WO2016115932A1 - 一种信道占用方法及*** - Google Patents

一种信道占用方法及*** Download PDF

Info

Publication number
WO2016115932A1
WO2016115932A1 PCT/CN2015/093209 CN2015093209W WO2016115932A1 WO 2016115932 A1 WO2016115932 A1 WO 2016115932A1 CN 2015093209 W CN2015093209 W CN 2015093209W WO 2016115932 A1 WO2016115932 A1 WO 2016115932A1
Authority
WO
WIPO (PCT)
Prior art keywords
microseconds
channel
cyclic prefix
subframe
unlicensed carrier
Prior art date
Application number
PCT/CN2015/093209
Other languages
English (en)
French (fr)
Inventor
毕峰
苟伟
戴博
彭佛才
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016115932A1 publication Critical patent/WO2016115932A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This document relates to, but is not limited to, the field of mobile wireless communications, and in particular, to a channel occupancy method and system.
  • the subcarrier spacing and the net OFDM symbol duration that does not include the cyclic prefix are inversely related.
  • the subcarrier spacing is 15 kHz, so the net OFDM symbol duration excluding the cyclic prefix is 66.67 microseconds.
  • LTE Long Term Evolution
  • a subframe having a length of 1 millisecond includes 14 OFDM symbols, a normal cyclic prefix length of 4.69 microseconds, 5.21 microseconds, and a total OFDM symbol length including a cyclic prefix of 66.67 microseconds + 4.69 microseconds.
  • the subframe of length 1 millisecond includes 12 OFDM symbols, the extended cyclic prefix length is 16.67 microseconds, and the total OFDM symbol duration including the cyclic prefix is 66.67 microseconds + 16.67 microseconds.
  • the OFDM symbol in the LTE system or the OFDM symbol added to the cyclic prefix is referred to as a regular symbol.
  • the multicast broadcast multicast service (MBSFN) subframe in the LTE system includes a non-MBSFN region (region) and an MBSFN region, and the non-MBSFN region of the MBSFN subframe refers to the subframe in which the subframe is located.
  • the first one or the first two OFDM symbols, and the MBSFN area of the MBSFN subframe refers to an OFDM symbol that is not used for the non-MBSFN area of the MBSFN subframe.
  • LTE Rel-13 In the evolution of LTE, in September 2014, the LTE Rel-13 version began to be researched.
  • One of the important items in Rel-13 is that the LTE system works with unlicensed carriers. This technology will enable LTE systems to use existing unlicensed carriers, greatly increasing the potential spectrum resources of LTE systems, enabling LTE systems to achieve lower spectrum costs.
  • the unlicensed carrier has the following characteristics: (1) free/low cost: no need for unlicensed spectrum Purchase, so spectrum resources are zero cost; (2) low access requirements: individuals and enterprises can participate in deployment, equipment vendors' equipment can be deployed arbitrarily; (3) shared resources: multiple different systems are operating at the same time, or the same When different operators of the system operate, they can consider sharing resources to improve spectrum efficiency. (4) Multiple wireless access technologies: Different communication standards can be used, but the cooperation is difficult and the network topology is diverse; (5) Wireless access More sites: large number of users, but difficult to collaborate, centralized management overhead; (6) applications: multiple services can operate in it, for example: Machine to machine (M2M) business, car to car ( Vehicle to vehicle, V2V) business.
  • M2M Machine to machine
  • V2V Vehicle to vehicle
  • the unlicensed carrier may be an important evolution direction of the wireless communication system, but at the same time, there are also many problems. For example, there are various wireless systems in the unlicensed carrier, which are difficult to coordinate with each other and have serious interference.
  • the Licensed-Assisted Access (LAA) site needs to perform the Clear Channel Assessment/Enhanced Clear Channel Assessment (CCA/eCCA) process before using the unlicensed carrier.
  • the time of successful preemption may be located in the sub-segment. Any position within the frame, that is, the time remaining from the point in time to the next subframe boundary is less than 1 ms. If the current LAA site does not transmit any information after this point in time, the neighboring LAA/WIFI station will monitor that the unlicensed carrier after the point in time is an idle period, then the neighboring LAA/WIFI station will preempt the idle.
  • the unlicensed carrier of the period in which the current LAA station and the neighboring LAA/WIFI station will generate serious interference if the information is sent on the same unlicensed carrier, and the current LAA site successfully preempts the time to the next There is still no effective solution for how to occupy the unlicensed carrier in the remaining time of the subframe boundary.
  • the embodiment of the present invention provides a channel occupying method and system, which are used to solve the technical problem that the other station still preempts the unlicensed carrier after the current station preempts the unlicensed carrier resource in the related art.
  • An embodiment of the present invention provides a method for occupying a channel, including the following steps: the transmitting end determines that the unlicensed carrier resource has been successfully preempted; and the transmitting end uses the unlicensed carrier resource that is successfully preempted.
  • Channel occupancy is performed using channel signals.
  • the transmitting end uses the occupied channel signal to perform channel occupation on the unlicensed carrier resource that is successfully preempted, including: orthogonal frequency division multiplexing (OFDM) including a normal cyclic prefix in a subframe where the resource is successfully preempted.
  • OFDM orthogonal frequency division multiplexing
  • the OFDM symbol of the normal cyclic prefix and the extended cyclic prefix OFDM symbol are removed in the subframe, and the occupied channel signal is used for channel occupation in the remaining time range.
  • the transmitting end uses the occupied channel signal to perform channel occupation on the unlicensed carrier resource that is successfully preempted, including: the unlicensed carrier resource is an MBSFN subframe resource, and the non-MBSFN region of the MBSFN subframe (region Using extended cyclic prefix OFDM symbols, and when the MBSFN area of the MBSFN subframe is used to transmit the PDSCH normal cyclic prefix OFDM symbol, the remaining time range between the non-MBSFN area of the MBSFN subframe and the MBSFN area of the MBSFN subframe
  • the occupied channel signal is used internally for channel occupation.
  • the transmitting end uses the occupied channel signal to perform channel occupation on the unlicensed carrier resource that is successfully preempted, including: the unlicensed carrier resource is an MBSFN subframe resource, and the non-MBSFN area OFDM symbol of the MBSFN subframe
  • the cyclic prefix and the MBSFN area of the MBSFN subframe are used to transmit the PDSCH OFDM symbol when the cyclic prefix length type is different, and the occupied time range is used in the remaining time range between the non-MBSFN area of the MBSFN subframe and the MBSFN area of the MBSFN subframe.
  • the channel signal performs channel occupancy, wherein the cyclic prefix length type includes a normal cyclic prefix and an extended cyclic prefix.
  • the unlicensed carrier resource includes a contention subframe that successfully contends and/or a resource that has contend for the subframe.
