 10 in the + z direction from the viewing side of the optical member 10.
  • the infrared light may enter the optical member 10 in the + z direction from the viewing side of the optical member 10 or may enter the ⁇ z direction from the non-viewing side.
  • the infrared light 101a is the former example
  • the infrared light 101b is the latter example.
  • the optical member 10 when visible light 102 is incident on the optical member 10, the visible light 102 is reflected and scattered by the scattering portion 12 and the selective reflection portion 13. For this reason, the optical member 10 appears colored.
  • the infrared light 101 a when the infrared light 101 a is incident on the optical member 10, the infrared light 101 a is partially scattered by the scattering unit 12, but many components pass straight through and pass through the selective reflection unit 13 as they are.
  • the infrared light 101b when the infrared light 101b is incident on the optical member 10, the infrared light 101b is transmitted through the selective reflection portion 13 and then partially scattered by the scattering portion 12, but many components pass straight through the scattering portion 12. To do.
  • the optical member 10 can increase the scattering with respect to the visible light 102 as compared with the infrared light 101a and the infrared light 101b.
  • a reflection member having an uneven surface is used as the reflection / scattering portion 11, large scattering can be obtained using the reflection surface. This agrees that the scattering of the infrared light 101a and the infrared light 101b can be made smaller than that of the visible light 102. Therefore, the optical member 10 can transmit the infrared light 101a and the infrared light 101b more straightly while scattering the visible light 102.
  • ⁇ nd / ⁇ which is a coefficient of a phase term of diffracted light for one pass, may be adjusted. More specifically, by adjusting the refractive index difference ⁇ n and the height d of the diffractive structure, the amount of the linear component (0th-order diffracted light) of the infrared light in the scattering unit 12 is increased and the visible light travels straight. The amount of the component (0th order diffracted light) can be reduced.
  • the reflection scattering portion 11 increases the scattering of visible light by adjusting the particle size of the fine particles and the ratio of the refractive index between the fine particles and the resin material serving as the binder.
  • the scattering of infrared light can be reduced.
  • FIG. 2 is a cross-sectional view showing an example of an optical member having a diffractive structure as a scattering portion.
  • the optical member 20 shown in FIG. 2 includes a base material 14 and a reflection / scattering portion 21.
  • the reflection / scattering unit 21 includes a selective reflection unit 13 and a diffraction structure 22.
  • the diffractive structure 22 is not particularly limited as long as the diffractive structure 22 exhibits a diffractive action for at least visible light and can suppress the diffractive action for infrared light to suppress the visible light diffractive action.
  • 2 shows a concavo-convex structure having a rectangular cross section as the diffractive structure 22, the diffractive structure 22 is not limited to a concavo-convex structure having a rectangular cross section.
  • the refractive index difference between the concave portion 222 and the convex portion 221 of the diffractive structure 22 is ⁇ n
  • the incident wavelength is ⁇
  • the height of the convex portion 221 or the depth of the concave portion 222 is d.
  • the diffraction characteristics of the diffractive structure 22 vary depending on ⁇ nd / ⁇ that is the coefficient of the phase term of the electric field of the diffractive structure 22.
  • the coefficient is calculated as 2 ⁇ nd / ⁇ in order to reciprocate the diffraction structure 22.
  • the infrared light 101a and the infrared light 101b, which are transmitted light are transmitted through the diffraction structure 22 only once, so that the calculation is performed with ⁇ nd / ⁇ unchanged.
  • the values of these coefficients are closer to a value obtained by multiplying 1 ⁇ 2 such as 0.5 by an odd number, the light amount of the 0th order diffracted light is smaller, and the closer to an integer such as 0 or 1, the greater the value of the 0th order diffracted light. The amount of light increases.
  • the horizontal axis represents the wavelength [nm]
  • the vertical axis represents the value of the phase term coefficient.
  • ⁇ nd / ⁇ characteristic indicated by a broken line
  • ⁇ nd / ⁇ characteristic indicated by a broken line
  • the optical member 20 can reduce the amount of reflected zero-order diffracted light with respect to incident visible light, and can increase the amount of transmitted zero-order diffracted light with respect to incident infrared light.
  • FIG. 3B is a graph showing the zero-order diffraction efficiency of the rectangular diffraction grating under the conditions shown in FIG.
  • the zero-order diffraction efficiency of the rectangular diffraction grating that is, the ratio of the component that transmits straight through the incident light can be calculated by cos ( ⁇ ) 2 where the coefficient of the phase term is ⁇ .
  • the reflection zero-order diffraction efficiency determined by 2 ⁇ nd / ⁇ (characteristic indicated by the solid line), which is the coefficient of the phase term of reflection, can be reduced to less than 30%.
  • the transmission zero-order diffraction efficiency determined by ⁇ nd / ⁇ which is the coefficient of the transmission phase term, can be about 80% or more.
  • the recess 222 may be filled with a material other than air.
  • the convex portion 221 has absorption in a multilayer film having a reflection band in the vicinity of the infrared region, or in the vicinity of the infrared region (between the visible region and the infrared region or longer than the target wavelength region of the infrared region). It is preferable that the concave portion 222 is filled with a material having a refractive index close to or coincident with the material in the infrared region (particularly the target wavelength region).
  • a multilayer film having a reflection band and a material having absorption cause anomalous dispersion of the refractive index, and particularly the refractive index in the vicinity of the reflection band and the absorption band changes abruptly.
  • the diffractive structure 22 can be adjusted so as to be formed of a combination of such a material and a material having a refractive index that substantially matches at least in the target wavelength region of the infrared region, a diffractive action is caused only in visible light. Is also possible.
  • the diffractive structure 22 can provide a two-dimensional scattering action such as deflecting light (particularly visible light) not only in the X direction but also in the Y direction (component) by the diffractive action.
  • the diffractive structure 22 may be a two-dimensional uneven structure as shown in FIG.
  • FIG. 4 is a plan view showing an example of the diffraction structure 22.
  • the white portion represents the concave portion 222 and the black portion represents the convex portion 221, and the height of the black portion is d with respect to the white portion.
  • the uneven structure shown in FIG. 4 is an example of a part of the diffractive structure 22.
  • the diffractive structure 22 may be, for example, one in which units having a concavo-convex structure as shown in FIG. 4 are periodically arranged in two dimensions (for example, in the X direction and the Y direction) without a gap.
  • the diffractive structure 22 is not limited to a periodic structure of one type of concavo-convex structure.
  • two or more different concavo-convex structures may be two-dimensionally arranged without a gap.
  • FIG. 5 is a graph showing an example of the angle dependence of the light amount distribution of the transmitted component by the diffraction structure 22 with respect to the incidence of infrared light.
  • the horizontal axis represents the outgoing angle ⁇ [°] of the transmission component
  • the vertical axis represents the light intensity.
  • diffracted light when light is incident on a diffractive structure having a function of exhibiting diffractive action, it is roughly divided into zero-order diffracted light that becomes straight transmitted light and so-called diffracted light, that is, high-order diffracted light that becomes deflected light traveling in a direction other than straight light. Two types of diffracted light are generated. In general, 0th-order diffracted light is sufficiently stronger than higher-order diffracted light. For this reason, even if infrared light enters the diffractive structure 22 and high-order diffracted light is generated, strong contrast as shown in FIG. 5 is easily obtained.
  • the diffractive structure 22 is preferably adjusted so that T 0 is 75% or more.
  • T 0 is preferably 75% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 95% or more.
  • the “0th order diffracted light” in this case does not include reflected 0th order diffracted light.
  • 0th order diffracted light with respect to infrared light, it refers to 0th order diffracted light of transmitted light. Instead of T 0, it may be used haze value.
  • the haze value of the infrared light of the optical member 20 is preferably less than 25%, more preferably less than 15%, still more preferably less than 10%, and most preferably less than 5%.
  • the haze value of transmitted light that has passed through the test piece is 0.044 rad (2.5 °) or more away from incident light due to forward scattering. It may be obtained as a percentage.
  • the angle range corresponding to the linearly transmitted light is 2.5 ° or less, but as in the examples described later, the angle range is narrower than 2.5 °, for example, 1.5 ° or less.
  • the transmitted light may be linearly transmitted light.
  • the optical reflection member 13 and the diffraction structure 22 may be integrally formed with the optical member 20, for example, by providing a groove on the surface of the selective reflection portion 13 to make the material of the convex portion 221. . If it does in this way, reflection at the time of entering into selective reflection part 13 from diffraction structure 22 (more specifically convex part 221) can be reduced, and the straight line transmissivity of infrared light can be raised.
  • the “high-order diffracted light” does not include a reflection component.
  • high-order diffracted light when referring to infrared light as “high-order diffracted light”, it refers to diffracted light other than the 0th order among transmitted components, that is, first-order diffracted light, second-order diffracted light, third-order diffracted light,.
  • T 1 instead of measuring all of the transmitted light in the measurement of T 1, there is a case where the comparison of the light quantity density is easily by measuring the light emitted within a predetermined angle.
  • a predetermined position on the exit surface of the diffractive structure 22 for example, the optical axis to the end of the effective region 301 of the infrared light receiving unit 3 measured from the optical axis center of the incident light.
  • T 1 may be measured only for the diffracted light emitted within the angle ⁇ 2 .
  • the exit surface of the optical member 20 may be used instead of the exit surface of the diffractive structure 22. In this way, when the angle of transmitted light is limited, and ⁇ 2 is 10 ° or less, T 1 ′ is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less.
  • the amount of high-order diffracted light can be approximated to become smaller in proportion to 1 / N.
  • the number N of high-order diffracted light generated is preferably 100 or more, and more preferably 1000 or more, because the scattering property can be increased.
  • the concavo-convex structure grating pitch
  • the full width at half maximum (hereinafter referred to as FWHM) of the light amount distribution of the high-order diffracted light of visible light is preferably 5 ° or more, more preferably 10 ° or more, and further preferably 20 ° or more.
  • FIG. 8 (a) is sectional drawing which shows the structural example of the optical member which has an uneven surface formed in a reflective member as a scattering part.
  • the uneven surface of the reflecting member may be obtained by following the uneven surface of a base material (first base material 34a, second base material 34b, etc.) serving as a base material.
  • FIG. 8B is an exploded cross-sectional view of the main part of the optical member 30 shown in FIG.
  • the optical member 30 shown in FIG. 8A includes a reflection / scattering portion 31.
  • the reflection / scattering unit 31 includes a selective reflection film 33 that is a reflection member, a first base material 34a, and a second base material 34b.
  • the surface on the viewing side (XY plane) of the selective reflection film 33 of this example is an uneven surface.
  • the surface on the non-viewing side of the selective reflection film 33 of this example is also an uneven surface.
  • the surface of the second base material 34b located on the (second side) in contact with the selective reflection film 33 is also an uneven surface.
  • the uneven surface on the viewing side of the selective reflection film 33 may be referred to as an uneven surface 331a, and the uneven surface on the non-viewing side of the selective reflection film 33 may be referred to as an uneven surface 331b.
  • the uneven surface on the side of the first base material 34a in contact with the selective reflection film 33 is referred to as an uneven surface 341a
  • the uneven surface on the side of the second base material 34b in contact with the selective reflection film 33 is an uneven surface. It may be called 341b.
  • the selective reflection film 33 is provided as a reflection member of the selective reflection portion.
  • the uneven surface 331a on the viewing side of the selective reflection film 33 is an uneven surface that acts as a scattering portion. Equivalent to.
  • Such a concavo-convex surface 331a of the selective reflection film 33 is formed, for example, by forming a concavo-convex structure on the surface of one base material (for example, the surface of the first base material 34a or the surface of the second base material 34b). It can be formed by forming (stacking) a dielectric multilayer film with a substantially uniform film thickness h on the uneven surface.
  • the uneven surface 331b can be formed not only on the viewing side of the selective reflection film 33 but also on the anti-viewing side, when visible light is incident not only from the viewing side but also from the anti-viewing side.
  • the coloring can be observed (see visible light 102a and visible light 102b in FIG. 8A).
  • the other base material is further laminated on the uneven surface of the selective reflection film 33 formed by being laminated on the uneven surface of one base material.
  • the uneven surface on the side of the selective reflection film 33 of the other base material and the uneven surface of the selective reflection film 33 are fitted to each other.
  • Such a concavo-convex structure forming the concavo-convex surface of the base material may be formed by, for example, filling the concave portion of the concavo-convex surface of the selective reflection film 33 with the material (for example, resin) of the base material.
  • the material 34a, the selective reflection film 33, and the second base material 34b it is only necessary that they are arranged close to each other without a gap.
  • an adhesive layer having a film thickness within a few tens of ⁇ m (within 100 ⁇ m) or a thin film acting as another functional layer is included.
  • the first base material 34a only needs to be transparent to visible light and infrared light.
  • the 2nd base material 34b should just have the transmittance
  • the second base material 34b only needs to be transmissive to visible light and infrared light.
  • the first base material 34a and the second base material 34b which are members in contact with the uneven surface of the selective reflection film 33 in this example, have substantially the same refractive index at least in the target wavelength band of the infrared region. It is good to have.
  • the difference in refractive index between the two materials in the target wavelength band or the average value thereof is preferably 0.05 or less, and more preferably 0.005 or less.
  • the refractive index coincidence is the same as described above.
  • the selective reflection film 33 may be configured to reflect visible light at a certain rate or more and transmit infrared light at a certain rate or more.
  • Examples of the selective reflection film 33 include a dielectric multilayer film and a cholesteric phase liquid crystal film.
  • the dielectric multilayer film may include a metal or a semiconductor material. In this case, a semiconductor material that absorbs less infrared light may be used, and the metal material does not have low transmittance for infrared light. Should be thin enough.
  • the visible light 102a and 102b can be scattered greatly by using the inclined reflecting surface, and the infrared light 101a and 101b can be in contact with the selective reflection film 33 (first member). Since the refractive index of at least the concavo-convex structure portions (see 342a and 342b in FIG. 8B) of the first base material 34a and the second base material 34b) is substantially the same, the optical member is not refracted greatly. The light is emitted from 30 emission interfaces. This is because this configuration is a configuration in which an optical path length difference due to a difference in position within the incident aperture does not occur or is suppressed to a small value with respect to infrared light.
  • the uneven surface 341a of the first base material 34a and / or the uneven surface 341b of the second base material 34b of this example may be a rough surface formed by sandblasting or the like, but a smooth curved surface ( A shape having many free curved surfaces, aspherical surfaces, and spherical surfaces) is more preferable.
  • a rough surface formed by sandblasting or the like has a shape having many points with discontinuous derivatives.
  • the multilayer film has a uniform thickness. This is because the film cannot be formed and desired characteristics may not be obtained.
  • Examples of the concavo-convex structures 342a and 342b including many smooth curved surfaces include a lens array in which a large number of minute spherical and aspherical lenses are disposed, and a prism array in which a large number of prisms are disposed.
  • the number of lenses or prisms in the array is not limited to one, and there may be a plurality of types, and these may be arranged regularly or irregularly.
  • the rough surface of a substrate formed by sandblasting or the like is etched with hydrofluoric acid or the like, and the surface of the frosted plate is smoothed, or the diffusion element such as the frosted plate is used. Examples thereof include an uneven portion of the resin layer formed by transferring the uneven portion to a resin layer of the base material.
  • the thickness of the multilayer film may be several ⁇ m.
  • the width of each concave portion constituting the uneven surface of the base material (the end points of the concave portion are connected through the bottom of the concave portion). If the length of the straight plane direction (w) is too small, it may be impossible to form each layer with a desired thickness. Therefore, in the uneven surface of at least one of the first base material 34a and the second base material 34b, the region where the width w of the recess is less than 5 ⁇ m is less than 10% of the entire effective region where the visible light is incident.
  • the width w of all the recesses in the effective region is 5 ⁇ m or more.
  • the said conditions are satisfy
  • the width w of a convex part should just read the bottom part of the recessed part in description of the width w of a recessed part as the crest part of a convex part.
  • the concave portion constituting the concave-convex surface is a region including a concave vertex but not including a convex vertex or including a convex vertex as a boundary portion, and particularly a region surrounded by a convex ridge line.
  • the convex portion is a region that includes a convex vertex but does not include a concave vertex or includes a concave vertex as a boundary portion, and is particularly a region surrounded by a concave ridge line.
  • the bottom part of a recessed part not only the recessed vertex of a recessed part but a recessed ridgeline is included.
  • the convex vertex of the convex part not only the convex vertex of the convex part but also the convex ridge line is included.
  • the cross-sectional shape of the concavo-convex structure is a SIN curve or a free-form surface, or when the boundary between the concave and convex portions is ambiguous, such as when the concave and convex portions are multi-staged, the inflection point of the cross-section The least square plane is obtained for the concavo-convex structure forming the concavo-convex surface, the concave portion is located below the least square curved surface, and the convex portion is convex It is good also as a part.
  • the concave-convex structure (the concave-convex structure 342b in the example shown in the figure) that forms the concave-convex surface of the base material to be deposited is arranged with a plurality of concave lens-shaped lens portions 343 without gaps.
  • each of the lens portions 343 may be a concave portion.
  • the uneven surface may be formed only of a recess.
  • FIG. 9A is a plan view showing a part of the concavo-convex structure 342b
  • FIG. 9B is an A ⁇ view of the second base material 34b having the concavo-convex structure 342b shown in FIG. 9A. It is A 'sectional drawing.
  • the concavo-convex structure forming the concavo-convex surface may be a convex lens array in which convex lens-shaped lens portions 343 are arranged without gaps.
  • each of the lens portions 343 may be a convex portion.
  • the uneven surface may be composed of only convex portions.
  • the width w of each convex portion can be obtained by observing the ridge line 345 between the lens portions 343 corresponding to the boundary portion between the adjacent lens portions 343 from the upper surface of the substrate.
  • the lens array is not limited to a regular one but also includes lenses having irregularity in lens shape and arrangement.
  • a convex prism array in which convex prisms are arranged or a concave prism array in which concave prisms are arranged may be the same as the lens array.
  • the concavo-convex structure 342b is illustrated as the concavo-convex structure forming the concavo-convex surface of the base material to be deposited, but the concavo-convex structure 342a may be used. In that case, the convex / concave shape may be determined with the concave / convex surface 341a facing upward.
  • the shape of the concave portion is not closed, for example, when the bottom portion is extended like a reverse saddle shape or a groove shape, a so-called groove width (length in a direction perpendicular to the extending direction) Or you may obtain
  • the width w may be obtained at each of the branched points, and the shape of the concave portion is a plurality of polygons.
  • the width w may be obtained by elliptical approximation in each polygon.
  • the concave ridge line forming the bottom is not recognized, or when it is a closed shape, it is a complicated shape, and the shape of the concave portion is divided into a plurality of polygons, and each polygon is approximated by an ellipse.
  • the width w may be obtained.
  • concave and convex portions and their width w when the uneven surface is a rough surface such as a sandblast surface are not limited to the above.
  • the width w of the concave and convex portions may be visually recognized.
  • the minimum value of the width w in each of the concave and convex portions is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the width w of the concave portion may include the length in the extending direction of the shape in which the bottom portion extends, or the length in the major axis direction when approximated to an ellipse, and the width w of the convex portion The length in the extending direction of the shape in which the bottom is extended, or the length in the long axis direction when approximated to an ellipse may be included.
  • the present applicant has found that the surface visibility changes depending on the value of the width w.
  • the surface of the optical member 30 has a graininess.
  • the surface of the optical member 30 was observed as a smooth surface. This is because when the average value of the width w is about 60 ⁇ m, the concave portion is not directly visually observed, but sufficient averaging is not performed within the range resolved by the eyes, and the reflectance depends on the angle of the reflectance due to the inclination of the concave portion.
  • the average value of the width w is about 30 ⁇ m, the concave portion is sufficiently small with respect to the resolution of the eye, and the angle dependency of the reflectance due to the inclination of the concave portion is sufficiently averaged and observed as a smooth surface. it is conceivable that.
  • the average value of the width w is preferably less than 60 ⁇ m, and more preferably 30 ⁇ m or less.
  • sensory evaluation can be applied as the graininess evaluation, but it may be evaluated using an imaging device such as a camera.
  • the numerical aperture of the lens should be adjusted to the average numerical aperture of the human eye in the standard usage environment of the optical member as an imaging condition, and evaluation should be performed at the standard viewing distance of the optical member. Is preferred.
  • the coordinates in the color space within the optical member surface can be obtained.
  • the pixels within the resolution are averaged according to the average resolution of the human eye. Processing may be performed.
  • Each graininess can be compared by evaluating the deviation from the repetition frequency or average value in the plane of the image.
  • image processing processing such as Fourier transform may be performed.
  • the standard deviation of the in-plane color difference may be 13 or less, preferably 6.5 or less, using the values in Table 1 described later.
  • the standard deviation is preferably 3.2 or less, more preferably 1.6 or less, further preferably 0.8 or less, and most preferably 0.4 or less.
  • the threshold value may be determined statistically from the sensory evaluation result by a plurality of persons.
  • FIG. 10 is an explanatory diagram showing the relationship between the inclination angle ⁇ of the concavo-convex surface (the concavo-convex surface 331a in the example in the figure) of the selective reflection film 33 functioning as a scattering portion and the visible light reflection / scattering.
  • FIG. 10 illustrates the uneven surface 331a as the uneven surface, but when the anti-viewing side is also the observation surface, the uneven surface 331b is the same as the uneven surface 331a. In this case, attention should be paid to the fact that the path of visible light is reversed.
  • the inclination angle ⁇ of the concavo-convex surface of the selective reflection film 33 when the inclination angle ⁇ of the concavo-convex surface of the selective reflection film 33 is increased, not only unintentional reflected light is generated in the infrared light due to the angle dependency of the selective reflection film 33, but also the reflected scattering intensity is also observed in the visible light. It may become a factor to reduce.
