WO2016115822A1 - 一种谐振环结构和天线 - Google Patents

一种谐振环结构和天线 Download PDF

Info

Publication number
WO2016115822A1
WO2016115822A1 PCT/CN2015/082188 CN2015082188W WO2016115822A1 WO 2016115822 A1 WO2016115822 A1 WO 2016115822A1 CN 2015082188 W CN2015082188 W CN 2015082188W WO 2016115822 A1 WO2016115822 A1 WO 2016115822A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
resonant ring
ring
dielectric substrate
antenna
Prior art date
Application number
PCT/CN2015/082188
Other languages
English (en)
French (fr)
Inventor
蔡凌云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016115822A1 publication Critical patent/WO2016115822A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the utility model relates to microwave technology, in particular to a resonance ring structure and an antenna.
  • the wireless communication network has evolved from the original 2G to the current 3G full frequency and LTE full frequency, and even wider frequency bands.
  • most wireless communication devices employ multi-frequency antennas and multi-frequency filters.
  • a method for realizing a multi-frequency antenna includes opening a groove of various shapes on a radiation patch, introducing an Electromagnetic Band Gap (EBG) structure, or slotting a ground plate by using a defective structure;
  • EBG Electromagnetic Band Gap
  • Common methods of stop-band filters include adding a band-stop unit to the original filter, using a composite left/right-hand material transmission line instead of a conventional microstrip transmission line to generate stop-band characteristics, using a two- or third-order stepped-impedance resonator.
  • SRR Split Ring Resonators
  • the embodiment of the present invention provides a resonant ring structure and an antenna, which has a simple structure and is convenient for expansion, and can satisfy the requirement of multi-frequency and miniaturization of the antenna or the filter, and achieve strong out-of-band suppression capability of the antenna or the filter. .
  • An embodiment of the present invention provides a resonant ring structure, where the resonant ring structure includes: a slotted ring on the radiation patch on one side of the dielectric substrate and at least one resonant ring attached to the other side of the dielectric substrate.
  • the at least one resonant ring attached to the other side of the dielectric substrate includes two resonant rings.
  • the resonant ring is a complementary open resonant ring.
  • the shape of the resonant ring is any one of a square, a rectangle, a hexagon, a triangle, or a circle.
  • the embodiment of the present invention further provides an antenna, the antenna includes: a dielectric substrate, a radiation patch on one side of the dielectric substrate, a microstrip feed line disposed on a surface of the dielectric substrate, and a short circuit for connecting the microstrip feed line and the radiation patch A post, and a resonant ring structure consisting of a slotted ring on the radiating patch and at least one resonant ring attached to the other side of the dielectric substrate.
  • the shape of the radiation patch is any one of a diamond shape, a triangle shape, a rectangle shape, or a circle shape.
  • the resonant ring structure and the antenna provided by the embodiment of the present invention include a slotted ring on a radiating patch on one side of the dielectric substrate and at least one resonant ring attached to the other side of the dielectric substrate.
  • the resonant ring structure is not only simple in structure, but also easy to expand; and, by properly adjusting the distance between the slotted ring and the resonant ring and the respective lengths, different coupling effects can be generated to satisfy the antenna or filter pair.
  • the need for multi-frequency and miniaturization also enables the antenna or filter to achieve strong out-of-band rejection.
  • FIG. 1 is a schematic structural view showing the structure of a resonant ring structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a bottom structure of an antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic top view showing the structure of an antenna according to an embodiment of the present invention.
  • Figure 5 is a top plan view of an antenna of an embodiment of the present invention.
  • the resonant ring structure includes a slotted ring on the radiating patch on one side of the dielectric substrate and at least one resonant ring attached to the other side of the dielectric substrate.
  • the slotted ring is excited by a magnetic field, that is, in a suitable magnetic field excitation mode, the slotted ring exhibits a negative effective magnetic permeability near the resonant frequency; and the resonant ring is an electric field Excited, that is, in a suitable electric field excitation mode, the resonant ring exhibits a negative effective permeability near the resonant frequency.
  • the respective electrical lengths of the slotted ring and the resonant ring when the electrical length of the two is exactly equal to half the wavelength of the desired frequency, resonance occurs, and a second resonance other than the natural resonant frequency is obtained.
  • Frequency by adjusting the distance between the slotted ring and the resonant ring, when the distance between the two changes continuously, a third resonant frequency is coupled, and a new stop band is generated.
  • the at least one resonant ring attached to the other side of the dielectric substrate includes two resonant rings, that is, another resonant ring is protruded near a resonant ring attached to the other side of the dielectric substrate.
  • the stop band bandwidth can be increased; when the distance between the two resonant rings is slightly farther, the fourth resonant frequency can be coupled, and another new resistance is generated. band.
  • the stop band bandwidth and the out-of-band rejection capability can be adjusted according to the coupling strength between the two resonant rings.