  • the frame structure of the subframe in which the occupied channel signal is located includes CCA/eCCA, CCA/eCCA and guard interval, CCA/eCCA and regular symbol, or CCA/eCCA, guard interval, and regular symbol.
  • the occupied channel signal comprises any one or any combination of the following signals: a primary synchronization signal (PSS), a secondary synchronization signal (SSS), reference information (RS), and a preamble.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • RS reference information
  • preamble preamble
  • the symbol duration corresponding to the occupied channel signal is less than or equal to a regular symbol (NOS) duration.
  • NOS regular symbol
  • the duration of the symbol corresponding to the occupied channel signal is less than or equal to a minimum value of a single CCA/eCCA duration corresponding to the transmitting end participating in the unlicensed carrier competition.
  • the symbol duration corresponding to the occupied channel signal is greater than a minimum value of a single CCA/eCCA duration corresponding to the transmitting end participating in the unlicensed carrier competition.
  • the duration of the net symbol corresponding to the occupied channel signal includes one or more of the following symbol durations: 0.52 microseconds, 1.04 microseconds, 2.08 microseconds, 4.17 microseconds, 5.56 microseconds, 8.33 microseconds, 9 Microseconds, 16 microseconds, 16.67 microseconds, 18 microseconds, 20 microseconds, 66.67 microseconds.
  • the total symbol duration corresponding to the occupied channel signal includes one or more of the following symbol durations: 0.52 microseconds, 1.04 microseconds, 2.08 microseconds, 4.17 microseconds, 5.56 microseconds, 8.33 microseconds, 9 Microseconds, 16 microseconds, 16.67 microseconds, 18 microseconds, 20 microseconds, 71.36 microseconds, 71.88 microseconds, 83.34 microseconds.
  • the embodiment of the present invention further provides a channel occupation system, which is disposed in the transmitting end, and includes: a resource preemption module and a channel occupation module.
  • the resource preemption module is configured to determine that the unlicensed carrier resource has been successfully preempted; and the channel occupancy module is configured to use the occupied channel signal for channel occupation on the unlicensed carrier resource that is successfully preempted.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the channel occupying method and system provided by the embodiments of the present invention can use the occupied channel signal to perform channel occupation after the transmitting end successfully preempts the unlicensed carrier resources, which can prevent other stations from preempting the unlicensed carrier resources. At the same time, it can improve the transmission efficiency, synchronization and measurement.
  • FIG. 1 is a flowchart of a channel occupation method according to an embodiment of the present invention
  • 2 is a schematic diagram of a frame, a subframe, and an OFDM symbol
  • FIG. 3 is a schematic diagram of channel occupancy according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of channel occupancy according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of channel occupancy according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of channel occupancy according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of channel occupancy according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of channel occupancy according to a sixth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of channel occupancy according to a seventh embodiment of the present invention.
  • FIG. 10 is a schematic diagram of channel occupancy according to an eighth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of channel occupancy according to a ninth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of channel occupancy according to a tenth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of channel occupancy according to a fourteenth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a channel occupation system according to an embodiment of the present invention.
  • the channel occupying method provided by the embodiment of the present invention includes the following steps:
  • S1 The transmitting end determines that the unlicensed carrier resource has been successfully preempted
  • the transmitting end uses the occupied channel signal to perform channel occupation on the unlicensed carrier resource that is successfully preempted.
  • the unlicensed carrier resource is a competing subframe that successfully competes and/or a resource that has contending for the subframe.
  • the transmitting end is, for example, an LAA site in an LTE/LTE-A system or other devices having the same function.
  • one 10 ms frame is composed of ten 1 ms subframes, and the 1 ms subframe is composed of a plurality of OFDM symbols.
  • a 1 ms subframe consists of 14 OFDM symbols when extended.
  • a 1 ms subframe is composed of 12 OFDM symbols.
  • a 1 ms subframe is composed of 14 OFDM symbols, that is, a regular cyclic prefix is employed.
  • the duration of the net OFDM symbol that does not include the cyclic prefix in the LTE system is referred to as a net regular symbol duration.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention frame structure includes a CCA/eCCA, a Guard Period (GP), an Occupancy Channel Signal (OCS), and a Normal OFDM Symbol (NOS).
  • the LAA station competes for resources through CCA/eCCA in T1, performs reception state to transmission state transition in GP, transmits OCS in T2, and transmits NOS in T3.
  • the sending in the form of NOS refers to transmitting in the form of an OFDM symbol formed by the same system parameters as the existing system, such as the LTE/LTE-A system.
  • T2 1ms-T1-GP-T3
  • T2 cannot constitute a complete NOS, that is, T2 ⁇ 71.36us, so control information or data information cannot be sent in the form of NOS.
  • the LAA site needs to send Y OCSs in T2, Y ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may be another device having the same function, such as a terminal device.
  • the embodiments of the other devices are the same as the first embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding competing subframe frame structure includes CCA/eCCA, OCS, and NOS.
  • the LAA site competes for resources through CCA/eCCA in T1, transmits OCS in T2, and transmits NOS in T3.
  • the sending in the form of NOS refers to transmitting in the form of an OFDM symbol formed by the same system parameters as the existing system, such as the LTE/LTE-A system.
  • T2 1ms-T1-T3
  • T2 cannot constitute a complete NOS, that is, T2 ⁇ 71.36us, so control information or data information cannot be sent in the form of NOS.
  • the LAA site needs to send Y OCSs in T2, Y ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may be another device having the same function, such as a terminal device.
  • the embodiments of the other devices are the same as the second embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention subframe frame structure includes CCA/eCCA, GP, and OCS.
  • the LAA station competes for resources through CCA/eCCA in T1, performs reception state to transmission state transition in the GP, and transmits OCS in T2.
  • T2 1ms-T1-GP, where T2 includes several regular symbol durations.
  • the LAA site needs to send Y OCSs in regular symbols in T2, Y. ⁇ 0.
  • Sending in the form of a regular symbol means transmitting in the form of an OFDM symbol constructed by the same system parameters as an existing system such as the LTE/LTE-A system.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may be another device having the same function, such as a terminal device.