  • the surface serving as the reference (0 ° position) of the inclination angle ⁇ may be the plane direction (XY plane) of the substrate.
  • 10A and 10B show the inclination angle ⁇ of the portion irradiated with the light beam.
  • the visible light 102 reflected by the selective reflection film 33 becomes light in a direction that advances the traveling direction at the time of incidence (FIG. 10A). (See white arrow inside). If the ratio of such light reflected forward is large in the entire visible light reflected by the selective reflection film 33, the ratio of light reflected backward, which is the direction of retreating the traveling direction at the time of incidence. Becomes relatively small. If the ratio of the light reflected backward is small, the amount of light (reflected light) returning to the visible light incident interface (which is also the outgoing interface) of the optical member 30 is reduced, and sufficient scattering characteristics are obtained. There is a risk of not.
  • n s denotes a refractive index of the substrate.
  • the portion constituting the emission surface and concave-convex structure portion of the substrate different materials, since the portion constituting the emission surface in the substrate to form an interface with air, as n s You may use the refractive index of this part.
  • the visible light 102 reaches the exit interface 346 in asin (1 / n s) over an angle beta, for total reflection at the exit surface 346 occurs, such visible light If the ratio is large, the amount of reflected light may decrease or sufficient scattering characteristics may not be obtained as in the case described above.
  • the uneven surface of the selective reflection film 33 is preferably 90% or more in a region where the inclination angle ⁇ is within 45 ° within the effective region where visible light is incident, and the inclination angle ⁇ is 0.5 ⁇ asin (1 / N s ) is more preferably 90% or more, and the inclination angle ⁇ is more preferably 45 ° or less in all the regions in the effective region, and the inclination is in all the regions in the effective region. More preferably, the angle ⁇ is within 0.5 ⁇ asin (1 / n s ).
  • the above-described inclination angle ⁇ defines the inclination angle of the uneven surface of the selective reflection film 33.
  • the uneven shape of the uneven surface of the selective reflection film 33 is the unevenness of the uneven surface of the substrate to be formed. Since it can be considered that the shape is imitated, the above-described definition of the inclination angle ⁇ can be applied to the uneven surface of the base material to be formed. Note that if the uneven surface of the base material to be deposited satisfies the above-described regulation of the tilt angle ⁇ , the number of gently tilted portions increases, and the selective reflection film 33 can be easily formed with a uniform film thickness. preferable.
  • the concavo-convex structure forming the concavo-convex surface of the substrate has a configuration in which a lens portion having a curved surface capable of defining a constant curvature radius such as a lens array is arranged without a gap, in addition to the inclination angle ⁇ or the inclination angle It is preferable to satisfy the following conditions instead of ⁇ .
  • the ratio r / R of the curvature radius R and radius r is preferably more than numerical ⁇ inclination angle ⁇ corresponds to 45 ° or more, the inclination angle ⁇ is, 0.5 ⁇ asin (1 / n s) below A numerical value ⁇ or less corresponding to is more preferable.
  • r / R, numerical ⁇ and numerical ⁇ together depends on the refractive index n s.
  • the numerical ⁇ when the refractive index n s of 1.51, the numerical ⁇ is 0.71, the numerical ⁇ becomes 0.35.
  • the value is obtained by 0.5 .
  • the FWHM of the reflection / scattering angle of visible light as a whole is preferably 5 ° or more, more preferably 15 ° or more, and further preferably 30 ° or more.
  • the reflection scattering angle FWMH is small, it may have a pearly luster, so the gloss can be reduced by setting the FWMH to 5 ° or more.
  • the ratio of the total amount of reflected / scattered light to the amount of incident light at a specific wavelength in the visible wavelength range is preferably 5% or more, more preferably 50% or more, and 75%. The above is more preferable. By doing in this way, the brightness of coloring of the optical member 30 can be increased.
  • the reflection / scattering characteristic may be adjusted to match that of the casing member.
  • the reflection / scattering angle from the scattering portion is large, it is possible to expect a reduction in graininess by increasing the overlap of scattered light from adjacent irregularities. Therefore, in this respect as well, it is preferable to increase the FWHM of the reflected / scattered light. .
  • the information of the inclination angle ⁇ can also be obtained by taking out one of the first base material 34a and the second base material 34b, making light incident thereon, and measuring the scattering characteristics thereof.
  • asin [sin ⁇ ⁇ ⁇ (n s 2 ⁇ sin 2 ⁇ ) 0.5 ⁇ cos ⁇ ]. Therefore, information on the inclination angle ⁇ of the concavo-convex surface can be obtained by examining the refractive index of the base material and the scattering characteristics of light scattered by the concavo-convex surface.
  • the uneven surface of the substrate includes an inclination of 45 ° or more.
  • the uneven surface of the base material includes an inclination of 0.5 ⁇ asin (1 / n s ) ° or more.
  • FIG. 11 is a graph showing an example of the angle dependence of the light amount distribution of the transmitted component by the reflection / scattering unit 31 with respect to the incidence of infrared light.
  • the horizontal axis represents the outgoing angle ⁇ [°] of the transmissive component
  • the vertical axis represents the light intensity.
  • the incident infrared light is considered to travel in the Z direction.
  • infrared light transmitted through the reflection / scattering unit 31, more specifically, the first base material 34 a, the selective reflection film 33, and the second base material 34 b travels straightly and transmits scattered light. And can be broadly divided. As described above, due to the combined action of the first base material 34a, the selective reflection film 33, and the second base material 34b, a large amount of straight transmitted light is obtained with respect to the infrared light incident on the optical member 30.
  • the amount of transmitted light may be modulated due to the angle dependency of the selective reflection film 33, or scattering may occur due to an edge portion formed by each concavo-convex structure at the interface. Therefore, in the present example, the above T 0 may be a ratio of the light amount of the linearly transmitted light to the incident light amount of the infrared light in the optical member 30. In that case, the T 0 is preferably 75% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 95% or more, as in the case of the optical member 20. Incidentally, that can also be evaluated using a haze value instead of T 0 is the same as that of the optical member 20.
  • T 1 when light other than the linearly transmitted light among the infrared light transmitted through the optical member 30 is transmitted and scattered light, the above T 1 is set to the incident light amount of the infrared light in the optical member 30. It is good also as ratio of the total light quantity of the light quantity of transmitted scattered light.
  • T 1 ′ T 1 / (T 0 + T 1 ) ⁇ 100 [%] is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less.
  • T 1 ′ does not measure all transmitted light with respect to infrared light, but targets light emitted within a predetermined angle according to the specifications of the apparatus that handles infrared light. And may be measured.
  • the optical member 30 may include a plurality of reflection / scattering portions in the thickness direction (Z direction).
  • each reflection / scattering part can be adjusted so that the total amount of reflected / scattered light increases as it proceeds in the thickness direction from the visible side.
  • the number of scattering surfaces increases, so that the reflection diffusing ability can be further enhanced.
  • FIG. 12A is a cross-sectional view showing another configuration example of the optical member having the uneven surface of the reflecting member as the scattering portion.
  • FIG. 12B is an exploded cross-sectional view of the main part of the optical member 40 shown in FIG.
  • the optical member 40 shown in FIG. 12 includes a reflection / scattering portion 41 and a second base material 44b.
  • the reflection / scattering part 41 includes a cholesteric phase liquid crystal layer 43 and a first base material 44a.
  • the surface on the viewing side (XY plane) of the cholesteric phase liquid crystal layer 43 in this example is an uneven surface.
  • the surface of the first base material 44 a located on the viewing side (first side) when viewed from the cholesteric phase liquid crystal layer 43 is also an uneven surface in contact with the cholesteric phase liquid crystal layer 43.
  • the uneven surface on the viewing side of the cholesteric phase liquid crystal layer 43 may be referred to as an uneven surface 431a.
  • the uneven surface on the side in contact with the cholesteric phase liquid crystal layer 43 of the first base material 44a may be referred to as an uneven surface 441a.
  • the cholesteric phase liquid crystal layer 43 is provided as the reflection member of the selective reflection portion.
  • the uneven surface 431a on the viewing side of the cholesteric phase liquid crystal layer 43 is uneven. It corresponds to a surface.
  • the concavo-convex surface 431a of the cholesteric phase liquid crystal layer 43 is formed into a concavo-convex surface by forming a concavo-convex structure on the surface of the base material (first base material 44a) that is in contact with the concavo-convex surface 431a.
  • the cholesteric phase liquid crystal layer 43 can be formed by sandwiching the cholesteric phase liquid crystal layer 43 between the substrate and one of the substrates (second substrate 44b). At this time, the uneven surface (uneven surface 441a) inside the base material (first base material 44a) in contact with the uneven surface 431a and the uneven surface 431a are fitted to each other.
  • the cholesteric phase liquid crystal layer 43 corresponding to the reflecting member in this example also has an uneven surface on the anti-viewing side as well as the viewing side. Also good.
  • the uneven surface (uneven surface 431b) on the anti-viewing side of the cholesteric phase liquid crystal layer 43 also corresponds to the uneven surface acting as a scattering portion.
  • the concavo-convex surface on the anti-viewing side of the cholesteric phase liquid crystal layer 43 is referred to as the concavo-convex surface 431b.
  • the uneven surface on the side in contact with the uneven surface 431b of the second base material 44b that is present may be referred to as an uneven surface 441b.
  • the uneven surface 431b of the cholesteric phase liquid crystal layer 43 is formed into an uneven surface by forming an uneven structure on the surface of the base material (second base material 44b) that is in contact with the uneven surface 431b.
  • the cholesteric phase liquid crystal layer 43 can be formed by sandwiching the cholesteric phase liquid crystal layer 43 between the base material and the first base material 44a.
  • the concave / convex surface 441b inside the base material (second base material 44b) in contact with the concave / convex surface 431b and the concave / convex surface 431b are fitted to each other.
  • the first substrate 44a only needs to be transmissive to visible light and infrared light.
  • the 2nd base material 44b should just have the transmittance
  • the second base material 44b only needs to be transmissive to visible light and infrared light.
  • the first substrate 44a which is a member in contact with the uneven surface of the cholesteric phase liquid crystal layer 43 in this example, and the cholesteric phase liquid crystal layer 43 have substantially the same refractive index at least in the target wavelength band of the infrared region. It is good to have.
  • both surfaces of the cholesteric phase liquid crystal layer 43 are uneven, the other surface in contact with the uneven surface of the cholesteric phase liquid crystal layer 43 is replaced with the other surface in the same manner as the optical member 30 instead of the cholesteric phase liquid crystal layer 43.
  • the second base material 44b and the first base material 44a which are members, may have substantially the same refractive index at least in the target wavelength band in the infrared region.
  • the refractive index of the cholesteric phase liquid crystal layer 43 may be an average refractive index described later.
  • the cholesteric phase liquid crystal layer 43 is configured to reflect visible light at a certain rate or more and transmit infrared light at a certain rate or more.
  • the cholesteric phase liquid crystal has a selective reflection band due to the helical structure of the liquid crystal molecules. By providing the selective reflection band in the visible range, only visible light can be selectively reflected.
  • the selective reflection wavelength ⁇ R of the cholesteric phase liquid crystal is given by the following formula (1).
  • the selective reflection wavelength lambda R is, to be comparable to the wavelength of visible light desired to be selectively reflected, it may be adjusted helical pitch p and the average refractive index n c of the liquid crystal.
  • the method for adjusting the helical pitch p include a method for adjusting the HTP (Helical Twisting Power) and concentration of the chiral agent in addition to the orientation control.
  • the optical member 40 may include a plurality of cholesteric phase liquid crystal layers 43 having different selective reflection bands (so as to be stacked in the thickness direction (Z direction)) as the reflection / scattering portion 41.
  • a plurality of cholesteric phase liquid crystal films including the first base material 44a and the second base material 44b may be laminated.
  • cholesteric phase liquid crystal layers or cholesteric phase liquid crystal films whose centers of selective reflection bands are 430 nm, 530 nm, and 630 nm may be laminated.
  • the second selective reflection portion 46 is provided on the non-viewing side of the cholesteric phase liquid crystal layer 43. Further, it may be provided. With such a configuration, both circularly polarized lights can be reflected and scattered.
  • the second selective reflection section 46 may be configured to reflect visible light in a wavelength band including the selective reflection band of the cholesteric phase liquid crystal layer 43 at a certain ratio or more and transmit infrared light at a certain ratio or more.
  • the second selective reflection unit 46 may be, for example, a dielectric multilayer film used for a mirror layer of a dichroic mirror. Note that the second selective reflection unit 46 is not limited to the anti-viewing side of the second base material 44b sandwiching the cholesteric phase liquid crystal layer 43, and, for example, the second base material 44b and the cholesteric phase liquid crystal layer 43 It may be provided in between.
  • a second selective reflection portion 46 corresponding to the cholesteric phase liquid crystal layer 43 may be provided for each cholesteric phase liquid crystal layer 43.
  • the visible light in the wavelength band including the selective reflection bands of all of the plurality of cholesteric phase liquid crystal layers 43 is reflected to transmit the infrared light.
  • the selective reflection section 46 may be provided.
  • the second selective-reflecting unit 46 reflects the transmitted left-circularly polarized visible light 102d. .
  • the visible light 102 d becomes right circularly polarized light and reenters the cholesteric phase liquid crystal layer 43.
  • the right-circularly polarized visible light 102 d re-entering the cholesteric phase liquid crystal layer 43 is reflected by the spiral structure of the cholesteric phase liquid crystal layer 43 and is incident on the second selective reflection unit 46 again.
  • the right-circularly polarized visible light 102d re-entering the second selective reflection unit 46 is finally left-circularly-polarized scattered light and is emitted from the exit interface on the viewing side.
  • the right circularly polarized visible light 102c is reflected and scattered by a combined action of reflection / refraction by the uneven surface 431a corresponding to the incident interface of the cholesteric phase liquid crystal layer 43 and selective reflection by the helical structure in the cholesteric phase liquid crystal layer 43.
  • the optical member 40 includes the second selective reflection unit 46, so that reflection / scattering characteristics can be obtained with respect to left and right circularly polarized visible light.
  • the infrared light 101 a and 101 b are transmitted through the cholesteric phase liquid crystal layer 43.
  • the optical path length when infrared light passes through the first base material 44a, the cholesteric phase liquid crystal layer 43, and the second base material 44b does not change or is small depending on the incident position. Therefore, the infrared light 101a and the infrared light 101b are emitted from the optical member 40 without being refracted.
  • not only sufficient reflection and scattering can be obtained for visible light, but also scattering for infrared light can be greatly reduced.
  • the uneven surface 441a of the first base material 44a and the uneven surface 441b of the second base material 44b of this example also have a shape having many smooth curved surfaces (including free-form surfaces, aspheric surfaces, and spherical surfaces). This is more preferable because the orientation of the liquid crystal is improved.
  • the other points may be the same as those of the optical member 30 which is one of the examples having an uneven surface formed on the reflecting member as a scattering portion, as in this example.
  • FIG. 15 is a configuration diagram showing an example of an optical member having a cholesteric phase liquid crystal layer as a reflection / scattering portion.
  • the optical member 50 shown in FIG. 15 includes a reflection / scattering part 51 and a base material 14.
  • the reflection / scattering unit 51 includes a cholesteric phase liquid crystal layer 53.
  • the cholesteric phase liquid crystal layer 53 is configured to reflect and scatter visible light at a certain rate or more and transmit infrared light at a certain rate or more.
  • the cholesteric phase liquid crystal layer 53 may be a cholesteric phase liquid crystal layer having a plurality of regions having different alignment axes in the plane of the layer.
  • Such a cholesteric phase liquid crystal layer 53 can be formed, for example, by setting the selective reflection band in the visible range and not applying a liquid crystal alignment treatment when forming the cholesteric phase liquid crystal layer. Due to such disorder of orientation, reflection and scattering can be performed in the set selective reflection band.
  • the optical member 50 of this example reflects and scatters the visible light 102a and 102b and transmits the infrared light 101a and 101b by the cholesteric phase liquid crystal layer exhibiting reflection and scattering.
  • the optical member 50 may include a plurality of cholesteric phase liquid crystal layers. Also in this example, as shown in FIG. 14, the optical member 50 may be provided on the anti-viewing side of the cholesteric phase liquid crystal layer 53. Alternatively, the second selective reflection portion 46 may be provided on the anti-viewing side of the cholesteric phase liquid crystal layer 53 that is on the most anti-viewing side. With such a configuration, both circularly polarized lights can be reflected and scattered.
  • FIG. 16 is a cross-sectional view showing an example of an optical member having a fine particle-containing resin layer as a scattering portion.
  • An optical member 60 shown in FIG. 16 includes a base material 14 and a reflection / scattering part 61.
  • the reflection / scattering part 61 includes a fine particle-containing resin layer 62 as a scattering part and the selective reflection part 13.
  • the fine particle-containing resin layer 62 uses a resin material having translucency for visible light and infrared light as a binder, and uniformly presents fine particles having a refractive index different from that of the resin at least in the visible region. It may be dispersed.
  • an optical member that includes a reflection / scattering portion that has high visible light reflection / scattering properties and high infrared light straight transmission properties.
  • an absorption member that absorbs visible light and transmits infrared light or an infrared light that reflects visible light is reflected on the reflection / scattering portion or the non-viewing side of the base material supporting the reflection / scattering portion. You may have either the reflective member which permeate
  • FIG. 17A is a configuration diagram illustrating an example of an optical member including the above-described absorbing member
  • FIG. 17B is a configuration diagram illustrating an example of the optical member including the above-described reflecting member.
  • the optical member 70 includes a reflection / scattering portion 71 and an absorption member 72 that absorbs visible light and transmits infrared light.
  • the optical member 70 includes a reflection / scattering portion 71 and a reflection member 73 that reflects visible light and transmits infrared light.
  • the reflection / scattering part 71 may be, for example, any of the reflection / scattering parts described above.
  • the absorbing member 72 may be realized by a base material (for example, the base material 14, the second base material 34b, the second base material 44b, or the like) included in the optical member. That is, the absorbent member 72 may be configured by the base material containing an absorbent or the like.
  • FIG. 18 is a configuration diagram illustrating an example of an optical device according to the second embodiment of the present invention.
  • the optical device 100 is provided with the optical member 1 so as to cover an opening provided in the housing 4. With such a configuration, infrared light is received and emitted to the outside of the housing 4 through the optical member 1.
  • the optical device 100 is, for example, a camera device that captures an image using infrared light, a distance sensor that detects the distance of an object or the presence or absence of a nearby object using infrared light, a measuring device such as a proximity sensor, An optical device using infrared light, such as a communication device that performs information communication using infrared light, and an authentication device that performs biometric authentication such as iris, fingerprint, and vein authentication using infrared light.
  • a camera device that captures an image using infrared light
  • a distance sensor that detects the distance of an object or the presence or absence of a nearby object using infrared light
  • a measuring device such as a proximity sensor
  • An optical device using infrared light such as a communication device that performs information communication using infrared light
  • an authentication device that performs biometric authentication such as iris, fingerprint, and vein authentication using infrared light.
  • the housing 4 may surround a device that performs other functions than the infrared light emitting unit 2 and the infrared light receiving unit 3.
  • the infrared light emitting unit 2 is not limited to a lamp or the like, but may be one using an LED or a laser light source.
  • the infrared light emitting unit 2 is not limited to the one having a function of emitting infrared light, but may be a transmitting unit that outputs infrared light emitted by another.
  • the infrared light receiving unit 3 is not limited to a single light receiving element such as a photodiode, but may be a unit that acquires image information such as a CMOS sensor.
  • the optical member 1 is an infrared light transmission filter having a function of transmitting infrared light and reflecting and scattering visible light, and looks like colored when viewed from the outside of the housing 4. Yes.
  • the optical member 1 may be, for example, any one of the optical members 10 to 70 shown in the first embodiment.
  • the optical member 1 when the optical member 1 is visually recognized together with a part of the housing 4, it is difficult to visually recognize the boundary between the housing member and the optical member 1 disposed around the optical member 1.
  • the presence of the optical member 1 can be made difficult to recognize.
  • the angle dependency of the reflected scattered light can be evaluated by normalizing the reflected scattered light intensity at any angle of 5 ° to 15 ° and comparing the angle dependency of the reflectance from the angle to the maximum angle ⁇ .
  • the incident angle is 0 °
  • the optical path of the incident light and the reflected light are the same, and it is difficult to measure the reflectance. Therefore, a constant angle other than 0 ° is required.
  • the angle dependency of the average value of the reflected and scattered light in the visible range can be evaluated.
  • the angle dependency of the reflected and scattered light in a specific wavelength band can also be evaluated by using a color filter.
  • the maximum angle ⁇ for comparative evaluation is preferably 30 °, more preferably 45 °, and even more preferably 60 °.
  • the absolute value of the value of I b ( ⁇ )) / I b ( ⁇ ) is preferably 0.2 or less, more preferably 0.1 or less, and even more preferably 0.05 or less.
  • Such color comparison can also be evaluated using, for example, the CIE 1976 (L *, a *, b *) color space.
  • L * is the lightness and brightness index
  • a * and b * are red in the a * direction
  • -a * is green
  • b * is yellow
  • -b * is blue
  • saturation C * (a * 2 + b * 2 ) 0.5 .
  • ⁇ E2 when it is not desired to recognize the optical member 1 disposed so as to be surrounded by the casing member, ⁇ E2 may be 6.5 or less, and preferably 3.2 or less. Is preferably 6 or less, more preferably 0.8 or less, and most preferably 0.4 or less. Further, it is more strict if ⁇ E is used instead of ⁇ E2, and ⁇ E may be 6.5 or less when it is not desired to recognize the optical member 1 disposed so as to be surrounded by the casing member. 3.2 or less is preferable, 1.6 or less is more preferable, 0.8 or less is further preferable, and 0.4 or less is most preferable. In the above discussion, it is assumed that the same light source is used for each member.
  • ⁇ E and ⁇ E2 may be obtained in consideration of this.
  • the above ⁇ E and ⁇ E2 can be evaluated as average values in an area sufficiently larger than the resolution of the eyes. In this respect, unlike the color difference deviation observed due to graininess or the like, if the evaluation can be made with the same area as the eye resolution, the standard deviation range of ⁇ E and ⁇ E2 with respect to the casing member may be 13 or less. Good.
  • Example 1 This example is an example of the optical member 20 using a diffractive structure as shown in FIG.
  • a multilayer film composed of SiO 2 and Ta 2 O 5 and having the structure shown in Table 2 below was formed on a 1 mm thick glass substrate having a refractive index of 1.51 at a wavelength of 950 nm.