  • the resonant ring structure of the embodiment of the present invention can generate four resonant frequencies as needed under the same size, and can well adjust the resonance well.
  • the bandwidth of the band therefore, enables a specific electrical length to be achieved over a small physical length, filtering out unwanted bands. If the resonant ring structure is applied to the design of an antenna or a filter, the size of the antenna or the filter can be effectively reduced, and the requirement of the antenna or the filter for multiple frequency bands can be satisfied; at the same time, other data services in the adjacent frequency band can be solved. Interference problems between frequency bands caused by the launch, thereby improving the out-of-band rejection capability.
  • the resonant ring structure includes a slotted ring 11 on a radiating patch 22 on a side of a dielectric substrate 21 and attached to One resonant ring 12 on the other side of the dielectric substrate 21.
  • the resonant ring structure further includes another resonant ring 13 attached to the other side of the dielectric substrate 21.
  • the resonant ring 12 and the resonant ring 13 may be provided as complementary open resonant rings.
  • the resonant ring structure shown in FIG. 1 when the electrical length of both the slotted ring 11 and the resonant ring 12 is exactly equal to half the wavelength of the desired frequency, resonance occurs, and the natural resonant frequency is obtained.
  • the stop band bandwidth can be increased; when the distance between the resonant ring 12 and the resonant ring 13 is slightly farther, the fourth resonant frequency can be coupled, and another A new stop band.
  • the stop band bandwidth and the out-of-band rejection capability can be adjusted according to the coupling strength between the resonant ring 12 and the resonant ring 13.
  • the shape of the resonance ring 12 and the resonance ring 13 may be any one of a square, a rectangle, a hexagon, a triangle, or a circle.
  • the antenna includes: a dielectric substrate 21, a radiation patch 22 on one side of the dielectric substrate 21, and a microstrip feeder disposed on a surface layer of the dielectric substrate 21.
  • the resonant ring structure further includes another resonant ring 13 attached to the other side of the dielectric substrate 21.
  • the resonant ring 12 and the resonant ring 13 may be provided as complementary open resonant rings.
  • the shape of the resonant ring 12 and the resonant ring 13 may be square, rectangular, or hexagonal. Any one of a shape, a triangle, or a circle; the shape of the radiation patch 22 may be any one of a diamond shape, a triangle shape, a rectangle shape, or a circular shape; the material of the dielectric substrate 21 may be a polytetrafluoroethylene fiber. Any one of a glass plate or an epoxy fiberglass plate.
  • FIG. 4 is a schematic diagram of the top layer structure of the antenna.
  • FIG. 5 is a plan view of the antenna.
  • the antenna passes from the microstrip feed line 23 through the shorting post 24 to the radiating patch 22, the inductance of the shorting post 24 itself and the coupling capacitance generated by the microstrip feed line 23 and the radiating patch 22, and
  • the coupling capacitance generated by the slot between the radiating patch 22 and the grounding plate 8 of the wireless terminal 9 where the antenna is located cancels out, thereby expanding the bandwidth;
  • the slotted ring 11 on the radiation patch 22 and the other side of the dielectric substrate 21 are attached.
  • a resonant ring 12 together constitutes the resonant ring structure.
  • the length of each of the slotted ring 11 and the resonant ring 12 and the distance between the two are adjustable, so that the required frequency band can be obtained by coupling between the slotted ring 11 and the resonant ring 12.
  • the dielectric substrate 21 is made of polytetrafluoroethylene, the dielectric constant is 4.2, and the overall size of the antenna is 25 mm*15 mm.
  • the frequency band of the entire antenna can operate from a low frequency of 1.5 GHz to a high frequency of 5 GHz.
  • the length of the slotted ring 11 and the resonant ring 12 are respectively equal to 18 mm and 10 mm, and the distance between the two is equal to 4.5 mm, so that the antenna can be operated in a required frequency band, thereby filtering out a wireless local area network.
  • Other networks of Wireless Local Area Networks (WLAN) interfere with the wireless terminal 9 to which the antenna belongs.
  • WLAN Wireless Local Area Networks
  • the resonant ring structure shown in FIG. 1 can be applied to a filter.
  • the filter includes, in addition to its own basic structural components, a resonant ring structure as shown in FIG. Composition.
  • the size of the filter can be effectively reduced, and the filter needs for multiple frequency bands.
  • it can solve the interference problem between frequency bands caused by other data services in adjacent frequency bands, thereby improving the out-of-band suppression capability.
  • the resonant ring structure of the embodiment of the present invention includes a slotted ring on the radiating patch on one side of the dielectric substrate and at least one resonant ring attached to the other side of the dielectric substrate.
  • the resonant ring structure is not only simple in structure, but also easy to expand; and, by properly adjusting the distance between the slotted ring and the resonant ring and the respective lengths, different coupling effects can be generated to satisfy the antenna or filter pair.
  • the need for multi-frequency and miniaturization also enables the antenna or filter to achieve strong out-of-band rejection.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请公开了一种谐振环结构和天线,所述谐振环结构包括位于介质基板一侧的辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环。