  • the embodiments of the other devices are the same as the third embodiment, and thus are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention subframe frame structure includes CCA/eCCA and OCS.
  • the LAA site competes for resources through CCA/eCCA within T1 and OCS within T2.
  • T2 1ms-T1, where T2 includes several regular symbol durations.
  • the LAA station needs to send Y OCSs in regular symbols in T2, Y ⁇ 0. .
  • Sending in the form of a regular symbol means transmitting in the form of an OFDM symbol constructed by the same system parameters as an existing system such as the LTE/LTE-A system.
  • the duration can be used for longer cyclic prefixes, ie each OCS cyclic prefix duration is greater than 4.69us.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be other devices having the same function, such as a terminal device.
  • the embodiments of the other devices are the same as the fourth embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention subframe frame structure includes CCA/eCCA, GP, and OCS.
  • the LAA station competes for resources through CCA/eCCA in T1, performs reception state to transmission state transition in the GP, and transmits OCS in T2.
  • T2 1ms-T1-GP, at which time T2 includes several regular symbol durations,
  • the neighboring LAA sites compete for resources within T2, and the LAA site needs to send Y OCSs in regular symbols in T2, Y ⁇ 0.
  • Sending in the form of a regular symbol means transmitting in the form of an OFDM symbol constructed by the same system parameters as an existing system such as the LTE/LTE-A system.
  • the duration can be used for longer cyclic prefixes, ie each OCS cyclic prefix duration is greater than 4.69us.
  • LAA station temporarily has no control information or data information to be transmitted in the next contending subframe of the contending subframe, in order to prevent the neighboring LAA station from competing for resources in the next contending subframe of the contending subframe, LAA The station needs to transmit Z OCSs in the form of regular symbols in the next competing subframe of the competing subframe, Z ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be other devices having the same function, such as a terminal device.
  • the embodiments of the other devices are the same as the fifth embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention subframe frame structure includes CCA/eCCA and OCS.
  • the LAA site competes for resources through CCA/eCCA within T1 and OCS within T2.
  • T2 1ms-T1
  • T2 includes several regular symbol durations.
  • the LAA station needs to send Y OCSs in regular symbols in T2, Y ⁇ 0. .
  • Sending in the form of a regular symbol means transmitting in the form of an OFDM symbol constructed by the same system parameters as an existing system such as the LTE/LTE-A system.
  • the duration can be used for longer cyclic prefixes, ie each OCS cyclic prefix duration is greater than 4.69us.
  • the LAA station has no control letter in the next competing subframe of the competing subframe.
  • the information or data information needs to be sent.
  • the LAA station needs to be in the form of a regular symbol in the next contending subframe of the contending subframe. Send Z OCS, Z ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be other devices having the same function, such as a terminal device.
  • the embodiments of the other devices are the same as the sixth embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention subframe frame structure includes CCA/eCCA, GP, and OCS.
  • the LAA station competes for resources through CCA/eCCA in T1, performs reception state to transmission state transition in the GP, and transmits OCS in T2.
  • T2 1ms-T1-GP, where T2 includes several regular symbol durations.
  • the LAA site needs to send Y OCSs in regular symbols in T2, Y. ⁇ 0.
  • Sending in the form of a regular symbol means transmitting in the form of an OFDM symbol constructed by the same system parameters as an existing system such as the LTE/LTE-A system.
  • the duration can be used for longer cyclic prefixes, ie each OCS cyclic prefix duration is greater than 4.69us.
  • the LAA site does not have control information or data information to be sent in any of the already contending subframes.
  • the LAA site needs to compete at any one.
  • Z OCSs are transmitted in the form of regular symbols within the sub-frame, Z ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be another device having the same function, such as a terminal device.
  • a terminal device such as a terminal device.
  • the embodiments of the other devices are the same as the seventh embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the corresponding contention subframe frame structure includes CCA/eCCA and OCS.
  • the LAA site competes for resources through CCA/eCCA within T1 and OCS within T2.
  • T2 1ms-T1, where T2 includes several regular symbol durations.
  • the LAA station needs to send Y OCSs in regular symbols in T2, Y ⁇ 0. .
  • Sending in the form of a regular symbol means transmitting in the form of an OFDM symbol constructed by the same system parameters as an existing system such as the LTE/LTE-A system.
  • the duration can be used for longer cyclic prefixes, ie each OCS cyclic prefix duration is greater than 4.69us.
  • the LAA site does not have control information or data information to be sent in any of the already contending subframes.
  • the LAA site needs to compete at any one.
  • Z OCSs are transmitted in the form of regular symbols within the sub-frame, Z ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be another device having the same function, such as a terminal device.
  • a terminal device such as a terminal device.
  • the embodiments of the other devices are the same as the eighth embodiment, and therefore are not repeatedly described herein.
  • the LAA site is described as an example in which the corresponding subframe successfully competes for resources.
  • the initial contention may be anywhere in the subframe, such as several symbol locations (including CCA/eCCA, GP, OCS) following the subframe.
  • the LAA station competes for resources through CCA/eCCA in T1, performs a reception state to a transmission state transition in the GP, and transmits an OCS in T2, which indicates that the LAA site does not have any receiving or transmitting operations.
  • T2 1 ms - T1 - GP - T3, in which case T2 cannot constitute a complete NOS, that is, T2 ⁇ 71.36 us, so control information or data information cannot be transmitted in the form of NOS.
  • the LAA site competes for resources within T2, and the LAA site needs to send Y OCSs within T2, Y ⁇ 0.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be other devices having the same function, such as a terminal device, and other embodiments of the device are the same as the ninth embodiment.
  • the LAA site competes again. Specifically, the LAA station competes for resources through CCA/eCCA in T1, performs reception state to transmission state transition in GP, transmits OCS in T2, and transmits NOS in T3.
  • T2 1 ms - T1 - GP - T3, at which time T2 cannot constitute a complete NOS, that is, T2 ⁇ 71.36 us, so control information or data information cannot be transmitted in the form of NOS.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the LAA site may also be other devices having the same function, such as a terminal device, and other embodiments of the device are the same as the tenth embodiment.
  • the eleventh embodiment can be any combination with the first embodiment to the tenth embodiment, that is, the OCS in the first embodiment to the tenth embodiment can also use the OCS form in the eleventh embodiment.