  • the uppermost SiO 2 layer is formed as a layer to be a diffractive optical element to be described later.
  • FIG. 19 is a graph showing the transmittance characteristics of the multilayer film of this example. As shown in FIG. 19, the multilayer film of this example showed a low transmittance for light in the visible range and a high transmittance characteristic for light having a wavelength of 900 nm or more.
  • a diffractive optical element in which light is diffused to a first layer which is the uppermost layer of the formed multilayer film within a range of ⁇ 74 ° in one direction at a wavelength of 915 nm and ⁇ 49 ° in a direction perpendicular thereto Formed.
  • the diffractive optical element has a two-step uneven shape and is formed to have a depth of 300 nm.
  • the optical member 20 having a diffractive optical element made of SiO 2 having a depth of 300 nm on the multilayer film can be produced.
  • the infrared region of SiO 2 (e.g., wavelength 950 nm) refractive index at is approximately 1.45.
  • FIG. 20 shows the measurement result of the amount of light transmitted by the spectroscope of the optical member 20 of this example.
  • the light amount (transmittance) of the transmitted light at a wavelength of 950 nm of the optical member 20 of this example was 86.9%.
  • the measurement result shown in FIG. 20 is a measurement result of the structure which has not performed the antireflection process with respect to the surface facing the surface which has the multilayer film of a glass substrate.
  • the wavelength of the optical member 20 of this example is The amount of transmitted light at 950 nm can be up to 91.1%.
  • the amount of scattered light that does not reach the spectroscope is calculated to be 8.9% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 20 of this example was measured using a laser diode having a wavelength of 938 nm.
  • the measurement method is as follows. First, the produced optical member was irradiated with collimated light having a wavelength of 938 nm, and the amount of transmitted light Tt was measured with a photodiode placed at a position 3 cm away from the optical member. At this time, the opening of the photodiode has a diameter of 8 mm, and diffused light from 0 ° to 7.6 ° is incident on the photodiode.
  • the amount of transmitted light T p was measured with a photodiode placed at a position 150 cm away from the optical member. At this time, diffused light from 0 ° to 1.5 ° is incident on the photodiode. From these measurements, (T t ⁇ T p ) / T t ⁇ 100 [%] was determined as the ratio of transmitted scattered light, which was 0.53%. Note that 8.9%, which is the maximum amount of scattered light obtained from the measurement result by the spectrometer shown in FIG. 20, is a larger value than this. This is because the diffused light up to °° is measured. That is, since the diffusion angle of the diffractive optical element is large, the light amount density of the scattered light detected by the photodiode is relatively small. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • the optical member of this example was viewed from the first side, which is the side where the diffractive optical element of the base material is formed, the optical member was observed as white.
  • an optical member was obtained in which the incident light beam was reflected and scattered in the visible region, and the incident light beam was transmitted in the infrared region of 900 nm or more.
  • Example 2 This example is an example of the optical member 30 using an uneven surface as shown in FIG.
  • a multilayer film having the structure shown in Table 2 is formed on a glass substrate having a concavo-convex surface with a thickness of 0.7 mm and a refractive index of 1.51 at a wavelength of 950 nm, as in Example 1. did.
  • the uneven surface of the substrate is a surface having a large number of spherical concave lens portions 343 arranged irregularly as shown in FIG.
  • Each lens portion 343 is arranged such that the apex position is located within a radius of 25% of the pitch with respect to the honeycomb arrangement having a reference pitch of 60 ⁇ m.
  • Such a concavo-convex surface was formed by wet-etching a Mo mask having an initial opening with a diameter of 3 ⁇ m at a position corresponding to the apex position of each lens portion 343 on one surface of the glass substrate.
  • the average radius of curvature of the lens portion 343 on the uneven surface was 100 ⁇ m, and the average inclination angle at the boundary portion between adjacent lens portions 343, that is, the end portion of each lens portion 343 was calculated to be 18 °.
  • the angle is a value smaller than 0.5 ⁇ sin (1 / 1.51).
  • corrugated surface of the base material of this example has at least 97% or more of the region where the inclination angle is within 0.5 ⁇ asin (1 / 1.51) within the effective region where the visible light is incident. .
  • the average r / R of the lens portion 343 is 0.32.
  • the plan view of the element was observed as a structure having a ridge line similar to that in FIG.
  • the average width of the recesses is about 60 ⁇ m.
  • the uneven surface on which the multilayer film was formed was filled and flattened with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the optical member 30 of this example was produced.
  • FIG. 20 shows the measurement result of the transmitted light amount of the optical member 30 of this example using a spectroscope.
  • the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example was 90.2%.
  • the measurement result shown in FIG. 20 is a measurement result of the structure which is not performing antireflection processing with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 98.5%. The amount of scattered light that does not reach the spectroscope is calculated to be 1.5% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm.
  • the measuring method is the same as in the first example. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was found to be 2.1%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • the optical member of this example when the optical member of this example was visually recognized from the side (first side) filled with resin with respect to the uneven surface of the multilayer film, the optical member was observed to be white. Further, when the optical member of this example was viewed from the side (second side) where the resin was not filled with respect to the uneven surface of the multilayer film, the optical member was observed to be white.
  • an optical member was obtained in which the incident light beam was reflected and scattered in the visible region, and the incident light beam was transmitted in the infrared region of 900 nm or more.
  • Example 3 This example is an example of the optical member 30 using an uneven surface as shown in FIG. First, a multilayer film having the structure shown in Table 2 was formed on the same glass substrate as in Example 2 in the same manner as in Example 1.
  • the uneven surface of the substrate is a surface having a large number of spherical concave lens portions 343 having an average pitch of 60 ⁇ m, and the apex position of each lens portion 343 is the reference.
  • the honeycomb arrangement having a pitch of 60 ⁇ m is irregular so as to be located within a radius of 25% of the pitch.
  • Such a concavo-convex surface was formed by wet-etching a Mo mask having an initial opening with a diameter of 3 ⁇ m at a position corresponding to the apex position of each lens portion 343 on one surface of the glass substrate.
  • the average radius of curvature of the lens portion 343 on the uneven surface of this example is 145 ⁇ m, and the average inclination angle at the boundary portion between adjacent lens portions 343, that is, the end portion of each lens portion 343 is calculated as 13 °. It was done.
  • the angle is a value smaller than 0.5 ⁇ sin (1 / 1.51).
  • corrugated surface of the base material of this example has 100% of the area
  • the average r / R of the lens portion 343 is 0.22.
  • the plan view of the element was observed as a structure having a ridge line similar to that in FIG.
  • the average width of the recesses is about 60 ⁇ m.
  • the uneven surface on which the multilayer film was formed was filled and flattened with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the optical member 30 of this example was produced.
  • FIG. 20 shows the measurement result of the transmitted light amount of the optical member 30 of this example using a spectroscope.
  • the amount of transmitted light of the optical member 30 of this example at a wavelength of 950 nm was 89.7%.
  • the measurement result shown in FIG. 20 is a measurement result of the structure which is not performing antireflection processing with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 98.0%. The amount of scattered light that does not reach the spectroscope is calculated to be 2.0% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm.
  • the measuring method is the same as in the first example. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was determined to be 0.57%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • the optical member of this example when the optical member of this example was visually recognized from the side (first side) filled with resin with respect to the uneven surface of the multilayer film, the optical member was observed to be white. Further, when the optical member of this example was viewed from the side (second side) where the resin was not filled with respect to the uneven surface of the multilayer film, the optical member was observed to be white.
  • an optical member was obtained in which the incident light beam was reflected and scattered in the visible region, and the incident light beam was transmitted in the infrared region of 900 nm or more.
  • Example 4 This example is an example of the optical member 30 using an uneven surface as shown in FIG.
  • a multilayer film having the structure shown in Table 2 is formed on a glass substrate having a concavo-convex surface with a thickness of 1.0 mm and a refractive index of 1.51 at a wavelength of 950 nm, as in Example 1. did.
  • the uneven surface of the substrate was formed by sandblasting an abrasive having a particle size of # 240.
  • the uneven surface is composed of recesses and protrusions of various sizes, and a part having an inclination angle of 0.5 ⁇ asin (1 / 1.51) or more was observed in a part of the uneven surface.
  • the uneven surface as the incident surface
  • light with a wavelength of 450 nm is incident from the normal direction of the incident surface, and the intensity according to the angle of the scattered light (reflected scattering angle) is measured on a plane located 85 mm from the base material
  • the refractive index of the substrate at the wavelength 450nm is 1.53
  • the uneven surface on which the multilayer film was formed was filled with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the optical member 30 of this example was produced.
  • FIG. 20 shows the measurement result of the transmitted light amount of the optical member 30 of this example using a spectroscope.
  • the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example was 85.2%.
  • the measurement result shown in FIG. 20 is a measurement result of the structure which is not performing antireflection processing with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 93.5%. The amount of scattered light that does not reach the spectroscope is calculated to be 6.5% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm.
  • the measuring method is the same as in the first example. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was determined to be 3.9%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • the optical member of this example was viewed from the first side, which is the side where the uneven surface of the base material is formed, the optical member was observed in white.
  • an optical member was obtained in which the incident light beam was reflected and scattered in the visible region, and the incident light beam was transmitted in the infrared region of 900 nm or more.
  • Example 5 This example is an embodiment of the optical member 50 using a cholesteric phase liquid crystal exhibiting reflection scattering as shown in FIG.
  • a cholesteric phase liquid crystal material was injected into an untreated glass cell with a gap between substrates of 5 ⁇ m to form a cholesteric phase liquid crystal layer with a selective reflection band center of 550 nm (film formation).
  • the optical member 50 of this example was produced.
  • the formed cholesteric phase liquid crystal layer is not subjected to the alignment treatment, regions having different alignment axes are generated in the plane, and reflection scattering is exhibited in the set selective reflection band.
  • the formed optical member 50 was viewed from each side of the substrate holding the cholesteric phase liquid crystal layer, all of the optical members were observed in green.
  • FIG. 21 shows the measurement result of the transmitted light amount of the optical member 50 of this example using a spectroscope.
  • the light quantity (transmittance) of the transmitted light at the wavelength 550 nm of the optical member 50 of this example is low due to reflection scattering, whereas the light quantity of the transmitted light at the wavelength 950 nm shows a high value. Yes.
  • the amount of transmitted light at a wavelength of 950 nm was 90.3%.
  • reflection of about 8% is expected.
  • an optical member that reflects and scatters at least part of light in the visible range and transmits infrared light of 900 nm or more is obtained.
  • the optical member 50 of this example may be further provided with a mirror or an absorbing material that exhibits reflection or absorption characteristics with respect to visible light and transmits infrared light. By doing so, an optical member with less transmitted light in the visible region can be obtained.
  • Example 6 This example is an embodiment of the optical member 50 using a cholesteric phase liquid crystal exhibiting reflection scattering as shown in FIG.
  • a cholesteric phase liquid crystal material was injected into an untreated glass cell with a gap between substrates of 5 ⁇ m to form a cholesteric phase liquid crystal layer with a selective reflection band center of 620 nm.
  • the optical member 50 of this example was produced.
  • the formed cholesteric phase liquid crystal layer is not subjected to the alignment treatment, regions having different light distribution axes are generated in the plane, and the structure exhibits reflection scattering in the set selective reflection band. Note that when the formed optical member 50 was viewed from each side of the substrate sandwiching the cholesteric phase liquid crystal layer, all of the optical members were observed in orange.
  • FIG. 21 shows the measurement result of the transmitted light amount of the optical member 50 of this example using a spectroscope.
  • the amount of transmitted light at a wavelength of 620 nm of the optical member 50 of this example is low due to reflection scattering, whereas the amount of transmitted light at a wavelength of 950 nm shows a high value.
  • the amount of transmitted light at a wavelength of 950 nm was 89.1%.
  • reflection of about 8% is expected. From the above results, it is considered that the straight transmittance for light having a wavelength of 950 nm is 75% or more.
  • an optical member that reflects and scatters at least part of light in the visible range and transmits infrared light of 900 nm or more is obtained.
  • the optical member 50 of this example may be further provided with a mirror or an absorbing material that reflects or absorbs visible light and transmits infrared light. By doing so, an optical member with less transmitted light in the visible region can be obtained.
  • Example 7 This example is an embodiment of the optical member 50 using a cholesteric phase liquid crystal exhibiting reflection scattering as shown in FIG.
  • ⁇ Two glass substrates are made into cells so that the gap between the substrates is 5 ⁇ m. At this time, the glass substrate is not subjected to orientation treatment such as rubbing. Three such cells are prepared, and a cholesteric phase liquid crystal material is injected into each cell to form three types of cholesteric phase liquid crystal layers whose centers of selective reflection bands are 430 nm, 530 nm, and 630 nm. Since each cholesteric phase liquid crystal layer is not subjected to alignment treatment, a region having a plurality of alignment axes is generated, and reflection scattering is exhibited in each selective reflection band.
  • cholesteric phase liquid crystal layers are laminated, and a multilayer film having the structure shown in Table 1 is formed.
  • an optical member is obtained in which incident light rays are reflected and scattered in the visible region, and incident light rays are transmitted in the infrared region of 900 nm or more.
  • Example 8 This example is an example of the optical member 30 using an uneven surface as shown in FIG.
  • a multilayer film composed of SiO 2 and Ta 2 O 5 and having the structure shown in Table 3 was formed on the same glass substrate as in Example 4.
  • the transmittance spectrum calculated using these is as shown in FIG.
  • the incident-side medium was also calculated as the same refractive index dispersion material as the base material.
  • the concavo-convex surface of the substrate was formed by frost processing, and was formed by sandblasting an abrasive having a particle size of # 800 and performing wet etching so that the total etching amount on both surfaces was 85 ⁇ m.
  • the uneven surface on which the multilayer film was formed was filled and flattened with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the optical member 30 of this example was produced.
  • FIG. 25 shows the measurement result of the amount of light transmitted by the spectroscope of the optical member 30 of this example.
  • the light amount (transmittance) of transmitted light at a wavelength of 950 nm of the optical member 30 of this example was 91.2%.
  • the measurement result shown in FIG. 25 is a measurement result of the structure which is not performing antireflection processing with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 99.5%.
  • the amount of scattered light that does not reach the spectroscope is calculated to be 0.5% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm.
  • the measuring method is the same as in the first example. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was found to be 0.76%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • the halogen lamp light source was observed through the optical member of this example in a dark room using a camera capable of detecting infrared light, the halogen lamp light source was visible from the image.
  • the optical member of this example was viewed from the first side, which is the side where the uneven surface of the base material is formed, the optical member was observed in white.
  • an optical member was obtained in which the incident light beam was reflected and scattered in the visible region, and the incident light beam was transmitted in the infrared region of 900 nm or more.
  • Example 9 This example is an example of the optical member 30 using an uneven surface as shown in FIG. First, a multilayer film having the structure shown in Table 3 was formed on the same glass substrate as in Example 4 in the same manner as in Example 8. The transmittance spectrum calculated using these is as shown in FIG.
  • the concavo-convex surface of the substrate was formed by frost processing, and was formed by sand blasting with an abrasive having a particle size of # 800 and wet etching so that the total etching amount on both surfaces was 115 ⁇ m.
  • the uneven surface on which the multilayer film was formed was filled and flattened with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the optical member 30 of this example was produced.
  • FIG. 25 shows the measurement result of the amount of light transmitted by the spectroscope of the optical member 30 of this example.
  • the amount of transmitted light of the optical member 30 of this example at a wavelength of 950 nm was 91.3%.
  • the measurement result shown in FIG. 25 is a measurement result of the structure which is not performing antireflection processing with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 99.6%.
  • the amount of scattered light that does not reach the spectroscope is calculated to be 0.4% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm.
  • the measuring method is the same as in the first example. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was determined to be 0.32%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • the halogen lamp light source was observed through the optical member of this example in a dark room using a camera capable of detecting infrared light, the halogen lamp light source was visible from the image.
  • the optical member of this example was viewed from the first side, which is the side where the uneven surface of the base material is formed, the optical member was observed in white.
  • an optical member was obtained in which the incident light beam was reflected and scattered in the visible region, and the incident light beam was transmitted in the infrared region of 900 nm or more.
  • Example 10 This example is an example of the optical member 30 using an uneven surface as shown in FIG. First, a multilayer film having the structure shown in Table 3 was formed on the same glass substrate as in Example 2 in the same manner as in Example 8.
  • the uneven surface of the substrate is a surface having a large number of spherical concave lens portions 343 arranged irregularly as shown in FIG.
  • Each lens portion 343 is arranged such that the vertex position is located within a radius of 10% of the pitch with respect to the honeycomb arrangement with a reference pitch of 30 ⁇ m.
  • Such a concavo-convex surface was formed by wet-etching a Mo mask having an initial opening with a diameter of 3 ⁇ m at a position corresponding to the apex position of each lens portion 343 on one surface of the glass substrate.
  • the uneven surface on which the multilayer film was formed was filled with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the optical member 30 of this example was produced.
  • FIG. 26 shows the measurement result of the amount of light transmitted by the spectroscope of the optical member 30 of this example.
  • the light amount (transmittance) of transmitted light at a wavelength of 950 nm of the optical member 30 of this example was 91.7%.
  • the measurement result shown in FIG. 26 is a measurement result of the structure which has not performed the antireflection process with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 100%.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was determined to be 4.7%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • Example 11 This example is an example in which the optical member 30 using the uneven surface and the optical member of the tenth example are laminated as shown in FIG.
  • a multilayer film having the structure shown in Table 4 made of SiO 2 and Ta 2 O 5 was formed on the same glass substrate as in Example 2.
  • the transmittance spectrum calculated using these is as shown in FIG.
  • the incident-side medium was also calculated as the same refractive index dispersion material as the base material.
  • the uneven surface of the substrate is a surface having a large number of spherical concave lens portions 343 arranged irregularly as shown in FIG.
  • Each lens portion 343 is arranged such that the vertex position is located within a radius of 10% of the pitch with respect to the honeycomb arrangement with a reference pitch of 30 ⁇ m.
  • Such a concavo-convex surface was formed by wet-etching a Mo mask having an initial opening with a diameter of 3 ⁇ m at a position corresponding to the apex position of each lens portion 343 on one surface of the glass substrate.
  • the average radius of curvature of the lens portion 343 on the uneven surface is 41 ⁇ m, and the average inclination angle at the boundary portion between adjacent lens portions 343, that is, at the end portion of each lens portion 343 is calculated as shown in Table 5. .
  • the average r / R of the lens portion 343 is also shown in Table 5.
  • the plan view of the element was observed as a structure having a ridge line similar to that in FIG.
  • the average width of the recesses is about 30 ⁇ m.
  • the uneven surface on which the multilayer film was formed was filled and flattened with a resin having a refractive index of 1.51 at a wavelength of 950 nm, and the resin was sealed with an opposing glass substrate.
  • the above-described reflection / scattering part was laminated on the optical member 30 of Example 10 with the viewing side as the first reflection / scattering part.
  • FIG. 26 shows the measurement result of the amount of light transmitted by the spectroscope of the optical member 30 of this example.
  • the amount of transmitted light at the wavelength of 950 nm of the optical member of this example was 90.6%.
  • the measurement result shown in FIG. 26 is a measurement result of the structure which has not performed the antireflection process with respect to the surface of the two glass substrates used as the base material. For this reason, in consideration of a general reflected light amount of 8.3% on these surfaces, when two glass substrates are provided with an antireflection structure, the amount of transmitted light at a wavelength of 950 nm of the optical member 30 of this example is It can be up to 98.9%.
  • the amount of scattered light that does not reach the spectroscope is calculated to be 1.1% or less.
  • the ratio of the transmitted scattered light to the transmitted light at 938 nm of the optical member 30 of the present example was measured using a laser diode having a wavelength of 938 nm. From the measurement results, (T t ⁇ T p ) / T t ⁇ 100 [%] as a ratio of transmitted scattered light was determined to be 4.7%. Based on the above results, it is considered that the straight transmittance for light with a wavelength of 938 nm is 75% or more.
  • Example 10 and Example 11 are close to the casing member as a texture.
  • FIG. 28 shows the intensity (scattering reflectance) according to the angle of the reflected scattered light (reflected scattering angle), that is, the angle dependency of the scattered light measured.
  • normalization is performed based on the intensity of reflected / scattered light at 15 °, and the maximum measurement angle is 70 °.
  • the scattering reflectance is an average value of light having a wavelength of 410 to 700 nm.
  • the absolute value of the value of (I f ( ⁇ ) ⁇ I b ( ⁇ )) / I b ( ⁇ ) was calculated, 0.07 in Example 10 and 0.07 in Example 11 within an angle of 70 ° or less. It was 0.03.
  • Example 9 Although the example of Example 9 is also shown, in the case of Example 9, the ratio of reflected and scattered light at a relatively low angle is large, and glossiness is obtained. Since the casing member was less glossy, Example 10 and Example 11 are close to the casing member as a texture.
  • the present invention can be suitably used for various apparatuses using infrared light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 本発明の光学部材は、例えば可視光(102)を反射し、例えば赤外光(101a)を透過する選択反射部(13)と、選択反射部の第1の側(視認側)に少なくとも設けられるとともに、可視光102を散乱させる散乱部(12)とを含む反射散乱部(11)を備え、赤外光(101a)に対する直進透過率が75%以上である。散乱部(12)は、回折構造を有するものや、選択反射部(13)が有する反射部材の第1の側表面に形成された凹凸面や、微粒子含有樹脂層を有するものであってもよい。選択反射部(13)の反射部材は、誘電体多層膜やコレステリック相液晶層であってもよい。また、反射散乱部(11)は、面内に配向軸の異なる複数の領域を有するコレステリック相液晶層を有するものであってもよい。