Description

一种谐振环结构和天线 技术领域
本实用新型涉及微波技术,尤其涉及一种谐振环结构和天线。
背景技术
无线通信网络已经从原来的2G发展到现在的3G全频以及LTE全频,甚至更宽频段。为了满足现有的多种无线通信网络的需求,大多数无线通信设备均采用多频天线和多频滤波器。
目前,实现多频天线的方法包括在辐射贴片上开各种形状的槽,引入电磁场带隙(Electromagnetic Band Gap,EBG)结构,或采用缺陷地结构在接地板上开槽等;实现多频阻带滤波器的常用方法包括在原有滤波器基础上加入带阻单元,使用复合左/右手材料传输线代替传统的微带传输线来产生阻带特性,使用两阶或三阶的阶梯阻抗谐振器来设计带阻滤波器,或采用开口谐振环(Split Ring Resonators,SRR)谐振环结构等。
然而,上述各种实现多频天线或多频阻带滤波器的方法均存在如下明显缺陷:1)阻带带宽较窄且不可控;2)阻带抑制能力不强,难以实现多阻带特性;3)加工较为复杂、尺寸大,不便于扩展。
发明内容
本实用新型实施例提供一种谐振环结构和天线,结构简单,便于扩展,能在满足天线或滤波器对多频、小型化需求的同时,使天线或滤波器达到较强的带外抑制能力。
本实用新型实施例的技术方案是这样实现的:
本实用新型实施例提供一种谐振环结构,所述谐振环结构包括:位于 介质基板一侧的辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环。
在一实施例中,所述贴附于介质基板另一侧的至少一个谐振环包括两个谐振环。
在一实施例中,所述谐振环为互补开口谐振环。
在一实施例中,所述谐振环的形状为正方形、矩形、六边形、三角形或圆形中的任意一种。
本实用新型实施例还提供一种天线,所述天线包括:介质基板、介质基板一侧的辐射贴片、部署于介质基板表层的微带馈线、用于连接微带馈线和辐射贴片的短路柱、以及由位于辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环组成的谐振环结构。
在一实施例中,所述辐射贴片的形状为菱形、三角形、矩形或圆形中的任意一种。
本实用新型实施例所提供的谐振环结构和天线,所述谐振环结构包括位于介质基板一侧的辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环。如此,所述谐振环结构不仅结构简单,便于扩展;而且,可以通过合理调节所述开槽环和谐振环之间的距离及各自的长度来产生不同的耦合效果,从而满足天线或滤波器对多频、小型化的需求,同时还能够使天线或滤波器达到较强的带外抑制能力。
附图说明
图1为本实用新型实施例谐振环结构的组成结构示意图;
图2为本实用新型实施例天线的组成结构示意图;
图3为本实用新型实施例天线的底层结构示意图;
图4为本实用新型实施例天线的顶层结构示意图;
图5为本实用新型实施例天线的俯视图。
具体实施方式
在本实用新型实施例中,谐振环结构包括位于介质基板一侧的辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环。
其中,所述开槽环的结构由磁场激发,即:在合适的磁场激发模式下,所述开槽环会在谐振频率附近呈现出负的有效磁导率;而所述谐振环是由电场激发的,即:在合适的电场激励模式下,所述谐振环会在谐振频率附近呈现出负的有效磁导率。这样,通过调整所述开槽环和谐振环各自的电长度,当两者的电长度刚好等于所需频率的半波长时,就会产生谐振,得到除了固有谐振频率之外的第二个谐振频率;再通过调整所述开槽环和谐振环两者之间的距离,当两者之间的距离不断发生变化时还会耦合出第三个谐振频率,同时产生一个新的阻带。
进一步地,所述贴附于介质基板另一侧的至少一个谐振环包括两个谐振环,即:在贴附于介质基板另一侧的一个谐振环附近引伸出另一个谐振环。这样,当所述两个谐振环的距离较近时,可以增加阻带带宽;当所述两个谐振环的距离稍远时,可以耦合出第四个谐振频率,同时产生另一个新的阻带。另外,根据所述两个谐振环之间的耦合强度可以调节阻带带宽和带外抑制能力。
如此,与普通的只能产生一个谐振频率的谐振环结构相比,本实用新型实施例所述谐振环结构在相同的尺寸下,可以根据需要产生四个谐振频率,且可以很好地调节谐振频段的带宽,因此,能够在较小的物理长度上实现特定的电长度,滤除不需要的频段。如果将所述谐振环结构应用到天线或滤波器的设计中时,可以有效的降低天线或滤波器的尺寸,满足天线或滤波器对多频段的需求;同时,能够解决相邻频段其他数据业务发射时带来的频段之间干扰问题,从而提高带外抑制能力。