  • the participating sites include the AP site in the WIFI system and the LAA site in the LTE/LTE-A system, and the corresponding single CCA/eCCA duration is 9us, 18us or 20us.
  • the OCS duration is 9us, of which 9us can be Includes the duration of the cyclic prefix, or the duration of the cyclic prefix.
  • the system parameters corresponding to different system bandwidths are as shown in Table 1.
  • the sampling rate is the same as the sampling rate corresponding to the LTE/LTE-A related system bandwidth, and may be other sampling frequencies.
  • the larger system bandwidth such as the sampling rate corresponding to 40MHz, 80MHz, and 160MHz, increases proportionally, and will not be repeated here.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the embodiment 12 can be any combination with the first embodiment to the tenth embodiment, that is, the OCS in the first embodiment to the tenth embodiment can also use the OCS form in the twelfth embodiment.
  • the CCA/eCCA corresponding to the mth system is defined as CCA_m/eCCA_m, where m ⁇ 0,1,2,...,M-1 ⁇ , the OCS duration is > min (single CCA_m/eCCA_m), and the single CCA/eCCA indicates the duration of one CCA or one eCCA. That is, the OSC duration is greater than the minimum value of the single CCA/eCCA duration corresponding to the M systems.
  • the participating sites include the AP site in the WIFI system and the LAA site in the LTE/LTE-A system, and the corresponding single CCA/eCCA duration is 9us, 18us or 20us.
  • the OCS duration is > min (9 us, 18 us).
  • the system parameters corresponding to different system bandwidths are as shown in Table 2 (where +1 represents DC carrier DC).
  • the sampling rate is the same as the sampling rate corresponding to the existing system bandwidth of LTE/LTE-A, and may be other. Sampling frequency.
  • the larger system bandwidth, such as the sampling rate corresponding to 40MHz, 80MHz, and 160MHz, increases proportionally, and will not be repeated here.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the thirteenth embodiment can be any combination with the first embodiment to the tenth embodiment, that is, the OCS in the first embodiment to the tenth embodiment can also use the OCS form in the thirteenth embodiment.
  • the CCA/eCCA corresponding to the mth system is defined as CCA_m/eCCA_m, where m ⁇ 0,1,2,...,M-1 ⁇
  • the OCS duration ⁇ min (single CCA_m/eCCA_m) or the OCS duration>min (single CCA_m/eCCA_m)
  • the single CCA/eCCA indicates the duration of one CCA or one eCCA.
  • the participating sites include the AP site in the WIFI system and the LAA site in the LTE/LTE-A system, and the corresponding single CCA/eCCA duration is 9us, 18us or 20us.
  • the OCS duration is >min(9us, 18us).
  • the system parameters corresponding to different system bandwidths are shown in Table 3 (where +1 represents DC carrier DC).
  • the sampling rate is the same as the sampling rate corresponding to the existing system bandwidth of LTE/LTE-A, and may be other. Sampling frequency.
  • the larger system bandwidth, such as the subcarrier spacing corresponding to 40MHz, 80MHz, and 160MHz, the proportional increase of the sampling rate, and the proportional decrease of the net OCS symbol duration are not repeated here.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the system bandwidth is 10 MHz.
  • the PSS/SSS adopts the existing LTE/LTE-A in the frequency domain direction.
  • the sequence is mapped to 72 available subcarriers respectively; the length of the OCS symbol used by the PSS/SSS in the time domain direction is 8.33us (excluding the cyclic prefix).
  • the OFDM symbol including the normal cyclic prefix and the extended cyclic prefix OFDM symbol are included in the subframe where the resource is successfully preempted
  • the OFDM symbol and the extended cyclic prefix OFDM symbol except the normal cyclic prefix are removed in the subframe.
  • the occupied channel signal is used for channel occupation in the remaining time range.
  • the non-MBSFN region (region) of the MBSFN subframe uses the extended cyclic prefix OFDM a symbol
  • the MBSFN region of the MBSFN subframe is used to transmit the PDSCH normal cyclic prefix OFDM symbol, using the occupied channel signal in the remaining time range between the non-MBSFN region of the MBSFN subframe and the MBSFN region of the MBSFN subframe Channel occupancy.
  • the MBSFN of the non-MBSFN region and the MBSFN subframe of the MBSFN subframe used for transmitting the PDSCH OFDM symbol are different, the MBSFN of the non-MBSFN region and the MBSFN subframe of the MBSFN subframe
  • the occupied channel signal is used for channel occupation in the remaining time range between regions.
  • the cyclic prefix length type includes a normal cyclic prefix and an extended cyclic prefix.
  • the subframe has been contending as an MBSFN subframe
  • the non-MBSFN region of the MBSFN subframe occupies the first 2 OFDM symbols and uses an Extended Cyclic OFDM symbol (OFDM symbol)
  • the MBSFN region of the frame uses the normal cyclic prefix (Normal CP) OFDM symbol
  • the OCS is used for channel occupation in the remaining time range (Spare) between the non-MBSFN region of the MBSFN subframe and the MBSFN region of the MBSFN subframe.
  • the fourteenth embodiment can be any combination with the first embodiment to the thirteenth embodiment, that is, the OCS in the first to the thirteenth embodiments can also use the OCS form in the fourteenth embodiment.
  • the OCS includes any one or any combination of the following signals: a primary synchronization signal, a secondary synchronization signal, reference information, and a preamble.
  • the net symbol duration of the OCS symbol duration includes one or more of the following symbol durations: 0.52 microseconds, 1.04 microseconds, 2.08 Microseconds, 4.17 microseconds, 5.56 microseconds, 8.33 microseconds, 9 microseconds, 16 microseconds, 16.67 microseconds, 18 microseconds, 20 microseconds, 66.67 microseconds.
  • the total symbol duration of the OCS symbol duration includes one or more of the following symbol durations: 0.52 microseconds, 1.04 microseconds, 2.08 microseconds, 4.17 microseconds, 5.56 microseconds, 8.33. Microseconds, 9 microseconds, 16 microseconds, 16.67 microseconds, 18 microseconds, 20 microseconds, 71.36 microseconds, 71.88 microseconds, 83.34 microseconds.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the embodiment of the present invention further provides a signal occupation system, which is disposed in the transmitting end.
  • the resource preemption module 10 and the channel occupation module 12 are included.
  • the resource preemption module 10 is configured to determine that the unlicensed carrier resource has been successfully preempted.
  • the channel occupation module 12 is configured to use the occupied channel signal for channel occupation on the unlicensed carrier resource that is successfully preempted.
  • the transmitting end is, for example, an LAA site in the LTE/LTE-A system or other devices having the same function.
  • the specific implementation process of the system is the same as that described above, and thus will not be described herein.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the foregoing technical solution can prevent other sites from preempting the unlicensed carrier resources after the site preempts the unlicensed carrier resources. At the same time, it can improve the transmission efficiency, synchronization and measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道占用方法及***,上述方法包括以下步骤:发射端确定已成功抢占非授权载波资源;发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用。上述技术方案能够解决相关技术中当前站点抢占非授权载波资源后其他站点抢占非授权载波的问题。