Description

光学装置および光学部材
 本発明は、赤外光を利用した光学装置、およびそれに用いる光学部材に関する。
 赤外光を用いた光学装置は、赤外線カメラ装置のような撮影用途の他、計測、通信、生態認証など、様々な用途で用いられている。
 このような光学装置は、一般に赤外光発光部および/または赤外光受光部を有している。さらに、該光学装置は、これら発光部や受光部に入射する可視光等の不要光を低減する目的と、これら発光部からの赤外光を外部に出射するためや外部からの赤外光を受光部に受信させるために設けられた筐体の開口部を不可視にする目的で、赤外光のみを透過させる赤外光透過フィルタが設けられる場合がある。また、一般に赤外光透過フィルタは、可視光を遮断するため、フィルタ部分が黒色等の暗色のものが多い。
 しかし、意匠性を高める等の目的で、暗色以外の赤外光透過フィルタが所望される場合がある。
 暗色以外の赤外光透過フィルタとして、例えば、特許文献1や特許文献2に記載の白色の赤外光透過フィルタがある。特許文献1に記載されている赤外光透過フィルタは、半透明の拡散部と、赤外光を透過するとともに可視光を反射するミラーとを備えることにより、白色の赤外光透過フィルタを実現している。
 また、特許文献2に記載されている赤外線透過フィルタは、透明なバインダー中に、該バインダーとは異なる屈折率の微粒子を均一に分散させて、赤外域の透過率を大きくしつつ、可視域で散乱を大きくすることにより、白色の赤外線透過フィルタを実現している。
日本国特開2014-71295号公報 日本国特開2010-72616号公報
 しかし、意匠性を高めるために可視光の散乱性を高めようとすると、赤外光の送受信感度までもが低くなってしまうという問題がある。
 具体的には、特許文献1や特許文献2に記載された方法は、赤外光に対する透過率を大きくできたとしても、赤外光に対しても散乱能が働いてしまうため、赤外光のヘイズを小さくできないという問題がある。換言すると、赤外光の直進透過率が十分でないという問題がある。
 入射する赤外光の光量に対して直進する光の光量が少ない場合、その分、反射・吸収・散乱によるロスが多く発生していることになる。そのような場合、例えば、赤外線カメラのように受光素子と組み合わせた場合に、画像が暗くなったり、像がぼけるなどのノイズの原因となり、装置として所望の感度・特性が得られないといった問題がある。
 そこで、本発明は、意匠性および赤外光に対する高い感度を両立した光学装置およびそのための光学部材の提供を目的とする。また、本発明は、可視光の反射散乱性が高く、赤外光の直進透過性が高い光学部材の提供を目的とする。
 本発明による光学部材は、可視域の少なくとも一部の波長帯域の光を反射散乱し、赤外域の少なくとも一部の波長帯域の光を透過する反射散乱部を備え、赤外域の少なくとも前記一部の波長帯域の光に対する直進透過率が75%以上であることを特徴とする。
 また、前記反射散乱部は、可視域の少なくとも前記一部の波長帯域の光を反射し、赤外域の少なくとも前記一部の波長帯域の光を透過する選択反射部と、前記選択反射部の、赤外光の入射側もしくは出射側であるとともに可視光が入射する側のうち予め定めた一方の側である第1の側に少なくとも設けられるとともに、可視域の少なくとも前記一部の波長帯域の光を散乱させる散乱部とを含んでいてもよい。ここで、「第1の側に設けられる」とは、対象部材の当該一方の側に同一部材を用いて一体形成される場合を含む。以下、他の側に関しても同様とする。
 また、本発明による光学装置は、赤外域の一部の波長帯域の光を発光する発光部、または、赤外域の一部の波長帯域の光を受光する受光部と、前記発光部または前記受光部を囲う筐体と、前記筐体の開口部に設けられる赤外光透過フィルタとを備え、前記赤外光透過フィルタが、上記の光学部材のいずれかであることを特徴とする。
 本発明によれば、可視光の反射散乱性が高く、赤外光の直進透過性が高い光学部材を提供できる。また、本発明によれば、意匠性および赤外光に対する高い感度を両立した光学装置を提供できる。
図1は、第1の実施形態の光学部材の例を示す構成図である。 図2は、光学部材の他の例を示す断面図である。 図3は、回折構造22における位相項係数の波長依存性の例を示すグラフであり、(a)は、d=270nm、Δn=0.45としたときの位相項係数の値を示すグラフであり、(b)は、図3(a)に示した条件による矩形回折格子の0次回折効率を示すグラフである。 図4は、回折構造22の例を示す平面図である。 図5は、回折構造22による赤外光の透過成分の光量分布の角度依存性の例を示すグラフである。 図6は、光学部材の他の例を示す断面図である。 図7は、散乱光の光量密度の測定方法の例を示す説明図である。 図8は、光学部材の他の例を示す構成図であり、(a)は、散乱部として反射部材に形成される凹凸面を有する光学部材の構成例を示す断面図であり、(b)は、図8(a)に示す光学部材の要部の分解断面図である。 図9は、凹凸構造342bの例を示す説明図であり、(a)は、凹凸構造342bが、複数の凹レンズ状のレンズ部を隙間なく配置してなる凹レンズアレイの平面図であり、(b)は、図9(a)に示す凹凸構造342bを有する第2の基材34bのA-A’断面図である。 図10は、選択反射膜33の凹凸面の傾斜角度と可視光の反射散乱との関係を示す説明図であり、(a)は、傾斜角度αが45°を超える場合の説明図であり、(b)は、傾斜角度αが0.5×asin(1/n)を超える場合の説明図であり、(c)は、片側の面が傾きαで傾斜しそれに対向する面の傾きが0°となる基材に対して検査光103を入射した場合の説明図である。 図11は、反射散乱部31による赤外光の透過成分の光量分布の角度依存性の例を示すグラフである。 図12は、光学部材の他の例を示す構成図であり、(a)は、散乱部として反射部材の凹凸面を有する光学部材の他の構成例を示す断面図であり、(b)は、図12(a)に示す光学部材40の要部の分解断面図である。 図13は、光学部材の他の例を示す構成図であり、(a)は、反射部材に相当するコレステリック相液晶層43において、視認側だけでなく反視認側に凹凸面を有する構成例を示す断面図であり、(b)は、図13(a)に示す光学部材40の要部の分解断面図である。 図14は、光学部材の他の例を示す構成図である。 図15は、光学部材の他の例を示す構成図である。 図16は、光学部材の他の例を示す構成図である。 図17は、光学部材の他の例を示す構成図であり、(a)は、吸収部材を備える光学部材の例を示す構成図であり、(b)は、反射部材を備える光学部材の例を示す構成図である。 図18は、第2の実施形態の光学装置の例を示す構成図である。 図19は、選択反射部としての多層膜の透過率特性を示すグラフである。 図20は、第1~第4の例の光学部材の透過光量の測定結果を示すグラフである。 図21は、第5および第6の例の光学部材の透過光量の測定結果を示すグラフである。 図22は、第4の例の光学部材の基材凹凸面による散乱光の光強度の計測結果を示すグラフである。 図23は、選択反射部としての多層膜の透過率特性を示すグラフである。 図24は、第8および第9の例の光学部材の基材凹凸面による散乱光の光強度の計測結果を示すグラフである。 図25は、第8および第9の例の光学部材の透過光量の測定結果を示すグラフである。 図26は、第10~第12の例の光学部材の透過光量の測定結果を示すグラフである。 図27は、選択反射部としての多層膜の透過率特性を示すグラフである。 図28は、第9~第11の例の光学部材および筐体部材の反射散乱光の角度依存性を示すグラフである。
実施形態1.
 本発明の実施形態を、図面を参照して説明する。図1は、本発明の第1の実施形態にかかる光学部材10の例を示す構成図である。図1に示す光学部材10は、赤外光を用いる光学装置等において、可視光を遮断し、かつ赤外光を透過する赤外光透過フィルタとして用いられる。光学部材10は、赤外光を透過させつつ、可視光を反射散乱させることにより、少なくとも第1の側から見ると、可視光の受光領域が黒色以外の色に着色されたように観察される。なお、観察される着色は、単色に限らず、例えば、斑模様や迷彩のような複数の色の組合せを含む。ここで、第1の側とは、光学部材10において赤外光の入射側もしくは出射側であるとともに可視光が入射する側のうち予め定めた一方の側である。また、本発明では、第1の側でない他方の側を、第2の側という。なお、以下では、第1の側を単に視認側と呼び、第2の側を単に反視認側と呼ぶが、着色が観察される面(以下、単に観察面という)を第1の側に限定するものではない。例えば、反視認側(第2の側)も観察面となり得る。
 図1に示す光学部材10は、基材14と、選択反射部13と、散乱部12とを備えているが、基材14は任意に備えてよい。
 基材14は、赤外光に対して透過性を有する部材により構成されていればよい。なお、基材14は、例えば、ガラスや樹脂等によって作製された基板であってもよい。
 選択反射部13は、可視光を一定割合以上反射し、赤外光を一定割合以上透過する機能を有する。選択反射部13の例としては、ダイクロイックミラーやコレステリック相液晶フィルムなどが挙げられる。より具体的には、選択反射部13は、ダイクロイックミラーのミラー層に用いられるような誘電体多層膜や、コレステリック相液晶フィルムに用いられるようなコレステリック相液晶層といった反射部材を有していればよい。
 散乱部12は、可視光に対して散乱能を発現させる機能を有する。なお、散乱部12は、可視光に対して、赤外光よりも高い散乱能を発現する機能を有しているのが好ましい。そのような散乱能を発現させる機能の実現例としては、微粒子を含有した樹脂によって形成される層である微粒子含有樹脂層や、回折構造や、任意の媒質界面(特に反射部材)に設けられる凹凸面等が挙げられる。散乱部12は、例えば、実現例として挙げたような、散乱能を発現させる機能を有する部材や構造や面を有していればよい。
 例えば、散乱部12が回折構造を有する場合、回折現象を利用して可視光を散乱させられる。また、例えば、散乱部12が任意の媒質界面に形成される凹凸面を有する場合、該凹凸面での反射および屈折現象を利用して可視光を散乱させられる。特に、散乱部12が反射部材に設けられた凹凸面を有する場合、反射は屈折などに比べて光線の偏向量が大きいため、可視光の散乱を大きくできる。また、例えば、散乱部12が微粒子含有樹脂層を有する場合、バインダーである樹脂層内における微粒子との界面での屈折現象を主に利用して可視光を散乱させられる。
 本発明において、可視光を、波長400~750nmの光としてもよい。また、赤外光を、波長800nm以上の光としてもよい。なお、反射散乱させたい可視域(色味)や、赤外センサの検出帯域等が決まっている場合などには、可視光、赤外光ともに上記範囲内において、さらに対象波長帯を限定してもよい。なお、とくにことわりがない場合、可視域は波長400~780nmであり、赤外域は近赤外領域とされる波長780~2000nm、特に波長800~1000nmであり、可視光は該可視域の光であり、赤外光は該赤外域の光であるものとする。
 本実施形態において、散乱部12は、選択反射部13の視認側(第1の側)に設けられていればよい。すなわち、選択反射部13と散乱部12とは、視認側(第1の側)から見て、散乱部12、選択反射部13の順に設けられていればよい。なお、反視認側(第2の側)からも可視光が入射する場合には、選択反射部13の両側に散乱部12が設けられていてもよい。
 図1では、選択反射部13と散乱部12とが異なる部材により構成され、かつ接しているように示されているが、例えば、選択反射部13を構成している部材の一部が散乱部12(例えば、回折構造や凹凸面等)を構成していてもよい。すなわち、選択反射部13と散乱部12とは、例えば、同一部材によって一体形成されていてもよい。また、例えば、選択反射部13が基材14の内部に設けられる、すなわち2つの基材14に挟まれる構成や、基材14の反視認側に設けられる構成であってもよい。また、選択反射部13と散乱部12との間に別の機能層を有し、これらは接していなくてもよい。
 なお、選択反射部13と散乱部12とが接していない場合、選択反射部13と散乱部12の間の距離は短い方が好ましい。特に、散乱部12が回折構造によって構成されている場合、具体的には、3μm以下が好ましい。両者の距離が離れ過ぎると、可視光の反射光の位相項の係数が後述する2Δnd/λからずれてしまうため、好ましくない。
 以下、散乱部12と選択反射部13とを併せて、反射散乱部11という場合がある。この場合、反射散乱部11は、可視光を一定割合以上反射散乱させ、赤外光を一定割合以上直進透過させる機能を有する。
 図1に示す例では、可視光102は、光学部材10の視認側から+z方向で光学部材10に入射する。一方、赤外光は、光学部材10の視認側から+z方向で光学部材10に入射してもよいし、反視認側から-z方向で入射してもよい。なお、図中の赤外光101aは前者の例であり、赤外光101bは後者の例である。
 例えば、光学部材10に可視光102が入射すると、該可視光102は散乱部12および選択反射部13によって反射散乱される。このため、光学部材10は着色して見える。一方、光学部材10に赤外光101aが入射すると、該赤外光101aは散乱部12で一部散乱されるが、多くの成分は直進透過して、そのまま選択反射部13を透過する。また、光学部材10に赤外光101bが入射すると、該赤外光101bは選択反射部13を透過した後、散乱部12で一部散乱されるが、多くの成分は散乱部12を直進透過する。
 このように、可視光102は、散乱部12を透過して選択反射部13に反射されることにより、散乱部12を二回通る場合があるのに対して、赤外光101aおよび赤外光101bは散乱部12を1回しか通らない。したがって、光学部材10は、赤外光101aおよび赤外光101bに比べて可視光102に対する散乱を大きくできる。また、反射散乱部11として凹凸面を有する反射部材を用いる場合、反射面を利用して大きな散乱が得られる。これは、可視光102に比べて赤外光101aおよび赤外光101bに対する散乱を小さくできることと同意である。したがって、光学部材10は、可視光102を散乱させつつ、赤外光101aおよび赤外光101bをより多く直進透過させることができる。
 また、光学部材10が散乱部12として回折構造を用いる場合、1回の通過に対する回折光の位相項の係数であるΔnd/λを調整するとよい。より具体的には、屈折率差Δnおよび回折構造の高さdを調整することで、散乱部12における、赤外光の直進成分(0次回折光)の光量を大きくしつつ、可視光の直進成分(0次回折光)の光量を低減できる。
 また、散乱部12に微粒子含有樹脂を用いる場合、微粒子の粒径や、微粒子とバインダーとなる樹脂材料との屈折率の比を調整することにより、反射散乱部11として、可視光の散乱を大きくし、赤外光の散乱を小さくできる。なお、散乱の大小は、例えば、全光線透過率における拡散透過率の割合を示す指標であるヘイズによって判定してもよい。
 以下、反射散乱部のより具体的な構成例をいくつか説明する。
 まず、散乱部12に回折構造を用いる例を説明する。図2は、散乱部として回折構造を有する光学部材の例を示す断面図である。図2に示す光学部材20は、基材14と、反射散乱部21とを備える。また、反射散乱部21は、選択反射部13と、回折構造22と含む。
 回折構造22は、少なくとも可視光に対して回折作用を発現し、赤外光に対する回折作用の発現が可視光の回折作用の発現に対し抑制できる構造であれば、具体的な構成は問わない。なお、図2には、回折構造22として、断面が矩形の凹凸構造が示されているが、回折構造22は、断面が矩形の凹凸構造に限られない。
 図2において、回折構造22の凹部222および凸部221の屈折率差をΔn、入射する波長をλ、凸部221の高さもしくは凹部222の深さをdとする。回折構造22の回折特性は、当該回折構造22の電場の位相項の係数となるΔnd/λによって変わる。
 ここで、反射光となる可視光102に対しては、回折構造22を往復するため、該係数を2Δnd/λとして計算する。一方、透過光となる赤外光101aおよび赤外光101bに対しては、回折構造22を一度透過するのみなので、Δnd/λのままで計算する。干渉条件により、これら係数の値は、0.5などの1/2に奇数を乗じた値に近いほど、0次回折光の光量が小さく、0もしくは1などの整数に近いほど、0次回折光の光量が大きくなる。
 図3(a)は、これら係数の波長依存性の例を示すグラフである。なお、図3(a)に示すグラフは、d=270nm、Δn=0.45としたときのこれら係数の値を示している。図3(a)において、横軸は波長[nm]を表し、縦軸は位相項係数の値を表している。図3(a)に示すように、赤外光では透過の位相項の係数であるΔnd/λ(破線で示された特性)が0に近い値(略0.15~0.12)となっており、可視光では反射の位相項の係数である2Δnd/λ(実線で示された特性)が0.5に近い値(略0.3~0.6)となっている。したがって、光学部材20は、入射する可視光に対する反射0次回折光の光量を小さく、入射する赤外光に対する透過0次回折光の光量を大きくできる。
 また、図3(b)は、図3(a)に示した条件による矩形回折格子の0次回折効率を示すグラフである。矩形の回折格子の0次回折効率すなわち入射光に対して直進透過する成分の比率は、位相項の係数をφとしてcos(πφ)で計算できる。図3(b)は、0次回折効率η0を、φ=1回通過時(透過)の位相項の係数であるΔnd/λとした場合と、φ=2回透過時(反射)の位相項の係数である2Δnd/λとした場合で計算した結果を示している。図3(b)に示すように、可視光では反射の位相項の係数である2Δnd/λ(実線で示された特性)で決まる反射0次回折効率を30%未満に低減でき、赤外光では透過の位相項の係数であるΔnd/λで決まる透過0次回折効率を約80%以上にできる。
 なお、凹部222は空気以外の材料によって充填されていてもよい。この場合、凸部221が、赤外域の近傍に反射帯を有する多層膜や、赤外域の近傍(可視域と赤外域の間もしくは赤外域の対象波長域よりも長波長側)に吸収を有する色素や顔料を含有する材料により形成され、凹部222が、該材料と赤外域(特に対象波長域)で屈折率が近いもしくは一致する材料で充填されていると好ましい。一般に、反射帯を有する多層膜や吸収を有する材料は、屈折率の異常分散が生じており、特に反射帯や吸収帯の近傍の屈折率が急激に変化する。このような特性を利用すれば、可視域の対象波長域と赤外域の対象波長域との屈折率差が大きくなるよう調整できる。回折構造22が、このような材料と、該材料と赤外域の少なくとも対象波長域で屈折率が略一致する材料との組み合わせで形成されるよう調整できれば、可視光のみに回折作用を生じさせることも可能である。
 また、回折構造22は、回折作用によって光(特に、可視光)を、例えば、X方向だけでなくY方向(成分)にも偏向させるなど、2次元的な散乱作用を付与できるものが好ましい。例えば、回折構造22は、図4に示すような2次元の凹凸構造であってもよい。
 図4は、回折構造22の例を示す平面図である。図4において、白部分が凹部222、黒部分が凸部221を表しており、白部分を基準として黒部分の高さがdとなっているとする。なお、図4に示す凹凸構造は、回折構造22の一部分の例である。回折構造22は、例えば、図4に示すような凹凸構造を有するユニットを、周期的に2次元に(例えば、X方向およびY方向に)隙間なく配置したものであってもよい。なお、回折構造22は、1種類の凹凸構造の周期構造に限らず、例えば、異なる2種類以上の凹凸構造を、2次元に隙間なく配置したものであってもよい。
 図5は、赤外光の入射に対する、回折構造22による透過成分の光量分布の角度依存性の例を示すグラフである。図5において、横軸は透過成分の出射角度θ[°]を表し、縦軸は光強度を表している。一般に、回折作用を発現させる機能を有する回折構造に光が入射すると、直進透過光となる0次回折光と、いわゆる回折光、すなわち直進以外の方向に進む偏向光となる高次回折光と、大別して2種類の回折光を生じる。一般的に0次回折光は高次回折光よりも強度が十分に強い。このため、回折構造22に赤外光が入射して高次回折光が発生したとしても、図5に示すような強いコントラストが得られやすい。
 当該光学部材20における赤外光の入射光量に対する0次回折光の光量の比をTとした場合、Tが75%以上となるように回折構造22が調整されるのが好ましい。なお、Tは75%以上が好ましいが、85%以上がより好ましく、90%以上がさらに好ましく、95%以上が最も好ましい。なお、この場合の「0次回折光」には反射0次回折光は含まれない。以下、赤外光について「0次回折光」といった場合には、透過光のうちの0次回折光を指す。なお、Tの代わりに、ヘイズ値を用いてもよい。その場合、光学部材20の赤外光のヘイズ値は25%未満が好ましく、15%未満がより好ましく、10%未満がさらに好ましく、5%未満が最も好ましい。なお、ヘイズ値としては、JIS K 7136に記載されているように、試験片を通過する透過光のうち、前方散乱によって、入射光から0.044rad(2.5°)以上それた透過光の百分率として求めてもよい。JIS K 7136では直進透過光に対応する角度範囲が2.5°以内となっているが、後述の実施例にあるように、例えば1.5°以下のように2.5°より狭い角度範囲の透過光を直進透過光としてもよい。
 また、光学部材20は、図6に示すように、選択反射部13の表面に溝を設けて凸部221の材料とするなど、選択反射部13と回折構造22とを一体形成してもよい。このようにすると、回折構造22(より具体的には凸部221)から選択反射部13へ入射する際の反射を低減でき、赤外光の直進透過率を高められる。
 また、回折構造22は、当該光学部材20における赤外光の入射光量に対する高次回折光量の総光量の比をTとし、T’=T/(T+T)×100[%]とした場合、T’が10%以下となるよう調整されるのが好ましい。なお、T’は10%以下が好ましいが、5%以下がより好ましく、2%以下がさらに好ましい。なお、上記の「高次回折光」には反射成分は含まれない。以下、赤外光について「高次回折光」といった場合には、透過成分のうちの0次以外の回折光、すなわち、1次回折光、2次回折光、3次回折光・・・を指す。
 また、Tの測定の際に全ての透過光を測定するのではなく、所定の角度内に出射される光を測定することで光量密度の比較がしやすくなる場合がある。例えば、図7に示すように、回折構造22の出射面における所定位置、例えば入射光の光軸中心から測定した、赤外光受光部3の有効領域301の端部までの該光軸とのなす角度をθとすると、角度θ内に出射される回折光のみを対象にして、Tを測定してもよい。なお、回折構造22の出射面の代わりに、光学部材20の出射面を用いてもよい。このように透過光の角度を限定する場合であって、θとして10°以下とする場合、T’は3%以下が好ましく、2%以下がより好ましく、1%以下がさらに好ましい。
 また、一般に、高次回折光が発生し、回折構造22により発生する高次回折光の数をNとした場合、高次回折光の光量は1/Nに比例して小さくなる近似ができる。なお、発生する高次回折光の数Nは、散乱性を大きくできるので、100以上が好ましく、1000以上がより好ましい。また、一般に、高次回折光による回折角度を大きくしようとすると凹凸構造(格子ピッチ)を小さくできるので、素子面を視認した場合の均一性を上げることができる。したがって、回折構造22単体による回折特性として、可視光の高次回折光の光量分布の半値全幅(以下、FWHM)は、5°以上が好ましく、10°以上がより好ましく、20°以上がさらに好ましい。