下面结合附图及具体实施例对本实用新型再作进一步详细的说明。
图1为本实用新型实施例谐振环结构的组成结构示意图,如图1所示,所述谐振环结构包括:位于介质基板21一侧的辐射贴片22上的开槽环11和贴附于介质基板21另一侧的一个谐振环12。
进一步地,在一实施例中,如图1所示,所述谐振环结构还包括贴附于介质基板21另一侧的另一个谐振环13。
其中,所述谐振环12和谐振环13可以设置为互补开口谐振环。这样,利用如图1所示的谐振环结构,当所述开槽环11和谐振环12两者的电长度刚好等于所需频率的半波长时,就会产生谐振,得到除了固有谐振频率之外的第二个谐振频率;再通过调整所述开槽环11和谐振环12两者之间的距离,当两者之间的距离不断发生变化时还会耦合出第三个谐振频率,同时产生一个新的阻带。当所述谐振环12和谐振环13的距离较近时,可以增加阻带带宽;当所述谐振环12和谐振环13的距离稍远时,可以耦合出第四个谐振频率,同时产生另一个新的阻带。另外,根据所述谐振环12和谐振环13之间的耦合强度可以调节阻带带宽和带外抑制能力。
这里,所述谐振环12和谐振环13的形状可以为正方形、矩形、六边形、三角形或圆形中的任意一种。
图2为本实用新型实施例天线的组成结构示意图,如图2所示,所述天线包括:介质基板21、介质基板21一侧的辐射贴片22、部署于介质基板21表层的微带馈线23、用于连接微带馈线23和辐射贴片22的短路柱24、以及由位于辐射贴片22上的开槽环11和贴附于介质基板21另一侧的一个谐振环12组成的谐振环结构。
在一实施例中,如图2所示,所述谐振环结构还包括贴附于介质基板21另一侧的另一个谐振环13。
其中,所述谐振环12和谐振环13可以设置为互补开口谐振环。
这里,所述谐振环12和谐振环13的形状可以为正方形、矩形、六边 形、三角形或圆形中的任意一种;所述辐射贴片22的形状可以为菱形、三角形、矩形或圆形中的任意一种;所述介质基板21的材料可以是聚四氟乙烯纤维玻璃板或环氧纤维玻璃板中的任意一种。
需要说明的是,为了更好地体现所述天线的结构,将贴附有辐射贴片22的介质基板21一侧作为天线的底(bottom)层,如图3所示为所述天线的底层结构示意图;将贴附有谐振环12和谐振环13的介质基板21另一侧作为天线的顶(top)层,如图4所示为所述天线的顶层结构示意图。另外,图5所示为所述天线的俯视图。
这样,如图2所示,所述天线从微带馈线23经过短路柱24到达辐射贴片22,所述短路柱24自身的电感以及微带馈线23和辐射贴片22产生的耦合电容,以及辐射贴片22和天线所在无线终端9的接地板8之间的开槽产生的耦合电容相抵消,从而扩展了带宽;辐射贴片22上开槽环11和贴附于介质基板21另一侧的一个谐振环12共同组成了所述谐振环结构。其中,所述开槽环11与谐振环12各自的长度和两者之间的距离是可调的,所以通过所述开槽环11和谐振环12间的耦合可以得到所需频段。
在一应用实例中,所述介质基板21的材质为聚四氟乙烯,介电常数为4.2,天线的整体尺寸为25mm*15mm,整个天线工作的频段可以从低频1.5GHz到高频5GHz,其中,所述开槽环11和所述谐振环12各自的长度分别等于18mm和10mm,两者之间的距离为4.5mm,这样,能够使得天线工作在要求的频段,从而滤除诸如无线局域网络(Wireless Local Area Networks,WLAN)的其它网络对所述天线所属无线终端9的干扰。
在实际应用中,图1所示的谐振环结构可以应用于滤波器中,这种情况下,所述滤波器除了包括自身本来的基本结构组成部分,还包括如图1所示的谐振环结构的组成。这样,通过将本实用新型实施例所述谐振环结构应用于滤波器,能有效地降低滤波器的尺寸,满足滤波器对多频段的需 求;同时,能够解决相邻频段其它数据业务发射时带来的频段之间干扰问题,从而提高带外抑制能力。
以上所述,仅为本实用新型的较佳实施例而已,并非用于限定本实用新型的保护范围。
工业实用性
本实用新型实施例所述谐振环结构包括位于介质基板一侧的辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环。如此,所述谐振环结构不仅结构简单,便于扩展;而且,可以通过合理调节所述开槽环和谐振环之间的距离及各自的长度来产生不同的耦合效果,从而满足天线或滤波器对多频、小型化的需求,同时还能够使天线或滤波器达到较强的带外抑制能力。