Description

一种信道占用方法及*** 技术领域
本文涉及但不限于移动无线通信领域,尤其涉及一种信道占用方法及***。
背景技术
对于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)***,子载波间隔和不包括循环前缀的净OFDM符号时长成倒数关系。采用OFDM的长期演进(Long Term Evolution,LTE)***中,子载波间隔是15kHz,所以不包括循环前缀的净OFDM符号时长为66.67微秒。当采用正常循环前缀时,长度为1毫秒的子帧包括14个OFDM符号,正常循环前缀长度为4.69微秒、5.21微秒,包括循环前缀的总OFDM符号时长为66.67微秒+4.69微秒、66.67微秒+5.21微秒。当采用扩展循环前缀时,长度为1毫秒的子帧包括12个OFDM符号,扩展循环前缀长度为16.67微秒,包括循环前缀的总OFDM符号时长为66.67微秒+16.67微秒。把LTE***中净OFDM符号或加入循环前缀的OFDM符号称为常规符号。
LTE***中多播/组播单频网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)子帧包括non-MBSFN区域(region)和MBSFN区域,MBSFN子帧的non-MBSFN区域是指所在子帧的前1个或前2个OFDM符号,MBSFN子帧的MBSFN区域是指没有被用于MBSFN子帧的non-MBSFN区域的OFDM符号。
在LTE的演进过程中,2014年9月,LTE Rel-13版本开始立项研究,其中Rel-13中一个重要的立项就是LTE***使用非授权载波工作。这项技术将使得LTE***能够使用目前存在的非授权载波,大大提升LTE***的潜在频谱资源,使得LTE***能够获得更低的频谱成本。
其中,非授权载波具有以下特点:(1)免费/低费用:非授权频谱无需 购买,所以频谱资源为零成本;(2)准入要求低:个人、企业都可以参与部署,设备商的设备可以任意部署;(3)共享资源:多个不同***都运营其中时,或者同一***的不同运营商运营其中时,可以考虑共享资源方式,提高频谱效率;(4)无线接入技术多:可以使用不同的通信标准,但协作难度大,网络拓扑多样;(5)无线接入站点多:用户数量大,但协作难度大,集中式管理开销大;(6)应用多:多种业务可以在其中运营,例如:机器到机器(Machine to machine,M2M)业务、汽车到汽车(Vehicle to vehicle,V2V)业务。
上述特征决定了非授权载波可能是无线通信***一个重要的演进方向,但是同时也存在诸多问题,例如:非授权载波中将存在各种各样的无线***,彼此之间难于协调,干扰严重。
目前,许可辅助访问(Licensed-Assisted Access,LAA)站点在使用非授权载波前均需要进行空闲信道评估(Clear Channel Assessment/Enhanced Clear Channel Assessment,CCA/eCCA)过程,成功抢占的时间点可能位于子帧内任何位置,也就是说该时间点到下一子帧边界的剩余时间是小于1ms的。如果当前LAA站点在该时间点之后不发射任何信息,邻近的LAA/WIFI站点将会监测到该时间点之后的非授权载波是空闲时期,则邻近的LAA/WIFI站点将会抢占到所述空闲时期的非授权载波,如此一来,当前LAA站点和邻近的LAA/WIFI站点如果在相同的非授权载波上发送信息,会产生严重的干扰,而且,当前LAA站点成功抢占的时间后到下一子帧边界的剩余时间内如何占用非授权载波,目前仍没有有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种信道占用方法及***,用来解决相关技术中当前站点抢占非授权载波资源后其他站点仍抢占所述非授权载波的技术问题。
本发明实施例提供一种信道占用方法,包括以下步骤:发射端确定已成功抢占非授权载波资源;发射端在成功抢占的所述非授权载波资源上使用占 用信道信号进行信道占用。
可选地,发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用,包括:当已成功抢占资源所在子帧内包括正常循环前缀的正交频分复用(OFDM)符号和扩展循环前缀OFDM符号时,所述子帧内除去所述正常循环前缀的OFDM符号和扩展循环前缀OFDM符号外,剩余的时间范围内使用占用信道信号进行信道占用。
可选地,发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用,包括:所述非授权载波资源为MBSFN子帧资源,当MBSFN子帧的non-MBSFN区域(region)使用扩展循环前缀OFDM符号,且当MBSFN子帧的MBSFN区域用于传输PDSCH正常循环前缀OFDM符号时,在MBSFN子帧的non-MBSFN区域和MBSFN子帧的MBSFN区域之间的剩余的时间范围内使用占用信道信号进行信道占用。
可选地,发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用,包括:所述非授权载波资源为MBSFN子帧资源,当MBSFN子帧的non-MBSFN区域OFDM符号的循环前缀和MBSFN子帧的MBSFN区域用于传输PDSCH OFDM符号的循环前缀长度类型不同时,在MBSFN子帧的non-MBSFN区域和MBSFN子帧的MBSFN区域之间的剩余的时间范围内使用占用信道信号进行信道占用,其中,所述循环前缀长度类型包括正常循环前缀和扩展循环前缀。
可选地,所述非授权载波资源包括成功竞争的竞争子帧和/或已竞争到子帧的资源。
可选地,所述占用信道信号所在子帧的帧结构包括CCA/eCCA、CCA/eCCA与保护间隔、CCA/eCCA与常规符号、或CCA/eCCA、保护间隔及常规符号。
可选地,所述占用信道信号包括下列信号中的任一种或任意组合:主同步信号(PSS)、辅同步信号(SSS)、参考信息(RS)和前导(Preamble)。
可选地,所述占用信道信号对应的符号时长小于或等于常规符号(NOS)时长。
可选地,所述占用信道信号对应的符号时长小于或等于参与非授权载波竞争的发射端对应的单次CCA/eCCA时长的最小值。
可选地,所述占用信道信号对应的符号时长大于参与非授权载波竞争的发射端对应的单次CCA/eCCA时长的最小值。
可选地,所述占用信道信号对应的净符号时长包括下列符号时长中的一个或多个:0.52微秒、1.04微秒、2.08微秒、4.17微秒、5.56微秒、8.33微秒、9微秒、16微秒、16.67微秒、18微秒、20微秒、66.67微秒。
可选地,所述占用信道信号对应的总符号时长包括下列符号时长中的一个或多个:0.52微秒、1.04微秒、2.08微秒、4.17微秒、5.56微秒、8.33微秒、9微秒、16微秒、16.67微秒、18微秒、20微秒、71.36微秒、71.88微秒、83.34微秒。
本发明实施例还提供一种信道占用***,设置于发射端内,包括:资源抢占模块以及信道占用模块。所述资源抢占模块,设置为确定已成功抢占非授权载波资源;所述信道占用模块,设置为在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供的信道占用方法及***,于发射端成功抢占非授权载波资源后,使用占用信道信号进行信道占用,能够较好地防止其他站点抢占非授权载波资源。同时,可以提高传输效率、同步及测量等效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1所示为本发明实施例提供的信道占用方法的流程图;
图2所示为帧、子帧及OFDM符号的示意图;
图3所示为本发明第一实施例提供的信道占用示意图;
图4所示为本发明第二实施例提供的信道占用示意图;
图5所示为本发明第三实施例提供的信道占用示意图;
图6所示为本发明第四实施例提供的信道占用示意图;
图7所示为本发明第五实施例提供的信道占用示意图;
图8所示为本发明第六实施例提供的信道占用示意图;
图9所示为本发明第七实施例提供的信道占用示意图;
图10所示为本发明第八实施例提供的信道占用示意图;
图11所示为本发明第九实施例提供的信道占用示意图;
图12所示为本发明第十实施例提供的信道占用示意图;
图13所示为本发明第十四实施例提供的信道占用示意图;
图14所示为本发明实施例提供的信道占用***的示意图。
本发明的实施方式
下面结合附图和具体的实施例来进一步说明本发明的技术方案。
如图1所示,本发明实施例提供的信道占用方法包括以下步骤:
S1:发射端确定已成功抢占非授权载波资源;
S2:发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用。
于本实施例中,非授权载波资源为成功竞争的竞争子帧和/或已竞争到子帧的资源。发射端例如为LTE/LTE-A***中的LAA站点或其他具有相同功能的设备。
如图2所示,于LTE***中,1个10ms的帧(frame)由10个1ms的子帧(subframe)构成,1ms的子帧由若干个OFDM符号(symbol)构成。当采用常规循环前缀时,1ms的子帧由14个OFDM符号构成,当采用扩展循 环前缀时,1ms的子帧由12个OFDM符号构成。在图2中,1ms的子帧由14个OFDM符号构成,即采用常规循环前缀。于此,将LTE***中不包括循环前缀的净OFDM符号时长称为净常规符号时长。
以下通过具体实施例及相应附图说明本发明实施例提供的信道占用方法。
实施例一
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图3所示,对应的竞争子帧帧结构包括CCA/eCCA、保护间隔(Guard Period,GP)、占用信道信号(Occupancy Channel Signal,OCS)、常规符号(Normal OFDM Symbol,NOS)。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在GP内进行接收状态到发射状态的转换,在T2内发送OCS,在T3内发送NOS。
假设LAA站点成功竞争到资源后,如果立即有控制信息或数据信息需要发送,为了提高传输效率,控制信息或数据信息不用等下一子帧边界才开始发送,而在T3内就以NOS形式开始发送。其中,以NOS形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。以常规循环前缀为例,T3=X*(66.67us+4.69us)=X*71.36us,其中66.67us表示净OFDM符号时长,4.69us表示常规循环前缀时长,71.36us表示总OFDM符号时长,X表示在T3范围内共有X个NOS,其中,X≥0。