 次に、散乱部12に回折格子構造とは異なる凹凸面を用いる場合の例を説明する。図8(a)は、散乱部として反射部材に形成される凹凸面を有する光学部材の構成例を示す断面図である。なお、反射部材の凹凸面は母材となる基材(第1の基材34a、第2の基材34bなど)の凹凸面にならって得られてもよい。また、図8(b)は、図8(a)に示す光学部材30の要部の分解断面図である。図8(a)に示す光学部材30は、反射散乱部31を備える。また、反射散乱部31は、反射部材である選択反射膜33と、第1の基材34aと、第2の基材34bとを含む。
 本例の選択反射膜33の視認側の表面(XY平面)は、凹凸面となっている。なお、本例の選択反射膜33の反視認側の面も凹凸面となっている。また、選択反射膜33から見て視認側(第1の側)に位置する第1の基材34aの当該選択反射膜33と接している側の面および選択反射膜33から見て反視認側(第2の側)に位置する第2の基材34bの当該選択反射膜33と接している側の面も凹凸面となっている。以下、選択反射膜33の視認側の凹凸面を凹凸面331aといい、選択反射膜33の反視認側の凹凸面を凹凸面331bという場合がある。また、第1の基材34aの選択反射膜33と接している側の凹凸面を凹凸面341aといい、第2の基材34bの選択反射膜33と接している側の凹凸面を凹凸面341bという場合がある。
 図8(a)に示す例では、選択反射部の反射部材として選択反射膜33を有しているが、該選択反射膜33の視認側の凹凸面331aが、散乱部として作用する凹凸面に相当する。このような選択反射膜33の凹凸面331aは、例えば、一方の基材の表面(例えば、第1の基材34aの表面または第2の基材34bの表面)に凹凸構造を形成して凹凸表面とし、該凹凸表面上に、略均一な膜厚hで誘電体多層膜を成膜(積層)することによって形成できる。なお、当該方法によれば、同時に選択反射膜33の視認側だけでなく反視認側にも凹凸面331bを形成できるので、視認側だけでなく、反視認側からも可視光が入射された場合に着色が観察されるようにできる(図8(a)の可視光102a、可視光102b参照)。
 また、本例では、一方の基材の凹凸表面上に積層してできる選択反射膜33の凹凸表面上に、さらに他方の基材を積層させている。このとき、当該他方の基材の選択反射膜33側の凹凸面と、選択反射膜33の該凹凸表面とは互いに嵌合する形状となっている。そのような基材の凹凸面をなす凹凸構造は、例えば、選択反射膜33の凹凸表面の凹部に当該基材の材料(例えば、樹脂等)を充填させてもよい。ここで、第1の基材34aと選択反射膜33と第2の基材34bの積層状態としては、隙間が無い状態で近接して配されていればよい。具体的には、これらが互いに直接接している場合だけでなく、例えば、間に数十μm以内(100μm以内)の膜厚の接着層や他の機能層として働く薄膜を含むなど間接的に接している場合も含む。なお、薄膜の機能は特に限定されない。以下、このような膜厚の合計が100μm以内で間接的に接している場合も含めて、単に「接している」と表現する場合がある。
 第1の基材34aは、可視光および赤外光に対して透過性を有していればよい。また、第2の基材34bは、上記の基材14と同様、少なくとも赤外光に対して透過性を有していればよい。なお、光学部材30の反視認側も観察面とする場合、第2の基材34bは、可視光および赤外光に対して透過性を有していればよい。
 加えて、本例において選択反射膜33の凹凸面と接する部材である第1の基材34aと第2の基材34bは、少なくとも赤外域の対象波長帯において、略一致した屈折率を有しているとよい。ここで、屈折率が略一致する状態として、対象波長帯における2つの材料の屈折率差またはその平均値は、0.05以下が好ましく、0.005以下がより好ましい。以下、屈折率の一致性について上記と同様とする。
 選択反射膜33は、可視光を一定割合以上反射し、赤外光を一定割合以上透過するように構成されていればよい。選択反射膜33は、例えば、誘電体多層膜やコレステリック相液晶フィルム等が挙げられる。ここで、誘電体多層膜は、金属や半導体材料を含んでもよく、この場合、半導体材料は赤外光に対する吸収が少ないものを用いればよく、金属材料は赤外光に対する透過率が低くならないように十分に薄くすればよい。
 この構成により、可視光102a、102bに対して、傾斜した反射面を利用して大きな散乱が得られるとともに、赤外光101a、101bに対して、選択反射膜33と接している両部材(第1の基材34aと第2の基材34b)の少なくとも凹凸構造部分(図8(b)の342a、342b参照)の屈折率が略一致していることから、大きく屈折することなく、光学部材30の出射界面から出射される。これは、本構成が、赤外光に対して、入射口径内の位置の違いによる光路長差が生じないもしくは生じても小さく抑えられた構成となっているためである。
 また、本例の第1の基材34aの凹凸面341aおよび/または第2の基材34bの凹凸面341bは、サンドブラスなどによって形成される粗面であってもよいが、滑らかな曲面(自由曲面、非球面、球面を含む)を多く有する形状がより好ましい。一般に、サンドブラストなどで形成した粗面は導関数が不連続な点を多く有する形状となり、例えば選択反射膜33として誘電体多層膜を形成するような場合、該多層膜が一様の厚さで成膜できず所望の特性が出ないことがあるためである。
 滑らかな曲面を多く含む凹凸構造342a、342bの例として、多数の微小な球面や非球面のレンズを配置したレンズアレイや、多数のプリズムを配置したプリズムアレイなどが挙げられる。なお、アレイ中のレンズもしくはプリズムは1種に限らず複数種であってもよく、また、これらは規則的に配置されていても不規則に配置されていてもよい。また、他の例として、サンドブラストなどによって形成される基材の粗面をフッ化水素酸などによってエッチングし、表面を滑らかにしたフロスト板の凹凸部や、そのようなフロスト板などの拡散素子の凹凸部を、基材の樹脂層などに転写してできる該樹脂層の凹凸部などが挙げられる。
 また、選択反射膜33として誘電体多層膜を形成する場合、多層膜の厚さが数μmとなることがある。このため、誘電多層膜を基材の凹凸面上に成膜する際に、該基材の凹凸面を構成している個々の凹部の幅(当該凹部の底部を通って当該凹部の端点を結ぶ直線の平面方向の長さ)wが小さすぎると、各層を所望の厚さで成膜できない場合がある。したがって、第1の基材34aまたは第2の基材34bのうち少なくとも一方の基材の凹凸面は、凹部の幅wが5μm未満の領域が、可視光が入射する有効領域全体の10%未満であることが好ましく、有効領域内の全ての凹部の幅wが5μm以上であるとより好ましい。なお、当該凹凸面が凸部を含む場合には、凸部についても上記条件を満たしているとより好ましい。すなわち、凸部の幅wが5μm未満の領域が、可視光が入射する有効領域全体の10%未満であるとより好ましく、有効領域内の全ての凸部の幅wが5μm以上であるとさらに好ましい。なお、凸部の幅wは、凹部の幅wの説明における凹部の底部を、凸部の頂き部と読み替えればよい。
 なお、とくにことわりがない場合、凹凸面を構成している凹部は、凹頂点を含むが凸頂点を含まないもしくは凸頂点を境界部として含む領域であり、特に凸稜線で囲まれた領域である。また、凸部は、凸頂点を含むが凹頂点を含まないもしくは凹頂点を境界部として含む領域であり、特に凹稜線で囲まれた領域である。なお、凹部の底部といった場合、凹部の凹頂点だけでなく凹稜線も含まれる。また、凸部の頂き部といった場合、凸部の凸頂点だけでなく凸稜線も含まれる。また、凹凸構造の断面形状がSINカーブ状や自由曲面であったり、凹凸が多段となっている場合など、凹部と凸部の境界があいまいな場合は、断面の変曲点を該断面における凹部と凸部の境界としてもよいし、当該凹凸面を形成している凹凸構造に対して最小二乗平面を求め、その最小二乗曲面よりも下に位置する部分を凹部、上に位置する部分を凸部としてもよい。
 また、図9(a)に示すように、成膜対象とされる基材の凹凸面をなす凹凸構造(図の例では凹凸構造342b)が、複数の凹レンズ状のレンズ部343を隙間なく配置してなる凹レンズアレイの場合、レンズ部343の各々を凹部としてもよい。その場合、該凹凸面は凹部のみからなるとしてもよい。そのようにすれば、隣接するレンズ部343との境界部に相当するレンズ部343間の稜線345を基材上面から観察することで各凹部の幅wを求めることができる。ここで、図中の一点鎖線で囲った領域のようにレンズ部343の境界部に曲率が生じている場合、傾きが0となる位置を該境界部の頂点として、それら頂点群からなる稜線を基材上面から観察してもよい。図9(a)は、凹凸構造342bの一部を切り出して示す平面図であり、図9(b)は、図9(a)に示す凹凸構造342bを有する第2の基材34bのA-A’断面図である。
 なお、凹凸面をなす凹凸構造は凸レンズ状のレンズ部343を隙間なく配置してなる凸レンズアレイであってもよい。その場合、レンズ部343の各々を凸部としてもよい。その場合、該凹凸面は凸部のみからなるとしてもよい。そのようにすれば、隣接するレンズ部343との境界部に相当するレンズ部343間の稜線345を基材上面から観察することで各凸部の幅wを求めることができる。なお、上述したようにレンズアレイは、規則的なものに限らずレンズ形状や配置に不規則性を有するものも含む。また、レンズ部343の代わりに、凸型のプリズムを配置してなる凸型のプリズムアレイや凹型のプリズムを配置してなる凹型のプリズムアレイの場合も、レンズアレイの場合と同様でよい。また、図9(a)に示す例では、成膜対象とされる基材の凹凸面をなす凹凸構造として、凹凸構造342bを例示しているが、凹凸構造342aであってもよい。その場合、凹凸面341a側を上向きにして凸型/凹型を判断すればよい。
 また、凹部の形状が閉じていない形状の場合、例えば、逆蒲鉾状や溝形状のように底部が伸長している場合には、いわゆる溝の幅(その伸長方向に垂直な方向の長さ)や、当該凹部の形状を楕円で近似した短軸方向の長さを、当該凹部の幅wとして求めてもよい。また、凹稜線が分岐しているような底部が2以上の方向に伸長する形状の場合には、分岐した先の各々で幅wを求めてもよいし、該凹部の形状を複数の多角形に分割して考え、各多角形において楕円近似して幅wを求めてもよい。また、底部をなす凹稜線が認められない場合や、閉じた形状であっても複雑な形状の場合、該凹部の形状を複数の多角形に分割して考え、各多角形において楕円近似して幅wを求めてもよい。
 なお、凹凸面がサンドブラスト面のような粗面の場合の凹部および凸部並びにそれらの幅wについては、上記の限りではない。
 また、意匠性の観点から、凹部および凸部の幅wが大きくなりすぎるとそれらが視認されるおそれがある。このため、凹部および凸部の各々において幅wの最小値は200μm以下が好ましく、100μm以下がより好ましい。なお、このとき、凹部の幅wに、底部が伸長している形状の伸長方向の長さや、楕円近似した場合の長軸方向の長さが含まれてもよく、凸部の幅wに、底部が伸長している形状の伸長方向の長さや、楕円近似した場合の長軸方向の長さが含まれてもよい。
 また、本出願人は、幅wの値によって表面の視認状態が変わることを見出した。特にレンズアレイのように表面に複数個の凹面または凸面を有する構造の場合、幅wの平均値を約60μmとした場合、光学部材30の表面には粒状感が見られたが、幅wの平均値を約30μmとした場合、光学部材30の表面はなめらかな面として観察された。これは、幅wの平均値が約60μmの場合、凹部が直接目視で観察されないものの、目で解像される範囲で十分な平均化がなされず、凹部の傾斜に起因する反射率の角度依存性などに起因する面内の色分布が生じると考えられる。一方、幅wの平均値が約30μmの場合、凹部が目の解像度に対して十分に小さく、凹部の傾斜に起因する反射率の角度依存性が十分に平均化されなめらかな面として観察されると考えられる。上記は、レンズアレイにおける結果であるが、一般的な凹凸形状においても適応できると考えられる。したがって、表面の視認状態として均一なものが求められる場合、幅wの平均値は、60μm未満が好ましく、30μm以下がより好ましい。
 ここで粒状感の評価としては、官能的評価が適用できるが、カメラなどの撮像装置を用いて評価してもよい。後者の場合、撮像条件として、レンズの開口数を光学部材の標準的な使用環境における人間の目の平均的な開口数に合わせるとよく、また、光学部材の標準的な視認距離において評価することが好ましい。さらに、撮像した画像を画像処理することで光学部材面内の色空間上の座標を求めることができるが、この際、人の目の平均的な解像度に合わせて、解像度内のピクセルの平均化処理を行ってもよい。そして、この画像の平面内の繰り返し周波数や平均値からの偏差を評価することで各粒状感を比較できる。画像処理としては、フーリエ変換などの処理を行ってもよい。また、評価基準として色差を用いる場合、後述する表1の値を用いて、面内の色差の標準偏差は、13以下であればよく、6.5以下が好ましい。また、該標準偏差は、3.2以下が好ましく、1.6以下がより好ましく、0.8以下がさらに好ましく、0.4以下が最も好ましい。また、官能評価から判定基準を設ける場合でも、複数人による官能評価結果から統計的に閾値を決めてもよい。
 次に、散乱部として機能する選択反射膜33の凹凸面の傾斜角度αについて説明する。図10は、散乱部として機能する選択反射膜33の凹凸面(図中の例では凹凸面331a)の傾斜角度αと、可視光の反射散乱との関係を示す説明図である。なお、図10は、該凹凸面として凹凸面331aを例示しているが、反視認側も観察面とする場合は凹凸面331bも凹凸面331aと同様とする。なお、その場合、可視光の経路が逆方向となる点に注意が必要である。
 とくに、選択反射膜33の凹凸面の傾斜角度αが大きくなると、選択反射膜33の角度依存性により赤外光において意図しない反射光が生じたりするだけでなく、可視光においても反射散乱強度を低下させる要因になる場合がある。ここで、傾斜角度αの基準(0°位置)となる面は、基板の平面方向(XY平面)としてもよい。なお、図10(a)および図10(b)では、光線が照射される部分の傾斜角度αを示している。
 例えば、図10(a)に示すように、傾斜角度αが45°を超える場合、当該選択反射膜33により反射される可視光102は入射時の進行方向を前進させる方向の光となる(図中の白矢印参照)。当該選択反射膜33により反射される可視光全体の中で、このような前方に反射される光の割合が大きいと、入射時の進行方向を後退させる方向である後方に反射される光の割合が相対的に小さくなる。後方に反射される光の割合が小さいと、当該光学部材30の当該可視光の入射界面(出射界面でもある)に戻る光(反射光)の光量が低下したり、十分な散乱特性が得られないおそれがある。可視光に対する反射散乱が不十分な場合、当該光学部材30の着色すなわちユーザから見える色が所定の色相からずれる、明度が低下する、などの問題が生じる。また、反射光の光量が低下すると当該光学部材30の反視認側から出射される可視光の光量が大きくなり、赤外光に対する迷光が増える、などの問題も生じる。
 また、図10(b)に示すように、傾斜角度αが0.5×asin(1/n)を超える場合、当該選択反射膜33により反射される可視光102は、asin(1/n)以上の角度βで、当該選択反射膜33の凹凸面に接している基材の出射界面346に至りやすい。ここで、nは該基材の屈折率を表している。なお、該基材の凹凸構造部分と出射界面を構成している部分が異なる材料の場合は、該基材において出射界面を構成している部分が空気との界面を形成するため、nとして該部分の屈折率を用いてもよい。
 図10(b)に示すように、可視光102がasin(1/n)以上の角度βで出射界面346に至ると、該出射界面346で全反射が起こるため、そのような可視光の割合が大きいと、上記の場合と同様、反射光の光量が低下したり、十分な散乱特性が得られないおそれがある。
 したがって、選択反射膜33の凹凸面は、可視光が入射する有効領域内において、傾斜角度αが45°以内の領域が90%以上であると好ましく、傾斜角度αが0.5×asin(1/n)以内となる領域が90%以上であるとより好ましく、該有効領域内の全ての領域において傾斜角度αが45°以内であるとさらに好ましく、該有効領域内の全ての領域において傾斜角度αが0.5×asin(1/n)以内であるとさらに好ましい。
 また、上述した傾斜角度αは、選択反射膜33の凹凸面の傾斜角度について規定するが、該選択反射膜33の凹凸面の凹凸形状は、成膜対象とされる基材の凹凸面の凹凸形状が模されたものと見なせるため、上述した傾斜角度αの規定は成膜対象とされる基材の凹凸面にも適用可能である。なお、成膜対象とされる基材の凹凸面が上述した傾斜角度αの規定を満たしていれば、緩やかな傾斜部分が多くなり、均一な膜厚で選択反射膜33を成膜しやすくなり好ましい。このとき、該基材の凹凸面をなす凹凸構造がレンズアレイのような一定の曲率半径が規定できる曲面を有するレンズ部を隙間なく配置した構成である場合、傾斜角度αに加えてもしくは傾斜角度αに代えて次のような条件を満たすと好ましい。
 すなわち、レンズ部の曲率半径をRとし、レンズ部の中心から最も離れた該レンズ部の境界部の頂点までの距離を該レンズ部の半径rとした場合を考える。このとき、該曲率半径Rと半径rの比r/Rは、傾斜角度αが45°以上に対応する数値γ以上が好ましく、傾斜角度αは、0.5×asin(1/n)以下に対応する数値ζ以下がより好ましい。ここで、r/Rについて、数値γおよび数値ζはともに屈折率nに依存する。例えば、屈折率nが1.51の場合、数値γは0.71となり、数値ζは0.35となる。より一般的な場合には、該レンズ部の傾斜はα=atan[(r/R)/{1-(r/R)0.5]となり、出射界面での全反射の条件がnsinβ=1であることと、2α=βの関係式により、r/R=tan{0.5×asin(1/n)}/[1+tan{0.5×asin(1/n)}]0.5により値を求められる。
 また、着色性能の観点から、光学部材30全体として、可視光の反射散乱角のFWHMは5°以上が好ましく、15°以上がより好ましく、30°以上がさらに好ましい。反射散乱角のFWMHが小さい場合、真珠のような光沢を帯びることがあるので、FWMHを5°以上にすることで光沢を低減できる。また、光学部材30全体として、可視光の対象波長帯のうちの特定の波長における、入射光量に対する反射散乱光の総光量の比は、5%以上が好ましく、50%以上がより好ましく、75%以上がさらに好ましい。このようにすることで当該光学部材30の着色の明度を上げることができる。また、後述するように筐体部材と合わせて光学部材30を用いる場合、反射散乱特性を筐体部材のそれと合わせるように調整してもよい。また、散乱部からの反射散乱角が大きい場合、隣り合う凹凸からの散乱光の重なりが大きくなることで粒状感の低減が期待できるため、この点においても反射散乱光のFWHMを大きいことが好ましい。
 また、傾斜角度αの情報は第1の基材34aまたは第2の基材34bのどちらか一方の基材を取りだし、それに対して光を入射し、その散乱特性を測定することでも得られる。例えば、図10(c)に示すように、片側の面が傾きαで傾斜しそれに対向する面の傾きが0°となる屈折率nの基材に対して検査光103を入射するとスネルの法則により、sinα=nsinγとなる角度γの方向に屈折される。一方、屈折した光線は対向する面に対して角度(α―γ)で入射するため、対向する面から出射する光線の角度をδとすると、nsin(α―γ)=sinδとなる。以上により、δ=asin[sinα×{(n -sinα)0.5-cosα}]となる。したがって、基材の屈折率と凹凸面によって散乱される光の散乱特性を調べることで凹凸面の傾斜角度αの情報が得られる。
 例えば、検査光103に対する該基材の屈折率nを1.51とする場合、αが45°とするとδは26.3°となるため、基材に対して光を入射したとき26.3°以上の角度で散乱される光線がある場合には、基材の凹凸面は45°以上の傾斜を含むことになる。また、αが0.5×asin(1/n)=20.7°とすると、δは10.9°となるため、基材に対して光を入射したとき10.9°以上の角度で散乱される光線がある場合には、基材の凹凸面は0.5×asin(1/n)°以上の傾斜を含むことになる。
 図11は、赤外光の入射に対する、反射散乱部31による透過成分の光量分布の角度依存性の例を示すグラフである。図11において、横軸は透過成分の出射角度θ[°]を表し、縦軸は光強度を表している。なお、入射する赤外光はZ方向に進行するものと考える。図11に示すように、反射散乱部31、より具体的には第1の基材34a、選択反射膜33および第2の基材34bを透過する赤外光は、直進透過光と透過散乱光とに大別できる。上述したように、第1の基材34a、選択反射膜33および第2の基材34bの複合作用により、当該光学部材30に入射した赤外光に対して大きな直進透過光が得られる。
 しかし、このとき選択反射膜33の角度依存性によって透過光量の変調が発生したり、各凹凸構造が界面につくるエッジ部分によって散乱が生じる場合がある。したがって、本例では、上記のTを、当該光学部材30における赤外光の入射光量に対する直進透過光の光量の比としてもよい。その場合、Tは、光学部材20の場合と同様、75%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましく、95%以上が最も好ましい。なお、Tの代わりにヘイズ値を用いても評価できる点は光学部材20の場合と同様である。
 また、本例では、当該光学部材30を透過する赤外光のうち直進透過光以外の光を透過散乱光とした場合、上記のTを、当該光学部材30における赤外光の入射光量に対する透過散乱光の光量の総光量の比としてもよい。その場合、T’=T/(T+T)×100[%]は、10%以下が好ましく、5%以下がより好ましく、2%以下がさらに好ましい。また、本例においても、T’は、赤外光について全ての透過光を測定するのではなく、赤外光を扱う装置の仕様に応じて、所定の角度内に出射される光を対象にして測定してもよい。
 また、図示しないが、光学部材30は反射散乱部を厚さ方向(Z方向)に複数備えてもよい。この場合、視認される側から厚さ方向に進むに従って反射散乱光の総量が大きくなるように各反射散乱部を調整することもできる。例えば、このような反射散乱部を設けることで、散乱面が増えるため、より反射の拡散能を高められる。
 次に、散乱部12に反射部材の凹凸面を用いる場合の他の例を説明する。図12(a)は、散乱部として反射部材の凹凸面を有する光学部材の他の構成例を示す断面図である。また、図12(b)は、図12(a)に示す光学部材40の要部の分解断面図である。図12に示す光学部材40は、反射散乱部41と、第2の基材44bとを備える。また、反射散乱部41は、コレステリック相液晶層43と、第1の基材44aとを含む。
 本例のコレステリック相液晶層43の視認側の表面(XY平面)は、凹凸面となっている。また、コレステリック相液晶層43から見て視認側(第1の側)に位置する第1の基材44aの当該コレステリック相液晶層43と接している側の面も凹凸面となっている。以下、コレステリック相液晶層43の視認側の凹凸面を凹凸面431aという場合がある。また、第1の基材44aのコレステリック相液晶層43と接している側の凹凸面を凹凸面441aという場合がある。