Claims (9)

  1. 一种谐振环结构,所述谐振环结构包括:位于介质基板一侧的辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环。
  2. 根据权利要求1所述的谐振环结构,其中,所述贴附于介质基板另一侧的至少一个谐振环包括两个谐振环。
  3. 根据权利要求1或2所述的方法,其中,所述谐振环为互补开口谐振环。
  4. 根据权利要求1或2所述的方法,其中,所述谐振环的形状为正方形、矩形、六边形、三角形或圆形中的任意一种。
  5. 一种天线,所述天线包括:介质基板、介质基板一侧的辐射贴片、部署于介质基板表层的微带馈线、用于连接微带馈线和辐射贴片的短路柱、以及由位于辐射贴片上的开槽环和贴附于介质基板另一侧的至少一个谐振环组成的谐振环结构。
  6. 根据权利要求5所述的天线,其中,所述辐射贴片的形状为菱形、三角形、矩形或圆形中的任意一种。
  7. 根据权利要求5所述的天线,其中,所述贴附于介质基板另一侧的至少一个谐振环包括两个谐振环。
  8. 根据权利要求5至7任一项所述的天线,其中,所述谐振环为互补开口谐振环。
  9. 根据权利要求5至7任一项所述的天线,其中,所述谐振环的形状为正方形、矩形、六边形、三角形或圆形中的任意一种。
PCT/CN2015/082188 2015-01-20 2015-06-24 一种谐振环结构和天线 WO2016115822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520038283.9 2015-01-20
CN201520038283.9U CN204375944U (zh) 2015-01-20 2015-01-20 一种谐振环结构和天线

Publications (1)

Publication Number Publication Date
WO2016115822A1 true WO2016115822A1 (zh) 2016-07-28

Family

ID=53332134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082188 WO2016115822A1 (zh) 2015-01-20 2015-06-24 一种谐振环结构和天线

Country Status (2)

Country Link
CN (1) CN204375944U (zh)
WO (1) WO2016115822A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994321A (zh) * 2017-11-07 2018-05-04 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种带开口谐振环的双频偶极子天线
CN116231314A (zh) * 2023-04-27 2023-06-06 北京智芯微电子科技有限公司 结合二维材料的电磁环境测量天线