由图3可知,T2=1ms-T1-GP-T3,此时T2不能构成一个完整的NOS,即T2<71.36us,所以不能以NOS形式发送控制信息或数据信息。为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内发送Y个OCS,Y≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第一实施例,故于此不再一一累述。
实施例二
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图4所 示,对应的竞争子帧帧结构包括CCA/eCCA、OCS、NOS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在T2内发送OCS,在T3内发送NOS。
假设LAA站点成功竞争到资源后,如果立即有控制信息或数据信息需要发送,为了提高传输效率,控制信息或数据信息不用等下一子帧边界才开始发送,而在T3内就以NOS形式开始发送。其中,以NOS形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。以常规循环前缀为例,T3=X*(66.67us+4.69us)=X*71.36us,其中66.67us表示净OFDM符号时长,4.69us表示常规循环前缀时长,71.36us表示总OFDM符号时长,X表示在T3范围内共有X个NOS,X≥0。
由图4可知,T2=1ms-T1-T3,此时T2不能构成一个完整的NOS,即T2<71.36us,所以不能以NOS形式发送控制信息或数据信息。为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内发送Y个OCS,Y≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第二实施例,故于此不再一一累述。
实施例三
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图5所示,对应的竞争子帧帧结构包括CCA/eCCA、GP、OCS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在GP内进行接收状态到发射状态的转换,在T2内发送OCS。
由图5可知,T2=1ms-T1-GP,此时T2包括若干个常规符号时长,为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内以常规符号形式发送Y个OCS,Y≥0。
以常规符号形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。由此可知,净OCS时长=66.67us;OCS子载波间隔△f=15kHz;循环前缀时长=4.69us(以常规循环前缀为例); △t=T2-Y*OCS<71.36us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于4.69us。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第三实施例,故于此不再一一累述。
实施例四
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图6所示,对应的竞争子帧帧结构包括CCA/eCCA、OCS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在T2内发送OCS。
由图6可知,T2=1ms-T1,此时T2包括若干个常规符号时长,为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内以常规符号形式发送Y个OCS,Y≥0。
以常规符号形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。由此可知,净OCS时长=66.67us;OCS子载波间隔△f=15kHz;循环前缀时长=4.69us(以常规循环前缀为例);△t=T2-Y*OCS<71.36us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于4.69us。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第四实施例,故于此不再一一累述。
实施例五
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图7所示,对应的竞争子帧帧结构包括CCA/eCCA、GP、OCS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在GP内进行接收状态到发射状态的转换,在T2内发送OCS。
由图7可知,T2=1ms-T1-GP,此时T2包括若干个常规符号时长,为防 止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内以常规符号形式发送Y个OCS,Y≥0。
以常规符号形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。由此可知,净OCS时长=66.67us;OCS子载波间隔△f=15kHz;循环前缀时长=4.69us(以常规循环前缀为例);△t=T2-Y*OCS<71.36us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于4.69us。
假设LAA站点在竞争子帧的下一个已竞争到的子帧内暂时没有控制信息或数据信息需要发送,为防止邻近LAA站点在竞争子帧的下一个已竞争到的子帧内竞争资源,LAA站点需要在竞争子帧的下一个已竞争到的子帧内以常规符号形式发送Z个OCS,Z≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第五实施例,故于此不再一一累述。
实施例六
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图8所示,对应的竞争子帧帧结构包括CCA/eCCA、OCS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在T2内发送OCS。
由图8可知,T2=1ms-T1,此时T2包括若干个常规符号时长,为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内以常规符号形式发送Y个OCS,Y≥0。
以常规符号形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。由此可知,净OCS时长=66.67us;OCS子载波间隔△f=15kHz;循环前缀时长=4.69us(以常规循环前缀为例);△t=T2-Y*OCS<71.36us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于4.69us。
假设LAA站点在竞争子帧的下一个已竞争到的子帧内暂时没有控制信 息或数据信息需要发送,为防止邻近LAA站点在竞争子帧的下一个已竞争到的子帧内竞争资源,LAA站点需要在竞争子帧的下一个已竞争到的子帧内以常规符号形式发送Z个OCS,Z≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第六实施例,故于此不再一一累述。
实施例七
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图9所示,对应的竞争子帧帧结构包括CCA/eCCA、GP、OCS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在GP内进行接收状态到发射状态的转换,在T2内发送OCS。
由图9可知,T2=1ms-T1-GP,此时T2包括若干个常规符号时长,为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内以常规符号形式发送Y个OCS,Y≥0。
以常规符号形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。由此可知,净OCS时长=66.67us;OCS子载波间隔△f=15kHz;循环前缀时长=4.69us(以常规循环前缀为例);△t=T2-Y*OCS<71.36us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于4.69us。
假设LAA站点在任意一个已竞争到的子帧内暂时没有控制信息或数据信息需要发送,为防止邻近LAA站点在任意一个已竞争到的子帧内竞争资源,LAA站点需要在任意一个已竞争到的子帧内以常规符号形式发送Z个OCS,Z≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第七实施例,故于此不再一一累述。
实施例八
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图10所示,对应的竞争子帧帧结构包括CCA/eCCA、OCS。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在T2内发送OCS。
由图10可知,T2=1ms-T1,此时T2包括若干个常规符号时长,为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内以常规符号形式发送Y个OCS,Y≥0。
以常规符号形式发送是指采用和已有***如LTE/LTE-A***相同的***参数构成的OFDM符号形式进行发送。由此可知,净OCS时长=66.67us;OCS子载波间隔△f=15kHz;循环前缀时长=4.69us(以常规循环前缀为例);△t=T2-Y*OCS<71.36us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于4.69us。
假设LAA站点在任意一个已竞争到的子帧内暂时没有控制信息或数据信息需要发送,为防止邻近LAA站点在任意一个已竞争到的子帧内竞争资源,LAA站点需要在任意一个已竞争到的子帧内以常规符号形式发送Z个OCS,Z≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第八实施例,故于此不再一一累述。