 図12(a)に示す例では、選択反射部の反射部材としてコレステリック相液晶層43を有しているが、該コレステリック相液晶層43の視認側の凹凸面431aが、散乱部として作用する凹凸面に相当する。このようなコレステリック相液晶層43の凹凸面431aは、例えば、当該凹凸面431aと接する側となる基材(第1の基材44a)の表面に凹凸構造を形成して凹凸面とし、該凹凸面を内側にして、一方の基材(第2の基材44b)との間にコレステリック相液晶層43を挟持して形成できる。このとき、当該凹凸面431aと接している基材(第1の基材44a)の内側の凹凸面(凹凸面441a)と当該凹凸面431aとは互いに嵌合する形状となっている。
 なお、図13(a)および図13(b)に示すように、本例における反射部材に相当するコレステリック相液晶層43においても、視認側だけでなく反視認側に凹凸面を有していてもよい。そのような場合には、コレステリック相液晶層43の反視認側の凹凸面(凹凸面431b)も、散乱部として作用する凹凸面に相当する。以下、コレステリック相液晶層43の視認側と反視認側の両方に凹凸面を有する構成において、コレステリック相液晶層43の反視認側の凹凸面を凹凸面431bといい、該凹凸面431bと接している第2の基材44bの、該凹凸面431bと接している側の凹凸面を凹凸面441bという場合がある。このようなコレステリック相液晶層43の凹凸面431bは、例えば、当該凹凸面431bと接する側となる基材(第2の基材44b)の表面に凹凸構造を形成して凹凸面とし、該凹凸面を内側にして、一方の基材(第1の基材44a)との間にコレステリック相液晶層43を挟持して形成できる。このとき、当該凹凸面431bと接している基材(第2の基材44b)の内側の凹凸面441bと当該凹凸面431bとは互いに嵌合する形状となっている。
 第1の基材44aは、可視光および赤外光に対して透過性を有していればよい。また、第2の基材44bは、上記の基材14と同様、少なくとも赤外光に対して透過性を有していればよい。なお、光学部材40の反視認側も観察面とする場合、第2の基材44bは、可視光および赤外光に対して透過性を有していればよい。
 加えて、本例においてコレステリック相液晶層43の凹凸面と接する部材である第1の基材44aとコレステリック相液晶層43とは、少なくとも赤外域の対象波長帯において、略一致した屈折率を有しているとよい。なお、コレステリック相液晶層43の両方の面が凹凸面の場合は、コレステリック相液晶層43に代えて、光学部材30の場合と同様に、該コレステリック相液晶層43の凹凸面と接するもう一方の部材である第2の基材44bと、第1の基材44aとが、少なくとも赤外域の対象波長帯において、略一致した屈折率を有していてもよい。なお、コレステリック相液晶層43の屈折率は後述する平均屈折率でよい。
 コレステリック相液晶層43は、可視光を一定割合以上反射し、赤外光を一定割合以上透過するように構成されている。コレステリック相液晶は、液晶分子の螺旋構造により選択反射帯を有しており、その選択反射帯を可視域に設けることで、可視光のみを選択的に反射できる。
 より具体的には、コレステリック相液晶層43において、螺旋ピッチpや、液晶の平均屈折率nを調整すればよい。一般に、コレステリック相液晶の選択反射波長λは、以下の式(1)で与えられる。
λ=p・n ・・・(1)
 したがって、上記の式(1)において、選択反射波長λが、選択反射させたい可視光の波長と同程度になるように、螺旋ピッチpや液晶の平均屈折率nを調整すればよい。なお、螺旋ピッチpの調整方法としては、配向制御の他、キラル剤のHTP(Helical Twisting Power)や濃度を調整する方法が挙げられる。
 なお、図12や図13では1つのコレステリック相液晶層43を備える例を示したが、コレステリック相液晶層は、単層に限られない。例えば、光学部材40は、反射散乱部41として、選択反射帯の異なるコレステリック相液晶層43を複数(厚さ方向(Z方向)に積層するように)備えていてもよい。このとき、第1の基材44aや第2の基材44bを含むコレステリック相液晶フィルム等を複数積層してもよい。一例として、選択反射帯の中心が430nm、530nm、630nmとなる3種類のコレステリック相液晶層もしくはコレステリック相液晶フィルムを積層してもよい。このような構成とすることで、広い帯域の可視光を反射散乱させつつ、赤外光を透過させることができる。
 また、コレステリック相液晶には、螺旋の向きに対応した円偏光を反射する特徴があるため、図14に示すように、コレステリック相液晶層43の反視認側に、第2の選択反射部46をさらに設けてもよい。そのように構成することで、両方の円偏光の光に対して反射散乱させることができる。
 第2の選択反射部46は、コレステリック相液晶層43の選択反射帯を含む波長帯の可視光を一定割合以上反射して赤外光を一定割合以上透過するように構成されていればよい。第2の選択反射部46は、例えば、ダイクロイックミラーのミラー層に用いられるような誘電体多層膜であってもよい。なお、第2の選択反射部46は、コレステリック相液晶層43を挟持している第2の基材44bの反視認側に限らず、例えば、第2の基材44bとコレステリック相液晶層43の間などに設けられていてもよい。なお、複数のコレステリック相液晶層43を備える場合には、コレステリック相液晶層43ごとに当該コレステリック相液晶層43に対応する第2の選択反射部46を設けてもよい。または、最も反視認側にあるコレステリック相液晶層43の反視認側に、複数のコレステリック相液晶層43全ての選択反射帯を含む波長帯の可視光を反射して赤外光を透過する第2の選択反射部46を設けてもよい。
 例えば、コレステリック相液晶層43として、右円偏光の可視光102cに対して選択反射を示すコレステリック相液晶を用いる場合、透過する左円偏光の可視光102dを第2の選択反射部46で反射させる。このとき、第2の選択反射部46で付加される位相差πにより、可視光102dは、右円偏光の光となってコレステリック相液晶層43に再入射される。コレステリック相液晶層43に再入射した右円偏光の可視光102dは、コレステリック相液晶層43の螺旋構造により反射され、再び第2の選択反射部46に入射する。そして、第2の選択反射部46に再入射した右円偏光の可視光102dは、最終的に左円偏光の散乱光となって視認側の出射界面から出射される。また、右円偏光の可視光102cは、コレステリック相液晶層43の入射界面にあたる凹凸面431aによる反射・屈折と、コレステリック相液晶層43内の螺旋構造による選択反射との複合作用によって、反射散乱される。このように、光学部材40は、第2の選択反射部46を備えることにより、左右の円偏光の可視光に対して反射散乱特性が得られる。
 一方、赤外光101a、101bは、コレステリック相液晶層43を透過する。本例においても、赤外光が第1の基材44a、コレステリック相液晶層43および第2の基材44bを透過する際の光路長に、入射位置による変化が生じないまたは小さい構成となっているため、赤外光101aおよび赤外光101bは、屈折することなく当該光学部材40から出射される。このように、本構成においても、可視光に対して十分な反射散乱が得られるだけでなく、赤外光に対する散乱を大きく低減できる。
 なお、本例の第1の基材44aの凹凸面441aおよび第2の基材44bの凹凸面441bについても、滑らかな曲面(自由曲面、非球面、球面を含む)を多く有する形状であれば液晶の配向性がよくなるため、より好ましい。
 なお、他の点に関しては、本例と同じく、散乱部として反射部材に形成される凹凸面を有する例の1つである光学部材30と同様でよい。
 次に、反射散乱部11にコレステリック相液晶を用いる場合の例を説明する。図15は、反射散乱部としてコレステリック相液晶層を有する光学部材の例を示す構成図である。図15に示す光学部材50は、反射散乱部51と、基材14とを備える。また、反射散乱部51は、コレステリック相液晶層53を含む。
 コレステリック相液晶層53は、可視光を一定割合以上反射散乱し、赤外光を一定割合以上透過するように構成されている。例えば、コレステリック相液晶層53は、当該層の面内に、配向軸の異なる複数の領域を有するコレステリック相液晶層でもよい。このようなコレステリック相液晶層53は、例えば、選択反射帯を可視域に設定しつつ、コレステリック相液晶層を形成する際に液晶の配向処理を加えないことにより、形成できる。このような配向の乱れによって、設定した選択反射帯において反射散乱させることができる。
 図15に示すように、本例の光学部材50は、反射散乱を示すコレステリック相液晶層によって、可視光102a、102bを反射散乱させ、赤外光101a、101bを透過させられる。
 なお、本例においても、光学部材50、より具体的には反射散乱部51は、複数のコレステリック相液晶層を備えていてもよい。また、本例においても、図14に示すように、光学部材50は、コレステリック相液晶層53の反視認側に設けてもよく、複数ある場合には各々のコレステリック相液晶層53の反視認側や最も反視認側にあるコレステリック相液晶層53の反視認側に、第2の選択反射部46を設けてもよい。そのように構成することで、両方の円偏光の光に対して反射散乱させることができる。
 次に、散乱部12に微粒子含有樹脂を用いる場合の例を説明する。図16は、散乱部として微粒子含有樹脂層を有する光学部材の例を示す断面図である。図16に示す光学部材60は、基材14と、反射散乱部61とを備える。また、反射散乱部61は、散乱部としての微粒子含有樹脂層62と、選択反射部13とを含む。
 微粒子含有樹脂層62は、可視光および赤外光に対して透光性を有する樹脂材料をバインダーとして用い、該樹脂材料に、少なくとも可視域において該樹脂とは異なる屈折率を有する微粒子を均一に分散させたものであってもよい。
 このとき、上述したように、微粒子の粒径や、微粒子とバインダーとなる樹脂材料との屈折率の比を調整することにより、可視光に対する散乱を大きくし、赤外光に対する散乱を小さくできる。例えば、樹脂に、赤外域の近傍に吸収帯を有する色素や顔料を含有する材料を添加することにより、可視域の対象波長域と赤外域の対象波長域との間に大きな屈折率差を生じさせることができる。このような樹脂と、微粒子とで赤外域の対象波長域の屈折率差が小さくなるまたは屈折率が略一致するように調整してもよい。
 以上のように、本実施形態によれば、可視光の反射散乱性が高く、かつ赤外光の直進透過性が高い反射散乱部を含む光学部材を提供できる。
 なお、上記の各光学部材において、反射散乱部またはそれを支える基材の反視認側に、可視光を吸収して赤外光を透過する吸収部材や、可視光を反射して赤外光を透過する反射部材のいずれかを有していてもよい。
 図17(a)は、上記の吸収部材を備える光学部材の例を示す構成図であり、図17(b)は、上記の反射部材を備える光学部材の例を示す構成図である。
 図17(a)に示す例において、光学部材70は、反射散乱部71と、可視光を吸収して赤外光を透過する吸収部材72とを備えている。
 また、図17(b)に示す例において、光学部材70は、反射散乱部71と、可視光を反射して赤外光を透過する反射部材73とを備えている。
 反射散乱部71は、例えば、上述した反射散乱部のいずれかでよい。
 このような構成によれば、透過する可視光をさらに低減できる。また、吸収部材72は、上記の光学部材が備える基材(例えば、基材14、第2の基材34b、第2の基材44b等)によって実現されてもよい。すなわち、該基材が吸収剤等を含むことによって、吸収部材72が構成されてもよい。
実施形態2.
 次に、本発明の第2の実施形態を、図面を参照して説明する。図18は、本発明の第2の実施形態にかかる光学装置の例を示す構成図である。
 図18に示す光学装置100は、筐体4内に、赤外光発光部2および/または赤外光受光部3を有している。また、光学装置100は、筐体4に設けられた開口部を覆うように光学部材1が設けられている。このような構成とすることにより、赤外光は、光学部材1を通して筐体4の外部へ受発光される。
 光学装置100は、例えば、赤外光を用いて画像を撮影するカメラ装置や、赤外光を用いて、物体の距離や近くの物体の有無を検出する距離センサ、近接センサなどの計測装置や、赤外光を用いて情報通信などを行う通信装置や、赤外光を用いて虹彩や指紋、静脈の認証などの生態認証などを行う認証装置といった赤外光を利用した光学装置である。
 また、筐体4は、赤外光発光部2や赤外光受光部3以外の他の機能を発揮する機器を囲っていてもよい。
 赤外光発光部2は、ランプなどに限らず、LEDやレーザ光源を用いたものでもよい。また、赤外光発光部2は、自身が赤外光を発光する機能を有するものに限らず、他で発光された赤外光を出力する送信部であってもよい。
 また、赤外光受光部3は、フォトダイオードのような単一の受光素子に限らず、CMOSセンサなどのように、画像情報を取得するものであってもよい。
 光学部材1は、赤外光を透過し、可視光を反射散乱させる機能を有する赤外光透過フィルタであって、筐体4の外部から見た場合に着色されたように見えるようになっている。光学部材1は、例えば、第1の実施形態で示した光学部材10~70のいずれかであってもよい。
 また、光学部材1が筐体4の一部とともに視認される場合、光学部材1の周囲に配置される筐体部材と光学部材1との境界を視認し難くすることで、観察者に対して光学部材1の存在を認識し難くできる。光学部材1の視認性を低下させるため、光学部材1周囲の筐体部材と光学部材1との間の、可視光に対する反射散乱光の角度依存性や反射散乱光の総光量を合わせることが好ましい。
 反射散乱光の角度依存性は、5°~15°のいずれかの角度における反射散乱光強度によって規格化し、当該角度から最大角度φまでの反射率の角度依存性を比較することで評価できる。入射角度が0°の場合、光の入射光と反射光の光路が同一になり、反射率を測定することが難しいため、0°を除く一定の角度が必要である。この場合、可視域の反射散乱光の平均値の角度依存性を評価できるが、例えば、色フィルタを用いることで特定の波長帯域の反射散乱光の角度依存性も評価できる。比較評価を行う最大角度φは30°が好ましく、45°がより好ましく、60°がさらに好ましい。ここで、角度ψにおける光学部材1の反射散乱光の強度をI(ψ)、角度ψにおける筐体部材の反射散乱光の強度をI(ψ)とすると、(I(ψ)-I(ψ))/I(ψ)の値の絶対値は、0.2以下が好ましく、0.1以下がより好ましく、0.05以下がさらに好ましい。
 このような色の比較は、例えばCIE1976(L*,a*,b*)色空間を用いても評価できる。この色空間において、L*は明度であり明るさの指標、a*、b*はそれぞれa*方向は赤色、-a*は緑色、b*は黄色、-b*は青色方向となり、色度の指標となる。また、彩度C*=(a*+b*0.5である。これらの値は、CIE XYZ表色系(JIS Z8701)から計算でき、計算式はJIS Z 8781に記載される通りである。CIE XYZ表色系は光学部材1の立体角反射率と等色関数、光源のスペクトルの積を波長で積分したものであり、所定の角度における反射率を求め、光源のスペクトルを仮定すればX,Y,Zの値が定まり、これによってL*,a*,b*が求められる。以下は、標準光源としてとくにことわらない限りD65を用いて各値を求める。
 光学部材1と筐体部材との2つの材質のL*a*b*表色系におけるL*の差をΔL*、a*の差をΔa*、b*の差をΔb*とした場合、色差ΔE=(ΔL*+Δa*+Δb*0.5によって求められる。工業的には表1の指標を用いることが多い。また、以下ではΔE2=(Δa*+Δb*0.5と定義する。ΔE2は色度の情報のみを含むため、明度が問題にならない場合や、光学部材1と筐体部材の配置の違いにより照明状態が異なる場合にはΔE2を指標としてもよい。
Figure JPOXMLDOC01-appb-T000001
 このように、筐体部材に隣り合って取り囲まれるように配置された光学部材1を認識させたくない場合、ΔE2は、6.5以下であればよく、3.2以下であれば好ましく、1.6以下であればより好ましく、0.8以下であればさらに好ましく、0.4以下であれば最も好ましい。また、ΔE2の代わりにΔEを用いるとより厳密であり、筐体部材に隣り合って取り囲まれるように配置された光学部材1を認識させたくない場合、ΔEは、6.5以下であればよく、3.2以下が好ましく、1.6以下がより好ましく、0.8以下がさらに好ましく、0.4以下が最も好ましい。なお、以上の議論において部材ごとに同一の光源を用いる前提としたが、筐体部材と光学部材1の間で照明のされ方が異なる場合、それを考慮してΔEやΔE2を求めてもよい。また、上記のΔE、ΔE2は目の解像度より十分大きい面積における平均値として評価できる。この点で、粒状感などで観察される色差の偏差とは異なり、目の解像度と同程度の面積で評価できる場合、筐体部材に対するΔE、ΔE2の標準偏差の範囲として13以下であってもよい。
 このような構成であれば、赤外光の送信感度および/または受信感度を低下させずに、かつ筐体の開口部が黒色以外の色に着色されたように見える光学装置が得られる。
例1.
 本例は、図2に示したような回折構造を利用した光学部材20の一実施例である。まず、波長950nmにおいて屈折率が1.51となる厚さ1mmのガラス基板上に、SiOとTaからなる以下の表2に示す構成の多層膜を成膜した。なお、最上層のSiO層は、後述する回折光学素子となる層として形成している。
Figure JPOXMLDOC01-appb-T000002
 図19は、本例の多層膜の透過率特性を示すグラフである。図19に示すように、本例の多層膜は、可視域の光に対して低い透過率かつ、波長900nm以上の光に対して高い透過率特性を示した。
 次に、成膜した多層膜の最上層である第1層に、波長915nmにおいてある一方向に±74°、かつそれと直交する方向に±49°の範囲で光が拡散するような回折光学素子を形成した。
 すなわち、当該回折光学素子は、2段の凹凸形状を有し、深さが300nmとなるように形成されている。このようにして、多層膜上に深さ300nmのSiOからなる回折光学素子を有する光学部材20を作製できる。なお、SiOの赤外域(例えば、波長950nm)における屈折率は略1.45である。
 本例の光学部材20の、分光器による透過光量の測定結果を図20に示す。図20に示すように、本例の光学部材20の波長950nmにおける透過光の光量(透過率)は86.9%であった。なお、図20に示す測定結果は、ガラス基板の多層膜を有する面と対向する面に対して反射防止加工をしていない構成の測定結果である。このため、当該面における一般的な反射光の光量4.2%を考慮すると、ガラス基板の多層膜を有する面と対向する面に反射防止構造を付与した場合、本例の光学部材20の波長950nmにおける透過光の光量は最大で91.1%となり得る。また、分光器に到達しない散乱光の光量は8.9%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材20の938nmにおける透過光に対する透過散乱光の割合を測定した。測定方法は次のとおりである。まず、作製した光学部材に波長938nmのコリメート光を照射し、該光学部材から3cm離れた位置に置いたフォトダイオードにより、透過光の光量Tを測定した。このとき、フォトダイオードの開口は直径8mmであり、フォトダイオードには0°から7.6°までの拡散光が入射する。次に、該光学部材から150cm離れた位置に置いたフォトダイオードにより、透過光の光量Tを測定した。このとき、フォトダイオードには0°から1.5°までの拡散光が入射する。これらの測定から、透過散乱光の割合として、(T-T)/T×100[%]を求めたところ、0.53%となった。なお、図20に示した分光器による測定結果から求めた散乱光の光量の最大とされた8.9%はこれよりも大きな値となっているが、これは、本測定が透過光として6°までの拡散光を測定しているからである。すなわち、回折光学素子の拡散角度が大きいことにより、相対的にフォトダイオードが検出する散乱光の光量密度は小さくなっている。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 次に、赤外光を検出可能なカメラを用いて暗室内で、本例の光学部材を通してハロゲンランプ光源を観察したところ、画像に曇りがやや見られたが、画像からハロゲンランプ光源が視認できた。
 また、本例の光学部材を、基材の回折光学素子が形成されている側である第1の側から視認すると、当該光学部材は白色に観察された。
 以上のようにして、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られた。
例2.
 本例は、図8に示したような、凹凸面を利用した光学部材30の一実施例である。まず、波長950nmにおいて屈折率が1.51となる厚さ0.7mmのガラス基板であって凹凸面を有するガラス基板上に、例1と同様に、表2に示す構成の多層膜を成膜した。
 基板の凹凸面は、図9に示すような不規則に配置された球面状の多数の凹型のレンズ部343を有する面である。各々のレンズ部343は、基準となるピッチ60μmのハニカム配置に対して頂点位置がピッチの25%の半径内に位置するように配置されている。このような凹凸面は、ガラス基板の一方の面に対して、各々のレンズ部343の頂点位置に相当する位置に直径3μmの初期開口を有するMoマスクをウェットエッチングすることにより形成した。当該凹凸面におけるレンズ部343の平均的な曲率半径は100μmであり、隣り合うレンズ部343の境界部分すなわち各々のレンズ部343の端部における平均的な傾斜角度は18°と計算された。当該角度は、0.5×sin(1/1.51)よりも小さい値となっている。また、本例の基材の凹凸面は、可視光が入射する有効領域内において、傾斜角度が0.5×asin(1/1.51)以内となる領域が少なくとも97%以上となっている。なお、レンズ部343のr/Rの平均は0.32である。また、素子の平面図は図9に類似の稜線を持つ構造として観察され、可視光が入射する有効領域内の全ての凹部の幅wが5μm以上であった。また、凹部の平均的な幅は約60μmとなっている。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填平坦化し、対向するガラス基板によって該樹脂を封止した。このようにして、本例の光学部材30を作製した。
 本例の光学部材30の、分光器による透過光量の測定結果を図20に示す。図20に示すように、本例の光学部材30の波長950nmにおける透過光の光量は90.2%であった。なお、図20に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で98.5%となり得る。また、分光器に到達しない散乱光の光量は1.5%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。なお、測定方法は第1の例の場合と同様である。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、2.1%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 次に、赤外光を検出可能なカメラを用いて暗室内で、本例の光学部材を通してハロゲンランプ光源を観察したところ、画像に曇りがやや見られたが、画像からハロゲンランプ光源が視認できた。なお、曇りの程度は、第1の例に比べてやや大きかった。