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204375944U (zh) * 2015-01-20 2015-06-03 中兴通讯股份有限公司 一种谐振环结构和天线
CN106602256B (zh) * 2016-12-13 2023-03-24 广东工业大学 一种用于医疗检测的圆极化贴片天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201149898Y (zh) * 2008-01-18 2008-11-12 东南大学 多阻带超宽带圆盘天线
CN203339305U (zh) * 2013-04-11 2013-12-11 中国计量学院 背面开槽式圆环形双频微带天线
CN104466399A (zh) * 2013-09-22 2015-03-25 中兴通讯股份有限公司 一种微带天线及其滤除干扰信号的方法、移动终端
CN204375944U (zh) * 2015-01-20 2015-06-03 中兴通讯股份有限公司 一种谐振环结构和天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201149898Y (zh) * 2008-01-18 2008-11-12 东南大学 多阻带超宽带圆盘天线
CN203339305U (zh) * 2013-04-11 2013-12-11 中国计量学院 背面开槽式圆环形双频微带天线
CN104466399A (zh) * 2013-09-22 2015-03-25 中兴通讯股份有限公司 一种微带天线及其滤除干扰信号的方法、移动终端
CN204375944U (zh) * 2015-01-20 2015-06-03 中兴通讯股份有限公司 一种谐振环结构和天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANTASRI, K. ET AL.: "An Integrated Planar Bluetooth and UWB Monopole Antenna with Dual Notched Bands Based on Etched Slot on the Patch and Split Ring Resonators on the Ground Plane", 2013 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION TECHNOLOGIES., 7 April 2013 (2013-04-07), pages 142 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994321A (zh) * 2017-11-07 2018-05-04 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种带开口谐振环的双频偶极子天线
CN107994321B (zh) * 2017-11-07 2020-02-18 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种带开口谐振环的双频偶极子天线
CN116231314A (zh) * 2023-04-27 2023-06-06 北京智芯微电子科技有限公司 结合二维材料的电磁环境测量天线
CN116231314B (zh) * 2023-04-27 2023-08-15 北京智芯微电子科技有限公司 结合二维材料的电磁环境测量天线

Also Published As

Publication number Publication date
CN204375944U (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
Ahmed et al. Ultra-wideband bandpass filter based on composite right/left handed transmission-line unit-cell
Gao et al. Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure
Xiao et al. Multi-band bandstop filter using inner T-shaped defected microstrip structure (DMS)
WO2016115822A1 (zh) 一种谐振环结构和天线
CN106129558B (zh) 基于开口谐振环结构的超材料微波滤波器
Huang et al. A novel coplanar-waveguide bandpass filter using a dual-mode square-ring resonator
Belbachir et al. High-performance LPF using coupled C-shape DGS and radial stub resonators for microwave mixer
WO2014176963A1 (zh) 滤波器
Biswas et al. Harmonics suppression of microstrip patch antenna using defected ground structure
CN106848507A (zh) 基于组合谐振器的双通带微带滤波器
Boutejdar et al. Design of a new broad stop band (BSB) lowpass filter using compensated capacitor and П-H-П DGS resonator for radar applications
KR101216433B1 (ko) 메타매질을 이용한 고역 통과 필터
KR101252687B1 (ko) 메타매질을 이용한 저역 통과 필터
Ning et al. A compact quad-band bandstop filter using dual-plane defected structures and open-loop resonators
CN204333236U (zh) 一种新型的基于螺旋环谐振器的圆环形超宽带天线
CN204333265U (zh) 一种新型的具有螺旋环谐振器及五角星镂空的圆形超宽带天线
CN204538224U (zh) 一种新型的具有螺旋环谐振器的圆形陷波超宽带天线
Xiaojun et al. Design of two-band band-pass filter using defected ground structure (DGS) resonators
CN203218454U (zh) 一种采用短路引线的平面超宽带滤波天线
Valizade et al. An ultra-wideband band-pass filter with band-notch performance based on meander embedded open-circuited stub structure
Zhang et al. Novel dual-mode substrate integrated waveguide (SIW) bandpass filter
Lo et al. Design of dual-band bandpass filter using stub-loaded resonator with source-load coupling and spur-line at 2.45/5.5 GHz for WLAN applications
Anand et al. Design of UWB band pass filter with inter digital coupled lines and circular shaped EBG structure
Brito et al. Complementary split ring resonator stop-band filter for UWB applications
Akbarzadeh et al. A new design of very compact UWB band-stop filter using coupled W-shaped strips

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878494

Country of ref document: EP

Kind code of ref document: A1