实施例九
于此,以LAA站点在相应子帧成功竞争到资源为例进行说明。如图11所示,初始竞争可以在子帧的任何位置,例如在子帧的后面若干个符号位置(包括CCA/eCCA、GP、OCS)。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在GP内进行接收状态到发射状态的转换,在T2内发送OCS,T3表示LAA站点没有任何接收或发射操作。
由图11可知,T2=1ms-T1-GP-T3,此时T2不能构成一个完整的NOS,即T2<71.36us,所以不能以NOS形式发送控制信息或数据信息。为防止邻近 LAA站点在T2内竞争资源,LAA站点需要在T2内发送Y个OCS,Y≥0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第九实施例,故于此不再一一累述。
实施例十
如图12所示,例如在子帧的后面若干个符号位置(包括CCA/eCCA、GP、OCS),LAA站点进行再次竞争。具体而言,LAA站点在T1内通过CCA/eCCA进行资源竞争,在GP内进行接收状态到发射状态的转换,在T2内发送OCS,在T3内发送NOS。
由图12可知,T2=1ms-T1-GP-T3,此时T2不能构成一个完整的NOS,即T2<71.36us,所以不能以NOS形式发送控制信息或数据信息。为防止邻近LAA站点在T2内竞争资源,LAA站点需要在T2内发送Y个OCS,Y>=0。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息、前导。
于此,LAA站点也可以是其他具有同样功能的设备,如终端设备等,其他设备的实施例同第十实施例,故于此不再一一累述。
实施例十一
于此,实施例十一可以和实施例一至实施例十任意组合,即实施例一至实施例十中的OCS也可以使用实施例十一中的OCS形式。
假设参与竞争的***共有M个,且都使用CCA/eCCA进行资源竞争,第m个***对应的CCA/eCCA定义为CCA_m/eCCA_m,其中m∈{0,1,2,…,M-1},则OCS时长<=min(单次CCA_m/eCCA_m),单次CCA/eCCA表示一次CCA或是一次eCCA对应的时长。即,OSC时长小于或等于M个***对应的单次CCA/eCCA时长的最小值。
例如,参与竞争的站点包括WIFI***中的AP站点、LTE/LTE-A***中的LAA站点,分别对应的单次CCA/eCCA时长为9us、18us或20us。可选地,OCS时长<=min(9us,18us)。于此,可选地,OCS时长=9us,其中9us可 包括循环前缀时长,也可不包括循环前缀时长。可选地,9us的OCS时长例如包括循环前缀时长,则净OCS时长=5.56us;OCS子载波间隔△f=180kHz;循环前缀时长=9us-5.56us=3.44us;△t=T2-Y*OCS<9us,其中△t时长可以用于更长的循环前缀,即此时每个OCS循环前缀时长大于3.44us。
结合不同***带宽对应的***参数如表1所示,可选地,采样率和LTE/LTE-A相关***带宽对应的采样率相同,也可以是其他采样频率。其中更大的***带宽如40MHz、80MHz、160MHz对应的采样率成比例增长,这里不再一一累述。
Figure PCTCN2015093209-appb-000001
表1
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
实施例十二
于此,实施例十二可以和实施例一至实施例十任意组合,即实施例一至实施例十中的OCS也可以使用实施例十二中的OCS形式。
假设参与竞争的***共有M个,且都使用CCA/eCCA进行资源竞争,第m个***对应的CCA/eCCA定义为CCA_m/eCCA_m,其中m∈{0,1,2,…,M-1},则OCS时长>min(单次CCA_m/eCCA_m),单次CCA/eCCA表示一次CCA或是一次eCCA对应的时长。即,OSC时长为大于M个***对应的单次CCA/eCCA时长的最小值。
例如,参与竞争的站点包括WIFI***中的AP站点、LTE/LTE-A***中的LAA站点,分别对应的单次CCA/eCCA时长为9us、18us或20us。可选地,OCS时长>min(9us,18us)。于此,可选地,OCS时长=16.67us,其中16.67us不包括循环前缀时长,则净OCS时长=16.67us;OCS子载波间隔△f=60kHz; △t=T2-Y*OCS<16.67us,其中△t时长可以用于Y个OCS的循环前缀。
结合不同***带宽对应的***参数如表2所示(其中,+1表示直流载波DC),可选地,采样率和LTE/LTE-A现有***带宽对应的采样率相同,也可以是其他采样频率。其中更大的***带宽如40MHz、80MHz、160MHz对应的采样率成比例增长,这里不再一一累述。
Figure PCTCN2015093209-appb-000002
表2
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
实施例十三
于此,实施例十三可以和实施例一至实施例十任意组合,即实施例一至实施例十中的OCS也可以使用实施例十三中的OCS形式。
假设参与竞争的***共有M个,且都使用CCA/eCCA进行资源竞争,第m个***对应的CCA/eCCA定义为CCA_m/eCCA_m,其中m∈{0,1,2,…,M-1},则OCS时长<=min(单次CCA_m/eCCA_m)或OCS时长>min(单次CCA_m/eCCA_m),单次CCA/eCCA表示一次CCA或是一次eCCA对应的时长。
例如,参与竞争的站点包括WIFI***中的AP站点、LTE/LTE-A***中的LAA站点,分别对应的单次CCA/eCCA时长为9us、18us或20us。选择小于或等于,或大于任意***的单次CCA/eCCA时长作为OCS时长,可选地,不同***带宽的OCS时长<=min(9us,18us),或OCS时长>min(9us,18us)。 例如***带宽为20MHz时,OCS时长<=min(9us,18us),而***带宽为5MHz时,OCS时长>min(9us,18us)。
结合不同***带宽对应的***参数如表3所示(其中,+1表示直流载波DC),可选地,采样率和LTE/LTE-A现有***带宽对应的采样率相同,也可以是其他采样频率。其中更大的***带宽如40MHz、80MHz、160MHz对应的子载波间隔、采样率成比例增长、净OCS符号时长成比例减少,这里不再一一累述。
Figure PCTCN2015093209-appb-000003
表3
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
于实施例十三,假设***带宽是10MHz,可选地,使用主同步信号/辅同步信号(PSS/SSS)作为OCS时,PSS/SSS在频域方向上采用现有LTE/LTE-A的序列,分别映射在72个可用子载波上;PSS/SSS在时域方向上采用的OCS符号时长为8.33us(不包括循环前缀)。
实施例十四
于实施例中,当已成功抢占资源所在子帧内包括正常循环前缀的OFDM符号和扩展循环前缀OFDM符号时,所述子帧内除去所述正常循环前缀的OFDM符号和扩展循环前缀OFDM符号外,剩余的时间范围内使用占用信道信号进行信道占用。
当MBSFN子帧的non-MBSFN区域(region)使用扩展循环前缀OFDM 符号,且当MBSFN子帧的MBSFN region用于传输PDSCH正常循环前缀OFDM符号时,在MBSFN子帧的non-MBSFN region和MBSFN子帧的MBSFN region之间的剩余的时间范围内使用占用信道信号进行信道占用。
当MBSFN子帧的non-MBSFN region OFDM符号的循环前缀和MBSFN子帧的MBSFN region用于传输PDSCH OFDM符号的循环前缀长度类型不同时,在MBSFN子帧的non-MBSFN region和MBSFN子帧的MBSFN region之间的剩余的时间范围内使用占用信道信号进行信道占用。其中,所述循环前缀长度类型包括正常循环前缀和扩展循环前缀。
如图13所示,假设已竞争到子帧是作为MBSFN子帧,MBSFN子帧的non-MBSFN region占用前2个OFDM符号且使用扩展循环前缀(Extended CP)OFDM符号(OFDM symbol),MBSFN子帧的MBSFN region使用正常循环前缀(Normal CP)OFDM符号,在MBSFN子帧的non-MBSFN region和MBSFN子帧的MBSFN region之间剩余的时间范围(Spare)内使用OCS进行信道占用。
所述实施例十四可以和实施例一至实施例十三任意组合,即实施例一至实施例十三中的OCS也可以使用实施例十四中的OCS形式。
于此,OCS包括下列信号中的任一种或任意组合:主同步信号、辅同步信号、参考信息和前导。
此外,于本实施例中,可选地,OCS符号时长的净符号时长(即不包括循环前缀的净OCS符号时长)包括以下符号时长的一个或多个:0.52微秒、1.04微秒、2.08微秒、4.17微秒、5.56微秒、8.33微秒、9微秒、16微秒、16.67微秒、18微秒、20微秒、66.67微秒。OCS符号时长的总符号时长(即包括循环前缀的总OCS符号时长)包括下列符号时长中的一个或多个:0.52微秒、1.04微秒、2.08微秒、4.17微秒、5.56微秒、8.33微秒、9微秒、16微秒、16.67微秒、18微秒、20微秒、71.36微秒、71.88微秒、83.34微秒。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例还提供一种信号占用***,设置于发射端内,如图14所示,包括资源抢占模块10以及信道占用模块12。资源抢占模块10,设置为确定已成功抢占非授权载波资源;信道占用模块12,设置为在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用。
其中,发射端例如为LTE/LTE-A***中的LAA站点或其他具有相同功能的设备。关于所述***的具体实现过程同上述方法所述,故于此不再赘述。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案能够较好地在站点抢占非授权载波资源后,防止其他站点抢占该非授权载波资源。同时,可以提高传输效率、同步及测量等效果。