 また、本例の光学部材を、多層膜の凹凸面に対して樹脂が充填されている側(第1の側)から視認すると、当該光学部材は白色に観察された。また、本例の光学部材を、多層膜の凹凸面に対して樹脂が充填されていない側(第2の側)から視認した場合も、当該光学部材は白色に観察された。
 以上のようにして、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られた。
例3.
 本例は、図8に示したような、凹凸面を利用した光学部材30の一実施例である。まず、例2と同様のガラス基板上に、例1と同様に、表2に示す構成の多層膜を成膜した。
 基板の凹凸面は、第2の例と同様、平均的なピッチが60μmとなる球面状の多数の凹型のレンズ部343を有する面となっており、各々のレンズ部343の頂点位置が基準となるピッチ60μmのハニカム配置に対してピッチの25%の半径内に位置するように不規則性を有している。このような凹凸面は、ガラス基板の一方の面に対して、各々のレンズ部343の頂点位置に相当する位置に直径3μmの初期開口を有するMoマスクをウェットエッチングすることにより形成した。ただし、本例の凹凸面におけるレンズ部343の平均的な曲率半径は145μmであり、隣り合うレンズ部343の境界部分すなわち各々のレンズ部343の端部における平均的な傾斜角度は13°と計算された。当該角度は、0.5×sin(1/1.51)よりも小さい値となっている。また、本例の基材の凹凸面は、可視光が入射する有効領域内において、傾斜角度が0.5×asin(1/1.51)以内となる領域が100%となっている。なお、レンズ部343のr/Rの平均は0.22である。また、素子の平面図は図9に類似の稜線を持つ構造として観察され、可視光が入射する有効領域内の全ての凹部の幅wが5μm以上であった。また、凹部の平均的な幅は約60μmとなっている。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填平坦化し、対向するガラス基板によって該樹脂を封止した。このようにして、本例の光学部材30を作製した。
 本例の光学部材30の、分光器による透過光量の測定結果を図20に示す。図20に示すように、本例の光学部材30の波長950nmにおける透過光の光量は89.7%であった。なお、図20に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で98.0%となり得る。また、分光器に到達しない散乱光の光量は2.0%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。なお、測定方法は第1の例の場合と同様である。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、0.57%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 次に、赤外光を検出可能なカメラを用いて暗室内で、本例の光学部材を通してハロゲンランプ光源を観察したところ、画像に曇りがやや見られたが、画像からハロゲンランプ光源が視認できた。なお、曇りの程度は、第1の例に比べてやや小さかった。
 また、本例の光学部材を、多層膜の凹凸面に対して樹脂が充填されている側(第1の側)から視認すると、当該光学部材は白色に観察された。また、本例の光学部材を、多層膜の凹凸面に対して樹脂が充填されていない側(第2の側)から視認した場合も、当該光学部材は白色に観察された。
 以上のようにして、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られた。
例4.
 本例は、図8に示したような、凹凸面を利用した光学部材30の一実施例である。まず、波長950nmにおいて屈折率が1.51となる厚さ1.0mmのガラス基板であって凹凸面を有するガラス基板上に、例1と同様に、表2に示す構成の多層膜を成膜した。
 基板の凹凸面は、粒度が#240の研磨剤をサンドブラストすることにより形成した。当該凹凸面は、様々なサイズの凹部や凸部からなっており、その一部には傾斜角度が0.5×asin(1/1.51)以上となる部位も観察された。
 また、当該凹凸面を入射面として、該入射面の法線方向より波長450nmの光を入射し基材から85mmの位置となる平面において散乱光の角度(反射散乱角)に応じた強度を計測したところ図22のようになった。ここで、波長450nmにおいて基材の屈折率は1.53であり、δ=asin[sinα×{(n -sinα)0.5-cosα}]の関係式からα=45°に対応するδの値は27.3°であるため、散乱光の強度分布から当該凹凸面は傾斜角度が45°以上となる部位を含むことが分かる。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填し、対向するガラス基板によって該樹脂を封止した。このようにして、本例の光学部材30を作製した。
 本例の光学部材30の、分光器による透過光量の測定結果を図20に示す。図20に示すように、本例の光学部材30の波長950nmにおける透過光の光量は85.2%であった。なお、図20に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で93.5%となり得る。また、分光器に到達しない散乱光の光量は6.5%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。なお、測定方法は第1の例の場合と同様である。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、3.9%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 次に、赤外光を検出可能なカメラを用いて暗室内で、本例の光学部材を通してハロゲンランプ光源を観察したところ、画像からハロゲンランプ光源は視認可能だったが、画像の曇りは大きく視認性は低下していた。なお、曇りの程度は、第2の例に比べて大きかった。
 また、本例の光学部材を、基材の凹凸面が形成されている側である第1の側から視認すると、当該光学部材は白色に観察された。
 以上のように、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られた。
例5.
 本例は、図15に示したような、反射散乱を示すコレステリック相液晶を利用した光学部材50の一実施例である。
 基板間のギャップが5μmとなる配向処理をしていないガラスセルにコレステリック相液晶材料を注入し、選択反射帯の中心が550nmとなるコレステリック相液晶層を形成(成膜)した。このようにして本例の光学部材50を作製した。
 形成されたコレステリック相液晶層は配向処理がなされていないため、面内に配向軸が異なる領域が生じ、設定された選択反射帯域において反射散乱を示す構成になっている。なお、形成された光学部材50を、コレステリック相液晶層を挟持している基板の各々の側から視認すると、当該光学部材はいずれも緑色に観察された。
 本例の光学部材50の、分光器による透過光量の測定結果を図21に示す。図21に示すように、本例の光学部材50の波長550nmにおける透過光の光量(透過率)は反射散乱によって低くなっているのに対し、波長950nmにおける透過光の光量は高い値を示している。具体的には、波長950nmにおける透過光量は90.3%であった。なお、本例の光学部材50においても、ガラスセルの両面に反射防止構造を設けていないため、約8%の反射が見込まれる。
 以上のように、本例によれば、可視域の少なくとも一部の光を反射散乱し、900nm以上の赤外光を透過する光学部材が得られた。
 なお、本例の光学部材50に、さらに可視光に対して反射または吸収特性を示し、赤外光を透過するミラーや吸収材料を設置してもよい。そのようにすれば、可視域の透過光がより少ない光学部材が得られる。
例6.
 本例は、図15に示したような、反射散乱を示すコレステリック相液晶を利用した光学部材50の一実施例である。
 基板間のギャップが5μmとなる配向処理をしていないガラスセルにコレステリック相液晶材料を注入し、選択反射帯の中心が620nmとなるコレステリック相液晶層を形成した。このようにして本例の光学部材50を作製した。
 形成されたコレステリック相液晶層は配向処理がなされていないため、面内に配光軸が異なる領域が生じ、設定された選択反射帯域において反射散乱を示す構成となっている。なお、形成された光学部材50を、コレステリック相液晶層を挟持している基板の各々の側から視認すると、当該光学部材はいずれも橙色に観察された。
 本例の光学部材50の、分光器による透過光量の測定結果を図21に示す。図21に示すように、本例の光学部材50の波長620nmにおける透過光の光量は反射散乱によって低くなっているのに対し、波長950nmにおける透過光の光量は高い値を示している。具体的には、波長950nmにおける透過光量は89.1%であった。なお、本例の光学部材50においても、ガラスセルの両面に反射防止構造を設けていないため、約8%の反射が見込まれる。以上の結果により、波長950nmの光に対する直進透過率は、75%以上と考えることができる。
 以上のように、本例によれば、可視域の少なくとも一部の光を反射散乱し、900nm以上の赤外光を透過する光学部材が得られた。
 なお、本例の光学部材50に、さらに可視光に対して反射または吸収特性を示し、赤外光を透過するミラーまたは吸収材料を設置してもよい。そのようにすれば、可視域の透過光がより少ない光学部材が得られる。
例7.
 本例は、図15に示したような、反射散乱を示すコレステリック相液晶を利用した光学部材50の一実施例である。
 2つのガラス基板を基板間のギャップが5μmとなるようにセル化する。この際、ガラス基板にはラビングなどの配向処理はしていない。このようなセルを3つ用意し、各々のセルにコレステリック相液晶材料を注入し、選択反射帯の中心が430nm、530nm、630nmとなる3種類のコレステリック相液晶層を形成する。各コレステリック相液晶層は配向処理がなされていないため複数の配向軸を有する領域が生じ、各選択反射帯域において反射散乱を示す。
 これらのコレステリック相液晶層を積層し、さらに上記の表1に示す構成の多層膜を成膜する。以上のようにして、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られる。
例8.
 本例は、図8に示したような、凹凸面を利用した光学部材30の一実施例である。まず、例4と同様のガラス基板上に、SiOとTaからなる、表3に示す構成の多層膜を成膜した。これらを用いて計算される透過率スペクトルは図23のようになる。なお入射側の媒質も基材と同一の屈折率分散の材料として計算した。
Figure JPOXMLDOC01-appb-T000003
 基板の凹凸面は、フロスト加工によって形成されており、粒度が#800の研磨剤をサンドブラストし、両面のエッチング量合計が85μmとなるようにウェットエッチングすることにより形成した。
 また、当該凹凸面を入射面として、該入射面の法線方向より波長450nmの光を入射し基材から85mmの位置となる平面において散乱光の角度(反射散乱角)に応じた強度を計測したところ図24のようになった。ここで、波長450nmにおいて基材の屈折率は1.53であり、δ=asin[sinα×{(n -sinα)0.5-cosα}]の関係式からα=45°に対応するδの値は27.3°であるため、散乱光の強度分布から当該凹凸面は傾斜角度が45°以上となる部位をほとんど含まないことが分かる。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填平坦化し、対向するガラス基板によって該樹脂を封止した。このようにして、本例の光学部材30を作製した。
 本例の光学部材30の、分光器による透過光量の測定結果を図25に示す。図25に示すように、本例の光学部材30の波長950nmにおける透過光の光量(透過率)は91.2%であった。なお、図25に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で99.5%となり得る。また、分光器に到達しない散乱光の光量は0.5%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。なお、測定方法は第1の例の場合と同様である。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、0.76%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 次に、赤外光を検出可能なカメラを用いて暗室内で、本例の光学部材を通してハロゲンランプ光源を観察したところ、画像からハロゲンランプ光源は視認可能であった。
 また、本例の光学部材を、基材の凹凸面が形成されている側である第1の側から視認すると、当該光学部材は白色に観察された。
 以上のように、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られた。
例9.
 本例は、図8に示したような、凹凸面を利用した光学部材30の一実施例である。まず、例4と同様のガラス基板上に、例8と同様に、表3に示す構成の多層膜を成膜した。これらを用いて計算される透過率スペクトルは図23のようになる。
 基板の凹凸面は、フロスト加工によって形成されており、粒度が#800の研磨剤をサンドブラストし、両面のエッチング量合計が115μmとなるようにウェットエッチングすることにより形成した。
 また、当該凹凸面を入射面として、該入射面の法線方向より波長450nmの光を入射し基材から85mmの位置となる平面において散乱光の強度を計測したところ図24のようになった。ここで、波長450nmにおいて基材の屈折率は1.53であり、δ=asin[sinα×{(n -sinα)0.5-cosα}]の関係式からα=45°に対応するδの値は27.3°であるため、散乱光の強度分布から当該凹凸面は傾斜角度が45°以上となる部位をほとんど含まないことが分かる。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填平坦化し、対向するガラス基板によって該樹脂を封止した。このようにして、本例の光学部材30を作製した。
 本例の光学部材30の、分光器による透過光量の測定結果を図25に示す。図25に示すように、本例の光学部材30の波長950nmにおける透過光の光量は91.3%であった。なお、図25に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で99.6%となり得る。また、分光器に到達しない散乱光の光量は0.4%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。なお、測定方法は第1の例の場合と同様である。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、0.32%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 次に、赤外光を検出可能なカメラを用いて暗室内で、本例の光学部材を通してハロゲンランプ光源を観察したところ、画像からハロゲンランプ光源は視認可能だった。
 また、本例の光学部材を、基材の凹凸面が形成されている側である第1の側から視認すると、当該光学部材は白色に観察された。
 以上のように、可視域では入射した光線が反射散乱し、900nm以上の赤外域では入射した光線が透過する光学部材が得られた。
例10.
 本例は、図8に示したような、凹凸面を利用した光学部材30の一実施例である。まず、例2と同様のガラス基板上に、例8と同様に、表3に示す構成の多層膜を成膜した。
 基板の凹凸面は、図9に示すような不規則に配置された球面状の多数の凹型のレンズ部343を有する面である。各々のレンズ部343は、基準となるピッチ30μmのハニカム配置に対して頂点位置がピッチの10%の半径内に位置するように配置されている。このような凹凸面は、ガラス基板の一方の面に対して、各々のレンズ部343の頂点位置に相当する位置に直径3μmの初期開口を有するMoマスクをウェットエッチングすることにより形成した。当該凹凸面におけるレンズ部343の平均的な曲率半径は41μmであり、隣り合うレンズ部343の境界部分すなわち各々のレンズ部343の端部における平均的な傾斜角度は23°と計算され、当該角度は、0.5×sin(1/1.51)=20°よりもやや大きい値となっている。なお、レンズ部343のr/Rの平均は0.39である。また、素子の平面図は図9に類似の稜線を持つ構造として観察され、可視光が入射する有効領域内の全ての凹部の幅wが5μm以上であった。また、凹部の平均的な幅は約30μmとなっている。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填し、対向するガラス基板によって該樹脂を封止した。このようにして、本例の光学部材30を作製した。
 本例の光学部材30の、分光器による透過光量の測定結果を図26に示す。図26に示すように、本例の光学部材30の波長950nmにおける透過光の光量(透過率)は91.7%であった。なお、図26に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で100%となり得る。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、4.7%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
例11.
 本例は、図8に示したような、凹凸面を利用した光学部材30と第10の例の光学部材を積層したものの一実施例である。まず、例2と同様のガラス基板上に、SiOとTaからなる表4に示す構成の多層膜を成膜した。これらを用いて計算される透過率スペクトルは図27のようになる。なお入射側の媒質も基材と同一の屈折率分散の材料として計算した。
Figure JPOXMLDOC01-appb-T000004
 基板の凹凸面は、図9に示すような不規則に配置された球面状の多数の凹型のレンズ部343を有する面である。各々のレンズ部343は、基準となるピッチ30μmのハニカム配置に対して頂点位置がピッチの10%の半径内に位置するように配置されている。このような凹凸面は、ガラス基板の一方の面に対して、各々のレンズ部343の頂点位置に相当する位置に直径3μmの初期開口を有するMoマスクをウェットエッチングすることにより形成した。当該凹凸面におけるレンズ部343の平均的な曲率半径は41μmであり、隣り合うレンズ部343の境界部分すなわち各々のレンズ部343の端部における平均的な傾斜角度は表5のように計算される。なお、レンズ部343のr/Rの平均を同様に表5に示した。また、素子の平面図は図9に類似の稜線を持つ構造として観察され、可視光が入射する有効領域内の全ての凹部の幅wが5μm以上であった。また、凹部の平均的な幅は約30μmとなっている。
 次いで、多層膜が形成された凹凸面を、波長950nmにおいて屈折率が1.51となる樹脂で充填平坦化し、対向するガラス基板によって該樹脂を封止した。次に、視認側を第1の反射散乱部として前述の反射散乱部を実施例10の光学部材30上に積層した。
 本例の光学部材30の、分光器による透過光量の測定結果を図26に示す。図26に示すように、本例の光学部材の波長950nmにおける透過光の光量は90.6%であった。なお、図26に示す測定結果は、基材とされた2つのガラス基板の表面に対して反射防止加工をしていない構成の測定結果である。このため、これらの面における一般的な反射光の光量8.3%を考慮すると、2つのガラス基板に反射防止構造を付けた場合、本例の光学部材30の波長950nmにおける透過光の光量は最大で98.9%となり得る。また、分光器に到達しない散乱光の光量は1.1%以下と計算される。
 また、波長938nmのレーザーダイオードを用いて、本例の光学部材30の938nmにおける透過光に対する透過散乱光の割合を測定した。測定結果から、透過散乱光の割合としての(T-T)/T×100[%]を求めたところ、4.7%となった。以上の結果により、波長938nmの光に対する直進透過率は、75%以上と考えることができる。
 ここで、例2、3、8~11を目視によって観察したところ例10と例11以外の光学部材において表面に粒状感が観察された。筐体部材は粒状感のない質感であったので、例10と例11が質感として筐体部材と近いものになっている。
 また、例9~11の光学部材のCIE1976(L*,a*,b*)色空間を測定したところ、表5のようになった。また、各光学部材とともに視認される筐体部材の色空間を測定したところ表5のようになった。これによりΔE、ΔE2を計算したところ表5のようになり、いずれも6.5以下となり、筐体部材に対して光学部材を視認させにくくすることができる。なお、例10は、L*が筐体部材よりも高くなっているが、これは反射総光量を調整することでL*を下げることができる。なお、色空間の測定はX-rite社のColor i7を用いている。測定の際に、Color i7の保持具上に各光学部材を設置して測定しており、光源をD65として色空間を計算している。
Figure JPOXMLDOC01-appb-T000005
 また、反射散乱光の角度(反射散乱角)に応じた強度(散乱反射率)、すなわち散乱光の角度依存性を測定したものを図28に示す。図28は、15°における反射散乱光の強度によって規格化をしており、最大測定角度を70°としている。また、散乱反射率は、波長410~700nmの光の平均値をとっている。ここで、(I(ψ)-I(ψ))/I(ψ)の値の絶対値を計算したところ、角度70°以下の範囲において、例10では0.07、例11では0.03となった。例9の例も示しているが、例9の場合、相対的に低角度における反射散乱光の割合が多く、光沢感が出ていた。筐体部材は光沢感が少なかったので、例10と例11が質感として筐体部材と近いものになっている。
 本出願は、2015年1月19日出願の日本特許出願、特願2015-007889に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、赤外光を利用する様々な装置に好適に利用できる。
 100 光学装置
 101a、101b 赤外光
 102、102a、102b、102c、102d 可視光
 103 検査光
 1、10、20、30、40、50、60、70 光学部材
 2 赤外光発光部
 3 赤外光受光部
 301 有効領域
 4 筐体
 11、21、31、41、51、61、71 反射散乱部
 12 散乱部
 13 選択反射部
 14 基材
 22 回折構造
 221 凸部
 222 凹部
 34a、44a 第1の基材
 34b、44b 第2の基材
 33 選択反射膜
 331a、331b、341a、341b 凹凸面
 342a、342b 凹凸構造
 343 レンズ部
 345 稜線
 346 出射界面
 43、53 コレステリック相液晶層
 431a、431b、441a、441b 凹凸面
 442a、442b 凹凸構造
 46 第2の選択反射部
 62 微粒子含有樹脂層
 72 吸収部材
 73 反射部材

Claims (18)

  1.  可視域の少なくとも一部の波長帯域の光を反射散乱し、赤外域の少なくとも一部の波長帯域の光を透過する反射散乱部を備え、
     赤外域の少なくとも前記一部の波長帯域の光に対する直進透過率が75%以上である
     ことを特徴とする光学部材。
  2.  前記反射散乱部は、
     可視域の少なくとも前記一部の波長帯域の光を反射し、赤外域の少なくとも前記一部の波長帯域の光を透過する選択反射部と、
     前記選択反射部の、赤外光の入射側もしくは出射側であるとともに可視光が入射する側のうち予め定めた一方の側である第1の側に少なくとも設けられるとともに、可視域の少なくとも前記一部の波長帯域の光を散乱させる散乱部とを含む
     請求項1に記載の光学部材。
  3.  前記散乱部が、可視域の少なくとも前記一部の波長帯域の光を回折する回折構造を有する
     請求項2に記載の光学部材。
  4.  可視域の少なくとも前記一部の波長帯域の光に対する反射0次回折効率が30%未満である
     請求項3に記載の光学部材。
  5.  前記散乱部が、前記選択反射部が有する反射部材の少なくとも前記第1の側表面に形成された凹凸面であり、
     前記反射部材の前記第1の側表面と接している第1の基材と、前記反射部材の前記第1の側ではない赤外光の入射側もしくは出射側である第2の側表面と接している第2の基材の、赤外域の少なくとも前記一部の波長帯域における屈折率が略一致している
     請求項2に記載の光学部材。
  6.  前記散乱部が、前記選択反射部が有する反射部材の前記第1の側表面および前記第2の側表面の各々に形成された凹凸面であり、
     前記第1の基材および前記第2の基材の前記反射部材と接している側の表面の各々には、当該表面が接している側の前記反射部材の凹凸面と嵌合する凹凸形状の凹凸面が形成されている
     請求項5に記載の光学部材。
  7.  前記第1の基材の前記反射部材と接している側の表面または前記第2の基材の前記反射部材と接している側の表面の少なくとも一方には、当該表面が接している側の前記反射部材の凹凸面と嵌合する凹凸形状の凹凸面が形成されており、
     前記第1の基材または前記第2の基材に形成されている前記凹凸面の少なくとも一方は、複数の凸レンズもしくは複数の凹レンズを配してなるレンズアレイによって形成されている
     請求項5または請求項6に記載の光学部材。
  8.  前記第1の基材の前記反射部材と接している側の表面または前記第2の基材の前記反射部材と接している側の表面の少なくとも一方には、当該表面が接している側の前記反射部材の凹凸面と嵌合する凹凸形状の凹凸面が形成されており、
     前記第1の基材または前記第2の基材に形成されている前記凹凸面の少なくとも一方は、可視光が入射する有効領域内において、傾斜角度が45°以内の領域が90%以上である
     請求項5から請求項7のうちのいずれか1項に記載の光学部材。
  9.  前記第1の基材の前記反射部材と接している側の表面または前記第2の基材の前記反射部材と接している側の表面の少なくとも一方には、当該表面が接している側の前記反射部材の凹凸面と嵌合する凹凸形状の凹凸面が形成されており、
     前記第1の基材または前記第2の基材に形成されている前記凹凸面の少なくとも一方は、可視光が入射する有効領域内において、凹部の幅が5μm未満の領域が10%未満である
     請求項5から請求項7のうちのいずれか1項に記載の光学部材。
  10.  前記選択反射部は、反射部材として、誘電体多層膜または選択反射帯が可視域に設定されているコレステリック相液晶層を有する
     請求項5から請求項9のうちのいずれか1項に記載の光学部材。
  11.  前記散乱部が、前記選択反射部の反射部材であるコレステリック相液晶層の少なくとも前記第1の側表面に形成された凹凸面であり、
     前記反射部材の前記第1の側表面と接している第1の基材と、前記コレステリック相液晶層の、赤外域の少なくとも前記一部の波長帯域における屈折率が略一致している
     請求項2に記載の光学部材。
  12.  前記反射散乱部は、選択反射帯が可視域に設定されており、かつ面内に配向軸の異なる複数の領域を有するコレステリック相液晶層を有する
     請求項1に記載の光学部材。
  13.  前記反射散乱部の、赤外光の入射側もしくは出射側であるとともに可視光が入射する側のうち予め定めた一方の側である第1の側ではない方の側である第2の側に、可視光を反射して赤外域の少なくとも前記一部の波長帯域の光を透過する第2の反射部材または可視光を吸収して赤外域の少なくとも前記一部の波長帯域の光を透過する吸収部材を備えた
     請求項1から請求項12のうちのいずれか1項に記載の光学部材。
  14.  前記可視域は400~750nmであり、前記赤外域は800~1000nmである
     請求項1から請求項13のうちのいずれか1項に記載の光学部材。
  15.  赤外域の一部の波長帯域の光を発光する発光部、または、赤外域の一部の波長帯域の光を受光する受光部と、
     前記発光部または前記受光部を囲う筐体と、
     前記筐体の開口部に設けられる赤外光透過フィルタとを備え、
     前記赤外光透過フィルタが、請求項1から請求項14のうちのいずれか1項に記載の光学部材である
     ことを特徴とする光学装置。
  16.  L*a*b*表色系におけるa*の差をΔa*、b*の差をΔb*としてΔE2=(Δa*+Δb*0.5としたとき、前記赤外光透過フィルタと、前記筐体の部材のうち少なくとも前記赤外光透過フィルタの周囲に隣り合って配置された部材と、によって得られる前記ΔE2が、6.5以下である請求項15に記載の光学装置。
  17.  L*a*b*表色系におけるL*の差をΔL*としたときの色差をΔEとして、前記赤外光透過フィルタと、前記筐体の部材のうち少なくとも前記赤外光透過フィルタの周囲に隣り合って配置される部材と、によって得られる前記ΔEが6.5以下である請求項15または16に記載の光学装置。
  18.  入射する可視光に対する反射散乱光の角度依存性を5°~15°のいずれかの角度における反射散乱強度によって規格化し、任意の角度ψにおける前記赤外光透過フィルタの反射散乱光の強度をI(ψ)、前記筐体の部材のうち少なくとも前記赤外光透過フィルタ周囲に隣り合って配置される部材の、前記角度ψにおける反射散乱光の強度をI(ψ)とするとき、
     少なくとも前記角度ψが30°以内において(I(ψ)-I(ψ))/I(ψ)の値の絶対値が0.2以下である請求項15から請求項17のうちのいずれか1項に記載の光学装置。
PCT/JP2016/051044 2015-01-19 2016-01-14 光学装置および光学部材 WO2016117452A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680006330.9A CN107209304B (zh) 2015-01-19 2016-01-14 光学装置及光学构件
JP2016570598A JP6729396B2 (ja) 2015-01-19 2016-01-14 光学装置および光学部材
US15/650,202 US10921501B2 (en) 2015-01-19 2017-07-14 Infrared-light transmission filter and devices containing the infrared-light transmission filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-007889 2015-01-19
JP2015007889 2015-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/650,202 Continuation US10921501B2 (en) 2015-01-19 2017-07-14 Infrared-light transmission filter and devices containing the infrared-light transmission filter

Publications (1)

Publication Number Publication Date
WO2016117452A1 true WO2016117452A1 (ja) 2016-07-28

Family

ID=56416999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051044 WO2016117452A1 (ja) 2015-01-19 2016-01-14 光学装置および光学部材

Country Status (4)

Country Link
US (1) US10921501B2 (ja)
JP (1) JP6729396B2 (ja)
CN (1) CN107209304B (ja)
WO (1) WO2016117452A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129076A1 (en) 2017-01-04 2018-07-12 3M Innovative Properties Company Color compensating optical filters
JP2019028083A (ja) * 2017-07-25 2019-02-21 Agc株式会社 光学素子
JP2019056758A (ja) * 2017-09-20 2019-04-11 Agc株式会社 光学装置および光学部材
CN110546940A (zh) * 2017-04-25 2019-12-06 富士胶片株式会社 摄像装置以及层叠体
CN111066313A (zh) * 2017-09-06 2020-04-24 富士胶片株式会社 摄像装置
WO2020100450A1 (ja) * 2018-11-14 2020-05-22 豊田合成株式会社 赤外線透過カバー
JP2020197595A (ja) * 2019-05-31 2020-12-10 リンテック株式会社 光拡散制御フィルム
WO2021145340A1 (ja) * 2020-01-15 2021-07-22 凸版印刷株式会社 発色構造体

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525949B2 (en) * 2016-10-20 2022-12-13 3M Innovative Properties Company Device optical window camouflage
WO2018216813A1 (ja) * 2017-05-26 2018-11-29 凸版印刷株式会社 識別装置、識別方法、および、識別プログラム
EP3658968A4 (en) * 2017-07-26 2021-03-31 3M Innovative Properties Company OPTICAL CAMOUFLAGE FILTER
JP2021501918A (ja) * 2017-11-07 2021-01-21 スリーエム イノベイティブ プロパティズ カンパニー 光学フィルム及びそれを含むシステム
JP6872472B2 (ja) * 2017-11-30 2021-05-19 株式会社ファルテック ライダーカバー
US10845508B2 (en) * 2018-05-31 2020-11-24 Microsoft Technology Licensing, Llc Optical stack including embedded diffuse surface
US20210198576A1 (en) * 2018-05-31 2021-07-01 Zeon Corporation Identification medium, and method for determining authenticity of identification medium
CN112533882A (zh) * 2018-06-14 2021-03-19 旭硝子欧洲玻璃公司 降低用于透射红外光的基板的反射率
KR102656458B1 (ko) * 2018-08-14 2024-04-18 삼성전자주식회사 산란 부재를 통해 산란된 광을 획득하는 수광 소자를 포함하는 전자 장치
WO2020037683A1 (zh) * 2018-08-24 2020-02-27 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
WO2020034119A1 (zh) 2018-08-15 2020-02-20 深圳市汇顶科技股份有限公司 屏下光学指纹识别***、背光模组、显示屏幕及电子设备
CN210573827U (zh) * 2018-08-15 2020-05-19 深圳市汇顶科技股份有限公司 Lcd指纹识别***、屏下光学指纹识别装置和电子装置
EP3632517B1 (en) * 2018-10-05 2023-08-23 HTC Corporation Electronic apparatus
US11936963B2 (en) * 2019-11-05 2024-03-19 Nec Corporation Imaging device
CN113841063A (zh) * 2020-04-08 2021-12-24 深圳市大疆创新科技有限公司 光学器件、光学器件的检测方法、激光雷达以及可移动设备
DE102020003493A1 (de) * 2020-06-10 2021-12-16 Giesecke+Devrient Currency Technology Gmbh Verbundkörper, Dekorfolie und Herstellungsverfahren
US20220236464A1 (en) * 2021-01-26 2022-07-28 Viavi Solutions Inc. Optical device with at least one infrared reflective material
CN114200564B (zh) * 2021-12-07 2023-05-05 业成科技(成都)有限公司 曲面贴合光栅偏振膜片及其制造方法与金属栅模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072616A (ja) * 2008-08-20 2010-04-02 Tokai Kogaku Kk 赤外線通信用光学物品及び赤外線通信用受光部
JP2011053577A (ja) * 2009-09-04 2011-03-17 Tokai Kogaku Kk 赤外線通信用光学プラスチック物品の製造方法
WO2014050806A1 (ja) * 2012-09-28 2014-04-03 東海光学株式会社 赤外線受発光用光学物品及び赤外線受発光部

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271529A (ja) 1998-03-24 1999-10-08 Nippon Mitsubishi Oil Corp 光選択透過性素子
US6627270B1 (en) * 1998-04-23 2003-09-30 Nippon Mitsubishi Oil Corporation Liquid crystalline film
US7206125B2 (en) * 2003-11-10 2007-04-17 Therma-Wave, Inc. Infrared blocking filter for broadband Optical metrology
JP4122010B2 (ja) * 2004-11-12 2008-07-23 東海光学株式会社 赤外線受発光部
JP2008209598A (ja) 2007-02-26 2008-09-11 Dainippon Printing Co Ltd 光学フィルム
JP4513921B2 (ja) * 2008-12-09 2010-07-28 ソニー株式会社 光学体およびその製造方法、窓材、ブラインド、ロールカーテン、ならびに障子
EP2793271A1 (en) 2013-04-16 2014-10-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Solar photovoltaic module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072616A (ja) * 2008-08-20 2010-04-02 Tokai Kogaku Kk 赤外線通信用光学物品及び赤外線通信用受光部
JP2011053577A (ja) * 2009-09-04 2011-03-17 Tokai Kogaku Kk 赤外線通信用光学プラスチック物品の製造方法
WO2014050806A1 (ja) * 2012-09-28 2014-04-03 東海光学株式会社 赤外線受発光用光学物品及び赤外線受発光部

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448808B2 (en) 2017-01-04 2022-09-20 3M Innovative Properties Company Color compensating optical filters having low refractive index layer
JP2020507129A (ja) * 2017-01-04 2020-03-05 スリーエム イノベイティブ プロパティズ カンパニー 色補償光学フィルター
WO2018129076A1 (en) 2017-01-04 2018-07-12 3M Innovative Properties Company Color compensating optical filters
CN110546940B (zh) * 2017-04-25 2021-08-24 富士胶片株式会社 摄像装置以及层叠体
CN110546940A (zh) * 2017-04-25 2019-12-06 富士胶片株式会社 摄像装置以及层叠体
US11380725B2 (en) 2017-04-25 2022-07-05 Fujifilm Corporation Imaging device and laminate
JP2019028083A (ja) * 2017-07-25 2019-02-21 Agc株式会社 光学素子
CN111066313A (zh) * 2017-09-06 2020-04-24 富士胶片株式会社 摄像装置
CN111066313B (zh) * 2017-09-06 2022-03-25 富士胶片株式会社 摄像装置
JP7057487B2 (ja) 2017-09-20 2022-04-20 Agc株式会社 光学装置および光学部材
JP2019056758A (ja) * 2017-09-20 2019-04-11 Agc株式会社 光学装置および光学部材
JP2020079053A (ja) * 2018-11-14 2020-05-28 豊田合成株式会社 赤外線透過カバー
WO2020100450A1 (ja) * 2018-11-14 2020-05-22 豊田合成株式会社 赤外線透過カバー
JP2020197595A (ja) * 2019-05-31 2020-12-10 リンテック株式会社 光拡散制御フィルム
WO2021145340A1 (ja) * 2020-01-15 2021-07-22 凸版印刷株式会社 発色構造体
JP7463734B2 (ja) 2020-01-15 2024-04-09 Toppanホールディングス株式会社 発色構造体

Also Published As

Publication number Publication date
JPWO2016117452A1 (ja) 2017-10-26
CN107209304B (zh) 2020-06-16
CN107209304A (zh) 2017-09-26
US10921501B2 (en) 2021-02-16
US20170318239A1 (en) 2017-11-02
JP6729396B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2016117452A1 (ja) 光学装置および光学部材
US9946069B2 (en) Displays
CN106574986B (zh) 具备防反射膜的光学部件及其制造方法
CN105334627B (zh) 影像投射装置和使用它的头戴式显示器
GB2514658A (en) Improvements in and relating to displays
JP2017524161A (ja) ヘッドマウントディスプレイシステム及び構成要素
KR20020029071A (ko) 내부 반사를 이용한 배면 투영 스크린 및 그 제조 방법
US9194545B2 (en) Light emitting device and light sheet
US20160274450A1 (en) Screen and display/imaging device
KR20040089450A (ko) 투영용 스크린
JP2021018412A (ja) 光学構造体、光学構造体付き偏光板及び表示装置
US20220057258A1 (en) Technique for determining presence of a species in a sample
JP6167315B2 (ja) スクリーン及び映像表示システム
JP2021531497A (ja) 光学システム及び光学フィルム
US20170284609A1 (en) Light-emitting device having photoluminescent layer
CN108732767A (zh) 一种紧凑型自由曲面波导近眼显示光学装置
TW202101039A (zh) 具有高紅外光清晰度之光學漫射器
KR20070038868A (ko) 광학 필름
EP2784569A1 (en) Improvements in and relating to displays
US8000007B2 (en) Polarization filter utilizing Brewster's angle
WO2018216575A1 (ja) 回折光学素子、投影装置及び計測装置
WO2019093146A1 (ja) 回折光学素子
WO2021006915A1 (en) Multiview backlight, display, and method having a multibeam element within a light guide
Peterson A BRDF model for scratches and digs
JP2023545457A (ja) 反射偏光子及びそれを含むディスプレイシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740059

Country of ref document: EP

Kind code of ref document: A1