Claims (14)

  1. 一种信道占用方法,包括以下步骤:
    发射端确定已成功抢占非授权载波资源;
    发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用。
  2. 如权利要求1所述的信道占用方法,其中,发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用,包括:
    当已成功抢占资源所在子帧内包括正常循环前缀的正交频分复用OFDM符号和扩展循环前缀OFDM符号时,所述子帧内除去所述正常循环前缀的OFDM符号和扩展循环前缀OFDM符号外,剩余的时间范围内使用占用信道信号进行信道占用。
  3. 如权利要求1所述的信道占用方法,其中,发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用,包括:
    所述非授权载波资源为多播/组播单频网络MBSFN子帧资源,当MBSFN子帧的非多播/组播单频网络non-MBSFN区域使用扩展循环前缀OFDM符号,且当MBSFN子帧的MBSFN区域用于传输物理下行共享信道PDSCH正常循环前缀OFDM符号时,在MBSFN子帧的non-MBSFN区域和MBSFN子帧的MBSFN区域之间的剩余的时间范围内使用占用信道信号进行信道占用。
  4. 如权利要求1所述的信道占用方法,其中,发射端在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用,包括:
    所述非授权载波资源为多播/组播单频网络MBSFN子帧资源,当MBSFN子帧的非多播/组播单频网络non-MBSFN区域OFDM符号的循环前缀和MBSFN子帧的MBSFN区域用于传输物理下行共享信道PDSCH OFDM符号的循环前缀长度类型不同时,在MBSFN子帧的non-MBSFN区域和MBSFN子帧的MBSFN区域之间的剩余的时间范围内使用占用信道信号进行信道占用,其中,所述循环前缀长度类型包括正常循环前缀和扩展循环前缀。
  5. 如权利要求1所述的信道占用方法,其中,所述非授权载波资源包括 成功竞争的竞争子帧和/或已竞争到子帧的资源。
  6. 如权利要求1所述的信道占用方法,其中,所述占用信道信号所在子帧的帧结构包括:
    空闲信道评估CCA/eCCA;
    CCA/eCCA与保护间隔;
    CCA/eCCA与常规符号;或
    CCA/eCCA、保护间隔及常规符号。
  7. 如权利要求1所述的信道占用方法,其中,所述占用信道信号包括下列信号中的任一种或任意组合:主同步信号PSS、辅同步信号SSS、参考信息RS和前导Preamble。
  8. 如权利要求1所述的信道占用方法,其中,所述占用信道信号对应的符号时长小于或等于常规符号NOS时长。
  9. 如权利要求1所述的信道占用方法,其中,所述占用信道信号对应的符号时长小于或等于参与非授权载波竞争的发射端对应的单次空闲信道评估CCA/eCCA时长的最小值。
  10. 如权利要求1所述的信道占用方法,其中,所述占用信道信号对应的符号时长大于参与非授权载波竞争的发射端对应的单次空闲信道评估CCA/eCCA时长的最小值。
  11. 如权利要求8、9或10所述的信道占用方法,其中,所述占用信道信号对应的净符号时长包括下列符号时长中的一个或多个:
    0.52微秒、1.04微秒、2.08微秒、4.17微秒、5.56微秒、8.33微秒、9微秒、16微秒、16.67微秒、18微秒、20微秒和66.67微秒。
  12. 如权利要求8、9或10所述的信道占用方法,其中,所述占用信道信号对应的总符号时长包括下列符号时长中的一个或多个:
    0.52微秒、1.04微秒、2.08微秒、4.17微秒、5.56微秒、8.33微秒、9微秒、16微秒、16.67微秒、18微秒、20微秒、71.36微秒和71.88微秒、83.34微秒。
  13. 一种设置于发射端内的信道占用***,包括:资源抢占模块以及信道占用模块,
    所述资源抢占模块,设置为确定已成功抢占非授权载波资源;
    所述信道占用模块,设置为在成功抢占的所述非授权载波资源上使用占用信道信号进行信道占用。
  14. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~12中任一项所述的方法。
PCT/CN2015/093209 2015-01-20 2015-10-29 一种信道占用方法及*** WO2016115932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510028311.3A CN105871526A (zh) 2015-01-20 2015-01-20 一种信道占用方法及***
CN201510028311.3 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016115932A1 true WO2016115932A1 (zh) 2016-07-28

Family

ID=56416391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093209 WO2016115932A1 (zh) 2015-01-20 2015-10-29 一种信道占用方法及***

Country Status (2)

Country Link
CN (1) CN105871526A (zh)
WO (1) WO2016115932A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700904B2 (en) * 2016-09-16 2020-06-30 Huawei Technologies Co., Ltd. Systems and methods for the coexistence of differing cyclic prefix lengths
WO2018086232A1 (zh) * 2016-11-08 2018-05-17 华为技术有限公司 一种子帧调度方法及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415233A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 一种资源分配的方法和装置
CN101483916A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 一种资源分配的方法和装置
CN101483475A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 充分利用时分双工***中特殊时隙资源的方法及装置
CN102469059A (zh) * 2010-11-15 2012-05-23 中兴通讯股份有限公司 解调参考信号承载方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461792B2 (en) * 2011-07-28 2016-10-04 Broadcom Corporation Signaling and procedure design for cellular cluster contending on license-exempt bands
WO2013013412A1 (en) * 2011-07-28 2013-01-31 Renesas Mobile Corporation Switching between cellular and license-exempt (shared) bands
EP2757850B1 (en) * 2013-01-16 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Radio communication in unlicensed band
KR102057949B1 (ko) * 2013-03-19 2020-02-07 삼성전자주식회사 무선 통신 시스템에서 데이터 통신 수행 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415233A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 一种资源分配的方法和装置
CN101483916A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 一种资源分配的方法和装置
CN101483475A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 充分利用时分双工***中特殊时隙资源的方法及装置
CN102469059A (zh) * 2010-11-15 2012-05-23 中兴通讯股份有限公司 解调参考信号承载方法及装置

Also Published As

Publication number Publication date
CN105871526A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP7498383B2 (ja) サイドリンク信号の反復とプリエンプション
WO2019201165A1 (zh) 实现边链路资源配置的方法、装置及***
KR101897371B1 (ko) 업링크 및 다운링크 송신들의 wlan ofdma 설계를 위한 시스템 및 방법
US11166270B2 (en) Access method and device for wireless network
WO2017133368A1 (zh) 一种非授权频谱中prach信号的传输方法和设备
EP3474594B1 (en) Method and device for transmitting data on unlicensed spectrum
CN103973412B (zh) 一种获取基站下行反馈信息的方法及相关设备
EP3240223B1 (en) Method and device for resource management in an unlicensed carrier
TW202014037A (zh) 無線通訊裝置、無線通訊方法及電腦程式
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
WO2016000549A1 (zh) 资源抢占方法、站点及计算机存储介质
CN105765892B (zh) 一种信息传输方法和用户设备以及基站
CN107734672A (zh) 一种通信接入的方法和设备
CN108811147B (zh) 信息传输方法及装置
CN111148236A (zh) 一种数据传输方法和装置
WO2017133010A1 (zh) 一种物理下行信道的传输方法、装置及***
WO2016138841A1 (zh) 数据传输的方法、反馈信息传输方法及相关设备
CN106470413B (zh) 多载波中邻近业务的处理方法及装置
WO2020125289A1 (zh) 占有时隙的确定方法及装置、存储介质、用户终端
WO2016115932A1 (zh) 一种信道占用方法及***
WO2016180098A1 (zh) 一种多信道占用方法及装置
CN104284320A (zh) 用户设备直连通信的资源分配方法和设备
KR102458667B1 (ko) 5세대 통신 시스템과 4세대 통신 시스템의 공존을 위한 방법 및 장치
CN105637960A (zh) 一种设备到设备传输资源的分配方法和装置
WO2016165365A1 (zh) 非授权载波的抢占方法、基站及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878600

Country of ref document: EP

Kind code of ref document: A1